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1 Introduction

Since the 1960s optical fibers gained evermore importance and are today well estab-

lished in telecommunication, metrology and high power lasers [1]. In the last ten years

a new type of fiber attracts attention: the multicore fiber (MCF) [2]. The main appli-

cations of MCFs include the generation of high brilliant beams (fiber lasers) [3], passive

transport of light [4], measurement of strain and bends in form of fiber sensors [5], and

enhancement of the transport capacity in optical network systems [6]. Such applica-

tions are established in the fields of laser material processing, medical engineering, and

telecommunication.

Concerning the requirements of high optical power in laser material processing, MCF

lasers represent a promising opportunity in scaling the output of fiber lasers to yet

increasing power levels. The multiple cores of the MCF provide a larger total area

compared to conventional step-index fibers [7], thus avoiding the onset of nonlinear

effects which is an important condition in the active as well as the passive operation of

the fiber. From the point of application, the fundamental mode of the fiber is mostly

preferred because of its higher brightness and beam quality compared to higher order

modes (HOMs). Various approaches exist to favor this mode, such as specifically de-

signed feedback elements like external Talbot cavities [8], various types of fiber couplers

[3] or mode selection via nonlinear processes [9]. However, distinct mode mixtures are

also taken into consideration for enhancing the beam brilliance [10]. These efforts in-

dicate the great significance, that is assigned to the modal composition.

Beside the modal content, a second important quantity is the polarization of the beam.

Radially or azimuthally polarized light [11] can be used to increase the efficiency of

material processing [12] or to focus light more tightly [13], which could be of interest

in the field of medical engineering too. Thereby it is imaginable that more complex,

optimized polarization distributions, adapted to special problems, could increase effi-

ciencies even further.

Adjustment and control of modal content and polarization necessitate a fast and reli-

able measurement technique, as provided by the use of computer-generated holograms

(CGHs) in combination with polarization analyzing elements. Whereas the measure-

ment of the polarization is well established [14], measuring the modal content of a beam
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1 Introduction 2

constitutes a more challenging task. Known approaches contain the measurement of

the Wigner distribution [15], numerical phase retrieval [16], the use of a ring-resonator

[17], low-coherence interferometry [18], and spatially resolved spectral interferometry

[19]. Whereas these techniques suffer from elaborate numerical calculations, limited

applicability, or long measurement time, the striking advantage of the CGH-method

is its real-time ability and the capability of measuring modal amplitudes and phases

directly, without the need of sophisticated numerics.

Therefore, the main purpose of this work is to extend the CGH-technique for the in-

vestigation of MCFs with the demand on the complete description of the fields, i.e.,

including the polarization. The complete field characterization enables the examina-

tion of the modal properties of the fiber as a function of parameters such as the bending

diameter, vertical pressure, excitation polarization and fiber length, providing deeper

insight into the characteristics of the MCF. Thereby, the use of different excitation

wavelengths allows the analysis of mode mixtures of different complexity and thus en-

hances the amount of available information.

The first part of this work adresses the calculation of modes in MCFs and their prop-

erties. Additionally, the measurement of the field and its polarization are theoretically

described. The second part deals with the experimental determination of the number

of modes, demonstrates the measurement of the complete field, and presents the be-

havior of the fiber while systematically varying the bending diameter, the amount of

vertical pressure, the excitation polarization, and the fiber length. Subsequently, the

decomposition of the MCF fields into step-index fiber LP (linearly polarized) modes

and its merits, the beam quality and possibilities of its improvement as well as the

Talbot effect are considered.



2 Theoretical Considerations

2.1 Multicore Fibers

Multicore fibers (MCFs) are optical fibers consisting of several high-index cylindrical

cores embedded in a common cladding and thereby forming a waveguide array. In most

cases the cores are arranged to build a hexagonal structure, but also rectangular or

ringlike arrangements are investigated [20, 21].

One isolated core with the surrounding cladding behaves like a step-index fiber, whose

physics is well-known [22]. Due to the existence of other cores in the neighborhood,

the light propagation in one core is no longer unperturbed. A light wave propagating

in one single core is influenced by the light in the other cores leading to waveguide cou-

pling. Thereby it is clear that the waves in the cores are affected differently, because

the number of next neighbor cores differs from core to core. The coupling is mostly

caused by the overlap of the evanescent fields. But also other coupling mechanisms are

reported [23]. The coupling of the individual cores leads to the formation of so-called

“supermodes” that are described in more detail in the next section.

