



50. Internationales Wissenschaftliches Kolloquium

September, 19-23, 2005

Maschinenbau von Makro bis Nano / Mechanical Engineering from Macro to Nano

Proceedings

Fakultät für Maschinenbau / Faculty of Mechanical Engineering



Startseite / Index: <u>http://www.db-thueringen.de/servlets/DocumentServlet?id=15745</u>

| Impressum                                    |                                                                                                                                                                                                                                                                                                 |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Herausgeber:                                 | Der Rektor der Technischen Universität Ilmenau<br>UnivProf. Dr. rer. nat. habil. Peter Scharff                                                                                                                                                                                                  |  |
| Redaktion:                                   | Referat Marketing und Studentische Angelegenheiten Andrea Schneider                                                                                                                                                                                                                             |  |
|                                              | Fakultät für Maschinenbau<br>UnivProf. DrIng. habil. Peter Kurtz,<br>UnivProf. DiplIng. Dr. med. (habil.) Hartmut Witte,<br>UnivProf. DrIng. habil. Gerhard Linß,<br>DrIng. Beate Schlütter, DiplBiol. Danja Voges,<br>DiplIng. Jörg Mämpel, DiplIng. Susanne Töpfer,<br>DiplIng. Silke Stauche |  |
| Redaktionsschluss:<br>(CD-Rom-Ausgabe)       | 31. August 2005                                                                                                                                                                                                                                                                                 |  |
| Technische Realisierung:<br>(CD-Rom-Ausgabe) | Institut für Medientechnik an der TU Ilmenau<br>DiplIng. Christian Weigel<br>DiplIng. Helge Drumm<br>DiplIng. Marco Albrecht                                                                                                                                                                    |  |
| Technische Realisierung:<br>(Online-Ausgabe) | Universitätsbibliothek Ilmenau<br><u>ilmedia</u><br>Postfach 10 05 65<br>98684 Ilmenau                                                                                                                                                                                                          |  |
| Verlag:                                      | Verlag ISLE, Betriebsstätte des ISLE e.V.<br>Werner-von-Siemens-Str. 16                                                                                                                                                                                                                         |  |

© Technische Universität Ilmenau (Thür.) 2005

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt.

| ISBN (Druckausgabe):   | 3-932633-98-9 | (978-3-932633-98-0) |
|------------------------|---------------|---------------------|
| ISBN (CD-Rom-Ausgabe): | 3-932633-99-7 | (978-3-932633-99-7) |

Startseite / Index: http://www.db-thueringen.de/servlets/DocumentServlet?id=15745

98693 Ilmenau

# Nenad D. Pavlović, Nenad T. Pavlović

# Rastpolbahn der nachgiebigen Mechanismen

### ABSTRAKT

Unter nachgiebigen Mechanismen versteht man vollständig oder weitgehend stoffkohärente Strukturen, die aufgrund ihres Aufbaus aus mechanisch steifen und nachgiebigen Abschnitten beweglich sind und Bewegungen und Kräfte übertragen und wandeln können [6]. Eine der Vorgehensweisen für die Synthese der nachgiebigen Mechanismen ist von einem bekannten Starkörper-Mechanismus auszugehen [6] um dieselbe kinematische Aufgabe zu realisieren. Die Bewegung der "Glieder" von nachgiebigem Mechanismus weicht aber von derjenigen des Starkörper-vorbildmechanismus ab. In diesem Beitrag werden die Rastpolbahnen der geführten Glieder dieser Mechanismen verglichen um die Lageabweichung dieser Glieder zu ermessen.

