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Abstract

In modern-day production systems, ever-rising product variety poses a great
challenge for the internal logistics systems used to feed mixed-model assembly
lines with the required parts. As an answer to this challenge many manu-
facturers especially from automobile industries have identi�ed the supermar-

ket-concept as a promising part feeding strategy to enable �exible small-lot
deliveries at low cost. In this context, supermarkets are decentralized in-
house logistics areas in the direct vicinity of the �nal assembly line, which
serve as intermediary stores for parts. Small tow trains are loaded with
material in a supermarket and deliver parts Just-in-Time to the stations lay-
ing on their �xed route. This paper discusses the general pros and cons
of the supermarket-concept and treats the decision problem of determining
the optimal number and placement of supermarkets on the shop �oor. A
mathematical model is proposed, an exact dynamic programming algorithm
presented, and the validity of the proposed approach for practical purposes
is investigated in a comprehensive computational study.

Keywords: Mixed-model assembly lines; Just-in-Time; Material supply; Tow
Trains

1 Introduction

High-volume production systems have traditionally been implemented as �ow lines to
bene�t from economies of scale and productivity gains. Modern mixed-model assembly
lines are capable of producing a great number of variants of a common base product
on the same line with negligible set-up times and cost (lot size one). In recent years,
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an undeniable trend towards increasing product variety, in order to satisfy diversi�ed
customer demand, can be noted (see, e.g., Boysen et al., 2009b). Consequently, today's
mixed-model assembly systems have an enormous hunger for a very diverse range of
parts, making the organization of a well-run logistics network one of the most vital tasks
to ensure that �nal assembly runs smoothly and e�ciently.
One signi�cant challenge within this context is the feeding of parts to the productive

units (stations) at the line. On the one hand, material and parts must always reach
the work stations on time to avoid extremely costly line stoppages. On the other hand,
excessive stock at the stations and/or shop �oor tra�c lead to high handling and holding
cost. Following the just-in-time (JIT) principle, a mounting number of manufacturers
is therefore adopting the so-called supermarket-concept. In this sense, supermarkets
are decentralized storage areas scattered throughout the shop �oor which serve as an
intermediate store for parts required by nearby line segments. From these stores, tow
trains (or tuggers) � towing vehicles connected to a handful of waggons � set o� according
to a �xed schedule, delivering parts from the supermarket to, and collecting empty bins
from, the stations laying on their pre-determined routes. Finally, empty trains return to
the supermarket and are re�lled for their next tour. This way, decentralized supermarkets
enable frequent small-lot deliveries of parts, so that inventory at the line is reduced and
long-distance deliveries from a central receiving store are avoided.
One important optimization problem in this regard is the determination of the number

and placement of the supermarket areas. Shop �oor space is very valuable, creating too
great a number of supermarkets will therefore often entail more cost than bene�ts. Having
too few, poorly placed supermarkets, on the other hand, will greatly diminish their
positive e�ects, making them, in the worst case, barely better than traditional centralized
stores. Using the available space as well as possible by selecting the optimal number of
supermarkets and strategically locating them is therefore critical. This paper presents a
polynomial-time dynamic programming scheme to optimally solve this problem.
The remainder of this paper is organized as follows. Section 2 will discuss the operation

and bene�ts of a JIT-supermarket in more detail and review the extant literature. Section
3 will present a formal description of the supermarket location problem as well as a
suitable mathematical representation. In Section 4, we will introduce the optimization
procedure and in Section 5 we will investigate the practical bene�ts of choosing the
optimal placement and number of supermarkets in a comprehensive computational study.
Finally, Section 6 concludes the paper.

2 Operation of a JIT-supermarket and literature review

Most OEMs in the automotive sector today employ � or at least aim to employ � JIT
strategies to keep �nal assembly well supplied while also minimizing work-in-process.
Due to the enormous product variety and consequent part diversi�cation, e�cient in-
house logistics are especially crucial to secure competitiveness as storage space at the
stations is usually the most scarce and the most expensive.
Traditionally, stations have been served from a single central storage area from which
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parts where brought pallet- or binwise to the line in individual deliveries. Such a cen-
tralized part supply is not very much in line with the JIT-principle. First, as stations
are supplied individually and from a potentially far away central store, parts have to be
delivered in moderate to large lots because otherwise shop-�oor tra�c would be unman-
ageable. This entails an increase in in-process inventory and moves reorder dates forward.
Second, the pallets, once delivered, will have to be kept at the stations, where space is
notoriously scarce (see Boysen et al., 2009a). This may seriously hamper workers and
reduce productivity. Finally, from time to time unforeseen events, e.g., material defects,
occur requiring emergency deliveries of missing parts to avoid line stoppage. Clearly,
an express delivery from far distant central store is very time consuming. As a reaction
of these disadvantages some manufacturers started using consignation warehouses (e.g.,
Valentinia and Zavanella, 2003, Boysen et al., 2008) operated by a third party logistics
provider. Whenever a station runs out of parts, a pallet of new ones is commissioned
to replace them. However, consignment stocks merely transfer the problems to a third
party, which is not in line with the basic principles of cooperative supply chain manage-
ment. At least over the long run higher logistics cost will be passed on to OEMs via the
consignment contract.
To alleviate these problems, supermarkets, that is, decentralized logistics areas where