The MCF under investigation consists of 19 hexagonally arranged cores as depicted

in fig. 2.1. The parameters specifying the geometry are the core-to-core distance

Λ = 5.5 µm (pitch) and the core diameter d = 2.2 µm. Together with the numeri-

cal aperture of the single cores NA = 0.108, or the index step from cladding to core1

∆n = nco − ncl = 4× 10−3, and the wavelength λ, the structure is completely defined

(e.g., regarding the modal content) [4].

2.2 Calculation of Modes

For modal decomposition using computer-generated holograms (CGHs) it is necessary

to know the propagating modes in the given structure of refractive index. Therefore

this section is intended to introduce several concepts on how to calculate the modal

patterns and the corresponding propagation constants.

1The material dispersion is neglected.
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Fig. 2.1 (a) Schematic fiber cross section with geometry parameters Λ (pitch) and d (core
diameter). (b) Microscope image of the front facet of the fiber. The outer brownish
ring is the fiber coating. (c) Rotated and enlarged core area.

Basically there exist two different approaches for the calculation: the coupled mode

theory (CMT) that relies on the mutual evanescent coupling between the individual

cores of the fiber, and mode solvers that calculate the modes of the index structure as

a whole, disregarding individual cores.

The modes in MCFs are sometimes called “supermodes” which is based on the fact

that these modes are eigenstates of the entire structure whereas in general each single

core has a modal distribution itself. But this term is only meaningful in the context of

the CMT [7].

2.2.1 Coupled Mode Theory

In the CMT the index structure is regarded to consist of subdomains, namely the

individual cores of the fiber, whose modes are assumed to be known since each core

represents a step-index fiber itself. Usually, the individual cores are designed to be

single-mode which simplifies calculation. The scalar field Ψ in the structure and its

evolution during propagation in z-direction can be described by a superposition of

the unperturbed fundamental modes El of the N cores (l = 1 . . . N) weighted with a

z-dependent amplitude Al(z) [9]:

Ψ(r, z) =
N∑
l=1

Al(z)El(r), (2.1)

where r = (x, y), the transverse coordinates. The centerpiece of the CMT is the mutual

interaction or coupling of each single core with all the other cores. The coupling is
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represented in a set of differential equations for the amplitudes Al(z) [24]:

dAk

dz
= iĈAk, (2.2)

where Ĉ is the coupling matrix and Ak = [A1A2...AN ]k, where k denotes the kth set of

amplitudes describing the kth supermode. The z-invariance of the index structure justi-

fies a harmonic z-dependence for the amplitudes Ak. With the ansatz Ak = Ak(0)eiβkz,

eq. (2.2) can be solved as an eigenvalue problem, where βk is the propagation constant

of the kth supermode. Therefore the solution of eq. (2.2) comprises N sets of vectors

Ak(0) (each having l = 1...N entries) and the corresponding βk, that together charac-

terize the N supermodes. According to the CMT, the number of supermodes is equal

to the number of cores [24]. Since Ak(0) and βk are known, the harmonic z-dependence

allows the numerical propagation of a field consisting of an arbitrary superposition of

the N supermodes.

To visualize the evanescent overlap of the fundamental modes of the individual cores

El, fig. 2.2(b) depicts the overlap integral in matrix form Mij =
∫∫
EiEjdA and Mij = 0,

if i = j, for a wavelength of 633 nm, with the surface element dA, and integration over

the whole transverse plane. The corresponding arrangement of cores is depicted in

fig. 2.2(a). Since Mij = Mji, the matrix is symmetric. Further, the matrix reveals

some symmetry properties as well as the number of next and higher order neighbors,

that is denoted with N1, N2 etc., and the amount of overlap between them.
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Fig. 2.2 (a) Arrangement of cores. (b) Matrix Mij describing the evanescent overlap of
the fundamental modes in the individual cores at 633 nm (normalized to maximum
value). Only the mutual interaction of fields is considered.
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Consider for instance the line M1j (j = 1 . . . 19) depicting the overlap of the central

core (blue) to all others. It can be easily deduced that for this core N1 = N2 = N3 = 6

with {N1} = 2, 3, 4, 5, 6, 7, {N2} = 9, 11, 13, 15, 17, 19 and {N3} = 8, 10, 12, 14, 16, 18

(seen as long dark bar followed by an alternating pattern). Accordingly, the cores in

the first ring (red) have N1 = 6, N2 = 4 and N3 = 3, the ones in the corners of the

second ring (green) N1 = 3, N2 = 2 and N3 = 3 and the ones on the borders of the

second ring N1 = 4, N2 = 3 and N3 = 2.

