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1 Introduction

Und aus dem Chaos sprach eine Stimme
zu mir: “Lächle und sei froh, es könnte
schlimmer kommen!” Und ich lachte und
war froh – denn es kam schlimmer!

Otto Waalkes

Thousands of years ago, in the glowing embers of the dawning Bronze age, alloying the two

metals copper and tin was a ground-breaking discovery that started a new era. Centuries later,

gaining an understanding of matter had become a central goal of the philosophy of nature and

the application of this knowledge has acted as basis of the progress for mankind since then.

Historically, physics was an empirical field, continuously accompanied by efforts to achieve re-

liable predictions. In the beginning of the last century, with the advent of quantum theory, the

fundament for an atomistic description of matter was laid. It was clear from the very begin-

ning that the corresponding equations are too complex to be solved exactly for real systems.

Approximations had to be made, and, ironically, are the reason why theory and experiment

started from different points of view. Available samples of the materials were far from the ideal

systems that theory was able to describe. Nowadays, generations later, both disciplines have

approached each other. Enhanced experimental techniques provide crystals of high quality,

while the theoretical description benefits from the continuously increasing power of computers,

which renders them capable of solving complicated problems without crude approximations.

Interestingly, computers are not just providing solutions for existing problems. Their increas-

ing capabilities triggered the evolution from the industrial towards the information age and

they even became an own driving force for development, e.g., materials research. Initially, the

electronic circuits that allowed the breakthrough of the computer were largely silicon-based.

Nowadays, the next wave of this development is about to roll down — mobility. Mobile devices

working with fast wireless networks enable the Internet to become an integrated part of our

lives. However, they have slightly different requirements than traditional computers. A truly

independent power supply raises demands for new energy sources, such as solar cells. We

even hope to harness the movement of the human body to generate electricity someday, e.g.

via piezoelectric ZnO nanowires [1]. In addition, such integration into everyday life imposes

demands on the user interface of such devices. Brilliant displays, as in windshields or glasses,

require transparent electronics. When silicon reaches its limits, new materials pitch in.
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2 1 Introduction

The motivation for the present work emerged from both of the aforementioned develop-

ments; we employ recent ab-initio methods and theoretical spectroscopy techniques that rely

on heavy numerical calculations to describe electronic excitations in non-ideal crystals of three

group-II oxides. While zinc oxide (ZnO) is already widely applied for optoelectronics (see e.g.

Ref. [2]), magnesium- (MgO), and cadmium oxide (CdO) are possible candidates for combi-

nations with ZnO, for instance in alloys or heterostructures. We study the ideal equilibrium

polymorphs of these oxides, that are experimentally well-investigated, for gaining a thorough

understanding as well as the necessary confidence in our approaches to generalize and apply

them to the electronic excitations in imperfect crystals. As such imperfections we take the influ-

ence of strain, the alloying of the different oxides, an intrinsic point defect, and free electrons

in the lowest conduction band into account. Strain that occurs for instance when thin films

are grown on a lattice-mismatched substrate is experimentally relevant due to its impact on

the electronic and optical properties. Alloys of the three oxides are of highest interest in the

context of band-gap tailoring. In the case of rs-MgO the oxygen vacancy, as a prototypical F-

center, raises questions concerning the respective optical absorption peaks for decades. Finally,

in the context of transparent and conductive materials the influence of the free carriers on the

optical properties and the bound excitonic states has never been explained by parameter-free

calculations. In this thesis we introduce the respective generalizations of the theoretical and

numerical approaches and perform the computationally involved calculations.

Along the path from quantum mechanics towards actual calculations, density functional

theory (DFT) [3, 4] is a milestone since it provides access to the ground-state properties of

materials. Probing the electronic band structure experimentally, e.g. by means of spectroscopy

techniques, corresponds to adding an electron or a hole to the system. Taking the response of

the electronic system to this excitation into account in the calculations, leads to the quasipar-

ticle picture that can be described using Hedin’s GW approximation [5, 6] for the electronic

self energy. We employ the DFT results as input in order to compute quasiparticle electronic

structures, which are in good agreement with experimental findings. Moreover, optical mea-

surements typically create electron-hole pairs in the system. According to Hedin’s equations

for interacting electrons [5, 6], the electron-hole interaction is taken into account by solving

a Bethe-Salpeter equation for the polarization function. This quantity is related to the dielec-

tric function, which allows us to access the optical properties of the oxides. In Chapter 2 we

introduce these theoretical concepts as well as the generalization of the Bethe-Salpeter ap-

proach to account for a partially occupied conduction band. Remarks concerning the practical

calculations are discussed in Chapter 3.

Chapter 4 describes the equilibrium polymorphs of ideal bulk MgO, ZnO, and CdO and in-

vestigates the structure of their valence and conduction bands. We present densities of states

and effective masses, as well as natural band discontinuities. Furthermore, our description
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of the dielectric function, which takes excitonic effects into account, enables us to derive the

electron-energy loss function. Throughout, detailed comparisons to experimental results prove

the suitability of our parameter-free theoretical approaches.

Evidently, ab-initio calculations can provide insight beyond experimentally accessible param-

eter ranges. In this context, the influence of uniaxial and biaxial strain on the ordering of the

valence bands in ZnO is investigated in Chapter 5. In addition, we explore the electronic band

structure of the non-equilibrium wurtzite structures of MgO and CdO, for which no bulk crys-

tals exist, preventing an experimental investigation. Hence, we predict valence-band splittings

and band gaps as they might occur at interfaces of MgO or CdO with ZnO substrates.

In Chapter 6 we study pseudobinary alloys by means of a cluster expansion method. Appro-

priate cluster statistics allow us to elaborate on the impact of different growth conditions on

the composition of the alloy. Due to the different crystal structures of the respective oxides, i.e.

rocksalt and wurtzite, the description of their heterostructural combination has to be achieved.

The electronic and optical properties of the group-II oxide alloys are calculated and discussed

with respect to different growth conditions. The corresponding calculations are computation-

ally extremely expensive due to the large number of possible clusters.

The oxygen vacancy in MgO is studied in Chapter 7. Along these lines, the resemblance

between the absorption peaks of the F-center and the F+-center is most puzzling. We will show

how the inclusion of excitonic effects in the many-body calculations allows us to unravel ex-

perimental observations even though the solution of the Bethe-Salpeter equation for supercells

containing a defect is extremely demanding from a computational point of view. Besides, the

investigation of the F+-center requires a spin-polarized treatment of the excitonic Hamiltonian

which only recently became possible.

Turning a transparent material conductive by introducing free electrons via heavy n-doping is

essential e.g. for photovoltaic applications. In Chapter 8 we calculate the frequency-dependent

absorption of ZnO, accounting for the first time for excitonic effects and free electrons in the

lowest conduction band within a first-principles framework. The Bethe-Salpeter approach has

to be extended to account for the partially occupied conduction-band states and for the impact

on the screening of the electron-hole interaction. Thereby, we disentangle the interplay of

both aspects and explain how they affect the optical-absorption properties. Furthermore, we

explore the possibility of an excitonic Mott transition. These investigations are computationally

expensive since they require the calculation of highly accurate exciton binding energies.

Finally, we summarize our insights regarding the influence of imperfections on the group-

II oxides in Chapter 9. We contribute to explanations of experimental findings, leading to a

deeper understanding of these oxides. Aside from possibly emerging applications, we must

not forget the spirit of solving problems within collaborations which was a major driving force

behind the present thesis.



2 Fundamentals

Nothing exists except atoms and empty space;
everything else is opinion.

Democritus

2.1 Setting the stage

2.1.1 Matter

For thousands of years mankind has been challenged to understand what forms their environ-

ment and the world around them. Many generations of scientists and philosophers struggled to

contribute piece by piece to what our present grasp of matter is. Nowadays, our conception of

the building blocks of all that surrounds us relies on an atomistic picture. Every material, be it

rigid, liquid, or gaseous, is built of atoms. Likewise, the atoms themselves show a substructure,

consisting of a heavy, positively charged nucleus, and a certain number of negative electrons

around it. This complex of the core and its electrons, bound together via the Coulomb force,

forms the electrostatically neutral atom. Looking deeper into this structure and, therefore, go-

ing well above the energy scale of the Coulomb interaction, scientists found that the nucleus

itself consists again of different, even more elementary particles. It seems to be a fundamental

principle that, at least to some extent, our view of the world strongly depends on the energy

scale we are using to look at it.

Condensed-matter physics is the superordinate framework of this work. Its experimental

techniques typically do not interfere with the nuclear structure of matter since the characteristic

energies are too low, being in the range of less than a milli-electron volt (meV) up to several

10 keV. The dominant interaction is the Coulomb force which leads to the negative electrons

and the positive cores attracting each other. In contrast, this force causes repulsion between the

electrons and between the nuclei. While this sounds like a fairly complete picture, the situation

is incredibly complicated for a macroscopic system with typically on the order of 1023 atoms

per cm3 whose electrons and nuclei potentially all interact. Moreover, this problem has to

be treated on a quantum-mechanical footing, i.e., exchange and correlation (XC) enter, going

beyond the classic repulsion of the electrons. Fortunately, we are still able to predict properties

of such systems from first principles, however, sophisticated approximations seem inevitable.

4



2.1 Setting the stage 5

2.1.2 Interacting electrons

In this thesis we aim to describe the electronic structure and the optical properties of the three

group-II oxides MgO, ZnO, and CdO. Therefore, as a first major simplification, we employ the

Born-Oppenheimer approximation [7], according to which we keep only the electronic problem

from the total Hamiltonian. Treating the nuclei merely as a static external Coulomb potential

for the interacting electrons leads to a neglect of any dynamic interaction between the cores

and electrons. The impact of this drastic approximation on the electronic and optical properties

will be pointed out where necessary.

For the remaining electronic problem we rely on developments dating back to the first third of

the 20th century. During this time our picture of the electron dramatically changed when quan-

tum mechanics and the theory of relativity together culminated in the Dirac equation [8, 9].

This equation is, strictly speaking, the solid theoretical ground for the concept of electron spin.

Since the three oxides of interest in this work have even numbers of electrons, it is reasonable

to consider spin-paired electrons only — leading to an entirely spin-less description by means

of the Schrödinger equation which is solved for doubly occupied states. For a more complete

picture, we are also occasionally interested in the electronic fine structure. In these cases the

Pauli equation [10], as the weakly relativistic limit of the Dirac equation, will be employed.

In addition, the spin-orbit coupling (SOC) term that results from the Dirac description will be

included to deal with the interaction of the spin, as an internal angular momentum, with the

orbital angular momentum (cf. Section 2.2.5).

For materials with a non-ferromagnetic ground state it is well-justified to neglect the transver-

sal interaction of the electrons, i.e. the vector potential, in the Hamiltonian of the electronic

problem [11], which leaves three terms that are taken into account: (i) the electronic kinetic

energy T (r), (ii) the external potential V (r ,R) caused by the positively charged nuclei, and (iii)

the electron-electron interaction U(r). This leads to the Hamilton operator

Ĥ(r ,R) = T̂ (r)+Û(r)+ V̂ (r ,R). (2.1)

When describing a system of N electrons (mass m, r = {r1, . . . , rN}) and M cores (mass Ms,

R = {R1, . . . ,RM}, charge Zs, s = 1, . . . ,M) within first quantization these terms are [11]

T̂ (r) =
N

∑
i=1

p̂2
i

2m
, (2.2)

Û(r) =
1
2
· e2

4πε0

N

∑
i, j=1
i6= j

1
∣

∣r̂ i − r̂ j

∣

∣

, (2.3)

V̂ (r ,R) =− e2

4πε0

N

∑
i=1

M

∑
s=1

Zs

|r̂ i −Rs|
. (2.4)



6 2 Fundamentals

2.1.3 Quantum-field theoretical description

In a quantum-mechanical description the electrons of the system are indistinguishable. To

incorporate this fundamental property into the problem, it is required that the square of the

many-electron wave function remains unchanged under any operator that only exchanges two

electrons. More specifically, the wave function for fermions (therefore also for electrons) has to

be antisymmetric under such a transformation [11]. This property of the wave function
∣

∣ψR
α
〉

(in Dirac’s Braket notation) will be ensured by anti-commutator relations for the field operators

ψ̂†
α(r) and ψ̂α(r). The creation operator ψ̂†

α(r) is defined as the operator that transforms an N

particle state into an (N +1) particle state by adding an electron with spin α at the position r .

Its adjoint, the annihilation operator ψ̂α(r) =
(

ψ̂†
α(r)

)†, transforms an N electron state to an

(N − 1) electron state by removing a particle. Constructing the wave function by successive

application of creators and annihilators automatically guarantees antisymmetry when these

anti-commutator relations are fulfilled [11]:

[

ψ̂α(r), ψ̂β (r
′)
]

+
=
[

ψ̂†
α(r), ψ̂

†
β (r

′)
]

+
= 0 and (2.5)

[

ψ̂α(r), ψ̂†
β (r

′)
]

+
= δ

(

r − r ′
)

δαβ . (2.6)

Any one- and two-particle operator can be expanded in terms of the field operators via

N

∑
i=1

Âi
1 = ∑

α ,β

∫∫

dr1 dr2
〈

r1α
∣

∣ Â1
∣

∣r2β
〉

ψ̂†
α(r1) ψ̂β (r2) and (2.7)

1
2 ∑

i6= j

Âi, j
2 =

1
2 ∑

α ,β ,γ ,δ

∫∫∫∫

dr1 dr2dr3 dr4× (2.8)

×
〈

r1α , r2β
∣

∣ Â2
∣

∣r3γ , r4δ
〉

ψ̂†
α(r1) ψ̂†

β (r2) ψ̂δ (r4) ψ̂γ (r3).

Applying these transformations to the operators T̂ , Û , and V̂ [Eqs. (2.2), (2.3), (2.4)] yields

T̂ =− h̄2

2m ∑
α

∫

dr ψ̂†
α (r)∆ ψ̂α(r), (2.9)

Û =
1
2 ∑

α ,β

∫∫

dr1 dr2 u(r1, r2) ψ̂†
α(r1) ψ̂†

β (r2) ψ̂β (r2) ψ̂α(r1), and (2.10)

V̂ = ∑
α

∫

dr v(r ,R) ψ̂†
α (r) ψ̂α (r), (2.11)

where the matrix elements u(r1, r2) and v(r ,R) are given by

u(r1, r2) = u(|r1− r2|) =
e2

4πε0 |r1− r2|
and (2.12)

v(r ,R) =− e2

4πε0

M

∑
s=1

Zs

|r −Rs|
=−

M

∑
s=1

Zs u(r ,Rs). (2.13)



2.2 Ground state: Density functional theory 7

2.2 Ground state: Density functional theory

In Eqs. (2.1) – (2.4) the Hamiltonian of the interacting many-electron problem was introduced,

though its solution yet has to be found. The incredibly large number of involved electrons

renders an exact treatment of the problem impossible. As pointed out by W. Kohn [12], the

reason is not only the dimension of the respective parameter space which even grows exponen-

tially with the particle number N of the problem, but also the unmanageably large amount of

information contained in the fully interacting many-body wave function. In 1964P. Hohenberg

and W. Kohn found an appealing and instructive formulation of the problem [3] based on the

density n(r) of the ground state |ψ〉 of the electronic system,

n(r) = ∑
α

〈

ψ
∣

∣ ψ̂†
α(r)ψ̂α (r)

∣

∣ψ
〉

. (2.14)

By proving that n(r), a simple function of three spatial coordinates, can replace the complicated

many-body wave function (which depends on three spatial coordinates for each electron) as the

basis variable of the problem, they achieved a tremendous conceptual simplification. Further-

more, they provided an approach to calculate the ground-state energy E of a given Hamiltonian

Ĥ[n] via a variational principle. These concepts shall now be further elucidated.

2.2.1 Hohenberg-Kohn theorem I

In the following we consider the Hamiltonian given by Eq. (2.1). We want to remark that in

the original paper, Ref. [3], the operator V̂ represents any one-particle external potential of the

type (2.11) for the electronic system and is only in a special case caused by the positive nuclei.

The first Hohenberg-Kohn (HK) theorem establishes a one-to-one mapping between the ex-

ternal potential v(r ,R) and the ground-state density of the Hamiltonian. One direction of the

proof is simple: Obviously, the density, being the ground-state expectation value of the density

operator [cf. Eq. (2.14)], is a functional of the external potential v(r ,R). For the reverse direc-

tion one has to show that v(r ,R) is a unique functional of the ground-state density. Here, we

follow the proof by P. Hohenberg and W. Kohn [3] for non-degenerate ground states.

Therefore, V̂ and V̂ ′ represent two external potentials that differ by more than just a constant,

i.e., V̂ − V̂ ′ 6= const. The corresponding Hamiltonians Ĥ and Ĥ ′ lead, via the Schrödinger

equations, to different ground states |ψ〉 and |ψ ′〉 with the ground-state energies E and E ′. For

the indirect proof we assume that both potentials may lead to equal ground-state densities n.

The variational principle of J. Rayleigh and W. Ritz gives for both Hamiltonians

E =
〈

ψ
∣

∣Ĥ
∣

∣ψ
〉

<
〈

ψ ′∣
∣Ĥ
∣

∣ψ ′〉=
〈

ψ ′∣
∣Ĥ ′− V̂ ′+ V̂

∣

∣ψ ′〉= E ′+
〈

ψ ′∣
∣V̂ − V̂ ′ ∣

∣ψ ′〉 , and (2.15)

E ′ =
〈

ψ ′∣
∣ Ĥ ′ ∣

∣ψ ′〉<
〈

ψ
∣

∣Ĥ ′ ∣
∣ψ
〉

=
〈

ψ
∣

∣ Ĥ − V̂ + V̂ ′ ∣
∣ψ
〉

= E +
〈

ψ
∣

∣V̂ ′− V̂
∣

∣ψ
〉

. (2.16)
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In the sum of Eqs. (2.15) and (2.16) the two terms
〈

ψ ′∣
∣V̂ − V̂ ′ ∣

∣ψ ′〉 and
〈

ψ
∣

∣V̂ ′− V̂
∣

∣ψ
〉

cancel

each other, as they are expectation values of the type (2.11), due to the assumed equality of

the ground-state densities. This then leads to the contradiction

E ′+E < E +E ′,

which proves the assumption of equality of the ground-state densities to be wrong.

In summary, the first HK theorem states that a given ground-state density n(r) uniquely

defines the external potential v(r ,R) (except for an irrelevant additive constant), and, there-

fore, the entire Hamiltonian. By means of the Schrödinger equation this basis-variable property

of n(r) transfers to the entire many-body ground state |ψ〉, i.e.,

|ψ〉= |ψ [n]〉, Ĥ = Ĥ[n], E =
〈

ψ [n]
∣

∣ Ĥ[n]
∣

∣ψ [n]
〉

= E[n]. (2.17)

These relations impressively show that all quantities which can be derived from the Hamil-

tonian are implicitly contained in its ground-state density [13]. So far, this is only a formal

simplification since neither the functionals for calculating any property of a system, nor the

recipe for how to construct them, are known a priori. We will discuss such an approach for

how to obtain the ground-state energy, though it remains questionable if such functionals can

be constructed in explicit terms for every excited state energy [13]. In practice, DFT is prefer-

ably applied to the calculation of ground-state properties, such as total energies and lattice

geometries, and as such is the method we employ in this work.

2.2.2 Hohenberg-Kohn theorem II

For all possible ground states |ψ [ñ]〉 the energy E [ñ] of a system with the ground-state density

n is given as the expectation value of its Hamiltonian Ĥ[n]. Due to the first HK theorem E [ñ] is

a unique functional of ñ,

E [ñ] =
〈

ψ [ñ]
∣

∣Ĥ[n]
∣

∣ψ [ñ]
〉

. (2.18)

The second HK theorem states that the basis-variable property of n(r) can also be transferred

to a variational principle, i.e., the functional (2.18) assumes its minimum at the ground-state

density n of Ĥ[n]. Using the Rayleigh-Ritz variational principle we know that the ground-state

wave function |ψ [n]〉 of the respective system minimizes the energy. For every other ground-

state wave function |ψ [ñ]〉 it holds

〈

ψ [n]
∣

∣Ĥ [n]
∣

∣ψ [n]
〉

= E [ψ [n]] = E [n]<
〈

ψ [ñ]
∣

∣Ĥ [n]
∣

∣ψ [ñ]
〉

= E [ψ [ñ]] = E [ñ] . (2.19)

Using the first part of the HK theorem, which assures the unique mapping between the wave

function and the ground-state density, we have now shown that the second HK theorem trans-
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forms the variation with respect to |ψ〉 into a variation with respect to ñ(r). Extensions of the

proofs given here, especially for degenerate ground states, are available in the literature [13].

2.2.3 Kohn-Sham equations

So far it has been shown that due to the HK theorem the ground-state density of the interacting

many-electron problem acts as the basis variable of a variational principle for the ground-state

energy. For the actual determination of this ground-state density, we follow the treatment of

W. Kohn and L. J. Sham [4] by mapping the problem of interacting electrons in an external

potential v(r ,R) onto a system of non-interacting particles (index s) in an effective potential

veff(r ,R) with the same ground-state density and the energy functional

Es [ñ(r)] =
∫

veff(r ,R) ñ(r)dr +Ts[ñ(r)]. (2.20)

Here, Ts[ñ(r)] is the universal functional for the kinetic energy of non-interacting particles. The

minimization of Eq. (2.20) with respect to the density yields

0=
δ

δ ñ(r)

[

Es [ñ(r)]−ζ
∫

ñ(r)dr
]

ñ(r)=ns(r)
=

[

veff(r ,R)+
δTs[ñ(r)]

δ ñ(r)

]

ñ(r)=ns(r)
−ζ (2.21)

where the Lagrange multiplier ζ ensures the conservation of the number of particles. From

this equation the definition of the potential veff(r ,R) follows as

[veff(r ,R)]ñ(r)=ns(r)−ζ =

[

−δTs[ñ(r)]
δ ñ(r)

]

ñ(r)=ns(r)
, (2.22)

where ns is the ground-state density of the non-interacting system. Likewise, the minimization

of the energy functional for the interacting system is given by

0=
δ

δ ñ(r)

[

∫

v(r ,R) ñ(r)dr +T [ñ(r)]+U [ñ(r)]−ξ
∫

ñ(r)dr
]

ñ(r)=n(r)

=

[

v(r ,R)+
δTs[ñ(r)]

δ ñ(r)
+VH [ñ] (r)+

δEXC[ñ(r)]
δ ñ(r)

]

ñ(r)=n(r)
−ξ ,

(2.23)

where the Hartree potential VH and the Hartree energy EH enter that are defined as

VH [n] (r1) =

∫

dr2 u(r1, r2)n(r2) and (2.24)

EH [n] =
1
2

∫

dr VH [n] (r)n(r) =
1
2

∫∫

dr1 dr2 u(r1, r2)n(r1)n(r2). (2.25)

Furthermore, in Eq. (2.23) the XC functional EXC is introduced according to

EXC[ñ(r)] := T [ñ(r)]−Ts[ñ(r)]+U [ñ(r)]−EH [ñ] , (2.26)
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which leads to the XC potential VXC by means of

VXC[n](r) :=
δEXC[ñ(r)]

δ ñ(r)

∣

∣

∣

∣

ñ(r)=n(r)
. (2.27)

Clearly, Eq. (2.26) points out that EXC should account for the difference between the kinetic

energy of interacting and non-interacting electrons. It also includes all electron-electron inter-

actions beyond the Hartree term, in particular, the quantum mechanical XC effects. Since an

exact expression of this functional is unknown, a reasonable approximation is crucial.

For simplicity we disregarded two difficulties related to this approach of defining the XC

functional. Firstly, v-representability of the density has been assumed, meaning that for all

physically relevant densities n we require the existence of a potential v which leads to n as the

ground-state density of the respective Hamiltonian. Secondly, the existence of the right-hand

side of Eq. (2.22) also for all possible densities of interacting systems was implied. Neither of

these problems are trivial, however, there exist respective extensions. Since this goes beyond

the scope of this work we refer to specialized literature, such as Ref. [13] and the references

therein. Keeping this in mind, Eqs. (2.22) and (2.23) allow defining the effective potential

of the non-interacting problem (up to a constant that justifies the neglection of the Lagrange

multipliers) as

[veff(r ,R)]ñ(r)=n(r) = [v(r ,R)+VH [ñ] (r)+VXC[ñ](r)]ñ(r)=n(r) . (2.28)

This potential leads to an effective single-particle Schrödinger equation that can be solved

using a product of single-particle wave functions ψl(r). The Schrödinger equations

ĤKS(r ,R)ψl(r) =
(

− h̄2

2m
∆+ v(r ,R)+VH(r)+VXC(r)

)

ψl(r) = εlψl(r) (2.29)

for the ψl(r) are referred to as the Kohn-Sham (KS) equations [4]. Their eigenstates ψl lead to

the ground-state density, whereas the total energy of the interacting system follows from

E =
occ

∑
l

εl −EH[n]−
∫

dr n(r)VXC[n](r)+EXC[n]. (2.30)

Using the Bloch theorem [14] allows us to express the eigenstates of the single-particle Hamil-

tonian ĤKS in Eq. (2.29) via a product of a plane wave and a lattice-periodic function unk(r),

i.e.,

〈r |nk〉 = ψnk(r) =
1√
Ω

eik · r unk(r) with unk(r +R) = unk(r). (2.31)

In this expression Ω denotes the volume of the crystal. Henceforth, instead of labeling the

solutions of Eq. (2.29) with l, we use the two quantum numbers n and k. The band index n

counts the eigenstates that belong to the same k vector of the Brillouin zone (BZ).
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2.2.4 Exchange and correlation

Local-density approximation and gradient corrections

In their initial paper W. Kohn and L. J. Sham [4] suggested approximations to the XC en-

ergy. Within the local-density approximation (LDA) the respective XC energy per electron of an

homogeneous electron gas with the same density, εhom
XC (n), is used, leading to

ELDA
XC [n] =

∫

dr n(r) εhom
XC (n)

∣

∣

∣

n=n(r)
. (2.32)

An explicit expression can be given for the exchange energy of the homogeneous electron gas.

Using a fit to numerical results from quantum Monte Carlo calculations, e.g. by D. Ceperley

and B. Alder [15], yields a parametrization of the correlation energy.

While the LDA should work a priori only for systems whose density varies slowly across

the average electron distance, it turned out to be very successful even when this requirement

is not fulfilled. Due to this success and due to its computational simplicity, the LDA majorly

contributed to the wide application of DFT. However, atomization energies of molecules or

bulk materials are oftentimes found to be too large [16], while binding energies of strongly

localized electrons tend to be underestimated. The overall good results for many systems have

been traced back to the fact that the LDA inherently fulfills important sum rules, one example

is its good reproduction of the spherical average of the XC hole, which leads to a certain error

cancellation [13]. Among the deficiencies of the LDA is an artificial self-interaction [17, 18]

which enters into the problem with the integral expression of the Hartree energy, Eq. (2.25).

As long as the electron-electron Coulomb interaction is expressed as a sum over all electrons

of the system [cf. Eq. (2.3)] the interaction of an electron with itself is explicitly excluded from

the sum. In Eq. (2.25) this is obviously no longer the case. Since the integral expression for

the Hartree energy has been separated from the XC functional [cf. Eqs. (2.23) and (2.26)], in

principle the XC functional has to compensate for the self-interaction and the LDA does not.

It turns out that the self-interaction is particularly large for the Zn 3d or Cd 4d states due to

their strong localization [185]. Explicit correction schemes exist [19], however, we choose a

different route in this work.

In order to improve over the LDA, including higher-order terms of an expansion of the XC

functional with respect to the density of the homogeneous electron gas involves gradients of the

density (gradient-expansion approximation). Unfortunately, this approach does not fulfill the

aforementioned sum rules [13] and was, therefore, replaced by the also semilocal generalized-

gradient approximation (GGA). In the context of this work the PW GGA II functional by Y. Wang

and J. Perdew [16, 20, 21], also called PW91, is used for most of the ground-state calculations.

Typically, the GGA slightly improves the results for ground-state properties of bulk semiconduc-

tors in comparison to the LDA, though still showing a tendency to overestimate lattice constants
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(by about 1%) and underestimate cohesive energies or bulk moduli. However, the description

of the localized Zn 3d or Cd 4d states is not improved with respect to the LDA [185, 186].

Orbital-dependent on-site Coulomb repulsion

Instead of applying self-interaction correction schemes, the more flexible LDA+U/GGA+U ap-

proach [22, 23], which is inspired by a Hubbard model [24], is used in this work to overcome

the underbinding of the d electrons at low computational cost. Of the different formulations

in the literature [22, 25, 26] we choose the representation of Dudarev et al. [23], where the

additional, effective on-site Coulomb interaction is accounted for via two spherical averages of

the screened Coulomb electron-electron interaction, denoted by the parameters Ū and J̄. This

results in an orbital-dependent modification of the LDA/GGA energy functional, i.e.,

ELDA+U/GGA+U = ELDA/GGA+
Ū − J̄

2 ∑
α

[(

∑
d j

n
d j ,d j
α

)

−
(

∑
d j ,dl

n
d j ,dl
α n

dl ,d j
α

)]

. (2.33)

Here, α denotes the spin of each state and n̂
d j ,dl
α = ψ̂dl

α
†

ψ̂d j
α describes the operator of the single-

particle density of the d states, where d j runs over the projections of the orbital angular momen-

tum (−2,−1, . . . ,2). In Dudarev’s formulation, Eq. (2.33), only one parameter U , the difference

of Ū and J̄, enters. Since U is not fixed a priori but strongly influences the results, we will justify

its choice in detail later. The derivative of Eq. (2.33) with respect to the density [cf. Eq. (2.27)]

yields the LDA+U/GGA+U contribution to the single-particle potential in the KS equations.