parts are stocked for close-by line segments, were introduced. As these facilities substi-
tute sporadic large-lot for frequent small-lot deliveries, supermarkets can be seen as the
in-house equivalent of cross-docks (see, e.g., Apte and Viswanathan, 2000, Boysen and
Fliedner, 2010). Parts are usually brought to these sites by relatively large industrial
trucks. The materials are then sorted and intermediately stored to be loaded onto tow
trains and delivered to the stations just as needed. To facilitate a dependable part supply,
parts are typically transported in standard-size bins of constant capacity. Also, to keep
congestion to a minimum and improve reliability, tow trains are normally operated on a
�xed schedule, which determines exactly the time when the tugger leaves the supermar-
ket and of each stopover on its ordained route. Some automobile producers have even
automated these stopovers by employing so-called �shooter-racks� (Emde et al., 2009).
This special kind of gravity �ow rack allows the tugger to dock, opening gates at the
back of the rack and the docked waggon such that full bins are ejected onto the rack
by elastic springs while empty ones slide back to the train. These shelves reduce the
unloading time to just a few seconds and render reliable schedules possible. Moreover,
one automobile producer we visited was experimenting with display panels installed at
each station similar to those of bus and railway stations. Here, a countdown until the
tugger's next arrival was announced, so that anticipating material shortages in a credible
and timely manner got much easier for assembly workers and team leaders.

�Kanban supermarkets� are a part of the famous Toyota Production System (Vatalaro
and Taylor, 2005, Holweg, 2007) and have a long tradition in many industries (Rees et
al., 1989, Hodgson and Wang, 1991, Spencer, 1995). However, in-house logistics of this
kind were often organized as pure kanban systems. Seeing that production sequences are
usually known well in advance (about three to four days in the automotive industry), the
bill of materials exactly determines how many parts are necessary within a given time

3



interval at any station. Classic kanban systems as envisioned by the Toyota Production
System (Monden, 1998) do not exploit this information, because they only re�ll parts
that have already reached a critical stock level. However, waiting to be �surprised� by
low stocks, which might necessitate emergency deliveries if the next scheduled stopover
at the station is too far o�, is needless when deterministic information about the pro-
duction schedule and hence part demand as well as delivery schedules is available. As
a consequence, modern, well-planned supermarket-based feeding systems can run more
smoothly and with less manpower and fewer vehicles than many purely kanban-based
systems (Golz et al., 2010).
Moreover, the advantages of decentralized logistics networks have been widely discussed

in the literature (e.g., Johnson and Leenders, 2004, Wanke and Zinn, 2004) and apply
just as well to in-house logistics: Shorter delivery times by being closer to the consumer
(i.e., the assembly line), freight consolidation by being supplied by industrial trucks, and
faster turnover by stocking and delivering parts just as needed. Furthermore, apart from
the obvious bene�ts of being more in line with the original goals of the JIT philosophy,
frequent small-lot deliveries as enabled by supermarkets can also be easily replanned while
large-lot deliveries, once made, are hard to revoke, which is an important advantage in
the event of unforeseen disturbances. Also, comparatively small bins can be stored in
easily accessible racks close to the line, where workers can take parts in an ergonomic
and e�cient manner, which reduces handling times and the strain on the workforce.
On the downside, supermarkets consume space on the factory �oor, which is scant

and expensive. Parts are stored in shelves designed for ease of access such that workers
can prepackage parts in a comfortable manner, analogously to customers in a traditional
supermarket, and thus they are typically less space-e�cient than traditional warehouses.
An e�ective implementation of the supermarket-concept will also necessitate some invest-
ment in equipment, sta� and maintenance. Finding the optimal compromise regarding
this trade-o� and investigating the operational bene�ts of supermarkets are important
issues which this paper will tackle in the following.