The mutual overlap between next neighbors amounts to 46% of the power within one

isolated core, between neighbors of second order 20%, and between neighbors of third

order 14%. The corresponding distances are sN1 = Λ, sN2 =
√

3Λ and sN3 = 2Λ.

The number of neighbors of different order, the distance to them and the overlap be-

tween them, are important quantities that determine the shape and symmetry of the

supermodes.

The ansatz of the CMT is true in the regime of weak coupling of neighboring cores.

Therefore, results become incorrect at longer wavelengths as will be discussed in

sec. 2.3.1.

2.2.2 Vectorial Mode Solvers

In contrast to the CMT, there are mode solvers calculating modes from index profiles

that need not to contain individual waveguides. Two kinds of mode solvers shall be

introduced in the following. First, there are mode solvers handling arbitrary index

profiles. These usually solve an eigenvalue problem resulting from Maxwells equations,

with the advantage of utmost generality and applicability. Another approach is to

make use of specific symmetries of the problem to reduce computational effort. The

advantage of faster computation is therefore accompanied with the restriction to a

smaller class of problems that can be solved.

Note that in this new context the term ”supermode” becomes meaningless and is simply

replaced by ”mode” unless there are reasons for confusion.

Mode Solvers Rigorously Solving Maxwells Equations

Maxwells equations2 and translation invariance in z (all field components ∝ eiβz) can

be used to deduce an eigenvalue problem for the transverse magnetic field H t [25]:

∇2
tH t(r) +

ω2

c2
ε(r)H t(r) +∇t ln ε×∇t ×H t(r) = β2H t(r). (2.3)

2The material is assumed to be non-magnetic, isotropic and without free charges or currents.
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with ∇t = [∂x ∂y 0]′, ε(r) the permittivity distribution, ω the angular frequency, β the

eigenvalue and c the velocity of light.

The z-component of the magnetic field vector follows from ∇ ·H = 0:

Hz =
1

iβ
∇t ·H t(r). (2.4)

The electric field vector can be calculated from H :

E(r) =
i

ωε0ε(r)
∇×H(r). (2.5)

with ∇ = [∂x ∂y ∂z]
′ and ε0 the permittivity of vacuum.

It is also possible to derive an eigenvalue problem for the transverse components of

the electric field. But then, the operator of the resulting eigenvalue problem is no

longer Hermitian. Note that in both cases two of six field components are sufficient to

build the solution. A simplification arises if ε(r) is piecewise uniform and the index

difference between core and cladding is small. In this case ∇t ln ε(r) ≈ 0 and the

transverse components of the magnetic field in eq. (2.3) are decoupled to form the

Helmholtz equation [25]: [
∇2
t +

ω2

c2
ε(r)

]
H t(r) = β2H t(r) (2.6)

Numerical solving schemes for eq. (2.3) as well as eq. (2.6) are for example finite differ-

ence methods (FD) [26, 27], finite element methods (FEM) [28] as used by COMSOL

Multiphysics® (COMSOL), and the source model technique (SMT) [29].

Mode Solvers Exploiting Cylindrical Symmetry

An approach that is used for geometries with cylindrical symmetry is the multipole

method as described in [30, 31]. The method is applicable for every structure that

consists of periodically arranged inclusions in a background material. The fields are

expanded in Fourier-Bessel series, i.e., in terms of Bessel and Hankel functions that

form a natural basis in cylindrical coordinates. The solution then comprises a set of

Fourier-Bessel coefficients. The free simulation tools of CUDOS MOF (CUDOS) are

used to apply this technique.

There are several extensions of the method to enable the calculation of index structures

with non-cylindrical inclusions [32].



2 Theoretical Considerations 8

2.2.3 The Effective Step-index Model

The modes of step-index fibers are well known and can be described by analytic formula

[22]. Therefore it can be desirable to replace the complicated structure of MOFs

with an equivalent step-index (ESI) structure. In the case of MCFs the task is to

find an appropriate core index. This is done by calculating the effective index of the

fundamental space-filling mode (FSM) [33], which is the mode of the infinite hexagonal

array of cores, or its elementary cell, with the highest effective index. In this work this

index was calculated using a FD approach. The equivalent core radius can be computed

analytically as described in [33].

At short wavelengths the description of the MCF with the ESI model is restricted,

since the number of modes in the MCF cannot exceed 19 (cf. sec. 2.2.1), whereas

for a step-index fiber the number of modes is continuously growing with decreasing

wavelength.

2.2.4 Comparison and Results

In this section the modal fields of the MCF under investigation will be presented as well

as a comparison between the mode fields and the corresponding propagation constants

calculated with different numerical mode solvers.