Hybrid functionals for exchange and correlation

When the XC functional in the KS equations (2.29) is expressed by a local or semilocal func-

tional, their solution corresponds to approximating the many-body wave function by a single

Slater determinant [27]. However, not all contributions to XC are captured by this and it turns

out that generalizing the KS scheme can lead to single-particle equations with eigenvalues

that resemble the excitation energies of a system much better. Such a generalization has been

achieved by A. Seidl et al. [27] within the constrained-search formulation [13] of DFT. They

incorporated as much information about the physics as possible by including a certain amount

of Hartree-Fock (HF) exchange, leading to a variety of hybrid functionals that, unfortunately,

come along with a much higher computational cost compared to the LDA or the GGA.

One approach in this context, the PBE0 hybrid functional which was independently devel-

oped by M. Ernzerhof and C. Adamo [28, 29], features an XC energy,

EPBE0
XC = aEHF

X +(1−a)EPBE
X +EPBE

C , (2.34)

that is based on the XC energy of the PBE-GGA functional [30] (parametrized by J. Perdew,
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K. Burke, and M. Ernzerhof) but contains a certain amount of HF exchange. Using arguments

from the perturbation theory [31, 32] the respective value for a is fixed at a = 1/4.

Within this work we use the HSE03 functional by J. Heyd, G. Scuseria, and M. Ernzer-

hof [33], which exploits the fact that the exchange interaction in an insulator or semiconductor

is screened and, therefore, the long-range (LR) part of the HF exchange can be truncated to

reduce the computational effort. After splitting the exchange energies in Eq. (2.34) into their

short-range (SR) and LR parts, the HF and the PBE LR exchange contributions tend to cancel

each other [33]. Neglecting them yields

EHSE03
XC = aEHF,SR

X (ω)+ (1−a)EPBE,SR
X (ω)+EPBE,LR

X (ω)+EPBE
C . (2.35)

The parameter ω describes the LR / SR separation by means of the error function. It is related to

a characteristic distance at which the SR interactions become negligible. For ω = 0 the LR part

vanishes and the SR part corresponds to the full Coulomb operator. Contrary, the functional is

equivalent to PBE-GGA for ω → ∞. In the HSE03 functional it holds ω = 0.15a−1
0 , as a good

compromise between accuracy and computational cost for solids and molecules [33]. Later,

they amended ω to ω = 0.1a−1
0 which is the value used in the HSE06 functional [34].

2.2.5 Non-collinear spins

For the derivation of the theory so far entirely spin-paired electrons have been assumed. In

order to investigate the fine structure of the one-particle spectrum, the spin-orbit interaction

between the electron spin and the orbital angular momentum must be included [11]. Conse-

quently, instead of wave functions, two-component spinors have to be taken into account in

the density-functional formalism and the Pauli equation has to be solved. The electron density

[cf. Eq. (2.14)] is generalized to a 2×2 spin-density matrix,

nαβ (r) =
〈

ψ
∣

∣

∣
ψ̂†

β (r)ψ̂α (r)
∣

∣

∣
ψ
〉

. (2.36)

While the sum of the diagonal components gives the electron density, n(r) = nαα + nββ , their

difference, nαα −nββ , describes the projection of the magnetization density onto a global quan-

tization axis, here the z axis. The magnetization density m(r) is defined as

m(r) = ∑
α ,β

nβα (r) ·σαβ , (2.37)

where σσσ = (σx,σy,σz) denotes the vector of the Pauli spin matrices given by

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

. (2.38)
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In the most general situation the spins are non-collinear and the full r dependence of nαβ (r) is

taken into account. In contrast, a system with collinear spin-polarization is described via a spin-

up and a spin-down density only. In this case the expectation values of the x- and y-component

of the magnetization density, as well as the off-diagonal elements of nαβ , vanish.

The initial indication for extending the KS scheme to include spin was already given by W.

Kohn and L. J. Sham [4]. In addition, in the 1970’s the spin-DFT was put on a solid theoreti-

cal fundament (see Refs. [13, 35, 36] and references therein). Nevertheless, it still seems to

be an open question whether a given ground state uniquely corresponds to one vector of ex-

ternal fields (v(r),B(r)). However, a universal energy functional of (n(r),m(r)) can be found

and also a HK-like variational principle can be established via the constrained-search formula-

tion of DFT [13]. The XC energy can be approximated by the expression for a spin-polarized

homogeneous electron gas with the same charge and magnetization density,

ELSDA
XC

[

nαβ (r)
]

=

∫

dr n(r)εhom
XC (nαα(r)) =

∫

dr n(r)εhom
XC (n(r),mz(r)). (2.39)

In this work the non-collinear spin-DFT [37] is used to evaluate the spin-orbit interaction term

that enters the KS Hamiltonian, i.e.,

HSO(r) =
h̄

4m2c2 σσσ ·
[

∇V (r)× h̄
i

∇
]

. (2.40)

Furthermore, we use collinear spin-polarized DFT to describe systems that have, e.g. due to a

point defect, an odd number of electrons, as will be discussed later.

2.3 One-particle excitations

In the preceding section a formalism was introduced that, given a reasonable approximation

for the XC functional, is suitable for the calculation of the ground-state density and total energy

of an interacting many-electron system. One central goal of this work is the computation of

electronic band structures, i.e., the k-dependent one-particle excitation energies. Oftentimes

the KS eigenvalues εnk [cf. Eq. (2.29)] are abused by being interpreted as excitation energies.

This is fundamentally and conceptually very problematic, since they are (a priori physically

meaningless) Lagrange multipliers in the KS formalism. However, it turned out empirically

that using the εnk as excitation energies is partially successful, especially for the description of

the valence bands (VBs) of bulk semiconductors without d electrons. Nevertheless, even for

such comparably simple materials the deficiencies become manifest when gaps turn out to be

too small (“LDA gap-underestimation”) or wrong band dispersions occur, e.g., VB widths are

underestimated [38]. The measurement of such quantities involves the removal of an electron

or a hole from the system which, obviously, is then no longer in its ground state. Since such an
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excitation is not a small perturbation, we have to take the reaction of the system’s electrons into

account. In 1965L. Hedin introduced a system of coupled integro-differential equations [5, 6]

to adequately treat the excitations of electrons. Since an exact solution of the full system of

Hedin’s equations is impossible, approximations based on the Green’s function approach are

introduced.

2.3.1 Green’s function and equation of motion

Using the statistical operator of the grand canonical ensemble for the interacting many-electron

system, the single-particle Green’s function can be defined by means of a thermodynamic

average, indicated by 〈 . . .〉. In the following we neglect the spin quantum numbers and re-

strict our considerations to spin-paired electrons only. With the time-ordering operator T̂ , the

creator ψ̂†(r , t), and the annihilator ψ̂(r , t) the Green’s function reads [39]

G
(

r t, r ′t ′
)

= G
(

rr ′, t − t ′
)

=
1
ih̄

〈

T̂
{

ψ̂ (r , t) ψ̂†(r ′, t ′
)}

〉

. (2.41)

For times t > t ′ (t < t ′) we can interpret this expression as the probability amplitude to find an

electron (hole) at time t and position r that evolved from an electron (hole) which was created

at time t ′ and position r ′. The Green’s function can be related to an experimentally accessible

quantity, the spectral weight function [40], which, in the case of non-interacting electrons, is

composed of delta-function-like peaks located at the excitation energies of the system. These

peaks are infinitely sharp due to the infinite lifetime of the excitations of non-interacting elec-

trons. In the presence of an interaction, the energetic positions of the spectral function’s peaks

change and broadening occurs due to the finite lifetimes. Nevertheless, for long-living exci-

tations of the system we still expect distinct peak structures. The rest of the spectral weight

is attributed to satellite structures. In the quasiparticle (QP) picture an excitation of the inter-

acting system is interpreted as a single-particle excitation at the new energetic position of the

respective peak maximum of the spectral function. This approximation works well for weakly-

correlated systems [40], i.e., when the problem of interacting particles can be transformed to

weakly interacting QPs.

Ultimately, finding the excitation energies is equivalent to finding the poles of the Green’s

function in the complex energy plane. To calculate the Green’s function, the Heisenberg pic-

ture, in which the operators themselves are time-dependent, is used. The equation of motion

for the field operators is then

ih̄
∂
∂ t

Ψ̂(r , t) =
[

Ψ̂ (r , t) ,Ĥ(r)
]

with Ψ̂ ∈
{

ψ̂ , ψ̂†} . (2.42)

Using the commutator relations, Eqs. (2.5) and (2.6), together with the time derivative of the
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Green’s function one obtains

δ (r − r ′)δ (t − t ′) =

[

ih̄
∂
∂ t

+
h̄2

2m
∆r − v(r ,R)

]

G
(

rr ′, t − t ′
)

(2.43)

− 1
ih̄

∫

dr ′′ u
(

r , r ′′
)

〈{

ψ̂†(r ′′, t
)

ψ̂
(

r ′′, t
)

T̂ ψ̂ (r , t) ψ̂†(r ′, t ′
)

}〉

.

The second factor of the integrand strongly resembles the definition of the single-particle

Green’s function [cf. Eq. (2.41)], except that in Eq. (2.43) four field operators appear. In

fact, this term is the two-particle Green’s function [39] which obeys its own equation of mo-

tion. Repeated application of these steps leads to continuously increasing orders of Green’s

functions and, therefore, an entire hierarchy of equations. We obtain from Eq. (2.43)

δ (r − r ′)δ (t − t ′) =

[

ih̄
∂
∂ t

+
h̄2

2m
∆r − v(r ,R)

]

G
(

rr ′, t − t ′
)

(2.44)

+ ih̄
∫∫

dr ′′ dt ′′ u
(

r , r ′′
)

δ (t − t ′′)G
(

rr ′′, t − t ′′; r ′r ′′, t ′− t ′′+ iγ
)

,

with an infinitesimally small γ to take the time ordering into account.

2.3.2 The electronic self-energy

After separating the Hartree term from the electron-electron interaction on the right-hand side

of Eq. (2.44) the self-energy Σ (containing all XC effects) is introduced, which leads to

δ (r − r ′)δ (t − t ′) =

[

ih̄
∂
∂ t

+
h̄2

2m
∆r − v(r ,R)−VH(r)

]

G
(

rr ′, t − t ′
)

(2.45)

−
∫∫

dr ′′ dt ′′ Σ
(

rr ′′, t − t ′′
)

G
(

r ′′r ′, t ′′− t ′
)

.

Within the QP approximation, i.e., assuming only one pole with full spectral weight and, hence,

neglecting the satellite structures, this equation can be formally solved by the spectral repre-

sentation of the Green’s function

G
(

rr ′,ω
)

= ∑
nk

ψQP
nk (r) ψQP

nk
∗
(r ′)

h̄ω − εQP
nk

, (2.46)

where the εQP
nk and ψQP

nk (r) are solutions of the QP equation

[

− h̄2

2m
∆r + v(r ,R)+VH(r)

]

ψQP
nk (r)+

∫

dr ′ Σ(rr ′,εQP
nk /h̄)ψQP

nk (r ′) = εQP
nk ψQP

nk (r). (2.47)

Even though this expression is reminiscent of the KS equation [cf. Eq. (2.29)], it is much

more complicated because Σ is generally a non-local, non-Hermitian, and energy-dependent

operator. Obviously, approximations are necessary for practical applications. It was expected
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that an expansion with respect to the bare Coulomb potential would converge poorly, while

expanding Σ in terms of the screened Coulomb interaction

W
(

rr ′, t − t ′
)

=
∫∫

dr ′′ dt ′′ ε−1(rr ′′, t − t ′′
)

u(r ′′, r ′)δ (t ′′− t ′) (2.48)

should be much more successful [5, 6]. The dynamical and non-local reaction of the system

to a single-particle excitation is included in W , Eq. (2.48), via the screening of the Coulomb

potential within linear response by means of the inverse microscopic dielectric function (DF)

ε−1 [39] of independent particles. Truncating the expansion after the first term and, hence,

neglecting vertex corrections, gives Hedin’s GW approximation [5, 6, 41] of the self-energy

ΣGW
(

rr ′, t − t ′
)

≡ ih̄G
(

rr ′, t − t ′
)

W
(

r ′r , t ′− t + iγ
)

. (2.49)

It turned out that this approach works very well and has been widely adopted for a large num-

ber of materials [42–44]. Also the electronic-structure calculations in this work are based on

Eq. (2.49), hence, the remaining task is to apply the best possible approximations for G and W

to calculate Σ. Solving the QP equation (2.47) yields the QP energies εQP
nk and QP wave func-

tions ψQP
nk (r). A comparison of Eqs. (2.29) and (2.47) indicates that, due to the XC functional,

part of the self-energy is already contained in a mean-field way in the KS Hamiltonian. This

fact suggests an iterative calculation of the εQP
nk . We approximate them by a sum of the KS

energy εnk and a QP shift ∆nk that results from the remaining self-energy effects [38], i.e.,

εQP
nk = εnk +∆nk = εnk +Znk Re〈nk|Σ(εnk/h̄)−VXC |nk〉 , (2.50)

with Znk =

(

1− ∂ (Re〈nk|Σ(ω) |nk〉)
∂ (h̄ω)

∣

∣

∣

∣

h̄ω=εnk

)−1

. (2.51)

Calculating the QP energies using only the first-order of the perturbation theory requires that

the shifts ∆nk are small, i.e., the KS eigenvalues εnk are close to the εQP
nk . This approach appears

in the literature as the G0W0 approximation. Strictly speaking, its success cannot be justified

a priori, but comparison to experimental results proves that it works well for many insulators,

semiconductors, and even metals [40]. It has been shown before [42, 45], that the HSE03

functional, which we use as approximation to XC in this work, provides a starting electronic

structure which is close to the QP results.

2.4 Two-particle excitations

In the preceding section we discussed those excitations which caused electrons or holes to be

removed from the system. When the relevant excitation energies are lower, e.g., in optical

measurements, the electron and the hole are not moved apart during the process and remain
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in the system. Moreover, due to their opposite charge these particles attract each other via the

Coulomb interaction and form an electron-hole pair. This two-particle excitation of the system

corresponds to the creation of a bosonic QP called an exciton.

In principle, electron-hole pairs can be studied using Hedin’s system of equations [5, 6].

In this section, approximations and theoretical concepts are introduced and discussed that

are suitable for achieving the calculation of the optical properties of a system, such as its DF

or its absorption coefficient, taking excitonic effects into account. The DF especially plays a

fundamental role since all linear optical properties can be derived from it.

2.4.1 Bethe-Salpeter equation

The optical response of an interacting many-electron system can be related to its polarization

function P. Moreover, P is connected to the DF of the system via

ε(11′) = δ (1−1′)−
∫

d2u(1−2)P(21′). (2.52)

Here and in the following we use the short-hand notation

(1) := (r1, t1),
(

1+
)

:= (r1, t1− iγ), u(1−2) := u(r1, r2)δ (t1− t2).

A Bethe-Salpeter equation (BSE) exists for the four-point polarization function P [46],

P
(

11′,22′
)

= P0
(

11′,22′
)

+

∫∫∫∫

d3d4d5d6P0
(

11′,43
)

Ξ(34,65) P
(

56,22′
)

, (2.53)

with a kernel that determines the electron-hole interaction,

Ξ(12,34) =− 1
ih̄

δΣ(12)
δG(43)

, (2.54)

and the polarization function of independent QPs P0 [cf. Eq. (2.58)]. Employing Hedin’s GW

approximation of the self-energy Σ, Eq. (2.49), leads to two terms as a result of the variation

in Eq. (2.54), one being proportional to the screened Coulomb potential W , Eq. (2.48). While

this term describes the screened Coulomb attraction between the electron and the hole, the

other one (the variation of W with respect to the Green’s function) is usually neglected, which

is well-justified for bulk materials with dispersive energy bands [47].

To relate the microscopic DF, Eq. (2.52), to the macroscopic dielectric tensor εM(ω), the

microscopic reaction of the system to a macroscopic perturbation must be included. Adler [48]

and Wiser [49] independently showed that this can be achieved by means of the expression

εM (q̂,ω) = q̂ · ε̂M(ω) · q̂ = lim
q→0

1
ε−1(q+G,q+G′;ω)

∣

∣

∣

∣

G=G′=0
, (2.55)
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where G and G′ are vectors of the reciprocal lattice. Furthermore, we indicate with q̂ := q
|q|

the direction of the (in the optical limit vanishing) wave vector q of a photon with the energy

h̄ω . Since the inversion (2.55) of the microscopic DF for all frequencies is computationally

expensive, the local-field effects are taken into account by means of a short-range Coulomb

potential [50]

ū(q+G) =

{

u(q+G) G 6= 0

0 G = 0
. (2.56)

The term ū is equal to the Coulomb potential without its long-range Fourier component. It

accounts for the local-field effects via a bare Coulomb exchange term [46, 51] in the resulting

BSE kernel

Ξ(34,65) = δ (3−4)δ (5−6) ū(35)−δ (3−5)δ (4−6)W
(

3+4
)

. (2.57)

Finally, with the kernel (2.57) the BSE for the polarization function, Eq. (2.53), governs the

macroscopic DF including excitonic and local-field effects by means of a relation similar to

Eq. (2.52). Due to the frequency dependence of the screened Coulomb potential also the ker-

nel, Eq. (2.57), is still fully frequency dependent. We restrict ourselves to static screening only,

leading to W (12) ≈ W (r1r2)δ (t1− t2). Only in this case a closed equation for the polarization

function depending merely on one frequency exists [46].

2.4.2 Excitonic Hamiltonian

To achieve a solution of the BSE, Eq. (2.53), it is expressed in terms of Bloch states. We use the

Bloch representation of P0,

P0(λ1λ ′
1,λ2λ ′

2;ω) =
nλ1

−nλ ′
1

εQP
λ1

− εQP
λ ′

1
− h̄(ω + iγ)

δλ1λ ′
2
δλ2λ ′

1
, (2.58)

where λ cumulates the quantum numbers n and k of the Bloch states and the nλ denote their

occupation numbers. We obtain for Eq. (2.53)

P(λ1λ ′
1,λ2λ ′

2;ω) =
nλ1

−nλ ′
1

εQP
λ1

− εQP
λ ′

1
− h̄(ω + iγ)

(

δλ1λ ′
2
δλ2λ ′

1
+∑

κκ ′
Ξ(λ1λ ′

1,κ ′κ)P(κκ ′,λ2λ ′
2;ω)

)

. (2.59)

A trivial solution for Eq. (2.59) is given by P(λ1λ ′
1,λ2λ ′

2;ω) ≡ 0 for a vanishing difference

nλ1
−nλ ′

1
= 0. These cases are excluded in the following [52], in which case the problem can be

rewritten as

∑
κ ,κ ′

{

H(λ1λ ′
1,κκ ′)− h̄(ω + iγ)δλ1κ δλ ′

1κ ′

}

P(κκ ′,λ2λ ′
2;ω) =

(

nλ1
−nλ ′

1

)

δλ1λ ′
2
δλ ′

1λ2
(2.60)

with H(λ1λ ′
1,λ2λ ′

2) =
(

εQP
λ1

− εQP
λ ′

1

)

δλ1λ2
δλ ′

1λ ′
2
−
(

nλ1
−nλ ′

1

)

Ξ(λ1λ ′
1,λ ′

2λ2). (2.61)
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The operator H in Eq. (2.61) is only Hermitian for integer occupation numbers, i.e., when their

difference nλ1
− nλ ′

1
equals 1 or −1, as it is the case for undoped semiconductors at T = 0 K.

Restricting our considerations to electron-hole excitations, i.e., processes that conserve the

particle-number, allows the specifying of λ by c for conduction bands (CBs) and v for VBs.

Within the Tamm-Dancoff approximation that neglects the coupling of the resonant and the

anti-resonant parts of the excitonic Hamiltonian H we obtain the eigenvalue problem

H(cvk,c′v′k ′) =
(

εQP
ck − εQP

vk

)

δcc′ δvv′ δkk ′ −Ξ(cvk,c′v′k ′), (2.62)

∑
c′,v′,k′

H(cvk,c′v′k ′)AΛ(c
′v′k ′) = EΛ AΛ(cvk), (2.63)

for the resonant part [50]. The respective eigenstates AΛ and eigenvalues EΛ can be used to

calculate the optical properties of the system [53–55]. More specifically, the EΛ are the optical

excitation energies with excitonic and local-field effects included, whereas the AΛ can be related

to the optical oscillator strength F = (Fx,Fy,Fz) of the corresponding transitions via [187]

FΛ =
2
m

∣

∣

∣

∣

∣

∑
cvk

A∗
Λ(cvk)

〈ck|p |vk〉
εck − εvk

∣

∣

∣

∣

∣

2

EΛ. (2.64)

In Eq. (2.64) enter the optical transition-matrix elements of non-interacting electron-hole pairs,

M j(cvk) =
eh̄
im

〈

ck
∣

∣ p j

∣

∣vk
〉

εck − εvk
, (2.65)

where p j is the jth component of the momentum operator. Expression (2.64) demonstrates

how all transitions between non-interacting electron and hole states contribute to the oscil-

lator strength of one interacting electron-hole pair Λ. Moreover, due to its vector character,

F allows access to the polarization dependence imposed on the optical properties due to the

symmetry constraints of the crystal lattice. For the oxides studied in this work, the number of

independent components of the dielectric tensor [cf. Eq. (2.55)] is reduced to only one (two) in

the case of the rocksalt (wurtzite) crystal structure. Therefore, for cubic rocksalt (rs) crystals it

holds ε(ω) = εxx(ω) = εyy(ω) = εzz(ω) [48]. For hexagonal wurtzite (wz) crystals εxx(ω) = εyy(ω)

correspond to ordinary light polarization (E perpendicular (⊥) to the crystals’ c axis) and εzz(ω)

to extraordinary light polarization (E parallel (||) to c).

For real systems oftentimes the direct diagonalization of the excitonic Hamiltonian is nu-

merically too demanding. Its rank N is fixed by the number of electron-hole pair states

N =Nv ·Nc ·NKP, where Nv counts all VBs, Nc all CBs, and NKP all k points. The lowest eigenstates

and eigenvalues of H, Eq. (2.62), can be accessed at significantly reduced computational cost

via an iterative-diagonalization scheme [187] which only scales quadratically with the rank N

and, hence, allows us to study the lowest optical transitions for matrices with N ≈ 100,000.



2.4 Two-particle excitations 21

2.4.3 Macroscopic dielectric function

In addition to the calculation of single excitations of the system, we proceed now with the

derivation of an expression for the DF. Restricting the treatment to interband transitions and

using the Bloch representation of the polarization function we obtain for Eq. (2.52)

εM(q̂,ω) = 1− 2e2h̄2

Ωε0m2 ∑
cvk,c′v′k′

〈ck| q̂p |vk〉∗
εck − εvk

〈c′k ′| q̂p |v′k ′〉
εc′k′ − εv′k′

P(cvk,c′v′k ′;ω). (2.66)

With the solution of the eigenvalue problem (2.63) we can rewrite Eq. (2.66) as

εM(q̂,ω) = 1+
2e2h̄2

Ωε0m2 ∑
Λ

∣

∣

∣

∣

∣

∑
cvk

〈ck| q̂p |vk〉∗
εck − εvk

AΛ(cvk)

∣

∣

∣

∣

∣

2
(

1
EΛ − h̄(ω + iγ)

+
1

EΛ + h̄(ω + iγ)

)

. (2.67)

If we knew the respective EΛ and AΛ, it would now be possible to calculate the macroscopic DF,

including excitonic and local-field effects. Fortunately, we can again bypass the prohibitively

expensive direct diagonalization of Eq. (2.62) by transforming the problem of calculating the

DF into an initial-value problem [56, 57] which can be treated using an efficient time-evolution

scheme. This approach also features a quadratic scaling behavior with the rank N of the exci-

tonic Hamiltonian and, therefore, enables us to treat large matrices as well.

2.4.4 Screening in heavily doped materials

For studying the macroscopic DF of semiconductors with filled VBs that are well-separated from

the empty CBs, only interband transitions need to be taken into account. Now we assume that,

e.g. due to heavy doping, the lowest CB can be partially filled and that its shape remains un-

changed. We are interested in the intraband contributions to the DF, that become important in

this case [58]. All other screening effects (electronic or lattice contributions) may be described

by an effective static dielectric constant εeff. To incorporate the impact of the free electrons on

the screening into the static kernel of the BSE we decompose the static DF according to

ε(q) = εeff + ε
′
intra(q) = εeff

(

1+
ε ′

intra(q)
εeff

)

= εeffεintra(q). (2.68)

We assume that the additional electrons in the material form a degenerate electron gas in the

lowest CB. Therefore, we evaluate the DF for finite wave vectors q and obtain for εintra(q) the

DF of free electrons [58]

εintra(q) = 1+2
e2

ε0εeff Ωq2 ∑
k

nck

εQP
ck − εQP

ck+q

. (2.69)
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Rewriting the sum (2.69) as an integral and carrying out the integration over the CB states,

that are occupied by the degenerate electrons and that we assume to be isotropic and parabolic

(effective mass mc), leads to the static Lindhard DF

εintra(q) = 1+
e2

ε0 εeff q2

2nc

3εF

[

1
2
+

4k2
F −q2

8kF q
ln

∣

∣

∣

∣

2kF +q
2kF −q

∣

∣

∣

∣

]

. (2.70)

The density of the free electrons nc in the band c is related to their Fermi vector kF = 3
√

3π2nc.

With εF = h̄2k2
F/(2mc) we denote the Fermi energy with respect to the CB minimum (CBM).

It turns out that the impact on the screening is especially large for small q (large distances),

whereas it vanishes for large q (small distances) [58]. This indicates that the free electrons

(FE) efficiently screen outside a certain screening length. More specifically, introducing the

Thomas-Fermi (TF) wave vector qTF, the limit of Eq. (2.68) for vanishing q follows as

ε(q) = εeffεintra(q)≈ εeff

(

1+
q2

TF
q2

)

with qTF =

√

3nce2

2ε0εeffεF
. (2.71)

Via ε(q), Eq. (2.71), we describe the reduction of an external perturbing potential Wext(q) due

to the reaction of the electrons to the presence of Wext, leading to

WFE(r) = ∑
q

Wext(q)
ε(q)

eiqr , (2.72)

where q runs over all reciprocal lattice vectors. For a point charge of −e in the medium as an

external perturbation with the potential Wext(q) = e2/(ε0 Ωq2) we obtain

WFE(r) =
e2

4π ε0εeff r
e−qTFr. (2.73)

Expression (2.73) corresponds to the real-space representation of the short-range Yukawa po-

tential. The preceding considerations showed that the degenerate electron gas in the lowest

CB is the reason for a strong, additional screening. Consequently, when free electrons are

present, the screened electron-hole Coulomb interaction W [cf. Eq. (2.48)] becomes a Yukawa-

type potential which has, as a short-range potential, only a finite number of bound states [59].

Assuming a parabolic VB with the effective mass mv allows to estimate the Bohr radius of the

exciton from

aB,exc = aB
εeff m

µ
with µ =

mc mv

mc+mv
, (2.74)

where µ is the reduced mass of the electron-hole pair and aB is the Bohr radius of the hydrogen

atom. In numerical simulations [60] it has been found that for qTF aB,exc > 1.19 no bound

electron-hole pair states exist anymore for the Yukawa potential, which then leads to the Mott
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density nM,

nM =

(

1.19·µ
2
√

mcmεeff

)6 π
3

(

1
aB

)3

, (2.75)

as the free-carrier density for which an unbinding of electrons and holes, the so-called Mott

transition of the exciton, occurs.

2.4.5 Semiconductor Bloch equations

In addition to the full ab-initio approach to treat electron-hole pair excitations we want to be-

gin our investigation of the excitonic effects in heavily doped systems in Chapter 8 by studying

the underlying physics via a two-band model [59]. Therefore, we start with the Bloch repre-

sentation of the density matrix for a lattice with translational symmetry

〈

â†
n2k2

(t) ân1k1 (t)
〉

= δk1,k2 nn1k1,n2k1 (t) , (2.76)

where the â†
nk and ânk are the creators and annihilators for an electron in the QP state described

by n and k. The translational symmetry ensures the diagonality of Eq. (2.76) with respect to

k [59] and we can write this matrix for one VB v and one CB c as

Nk(t) =

(

nck(t) nck,vk(t)

n∗vk,ck(t) nvk(t)

)

. (2.77)

To probe the excitations of the system, a weak external electric pulse of the form E(t) = E(t)+

E∗(t), with E(t) = E0e−iωt , is introduced. It couples to the system by means of a dipole-matrix

element M which, for simplicity, we choose to be real and constant here, i.e., we neglect the

k- and direction-dependence of Eq. (2.65). The effective electron-hole pair Hamiltonian then

reads

Hk(t) =

(

εQP
ck −M E(t)

−M∗E∗(t) εQP
vk

)

− 1
Ω′ ∑

k′
W (k −k ′)

[

Nk′(t)−N(0)
k′

]

, (2.78)

with the initial density matrix N(0)
k for E(t)≡ 0 and the matrix element W (k−k ′) of the electron-

hole interaction. In Eq. (2.78), Ω′ determines the volume for which the k summation is carried

out. Using this two-band model, we compare the statically screened Coulomb potential, i.e.

W (k − k ′) = e2/(ε0εeff |k −k ′|2), as approximation for the electron-hole interaction in the ab-

sence of a degenerate electron gas in the lowest CB, to the Yukawa potential (cf. Section 2.4.4).