The planning and control of this in-house logistics concept amounts to a complex task
involving several interrelated decision problems:

(i) Decide on the number and location of decentralized supermarkets.

(ii) Determine the number of tow trains per supermarket and assign line segments to
them.

(iii) Determine each tow train's �xed delivery schedule.

(iv) Decide on the bins to be loaded per tour of a tow train.

To date, there are only a few publications explicitly dealing with any of the above
problems. Emde et al. (2009) tackle the loading of tow trains given their routes and
schedules and develop a polynomial time exact algorithm to minimize the number of
bins stored at the line given a limited tugger capacity. Vaidyanathan et al. (1999) formu-
late problem (ii) as a capacitated vehicle routing problem where stations have a constant
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parts consumption rate over time. The authors use a nearest neighbor heuristic to gen-
erate start solutions and subsequently the 3-opt heuristic to improve these solutions.
Emde and Boysen (2010) solve problems (ii) and (iii) jointly with an optimal nested
dynamic programming scheme, with the goal of minimizing an aggregate of the stock at
the stations and the number of vehicles required to keep them supplied, which runs in
polynomial time. Golz et al. (2010) examine a real-world implementation of the super-
market concept at a major German motor company and develop a heuristic procedure
to decide on the routes (ii), the schedules (iii) and the load (iv) of the tow trains, given
a single supermarket and a set of possible routes to choose from, aiming to minimize
the number of vehicles and operators while avoiding stock-outs at the line. Battini et
al. (2010) consider the problem of locating the optimal number of supermarkets on the
factory �oor, i.e., problem (i). The authors contemplate an assembly system with mul-
tiple parallel production lines where the entire lines (not individual stations of a single
line) have to be supplied with parts. In a �rst step, they group the lines together accord-
ing to their degree of component commonality, and then, in a second step, they assign
supermarkets to locations such that the distance from each supermarket to the group
of lines assigned to it is minimal. However, it was our observation in the automobile
industry that typically multiple supermarkets are applied per line. While, to the best of
the authors' knowledge, the aforementioned article is the only paper explicitly dealing
with problem (i), the issue of placing in-house logistics areas bears some resemblance to
classic facility location problems (for a survey, see, e.g., Klose and Drexl, 2005). These
models are only partially applicable to the supermarket location problem, however, as
they ignore the speci�cs of assembly production systems, especially the layout of the
assembly line on the factory �oor. One side-e�ect of this is that practically all extant
multi-facility location problems are NP-hard. As we will see, this is not the case for the
present problem. Also, facility location models usually only seek to minimize the sum or
the maximum of distances between facility and customers. We will discuss in the next
section why this is an inadequate goal in our case.

3 Problem description

We are assuming a classic mixed-model assembly line, along which there are s = 1, . . . , S
productive units (stations), which each have to be supplied with ds bins of parts from a su-
permarket. Each station's position on the factory �oor is identi�ed by a two-dimensional
coordinate (as, bs), which de�nes the parking position of a tugger for supplying station
s, e.g., at the position of the shooter rack. With these coordinates, distances es be-
tween station s and s + 1 as well as distances zis between station s and supermarket
i, i = 1, . . . , n, to be covered by a tugger when visiting these locations, can easily be
calculated according to some metric. The Supermarket Location Problem (SLP) is then
de�ned as follows: What is the optimal number n of supermarkets and which stations
should each supermarket serve? Note that, once the latter question is answered, calcu-
lating the positions of the supermarkets is assumed to be trivial since we presuppose a
location problem in the plane.
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Figure 1 conceptually shows the layout of a factory �oor with two decentralized lo-
gistics areas. The central receiving store distributes parts in large-lot deliveries to the
supermarkets, where they are prepackaged and sorted to be loaded as needed on the
tow trains, which circulate through the stations in the respective supermarket's supply
area. Note that, in a subsequent step, the process of actually delivering parts to the
stations necessitates the routing, scheduling and loading of the tow trains assigned to
the supermarket. While all these problems are certainly interconnected, it is di�cult to
see how they can be solved concurrently in practice since the placement of a supermarket
is a decision with a long lead time, while routes and especially schedules and loads can
only be sensibly assigned once information about the production sequence is available,
which is normally only a few days in advance. This paper will therefore concentrate on
the location problem per se and will apply an approximate measure for estimating the
impact of a supermarket location on the operational decision problems.

Figure 1: A factory �oor concept with two supermarkets.