## 1. RASTPOLBAHN DER STARRKÖRPER-MECHANISMEN

In diesem Beitrag werden die Rastpolbahnen einiger nachgiebigen Mechanismen ermittelt, die als nachgiebige Kopien von bekannten Koppelgetrieben für angenäherte Geradführung eines Koppelpunktes (Bild 1) entworfen werden [5]. Um eine Geradführung von Koppelpunkt C zu realisieren, die Mechanismen sollten folgende Abmessungen haben [2]:

|         | $\mathbf{a} = \overline{\mathbf{A}_0 \mathbf{A}}$ | $\mathbf{b} = \overline{\mathbf{B}_0 \mathbf{B}}$ | $c = \overline{AB}$ | $\mathbf{d} = \overline{\mathbf{A}_0 \mathbf{B}_0}$ | ĀĊ     | BC     |
|---------|---------------------------------------------------|---------------------------------------------------|---------------------|-----------------------------------------------------|--------|--------|
| Roberts | a                                                 | а                                                 | 0.85a               | 2.44a                                               | 1.105a | 1.105a |
| Höcken  | а                                                 | 2.5a                                              | 2.5a                | 2a                                                  | 5a     | 2.5a   |
| Watt    | а                                                 | а                                                 | 1.04a               | 2.1a                                                | 0.52a  | 0.52a  |

Tabelle 1. Die Abmessungen der bekannten Koppelgetrieben für angenäherte Geradführung



Bild 1. Viergliedrige Koppelgetrieben nach Roberts-Чебышев (a), Höcken (b) und Watt (c)

Bild 2 zeigt das kinematische Schema eines symmetrisches Koppelgetriebes nach Roberts-Чебышев. Die Geraden  $\overline{A_0A}$  und  $\overline{B_0B}$  schneiden sich im Momentanpol der Koppel P (Bild 2a). Bei der allgemeinen Bewegung der Koppel verändert der Pol im Laufe der Bewegung ständig seine Lage relativ zur Bezugsebene (Bild 2b). Verbindet man für einen Bewegungsablauf, der durch die Bahnkurven k<sub>A</sub>, k<sub>B</sub> zweier Gliedpunkte A und B gegeben ist, alle Lagen des Poles P<sub>i</sub> in der festen Ebene (Bild 2b), so erhält man die zur Bezugsebene gehörende Rastpolbahn der Koppel.



Bild 2. Rastpolbahn des viergliedrigen Koppelgetriebes nach Roberts-Чебышев

### 2. RASTPOLBAHN DER NACHGIEBIGEN MECHANISMEN

Wir haben die nachgiebigen Kopien von obengenannten Starkörper-koppelgetrieben (Bild 1) aus Piacryl hergestellt (Elastizitätsmodul  $\mathbf{E} = 3700 \text{ N/mm}^2$ , Biegefestigkeit  $\sigma_{bzul} = 90 \text{ N/mm}^2$ [7]) und analisiert.

Das Bild 3a zeigt ein nachgiebiger Mechanismus nach Roberts-Чебышев (Bild 2a) mit Kerbgelenken [5]. Die Breite der steiferen Segmente des Mechanismus ist mit  $w_R$ , und die Breite der elastischen Segmente ist mit  $w_E$  bezeichnet (Bild 3b). Die Gelenke des Starkörpervorbildmechanismus A<sub>0</sub>, A, B und B<sub>0</sub> (Bild 2a) lassen sich an der nachgiebigen Kopie (Bild 3a) relativ exakt erkennen, an dem engsten Teil des entsprechenden elastischen Segmentes ( $w_E$ ). Unter der Wirkung einer Antriebskraft F, die an der Mitte der Kurbel eingeleitet wird, bewegt sich der nachgiebige Mechanismus mittels der Nachgiebigkeit in seinen "Gelenken" von seiner unverformten Anfangslage ( $\varphi_A = 37.345^\circ$ ) bis zur verformten Lage.

Die nachgiebigen Mechanismen haben viele Vorteile. Sie sind spielfrei, verschleiß- und reibungsarm (es gibt nur innere Reibung). Mann kann ein nachgiebiger Mechanismus aus einem Stück mit sehr kleinen Abmessungen herstellen. Durch die Anwendung der nachgiebigen Mechanismen kann man kleine Wege mit großer Genauigkeit erzeugen. Sie sind auch kostengünstig und reinraumtauglich. Deshalb sind sie geeignet für die Anwendungen in der Mikromechanik.