The solutions to the problem (2.78) are obtained via the equations of motion for the density

matrix [cf. Eq. (2.76)], also known as semiconductor Bloch equations [59, 61],

ih̄
∂
∂ t

Nk(t) = [Hk(t),Nk(t)] . (2.79)

To study the linear optical properties, only terms that are linear in E(t) are kept and both nck
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and nvk remain constant under the influence of the excitation. It then follows from Eq. (2.79)

for the time evolution of the electron-hole amplitude nck,vk that

ih̄
∂
∂ t

nck,vk(t) =
[

εQP
ck − εQP

vk

]

nck,vk(t)−M E(t) [nvk −nck ]− [nvk −nck ]∑
k′

W (k −k ′)nck′,vk′(t),

(2.80)

where the occupation numbers of the VB (nvk) and the CB (nck) enter explicitly. The first term

on the right-hand side of Eq. (2.80) describes the optical transition energies of non-interacting

QPs. The second term describes the external pulse that probes the excitation energies of the

system and finally, with the last term, the interaction of the electron and the hole enters. The

term nck,vk is, by definition [cf. Eq. 2.76], related to the optical transition probability. Therefore,

the optical polarization PM of the system can be calculated from nck,vk via the expression

PM(t) = PM(t)+P∗
M(t) where PM(t) = M∗ 1

Ω′ ∑
k

nck,vk(t). (2.81)

Within the rotating wave approximation nck,vk(t) and PM(t) have only positive frequency com-

ponents [59]. In the linear response regime the response functions themselves are independent

of the external field and in this case one obtains for the absorption coefficient

α(ω) ∝ Im
[

PM(ω)

|E(ω)|

]

, (2.82)

using the Fourier transforms of the macroscopic polarization (PM(ω)) and of the electric field of

the external pulse (E(ω)). We want to remark, that the semiconductor Bloch equations are not

the only way to access the optical polarization of the system. Moreover, the equation of motion

for the nck,vk can be integrated within Dirac time-dependent perturbation theory. Keeping only

the first order of the expansion, i.e., terms that are linear in the electric field, also leads to the

same result for the polarization and, therefore, the optical properties.

2.5 Alloy statistics and thermodynamics

An important goal of materials science is to go beyond the very understanding of matter by

adjusting certain structural or electronic characteristics of a compound in correspondence to

particular applications. Within this work we investigate the possibility of tuning the electronic

structure, which is of practical relevance, for instance, in the context of band-gap tailoring.

Since the fundamental gaps of MgO, ZnO, and CdO span a range of several eV, these oxides

seem to be particularly interesting candidates for alloying.

Therefore, in this section, basic theoretical concepts for the treatment of pseudobinary alloys

by means of ab-initio calculations are introduced. Using a cluster expansion, the behavior of the

macroscopic system is related to properties of a set of elementary clusters that constitute the
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alloy. In addition, the connection to the related thermodynamic properties will be established.

Our considerations are based on the theoretical approaches that have been developed over the

last 20 years to describe isostructural, pseudobinary alloys of the type AxB1−xC [62–65].

2.5.1 Cluster expansion

Within our description the isostructural, pseudobinary alloys AxB1−xC consist of N atoms of type

C on the anion sublattice and N atoms of type A or B on the cation sublattice. This macroscopic

alloy is divided into an ensemble of M clusters consisting of 2n atoms each (n anions and n

cations). The total number of cations or anions is given by N = nM.

From combinatorics it follows that, for a given crystal structure, there are 2n different possi-

bilities of arranging A- or B-type atoms on the n cation sites of one cluster while the occupation

of the anion sublattice is fixed. Due to the symmetry of the crystal lattice, the clusters can be

grouped in J +1 different classes, with J depending on the actual crystal structure. Each class

j ( j = 0, . . . ,J) contains g j clusters of the same total energy ε j, with the degeneracy factors g j

fulfilling the relation ∑ j g j = 2n.

To each macroscopic alloy one can assign a cluster set {M0,M1, . . . ,MJ} which describes how

many clusters of each class occur in the alloy. A single class j contributes to the macroscopic

alloy with its cluster fraction x j that is defined by x j = M j/M. The x j fulfill the constraint

J

∑
j=0

x j = 1, (2.83)

which stems directly from the relation M = ∑ j M j for the cluster set. The n cation sites of each

cluster are occupied with n j atoms of species A and (n−n j) atoms of species B. Since the molar

fraction of A atoms for the entire alloy AxB1−xC is fixed by x, the cluster fractions x j have to

obey the second constraint
J

∑
j=0

n jx j = nx. (2.84)

Using such a cluster expansion any macroscopic alloy can be built from the microscopic clusters,

each of which contributes with its cluster fraction. Consequently, within this framework each

property P of the macroscopic system can be traced back to the respective properties Pj of the

clusters. Given the weights x j(x,T ) for an alloy of a certain composition x at a temperature T

and the values Pj of the property for each cluster, one can calculate the property P(x,T ) for the

alloy using the Connolly-Williams method [66, 67],

P(x,T ) =
J

∑
j=0

x j(x,T )Pj. (2.85)

For both the rs and the wz crystal structure of the oxides studied in this work we use 16-atom
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cells for the cluster expansion, relying on previous arguments [68, 69] that it is sufficient to

include next-nearest-neighbor correlations in order to capture large parts of the physics. For the

wz structure we use the expansion described in Ref. [68], whereas we derived a new expansion

for alloys with rs crystal structure (cf. Appendix A.1 and Ref. [188]).

2.5.2 Generalized quasi-chemical approximation

In the framework of the generalized quasi-chemical approximation (GQCA), the cluster frac-

tions are determined by a minimization of the Helmholtz free energy F(x,T ) involving all

clusters of the expansion [62–65, 67]. To find the cluster fractions xGQCA
j we discuss the mixing

contribution ∆F to the free energy

∆F(x,T ) = ∆U(x,T )−T ∆S(x,T ). (2.86)

The mixing contribution to the internal energy ∆U(x,T ) is calculated as the sum of the contri-

butions from the M clusters, referenced to the internal energy U of an alloy consisting only of

the two binary end components AC and BC,

∆U(x,T ) = M

(

J

∑
j=0

x jε j − [xεJ +(1− x)ε0]

)

= M
J

∑
j=0

∆ε jx j. (2.87)

In Eq. (2.87) we introduced the definition of the excess energy ∆ε j for the class j,

∆ε j = ε j −
(

n j

n
εJ +

n−n j

n
ε0

)

. (2.88)

We still need an expression for the configurational (or mixing) entropy in order to calculate

the free energy, Eq. (2.86). To evaluate the Boltzmann definition of the entropy,

∆S(x,T ) = kB lnW, (2.89)

one has to give an expression for the number of possible configurations W . Given a cluster

expansion and, therefore, a set of cluster fractions
{

x j
}

that fulfills the constraints (2.83)

and (2.84), W describes the number of possible atomic configurations in the entire alloy, i.e.,

W counts all possible ways of arranging the NA A atoms and NB B atoms for one given set
{

x j
}

on the N = NA +NB cation sites. To determine W , the number of ways of arranging the

M0,M1, . . . ,MJ clusters to form the alloy, M!/∏ j M j!, needs to be multiplied by the number of

possibilities of arranging the cations in each cluster. Since one cluster of class j can be occupied

by cations in g j ways, all M j clusters lead to g
M j
j possibilities. Taking into account all classes j,
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one ultimately obtains

W =
M!

∏J
j=0M j!

·
J

∏
j′=0

g
M j′
j′ . (2.90)

With Eq. (2.90) and the definition x j = M j/M, the mixing entropy ∆S in the Stirling limit is

∆S(x,T ) =−kBM
J

∑
j=0

x j ln

(

x j

g j

)

. (2.91)

Using the ideal cluster fractions of a strict-regular solution [65] (see Section 2.5.3),

x0
j = g jx

n j (1− x)n−n j , (2.92)

the mixing entropy can be rewritten as [65, 67]

∆S(x,T ) =−kB

{

N [x lnx+(1− x) ln(1− x)]+M
J

∑
j=0

x j

(

x j

x0
j

)}

. (2.93)

Although the expressions for W according to Eq. (2.90) and that derived in Ref. [67] differ,

they both lead to the same entropy in the Stirling limit.

Equations (2.87) and (2.91) determine the Helmholtz mixing free energy as a function of

x and T , given that the cluster fractions x j are known for x and T . In the GQCA the x j are

determined by the requirement that ∆F(x,T ) assumes a minimum with respect to the cluster

distribution, i.e., ∂∆F(x,T )/∂x j = 0. Hence, the Lagrange formalism with the constraint (2.83)

yields

xGQCA
j (x,T ) =

g jηn j e−β∆ε j

∑J
j′=0g j′ηn j′ e−β∆ε j′

, (2.94)

where β = 1/kBT . The parameter η has to be determined from the condition that the xGQCA
j

obey the constraint (2.84). The cluster fractions xGQCA
j , according to Eq. (2.94), describe the

probability for the occurrence of each cluster class j in an alloy which has been prepared under

thermodynamic equilibrium conditions that minimize the free energy.

2.5.3 Strict-regular solution and microscopic decomposition limit

Besides the thermodynamic equilibrium described above, the experimental situation also sug-

gests the studying of certain non-equilibrium preparation conditions, for which the actual clus-

ter statistics may be modified by kinetic barriers, frozen high-temperature states, as well as

interface or surface influences. In order to simulate a dependence of the cluster distribution on

the preparation conditions we study two limiting cases:

(i) The strict-regular solution (SRS) model [65]: In this case, the ideal cluster fractions x0
j [cf.

Eq. (2.92)] are used, which arise from a purely stochastic distribution of the clusters. These x0
j
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do not depend on the temperature or on the clusters’ excess energies but are only determined

by x and n j. The number W is in this case simply given by all possible arrangements of NA = xN

A atoms and NB = (1− x)N B atoms on the N = NA +NB cation sites of the alloy, i.e.,

W SRS=
N!

NA!NB!
. (2.95)

Using Eq. (2.89) we obtain for the mixing entropy in the Stirling limit

∆SSRS(x) =−kBN [x lnx+(1− x) ln(1− x)] . (2.96)

The ideal x0
j , according to Eq. (2.92), and ∆SSRS can be interpreted as the high-temperature

limit of the GQCA since the xGQCA
j approach the x0

j as the temperature increases.

(ii) The microscopic decomposition model (MDM): In this limiting case the cations of type

A (B) are more likely to occur close to cations of type A (B). Consequently, only the clusters

representing the binary components AC and BC are allowed, with xM being the number of AC

clusters and (1− x)M the number of BC clusters. This is equivalent to a linear interpolation

between the binary end components. For positive excess energies ∆ε j [cf. Eq. (2.88)] the xMDM
j

represent the low-temperature limit of the GQCA. The cluster fractions for the MDM are given

by

xMDM
j =















1− x for j = 0

x for j = J

0 otherwise

. (2.97)

The number of atomic configurations follows immediately from Eq. (2.90) by taking into ac-

count only the two clusters j = 0 and j = J, i.e.,

W MDM =
M!

[xM]! [(1− x)M]!
. (2.98)

Using the xMDM
j we obtain for the mixing entropy [cf. Eq. (2.89)]

∆SMDM (x) =−kBM [x lnx+(1− x) ln(1− x)] =
1
n

∆SSRS(x), (2.99)

i.e., a reduced configurational entropy. In general, the MDM describes alloys that have been

prepared under conditions where mixing does not lead to a gain of internal energy. Indeed,

in the MDM description one finds ∆U(x) = 0 for the mixing contribution to the internal energy

[cf. Eq. (2.87)].
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Wer gar zuviel bedenkt,
wird wenig leisten.

Johann Christoph Friedrich von Schiller
Wilhelm Tell III, 1

After introducing the theoretical fundament of this work in the preceding chapter, the aspects

that must be considered for the actual calculations are elucidated in the following. Here, we

focus on the more technical details, whereas the computational parameters that we used for

our calculations are summarized in Appendix A.2.

Most of the calculations are done using version 5.1.39 of the Vienna Ab-Initio Simulation

Package (VASP) [70, 71]. This is a software package for solving the KS equations as well as

the generalized KS equations in reciprocal space. The wave functions are expanded into plane

waves. To model the electron-ion interaction the projector-augmented wave (PAW) method is

applied [37, 72, 73], allowing a highly accurate description of the wave functions with almost

the same quality as produced by all-electron calculations. Furthermore, the VASP code features

the computation of QP energies within the GW approximation, based on the PAW method and

using the fully frequency-dependent DF [43, 74–76].

To obtain the optical properties, taking excitonic and local-field effects into account via the

solution of the BSE, we employ an implementation that has been continuously developed in

our group and is based on version 4.4 of VASP [45, 47, 52, 187, 56, 57, 189, 77, 78]. The

input which is required for calculating the excitonic Hamiltonian, such as wave functions, QP

energies, and optical-transition matrix elements, stems from VASP 5.1.39. After calculating

the excitonic Hamiltonian, either its lowest eigenvalues and eigenstates are obtained using

an iterative-diagonalization scheme [187] or the DF is calculated by solving an initial-value

problem [56, 57].

3.1 Electronic properties

3.1.1 Hybrid functional and quasiparticle corrections

When we introduced the G0W0 approach in Section 2.3 we briefly mentioned that an appropri-

ate starting electronic structure is an important key point for the computation of the QP cor-

rections by means of the first-order of the perturbation theory. For the transition-metal oxides,

29
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several nitrides, as well as the group-II oxides studied in this work, it turned out that the GGA

as an approximation to XC shows severe deficiencies in the description of the electronic struc-

ture [185, 42, 52, 79]. Not only the fundamental band gaps are strongly underestimated, but

the energetic positions of the Zn 3d and Cd 4d electrons deviate significantly from experimental

results [185, 189]. Partly, these problems can be traced back to the neglect of the excitation

aspect when comparing KS eigenvalues to experimental results. In addition, as pointed out in

Section 2.2.4, the self-interaction is not properly removed by the GGA which, especially for the

shallow Zn 3d and Cd 4d electrons, further corrupts the results within GGA. Hence, the d states

appear about 2 eV too close to the O 2p states at the VB maximum (VBM), which leads to an

overestimation of the hybridization of these p and d levels. Both the strongly underestimated

gap of wz-ZnO and the negative gap of rs-CdO obtained within GGA we have already attributed

to the overestimation of the pd repulsion [185, 42, 80].

As a consequence, using GGA as an approximation for XC is not sufficient because the cor-

responding KS eigenvalues are too far from the QP results and QP corrections calculated from

first-order perturbation theory cannot cure these deviations. For that reason our ab-initio de-

scription of the electronic structure of the group-II oxides is based on the HSE03 functional [81]

(cf. Section 2.2.4). In this case, the self-energy in the generalized KS equation is already a

good approximation of that in the QP equation (2.47) since the eigenvalues computed using

the HSE03 functional are closer to the final QP-corrected results. Furthermore, the HSE03

wave functions for the d states are more localized than those obtained within the GGA [42,

45]. We expect the HSE03 functional to provide meaningful input for the calculation of QP en-

ergies within the G0W0 approximation, which is confirmed by a reduction of the QP shifts [42,

45] compared to the ones computed with a GGA starting point. We refer to the calculation of

QP energies within the G0W0 approximation using a HSE03 starting electronic structure as the

HSE03+G0W0 method. From test calculations we expect the corresponding QP energies to be

converged within about 0.1 eV.

3.1.2 Mapping to an affordable approach

For MgO, ZnO, and CdO, results obtained using the HSE03+G0W0 approach are presented along

with experimental findings in Section 4.1. However, due to the extremely high computational

cost of this method we are facing a problem when it shall be extended towards the treatment

of significantly more k points or bands. Especially when calculating the starting electronic

structure for the BSE calculation, the high demands for memory and processor power render

the application of the HSE03+G0W0 method not applicable [81]. The main reasons are (i) the

computationally expensive, non-local HF exchange contribution of the HSE03 functional, and

(ii) the large number of empty CBs necessary for computing the DF which enters the screened

Coulomb potential within the G0W0 approximation of the self-energy.
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To circumvent this problem when the input (wave functions, eigenvalues, optical transition-

matrix elements) for the calculation of the BSE Hamiltonian is computed, we pursue a dif-

ferent approach by simulating the results of the HSE03+G0W0 calculations via a GGA+U+∆

method [52, 189, 77, 79, 190]. Here, U denotes the additional Coulomb interaction term

within the GGA+U approach (cf. Section 2.2.4) and ∆ describes a scissors operator [41] that

rigidly shifts all CBs. These two parameters, U and ∆, are determined using the HSE03+G0W0

results: While U is adjusted in such a way that the energetical position of the d bands obtained

from the GGA+U calculation matches the HSE03 result, we use ∆ to enlarge the fundamental

gap until it is identical to the HSE03+G0W0 value. This mapping of the eigenvalues is justified

for the three oxides in Section 4.1.1. Previous studies reported comparably small differences

for the wave functions that resulted from HSE03 calculations or the GGA+U approach [42, 45],

or found a high overlap of QP wave functions and KS-LDA ones [38]. As discussed in Refs. [45,

52] a strict criterion for comparing wave functions does not exist and their actual suitability

for a certain type of calculations is difficult to evaluate. However, the prohibitively high com-

putational cost of HSE03+G0W0 calculations forces us to use an approximation, such as the

GGA+U+∆ method, when calculating the starting electronic structure to solve the BSE.

3.1.3 Inclusion of spin-orbit coupling

The high computational cost of HSE03+G0W0 calculations would further increase when ac-

counting for the full spinors. For the oxides studied in this work, the influence of the spin-

orbit-interaction on the KS energies is small (cf. Section 4.1.2) and, hence, we expect only a

small impact on the optical transition-matrix elements that enter, via ε , the screened Coulomb

potential W . Therefore, to obtain QP energies including the SOC-related effects, we employ an

approach that is inspired by perturbation theory. We assume that the influence of the spin-orbit

interaction on the QP corrections is negligible which is reasonable at least for absolute spin-

orbit induced shifts that are smaller than the QP corrections. Hence, we apply the QP shifts,

as calculated for spin-paired electrons, to HSE03 eigenvalues that have been obtained from a

calculation where the SOC has been taken into account [37, 191, 192].

3.2 Optical properties

As elucidated in Section 2.4 the BSE for the polarization function must be solved to calculate

the macroscopic DF that includes excitonic and local-field effects. The corresponding exci-

tonic Hamiltonian is computed from an initial electronic structure that is obtained using the

GGA+U+∆ approach (cf. Section 3.1.2). The optical transition-matrix elements that enter

into Eqs. (2.64) and (2.67) are calculated in the longitudinal approximation [76]. To account

for any broadening mechanisms that are relevant in the experiment, e.g. those due to finite
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lifetimes or temperatures, a Lorentzian broadening of 0.1 eV is applied to the calculated DFs.

For actual calculations of converged results for optical spectra and exciton binding energies

we have to fulfill two partially competing requirements: While the investigation of high-energy

transitions necessarily demands for the inclusion of a large number of CBs, a thorough descrip-

tion of the low-energy optical transitions requires a fine k-point sampling of the BZ to converge

Wannier-Mott-like bound excitonic states [187]. Both requirements independently lead to very

high computational costs, not only for the calculation of the starting electronic structure, but

also of the excitonic Hamiltonian. In addition, storing the resulting matrices requires from 10

to several 100gigabytes worth of memory and hard-disk space.

Therefore, we employ a technique for an adapted sampling of the BZ [187] to deal with both

issues. In addition, spin-orbit coupling is included via a perturbative approach [189]. Moreover,

we give details about the model function [82, 83] that we use to describe the screening of the

electron-hole interaction.

3.2.1 Adapted sampling of the Brillouin zone

For the materials studied in this work, the lowest optical transitions can be traced back to

a relatively small k-space region around the Γ point [185]. Hence, this part of the BZ must

be sampled very densely in order to obtain converged results for the optical properties in the

vicinity of the absorption edge [187]. Increasing the sampling density for the entire BZ leads

to unreasonably large amounts of k points. Therefore, we employ hybrid k-point meshes [187]

which feature a coarse sampling of the outer regions of the BZ and k points concentrated in the

vicinity of Γ. These meshes are described by three values, X : Y : Z (see Ref. [187]), indicating

that the entire BZ is covered by a regular, coarse X ×X ×X Monkhorst-Pack (MP) mesh [84]

which inner Y ×Y ×Y boxes are sampled by Z ·Y/X +1 MP points along each direction, respec-

tively. This leads to a sampling density in the inner region that is equal to a Z×Z×Z MP mesh

applied to the entire BZ. In addition, we shift all k meshes that are used for the calculation

of the DFs by a small random vector that lies within one box of the coarse MP mesh. This

shift of the entire mesh lifts symmetry degeneracies inherently present in MP k-point sets and,

therefore, improves the convergence of the respective optical quantities [190].

This technique enables us to obtain the optical properties close to the absorption edge,

though, for computational reasons, it is not possible to simultaneously increase the number

of CBs to study high-energy optical transitions. Therefore, we solve two separate BSEs; one for

the low energy range close to the absorption edge, using the dense, hybrid k-point meshes and

one extending to high-energy transitions at a reduced BZ sampling density. The resulting DFs

are merged [190], which is straightforward for the imaginary parts. While the omission of the

high-energy transitions influences only the high-energy region of the imaginary part, it affects

the entire real part. In particular, it causes an underestimation of the electronic static dielectric



3.2 Optical properties 33

constant ε∞ = Re ε(ω = 0) due to the Kramers-Kronig relation [85, 86] between the real and

imaginary parts. Therefore, the real part of the low-energy DF is shifted so that its dielectric

constant matches that of the real part belonging to the high-energy DF. For the same reason we

extend the DF above photon energies of 32.5 eV by adding the contributions that correspond to

transition energies higher than 32.5 eV as calculated within the independent-QP approximation

(IQPA), i.e., we take QP energies into account while neglecting the electron-hole interaction

in this energy range (see Section 4.2.1). This slightly improves the real part at low energies

and is well-justified since in the high-energy range the absolute value of the imaginary part is

already below 10% of the peak values and excitonic effects can then safely be neglected.

3.2.2 Inclusion of spin-orbit coupling

To include the influence of the spin-orbit interaction on the QP energies that enter the compu-

tation of the optical properties [cf. Eqs. (2.62), (2.64), and (2.67)], we follow an approach that

is akin to the one presented in Section 3.1.3. It allows us to avoid the full spinors again and it is

justified a posteriori by the smallness of the spin-orbit effects. Here, we calculate k-dependent

spin-orbit shifts as the difference between a band structure including SOC and one calculated

without the spin-orbit interaction. Both are obtained by means of the GGA+U scheme employ-

ing the same k mesh as used for setting up the excitonic Hamiltonian. These shifts are then

added, for both spin components separately, to the eigenvalues of the GGA+U+∆ calculation

used for setting up the excitonic Hamiltonian and two separate BSEs are solved [189].

3.2.3 Screening of the electron-hole interaction

The calculation of the screened electron-hole interaction requires a reasonable approximation

for the screening in the system. We go beyond merely using a static dielectric constant εeff [e.g.

Eq. (2.68)] by employing a model function [82, 83] which is given by

ε(|q| ,nv) = 1+

[

1
εeff −1

+α
(

q
qTF,nv

)2

+
3q4

4k2
F,nv

q2
TF,nv

]−1

, (3.1)

with the parameter α = 1. Equation (3.1) is an interpolation between εeff of the semiconduc-

tor for q = 0, a TF-like behavior for small q, and a free-electron gas behavior for large q. For

εeff in Eq. (3.1) we use the values we obtained within the independent-particle approximation

(see Appendix A.2). To obtain the Fermi and the TF wave vectors within the parameter-free

approach, they are calculated using the cell-averaged density nv of the valence electrons (in-

cluding Zn 3d and Cd 4d electrons).
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Ideals are like stars; you will not succeed in
touching them with your hands. But like
the seafaring man on the desert of waters,
you choose them as your guides, and
following them you will reach your destiny.

Carl Schurz

For modern consumer electronics, solar cells, or intelligent materials applications simulta-

neous interplay of transparency in the optical spectral range and electrical conductivity under

ambient conditions is undoubtedly of large interest. An efficient combination of electrical and

optical components is also desirable to exponentiate the signal processing speed in, e.g., net-

working technology. Nowadays, the research and development in this context is oftentimes

associated with the term “transparent electronics” or, occasionally, “oxide electronics”. A large

fundamental band gap renders the group-II oxides transparent in the visible spectral range,

which is a very important property of these materials. Additionally, it has been reported that,

to some extent, the conductivity of ZnO can be achieved via n-doping [87–89]. Due to their

larger (e.g. MgO) or smaller (e.g. CdO) fundamental band gap other group-II oxides are dis-

cussed as candidates for combinations with ZnO in the form of alloys or heterostructures — to

achieve the goal of tailoring different properties of materials [90–94].

Furthermore, it is certainly beneficial that for ZnO as well as for MgO very pure, high-quality

single crystals are commercially available. ZnO is especially easily available as a resource, in

addition to being environmentally friendly and biocompatible. Interestingly, a large variety of

nanostructures have been observed in several experiments; among them are nano-rods, -rings,

-brushes, and -tubes [95–97].

Thus, such fascinating properties are the reason for an ongoing boost of interest in group-II

oxides. A large number of possible applications explains the enormous technical importance of

these materials and, consequently, one finds more than 1,000 publications per year since 1997

that contain “ZnO” or “zinc oxide” in their title and over 5,000 such articles in 2008, as well

as 2009[98]. Furthermore, the oxides are well-suited for studying very fundamental physics,

explaining why we chose to focus on MgO, ZnO, and CdO in this work.

In this chapter we investigate electronic and optical properties for the equilibrium crystal

structures (under ambient conditions), i.e. rs-MgO, wz-ZnO, and rs-CdO. Both the wz and the rs

geometry are visualized along with the corresponding Brillouin zones (BZs) in Table 4.1. Here

34
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Crystal structure Brillouin zone

rs

wz

Table 4.1: Real-space struc-
ture and Brillouin zone of the
hexagonal wz and the cubic rs lat-
tice. The parameters that describe
the lattice as well as several high-
symmetry points in the Brillouin
zone are denoted in the figure.

we employ lattice parameters that we derived from total-energy minimizations before [185,

186] and which are summarized in Appendix A.2. Studying the bulk materials provides nec-

essary and helpful insight into the electronic structure (Section 4.1) as well as the optical

properties (Section 4.2). This knowledge will form the basis for our investigations regarding

the influence of imperfections in the following chapters. Detailed comparison to experimental

results are made throughout and, in addition, we use our ab-initio results for the band struc-

tures and the DF to derive information about the branch-point energies in Section 4.1.3 and

the electron-energy loss function in Section 4.2.4.

4.1 One-particle excitations

4.1.1 Band structures and densities of states

Band structures and densities of states (DOS) are both experimentally accessible quantities

describing the electronic structure of a material. A goal of this work is their highly accurate

computation within the HSE03+G0W0 approach. Our calculated curves are shown in Fig. 4.1

where we plot the DOS alongside the QP band structure for the three oxides. Since we also

aim for calculating the optical properties later, the HSE03+G0W0 findings are compared to

results calculated within the computationally less demanding GGA+U+∆ approximation (cf.

Chapter 3) in the same figure.
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Figure 4.1: Quasiparticle band structures and the
densities of states of rs-MgO (a), wz-ZnO (b), and
rs-CdO (c) as calculated within the HSE03+G0W0 ap-
proach (red) and the GGA+U+∆ approach (black).
The valence band maximum is used as energy zero
and the fundamental gap region is shaded. Direct
and indirect gaps are given in the figures.

Discussion of the HSE03+G0W0 results

For rs-MgO we find a fundamental direct band gap of 7.49 eV at the Γ point of the BZ [see

Fig. 4.1(a)]. It is formed by O 2p states that extend, being the uppermost valence states, from

the VBM to about −5 eV below and Mg 3s states which represent the lowest CB. For wz-ZnO

the fundamental gap is also found at the Γ point of the BZ and amounts to 3.21 eV. It separates

Zn 4s CB states from the uppermost pd-hybridized VB states that show 75% O 2p character and

25% Zn 3d contributions. As seen in Fig. 4.1(b), this upper VB complex extends to about −5 eV.

In addition, we find ten occupied d bands at roughly 6 to 8 eV below the VBM. Such a complex

is also observed for rs-CdO, where the five Cd 4d bands appear at −7 to −9 eV, with respect to

the maximum of the VBs. Following the chemical trend that occurs along the row MgO, ZnO,

CdO, the direct gap at the Γ point in this material, formed by O 2p valence states without any d

character and a Cd 4s-derived CB, is with 1.81eV somewhat smaller. In addition, the uppermost

VB at the L point is 1.12 eV above the highest valence state at the BZ center [see Fig. 4.1(c)]

and the lowest gap turns out to be an indirect one of about 0.68 eV. This occurs because in the

rs crystal structure, contrary to the wz case, the hybridization of p and d states at the Γ point

is forbidden for symmetry reasons [185, 80]. This symmetry constraint does not apply apart

from the BZ center, leading to an increase in energy of the corresponding states due to the pd

hybridization. For all three oxides the weakly dispersive O 2s states occur at roughly −18 eV.
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Figure 4.2: Comparison of the
HSE03+G0W0 QP energies (green
dots) with a band structure that has
been derived from soft X-ray angle-
resolved photoemission spectroscopy
measurements for wz-ZnO [102]. High
intensities in the measurement (white)
indicate bands.