To accurately model the ensuing facility location problem, we introduce the following
premises:

• Stations served by one supermarket are always consecutive, meaning, for instance,
that it cannot be that one supermarket delivers parts to stations 1, 3 and 5, and
another takes care of stations 2 and 4. Plant managers typically try to avoid inter-
leaving or overlapping supermarket areas as this makes the routing of the vehicles
more di�cult and leads to ine�ciencies in the daily operation of the parts feeding
process. For example, we are aware of one case at a major German automobile
producer's plant where tow trains often have to wait in front of an automated re-
tractable barrier for the way to be clear before they can continue their rounds. Such
unproductive idle times are highly undesirable, of course, and could be avoided by
a more advantageous placement of the supermarkets.

• Because bottlenecks can always be allayed (at a cost) by additional routes, vehicles
and tighter schedules, no hard restrictions on the number of stations that can
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be supplied by one supermarket are necessary. If distances and loads at a single
supermarket are great, such setups will be naturally punished in the objective
function.

• Parts are packed in bins of identical standardized size (see de Souza et al., 2008,
on how this may be done), which is a requirement of the aforementioned shooter
racks.

• Routes, schedules and loads for the individual tow trains can only be determined
at a later time, when production sequences are known. The SLP must therefore be
solved on the basis of aggregated estimates.

• Considering that fast deliveries and short routes are their very purpose, supermar-
kets are always placed close to the line. Exactly how close depends on the size of the
stations themselves as well as the amount of space reserved for driving lanes. We
will assume that the minimum o�set by which the supermarket must be removed
from the line is constant all along the assembly line.

• Since parts are not delivered point-to-point from the supermarket to each station
but rather during extensive tours with multiple stopovers, supermarkets need not
be close to all the stations in their respective area but only to the start and end
points of their associated routes. Therefore, supermarkets are placed in the exact
middle between the two outer stations in its supply area. Whether or not this spot
is actually optimal depends on the way the tuggers will be routed later on, which
is unknowable from the point of view of the SLP. Also, the space so chosen may
not be available at all if it is already occupied by other facilities and/or equipment.
In this case, a di�erent, discrete planning approach would be necessary, which is
beyond the scope of this paper. In these instances, the SLP will at least provide a
good approximate solution, however.

Concerning the goal of the optimization, the classic minsum-aim of minimizing the sum
of the weighted distances from each supermarket to the stations it supplies, often used for
location problems in the plane (e.g., Owen and Daskin, 1998, Krarup et al., 2002, ReVelle
and Eiselt, 2005), is certainly applicable, if the peculiarities of tow train transportation
are provided for. Tuggers will usually not visit each station individually but travel on
predetermined routes with multiple stopovers. The path to a station is therefore not
a straight line from the supermarket but instead, when calculating distances, we must
account for the way tuggers will eventually travel: First, from the supermarket to the �rst
station on its route, then from station to station and, �nally, back to the supermarket to
re�ll. Even so, minimizing distances alone does not necessarily guarantee good solutions.
Since tuggers have a limited capacity, how many and which stations can be supplied
in one tour depends on the parts consumption at those stations. Not too many high-
demand stations can be on one route, or else the tow train will not be able to serve
them all. Overworked supermarkets will have to make use of additional vehicles, routes
and safety stock, all leading to higher operating cost. Distances should therefore be
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weighted by the total demand at the stations supplied by each supermarket. As was
already mentioned, the exact parts consumption in a given shift will only be known
once production sequences have been determined. Regardless, aggregate bin demands
per station and shift can usually be estimated with some accuracy, as this does not
require intimate knowledge of the exact timing and composition of the model sequence
but only an appraisal of average production volumes. Finally, as a third component, �xed
cost for creating and maintaining a supermarket should also be accounted for. Taking
these points into consideration, using the notation listed in Table 1, we can de�ne the
Supermarket Location Problem as follows:

S number of stations (index s = 1, . . . , S)
n variable encoding the number of supermarkets (index i = 1, . . . , n)
Γ �xed cost per supermarket
es distance from station s to station s+ 1
ds expected number of bins in demand at station s per shift
as x-coordinate of station s
bs y-coordinate of station s
xi variable encoding the �rst station supplied by supermarket i
zis continuous variable encoding the distance from supermarket i to