Fig. 2.3 depicts the fields of all 19 exciteable modes as computed with the scalar CMT

at 633 nm. This wavelength is chosen to provide sufficient weak coupling to justify the

ansatz of the CMT. It is important to note that at 633 nm only the first 12 modes

are propagating (neff > ncl), where this number is dependent on wavelength. Addi-

tionally, the modal fields and the corresponding propagation constants slightly change

with wavelength, but the shape of the modes stays basically the same (see sec. 2.3.1).

The results obtained using different mode solvers are compared in tab. 2.1. Thereby

the calculated effective mode indices and the overlap integral of the modal fields serve

as comparative values. The results obtained with COMSOL are chosen as reference,

since this software is widely used and commercially available. For the vectorial solvers

the Hx-component of the field was chosen to compare the fields. Examining the mode

indices, the results obtained with CUDOS agree best, whereas the CMT yields slightly

less exact results. The accordance regarding the values of the overlap integrals is very

high for all mode solvers. Most according mode fields are obtained by CUDOS and

the SMT with mean overlap exceeding 99.9 %. Further, the high agreement of > 99 %

demonstrate the reliability of the CMT approach. The results of the ESI model show

the largest discrepancy to the reference. But considering that here the calculation is

based on a different index structure, the agreement is more than satisfying.
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In contrast to the other mode solvers the accuracy of the CMT approach drops with in-

creased wavelength [7], which becomes apparent in ∆ncmt
eff = 2×10−4 and Icmt = 88.84 %

for the fundamental mode at 1064 nm.

Fig. 2.3 Normalized modal fields of the MCF calculated with the CMT at 633 nm, arranged
according to their effective indices (axes dimensions in µm).

nfem
eff ∆ncmt

eff ∆nfd
eff ∆ncud

eff ∆nsmt
eff ∆nesi

eff Icmt Ifd Icud Ismt Iesi

[%] [%] [%] [%] [%]

1.45063515 7e-5 5e-6 6e-9 4e-6 1e-5 98.96 99.96 99.97 99.97 97.45
1.45051956 4e-5 1e-6 2e-9 3e-6 3e-5 99.14 99.95 99.97 99.95 97.00
1.45051951 4e-5 6e-6 5e-9 4e-6 3e-5 99.13 99.95 99.99 99.97 96.99
1.45037293 6e-6 3e-7 6e-9 5e-6 7e-5 99.70 99.67 99.98 99.92 96.04
1.45037292 7e-6 2e-6 1e-8 5e-6 7e-5 99.61 99.84 99.89 99.93 95.94
1.45032269 1e-6 5e-6 2e-8 6e-6 7e-5 99.83 99.66 99.96 99.90 95.83

3e-5 3e-6 8e-9 5e-6 5e-5 99.39 99.84 99.96 99.94 96.54

Tab. 2.1 Comparison of effective mode indices and mode fields at 633 nm for mode 1 to 6
with ∆nx

eff = |nfem
eff − nx

eff| and Ix =
∫∫

Ψ∗femΨxdA, the overlap integral with the
appropriate field component Ψ. The last row depicts the mean values of the column
above. Abbreviations as stated before.
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2.3 Properties of Modes

2.3.1 Number and Shape

The number of modes is defined in this work as the number of propagating modes with

different modal patterns. According to the CMT, a MCF with 19 cores will have 19 ex-

citable modes as depicted in fig. 2.3. Some of these modes are propagating (neff > ncl),

the others are radiating (neff < ncl). For modal decomposition only the propagating

modes are of interest, because the investigated fiber lengths are sufficiently large. The

number of propagating modes depends on the wavelength of the input light and on

fiber parameters such as core diameter, pitch and index distribution.

Fig. 2.4, depicting the number of modes calculated with the FD solver, demonstrates,

the larger the wavelength the smaller the number of propagating modes.

Fig. 2.4 Number N of modes depending on wavelength λ (a), core diameter d (b), pitch Λ
(c) and index step ∆n (d). The not varied structural parameters are those described
in sec. 2.1. For (b)-(d) the chosen wavelength is 633 nm. The insets (units in µm)
visualize the geometry of the fiber cross section ((b),(c)) and a slice through the
index distribution (d). Calculations done with the FD solver.
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Analogously, the number of such modes becomes smaller with decreasing core diame-

ter, with decreasing pitch or with decreasing index step from core to cladding. This

behavior is easily explained by considering the extension of the field of a single core

into the cladding. Obviously, the number of modes decreases the weaker the light is

guided in the cores and the larger the evanescent fields overlap. Fig. 2.5 exemplarily

shows, on the basis of the respective fundamental modes, that an increasing wavelength

leads to a decreasing total power fraction in the cores. Therefore it is true that the

stronger the coupling between cores the less modes propagate. This can be understood

as an increasing synchronization of phases or as phase locking, leading to the in-phase

supermode for very strong coupling.