Comparison to experimental results: Band structures

Our calculated values for the fundamental energy gaps, Eg = 7.49 eV, 3.21 eV, and 0.68 eV

for rs-MgO, wz-ZnO, and rs-CdO, respectively, only slightly underestimate measured results of

7.67 eV [99], 3.4 eV [100], and 0.84eV [101]. Comparing the value of 1.81eV for the direct gap

at Γ of rs-CdO with an experimental result of 2.28 eV [101] also shows an underestimation.

We attribute this trend of slightly smaller fundamental gaps to two different causes. The first

of these is related to the DFT-GGA results for the atomic geometries that we used. In Ref. [185]

they have been shown to slightly exceed measured lattice constants which, in turn, leads to

too small gaps due to the reduced confinement of the electrons. Such an influence on the gap

can amount to about 0.1 eV per 2% lattice mismatch, as estimated from uniaxially strained wz-

ZnO (see Section 5.1), but also depends on the corresponding deformation potentials for each

individual material. A second problem arises from the calculation of QP corrections using first-

order perturbation theory. In the HSE03 band structure the gaps are still up to 1.6 eV (rs-MgO)

smaller than the experimental values. Also, the HSE03 description slightly underestimates the

d-band binding energies with respect to the VBM in comparison to experimental results [189,

193–195] for wz-ZnO and rs-CdO. That leads to an additional closing of the gap due to the pd

repulsion as discussed earlier in Section 3.1. Therefore, we find that even though the HSE03

functional produces a much better starting point for the electronic-structure calculations than

the DFT-GGA does, its results still constitute a challenge to the one-step perturbation-theory

approach to the calculation of the QP energies.

M. Kobayashi et al. experimentally determined the upper VB structure for wz-ZnO by means

of soft X-ray angle-resolved photoemission spectroscopy [102]. Figure 4.2 shows the results

of this measurement together with QP energies that we calculated using the HSE03+G0W0 ap-

proach. The agreement of energetic positions at high-symmetry points in the BZ, and also along

the high-symmetry lines in-between, is satisfying. Our approach reproduces the measurement

impressively well, especially along the path Γ – K – M – Γ. At the A point and its surroundings
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Figure 4.3:

(a) O 2p partial density of states of rs-
MgO obtained from soft X-ray emission
measurements [189] (black) and from the
HSE03+G0W0 approach (red).
(b) Density of states of wz-ZnO from an X-ray
photoemission spectroscopy experiment [189]
(black) and the HSE03+G0W0 approach (red).
(c) O 2p partial density of states of rs-
CdO obtained from soft X-ray emission
measurements [189] (black) and from the
HSE03+G0W0 approach (red).
The valence-band maximum has been used as
energy zero in all cases.

slight deviations occur mainly because the lowest plotted band between A and Γ is almost in-

visible in the experiment, an effect which we attribute to matrix-element contributions. While

their influence is not taken into account in our calculations, they might be the reason for the

low intensities observed in the experiment in this case since the QP energies itself agree well

with the low-intensity structure observed in this experiment.

Comparison to experimental results: Densities of states

For rs-MgO and rs-CdO there is experimental data from soft X-ray emission spectroscopy avail-

able [189], an experimental technique that is element-specific and directly accesses the orbital-

angular-momentum-resolved partial DOS (PDOS) [189, 103]. In Figs. 4.3(a) and (c) we com-

pare the measured data to the O 2p PDOS, calculated by means of the HSE03+G0W0 approach.

In addition, in Fig. 4.3(b) we plot the total DOS computed for wz-ZnO to compare to data from

high-resolution X-ray photoemission spectroscopy (XPS) [189]. We incorporated a Gaussian

broadening of 0.45 eV full width at half maximum into the theoretical DOS curves in Fig. 4.3

to take the effect of a certain instrumental resolution into account.

In the case of rs-MgO [cf. Fig. 4.3(a)] the measurement agrees with our calculated results for

both the O 2p band width as well as the two distinct peaks at −4.2 eV and −1.2 eV below the

VBM that arise due to the uppermost VB complex. Also for rs-CdO we find very good agreement
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between calculated and experimental results regarding the positions of the peaks at −3.6 eV

and −1.1 eV below the VBM as well as for the band width [see Fig. 4.3(c)]. For both materials,

rs-MgO and rs-CdO, the heights of the peaks at −4.2 eV and −3.6 eV are overestimated relative

to the height of the second peak. We attribute this to matrix-element effects that influence the

transitions but are neglected in our calculations. In the case of rs-CdO, the measurement con-

firms an additional spectral feature which is traced back to the aforementioned hybridization of

the O 2p and the Cd 4d states. It appears at an energy of about −8.4 eV in the calculated PDOS,

whereas in the measured curve this peak occurs about 0.4 eV lower in energy. Comparison to

an X-ray absorption spectroscopy experiment [194] shows good overall agreement for the O 2p

PDOS close to the CBM, though the relative intensities do differ.

In Fig. 4.3(b) we compare a curve from an XPS measurement [189] to the computed total

DOS of the O 2p-related uppermost VB complex for wz-ZnO and find a good agreement re-

garding the heights and positions of the two pronounced maxima. In our calculated curve the

peak caused by the Zn 3d states occurs at about −6.8 eV (with respect to the VBM) and, there-

fore, is slightly higher in energy than the −6.95eV obtained in an angle-resolved photoelectron

spectroscopy experiment [104]. In another soft X-ray emission measurement [193] this peak is

found at about −7.5 eV below the VBM.

Mapping to the GGA+U+∆ approximation

In the following we discuss the approximation of the HSE03+G0W0 results by means of the

GGA+U+∆ approach, using the two parameters U and ∆ (cf. Chapter 3). For the gap calculated

within GGA for rs-MgO we find an underestimation of ∆ = 2.99 eV. For wz-ZnO and rs-CdO the

remaining gap differences between the GGA+U and HSE03+G0W0 values are ∆ = 1.78 eV and

∆ = 1.07 eV, respectively. The effective Coulomb repulsion U of the GGA+U method [23], used

to correct the energetic position of the strongly localized cationic semicore 3d (4d) electrons

with respect to GGA results, has been set to U = 6.5 eV (U = 4.5 eV) for wz-ZnO (rs-CdO).

As seen in Fig. 4.1, these choices for U and ∆ allow us to obtain good agreement for the

band structures and the DOS. The GGA+U+∆ scheme is well-suited for generating the starting

electronic structure for the optical calculations covering a wide range of photon energies [190].

Nevertheless, such a mapping has certain deficiencies. For all three oxides, the band width

of the uppermost O 2p-derived VB complex, obtained by the GGA+U+∆ approach, is under-

estimated by about 0.5 eV with respect to the HSE03+G0W0 results. Of course, this effect

will slightly affect the optical properties in the low-energy range. Also, for all three mate-

rials, the binding energy of the O 2s electrons is underestimated by about 1.4 eV within the

GGA+U+∆ approach, as can be seen in the band structure and the DOS in Fig. 4.1 around

−18 eV. A possible influence on the optical properties in the high-photon-energy region above

h̄ω = (18.0+Eg) eV remains small for all three oxides because of the low oscillator strengths of
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Figure 4.4: Classification of the
lowest conduction- and uppermost
valence-band states at the Γ point
of the Brillouin zone for the (a) wz
and (b) rs crystal structure.

the corresponding high-energy optical transitions. More importantly, Fig. 4.1 reminds us that

the scissors operator ∆ does not reproduce any of the energy dependence of the self-energy op-

erator Σ. This explains a general trend that is found in Fig. 4.1; the higher-lying CBs calculated

via the GGA+U+∆ method are slightly too low in energy.

4.1.2 Inclusion of spin-orbit coupling

Quasiparticle band structure

Taking the spin-orbit interaction, Eq. (2.40), into account causes an influence on the absolute

values of the QP energies. In addition, the symmetry of the Hamiltonian of the problem is

lowered and, therefore, symmetry-induced degeneracies can be lifted. Hence, in Fig. 4.4 we

classify the uppermost VB states and the lowest CB state at the Γ point using the irreducible

representations from the character tables of the symmetry groups C4
6v (O5

h) for the wz (rs) crystal

structure. Taking the SOC into account leads to the double-group notation [105] and doubles

the number of states when going from double-occupied (due to the spin degeneracy) to single-

occupied bands. Figure 4.4 shows a non-degenerate CBM of Γ1c type for wz polymorphs in

the absence of SOC. The uppermost VB states consist of a twofold degenerate Γ5v level which

is separated from a Γ1v level due to the crystal-field (CF) in the hexagonal crystal system.

Inclusion of SOC transforms the Γ1v state into two degenerate Γ7−v levels that contain a large

contribution of the atomic pz orbital, which is oriented parallel to the hexagonal c axis. The

Γ5v state splits into Γ9v / Γ7+v with no/small pz contributions [105, 106]. In the case of the rs

crystal structure [cf. Fig. 4.4(b)] the uppermost threefold degenerate Γ15v VB level splits into

a fourfold degenerate Γ−
8v and a twofold degenerate Γ−

6v state, whereas the lowest CB state Γ1c

(without SOC) becomes a twofold degenerate Γ+
6c state.

Our calculations indicate that the spin-orbit-induced splittings of the uppermost VB levels

of the three oxides are small compared to the fundamental gaps. From the projections of the

wave function onto atomic s, p, or d states we obtain the character of the wave function and are

able to assign the irreducible representations discussed earlier. In the case of wz-ZnO we find

that the uppermost valence states are Γ7+-derived, followed by two Γ9-derived states, which

lie 11.3 meV lower in energy. The CF split-off bands are of Γ7− type and occur 48.3 meV below

the Γ9 states (cf. Table 4.2).
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without Eg=εQP(Γ1c)− εQP(Γ5v) 3.21
SOC ∆no SOC

1 =εQP(Γ5v)− εQP(Γ1v) 54.0
εQP(Γ9v)− εQP(Γ7+v) −11.3

with εQP(Γ9v)− εQP(Γ7−v) 48.3
SOC ∆qc

1 52.6
∆qc

2 = ∆qc
3 −5.2

Table 4.2: Band parameters around the fun-
damental gap of wz-ZnO: Gap Eg (in eV),
valence-band splittings εQP(Γ9v)−εQP(Γ7+v), and
εQP(Γ9v)− εQP(Γ7−v) (in meV) as well as the de-
rived quantities ∆1, ∆2, ∆3 (in meV).

Also, for rs-MgO and rs-CdO, the splittings between Γ−
8v and Γ−

6v remain small at 43.6 meV

and 82.0 meV, respectively. Comparison to the value of 58.3 meV calculated for rs-ZnO [192]

confirms the expected chemical trend of an increasing influence of the spin-orbit interaction

on the splittings with increasing mass of the cation. Nevertheless, we find the influence of the

spin-orbit interaction at the VBM of wz-ZnO to be smaller than for the two oxides in the rs

crystal structure. This can be traced back to the aforementioned hybridization of atomic Zn 3d

and O 2p states which is symmetry-forbidden at Γ in the rs crystal structure but occurs in wz

crystals. Depending on the sign and order of magnitude of the respective coefficients that mix

O 2p and Zn 3d wave functions, the sign and order of magnitude of the resulting splittings of

the uppermost VB levels can vary [107] and deviate from the atomic spin-orbit splittings [108].

For further comparison we analyze our results for wz-ZnO using the expression

εQP(Γ9v)− εQP(Γ7+/−v) =
1
2

[

(∆1+3∆2)∓
√

(∆1−∆2)2+8∆2
3

]

(4.1)

from k ·p theory [106]. By means of Eq. (4.1) and with the energy differences of the valence

levels in a wz crystal we can calculate the two spin-orbit-splitting parameters ∆2 and ∆3 as well

as the ∆1 parameter, which is related to the crystal-field splitting. Since, however, the system is

underdetermined, we employ the quasi-cubic approximation by assuming ∆2 ≡ ∆3 which then

allows the calculation of the values in Table 4.2. From these results it becomes clear that the

absolute values of the spin-orbit related constants ∆qc
2 = ∆qc

3 amount to only about 10% of the

one for the CF splitting (∆qc
1 ). Alternatively, we compare the trends for ∆2 and ∆3, along with

the anisotropy between the two, as a function of ∆1 in Fig. 4.5. From this plot we find that

the absolute value of ∆3 is always smaller than ≈ 20 meV, whereas its sign is undetermined

[cf. Eq. (4.1)]. The plot also shows that ∆2 can change its sign when ∆1 is only approximately

70% of the value obtained within the quasi-cubic approximation. However, we expect that the

influence of the spin-orbit interaction on the CF splitting is not too large and, in particular, does

not change the sign of ∆1. Taking this into account justifies the signs of the values in Table 4.2.

Comparison to measured spin-orbit splittings

Several detailed experimental investigations have been conducted on the band structure of

wz-ZnO. Comparing our results for ∆1 (cf. Table 4.2) to measured values shows that 38.3 meV

from two- and three-photon spectroscopy [109], 39.4 meV from two-photon absorption [110],
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Figure 4.5: Spin-orbit-splitting constants ∆2
(black) and ∆3 (red) as a function of the
∆1 constant that is related to the crystal-field
splitting. All quantities are given in meV and
the quasi-cubic approximation for positive ∆1
is indicated by the arrow.

or 30.5 meV [100, 111] determined from reflectance spectra, are slightly smaller. Another

detailed theoretical study, based on DFT-LDA, reports ∆1 = 38 meV [112]. Our results for the

spin-orbit-related ∆2 and ∆3 constants are slightly larger than measured values of ∆2 = ∆3 =

−3.5 meV [110] (also within the quasicubic approximation). In contrast, ∆2 =−2.1 meV / ∆3 =

−9.1 meV [109] agree well with our findings shown in Fig. 4.5, while e.g. the ordering of the

computed values of ∆2 =−4.5 meV / ∆3 =−3.1 meV given in Ref. [112] deviates.

We want to point out that, since the experimental results originate from optical measure-

ments, there is an additional influence of the electron-hole interaction on these two splittings.

This issue is discussed in more detail in Section 4.2.3. Here we will focus on the sign of these

constants and, therefore, the ordering of the uppermost VBs because this has been debated

since the 1960’s [113]. At present, the consensus seems to confirm the VB ordering found in

this work, i.e., Γ7 – Γ9 – Γ7 [114]. Among the recent measurements that indicate a Γ9 – Γ7 – Γ7

ordering [100, 111, 115], at least the findings by D. C. Reynolds et al. [115] can be traced

back [112] to their wrong assumption regarding the sign of the g factors of the Γ7 VB.

Unfortunately, to our knowledge there are no measured spin-orbit splittings for the two rs

compounds MgO and CdO. In their theoretical work Zhu et al. [116] reported values from DFT-

LDA calculations yielding 38 meV (68 meV) for rs-MgO (rs-CdO), as well as 51 meV for rs-ZnO.

This is in good agreement with our findings for the rs polymorphs of the three oxides. The

fact that our numbers are larger by 5.6 meV (MgO), 7.3 meV (ZnO), and 14 meV (CdO) can be

attributed to the inclusion of the QP corrections which render our results more reliable.

Effective masses

Via parabolic fitting to the QP band structures (including SOC) in the direct vicinity of the

Γ point we derived the diagonal components of the effective mass tensor. The values for

three different directions in k space are compiled in Table 4.3 for the lowest CB and the three

uppermost VBs. We want to remark that the anisotropy of the in-plane effective masses m∗
M and

m∗
K for wz-ZnO indicates that the corresponding bands are not completely parabolic throughout

the k range used for the fitting. The symmetry properties of the effective-mass tensor would

imply m∗
M = m∗

K for strictly parabolic bands.

We find that in wz-ZnO the lowest CB and the Γ9-derived VB are relatively isotropic with ef-

fective masses for the three high-symmetry directions not differing by more than 50%, whereas
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wz-ZnO rs-MgO rs-CdO
m∗

M(Γ7c) 0.29 m∗
X(Γ

+
6c) 0.36 0.19

m∗
K(Γ7c) 0.39 m∗

K(Γ
+
6c) 0.42 0.25

m∗
A(Γ7c) 0.25 m∗

L(Γ
+
6c) 0.36 0.19

m∗
M(Γ7+v) 0.34 m∗

X(Γ
−
8v) 1.85 4.85

m∗
K(Γ7+v) 0.67 m∗

K(Γ
−
8v) 4.53 −1.35

m∗
A(Γ7+v) 2.47 m∗

L(Γ
−
8v) 3.21 −1.98

m∗
M(Γ9v) 2.45 m∗

X(Γ
−
8v) 1.61 2.33

m∗
K(Γ9v) 2.16 m∗

K(Γ
−
8v) 1.65 3.52

m∗
A(Γ9v) 2.45 m∗

L(Γ
−
8v) 2.37 −3.63

m∗
M(Γ7−v) 2.55 m∗

X(Γ
−
6v) 0.44 0.36

m∗
K(Γ7−v) 2.46 m∗

K(Γ
−
6v) 0.44 0.38

m∗
A(Γ7−v) 0.27 m∗

L(Γ
−
6v) 0.36 0.24

Table 4.3: Effective masses m∗ (in units of
the free-electron mass m) at the Brillouin zone
center along the Γ – M, Γ – K, and Γ – A di-
rections for wz-ZnO and along the Γ – X , Γ –
K, and Γ – L directions for rs-MgO and rs-
CdO. Values are given for the lowest conduc-
tion band and the three uppermost valence
bands. For rs-MgO and rs-CdO the uppermost
VB state is fourfold degenerate at Γ.

the two Γ7-derived VBs show a pronounced anisotropy. The Γ7+ band is the light-hole band

along Γ – M and Γ – K in the BZ and, therefore, in the plane perpendicular to the hexagonal c

axis of the wz crystal. Its mass is roughly one order of magnitude larger in the direction parallel

to the c axis. For the Γ7−-derived band we find the opposite behavior.

For rs-MgO the anisotropy is much less pronounced and the two twofold degenerate VBs

are heavy-hole related. Their masses are of the same order of magnitude in all three high-

symmetry directions and are, roughly, one order of magnitude larger than the values for the

light-hole band. The lowest CB turns out to be almost isotropic.

As with rs-MgO, the two uppermost VBs in rs-CdO are heavy-hole bands and the third VB is a

light-hole one. The values in Table 4.3 show a remarkable difference to the case of MgO, since

we find negative values for the effective mass of the uppermost two VBs along certain directions

in k space. As discussed in Section 4.1.1 this can be traced back to the symmetry-forbiddance

of the pd hybridization at the Γ point, explaining the convex curvature of the uppermost VBs

along certain high-symmetry directions.

Experimentally determined effective masses

In experiment oftentimes quantities are measured that provide inverse effective masses. In

addition, due to the respective experimental procedure, the components of the effective mass

tensor are not necessarily accessed individually, instead average values are obtained. We take

both aspects into account by deriving averages of inverse masses, i.e., harmonic mean values,

for a comparison between our values (cf. Table 4.3) and experimental results.

For the lowest CB of wz-ZnO the harmonic mean value yields m∗ = 0.30m which compares

well with values of m∗ = 0.28m [117] or m∗ = 0.29m [118] obtained from cyclotron-resonance

experiments. M. Oshikiri et al. compared their measured values to theoretical results based

on a conventional KS electronic structure, which yielded slightly smaller anisotropies and mass

values [117] than we give in Table 4.3. From magneto-optical measurements [118] an effective
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Figure 4.6: Schematic plot of the behavior of valence (Ev) and con-
duction (Ec) bands at the contact of an n-doped with a p-doped semi-
conductor. Band bendings (Vb1 and Vb2) as well as valence- and
conduction-band offsets (VBO, CBO) are indicated.

mass of m∗ = 0.59m has been found for the Γ7+v VB state perpendicular to the c axis. Though

this value is slightly larger than the average m∗ = 0.45m of the inverse masses resulting from our

calculations for the Γ – M and the Γ – K directions (cf. Table 4.3), our averaged value coincides

with the result of a Zeeman-based measurement [118]. We calculated the effective mass of the

CF split-off band Γ7−v along Γ – A as m∗ = 0.27m. This is close to m∗ = 0.31m, obtained from

magneto-optical measurements [118], and agrees with another theoretical result calculated

within DFT-LDA [112]. The harmonic mean value of the masses along Γ – M and Γ – K is m∗ =

2.50m and, hence, much larger than an experimental value, m∗ = 0.55m [118], for the mass

perpendicular to the c axis but only twice as large as a value given by W. Lambrecht et al. [112].

Also, for the uppermost VB we find very good agreement for the effective masses and band

anisotropies with Lambrecht’s values derived from DFT-LDA [112]. In the case of the Γ9v state

we obtained large effective masses along all directions in k space, while the results in Ref. [112]

confirm this only along Γ – A.

To our knowledge no measured values exist for the effective electron or hole masses in rs-

MgO. Another theoretical study [119] reported a lowest isotropic CB, whereas we find a small

anisotropy (cf. Table 4.3). In addition, our results do not indicate a degeneracy of the masses

of the uppermost two VBs along the Γ – X or Γ – L directions and our values for the light-hole

band are slightly larger. We attribute both to the neglect of QP corrections in Ref. [119].

For the effective mass of the CB of rs-CdO values in the range m∗ = 0.21m . . . 0.3m have been

obtained in experiments [120–122] and are in good agreement with our calculated values of

m∗ = 0.19m or m∗ = 0.25m (cf. Table 4.3). No measurements for hole masses have been reported

for this material. At least the fact that they are negative for certain directions in k space is

consistent with the VBM at the L point for rs-CdO, which is experimentally confirmed [101].

4.1.3 Application: Band alignment at interfaces

In the proximity of an interface between two semiconductors we expect a certain “transition”

region where the bulk band structures of the two materials merge into each other. Typically,

band-edge discontinuities (i.e. VB and CB offsets) that are confined to only some atomic layers

can occur, whereas band bending due to different doping profiles can extend further [123] (see

Fig. 4.6). In the infinite bulk material only non-evanescent states, i.e., states with real k vectors,
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emerge. This constraint is no longer valid at interfaces where evanescent, exponentially de-

caying solutions can occur. These states are called virtual gap states (ViGS) or interface-induced

gap states (IFIGS). Their eigenvalues occur within the gap and they are described by complex

k vectors giving rise to a complex band structure [123]. We can envision these states as the

continuation of bulk VB or CB states extending across the interface. At a certain energy, the

branch-point energy (BPE) EBP, they change their character from more VB-like (or acceptor-

like) to more CB-like (donor-like). From the treatment of metal-semiconductor contacts the

term charge neutrality level [124–126] is adopted sometimes.

In the absence of interface dipoles the band alignment can be achieved by aligning the BPEs

of the two semiconductors that form the interface [123]. Interestingly, the BPE (also effective

mid-gap energy in Ref. [125]) and, therefore, the band alignment, have entirely been traced

back by J. Tersoff to the bulk band structure of the two semiconductors involved [125]. An

obvious advantage of such an approximation is the complete neglect of the complicated and

oftentimes unknown (structural) details of the interface. More specifically, we can access the

EBP of the three group-II oxides through our ab-initio results for the band structures of the bulk.

Method

Originally, Tersoff’s method was based on the cell-averaged single-QP real-space Green’s func-

tion [125]. Unfortunately, it turned out that it is extremely difficult in practical calculations

to converge the Green’s function with respect to the number of used k points and CBs [127].

Besides this, Tersoff’s method fails for systems where EBP appears in the CB region, whereas

there is experimental evidence for such a behavior: A branch-point energy within the first CB

is assumed to be the origin of the electron accumulation e.g. at InN surfaces [128, 129].

Therefore, in this work we follow a different approximate approach to obtain EBP. It is

inspired by F. Flores et al. [124, 130] who estimated the BPE as the average of the mid-gap

energies at the Γ, X , and L points of the BZ for face-centered cubic crystals. While another early

study [131] applied the concept of a BZ average, based only on the first of Baldereschi’s special

points to approximate the k-point sum, we rely on our band structures which are known with

high accuracy for an entire set of k points, e.g. a Γ-centered MP [84] k-point mesh. Hence, we

calculate the BPE by means of a complete BZ average using the expression:

EBP =
1

2NKP
∑
k

[

1
NCB

NCB

∑
i

εQP
cik +

1
NVB

NVB

∑
j

εQP
v jk

]

(4.2)

For rs-MgO and rs-CdO only the lowest CB and the two uppermost VBs are included (see

Ref. [196]). These numbers are doubled for wz-ZnO because the unit cell is twice as large.

Though the choices of NCB and NVB significantly influence the results, the one for NCB is clearly

justified due to the huge dispersion of the lowest CB near Γ. We exclude the third VB (in cubic



46 4 Ideal MgO, ZnO, and CdO

EBP (theor.) EBP (exp.) ∆Ec ∆Ev

rs-MgO 5.42 – 2.07 −5.42
wz-ZnO 3.40 > 3.58 [132] −0.19 −3.40
rs-CdO 2.45 1.30±0.1 [133] −1.77 −2.45

Table 4.4: Calculated and ex-
perimental values for the branch-
point energies, EBP, relative to the
valence-band maximum. EBP is
used as the level of reference for
the band offsets ∆Ec and ∆Ev. All
values are given in eV.

crystals) from the sum (4.2) due to its much larger k dispersion throughout the BZ compared to

the two uppermost ones [196]. Overall, we estimate that the arbitrariness of choosing NCB and

NVB introduces an uncertainty of up to 0.2 eV. We use the reliable bulk band structures of the

group-II oxides calculated within this work (cf. Section 4.1.1) to compute EBP from Eq. (4.2).

Branch-point energies and band discontinuities

In Table 4.4 we give our calculated results for the BPE jointly with measured values. In the case

of wz-ZnO, the quantitative agreement with an experimental finding [132] as well as a calcu-

lated result, derived from a band alignment using hydrogen levels [126], is good. For rs-CdO

EBP = (1.30±0.1) eV has been found by an experiment [133], which is somewhat lower than

our calculated EBP given in Table 4.4. In a different study of this material the uppermost VB

state at Γ was used as the level of reference leading to EBP = (2.55±0.05) eV [134]. Taking the

energy difference between the uppermost state at Γ and the VBM, 1.12 eV (cf. Section 4.1.1),

into account we obtain EBP = 3.57 eV, which again overestimates the experimental result.

For wz-ZnO and rs-CdO we find that the CBM is below EBP and attribute this fact to the low

DOS close to the CBM. Despite the pronounced minimum of the first CB, which is 4 to 5 eV

lower than the lowest CB states in the outer regions of the BZ for MgO, ZnO, and CdO (cf.

Fig. 4.1), this band shows a strong dispersion. The weight of the outer regions of the BZ in

the sum over k, Eq. (4.2), is much higher and, therefore, EBP can occur within the lowest CB.

A possible consequence of this situation is the high, unintentional n-type conductivity of nomi-

nally undoped ZnO or CdO surfaces. For rs-CdO there is evidence of an electron accumulation

at the surface from X-ray photoemission spectroscopy and from angle-resolved photoemission

spectroscopy [133, 197]. The agreement of the BPE and the CBM within 0.2 eV for wz-ZnO

might be an indication why it can be used as transparent conductive oxide at least after doping

with aluminum.

Using the BPE as a universal energy level of reference to align the energy bands of different

semiconductors leads to the band lineups shown in Fig. 4.7. The offsets of the uppermost VB

and the lowest CB, with respect to EBP, can be interpreted as natural band discontinuities, ∆Ev

and ∆Ec. From the results in this figure, we predict that a combination of the three oxides

rs-MgO, wz-ZnO, and rs-CdO yields type-I heterostructures. In Ref. [196] we also successfully

apply this approach to In2O3 and three nitrides.
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Figure 4.7: Conduction-band edges and valence-band edges for rs-
MgO, wz-ZnO, and rs-CdO. The branch-point energies are used as the
level of reference.

4.2 Two-particle excitations

4.2.1 Impact of many-body effects on the optical properties

In this section we illustrate the influence of QP effects, as well as excitonic and local-field ef-

fects, on the optical properties of MgO, ZnO, and CdO. We start by comparing three different

levels of many-body perturbation theory by employing (i) the independent-particle approxima-

tion (IPA), i.e., eigenvalues and wave functions from DFT-GGA, or (ii) the IQPA which involves

wave functions from DFT-GGA+U together with QP energies (simulated by ∆, cf. Section 3.1.2)

to calculate the DF of non-interacting electron-hole pairs. Finally, (iii) excitonic and local-field

effects are incorporated by solving the BSE (based on the IQPA as the starting electronic struc-

ture) for the optical polarization function.

In Fig. 4.8(a) the influence of QP corrections becomes clear from the comparison of the

imaginary part of the DF of rs-MgO obtained using the IPA to the one calculated within IQPA.

The inclusion of QP energies leads to a blueshift on the order of 1 . . . 3 eV for the oxides studied

in this work (cf. Section 4.1). The influence of excitonic and local-field effects becomes clear

from a comparison of the IQPA curve with the result calculated using the BSE approach in

Fig. 4.8(b). The electron-hole interaction causes a redshift of the BSE curve towards lower

photon energies, with respect to the IQPA result. This redshift does not compensate the QP

blueshift, thus an overall blueshift of the BSE spectrum of about 1 . . . 2 eV with respect to the

IPA curve remains. In addition, a strong enhancement of the peak intensities and plateau

heights due to the Coulomb interaction is visible at low energies in Fig. 4.8(b). Both the

redshift and the Coulomb enhancement are referred to as redistribution of oscillator strength

caused by the excitonic effects. In spite of this effect, peaks of the BSE curve can be related to

structures in the IQPA spectrum – except for the remarkable feature at the absorption onset; it is

attributed to a bound, Wannier-Mott-like electron-hole-pair state with large oscillator strength,

an exciton. As the lowest optical excitation of the system, this peak originates from the lowest

eigenstates of the excitonic Hamiltonian with excitation energies smaller than the QP gap.
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Figure 4.8: Imaginary parts of the dielec-
tric function of rs-MgO calculated within
the independent-particle approximation
(black) are compared to results within the
independent-QP approximation (red) in (a).
The blue curve (b) shows the result which has
been calculated using the BSE approach.