station s

Table 1: Notation

Given s = 1, . . . , S consecutive stations to be supplied with parts from the supermarket,
the Supermarket Location Problem consists of partitioning these stations into a variable
number of n = 1, . . . , S disjunct subsets, each served by a separate supermarket. A
solution is encoded as a vector X(n) = {1, x2, x3, . . . , xn, S + 1} → {2, . . . , S}, where xi
marks the left-most station in a supermarket's supply area; consequently, the right-most
station served by supermarket i is determined by xi+1 − 1. Since all stations need to be
included in some supermarket's delivery area, the �rst supermarket's left-hand station is
always 1, and the last one's right-hand station is always S. The vector is of length n+ 1
and its members are to be set such that objective (1) is minimized and constraints (2)
and (3) are observed.
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(SLP) Minimize F (X(n)) =

n∑
i=1

xi+1−1∑
s=xi

ds ·

xi+1−2∑
τ=xi

eτ + zi,xi + zi,xi+1−1

+ n · Γ
(1)

subject to

xi+1 ≥ xi + 1 ∀i = 1, . . . , n (2)

zis =
∣∣axi + (axi+1−1 − axi)/2− as

∣∣+∣∣bxi + (bxi+1−1 − bxi)/2− bs
∣∣ ∀i = 1, . . . , n; s = 1, . . . , S (3)

Objective function (1) aims to minimize the sum of the number of supermarkets n
weighted by Γ and the sum over all supermarkets of the total demand at the stations
the respective supermarket supplies multiplied by the length of a route through all the
stations and back. Note that the calculation of distances mimics the route a tow train
setting o� from the supermarket will have to travel: First, the distance zi,xi from su-
permarket i to the �rst station xi in its supply area, then the distance

∑xi+1−2
τ=xi

eτ from
station to station, and �nally the distance zi,xi+1−1 back to the supermarket. Constraints
(2) make sure that there are no overlapping supply areas, and constraints (3) calculate
the distance from each supermarket to each station. Considering that factory �oors are
usually characterized by line-side driving lanes and sharp turns, the Manhattan (or recti-
linear) metric is typically best suited to measure distances, although other metrics could
also be used. Supermarkets are placed in the middle of the two end-points of its supply
area, because tuggers will have to start their tour setting o� from the supermarket and
�nally end it by returning, probably from the other end of the supermarket's supply area.
Note that, in many cases, supermarkets can of course not be located exactly in the mid-
dle of two stations because the assembly line will probably run through there. However,
since supermarkets are, according to the premises, always removed from the line by a
constant o�set which is identical everywhere, this need not be explicitly modeled.
One practical problem which may arise when using the above objective function is

caused by the inclusion of two very di�erent cost factors in one joint objective function:
On the one hand, there is the term which estimates future operating cost and aims to
minimize the distances and demands in all supermarkets' supply areas, which will tend to
be lower the more supermarkets there are. On the other hand, there are capital, sta�ng
and maintenance cost inferred by creating new supermarkets. While a trade-o� between
these two factors most certainly exists, setting an exact cost coe�cient Γ may be di�cult
in practice. We will therefore propose an algorithm in the next section which computes
all non-dominated pairs of operating cost estimate and supermarket count n. All these
solutions are optimal for their respective n. An experienced shop �oor manager can
then easily visualize the inherent trade-o� and choose the best set-up for their speci�c
situation (or Γ).
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4 Solution procedure

For each supermarket i, the left-most station xi in its supply area must be determined.
This will automatically set the right-most station of the preceding supermarket's area as
xi−1. Since the sets of ordered stations supplied by each supermarket are non-overlapping
and distance and demand values depend only on the area of the current supermarket and
not on those that come before or after, optimal solutions can be e�ciently constructed
by a dynamic programming approach.
Let k denote the �rst station in a supermarket's area, G(k) the minimal cost for the

station interval from 1 to k − 1 with G(1) := 0, f(j, k) the objective value for the
supermarket that serves station j through k − 1, as determined by

f(j, k) =
k−1∑
s=j

ds ·

k−2∑
τ=j

eτ + ẑj + ẑk−1

 ,

where ẑs is calculated as with Equation (3) (with xi := j and xi+1 := k). The dynamic
programming recursion is then de�ned as

G(k) = min
1≤j≤k−1

{G(j) + f(j, k)} .