Um die Rastpolbahn des obengenannten nachgiebigen Mechanismus nach Roberts-Чебышев (Bild 3a) zu ermitteln, werden zuerst die Bahnkurven zweier Punkte auf dem steiferen Segment der "Koppel" (A<sub>s</sub> und B<sub>s</sub>) ermittelt. Die Aussagen zur Bewegungsgeometrie der nachgiebigen Mechanismen sind nicht an Hand einfacher kinematischer Strukturmodele machbar, sondern erst nach einer FEM-Analyse möglich; in diesem Beitrag werden für verschiedene Werte der Antriebskraft die entsprechende Punktlagen A<sub>s</sub> und B<sub>s</sub> unter Nutzung von FEM-Programm ANSYS ermittelt. Durch die Näherung der punktweise eingegebenen Verlauf der Punktlagen A<sub>s</sub> und B<sub>s</sub> (Bild 4), z.B. durch Polynome zweiter (oder dritter) Ordnung, kann man die Bahnkurven dieser Punkte definieren (Bild 4):

Bild 4. Ermittlung der Bahnkurven der Punkten As und Bs und des Geschwindigkeitspols

Aufgrund der momentanen Drehung um den Geschwindigkeitspol sind die Geschwindigkeiten aller Gliedpunkte senkrecht zu den jeweiligen Polstrahlen vom Pol zum betrachteten Punkt gerichtet, d.h. alle Bahnnormalen schneiden sich im Pol. Die Gleichungen der Bahnnormalen  $n_A$  und  $n_B$  (Bild 4) durch die Punkte  $A_s(x_A, y_A)$  und  $B_s(x_B, y_B)$  lassen sich bestimmen zu:

$$y - y_A = k_{n_A} (x - x_A)$$
 (2a)

$$y - y_B = k_{n_B} (x - x_B)$$
 (2b)

wobei die Neigungskoeffiziente der Bahnnormalen  $n_A$  und  $n_B$ :

$$k_{n_A} = -\frac{1}{2Ax_A + B}$$
(3a)

$$k_{n_{B}} = -\frac{1}{2Dx_{B} + E}$$
(3b)

sind. Die Bahnnormalen  $n_A$  und  $n_B$  schneiden sich im Geschwindigkeitspol  $P(x_P, y_P)$  der "Koppel" dieses nachgiebigen Mechanismus (Bild 4):

$$x_{p} = \frac{k_{n_{A}}x_{A} - k_{n_{B}}x_{B} + y_{B} - y_{A}}{k_{n_{A}} - k_{n_{B}}}$$
(4a)

$$y_{p} = k_{n_{A}}(x_{p} - x_{A}) + y_{A} = k_{n_{B}}(x_{p} - x_{B}) + y_{B}$$
 (4b)

Für die Punktlagen  $A_{si}$  und  $B_{si}$  werden die entsprechende Lagen der Geschwindigkeitspole  $P_i$ ermittelt und durch die Näherung dieser punktweise eingegebenen Pole  $P_i$  kann man der Rastpolbahn dieses nachgiebigen Mechanismus ermitteln. In diesem Beitrag werden die Rastpolbahnen für den Bewegungsbereich der nachgiebigen Mechanismen ermittelt, der mittels der Antriebskräfte  $F = 0 \div \pm F_{max}$  ( $\sigma_{max} < \sigma_{bs}$ ) zu realisieren ist.

Für den nachgiebigen Mechanismus nach Bild 3a und die Parameterwerte:  $\mathbf{w}_{R} = 10$ mm,  $\mathbf{w}_{E} = 1$ mm,  $\mathbf{a} = 66.585$ mm und  $\delta = 4$ mm (Piacryldicke) wird die Rastpolbahn ermittelt, die änlich wie die Rastpolbahn des Starrkörper-vorbildmechanismus aussieht (Bild 5).