4.2.2 Complex frequency-dependent dielectric function

The discussion in the previous section elucidated the impact of the many-body effects on the

DF of the group-II oxides and exemplified how theoretical calculations go beyond merely repro-

ducing or predicting experimentally accessible quantities. Moreover, they provide insight into

the underlying physics by disentangling different effects which contribute to the final result.

In the case of the optical properties, such as the DF, an interpretation of the respective peaks

in terms of the involved VBs and CBs is helpful. Frequently, the mapping is done by assigning

the spectral features merely to van Hove singularities at high-symmetry points in the band

structure. This procedure is already arguable when interpreting the DF calculated within the

IPA, at least for the oxides studied in this work, because we found that the corresponding

transitions oftentimes must be associated with larger regions of the BZ. Besides this, taking the

Coulomb interaction between electrons and holes into account additionally couples VB and CB

states from different k points. This Coulomb-induced mixing can render it even less feasible to

identify certain high-symmetry k points as an origin for certain spectral features.

Therefore, in this work we combine two approaches to analyze remarkable spectral features

of the DFs. Comparing the IQPA result to the BSE curves enables us to assign structures in the

DF from the BSE approach to peaks in the independent-QP spectrum. In a second step, we

distinguish between contributions to the IQPA spectrum that are caused by a high joint DOS or

by matrix-element effects. This allows us to trace back certain peaks to band complexes that

particularly contribute to the respective transitions.

Results and discussion: MgO

In Figs. 4.9(a) and (b) we plot the result for the real and imaginary part of the DF calculated us-

ing the BSE approach. Comparison to a measured curve from spectroscopic ellipsometry [135]

proves excellent agreement regarding the energetic positions of the peaks in the imaginary part.

Also, two DFs derived from reflectance measurements [136, 137] by means of Kramers-Kronig

analysis reveal only slight deviations of peak positions and intensities. For photon energies



4.2 Two-particle excitations 49

Figure 4.9: Real (a) and imaginary (b) parts of the dielectric function of rs-MgO, including excitonic and local-field
effects (blue curves), together with an experimental result (black curve) from Ref. [135]. For additional comparison
the imaginary part of the dielectric function calculated within independent-particle approximation (red curve) and
the joint density of states (green curve) are plotted (c).

above 12 eV, Fig. 4.9 displays several intensity deviations, which may be partly related to a

larger lifetime and instrumental broadening for transitions in that energy range, i.e., with final

states above the vacuum level. In addition, we slightly underestimate the peak positions above

15eV, which we attribute to the missing energy dependence of the QP corrections when merely

a scissors operator is used (cf. discussion in Section 4.1.1). Comparing to older calculations

that also include the electron-hole interaction [54, 138], we find that our more converged

results agree better with measured curves.

For a deeper analysis we study the DF calculated within IQPA, as well as the joint DOS, in

Fig. 4.9(c). First of all, this points out the strong modification due to the electron-hole in-

teraction, especially in the band-edge region, as well as the strong Coulomb-induced spectral

redistribution that we discussed before (see Section 4.2.1). A comparison of the two curves

in Fig. 4.9(c) reveals the strong influence of the optical transition-matrix elements. While the

energetic positions, e.g. of peaks A and B, can be matched to structures in the joint DOS, we

find that the line shape of the independent-QP spectrum hardly resembles that of the joint

DOS, proving the large impact of the optical transition-matrix elements. In the same figure,

the assignment of the peaks of the independent-QP spectrum and the DF which includes exci-

tonic effects is pointed out by the labels. Investigating the contributions to the IQPA spectrum

indicates that peak A mainly can be attributed to transitions between the two highest VBs and

the CBs, whereas peak B is almost entirely composed of transitions from the uppermost VB into

the CBs. Peak C originates mainly from transitions of the second and the third VB.

Results and discussion: ZnO

Our result for the DF of wz-ZnO, calculated using the BSE approach, is compared in Fig. 4.10

to an experimental spectrum obtained by means of spectroscopic ellipsometry [139]. We find

good agreement for the peak positions, not only of the bound excitonic state at the absorption
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Figure 4.10: Real (a) and imaginary (b) parts of the dielectric function of wz-ZnO, including excitonic and local-
field effects (blue curves), together with an experimental result (black curves) from Ref. [139]. For comparison, the
imaginary part of the dielectric function calculated within independent-particle approximation (red curve) and the
joint density of states (green curve) are plotted (c). While solid curves correspond to ordinary light polarization,
the dashed curves represent extraordinary polarization.

edge (E), but also at higher energies. Figure 4.10 shows the slight underestimation of the

energetic position of peak A at around 8.9 eV and above, which we attribute to merely having

used a scissors operator ∆ for the QP corrections [see also the differences in Fig. 4.1(b)], as

already discussed for rs-MgO. We marginally overestimate the plateau height in the energy

region h̄ω ≈ 4 . . . 7 eV, which might be an artifact of the surface-layer corrections used in the

description of the ellipsometry measurements. The calculated and the measured curve agree

in finding the optical anisotropy due to the hexagonal crystal structure to be very small at

photon energies between peaks E and A, as well as above 15 eV [cf. Fig. 4.10(a) and (b)].

Conversely, it is more pronounced between 8 eV and 15 eV. This is also confirmed by another

measured curve which was derived via Kramers-Kronig analysis of reflectivity data [140]. In

addition, our result is better converged than an earlier calculation of the DF including excitonic

effects [141], where not even enough CBs for a calculation of the DF up to 15eV were included.

Investigating the independent-QP spectrum in Fig. 4.10(c) confirms the expected large im-

pact of excitonic effects on the DF of wz-ZnO. More importantly, this figure shows that the

influence of the optical transition-matrix elements is stronger for wz-ZnO than in the case of rs-

MgO. The shape of peak A and the region around peak C is remarkably modified. Our analysis

shows that the peak structure A consists mostly of transitions from the uppermost four VBs into

the CBs. The broad peak complex B, at higher energies between 10 to 15 eV, mainly originates

from transitions from all O 2p VBs into the CBs. Interestingly, above photon energies of about

20 eV, roughly 20 . . . 50% of the imaginary part of the DF arise from transitions originating in

the Zn 3d states. Besides this, we are able to trace the optical anisotropy back to the upper-

most three O 2p VBs which contribute most to this effect. While transitions from the third VB

cause the large contributions between roughly 10 . . . 11.5 eV for perpendicular light polariza-

tion, transitions mainly from the first and second VB form the peaks for parallel polarization
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Figure 4.11: Real (a) and imaginary (b) parts of the dielectric function of rs-CdO, including excitonic and local-field
effects (blue curves), together with an experimental result (black curve) from Ref. [142]. For additional comparison
the imaginary part of the dielectric function calculated within independent-particle approximation (red curve) and
the joint density of states (green curve) are plotted (c).

between 12 . . . 14 eV. As for the imaginary part, also the real part of the DF agrees well with the

measured curve with the largest deviations between photon energies of 9 . . . 14 eV.

Results and discussion: CdO

In Figs. 4.11(a) and (b) we show the curves for the real and the imaginary parts of the DF,

calculated using the BSE approach. We compare the imaginary part to an experimental result

obtained by means of Kramers-Kronig analysis of reflectance data [142]. While the agreement

is good up to photon energies of about 6 eV, we find again the aforementioned underestimation

of the peaks’ energetic positions at higher energies due to the lacking energy dependence of

the scissors operator. An estimate of this effect from the band structure of rs-CdO in Fig. 4.1(c)

explains deviations on the order of about 1 . . . 2 eV. Evidently, the indirect semiconductor rs-

CdO does not show the pronounced peak close to the absorption edge that we attributed to

a bound excitonic state in the case of rs-MgO and wz-ZnO. Aside from the indirect gap of rs-

CdO, the much stronger screening (see next page) in this material has also been spotted as a

reason for this behavior. In a two-band Wannier-Mott (WM) model [143] [cf. Eq. (5.3)], the

exciton-binding energy is inversely proportional to the square of the static dielectric constant.

This dependence points out that the excitonic effects strongly decrease with an increase of

the screening of the electron-hole interaction and, consequently, we expect the impact of the

excitonic effects to be relatively small for rs-CdO.

This expectation is further confirmed by a comparison of the BSE result to the IQPA curve

in Fig. 4.11(c) which shows that the two curves look more alike than those of rs-MgO or wz-

ZnO. Besides this, for rs-CdO the influence of the optical transition-matrix elements is smaller

and the IQPA spectrum resembles the joint DOS, especially in the energy range below 13 eV.

Analyzing the contributions to the DF within the IQPA reveals that peak A consists mostly

of transitions from the uppermost VB into the CBs, whereas peak B is composed of equal
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rs-MgO wz-ZnO rs-CdO
IPA [185] 3.16 ε ||

∞ = 5.26 ε⊥
∞ = 5.24 7.20

IQPA 2.77 ε ||
∞ = 3.64 ε⊥

∞ = 3.58 5.52

BSE 3.12 ε ||
∞ = 4.08 ε⊥

∞ = 4.01 6.07

Exp. [99] 2.94 ε ||
∞ = 3.75 ε⊥

∞ = 3.70 3.80 . . . 7.02

Table 4.5: Electronic static di-
electric constants of the three
group-II oxides, calculated within
the independent-particle approxi-
mation (IPA), independent-QP ap-
proximation (IQPA), and includ-
ing excitonic and local-field ef-
fects (BSE). Experimental values
are given for comparison.

contributions from all three uppermost O 2p VBs. The peak complex C can be clearly related to

a high joint DOS [cf. Fig. 4.11(c)] and the two peaks around h̄ω = 17 eV and h̄ω = 21 eV are

attributed to transitions from the Cd 4d states.

Static dielectric constants

By computing converged results for the DF, using the BSE approach for low as well as high

photon energies, and merging the two (cf. Section 3.2) we access the real part of the DF and,

therefore, the static electronic dielectric constant ε∞ = Re ε(ω = 0). To exclude contributions

from phonon excitations, it is derived as the high-frequency limit (with respect to phonon

frequencies) from measurements, which is a possible source for experimental uncertainties.

In Table 4.5 we compare the values for ε∞, calculated within the IPA, the IQPA, and from the

solution of the BSE, to measured values and obtain good agreement of the BSE results with

deviations lower than 10% for all three oxides. For wz-ZnO we can even confirm that the

parallel component of ε∞ is slightly larger than the value for perpendicular light polarization.

Comparing the results arising from the IPA and the IQPA demonstrates the influence of the

QP corrections on ε∞, whereas the corrected d-band positions that enter the IQPA have almost

no impact on the DF, as discussed in the previous section. An opening of the gap leads to a

shrinkage of the static dielectric constant due to the Kramers-Kronig relation, which states that

a smaller band gap is necessarily related to a larger static dielectric constant. This explains our

findings for all three oxides and also the chemical trend of an increasing value of ε∞ along the

row rs-MgO, wz-ZnO, rs-CdO (cf. Table 4.5).

In fact, the difference between the dielectric constants calculated within IQPA and the exper-

imental values indicates that a correct description of the band gap is not enough. We find that

the IQPA results underestimate the experimental ones, whereas the BSE values agree much

better. Since the influence of the electron-hole interaction on the gap is relatively small, we at-

tribute this improvement to the redistribution of oscillator strength that we pointed out before.

So far, only the electronic contributions to the static dielectric constant have been discussed.

In the low-energy region phonon effects are also important and the DF of the material can

strongly deviate from the DF emerging merely from the electronic contributions. Consequently,

the values for εs, as the static dielectric constants, given in the literature for the three oxides
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differ noticeably from ε∞. While εs = 9.8 is found for rs-MgO and ε ||
s = 8.75/ ε⊥

s = 7.8 for wz-

ZnO, the deviations are largest in the case of rs-CdO where a value as large as εs = 21.9 is

reported [118]. Of course, this significant contribution to the screening has a large impact on

the electron-hole interaction. In materials where the lattice dynamics of the screening become

important, the use of only the electronic static dielectric constant is questionable [144]. In

Ref. [112] a Pollmann-Büttner model has been used to tackle this problem, which was more

successful than merely using experimental results for ε∞ to screen the electron-hole interaction.

Since it is not yet entirely clear how the electron-lattice interaction can be consistently included

in the ab-initio approach used in this work, we have restricted ourselves to the use of the IPA

values of ε∞ calculated within the GGA+U approximation (cf. Appendix A.2) to screen the

electron-hole interaction in the BSE approach. Since these εeff are between εs and ε∞ we

benefit from a certain cancellation of errors that consequently occurs.

4.2.3 Excitons and spin-orbit coupling

The lowest eigenstates of the excitonic Hamiltonian describe excitons with a binding energy

EB which is defined as the difference of the energy of the non-interacting electron-hole pair

and the respective eigenvalue. For the oxides studied in this work, values of EB on the order

of about 60 meV for wz-ZnO [118] or 80 meV (145 meV) for rs-MgO [137] (Ref. [145]) have

been derived from measurements. Only due to the adaptive k-point sampling scheme (cf.

Section 3.2) are we able to achieve the calculation [187, 191] of converged values for EB.

However, the appropriate description of the screening is difficult for reasons elucidated in the

preceding section.

In this section, we focus on the effect of the spin-orbit interaction on the lowest optical exci-

tations. Using the irreducible representations of the uppermost three VB states and the lowest

CB state at the Γ point, as given in Fig. 4.4, we derive the allowed optical transitions, along

with their polarization dependence, by means of group theory. In the respective multiplication

table [146] for the C4
6v symmetry group of the wz structure we find that the lowest CB state

(Γ7 symmetry) and a VB state (with Γ7 symmetry) lead to Γ7 ×Γ7 → Γ5 +Γ1 +Γ2, whereas

we obtain Γ7 ×Γ9 → Γ5 +Γ6 for Γ9-type VBs. By means of the irreducible representation of

the dipole operator for this group, it turns out that of the terms in these sums, only Γ5 (Γ1)

is dipole-allowed for perpendicular (parallel) light polarization. Our calculations indicate that

the Γ5-related transitions mainly originate from the Γ9v (Γ7+v) VBs and we denote them as A

(B) excitons. The C exciton is associated with Γ1-derived transitions, mainly from the Γ7−v VB

[cf. Fig. 4.12(b)].

Performing the same analysis for the rs crystal structure with the multiplication table of

the O5
h group one finds two (cf. Fig. 4.4) different products, Γ6+×Γ8− → Γ12′ +Γ15+Γ25 and

Γ6+×Γ6− → Γ2′ +Γ15, out of which only the Γ15-related transitions are dipole-allowed.
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Figure 4.12: Imaginary part of
the dielectric function (curves) of
wz-ZnO in the vicinity of the ab-
sorption edge together with the
lowest eigenvalues of the excitonic
Hamiltonian and the respective os-
cillator strengths (bars). In sub-
figure (b) the nomenclature of the
excitons A, B, and C is explained.

In the following, we revisit the problem of the VB-ordering in wz-ZnO which we tackled in

Section 4.1.2 by studying the respective QP energies. Taking the electron-hole interaction into

account leads to the picture in Fig. 4.12(a) where we show the imaginary part of the DF in

the direct vicinity of the absorption edge, along with the eigenvalues and oscillator strengths

of the eigenstates of the excitonic Hamiltonian that are found in this energy region. The spin-

orbit interaction is included by means of the approach described in Section 3.2.2. The small

but non-vanishing splittings of the A-, B-, and C-exciton-related peaks [cf. Fig. 4.12(a)] arise

due to a larger influence of the spin-orbit interaction apart from the Γ point. In addition,

the spin-orbit induced and the CF-related splittings into the A, B, and C excitons are clearly

visible in Fig. 4.12, along with the polarization anisotropy which is in accordance with our

discussion based on group theory: The lowest four eigenvalues (A and B excitons) are visible

in perpendicular polarization and the next two lowest eigenvalues (C exciton) occur for parallel

polarization. In Fig. 4.12 the small energy differences of the absorption onsets that arise from

this polarization anisotropy are clearly visible. However, the electron-hole interaction does

not change the ordering of the lowest optical transitions with respect to the ordering of the

states in the QP band structure. Due to the differences of the exciton-binding energies (cf.

Ref. [191]), the splitting between A and B (A and C) amounts to −12.1 meV (44.2 meV), which

is 0.8 meV more (4.1 meV less) than the difference of the respective QP energies (cf. Table 4.2).

Estimates based on Eq. (5.3) indicate that when the screening is as large as εs ≈ 9 the effect of

the electron-hole interaction is reduced to less than 1 meV.

4.2.4 Application: Electron-energy loss function

All linear-optical properties can be derived from the complex DF as a response function of the

system. Though we calculated the Fresnel reflectivity R(ω) in Ref. [190], we want to focus in

this work on the energy loss of an electron that is scattered by a sample. When treating the

electron as a classic particle, in the non-relativistic limit the energy loss of the electron can (in

the limit of vanishing transferred momenta) be described by the electron-energy loss function,

− Im ε−1(ω) =
Im ε(ω)

(Re ε(ω))2+(Im ε(ω))2 , (4.3)
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Figure 4.13: Electron-energy loss function
−Imε−1(ω) of rs-MgO (a), wz-ZnO (b), and rs-CdO
(c) including excitonic effects (blue curves). We
compare to experimental results (black curves)
from Ref. [147] (MgO) and Ref. [142] (ZnO, CdO).
For the hexagonal wz-ZnO curves for the ordinary
direction (solid) as well as for the extraordinary
direction (dashed) are shown.

where h̄ω denotes the loss energy. Equation (4.3) neglects retardation and surface effects.

We plot our calculated results for rs-MgO, together with a measured curve by S. Kohiki et

al. [147], in Fig. 4.13(a). Although the experimental curve does not show any fine structure,

we find a good agreement for the overall shape as well as for the position of a pronounced

plasmon resonance centered around ≈ 23 eV. By means of the relation

h̄ωp = h̄

√

e2

ε0m
·n (4.4)

we can relate the cell-averaged electron density n = N/Ω0 to the plasma frequency ωp. Taking

the O 2s and O 2p electrons into account we obtain a value of h̄ωp = 23.9 eV which agrees well

with a structure in Fig. 4.13(a). It has to be pointed out that, probably due to sample-quality-

related effects such as impurities or defects, the experimental onset of the loss function appears

at roughly 5 eV, which is below our onset at about 7.2 eV.

In Fig. 4.13(b) we compare our result for wz-ZnO to a measurement by J. L. Freeouf et

al. [142] and obtain a good overall agreement of the curve shape. Between 15 and 25 eV

a broad plasma resonance occurs which is related to small values of the real part of the DF

between 18 and 23 eV, with a zero at around 17 eV. Using Eq. (4.4) we find plasma frequencies

of 10.5 eV, 18.3 eV, or 23.6 eV when only contributions from the O 2s, O 2p, or Zn 3d electrons

are taken into account. Comparing these values to the plot in Fig. 4.13(b) indicates that three

distinct contributions can barely be observed and, instead, a mixing of the contributions occurs,

leading to the broad plasma resonance mentioned before. In addition, the underestimation of

the energetic positions of peaks that has been discussed for the DF (cf. Section 4.2.2) also

carries over to the description of the loss function. We distinguish between || and ⊥ quantities,

following the previously introduced definition, and find a relatively small anisotropy for the

entire curve. This is not confirmed by the measurement [142] shown in Fig. 4.13(b), but more

so by a result obtained via Kramers-Kronig analysis of reflectivity data [140].
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The calculated result for the electron-energy loss function of rs-CdO is shown in Fig. 4.13(c)

along with the measured curve of J. L. Freeouf et al. [142]. In this case we do not obtain one

single plasma resonance structure for the s, p, or d electrons, but a clear three-peak structure at

energies between 15 and 23 eV. This behavior is confirmed by the experimental result despite

the underestimation of the energetic positions of the peaks of the calculated curve that has

already been discussed. By means of Eq. (4.3) we compute plasma frequencies of 10.1 eV,

17.4 eV, or 22.5 eV caused by the O 2s, O 2p, or Cd 4d electrons and can relate them to structures

in Fig. 4.13(c). The peak at about 18 eV cannot be assigned to s, p, or d electrons with this

type of analysis and arises, most likely, due to a combination of these states.

4.3 Summary

In this chapter we provided a detailed analysis of the electronic structure and the optical prop-

erties of the group-II oxides rs-MgO, wz-ZnO, and rs-CdO using an ab-initio description.

We compared the QP energies and the DOS that we obtained by means of the sophisti-

cated HSE03+G0W0 approach to experimental results and found reassuring agreement for all

three oxides. Furthermore, our results have been used to derive natural band discontinuities,

leading to the conclusion that a combination of rs-MgO, wz-ZnO, and rs-CdO yields type-I het-

erostructures. In addition, we proved that a mapping onto the computationally less expensive

GGA+U+∆ method yields starting electronic structures that are suitable for calculating the ex-

citonic Hamiltonian. Also, the influence of the spin-orbit coupling has been taken into account

and the ordering of the uppermost VB states was investigated.

In Section 4.2 the complex frequency-dependent DFs of rs-MgO, wz-ZnO, and rs-CdO were

presented and interpreted. We found a remarkable influence of the electron-hole interaction

by comparing different levels of the many-body perturbation theory. Besides this, the impact

of spin-orbit coupling on the lowest eigenstates of the Hamiltonian was investigated and the

electron-energy loss function was derived from the DF. We compared our results to measured

curves as far as they are available. We also found that the experimentally observed splittings

of the uppermost VB states agree well with our findings when the electron-hole interaction is

included in the theoretical description.



5 Lattice distortions: Strain and

non-equilibrium polymorphs

Without deviation from the norm,
progress is not possible.

Frank Zappa

In order to gain a thorough understanding of the properties of a material by experimenta-

tion it is undoubtedly helpful to study pure, ideal crystals or samples with as few defects as

possible. Accordingly, physical as well as chemical techniques for their preparation have been

improved continuously and, nowadays, single crystals of very good quality are available for

rs-MgO as well as for wz-ZnO. In the preceding chapter the electronic and optical properties

have been studied extensively for their equilibrium polymorphs. However, occasionally sys-

tems of reduced dimensionality attract even more interest than the simple bulk materials since

they come along with interesting and, with respect to bulk materials, new physical effects. In

the context of nanoscience, therefore, thin films, small crystallites, and an entire variety of

nanostructures, which demand their own distinct preparation techniques, are investigated.

Along these lines, thin films are somewhat outstanding since they are particularly important

when the fabrication of large crystals of a material is difficult to achieve. They can be fabricated

via deposition on various substrates using different methods. Depending on the magnitude of

the lattice mismatch between the substrate and the film, such a procedure can lead to the

presence of unintended strains in the sample. Systematic experimental studies of the behavior

of the electronic structure in the presence of strain do exist, for instance, for wz-ZnO [110,

111]. Thus, in this chapter we investigate the influence of uniaxial as well as biaxial strain on

the uppermost VB states, the DF, and the exciton binding energies of this material.

Moreover, when the crystal structures of the substrate and the deposited material differ,

the film might, due to the growth, even adopt the lattice structure of the underlying substrate

within several atomic layers. For such a strong deviation from the equilibrium atomic geometry

one cannot expect that the influence on the electronic and optical properties is negligible. Since

wz-ZnO is readily available as a substrate, we examine the electronic band structure and the

optical properties of MgO and CdO, assuming that they occur in a non-equilibrium wz structure

when deposited as thin films on wz-ZnO. Both inherent strain and non-equilibrium structures

exist and occur to some extent also in alloys and heterostructures.

57
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5.1 Uniaxial and biaxial strain in ZnO

In Section 4.1.2 of the preceding chapter the ordering of the uppermost three VB states (cf.

Fig. 4.4) in wz-ZnO was discussed and compared to experimental results. While the deviations

that we found between differences of our calculated QP energies and measured VB splittings

were traced back to the influence of excitonic effects in Section 4.2.3, we want to investigate

in the following to which extent possible uniaxial (parallel to the crystal’s c axis) or biaxial

(perpendicular to the crystal’s c axis) strains in a sample might be responsible for changing the

(relative) energetic positions of the energy levels at the VBM that are split by the CF or the

spin-orbit coupling.

For the uniaxially and biaxially strained cells, the ground-state total energies are determined

from the minimum of E(V ) curves that are calculated within the DFT-GGA. Subsequently, the

relaxed atomic coordinates are obtained by minimizing the forces on the ions. To incorporate

uniaxial strain into these calculations we fix the c lattice constant (cf. Fig. 4.1), whereas a is

allowed to relax. Contrary, the a lattice constant is fixed and c is relaxed when accounting

for biaxial strain. Using the equilibrium values a0 and c0 the uniaxial strain is defined as

εu = (c− c0)/c0, whereas for biaxial strain it holds that εb = (a− a0)/a0. We are studying two

compressive strains (εx =−0.02 and −0.01) and two tensile strains (εx = 0.01 and 0.02) in both

cases (x = {u,b}). By means of these ab-initio calculations we gain insight into the properties

of wz-ZnO even beyond the experimentally accessible conditions since, for this material, the

typical strain values that can be achieved without destroying the samples are by roughly a

factor of 10 smaller than what we study in this work [148].

We calculate the electronic structures for the different strained lattice geometries by means

of the HSE03+G0W0 approach, including SOC (cf. Sections 2.3 and 3.1). Using the expression

Ax(Z) = ∂Z(εx)/∂εx|εx=0 , x = {u,b}, (5.1)

we derive the strain coefficients Ax for quantities Z, such as gaps and VB splittings. In addition,

for the biaxially strained cells we also compute the optical properties by solving the BSE (cf.

Sections 2.4 and 3.2).

5.1.1 Quasiparticle energies in the proximity of the band gap

The ordering of the uppermost VB states in unstrained wz-ZnO has been found to be Γ7+v – Γ9v –

Γ7−v in Section 4.1.2, with splittings between these levels as given in Table 4.2. In the presence

of uniaxial or biaxial strain, we obtain the picture shown in Fig. 5.1 for the QP energies around

the fundamental gap at Γ and give the strain coefficients for the splittings of the VBs, as calcu-

lated from Eq. (5.1), in Table 5.1. The plot of the QP energies indicates a remarkable impact

of the uniaxial strain on the lowest CB, whereas the influence of biaxial strain is comparably
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quantity Au Ab
without Eg = εQP(Γ1c)− εQP(Γ5v) −3.91 −0.37
SOC ∆no SOC

1 = εQP(Γ5v)− εQP(Γ1v) 3.19 −5.08
εQP(Γ9v)− εQP(Γ7+v) 0.17 −0.07

with εQP(Γ9v)− εQP(Γ7−v) 3.26 −5.09
SOC ∆qc

1 3.21 −4.62
∆qc

2 = ∆qc
3 0.05 −0.05

Table 5.1: Linear uniaxial Au and bi-
axial Ab strain coefficients (in eV) for
the gap, the VB energy splittings, and
the derived quantities ∆1, ∆2, ∆3 of wz-
ZnO.

small. Accordingly, the uniaxial deformation potential (cf. Table 5.1), −3.91 eV, is about ten

times larger than the value of −0.37 eV for the biaxial deformation potential.

For the VB states we studied the strain dependence of the energy splittings and of the

k ·p parameters (within the quasi-cubic approximation, i.e., ∆qc
1 and ∆qc

2 = ∆qc
3 ). The cases

when Eq. (4.1) yields imaginary values for ∆qc
2 / ∆qc

3 (cf. Section 4.1.2), i.e., εu = −0.02 and

εb = 0.01, were excluded from the linear fits to determine the deformation potentials accord-

ing to Eq. (5.1). For both, uniaxial as well as biaxial strain, there is an influence on the

spin-orbit splitting as can be seen from the clearly non-vanishing deformation potentials for

∆qc
2 / ∆qc

3 or those for the energy difference between the Γ7+v and the Γ9v state. Comparing

the linear strain coefficients for ∆qc
2 / ∆qc

3 to experimental values [110] (measured for hydro-

static pressure) shows the same order of magnitude, though they deviate from the values given

in Ref. [111]. Contrary, for the CF split-off level Γ7−v we observe from Figs. 5.1(a) and (b)

a much larger and almost linear decrease of its energetic position with the applied uniaxial

strain, and an even larger increase for biaxial strain. Correspondingly, we find the deformation

potential for ∆qc
1 , as well as that for the energy difference between the Γ7−v and the Γ9v state,

to be roughly one order of magnitude larger than in the case of the uppermost two valence

states (cf. Table 5.1). By means of the expression A′ = A/Y and using the biaxial modulus

Y = 216 GPa [191] we can relate the strain coefficient of the CF split-off level Γ7−v (cf. Ta-

ble 5.1) to the biaxial stress coefficient. We obtain A′ = −2.35 meV/kbar which agrees well

with a measured value of −1.93 meV/kbar [111].

The QP band structure of wz-ZnO, shown in Fig. 5.1, demonstrates that both a compressive

uniaxial or tensile biaxial strain as large as approximately 2% leads to a change in the band

ordering since the CF split-off level then becomes the uppermost VB. On the other hand, even

for these large strains the ordering of the uppermost two valence states (Γ7+v and Γ9v) does

not change.