The goal is now to �nd the path to S+1 with the lowest G(S+1) for a given number n
of supermarkets. A formal description of the forward-recursive DP-procedure computing
the e�cient frontier with all non-dominated (n, pn, Gn(S+1))-pairs (where n is the total
number of supermarkets, pn encodes the corresponding optimal solution, which can be
decoded by a simple backward recovery, and Gn(S + 1) is the objective function value
associated with the solution) is shown in Figure 2. Note that solutions thus acquired
do not incorporate the �xed cost Γ per supermarket. The optimal solution to program
(1)-(3), however, can easily be found by adding n · Γ to each Gn(S + 1) in the set of
non-dominated solutions the algorithm computes, ∀n = 1, . . . , S, and then picking the
solution with the lowest total objective value.
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for k := 2 to S + 1 do1

p1(k) := 1;2

G1(k) := f(1, k);3

end4

Store non-dominated solution (1, p1, G1(S + 1));5

for n = 2 to S do6

Gn(k) :=∞ ∀k = 1, . . . , S;7

for k := n+ 1 to S + 1 do8

for j := n to k − 1 do9

if Gn−1(j) + f(j, k) < Gn(k) then10

pn(k) := j;11

Gn(k) := Gn−1(j) + f(j, k);12

end13

end14

end15

Store non-dominated solution (n, pn, Gn(S + 1));16

end17

Figure 2: Dynamic programming algorithm for constructing the e�cient frontier for the
SLP.

Example: Consider the example data given in Table 2. As described in Table 1, ds
denotes the expected demand at each station s in bins of parts for a typical production
shift, the horizontal and vertical coordinates of each station are given by as and bs,
respectively, and the distances es between stations can easily be computed by applying
the (in this case) Manhattan metric to these coordinates.

station s 1 2 3 4 5

ds 3 7 1 8 10
as 1 5 12 12 12
bs 1 1 1 10 17
es 4 7 9 7

Table 2: Example data.

Figure 3 shows the dynamic programming graph for this problem. Nodes stand for
stations (with node 6 being the dummy node S+1), while arcs denote the set of stations
served by one supermarket. An arc from node 2 to node 5, for example, signi�es a
supermarket serving stations 2, 3 and 4. The respective arc weight, then, equals f(2, 5) =
(7 + 1 + 8) · (7 + 9 + 8 + 8) = 512. Grey arcs were added in Lines 1 to 4 of the algorithm
in Figure 2 and thus signify paths with only one arc from node 1 to all the other nodes.
Building on these grey arcs, the black arcs, added in the �rst iteration through the for-
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loop in Line 6, express paths from the source to all other nodes with exactly two arcs.
Note that these will be added to again to get all paths with n = 3 arcs etc. Paths that
end in the sink node 6 represent complete, feasible solutions to the SLP. Storing the least
cost path to 6 in every iteration, i.e., for every arc/supermarket count, yields the e�cient
frontier, as depicted in Table 3. Adding Γ ·n to each Gn(S+ 1) for every non-dominated
solution and selecting the lowest value of these results in the optimal solution to the SLP.
The optimal solution for Γ = 300 in the example is bold in the table.

Figure 3: DP-graph in the example. Optimal solution with n = 2 edges is bold.

n 1 2 3 4 5

Gn(S + 1) 1566 494 242 80 0
F ∗(X(n)) 1866 1094 1142 1280 1500

Table 3: Non-dominated solutions in the example. Optimal solution with minimal
F ∗(X(n)) for Γ = 300 is bold.

Concerning the time complexity of the proposed algorithm, the DP-graph consists of
S + 1 nodes, each connected to no more than S others. The consequent maximum of S2

edges needs to be evaluated up to S times, once for each possible number of supermarkets
n. To evaluate an arc, its weight must be calculated which entails the computation of
function f , which may involve, in the worst case, summing over S stations. The total
number of steps required to optimally solve the SLP is therefore bounded by O(S4).

5 Computational study

5.1 Instance generation

As there are no established test data for the SLP, we will �rst describe how the instances
used in our computational study were generated. An instance of the SLP is de�ned
by a number of stations S, to each of which a demand ds and two coordinates as and
bs are assigned. The demand ds is computed by randomly generating forty sequences
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of 400 models each. Every model m ∈ M has a random consumption of part p ∈ P ,
given as cpm = brnd(um, um)e, ∀m ∈ M,p ∈ P , where um = rnd(0.5, 0.5), ∀m ∈ M ,
rnd(µ, σ) ∼ N(µ, σ) is a normally distributed random number greater than 0 and b·e
denotes rounding to the nearest integer. Parts come in bins of di�ering capacity (to re�ect
the fact that while bins are of standardized size, parts vary in shape and form), namely
a uniformly random number from the interval [1; 100], and three di�erent kinds of parts
are used at each station. Given these data and a production sequence, bin demand per
shift (where a shift is assumed to have D = 400 production cycles) and station can easily
be calculated (see Emde et al., 2009, for details) and averaged over all forty sequences,
i.e., shifts, resulting in the required ds.
Coordinates as were set to as = as−1 + rndu(1, 6), ∀s = 2, . . . , S, where rndu(1, 6)