Bild 5. Rastpolbahnen von Starrkörper-vorbildmechanismus und nachgiebigem Mechanismus nach Roberts-Чебышев mit Kerbgelenken

Der Momentanpol P ist der Schnittpunkt der Bahnnormalen aller Punkte einer bewegten Ebene d.h. auch des geradgeführten Koppelpunktes C, der an der Ecke der Dreieckkoppel liegt (Bild 3a). Der Punkt C wird angenähert horizontal (geradlinig) geführt, sodass der Momentanpol an der Horizontalbahnnormale liegt. Daraus ergibt sich dass die x-Koordinaten des Momentanpols P und des geradgeführten Punktes C übereinstimmen sollten ( $x_P=x_C$ ). In der Tabelle 2 sind die x-Koordinaten des geradgeführten Koppelpunktes C und der obenermittelten Rastpolbahn angegeben. Ein geringfügig Fehler  $\Delta x$  ist der Beweis der Richtigkeit des präsentierten Ermittlungsverfahren der Rastpolbahn von nachgiebigen Mechanismen.

| x <sub>C</sub> [mm] | <b>x</b> <sub>P</sub> [mm] | $\Delta x [mm]$ |
|---------------------|----------------------------|-----------------|
| 85.501              | 85.579                     | 0.078           |
| 84.738              | 84.802                     | 0.064           |
| 83.995              | 84.046                     | 0.051           |
| 83.274              | 83.316                     | 0.042           |
| 82.574              | 82.595                     | 0.021           |
| 81.894              | 81.899                     | 0.005           |
| 81.233              | 81.223                     | 0.010           |

Tabelle 2. x-Koordinaten des geradgeführten Punktes C und der Momentanpole P<sub>i</sub> (Rastpolbahn) von nachgiebigem Mechanismus nach Roberts-Чебышев mit Kerbgelenken

Das Bild 6a zeigt ein nachgiebiger Mechanismus nach Roberts-Чебышев mit Filmgelenken [5]. Innere Seiten der steiferen Segmente decken sich mit die Verbindungslinien der Gelenke des Starrkörpermechanismus nach Roberts-Чебышев. Die Breite der steiferen Segmente ist mit  $w_R$ , die Breite der elastischen Segmente ist mit  $w_E$  bezeichnet und die "Länge" der elastischen Segmente ist mit 1 bezeichnet (Bild 6b).



Bild 6. Ein nachgiebiger Mechanismus nach Roberts-Чебышев mit Filmgelenken

Für den nachgiebigen Mechanismus nach Bild 6a und die Parameterwerte:  $\mathbf{w}_{R} = 10$ mm,  $\mathbf{w}_{E} = 1$ mm,  $\mathbf{a} = 66.585$ mm,  $\mathbf{l/a} = 0.1$  und  $\mathbf{\delta} = 4$ mm (Piacryldicke) wird die Rastpolbahn ermittelt, die in dem Bild 7 mit der Rastpolbahn des Starrkörper-vorbildmechanismus verglichen wird.



Bild 7. Rastpolbahnen von Starrkörper-vorbildmechanismus und nachgiebigem Mechanismus nach Roberts-Чебышев mit Filmgelenken

Das Bild 8 zeigt ein nachgiebiger Mechanismus nach Roberts-Чебышев mit Stabgelenken [5]. Die "Glieder" und "Gelenke" dieses nachgiebigen Mechanismus sind die Stäbe die kreisförmigen Querschnitt haben. Der Durchmesser der steiferen Segmente des Mechanismus ist mit D und der Durchmesser der elastischen Segmente mit d bezeichnet (Bild 8b).



Bild 8. Ein nachgiebiger Mechanismus nach Roberts-Чебышев mit Stabgelenken

Für den nachgiebigen Mechanismus nach Bild 8a und die Parameterwerte: D = 10mm, d = 1mm, a = 66.585mm und l/a = 0.1 wird die Rastpolbahn ermittelt, die in dem Bild 9 mit der Rastpolbahn des Starrkörper-vorbildmechanismus verglichen wird.



Bild 9. Rastpolbahnen von Starrkörper-vorbildmechanismus und nachgiebigem Mechanismus nach Roberts-Чебышев mit Stabgelenken

Das Bild 10 zeigt ein nachgiebiger Mechanismus nach Höcken (Bild 1b) mit Kerbgelenken [5] in der Anfangslage (Bild 10a) und in der verformten Zustand (Bild 10b); geradgeführte Koppelpunkt C liegt am Ende der Koppel.