5.1.2 Excitons under the influence of biaxial strain

In Section 4.2.3 it has been pointed out that the electron-hole interaction exerts an influence

on the splittings of the uppermost VB states when these splittings are derived from optical

properties. In the following, we want to extend these investigations by taking biaxial strain

into account. This is of practical relevance for samples that were grown along the direction of
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Figure 5.1: Quasiparticle energies at the Γ point obtained from the HSE03+G0W0 approach, including the spin-
orbit interaction, plotted versus uniaxial (a) or biaxial (b) strain. The Γ9v level is taken as energy zero.

their c axis on a substrate which is not completely lattice-matched. We adopt the nomenclature

for the excitons as introduced previously [cf. Fig. 4.12(b)], i.e., A (Γ9v → Γ7c), B (Γ7+v → Γ7c),

and C (Γ7−v → Γ7c). In this section we focus on the energetic distance between the CF split-off

level (Γ7−v) and the two uppermost VB states (Γ7+v and Γ9v), since in the preceding section

(cf. Fig. 5.1) we observed that the splitting between the Γ7+v and the Γ9v level depends only

weakly on strain. Therefore, we do not need to resolve the small splitting between these two

states when plotting the imaginary part of the DF in Fig. 5.2. This significantly reduces the

computational effort since we solve a BSE for the respective atomic structure of each strained

unit cell separately so as to investigate the strain dependence of the DF. The respective static

dielectric constant which determines the screening of the electron-hole interaction is adopted

for each cell as well. We find a linear increase of its value (computed using the GGA+U

approach), going from εeff = 4.29 (εb =−0.02) to εeff = 4.49 (εb = 0.02) after averaging over all

polarization directions.

From the different BSEs we calculate the DFs for different amounts of biaxial strain in wz-

ZnO. In the resulting plot of the imaginary part of the DF, Fig. 5.2, we distinguish between

ordinary (bright A and B exciton, dark C exciton) and extraordinary (bright C exciton, dark

A and B excitons) light polarization. While for a compressive biaxial strain of εb = −0.02, as

well as vanishing strain, the A- and B-exciton peak can be found at lower energies than the

C-exciton peak, this situation changes with larger tensile strains. For εb = 0.02 we find that the

ordering of the peaks is interchanged. We explain this behavior via the large strain deformation

potential of the Γ7−v band (see preceding section) and, hence, also expect this behavior to occur

for compressive uniaxial strain (cf. Fig. 5.1).

The strain dependence of the peaks related to the A / B excitons and the C exciton can be

observed in experiments due to the polarization dependence (cf. Fig. 5.2). Measuring the

exchange of the ordering of the A / B and the C exciton is difficult since the necessary strains

are large. We give a more detailed investigation of the corresponding exciton binding energies

in Ref. [191]. Furthermore, we found that the strain also influences the peak positions and even
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Figure 5.2: Imaginary part of the dielectric function
versus photon energy (in the vicinity of the absorption
edge) for a biaxial strain of εb = −0.02 (red curves),
εb = 0.02(blue curves), and the unstrained case (black
curves). We distinguish between ordinary (solid lines)
and extraordinary (dashed lines) polarization.

the optical anisotropy at higher photon energies. When information about band orderings is

derived from measurements, knowledge about possible strain in the sample is inevitable.

5.2 Non-equilibrium wurtzite structure: MgO and CdO

When rs-MgO or rs-CdO are mixed with wz-ZnO they can abandon their equilibrium rs crystal

structure and adopt the wz structure under certain (non-equilibrium) conditions. In the Zn-

rich regime this has been experimentally observed for both of these oxides [92, 93, 149–151].

Though we apply a thermodynamic approach to study the isostructural and heterostructural

alloys MgxZn1−xO or CdxZn1−xO in Chapter 6, we focus in this section on an ab-initio prediction

of the electronic band structure as well as the properties of the optical absorption edge for pure

MgO and CdO in the wz crystal structure. Information about bulk wz-MgO or wz-CdO crystals is

experimentally hardly accessible, since no bulk samples are available for the non-equilibrium

wz polymorphs. However, knowledge of e.g. fundamental band gaps, CF or spin-orbit splittings,

and the lowest optical transitions can be helpful in understanding the aforementioned mixtures

of MgO or CdO and ZnO.

Therefore, in this section we employ atomic coordinates that we derived from total-energy

minimizations for the wz structure of MgO and CdO within DFT-GGA before [185, 186]. Subse-

quently, we calculate the corresponding QP band structures within the HSE03+G0W0 approach

and also include SOC (cf. Section 3.1).

5.2.1 Quasiparticle energies

Band structures including spin-orbit coupling

For both systems, wz-MgO and wz-CdO, we plot the QP band structures including SOC in

Fig. 5.3. In the case of wz-MgO we find a direct fundamental band gap of 6.52 eV at the Γ

point. Besides this, the inset in Fig. 5.3(a) indicates that the VB ordering in wz-MgO is Γ7−v –

Γ9v – Γ7+v which differs from the one we observed for wz-ZnO (cf. Section 4.1.2). Furthermore,

the Γ7−v-derived band anti-crosses the other two VBs along the direction parallel to the c axis.

Contrary to this, wz-CdO [cf. Fig. 5.3(b)] shows the same band ordering as wz-ZnO and the
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Figure 5.3: Quasiparticle band structure of wz-MgO (a) and wz-CdO (b), including spin-orbit coupling. The valence-
band maximum has been used as energy zero and the fundamental gap region is shaded. The insets schematically
show the band ordering at the top of the valence bands.

wz-MgO wz-CdO
without Eg = εQP(Γ1c)− εQP(Γ5v) 6.52 1.06
SOC ∆no SOC

1 = εQP(Γ5v)− εQP(Γ1v) −373.9 76.8
εQP(Γ9v)− εQP(Γ7+v) 26.1 −23.3

with εQP(Γ9v)− εQP(Γ7−v) −357.8 65.2
SOC ∆qc

1 −369.6 73.1
∆qc

2 = ∆qc
3 12.6 −10.4

Table 5.2: Electronic structure
around the fundamental gap
of wz-MgO and wz-CdO: Gap
Eg (in eV), valence-band split-
tings εQP(Γ9v) − εQP(Γ7+v) and
εQP(Γ9v)− εQP(Γ7−v) (in meV) as
well as the derived quantities ∆1,
∆2, ∆3 (in meV).

Γ7+v-derived band is very dispersive in the xy plane, i.e., perpendicular to the c axis. As a con-

sequence it anti-crosses the Γ9v and Γ7−v VBs in the direct vicinity of Γ in this plane [cf. inset of

Fig. 5.3(b)] and the characters of the bands change accordingly. We attribute the two different

VB orderings that we observe for wz-MgO (no d electrons) and wz-ZnO/wz-CdO (containing d

electrons) to the hybridization of p and d states at the VBM, which is in wz crystals, in contrast

to the rs case (cf. Section 4.1.2), symmetry-allowed at Γ. Consequently, we also ascribe the

direct fundamental band gap occurring at the Γ point to this effect. This gap is with 1.06 eV

significantly smaller than the direct Γ gap of rs-CdO, whereas we found rs-CdO to be an indirect

semiconductor (cf. Section 4.1.1).

In addition, we employ the k ·p theory for the wz crystal structure [106] to derive the split-

tings ∆1, ∆2, and ∆3 from the QP energies. The possible solutions are plotted for the non-

equilibrium polymorphs wz-CdO and wz-MgO in Fig. 5.4 and are given for the quasi-cubic

Figure 5.4: Spin-orbit-splitting constants ∆2 (black) and ∆3 (red) for wz-MgO (a) and wz-CdO (b) as a function of
the ∆1 constant that is related to the crystal-field splitting. All quantities are given in eV (meV) and the quasi-cubic
approximation for negative (positive) ∆1 is indicated for wz-MgO (wz-CdO).
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wz-MgO wz-CdO
m∗

M(Γ7c) 0.36 0.22
m∗

K(Γ7c) 0.44 0.33
m∗

A(Γ7c) 0.34 0.18

m∗
M(Γ7+v) 0.59 0.26

m∗
K(Γ7+v) 1.60 0.60

m∗
A(Γ7+v) 20.05 2.55

m∗
M(Γ9v) 10.92 2.43

m∗
K(Γ9v) 5.34 2.19

m∗
A(Γ9v) 6.47 2.59

m∗
M(Γ7−v) 4.28 2.24

m∗
K(Γ7−v) 4.38 2.27

m∗
A(Γ7−v) 0.37 0.20

Table 5.3: Effective masses m∗ (in units of the free-electron mass m)
at the Brillouin zone center along the Γ – M, Γ – K, and Γ – A directions
for wz-MgO and wz-CdO. Values are given for the lowest conduction
band and the three uppermost valence bands.

approximation (∆qc
2 = ∆qc

3 ) in Table 5.2. For the CF splitting of the uppermost VBs without SOC

we obtain ∆no SOC
1 = −374meV for MgO and ∆no SOC

1 = 77 meV for CdO. The absolute values of

the SOC-related constants ∆qc
2 = ∆qc

3 almost agree for wz-MgO and wz-CdO, whereas their signs

differ (cf. Table 5.2). They amount to 13% of the CF splitting for wz-CdO and only 3.4% for

wz-MgO. Comparison to the respective results for wz-ZnO (cf. Table 4.2) reveals the chemical

trend of decreasing values for ∆qc
2 = ∆qc

3 along the row MgO, ZnO, CdO. The different VB or-

dering causes the sign change of all three splittings when going from wz-MgO to wz-ZnO or

wz-CdO and has been traced back to the influence of the pd hybridization.

Effective masses

Parabolic fits to the QP band structures (including SOC) in the close vicinity of Γ allow the

derivation of the effective masses for the lowest CB and the uppermost three VBs. These

values (cf. Table 5.3) confirm the aforementioned anisotropic behavior, as well as the crossing

and anti-crossing of the bands, with regard to different directions in the BZ. While the lowest

CB and the Γ9v-associated VB are comparably isotropic, with effective masses not differing by

more than 50%, we find a difference of more than one order of magnitude for the masses

of the Γ7+v- and Γ7−v-associated VBs for the three high-symmetry directions Γ – M, Γ – K, and

Γ – A. Consequently, the Γ7+v-associated band is the light-hole band in K and M directions and

the heavy-hole band in the A direction, whereas the opposite is true for the Γ7−v-associated

band. Again, the anisotropy of the in-plane effective masses m∗
M and m∗

K indicates that the

corresponding bands are not completely parabolic within the k-space region used for the fitting

(cf. Section 4.1.2, page 42).

5.2.2 Optical properties of the absorption edge

Instead of the computationally expensive solution of the BSE we chose to study only the matrix

elements of the momentum operator for the non-equilibrium wz polymorphs of MgO and CdO.
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wz-MgO wz-CdO
∣

∣px/y

∣

∣

2
(Γ5v → Γ1c) 0.191 0.099

|pz|2(Γ1v → Γ1c) 0.186 0.103
EB(A) 535 15
EB(B) 435 11
EB(C) 402 11

Table 5.4: Squares |p|2 of (allowed) matrix elements
of the momentum operator (in h̄2/a2

B) perpendicular
(|px/y|2) and parallel (|pz|2) to the c axis. The exciton
binding energies EB (in meV) are calculated using purely
electronic screening.

Their values are calculated (using the longitudinal approximation [76]) from the HSE03 wave

functions (without spin-orbit coupling) and are given in Table 5.4. The polarization anisotropy

that arises from the dipole selection rules for the respective transitions in the hexagonal crystal

structure is reflected in these values. In Table 5.4 only the matrix elements for the Γ1v → Γ1c

transition [cf. Fig. 4.4(a)], which is allowed for extraordinary light polarization, and the Γ5v →
Γ1c transition, allowed for ordinary polarization, are shown. In contrast to wz-MgO, the states

at the VBM of wz-ZnO or wz-CdO show a significant contribution of d-type wave functions.

Since transitions from d-related states into the s-like CBM (at Γ) are dipole-forbidden, the

corresponding matrix elements are smaller when the involved states show some d character.

In the case of wz-ZnO this reduction is not as strong [192] since the cation-anion bond length

is smaller compared to the other two oxides [185], even though a certain d contribution to the

VBM occurs. For all three oxides
∣

∣px/y

∣

∣

2 (perpendicular polarization) is almost equal to |pz|2

(parallel polarization), which we attribute to the similarity of the corresponding bond lengths

within one material.

Using a four-band k ·p model [152] generalized for the wz structure [153] we relate the

matrix elements of the momentum operator to effective electron masses by means of the ex-

pression

m∗(Γ7c) =
m

1+Ep/Eg
, with Ep ≈

2
m

∣

∣px/y

∣

∣

2 ≈ 2
m
|pz|2 . (5.2)

With the matrix elements from Table 5.4 and the gaps of the wz polymorphs (cf. Table 5.2) we

find m∗(Γ7c) = 0.39m for wz-MgO and m∗(Γ7c) = 0.16m for wz-CdO, which is in good agreement

with the average of the corresponding inverse masses (cf. Table 5.3).

An approximate description of exciton-binding energies arising from a two-band Wannier-

Mott model [187, 143] leads to a hydrogen-like series given by

EB = R∞ · µ
mε2

eff

1
n2 , (5.3)

where R∞ is the Rydberg constant. For the reduced electron-hole mass µ that enters the model

we employ the average of the inverse masses along the different directions in k space (cf.

Table 5.3). The parabola-like shape of the lowest CB and the uppermost three VBs of wz-MgO

and wz-CdO (see Fig. 5.3) allows this approximation which yields the binding energies for the

A, B, and C excitons [cf. Fig. 4.12(b)] as the n = 1 states for each of the respective band pairs
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via Eq. (5.3). Within this two-band model the screening of the electron-hole interaction is

described via a static dielectric constant, which we approximate with the values derived within

the IPA [186], i.e., εeff = 3.02 (wz-MgO) and εeff = 13.74 (wz-CdO). However, the quadratic

dependence of Eq. (5.3) on the screening constant points out how sensitive the exciton-binding

energies are to the description of the screening. Of course, the exciton-binding energies (given

in Table 5.4) calculated from Eq. (5.3) do not take interactions between the Γ9v-, Γ7+v-, or

Γ7−v-related VBs into account. On the other hand, the remarkable decrease of EB when going

from MgO to CdO is clearly related to the large difference of the respective dielectric constants

εeff and is therefore true despite the approximative calculation of EB.

5.3 Summary

Two selected distortions of the ideal crystal structure of the three group-II oxides MgO, ZnO,

and CdO were studied in this chapter. The impact of uniaxial or biaxial strain on the QP ener-

gies at the Γ point was investigated for wz-ZnO. We found that only compressive uniaxial strain

or tensile biaxial strain of about 2% can turn the CF split-off Γ7−v level into the uppermost

VB, whereas the spin-orbit-related splitting only slightly changes its value as strain varies. Due

to the polarization dependence of the corresponding optical transition-matrix elements, the

respective shifts of the excitonic peaks should be distinctively visible in optical measurements.

In addition, we calculated the QP band structure, including SOC, for the non-equilibrium poly-

morphs wz-MgO and wz-CdO and used these results to derive formerly unknown k ·p parame-

ters, effective masses, and the optical properties around the absorption onset.



6 Pseudobinary alloys: Isostructural versus

heterostructural MgZnO and CdZnO

Denn auf Mischung kommt es an.

Johann Wolfgang von Goethe
Faust II

In the preceding chapter different strains as well as the crystal structure were proven to

influence the electronic and the optical properties of the group-II oxides by modifying, for in-

stance, the fundamental band gap or the band ordering. When exploiting such deviations from

the equilibrium structure in order to design certain properties of group-II oxide compounds,

a possible method is to alloy ZnO with MgO or CdO. Oftentimes it is desirable to control the

fundamental band gap for designated applications and devices that are associated with opto-

electronics. It has been observed experimentally [90, 91, 154] that the absorption onset can

be tuned, e.g. from about 3.4 eV (wz-ZnO) up to ≈ 4.4 eV (MgxZn1−xO), which corresponds

to the ultraviolet spectral region. Conversely, pseudobinary CdxZn1−xO alloys feature smaller

gaps that render them suitable for devices operating in the visible spectral range [92].

Unfortunately, isostructural combinations of ZnO and MgO or CdO seem to be thermody-

namically unstable because their mixing enthalpy in either the rs structure or the wz structure

is positive [155]. On the other hand, their heterostructural alloys appear to be stable under

certain conditions [92, 93, 149–151]. From a theoretical point of view we expect a change of

the atomic coordination from fourfold (wz) to sixfold (rs) with increasing Mg or Cd content

which is, in turn, reflected in alloy properties that are very sensitive to the various techniques

used for the sample preparation. Therefore, we do not only investigate the alloys under ther-

modynamic equilibrium conditions by studying their mixing free energy, but, in addition, also

take non-equilibrium situations into account. Knowing the atomic geometry of the alloys is

essential to calculating their electronic structure and optical properties.

6.1 Thermodynamic properties and lattice structure

The basis of our investigation of alloys is a cluster expansion that relies on 16-atom clusters

for the rs as well as the wz crystal structure (see Section 2.5.1 and Appendix A.1). We start

with a total-energy minimization within DFT-GGA to obtain the equilibrium lattice geometry

66
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(including fully relaxed atomic coordinates) along with the total energy for one representative

of each cluster class. The temperature- and composition-dependent properties of the macro-

scopic alloys are calculated via the Connolly-Williams method [66, 67], Eq. (2.85), hence the

cluster fractions x j must be determined for x and T . By employing different approaches for

computing the x j, we account for thermodynamic equilibrium and non-equilibrium conditions

as they emerge from various experimental techniques, temperatures, and substrate types. In

the literature the fabrication of MgxZn1−xO films using a variety of methods has been reported:

pulsed-laser deposition (PLD) at growth temperatures of 950. . . 1050K [154], radio-frequency-

magnetron sputtering at 700K [156], and reactive-electron-beam evaporation (REBE) at a sub-

strate temperature of 550 K [157]. CdxZn1−xO layers have been prepared by molecular-beam

epitaxy with a growth temperature as low as 450 K [92], (plasma-enhanced) metal-organic

chemical vapor deposition (MOCVD) at 625K [93, 158], and PLD at 700K [159].

The Gibbs free energy is the thermodynamic potential which describes the equilibrium of

a system for a fixed temperature and pressure. In this work, the thermodynamic equilibrium

conditions are accounted for by cluster fractions x j that are calculated within the GQCA, i.e.,

under the constraint of a minimal Helmholtz (mixing) free energy (the difference to the Gibbs

free energy vanishes for solids at low pressures). In addition, we include two non-equilibrium

situations by employing a SRS model as well as a MDM (cf. Section 2.5 and Ref. [188]). The

influence of the temperature is studied via the temperature-dependent mixing entropy for (i)

room temperature (T = 300K) and (ii) an exemplary growth temperature of T = 1100K.

6.1.1 Mixing free energy

GQCA for isostructural and heterostructural alloys

We investigate the two isostructural rs and wz alloys and compare them to the heterostructural

system, where we take the clusters for both crystal structures into account. Therefore, the index

j in the equations in Section 2.5 runs to J = 21 (wz clusters only), J = 15 (rs clusters only), or

J = 37 (both types of clusters) accordingly (see Table A.1). The minimization of ∆F for given

x and T has to be performed independently for each situation. The energies of the respective

equilibrium crystal structures (rs-MgO, wz-ZnO, rs-CdO) are used as levels of reference.

For MgxZn1−xO the mixing free-energy curves for the wz alloys and the rs alloys in Fig. 6.1(a)

intersect at x≈ 0.67, independent of the temperature. We interpret this as a tendency for a tran-

sition from preferred fourfold coordination (wz) to preferred sixfold coordination (rs) at that

composition under equilibrium conditions. In addition, the difference of the mixing free energy

per cluster of the heterostructural alloys and that of the respective isostructural cases exceeds

25 meV, i.e. kBT at room temperature, for approximately 0.10≤ x ≤ 0.98 (0.28≤ x ≤ 0.93) at

T = 300K (T = 1100K). Hence, for these values of x both, rs as well as wz clusters, significantly

contribute to the alloy material. These tendencies agree well with results of T. Minemoto
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Figure 6.1: Mixing free energy ∆F(x,T ) of
MgxZn1−xO (a) and CdxZn1−xO (b) alloys versus com-
position x. The curves are obtained using the GQCA
with wurtzite clusters only (dashed), rocksalt clusters
only (dash-dotted), or both types of clusters (solid). In
all cases results are shown for T = 300K (blue curves)
and T = 1100K (red curves). The equilibrium crystal
structures wz (x = 0) and rs (x = 1) have been used as
energy zero.

et al. [160] (Z. Vashaei et al. [161]) who report predominantly wz structure below x ≤ 0.46

(x ≤ 0.34) and mainly rs structure for x ≥ 0.62 (0.65≤ x ≤ 0.97). X-ray diffraction measure-

ments of thin-film samples by Bundesmann et al. [149] revealed the hexagonal wz structure for

x ≤ 0.53 and the cubic rs structure for x ≥ 0.67. Films grown by REBE (see Ref. [157]) lead to

hexagonal MgxZn1−xO up to x = 0.51 and to cubic MgxZn1−xO above x = 0.55. Two theoretical

studies [155, 162] report an intersection of the free-energy curves of the isostructural alloys

at x ≈ 0.33 (in contrast to our value of x ≈ 0.67) because they found almost the same energy

difference for rs-ZnO and wz-ZnO as we do for rs-MgO and wz-MgO, and vice versa. Since

Fan et al. [162] do not include the d electrons of Zn or Cd in their calculations and Sanati et

al. [155] do not comment on if they do or not, we assume that this may contribute to the dif-

ferent behavior. Also, the XC functional (LDA or GGA) seems to affect this issue, as discussed

in Ref. [188].

In the case of the CdxZn1−xO alloys we study the mixing free energy in Fig. 6.1(b) where we

observe a crossing of the curves for the isostructural alloys roughly at a Cd content of x ≈ 0.95.

Moreover, we find that the result from the mixed statistics differs less than 25 meV (per clus-

ter) from the curve for the pure wz structure up to compositions x of about 0.17 (0.59) for

T = 300 K (T = 1100K). This indicates that, especially for the high-temperature case, a large

part of the clusters that form the alloy shows the wz structure, which is clearly related to the

small energy difference between the rs-CdO and the wz-CdO phases [185]. This explains why

experimental studies of CdxZn1−xO give an ambivalent picture: While two groups report very

low thermodynamic solubility limits of only x ≈ 0.07 [159] or phase separation at even lower

Cd concentrations [158], another group observed compositions of up to x = 0.32 for samples

produced by means of a highly non-equilibrium growth mode [92] – unfortunately, they have

not tried for higher concentrations. In addition, the wz crystal structure has been reported for

plasma-enhanced MOCVD layers up to x = 0.697[93], which is confirmed by a transition from

wz to rs structure at x = 0.7 of films deposited by MOCVD [163]. Apparently, experiments find

the change of the crystal structure at lower Cd concentrations than we predicted from the inter-

section of the ∆F curves for wz and rs in Fig. 6.1(b). On the other hand, the high-temperature
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Figure 6.2: Mixing free energy ∆F(x,T ) of
MgxZn1−xO (a) and CdxZn1−xO (b) alloys versus com-
position x for T = 300 K (blue) and T = 1100K (red).
The solid curves are computed using cluster fractions
from the GQCA. The dotted curves are obtained for
the MDM while the dash-dotted curves are calculated
using the ideal cluster fractions. All curves result
from the combined statistics with both wurtzite- and
rocksalt-type clusters. The respective composition end
points have been used as zero (see text).

curve of the heterostructural alloy significantly deviates from that of the isostructural wz alloy

above Cd contents of about 0.7, which may partly explain the experimental findings [163].

The three different statistics for heterostructural alloys

In Fig. 6.2 we compare the mixing free energies that result from the cluster fractions calculated

within the GQCA, the SRS model, and the MDM for the heterostructural alloys. The energy

of the respective equilibrium crystal structure has been used as a level of reference at x = 0

and x = 1, except for the curves obtained using the ideal cluster fractions x0
j . Since the x0

j [cf.

Eq. (2.92)] do not depend on the cluster energies but only on the numbers n j and n− n j of

cations of type A and type B the sum of the x0
j for all wz clusters and that for all rs clusters give

the same total weight of 0.5, independent of the composition x. Therefore, to compare this

approach to the other distributions of the x j in Fig. 6.2, we set the mixing free energies at x = 0

and x = 1 to zero for each curve resulting from the SRS model. Otherwise, ∆F(x = 0,T ) > 0

and ∆F(x = 1,T )> 0 would result for temperatures T > 0 K due to the weights x0
j .

The mixing free energy of the heterostructural MgxZn1−xO alloy is lower than zero for all x

and T using any of the three approaches for calculating the x j because the excess energies are

negative for all Mgn jZnn−n j On clusters [188]. Consequently, all three statistics agree in predict-

ing the heterostructural MgxZn1−xO system to be a random alloy without a miscibility gap and

as having no tendency for binodal or spinodal decomposition [65]. Contrarily, the ∆F curves

for CdxZn1−xO resulting from the SRS model [cf. Fig. 6.2(b)] are qualitatively different as they

show minima and inflection points with positions that strongly depend on the temperature.

As discussed in detail in Refs. [62, 188], this is an indication of a phase transition between

random and phase-separated alloys and might explain the low solubility of Cd in ZnO [159],

especially when the SRS model describes such growth experiments well. This model predicts

a phase transition because it neglects the large energetic differences between the two crystal

structures by assigning the ideal weights to the clusters. In addition, Fig. 6.2 points out that the

GQCA and the MDM coincide for both materials at low temperatures, i.e., we find the alloys

being almost entirely decomposed into the clusters of the binary end components.
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Figure 6.3: Crystal-structure fractions xwz (dashed
curves) and xrs (dash-dotted curves) of MgxZn1−xO
(a) and CdxZn1−xO (b) alloys versus composition x.
We calculated the curves using the cluster fractions
from the GQCA for T = 300 K (blue curves) and T =
1100K (red curves). The solid green lines are obtained
using the ideal cluster fractions. For comparison the
black curves show the result from the MDM for both
crystal structures.

6.1.2 Structural composition of heterostructural alloys

Within the description of heterostructural alloys we define the wz character xwz and the rs

character xrs of the system as the sum over the corresponding weights, i.e.,

xwz =
21

∑
j=0

x j and xrs =
37

∑
j=22

x j (6.1)

with xwz + xrs = 1 (cf. Table A.1). In Fig. 6.3 we plot these relative contributions of clusters

with wz or rs crystal structure versus the composition x for given temperatures T to derive

information about the dominating crystal structure in the alloy, depending on the thermody-

namic conditions and the cluster statistics (GQCA, SRS, MDM). Clearly, the SRS model for the

cluster fractions gives rise to equal contributions of rs and wz clusters. We also confirm our

previous discussion of the results for the mixing free energy by finding the GQCA curves close

to (coinciding with) the MDM results for MgxZn1−xO (CdxZn1−xO) at T = 300 K. As expected,

higher preparation temperatures tend to move the intersection xwz = xrs to larger Mg or Cd

molar fractions x. More specifically, we find that point at about x = 0.5 (T = 300K) and x = 0.6

(T = 1100K) for MgxZn1−xO. The temperature dependence is more pronounced for CdxZn1−xO

and the intersection for T = 1100 K occurs at about x ≈ 0.87. Consequently, the local crystal

structure of the CdxZn1−xO alloy depends much more on the actual growing conditions which

explains the ambivalent experimental findings for that material system [92, 93, 158, 159, 163].

6.2 One-particle excitations

The preceding section elucidated the thermodynamic properties and the structural composition

of iso- and heterostructural MgxZn1−xO and CdxZn1−xO alloys under different thermodynamic

conditions. In the following we want to use this knowledge and investigate the electronic

structure by means of the HSE03+G0W0 approach (cf. Section 3.1). This method has been

proven in Section 4.1 to provide reliable results for the QP energies of the group-II oxides.

In this section we calculate the band structures and DOS for the different clusters and, as
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Figure 6.4: Quasiparticle energies (including the spin-orbit interaction) of the uppermost three valence states and
the lowest conduction state at the Γ point for wz-MgxZn1−xO (a) and wz-CdxZn1−xO (b) alloys versus composition
x. The branch-point energy (cf. Section 4.1.3) has been used as energy zero. We calculated the curves using the
cluster fractions from the GQCA for T = 300K (blue curves) and T = 1100K (red curves). The solid green lines are
obtained using the ideal cluster fractions. For comparison the black curves that represent the result from the MDM
are included. The band ordering is indicated for the binary end components. The similarity of some of the curves
is discussed in the text.

before, we include the spin-orbit interaction in a perturbative manner (see Section 3.1.3).

Computational parameters are given in Appendix A.2. We would like to mention that the

QP energies for the binary MgO, ZnO, or CdO clusters differ from the results discussed in

Chapter 4 due to a modification of the VASP-PAW implementation of the GW approximation.

As a consequence, we observe slightly smaller band gaps for the group-II oxides (details in

Appendix A.2).

6.2.1 Quasiparticle band structures

As discussed in Section 4.1.3, a universal level of reference for the QP energies is necessary

when absolute energetic positions of bands are compared for different materials. We face the

same problem when comparing the band structures for all the different clusters on an absolute

energy scale. For that purpose, we calculate the BPE of each cluster cell and use this value as

the one universal reference energy for all clusters.