stands for a randomly drawn number from the interval [1; 6] and a1 := 1. bs was �xed
at 1, ∀s = 1, . . . , S, for simplicity's sake. In this computational study, coordinates are
relative, meaning that a point (1, 1) is 4 units away from (5, 1). A �unit�, in this study,
refers to the average distance the tow train can travel in the time span of one production
cycle (usually about 60 to 90 seconds in the automotive industry). The parameters used
for instance generation are shown in Table 4. For each of the station counts S listed in
the table, thirty instances were created, leading to a total of 7 · 30 = 210 instances, each
built on forty sequences of 400 units.

Symbol description values

S number of stations 10, 30, 60, 100,
150, 200, 300

|M | number of distinct models 100
D number of production cycles / units per

sequence
400

Table 4: Parameters for instance generation

5.2 Computational results

The SLP objective function (1) is, as was already mentioned, merely an estimator of
future operating cost. The exact bene�ts of having the line supplied by a well-placed
supermarket will only become obvious once production sequences have been determined
and routes and schedules for the tow trains stationed at the supermarket planned. It is
conceivable that a location which is thought to be optimal from the point of view of the
SLP turns out to be impractical later on due to the di�culty of �nding good routes and
timetables. To investigate whether or not this is indeed the case, we implemented the
proposed algorithm in C# 2008 and ran a series of tests on an x86 PC with an Intel Core
2 Quad Q9550 2.8 GHz CPU and 4096 MB of RAM. We will use the optimal supermarket
locations as computed by the dynamic programming procedure presented in this paper
as the input parameters for a series of simulation tests. To simulate the day-to-day
operation of the supermarkets, we have the assembly line produce the forty sequences
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of 400 workpieces each, which on average create the per-station bin demand ds used
in the SLP-optimization, meaning that on average, sequences will obey the anticipated
distribution of parts demand, while each individual sequence will most probably deviate
from it, as can be expected in practice. Given these deterministic sequences, part and bin
demand at each station in each work cycle is known with certainty. Distances from/to
the supermarket and between stations are given by the placement in the optimal SLP-
solution. In addition to the travel time, there is also a replenishment interval of �ve
cycles that the tugger has to wait out at the supermarket to be reloaded. Each tow train
can carry up to �fty bins. The operating cost for each sequence is then measured as
the sum of all bins lying in stock over every station and every work cycle, as well as the
number of tow trains required to supply the stations in the supermarket's area, the latter
weighted with a factor of 1000. The simulation proceeds as follows:

i. Add a tow train to the (otherwise empty) set of scheduled tow trains T , and set its
departure time such that the train arrives at station 1 in work cycle 1.

ii. If T is empty, go to vii, else pick and remove the tugger t with the earliest departure
time ct from T and have it set o� at that time. Set ct := ct + z1, where z1 is the
distance from the supermarket to the �rst station in its supply area. Set s := 1.

iii. When arriving at station s, tow train t unloads as many bins as are required at that
station until t's next scheduled arrival, i.e., the current time ct plus the duration of
a complete tour.

iv. If, due to capacity or scheduling constraints, tugger t is unable to deliver the required
amount of bins, add another tow train to T such that it arrives just-in-time at the
undersupplied station to rectify this.

v. Tugger t will then continue on to the next station (ct := ct+ es and then s := s+ 1),
except if it has already visited all stations (i.e., s = S), in which case it will return
to the supermarket, be replenished and set o� again for station s := 1 without delay
(ct := ct + zS + z1 + 5).

vi. Repeat steps iii - vi if the current time ct is still within the planning horizon of 400
work cycles, otherwise go to step ii.

vii. Identify the maximum number of tuggers en route simultaneously at any one time.
This is the number of required vehicles. If a tugger did not actually deliver any bins
during its complete tour, do not count it. If bins have been unloaded at a station in
a work cycle earlier than that in which they are consumed, they have to be stocked
in the meantime. Sum up the number of bins lying in stock at each station in each
work cycle.

The basic idea of this procedure is to try to supply all stations with one tow train
making cyclic deliveries, i.e., setting o� from the supermarket in regular intervals. If that
fails due to its limited capacity, another vehicle is scheduled to help out, also making
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cyclic deliveries. If that is still not enough, another tugger must be launched and so
on. Obviously, assigning routes and schedules in such a way need not necessarily be
optimal. However, it is rare to see more sophisticated delivery policies in practice (Emde
and Boysen, 2010). If the simulation is repeated for all supermarkets on the factory �oor
and for all sequences, the average vehicle count and stock level at the stations can be
measured, giving a fair appraisal of the operational cost and bene�ts supermarket-based
feeding system.