Bild 10. Ein nachgiebiger Mechanismus nach Höcken mit Kerbgelenken

Für den nachgiebigen Mechanismus nach Bild 10 und die Parameterwerte:  $w_R = 10mm$ ,  $w_E = 1mm$ , a = 42.971mm,  $\phi_A = 180^\circ$  und  $\delta = 4mm$  (Piacryldicke) wird die Rastpolbahn ermittelt, die änlich wie die Rastpolbahn des Starrkörper-vorbildmechanismus aussieht (Bild 11).

| x <sub>P</sub> [mm] | y <sub>P</sub> [mm] | y <sub>P</sub> [mm] | 10 -                              |
|---------------------|---------------------|---------------------|-----------------------------------|
|                     | Starrkörper-        | nachgiebiger        |                                   |
|                     | mechanismus         | Mechanismus         |                                   |
| 92.72               | -9.74               | -9.48               | 4-                                |
| 91.03               | -7.16               | -6.86               | 2                                 |
| 89.33               | -4.70               | -4.36               | 0-]                               |
| 87.64               | -2.30               | -1.98               | -2 -                              |
| 85.94               | 0.00                | 0.27                |                                   |
| 84.26               | 2.20                | 2.41                |                                   |
| 82.58               | 4.31                | 4.44                |                                   |
| 80.93               | 6.34                | 6.35                | -12                               |
| 79.29               | 8.26                | 8.17                | 78 80 82 84 86 88 90 92<br>X [mm] |

Bild 11. Rastpolbahnen von Starrkörper-vorbildmechanismus und nachgiebigem Mechanismus nach Höcken mit Kerbgelenken

94

Das Bild 12 zeigt ein nachgiebiger Mechanismus nach Watt (Bild 1c) mit Kerbgelenken [5] in der Anfangslage (Bild 12a) und in der verformten Zustand (Bild 12b); geradgeführte Koppelpunkt C liegt an der Mitte der Koppel.



Bild 12. Ein nachgiebiger Mechanismus nach Watt mit Kerbgelenken

Für den nachgiebigen Mechanismus nach Bild 12 und die Parameterwerte:  $w_R = 10mm$ ,  $w_E = 1mm$ , a = 61.406mm,  $\phi_A = 305.73^\circ$  und  $\delta = 4mm$  (Piacryldicke) wird die Rastpolbahn ermittelt, die änlich wie die Rastpolbahn des Starrkörper-vorbildmechanismus aussieht (Bild 13).

| x <sub>P</sub> [mm] | y <sub>P</sub> [mm]<br>Starrkörper- | y <sub>P</sub> [mm]<br>nachgiebiger | <sup>30</sup>     |                                   |
|---------------------|-------------------------------------|-------------------------------------|-------------------|-----------------------------------|
|                     | mechanismus                         | Mechanismus                         | <u></u><br>≞ 25 - | Starrkoerper                      |
| 10.34               | 27.61                               | 27.48                               | <b>,</b>          | Indoingiobrigor                   |
| 9.29                | 23.55                               | 23.40                               | 20 -              |                                   |
| 8.26                | 19.94                               | 19.81                               | -                 |                                   |
| 7.24                | 16.75                               | 16.64                               | 15 –              |                                   |
| 6.26                | 13.88                               | 13.82                               | -                 | 128-                              |
| 5.29                | 11.34                               | 11.30                               | 10 -              | 124                               |
| 4.36                | 9.02                                | 9.04                                | 5 -               |                                   |
| 3.45                | 6.91                                | 7.00                                |                   |                                   |
| 2.58                | 5.02                                | 5.16                                |                   | $2$ $4$ $6$ $8$ $X_{p} [mm]^{10}$ |

Bild 13. Rastpolbahnen von Starrkörper-vorbildmechanismus und nachgiebigem Mechanismus nach Watt mit Kerbgelenken

#### **3. SCHLUSSBEMERKUNGEN**

Eine der Vorgehensweisen für die Synthese der nachgiebiegen Mechanismen ist von einem bekannten Starkörper-Mechanismus auszugehen [6]. Die Bewegung der "Glieder" von nachgiebigen Mechanismus weicht aber von der Bewegung der Glieder von Starkörper-vorbildmechanismus mehr oder weniger ab, in Abhängigkeit von der Form der nachgiebigen Gelenke und dem Vorbildmechanismus selbst.