Isostructural alloys: wurtzite

For each cluster cell we extracted the calculated QP energies at the Γ point for the lowest CB

and for the uppermost three VBs. While these states were classified as Γ7 or Γ9 for the binary

end components in Sections 4.1.2 and 5.2, this is no longer possible for the clusters that contain

two different types of cations. Due to the reduced lattice symmetry the previously introduced

definitions for the spin-orbit or the CF splitting do not hold. Interpreting the band structures

of alloys in terms that only exist for the binary end components is impossible. For the same

reason relating the energy states that occur in different cluster cells is difficult and we merely

identify them by their order. However, we cannot access information about possible crossings

due to this way of assigning the bands. Using Eq. (2.85) we obtain the configurational averages

within the GQCA, the SRS, and the MDM as a function of x and T .
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Figure 6.5: Quasiparticle energies (including the spin-orbit interaction) of the uppermost three valence states and
the lowest conduction state at the Γ point for rs-MgxZn1−xO (a) and rs-CdxZn1−xO (b) alloys versus composition
x. The branch-point energy (cf. Section 4.1.3) has been used as energy zero. We calculated the curves using the
cluster fractions from the GQCA for T = 300K (blue curves) and T = 1100K (red curves). The solid green lines are
obtained using the ideal cluster fractions and for comparison the black curves show the results from the MDM. For
the binary end components the band ordering is indicated.

For wz-MgxZn1−xO the plot in Fig. 6.4(a) indicates that the GQCA results for T = 300 K and

T = 1100K almost agree with each other and that the SRS curves match the high-temperature

GQCA ones, whereas the MDM results deviate. More specifically, the MDM predicts larger

splittings of the uppermost two VB states for small values of x. Both the SRS and the GQCA

agree in finding an increase of the splitting between these two levels only when x > 0.7 which

is accompanied by a remarkable bowing. This indicates the significant difference between a

linear interpolation of the energy levels of the binary end components and the results from

averages which take all clusters into account. In the case of the isostructural wz-CdxZn1−xO

alloy the MDM curves and that obtained using the GQCA for T = 300K show a good agreement

[cf. Fig. 6.4(b)].

Isostructural alloys: rocksalt

For the isostructural rs-MgxZn1−xO and rs-CdxZn1−xO alloys we present the configurational

averages of the QP energies for the upper VB region and the lowest CB in Fig. 6.5. In the band

structure of pure rs-CdO (as well as pure rs-ZnO) we observed that, due to the pd repulsion, the

fundamental band gap is indirect between the VBM at L and the CBM at Γ (see Section 4.1.1).

Since the 16-atom cluster cells are larger than the elementary cells of the rs crystal structure

(2 atoms), the corresponding BZs of the cluster cells contain folded states, e.g., the uppermost

states at L are folded to the Γ point for the alloys. In general, it is not possible to distinguish

between states that occur at the Γ point also in the BZ of the 2-atom rs cell and states that are

merely folded into the BZ of the alloy. At least for rs-CdxZn1−xO these folded bands lie at the

top of the VBs and are energetically well-separated from the regular states at Γ for all clusters

since the pd repulsion occurs in rs-ZnO as well as rs-CdO [cf. Fig. 6.5(b)]. However, in the case

of the rs-MgxZn1−xO alloy this separation does not occur since pure rs-MgO has a direct gap

(due to the lack of pd repulsion). Consequently, the states in the alloy band structure cannot

be clearly assigned [cf. Fig. 6.5(a)] and a mixing occurs for intermediate compositions. Due to
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Figure 6.6: Difference of the QP energies of the
uppermost valence-band and the lowest conduction-
band state for MgxZn1−xO (a) and CdxZn1−xO (b) al-
loys versus composition x. The curves are obtained
using only wurtzite clusters (dashed lines), only rock-
salt clusters (dash-dotted lines), or both type of clus-
ters (solid lines). We use cluster fractions from the
GQCA for T = 300 K (blue curves) and T = 1100 K
(red curves), as well as ideal cluster fractions (green
curves). For comparison the black curves show the re-
sult from the MDM and the fundamental gaps are also
included for the clusters in rocksalt (red triangles) and
wurtzite (blue circles) crystal structure.

the difficulties with the assignment of single states, the discussion of integral quantities, such

as the DOS or the DFs, is more meaningful for the alloys and will be done in Sections 6.2.2

and 6.3.

Fundamental band gaps

Another quantity which is well-defined for all clusters is the fundamental gap, as the difference

of the QP energies of the lowest CB state and the highest VB state. In Fig. 6.6 we show the

configurational averages of these values for isostructural as well as heterostructural MgxZn1−xO

and CdxZn1−xO alloys.

For wz-MgxZn1−xO we observe a good agreement of the results obtained within the GQCA

and the SRS model, whereas these curves differ slightly from the prediction of the MDM [cf.

Fig. 6.6(a)]. Since for MgxZn1−xO the gap values of the individual rs clusters cover a larger

range than those of the wz clusters, both the GQCA as well as the SRS curves deviate more from

the MDM results in the rs case. The similarity of the direct gap of wz-ZnO and the indirect gap of

rs-ZnO is the reason why the MDM curves of heterostructural MgxZn1−xO and of rs-MgxZn1−xO

are very close. The GQCA for the heterostructural system predicts slightly smaller values. An

experimental gap of 4.1 eV has been reported by A. Ohtomo et al. [164] for a Mg content of

x ≈ 0.33 and agrees well with our result for the isostructural alloy as well as with a value of

4.2 eV derived from DFT-LDA in combination with scissors operators for the gaps of wz-MgO

and wz-ZnO [165]. Experimental gaps of about 6 eV at x ≈ 0.67 or 7 eV at x ≈ 0.9 [166] can

be explained by our curves for the heterostructural or the isostructural rs-MgxZn1−xO alloys.

In addition, the occurrence of two different slopes of the curves describing the gap versus the

composition for the isostructural rs and wz alloys [cf. Fig. 6.6(a)] agrees with findings reported

in Ref. [157].

For CdxZn1−xO the fundamental gaps we observe for the wz crystal structure are similar to the

ones of the rs case since the folded states are the uppermost ones for all rs clusters. Therefore,

the results found for the two isostructural alloys are much closer to each other than in the case

of MgxZn1−xO. We can see in Fig. 6.6(b) that the SRS model leads to the largest deviations,
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while the bowing for the other statistics remains small, indicating a dependence on the cluster

statistics and, hence, the sample preparation. When comparing to the composition-dependent

gap values reported in Ref. [93] we observe that our calculations tend to slightly underestimate

the experimental results. We attribute this to the underestimation of the gap that we already

found for pure CdO (see discussion in Section 4.1.1).

In addition, we derive bowing parameters b from the curves in Fig. 6.6 using the expression

Eg(x) = (1− x)Eg(A)+ xEg(B)−bx(1− x), (6.2)

where A = ZnO and B = {MgO, CdO} in the respective crystal structures. For isostructural

wz-MgxZn1−xO we obtain values for b of 0.48 eV (for the SRS as well as the GQCA at T =

1100 K) and 0.44 eV (GQCA at T = 300 K), which agrees well with a value of 0.56 eV from

another calculation [165]. The bowing is with 2.58 eV (SRS), 3.12 eV (GQCA, T = 300 K),

or 2.74 eV (GQCA, T = 1100 K) larger for rs-MgxZn1−xO, in rough accordance with another

calculated result of 3.1 eV [155]. The values for the heterostructural MgxZn1−xO alloy are

strongly temperature-dependent as they vary from 0.07eV (T = 300K) to 1.30eV (T = 1100eV).

For CdxZn1−xO we find all bowings at room temperature to be smaller than 0.023 eV, whereas

the results at T = 1100K are 0.72eV (wz-CdxZn1−xO), 0.18eV (rs-CdxZn1−xO), or 0.29 eV for the

heterostructural alloy. The SRS model yields even larger values of 0.95 eV (wz-CdxZn1−xO) or

2.51eV (rs-CdxZn1−xO). Therefore, for most cases there is a non-linear composition dependence

of the fundamental gaps.

6.2.2 Densities of states

By means of HSE03+G0W0 calculations we obtain the DOS of each cluster in the cluster expan-

sion (see Section 2.5) as well as the individual BPEs, which are used for the absolute energy

alignment. Using the cluster fractions from the GQCA, the MDM, and the SRS model, we

employ Eq. (2.85) for the values of the DOS at each energy separately in order to access the

respective configurational averages for both alloy systems.

Isostructural wz-MgxZn1-xO alloys

In Fig. 6.7 we compare the results of the DOS for the wz-MgxZn1−xO alloy, obtained within the

MDM and the SRS model, in order to study the differences resulting from the two statistics

(the GQCA results strongly resemble those of the SRS model). As expected for the MDM, we

find from Fig. 6.7(a) that the DOS curves of pure wz-ZnO linearly transforms into that of the

pure wz-MgO as x increases. Consequently, the energy positions and widths of all structures

or peaks remain constant and only the respective heights depend on x [see for example the

Zn 3d-related structure in Fig. 6.7(a)]. Contrarily, the SRS model, i.e., when all the different
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Figure 6.7: Density of states of the isostructural wz-MgxZn1−xO alloy versus composition x. The branch-point
energy (cf. Section 4.1.3) has been used as energy zero (dashed line). We calculated the curves using the cluster
fractions from the MDM (a) and the SRS model (b). The black lines indicate where the DOS in the gap region
decreases to 0.01 (eV/pair)−1.

Figure 6.8: Density of states of the heterostructural MgxZn1−xO (a) and CdxZn1−xO (b) alloys versus composition
x, as obtained within the GQCA at T = 1100K. The branch-point energy (cf. Section 4.1.3) has been used as energy
zero (dashed line). The black lines indicate where the DOS in the gap region decreases to 0.01 (eV/pair)−1.

clusters contribute, also captures changes of peak widths or peak positions (relative to the BPE)

with varying composition x [cf. Fig. 6.7(b)]. For the two statistics the peak caused by the Zn 3d

electrons vanishes in different ways with increasing content of Mg in the alloy. In addition,

the width of the uppermost VB complex decreases when going from wz-ZnO towards wz-MgO.

Figure 6.7 includes lines that indicate where the DOS becomes smaller than 0.01 (eV/pair)−1,

an indication for the behavior of the VBM and the CBM. For both statistics the trend of these

lines points out that at intermediate compositions x, the fraction of clusters with (n j/n) < x is

still significant and leads to a finite DOS.

Heterostructural MgxZn1-xO and CdxZn1-xO alloys

As one might expect from Fig. 6.3, where we show that the MDM and the GQCA agree very

well at room temperature, comparing the DOS for both MgxZn1−xO and CdxZn1−xO alloys, re-

spectively, shows that the GQCA results for room temperature strongly resemble the ones of

the MDM. Since, as discussed above, these plots look merely like a linear transition of the DOS
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curves of the binary end components, we show in Fig. 6.8 the configurational average calcu-

lated within the GQCA at T = 1100K instead. In this case, the GQCA predicts that more than

50% of the clusters will occur in the wz crystal structure also above x = 0.5 (cf. Section 6.1.2).

Interestingly, Fig. 6.8 shows for MgxZn1−xO that the peak related to the Zn 3d electrons

evolves into an O 2p-derived complex. Above x ≈ 0.7 a structure related to these O 2p electrons

emerges within the Zn 3d states [cf. Fig. 6.8(a)] since the energy position of the VBM with

respect to the BPE simultaneously decreases with an increasing x. Both the increase of the

fundamental gap as well as the reduced pd repulsion with increasing Mg content in the alloy

lead to this decrease of the energy position of the uppermost O 2p derived VB complex with

respect to the BPE. Figure 6.8(b) clearly points out for CdxZn1−xO how the position of the d-

derived states decreases in energy since the Cd 4d electrons are bound stronger than the Zn 3d

electrons. Besides this, the O 2p complex appears at higher energies with increasing x.

6.3 Dielectric function of wz-MgxZn1-xO

The optical properties of the alloys, including excitonic and local-field effects, are studied

by calculating the imaginary part of the DF. We restrict ourselves to considering only wz-

MgxZn1−xO due to the tremendous computational effort related to setting up the excitonic

Hamiltonian and the subsequent calculation of the DF. Furthermore, this alloy system seems to

be well-investigated experimentally and we found, in Section 6.1, that at least for small x the

wz crystal structure is of importance. To perform the configurational average for the imaginary

part of the DF also at photon energies above the absorption edge we solve one BSE for the

low-energy and one for the high-energy part (cf. Sections 3.2 and 4.2) for all 22 clusters of

the cluster expansion for wz-MgxZn1−xO (see Appendix A.1). The scissors operator ∆ of the

GGA+U+∆ approach to calculate the underlying electronic structure is also determined for

each cluster of the expansion. As done for the DOS, we employ Eq. (2.85) for the values of the

imaginary part of the DF at each energy separately so as to obtain the configurational averages.

Computational parameters are given in Appendix A.2.

To emphasize the qualitative difference between the results from two different statistics we

compare the DF of wz-MgxZn1−xO, as obtained by means of the MDM, to the results of the SRS

model in Fig. 6.9. We find peaks associated with a bound excitonic state at the absorption edge

(see discussion in Section 4.2) of pure wz-ZnO (wz-MgO) and indicate them by A (B) in this

figure. As before, we observe that the MDM corresponds to a linear transition of the curve for

wz-ZnO into the curve for wz-MgO as the value of x increases. Consequently, both excitonic

peaks (A and B) occur for intermediate values of x in Fig. 6.9(a). Comparing the evolution of

peaks A and B as x increases in the plot resulting from the SRS model points out the strong

dependence on the cluster statistics. When the DFs of all clusters are taken into account for the

configurational average, Fig. 6.9(b) shows that the peaks A and B only occur in the x range close
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Figure 6.9: Imaginary part of the dielectric function of wz-MgxZn1−xO versus composition x calculated using the
MDM (a) and the SRS model (b). A (B) labels the excitonic bound state at the absorption edge of wz-ZnO (wz-MgO).

to the binary end components. For intermediate compositions a very broad structure dominates

the absorption edge. Such a behavior has been observed in a study of the photocurrents for wz-

MgxZn1−xO for various x [167]. In any case, we observe a strong dependence of the structure

of the absorption edge on the cluster fractions. Therefore, in experiment it should be visible if

in a real sample larger regions of the pure material occur. Figure 6.9 also depicts the evolution

of the peak structures with the composition at higher photon energies and we again find that

the SRS model tends to yield broad structures instead of distinct peaks. The origin of these

peaks has been discussed for the binary end components in Section 4.2.2.

6.4 Summary

In this chapter we studied isostructural as well as heterostructural pseudobinary MgxZn1−xO

and CdxZn1−xO alloys by means of a cluster expansion method. We employed different ap-

proaches for the calculation of the cluster fractions x j. Our results for the mixing free energies

have been used to understand different experimental findings for composition ranges in which

either the wz or the rs crystal structure dominates the alloy.

Using the different cluster statistics and QP energies calculated within the HSE03+G0W0

approach, we studied the electronic structure of the different alloys (including SOC). We found

remarkable bowings for the fundamental band gaps in agreement with experimental findings

and other calculated results. The lower symmetry of the alloys’ lattice structures renders an

interpretation of the evolution of individual states with the cluster composition x infeasible.

Moreover, we derived configurational averages for integral quantities, such as the DOS.

Our results for the DF, including excitonic effects, are particularly interesting. Depending on

the cluster statistics and, therefore, the preparation conditions of the alloy, we found different

trends of the peaks related to bound excitonic states at the absorption edge. Since this behavior

should be distinctively observable in experiments, it could contribute to investigations of the

alloy’s constitution.



7 A point defect: The oxygen vacancy as

F-center in rs-MgO

Find out the cause of this effect,
Or rather say, the cause of this defect,
For this effect defective comes by cause.

William Shakespeare
Hamlet

The variety of defects, i.e., deviations from the ideal atomic pattern of a bulk crystal that

can occur in a real crystal, is extensive. As elucidated for strained wz-ZnO in Chapter 5 and

pseudobinary alloys in Chapter 6, deviations from the ideal crystal structure have an impact

on the electronic structure and the optical properties. Defects are categorized with respect to

their spatial extension in the crystal. In particular, a point defect is not extended in space and is

typically restricted to only one or very few atoms, nevertheless, there are still many possibilities

for point defects. More specifically, anion vacancies in an ionic crystal can introduce a defect

level within the fundamental band gap. As a consequence, the material absorbs light in a

narrow spectral region around the wavelength that corresponds to the energetic position of the

defect level. When the absorption occurs in the visible spectral range the normally transparent

material shows a characteristic color, which is the reason why this type of defect is also called

color center or F-center.

Along these lines, the oxygen vacancy in rs-MgO, a very prototypical example for an F-center,

has attracted attention for more than five decades [168–171]. In experimentation, two tech-

niques of creating these vacancies are applied: (i) irradiation of high-energetic particles or

X-rays, and (ii) the so-called thermochemical reduction, also referred to as additive coloration,

where MgO crystals are heated in Mg vapor, i.e., under non-stoichiometric, Mg-rich condi-

tions [168].

The studies related to the oxygen vacancy in rs-MgO are part of a collaboration with the

groups of Chris G. Van de Walle and Matthias Scheffler. Within this work, we focus on the

influence of excitonic effects on the optical absorption from the defect level and use several

(yet unpublished) results, especially from Patrick Rinke, that constitute important input for

our calculations.

78
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Figure 7.1: Lattice structure of rs-MgO in the presence of an oxygen vacancy. The F-center, as the neutral charge
state with a filled defect level, is shown in (a). In addition, (b) contains the F+-center with one electron less, and
(c) the F2+-center, where both electrons are removed from the system. (Courtesy of P. Rinke.)

7.1 Atomic geometries and charge states

When one oxygen atom is removed from MgO and the oxygen vacancy is created, the entire

crystal remains electrostatically neutral. In this case the vacancy level is filled with two elec-

trons, as depicted in Fig. 7.1(a) for the F-center. At the same time, the defect state is the

highest occupied energy state in the system and taking out one electron, e.g. by means of an

excitation process, turns the F-center into an F+-center. As a consequence, the defect level

splits into two states, one of them occupied and the other one empty, which renders a spin-

polarized description of the problem necessary. In Fig. 7.1(b) we observe that the removal of

one electron is accompanied by an outward relaxation of the six next-nearest Mg neighbors of

the vacancy. Removing also the second electron from the defect level transforms the F+-center

into an F2+-center, which triggers a further outward relaxation of the next-nearest Mg neigh-

bors, as indicated in Fig. 7.1(c). This behavior of the Mg atoms can be explained by a decrease

of the electronic charge density at the vacancy site with the decreasing population of the defect

state. Lacking the electron density as a mediator of their positive charges, the Mg ions tend

to repel each other. The atomic geometries for the different charge states of the vacancy have

been obtained from total-energy minimizations within DFT-LDA.

7.2 Transition energies and absorption

The optical absorption of the F-center in MgO has been the subject of experimental studies

for decades [168, 169]. It has been especially puzzling that the optical absorption spectra of

the F- and the F+-center seem to be very similar, with peaks that strongly resemble each other

regarding both their shape and their position in energy [168]. In the literature, the absorption

peak of the F-center is reported to occur at 5.03 eV and that of the F+-center is located at

4.93 eV [169]. Converting F into F+ by irradiation of light comes along with remarkable lattice

relaxations, as indicated in Fig. 7.1.

Studying the corresponding absorption energies and their dependence on the lattice geom-
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Figure 7.2: Configuration diagram for the different charge
states of the oxygen vacancy in rs-MgO. The G0W0-corrected to-
tal energy is shown for the F-center (black solid), the F+-center
(blue solid), and the F2+-center (green solid) versus the dis-
placement of the next-nearest Mg neighbors of the vacancy. The
arrows indicate the electron removal energy (negative electron
addition energy) for the respective equilibrium atomic geome-
tries, which are represented by black (blue) dotted lines for the
F-center (F+-center). (Courtesy of P. Rinke.)

etry leads to the configuration diagram given in Fig. 7.2. The values shown in this plot result

from a newly developed scheme for treating defects [17, 172]. Whereas lattice contributions

to the defect formation energies are obtained within DFT-LDA, the removal or addition of an

electron is accounted for by energies calculated using a modified PBE0 approach [173] that

exactly reproduces the QP gap of an OEPx+G0W0 calculation [44, 174] for the bulk material.

Furthermore, a recent correction scheme has been applied in order to account for the artificial

electrostatic interaction of charged defects in supercell calculations [175]. These state-of-the-

art electronic-structure calculations were performed by Patrick Rinke for 63-atom supercells.

As it turns out, modeling the optical excitation by a charged F-center and an uncorrelated elec-

tron in the conduction band as done in Fig. 7.2 is not sufficient. As indicated in Fig. 7.2, the

peak of the F-center appears at around 5.40 eV in the calculations, and that of the F+-center at

about 5.48 eV. A comparison with the measured values shows that not only the absolute energy

positions are strongly overestimated, but also the energetic ordering of the two is inverted (cf.

Fig. 7.4). Since the experiments already mentioned are based on optical excitations of the sys-

tem, it is of highest interest to explore the influence of the electron-hole interaction. However,

excitonic effects have not been taken into account in the plot in Fig. 7.2. In the following

section we calculate the exciton binding energies for the transition from the vacancy level into

the CBM for the F- and the F+-center.

7.3 Exciton binding energies

We employ the atomic geometries of the 63-atom cells provided by Patrick Rinke for the two

charge states of the vacancy, along with the static electronic dielectric constants determined

for both within the IPA, to solve the BSE (cf. Sections 2.4 and 3.2). These screening constants

are found to be about 15% larger than for the ideal bulk rs-MgO. In Ref. [187] it has been

pointed out how difficult it is to converge the binding energies of Wannier-Mott-like excitons

with respect to the k-point sampling of the BZ due to the parabolicity of the bands. Although

the defect level shows almost no dispersion, the CB is parabolic, hence, this problem persists.

Calculations involving defects become particularly difficult due to the large numbers of atoms.

In Fig. 7.3 we employ the procedure described in Ref. [187] to obtain converged results for
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Figure 7.3: Exciton binding energy for the F-center ver-
sus the minimum k-point distance for different k meshes.
Extrapolation via a linear fit gives the converged result.

Figure 7.4: Excitation energies of the F-center (blue) and
the F+-center (red). The values obtained from the G0W0-
corrected scheme are compared to results that include
the electron-hole interaction and to experimental findings
(dashed lines).

the exciton binding energy by calculating them as a function of the k-point sampling and

extrapolate linearly to vanishing k-point distances. As mentioned before, the situation is even

more complicated in the case of the F+-center since the description of the problem must take

spin polarization into account. The solution of the BSE with spin polarization only recently

became possible [52]. However, the computational cost increases even more due to the doubled

number of bands which must be taken into account. Overall, these calculations for the oxygen

vacancy in rs-MgO are at the edge of what is possible from a computational point of view.

Using this procedure, we calculated the exciton binding energies for the transition from

the defect level into the CBM. We obtained a value of 0.45 eV for the F-center and 0.56 eV

for the F+-center, which shows for both charge states of the vacancy that the electron-hole

interaction remarkably influences the optical absorption properties. Subtracting our results

from the transition energies calculated using the modified PBE0 approach as discussed earlier,

we find that the absorption peak of the F-center occurs at 4.95 eV and that of the F+-center at

4.92 eV. The plot of these results in Fig. 7.4 shows a good agreement with the experimental

observations regarding the relative energetic ordering and the absolute energetic position.

7.4 Summary

In this chapter we were able to show a significant impact of the electron-hole interaction on the

energetic position of the defect-related peak in the optical absorption spectrum for the F-center

and the F+-center in rs-MgO. The respective exciton binding energies were predicted to be very

large and are even responsible for a change in the energetic ordering of the peaks correspond-

ing to the two charge states of the vacancy. The 63-atom supercells used for these calculations

constitute a challenge to current computational possibilities. Nevertheless, the agreement with

the measured values is impressive and shows how modern ab-initio calculations can contribute

to unraveling and understanding observations from experiments.
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excitons in wz-ZnO

Is it not? Is it not? Breadth of view, my
dear Mr. Mac, is one of the essentials of
our profession. The interplay of ideas
and the oblique uses of knowledge are
often of extraordinary interest.

Arthur Conan Doyle
Sherlock Holmes, The Valley of Fear

As a branch of semiconductor technology, the modern field of optoelectronics is expected to

grow extensively in the future, driven, for instance, by the next generation of display devices.

Nowadays, it comprises the development of modern solar cells or flat-panel LCD displays; both

are exemplary applications that certainly benefit from transparent electrodes, i.e., layers of

materials that are simultaneously transparent for visible light and conduct electrical current.

As already mentioned, the group-II oxides are gaining importance in this context as transparent

conductive oxides (TCOs). Their large fundamental band gaps (cf. Chapter 4) render them

transparent in the visible spectral range, while, by means of n-doping, free electrons can be

introduced, making these materials conductive. For practical applications an efficient charge

transport is desirable, which requires sufficiently high free-electron concentrations.

Among the TCOs ZnO again plays an important role, hence, it is very well-investigated,

especially from an experimental point of view [176]. Via doping with aluminum or indium [88,

89], samples with free-electron concentrations of more than 5·1020 cm−3 can be produced. In

contrast, nominally undoped bulk or thin-film samples show electron concentrations of about

1013 . . . 1017 cm−3 [176]. The presence of a degenerate electron gas in the CBs of any material

is expected to strongly modify the optical properties with respect to the undoped situation. The

free electrons occupy the lowest CB states and, in addition, their presence in the material has a

significant influence on the screening of the electron-electron and the electron-hole interaction.

A deep theoretical understanding is inevitably necessary.

For that reason we study the interplay of excitonic effects and a degenerate electron gas in

the lowest CB of wz-ZnO. After gaining insight into the problem by means of a two-band model,

we extend the parameter-free BSE approach introduced before (cf. Sections 2.4 and 3.2) to deal

with the free electrons. We calculate exciton binding energies, the optical oscillator strengths,

82
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Figure 8.1: Parabolic two-band model for studying the optical absorption of the undoped material (panel 1) and
when a free-electron gas is present, i.e., nck 6= 0. The conduction band εQP

ck and the valence band εQP
vk are sepa-

rated by the fundamental gap Eg. We separately investigate the influence of a modified electron-hole interaction
(panel 2a) and the Pauli blocking (panel 2b), as well as a combination of both effects (panel 3).

and the absorption coefficient. In addition, we discuss the possibility of an excitonic Mott

transition. We also explore to which extent inter-conduction-band absorption (ICBA) influences

the optical spectrum around the absorption edge.

8.1 Approaching the problem via a two-band model

8.1.1 Effects due to a degenerate electron gas

We begin with a description of the problem within a two-band model, as depicted in Fig. 8.1, to

introduce the terms and basic effects related to a degenerate electron gas in the lowest CB of a

material. This situation is different from pumping processes and henceforth we assume a fully

occupied parabolic VB with the QP energies εQP
vk , which is separated by a fundamental gap Eg

from an empty parabolic CB described by εQP
ck . Due to the irradiation of a photon an electron

is excited into the CB while leaving a hole in the VB. Both interact with each other via the

screened Coulomb interaction, as previously discussed (cf. Section 4.2). The parameters of the

model are chosen according to the results for wz-ZnO presented in Section 4.1, i.e., we use an

effective CB mass of mc = 0.3m and a VB mass of mv = 0.5m. The gap is set to Eg = 3.21 eV and

we employ the same electronic static dielectric constant, εeff = 4.4, as for the BSE calculations

in Section 4.2. The influence of the degenerate electron gas on the QP gap [see discussion in
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Section 8.2.1 and Eq. (8.3)] does not influence the physics of the electron-hole interaction.

A first step towards incorporating free electrons in the lowest CB into our description is de-

picted in panel 2a of Fig. 8.1, where we indicate a modification of the electron-hole interaction.

Within the TF model (see Section 2.4.4) one has to replace the screened Coulomb potential of

the electron-hole interaction by a Yukawa potential [cf. Eq. (2.73)]. The inverse screening

length is equal to qTF, Eq. (2.71), and thereby related to the free-electron density. As a short-

range interaction, the Yukawa potential has no bound states when the screening length falls

below a certain value, i.e., when the free-electron concentration exceeds a critical value [59,

60]. Such an unbinding of the electron and the hole is the so-called Mott transition of the

exciton. As pointed out in Ref. [177] different formulae for calculating the respective Mott

densities nM of wz-ZnO are applied in the literature. Consequently, the results cover a range of

several orders of magnitude and there seems to be a fundamental lack of understanding.

Alternatively, we show in panel 2b of Fig. 8.1 that a degenerate electron gas occupies the

lowest CB states and, consequently, the respective optical transitions are forbidden due to the

Pauli principle. This is referred to as Pauli blocking and leads to an enlargement of the optical

gap, which is interpreted as a “shift”, the so-called Burstein-Moss shift (BMS) [178], ∆EBMS
g (n).

For a parabolic CB this shift is equal to the Fermi energy of the free electrons [see definition next

to Eq. (2.70)]. Obviously, its magnitude depends on the density nc of the additional electrons.

As shown in panel 3 of Fig. 8.1 we ultimately want to investigate the combined effect of the

modified electron-hole interaction and the Pauli blocking on the excitons.

8.1.2 Semiconductor Bloch equations

We study the different contributions (cf. Fig. 8.1) using the solution of the semiconductor Bloch

equations (see Section 2.4.5 and Ref. [59]) as a computationally feasible approach that is well-

adapted to the two-band model. The spherically symmetric problem, Eq. (2.80), is discretized

and solved via a time-evolution approach [59, 179]. We perform the calculations for two differ-

ent, experimentally easily achievable free-electron concentrations [87] of nc,1 = 1.9·1019 cm−3

and nc,2 = 4.8·1019 cm−3. Panel 1 of Fig. 8.2 also shows the absorption coefficient for the two-

band model without additional free electrons. As before (cf. Section 4.2.2), excitonic bound

states with large oscillator strength occur below the QP gap.