S 10 30 60 100 150 200 300

ρ 0.89 0.97 0.99 0.99 0.99 1 1

Table 5: Correlation ρ of SLP objective values and actual stock at the stations (Γ = 0,
n = 5).

Table 5 lists the Pearson product-moment correlation coe�cients ρ for all instances,
split on the number of stations S. The table explores the connection between SLP objec-
tive F and the actual number of bins stocked at the line as calculated in the simulation
experiment, averaged over all forty random sequences per instance. For better compa-
rability, the number of supermarkets was �xed at n = 5 and Γ was set to 0, so as to
avoid distorting objective values with arbitrary �xed cost. As can be seen, the correla-
tion between SLP objective and actual performance is great throughout, with the lowest
correlation coe�cient coming to 0.89. All coe�cients are signi�cant at the 99% con�-
dence level. Note that, obviously, the exact strength of the correlation will somewhat
depend on the weighting factor associated with the vehicle count. However, such a strong
correlation as shown in this study suggests, at the very least, that the minsum considera-
tion of distances and demands in the objective function is adequate for predicting future
operating success of the supermarkets. Figure 4a visualizes this.
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(a) Correlation between F ∗ (Γ = 0, n = 5) and
actual stock at the stations (S = 100).

(b) Connection between number of stations S,
number of supermarkets n and objective val-
ues F ∗ (Γ = 0).

Figure 4: The relation of SLP goodness to actual stock at the line, and to station and
supermarket counts.

Apart from the optimal placement of supermarkets, determining the optimal number
of them is also a central purpose of the proposed algorithm. While the individual cost
associated with operating additional logistics areas, expressed by the parameter Γ in
the mathematical program, di�ers strongly with regard to scarceness of space, available
equipment, wage levels and other factors pertinent to speci�c production settings, some
generalizable insights can nonetheless be won. Table 6 contains all F ∗ values for each
possible supermarket count n = 1, . . . , 10 with Γ := 0 and S = 10 stations, averaged over
the thirty instances. Clearly, the more supermarkets are already installed, the less useful
each additional one becomes. F ∗ values decline very sharply for small n but �atten out
quite soon. This is even more obvious in Figure 4b, which depicts the e�cient frontiers for
all tested station counts. Even in instances with 300 stations, it seems hardly worthwhile
to maintain more than three or four supermarkets as afterwards the marginal utility is
diminishing quickly.

n 1 2 3 4 5 6 7 8 9 10

F ∗ 6526.5 2737.4 1463.6 861.3 524.6 309.1 177.0 89.5 34.3 0

Table 6: Average optimal objective function values F ∗ (S = 10, Γ = 0) for n = 1, . . . , 10.

6 Conclusion

This paper deals with an important problem arising in the context of in-house logistics,
namely the siting of intermediary stores, �supermarkets�, on the factory �oor. To this
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end, operational and economic aspects of installing and maintaining supermarkets are
discussed, a formal problem description of the Supermarket Location Problem (SLP) is
derived, and a dynamic programming scheme to optimally solve the problem is presented.
It is shown that the proposed algorithm is suitable for solving instances of realistic
size, seeing that the runtime is polynomially bounded and all problems in the extensive
computational tests could be solved in under a second of CPU time. It is also evident
from comprehensive simulation experiments that solutions deemed �good� by the SLP
are in fact e�ective in reducing operating cost, that is, in-process inventory as well as
the number of required vehicles and operators. Moreover, the numeric study strongly
suggests that supplying an assembly line from even a small number of supermarkets, say
three or four, is vastly superior to a setup with only one centralized storage area. Some
challenges for future research still remain, however:

• Like all location problems in the plane, the presented model and algorithm are valid
only if supermarkets can be placed anywhere on the factory �oor. If, however, only
speci�c areas on the shop �oor are available for construction of a supermarket a
di�erent, discrete approach is necessary.

• In some assembly systems, other factors than distance and demand may also play
into the placement decision, for example, if the same parts are used at multiple
stations, it may in some cases be e�cient to have these stations served by one
supermarket due to consolidation e�ects.

These challenges seem to be worthwhile �elds of research, considering the enormous
potential for reduction of costs made possible through well-run supermarket-based parts
feeding systems, as shown in this paper.
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