In diesem Beitrag werden die Rastpolbahnen der geführten Glieder dieser Mechanismen verglichen um die Abweichung der Übertragungsfunktionen dieser Mechanismen (Lageabweichung der Glieder) zu ermessen. Deswegen wurde in diesem Beitrag zuerst das Ermittlungsverfahren der Rastpolbahn bei nachgiebigen Mechanismen präsentiert.

Die in dem Beitrag betreffende nachgiebige Mechanismen werden als nachgiebige Kopien von bekannten Koppelgetrieben für angenäherte Geradführung eines Koppelpunktes entworfen.

Die Rastpolbahnen der geführten Glieder dieser nachgiebigen Mechanismen werden für die verschiedenen Arten nachgiebiger Gelenke (Kerbgelenke, Filmgelenke, Stabgelenke) ermittelt, für die Bewegungsbereiche die mittels der Antriebskräfte  $F < F_{max}$  ( $\sigma_{max} < \sigma_{bs}$ ) zu realisieren sind.

Die Rastpolbahnen aller drei nachgiebigen Mechanismen mit Kerbgelenken weichen nicht beträchtlich von Rastpolbahnen der Starrkörper-vorbildmechanismen ab, sodass abzuschließen ist dass die Bewegungsverhalten dieser nachgiebigen Mechanismen und der Starrkörpervorbildmechanismen ähnlich sind.

Die Rastpolbahnen der nachgiebigen Mechanismen mit Film- und Stabgelenken weichen beträchtlich von Rastpolbahnen des Starrkörper-vorbildmechanismus ab.

Diese Schlussfolgerungen werden am Beispiel der nachgiebigen Mechanismen für angenäherte Geradführung gezogen, aber sie könnten auch verallgemeinert werden. Soll die Abweichung der Bewegung von derjenigen des Vorbildmechanismus so gering wie möglich sein, beispielsweise der allgemeinen ebenen Führung eines Wirkgliedes, mann kann empfehlen der nachgiebige Mechanismus als nachgiebige Kopie von dem Starrkörper-vorbildmechanismus mit konzentrierten Nachgiebigkeit (z.B. Kerbgelenken) auszuführen.

#### Literatur:

<sup>[1]</sup> Howell,L.L. Compliant Mechanisms, John Wiley & Sons, Inc., New York, 2001.

<sup>[2]</sup> Bloch, S.Sch. Angenäherte Synthese von Mechanismen, VEB Verlag, Berlin 1951.

<sup>[3]</sup> Pavlović, N.D. Mikromehanika, Mašinski fakultet Niš, 1998.

<sup>[4]</sup> Živković, Ž., Teorija mašina i mehanizama - Kinematika, Mašinski fakultet Niš, 1992.

<sup>[5]</sup> Pavlović, N.T. Razvoj gipkih mehanizama za realizaciju pravolinijskog vođenja, Dissertation, Mašinski fakultet Niš, 2003.

<sup>[6]</sup> Christen, G., Pfefferkorn, H., Aufbau, Gestaltung, Dimensionierung und experimentelle Untersuchung, VDI Berichte 1423, Getriebetagung 9/1998, Kassel, 309-329.

<sup>[7]</sup> Pavlović, N.T., Pavlović, N.D., Stress Analysis And Guiding Accuracy of The Compliant Four-bar Linkages for Rectilinear Guiding, 47. Internationales Wissenschaftliches Kolloquium, Tagungsband, TU Ilmenau, 2002, 345-346.

<sup>[8]</sup> Pavlović, N.T., Christen, G., Experimental Research of The Compliant Four-Bar Linkage for Rectilinear Guiding, 47. Internationales Wissenschaftliches Kolloquium, Tagungsband, TU Ilmenau, 2002, 320-321.

Autorenangaben: Prof. Dr.-Ing. Nenad D. Pavlović Doz. Dr.-Ing. Nenad T. Pavlović Universität Niš, Fakultät für Maschinenbau, Aleksandra Medvedeva 14 18000 Niš Serbia & Montenegro Tel.: +381 18 500691 Fax: +381 18 588211 E-mail: pnenad@masfak.ni.ac.yu