Modified electron-hole interaction

Accordingly, in panel 2a of Fig. 8.2 we show the optical absorption which results when the

electron-hole interaction is modeled by a Yukawa potential. The respective screening lengths

for both values nc,1 and nc,2 are determined as inverse TF wave vectors, Eq. (2.71). We find

that the screening majorly impacts the bound state close to the absorption onset. Already for

the two moderately large densities nc,1 and nc,2 the additional screening is so strong that there
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Figure 8.2: Optical absorption at T = 0 K versus photon energy calculated within the two-band model for the
undoped material (panel 1) and in the presence of a degenerate electron gas. We separately investigate the influence
of a modified electron-hole interaction (panel 2a) and the Pauli blocking (panel 2b), as well as a combination
of both effects (panel 3). In panel 3 the dashed curves are calculated for T = 300 K. We show results for the
undoped material (black curves) and for two free-electron densities, i.e., nc,1 = 1.9·1019 cm−3 (red curves) and
nc,2 = 4.8·1019 cm−3 (green curves).The QP gap (without shrinkage) is indicated by a dotted line.

is no bound state visible anymore and the Coulomb enhancement at higher photon energies is

slightly less pronounced.

Pauli blocking of the lowest conduction-band states

Alternatively, we study the case illustrated in panel 2b of Fig. 8.1 by taking the Pauli blocking

into account, while the electron and the hole interact via the screened Coulomb potential. In

panel 2b of Fig. 8.2 we show how an increasing free-electron concentration in this case leads

to a larger optical gap since the BMS [178] causes the absorption onset to occur at higher

photon energies. We observe another remarkable effect related to a Fermi-edge singularity

(FES) [180] of the absorption: As the free-electron density increases, an excitonic bound state

still occurs at the Fermi edge and its oscillator strength increases as well. This unphysical

behavior contradicts experimental results [87]. However, it is not an artifact of the two-band

model as we show later. Moreover, this occurs due to the sharpness of the Fermi surface at

T = 0 K. The more free carriers occur in the system, the larger is the Fermi surface and the

higher is the peak at the absorption onset since the impact of the degenerate electron gas on

the electron-hole interaction, i.e., an additional screening, is missing.
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Combining the modified electron-hole interaction and the Pauli blocking

Finally, as depicted in panel 3 of Fig. 8.1, we take both the Pauli blocking and the Yukawa

potential for the electron-hole interaction into account. In panel 3 of Fig. 8.2 the resulting

absorption coefficient is shown for the free-electron densities nc,1 and nc,2. Aside from the

BMS, in both cases we observe a small peak at the absorption edge, which has been traced

back to a logarithmic FES for this model [180], the so-called Mahan exciton. It is associated

with a bound excitonic state with an excitation energy that is lower than the BMS-shifted QP

gap. Due to the modified electron-hole interaction in the presence of a degenerate electron

gas, we find that this singularity is much less pronounced than found before (cf. panel 2b of

Fig. 8.2). In an analytical study of the two-band model [180] G. Mahan discovered in the

1960’s the occurrence of these Mahan excitons as bound excitonic states for all finite free-

electron concentrations. They emerge due to the effective electron-hole interaction potential

which results when the Pauli blocking and the Yukawa potential are combined.

Influence of a temperature-dependent Fermi distribution of the free electrons

So far we studied merely the T = 0 K case and, therefore, assumed a step-function for the occu-

pation numbers of the lowest CB. To account for finite temperatures we employ a temperature-

dependent Fermi distribution for the occupation numbers of the CB states, i.e.,

nck =

[

exp

(

εQP
ck − εF

kBT

)

+1

]−1

. (8.1)

In panel 3 of Fig. 8.2 we show the results for the absorption at T = 300 K. From this figure it

becomes clear that the curves calculated for room temperature show an additional broadening

of the absorption onset which significantly smoothens the FES.

8.2 Ab-initio calculations for wz-ZnO

In the preceding section we disentangled two different aspects of free electrons and their im-

pact on the optical absorption for wz-ZnO. Within the two-band model only one VB and one CB

contribute, while in the ab-initio approach introduced in Section 2.4 the Coulomb interaction

couples electron-hole states of all bands in the excitonic Hamiltonian, Eq. (2.62). In addition,

we assumed the matrix elements for the optical transitions within the two-band model to be

independent of k [cf. Eq. (2.80)] in order to keep the calculations simple, which is an approxi-

mation that is only valid in the direct vicinity of Γ. For these two reasons it is a priori not clear

to which extent the results of the two-band model are also quantitatively valid for a real semi-

conductor, hence, we aim for a full ab-initio treatment of the problem by accounting for the

Pauli blocking as well as the modified electron-hole interaction when setting up the excitonic
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Figure 8.3: Absorption coefficient of wz-ZnO versus pho-
ton energy. We compare the curves for the undoped ma-
terial (solid black) to results for doped ZnO with a free-
electron concentration of nc,1 = 1.9·1019 cm−3, calculated
with only the Pauli blocking (dotted black), only the mod-
ified electron-hole interaction (dashed black) or both ef-
fects simultaneously (red). An experimental result from
Ref. [87] is also given (blue).

Hamiltonian, Eq. (2.62). We are then able to calculate the DF as well as the lowest eigenvalues

and eigenstates of the excitonic Hamiltonian which we computed from a GGA+U+∆ starting

electronic structure (cf. Section 3.1.2). The lowest CB states occur at Γ and its vicinity and

we are able to resolve free-electron densities of about 1017 cm−3 using a fine sampling of this

region of the BZ by means of hybrid k-point meshes (cf. Section 3.2). We incorporate the Pauli

blocking in the BSE for the polarization function, Eq. (2.59), by introducing k-dependent occu-

pation numbers nck for the lowest CB [52]. In addition, the modified electron-hole interaction

is incorporated into the Hamiltonian, Eq. (2.62), by replacing the screened Coulomb potential

with the Yukawa potential [cf. Eq. (2.73)]. The TF wave vector qTF, Eq. (2.71), is calculated for

each respective free-electron density nc in the CB. The intraband contributions to the DF due to

the free electrons are taken into account for the screening of the electron-hole interaction, i.e.,

for the microscopic DF (cf. Section 2.4.4). An additional intraband contribution to the macro-

scopic DF, Eq. (2.67), is neglected since it affects only the infrared spectral range, whereas we

focus on the optical absorption onset of wz-ZnO.

8.2.1 Absorption coefficient

We employ the complex DF ε(ω) calculated from the modified excitonic Hamiltonian to com-

pute the absorption coefficient α(ω) for wz-ZnO by means of the expression

α(ω) =

√
2ω
c

·
√

|ε (ω)|−Re ε (ω). (8.2)

In Fig. 8.3 the results for the undoped material are compared to the different approaches of

incorporating the influence of the degenerate electron gas, i.e., when only the Yukawa electron-

hole interaction (cf. panel 2a in Fig. 8.1), only the Pauli blocking (cf. panel 2b in Fig. 8.1),

or both effects simultaneously (cf. panel 3 in Fig. 8.1) were taken into account. The results

qualitatively agree with the trends predicted by the two-band model. As before, including

merely the Pauli blocking leads to an unphysical increase of the oscillator strength, whereas

the modified electron-hole interaction causes an extinction of the excitonic bound state at the

absorption edge. Again, the combination of both effects results in a curve with a significantly



88 8 Heavy n-doping: Wannier-Mott and Mahan excitons in wz-ZnO

Figure 8.4: Exciton binding energies (solid curves)
and oscillator strengths (dashed curves, normalized
to the value for the undoped material) versus free-
electron concentration as obtained from the solu-
tion of the BSE for wz-ZnO. Black curves result
from calculations where the Yukawa potential has
been used to model the electron-hole interaction
(panel 2a in Fig. 8.1), whereas the Pauli blocking
has been additionally taken into account for the red
curve (panel 3 in Fig. 8.1). The black dotted line
represents the Mott density nM (see text).

modified line shape of the absorption onset due to the occurrence of a Mahan exciton. In

addition, in Fig. 8.3 we compare our results to a curve from a measurement of the absorption

coefficient of doped wz-ZnO samples by T. Makino et al. [87]. We find perfect agreement of the

line shape around the absorption onset of the measured curve for a sample with a free-electron

concentration nc,1 and our calculated curve that accounts for the Pauli blocking as well as the

modified electron-hole interaction. We emphasize that the experimental result can only be

explained by taking both effects into account. The higher absorption in experiment can be due

to imperfect samples, whereas our calculations describe defect-free crystals.

Furthermore, we want to remark that in the preceding discussion the influence of the de-

generate electron gas on the QP energies has been neglected. The presence of free electrons

leads to an additional shrinkage of the QP gap (gap renormalization) that approximately can

be calculated using the formula given by K.-F. Berggren and B. Sernelius [181, 182], i.e.,

∆EFE
g =− e2kF

2π2ε0εeff
− e2qTF

8πε0εeff

[

1− 4
π

arctan

(

kF

qTF

)]

. (8.3)

From this expression we find that for a free-electron concentration nc,1 (nc,2) the shrinkage ∆EFE
g

would amount to −0.213 eV (−0.261 eV). The BMS shows with 0.137 eV (0.236 eV) the same

order of magnitude but the opposite sign. We want to point out that the energetic positions

of the absorption onset of our calculated curve and the measured result (cf. Fig. 8.3) agree

so well because, by accident, the gap underestimation discussed in Section 4.1.1 and the gap

renormalization ∆EFE
g due to the free-electron density nc,1 compensate each other.

8.2.2 Binding energies and oscillator strengths

As discussed before, the Mott transition of the exciton occurs when the electron-hole interaction

potential has no bound state anymore. Many studies exist for the Yukawa potential, exploring

the corresponding values for qTF or for the free-electron density (see Ref. [60] and references

therein), leading to Eq. (2.75). Using the theoretical values of the electronic static dielectric

constant εeff and the reduced electron-hole pair mass µ , the exciton radius in wz-ZnO follows

from Eq. (2.74), aB,exc = 1.24nm. With the CB mass mc, Eq. (2.75) yields a Mott density of nM =
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5.94·1018 cm−3 for wz-ZnO (cf. Fig 8.4). Other formulae or “rules of thumb” were employed to

calculate nM, leading to values that are two orders of magnitude smaller or larger [177].

To analyze this situation by means of parameter-free calculations, we plot the largest exciton

binding energies [difference of the lowest non-interacting electron-hole pair energy (including

BMS) and the lowest eigenvalue of the excitonic Hamiltonian] and the corresponding optical

oscillator strength as a function of the free-electron concentration in Fig. 8.4. We find a sig-

nificant decrease in the binding energy as well as the oscillator strength with an increasing

concentration of free electrons, whether or not the Pauli blocking is included in the calcula-

tions. Figure 8.4 also shows that taking the Pauli blocking into account leads to an increase in

the binding energies and the oscillator strengths with respect to the situation where we only ac-

count for the modified electron-hole interaction. This effect is especially large for free-electron

densities between 1018 cm−3 and 1019 cm−3. Moreover, we point out that already for densities

of about 1019 cm−3 the exciton binding energy is below 1 meV and, therefore, very hard to be

observed in ab-initio calculations (due to the high computational cost for achieving the neces-

sary convergence) as well as in experiments. Since the Pauli blocking is taken into account by

modifying the k-dependent occupation numbers, the corresponding binding energies are very

sensitive to the k sampling of the BZ. As a consequence, we observe numerical fluctuations

of the binding energies in the sub-meV range for n > 3·1018 cm−3 (cf. Fig. 8.4), noting that

such small values constitute a challenge for the theoretical description. In contrast, the curve

calculated without Pauli blocking does not suffer from this sampling problem. However, it does

not show any indication of a Mott transition at nM, Eq. (2.75), which demonstrates that our

numerical approach cannot resolve such small binding energies correctly.

According to G. Mahan [180] the Mott transition of the exciton does not occur in a system

with a filled VB and additional free electrons in the lowest CB since the Pauli blocking modi-

fies the electron-hole interaction in such a way that the bound state does not vanish for finite

free-electron concentrations. However, the oscillator strengths as well as the exciton binding

energies decrease very rapidly with increasing free-electron concentrations (cf. Fig. 8.4). At

nc = 4.5·1018 cm−3 the oscillator strength amounts to only about 13% of the value for the

undoped material. Above nc ≈ 5·1019 cm−3 it falls below 1% of the original value. This con-

tinuous decrease instead of a clear criterion explains the high uncertainty of experimentally

observed Mott densities.

8.2.3 Inter-conduction-band absorption

In addition to the effects that have been discussed so far, the electrons that occupy the lowest

CB states can also absorb photons and be optically excited into higher lying CBs. This, in turn,

might limit band-gap tuning via doping [88] since the additional transitions from the lowest

occupied CB into higher empty ones can occur below the lowest VB-CB gap in a doped system.
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Figure 8.5: Contributions of the inter-
conduction-band absorption to the imaginary
part of the dielectric function for three dif-
ferent free-electron concentrations in the low-
est conduction band of wz-ZnO. These curves
were calculated within independent-particle
approximation and averaged over parallel and
perpendicular polarization. For all three cases
the lowest valence-conduction band excitation
occurs at higher energies than shown in the
plot. For comparison the inset shows the BSE
curve discussed in Section 4.2.2.

Therefore, we calculate the DF of non-interacting electron-hole pairs from the GGA+U+∆

electronic structure to arrive at an estimate for the order of magnitude of this effect.

In Fig. 8.5 we plot the contributions to the DF that arise due to transitions from the occu-

pied lowest CB states into higher CBs. This figure indicates that the overall effect is small,

even for relatively high free-electron concentrations. We attribute this to the small optical

transition-matrix elements that we find for the corresponding transitions, since they are dipole-

forbidden for symmetry reasons at the Γ point of the BZ for wz-ZnO. In the vicinity of the Γ

point, these matrix elements tend to increase and, therefore, the peak heights of the curves

shown in Fig. 8.5 increase with the free-electron density. Even though their absolute values re-

main small, these contributions to the absorption spectrum still need to be kept in mind since

they can be important, especially for highly precise measurements of the absorption coefficient

of doped ZnO.

8.3 Summary

In this chapter we studied the Pauli blocking and the modification of the electron-hole inter-

action due to additional screening; both occur when a degenerate electron gas is present in

the lowest CB of wz-ZnO. We found that their combination allows for an accurate description

of the line shape of a measured absorption spectrum of n-doped ZnO by means of ab-initio

calculations. In addition, we observed that a temperature-dependent Fermi-occupation of the

lowest CB states introduces an additional broadening of the absorption edge with respect to

the result for T = 0 K.

From a calculation of the exciton binding energy of the lowest bound electron-hole pair

state, along with the corresponding oscillator strength, we explained why a Mott transition of

the exciton can barely be observed in experiment. The continuous decrease of both quantities

with an increasing free-electron density renders it difficult to determine the Mott density.

Furthermore, the additional free electrons cause an inter-conduction-band contribution to

the absorption. While the respective peaks in the DF can occur below the smallest VB-CB gap,

the absolute magnitude of this effect remains small.
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In the end we shall have had enough of
cynicism and skepticism and humbug
and we shall want to live more musically.

Vincent van Gogh

Most advanced theoretical-spectroscopy techniques that deal with one- and two-particle exci-

tations in semiconductors have been employed and extended to unravel the physics of a variety

of imperfections of the group-II oxides MgO, ZnO, and CdO. We explored how the impact of

real-structure effects contributes to the possibility of combining ZnO with MgO and CdO in the

context of materials design — paving the way towards transparent oxide electronics. For that

purpose we applied electronic-structure calculations based on the HSE03 hybrid functional, as

sophisticated approximation to exchange and correlation, which provides a well-suited starting

point for the computation of quasiparticle energies within Hedin’s GW approximation. For a

parameter-free description of optical properties, we incorporated the electron-hole interaction

into the calculations, via the solution of a Bethe-Salpeter equation, to account for excitonic and

local-field effects.

We proved the high accuracy and reliability of these approaches by comparing quasiparticle

band structures, densities of states, spin-orbit splittings, effective band masses as well as the

complex dielectric functions and the electron-energy loss functions for the ideal equilibrium

polymorphs rs-MgO, wz-ZnO, and rs-CdO to experimental results. The reassuring agreement

found for all three oxides provides confidence in our methods and justifies their suitability to

be applied to real-structure effects.

The ordering of the uppermost valence bands of wz-ZnO has been debated for decades.

Using parameter-free calculations we were able to thoroughly answer this question even in the

presence of uniaxial and biaxial strain that exceeds experimentally accessible magnitudes.

We studied pseudobinary MgxZn1−xO and CdxZn1−xO alloys by combining the different crys-

tal structures of the binary end components within one cluster expansion. From a comparison

of the thermodynamic equilibrium situation for the isostructural as well as the heterostructural

systems to growth conditions where preferably the binary end components occur or where the

clusters are purely stochastically distributed we understood trends of different experimental

findings for composition ranges in which either the wz or the rs crystal structure dominates.

We achieved the computationally extremely demanding calculation of the quasiparticle en-
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ergies for all cluster cells. We derived the bowing of the fundamental gaps, which reveals a

strongly nonlinear behavior, and determined configurational averages for densities of states.

Calculating these averages for the dielectric functions of wz-MgxZn1−xO alloys based on results

that include excitonic effects for all clusters of the expansion has never been achieved before.

Furthermore, we have demonstrated for two charge states of the important F-center of rs-

MgO that the strong resemblance of the defect-related optical absorption peaks, that has been

puzzling for decades, can be understood by combining sophisticated electronic-structure cal-

culations with the computation of exciton binding energies. Both the solution of the Bethe-

Salpeter equation for the 63-atom defect supercells and the inclusion of spin-polarization ren-

der these calculations highly expensive. Hence, they are not routinely performed today.

For the first time the ab-initio description of electron-hole excitations has been applied to

study free electrons as they are present for instance in the lowest conduction band of heavily

n-doped wz-ZnO. This approach allows for the accurate description of the Mahan exciton which

forms at the optical absorption edge. The temperature dependence of the Fermi function of

the lowest conduction-band states leads to an additional broadening which destroys the Fermi-

edge singularity. We explained why the Mott transition of the exciton can hardly be observed in

experiment and theory. In addition, inter-conduction-band absorption due to the free electrons

can occur below the Burstein-Moss shifted absorption edge and limit band-gap tailoring by

means of doping.

In this thesis we employed sophisticated approaches based on many-body perturbation the-

ory to successfully describe electronic excitations in imperfect crystals of transparent conduc-

tive oxides. Aside from the success of the methods that we applied to tackle systems of large

complexity, our results suggest that the consistent inclusion of the electron-phonon coupling

in the parameter-free approach will have to be one of the next steps. In addition, this thesis

undoubtedly proves the need for taking real-structure effects into account in ab-initio calcula-

tions. Henceforth, such developments will experience a boost and will more and more enable

mankind to benefit from computer-aided materials design.



A Appendix

A.1 Cluster expansions for the wurtzite and the rocksalt crystal

structure

In Fig. A.1 we depict the 16-atom cluster cells that we use for the cluster expansions of the
alloys in the wz and in the rs crystal structure. All possible classes are given in Table A.1 along
with the respective numbers of cations and their positions in the cell (cf. Fig. A.1). While the
expansion for the wz crystal structure was published in Ref. [68], the expansion for the rs crystal
structure was developed in collaboration with the diploma student Matthias Eisenacher [188,
183], who was supervised by the author of this thesis.

wz rs

j n j g j A atoms j n j g j A atoms
0 0 1 – 22 0 1 –
1 1 8 1 23 1 8 1
2 2 12 1,2 24 2 24 1,2
3 2 12 1,5 25 2 4 4,5
4 2 4 1,8 26 3 32 1,2,3
5 3 8 1,2,3 27 3 24 1,4,5
6 3 24 1,2,7 28 4 8 1,2,3,4
7 3 24 1,2,5 29 4 8 1,2,3,5
8 4 2 1,2,3,4 30 4 48 1,2,4,5
9 4 8 1,2,3,5 31 4 6 3,4,5,6
10 4 24 1,2,4,5 32 5 32 1,2,3,4,5
11 4 6 1,2,5,6 33 5 24 1,3,4,5,6
12 4 6 1,2,7,8 34 6 24 1,2,3,4,5,6
13 4 24 1,2,5,8 35 6 4 2,3,4,5,6,7
14 5 24 3,4,6,7,8 36 7 8 1,2,3,4,5,6,7
15 5 24 3,4,5,6,8 37 8 1 1,2,3,4,5,6,7,8
16 5 8 4,5,6,7,8
17 6 4 2,3,4,5,6,7
18 6 12 2,3,4,6,7,8
19 6 12 3,4,5,6,7,8
20 7 8 2,3,4,5,6,7,8
21 8 1 1,2,3,4,5,6,7,8

Table A.1: Cluster classes for 16-atom cells in wz- and rs-crystal structure. For each class j the number n j of A
cations, the degeneracy g j of the class, and the cation sites occupied with A-type atoms (for one representative of
the class) are given.
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Figure A.1: Illustration of atomic sites in the 16-atom clusters of the wurtzite (a) and the rocksalt (b) structure.
Anions (C atoms) are depicted in blue (small), cations (A or B atoms) in red (large). White atoms represent
the surrounding lattice and are not part of the 16-atom clusters. The denotation 1 . . . 8 of the cations is used in
Table A.1.

A.2 Parameters used in the calculations

For studying the group-II oxides we treat the Mg 2p and Mg 3s as well as the O 2s and O 2p
electrons as valence electrons. For Zn and Cd, the Zn 3d and Cd 4d states have to be included
as valence states, respectively, together with the Zn 4s and Cd 5s electrons. For the calculations
related to the oxygen vacancy in MgO we take only the Mg 3s electrons into account, since
these calculations are based on input from Patrick Rinke.

Exchange-correlation functional

Throughout this work we employ the PW GGA II functional by Y. Wang and J. Perdew [16,
20], also called PW91. Only for the calculations related to the oxygen vacancy in MgO (cf.
Chapter 7) the LDA [15] is used to be consistent with the input from Patrick Rinke.

Cutoff energy of the plane-wave expansion

For the equilibrium polymorphs of the group-II oxides, i.e., rs-MgO, wz-ZnO, and rs-CdO we
found earlier [185, 186] that an energy cutoff of 400eV is suitable to yield converged results.
The same value has been proven to be well-suited to study uniaxially and biaxially strained
wz-ZnO, as well as the non-equilibrium compounds wz-MgO and wz-CdO. In the case of the
pseudobinary alloys we found that the cutoff energy has to be increased to 450 eV in all cases
to converge our results.

Sampling of the Brillouin zone

For the calculation of the QP energies and band structures as well as the HSE03 band structures
including the spin-orbit interaction we employ the k-point meshes given in Table A.2.

The computation of the DFs for the equilibrium polymorphs of the group-II oxides, i.e., rs-
MgO, wz-ZnO, and rs-CdO, is divided into two different calculations: one for the low-energy
region and one for higher photon energies (cf. Section 3.2). For rs-MgO, photon energies up
to h̄ω = 13.4 eV are included via a 10 : 5 : 30hybrid mesh and for energies up to h̄ω = 32.5 eV
a regular 10×10×10 MP mesh is employed. In the case of wz-ZnO, transitions up to 8.5 eV are
computed using a hybrid 8×8×6 : 5×5×5 : 20.8×20.8×15.6 mesh and the high-energy part
is calculated using regular 6× 6× 4 MP points. Because CdO is an indirect semiconductor, it
is not sufficient to sample only a certain region in k space, e.g. around the Γ point, at higher
density. Instead, we employ two regular MP meshes: 18×18×18 k points for transitions up to
7.8 eV and 8×8×8 points up to an energy of 32.5 eV.
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type of calculation k mesh

rs-MgO (2 atom cell) HSE03+G0W0 Γ-centered, 16×16×16
rs-MgO (2 atom cell) HSE03+SOC Γ-centered, 10×10×10
wz-ZnO (4 atom cell) HSE03+G0W0 Γ-centered, 8×8×6
wz-ZnO (4 atom cell) HSE03+SOC Γ-centered, 8×8×6
rs-CdO (2 atom cell) HSE03+G0W0 Γ-centered, 16×16×16
rs-CdO (2 atom cell) HSE03+SOC Γ-centered, 10×10×10
strained wz-ZnO (4 atom cell) HSE03+G0W0 Γ-centered, 8×8×6
strained wz-ZnO (4 atom cell) HSE03+SOC Γ-centered, 8×8×6
alloys, wz crystal structure (16 atom cells) ground-state 2×2×2
alloys, rs crystal structure (16 atom cells) ground-state 4×4×4
alloys (16 atom cells) HSE03+G0W0 Γ-centered, 3×3×3
alloys (16 atom cells) HSE03+SOC Γ-centered, 3×3×3

Table A.2: The MP k-point meshes that have been used to sample the Brillouin zones in the different calculations.

j ∆ j j ∆ j j ∆ j j ∆ j

0 1.46 6 1.92 12 2.16 18 2.39
1 1.60 7 1.83 13 2.02 19 2.29
2 1.70 8 1.91 14 2.11 20 2.62
3 1.72 9 1.96 15 2.25 21 2.78
4 1.79 10 1.99 16 2.11 – –
5 1.82 11 1.92 17 2.48 – –

Table A.3: Scissors operators used for the indi-
vidual clusters of the cluster expansion for the wz-
MgxZn1−xO alloys. The values are obtained using
the HSE03+G0W0 and the GGA+U band structures
of each individual cluster.

In the case of the pseudobinary wz-MgxZn1−xO alloys we calculate the DF up to a photon
energy of 5.8 eV (before applying the scissors shifts given in Table A.3) using 9×9×9 k points.
For higher photon energies we employ a 4×4×4 mesh. In both cases the meshes are shifted
by a small random vector, as discussed earlier (cf. Section 3.2).

To study the influence of free electrons on the optical properties of wz-ZnO we significantly
increase the sampling in the vicinity of the Γ point by employing a 8× 8× 6 : 3× 3× 3 : 24×
24×18 : 5×5×5 : 96×96×72 double-hybrid k-point mesh [187].

Lattice parameters

In order to obtain the equilibrium values of the cell volumes, total energies, and bulk moduli
we minimize the total energy for several cell volumes and fit the resulting volume dependence
of the total energy to the Murnaghan equation of state [184]. In each case, we compute fully
relaxed atomic positions, i.e., optimized lattice constants and internal cell parameters, ensuring
that the forces acting on the ions are well below 5 meV/Å.

The lattice parameters we employ in this work are summarized in Table A.4. The atomic
geometries for the defect supercell containing the F-center in rs-MgO (cf. Table A.4) were also
provided by Patrick Rinke and have been determined within LDA. We do not give the cell
parameters for each of the 76 cluster cells for the studies of the pseudobinary alloys here, but
we refer to the information about the cation-cation distances as compiled in Ref. [188].

Dielectric constants

The model function that is employed for the screening of the electron-hole interaction in the
calculation of the excitonic Hamiltonian needs the effective dielectric constant as input param-
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a0 (Å) a (Å) c (Å) u
rs-MgO 4.254 – – –
wz-ZnO – 3.283 5.309 0.379
rs-CdO 4.779 – – –
wz-ZnO, εu =−0.02 – 3.304 5.203 0.385
wz-ZnO, εu =−0.01 – 3.294 5.256 0.382
wz-ZnO, εu = 0.01 – 3.274 5.362 0.376
wz-ZnO, εu = 0.02 – 3.264 5.415 0.373
wz-ZnO, εb =−0.02 – 3.218 5.403 0.369
wz-ZnO, εb =−0.01 – 3.250 5.356 0.374
wz-ZnO, εb = 0.01 – 3.316 5.256 0.383
wz-ZnO, εb = 0.02 – 3.349 5.206 0.388
wz-MgO – 3.322 5.136 0.392
wz-CdO – 3.678 5.825 0.385
rs-MgO, (F-center, F+-center) 4.151 – – –

Table A.4: Lattice parameters a0 (for the rs crystal structure) as well as a and c (for the wz crystal structure). For
wz crystals also the dimensionless internal cell parameter u is given.

j εeff, j j εeff, j j εeff, j j εeff, j
0 4.25 6 3.67 12 3.51 18 3.25
1 4.03 7 3.67 13 3.52 19 3.25
2 3.85 8 3.54 14 3.38 20 3.12
3 3.84 9 3.53 15 3.38 21 3.00
4 3.83 10 3.52 16 3.39 – –
5 3.69 11 3.52 17 3.25 – –

Table A.5: Electronic static dielectric constants of
the individual clusters of the cluster expansion for
the wz-MgxZn1−xO alloy. The values are calculated
within the GGA+U approach in the independent-
particle approximation (IPA).

eter. Within this work we employ εeff = 3.0 for rs-MgO, which is close to both the experimental
value of 2.94 and the result of 3.16 that we obtained within independent-particle approxima-
tion. For wz-ZnO we employ the result obtained within the GGA+U approximation, averaged
over both polarization directions, i.e., εeff = 4.4. In the case of rs-CdO the GGA+U result
amounts to εeff = 6.55.

Also for the pseudobinary wz-MgxZn1−xO alloys we determined the screening constant within
the GGA+U approach for each cluster individually. These values are compiled in Table A.5.

Modified GW implementation for the alloys

Before the calculations for the alloys were performed, Prof. Georg Kresse suggested a modified
version of the GW implementation within the PAW scheme. By restoring the higher moments of
the all-electron charge density also for its description on the plane-wave grid its shape is very
accurately reproduced. While this does not influence the HSE03 results, it has an impact on
the G0W0 calculations, since they lack (for computational reasons) an exact implementation of
the one-center terms of the PAW approach [42, 43]. With the new approach the fundamental
band gap of wz-ZnO is about 0.29 eV smaller than discussed in Chapter 4. For MgO and CdO as
well as the rs polymorph of ZnO the influence has been found to be not larger than 0.1 eV.
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