The number of modes at the investigation wavelengths 633 nm, 780 nm and 1064 nm

is twelve, six and three due to calculation. Note that the limitation to 19 modes, as

predicted by the CMT, is reproduced by the FD solver as well.

Fig. 2.5 Normalized ratio of total power in the cores to total power in the cladding as a
function of wavelength on the basis of the respective fundamental modes. The
insets depict the corresponding mode fields at 400 nm and 1600 nm.

2.3.2 Polarization State

Numerically solving eq. (2.6) on page 7 for the structure of the investigated fiber yields

modes with distinct polarization properties. First, for each mode exists a dominating

transverse component in E or H . This characteristic is demonstrated in fig. 2.6 for

the fundamental mode at 1064 nm, where the dominating components are Hy and Ex.

Regarding all modes, the power ratio of the weak to the dominant transverse component

varies in-between 6× 10−9 . . . 8× 10−5 at 1064 nm, and 2× 10−8 . . . 2× 10−3 at 633 nm.

Second, the modes are nearly transverse, i.e., the z-component of the electric field Ez or
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magnetic field Hz is very small compared to the dominating transverse component (see

fig. 2.6). The power ratio of the z-component with respect to the dominating transverse

component varies in-between3 (1 . . . 4)×10−4 at 1064 nm, and (3 . . . 9)×10−4 at 633 nm.

Thus, the modes are linearly polarized in good approximation in either x- or y-direction.
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Fig. 2.6 Field components of the fundamental mode at 1064 nm. The dominating com-
ponent is Hy with power PHy . The power of the remaining fields amounts
to PHx = 5.7× 10−9PHy , PHz = 1.4 × 10−4PHy , PEx = 4.8 × 10−1PHy ,
PEy = 1.9× 10−7PHy and PEz = 6.7× 10−5PHy .

2.3.3 Orthogonality and Completeness

Emanating from the reciprocity theorem for Maxwells equations, a general orthogonal-

ity relation for optical waveguide modes can be established [34]:∫∫
(E∗i ×Hj) · ezdA =

∫∫ (
E∗ixHjy − E∗iyHjx

)
dA = δij, (2.7)

where ez is the unit vector in z-direction, dA is the surface element and δij the Kro-

necker symbol. The integration is performed over the whole transverse plane.

Since the modes in the MCF are approximately linearly polarized (see sec. 2.3.2), there

exists a coordinate system for each mode such that one of the transverse components Ex

or Ey and Hx or Hy, respectively, is approximately zero. Therefore the orthogonality

3The given values are valid for E and H
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relation of eq. (2.7) can be written in scalar form:∫∫
Ψ∗iΨjdA = δij, (2.8)

with Ψ representing the appropriate field component.

The discrete orthogonal modes build a complete set and hence, every field U(r) can

be decomposed:

U(r) =
2N∑
l=1

clΨl(r) =
2N∑
l=1

clΨl(r)el, (2.9)

with cl = %le
iϕl the complex expansion coefficient and Ψl(r) = Ψ(r)el the lth mode

with amplitude %l and intermodal phase ϕl (with respect to a reference phase). The

latter formulation in eq. (2.9) splits the vector field into two factors: Ψl(r) representing

the field distribution and el a unit vector containing the polarization of the lth mode.

Note that el is not spatially dependent since a mode is globally linearly polarized.

Locally varying polarization is therefore a feature of vector fields composed of several

modes.

The expansion (2.9) is valid as long as the radiation modes are negligible, which is the

case in all experiments of this work.

2.4 Field Decomposition into a Composite Set of

Modes

As shown in sec. 2.3.2, each mode is approximately linearly polarized. But there is

a polarization degeneracy meaning that each mode occurs twice4 with two orthogo-

nal polarization states. Since the refractive index profile is rather hexagonal than of

cylindrical symmetry, these modes propagate with different propagation constants (or

effective indices) in the fiber and their mode field distribution will be slightly different.

This difference is negligible (∆neff ≈ 10−8) because of the weak guidance of the inves-

tigated fiber and therefore it is reasonable to summarize the respective modes as field

components to one vector mode with two non-vanishing transverse components:

U(r) =
2N∑
l=1

clΨl(r)el =
2∑
g=1

N∑
k=1

ckgΨkg(r)ekg =
N∑
k=1

(ck1Ψk1(r)ek1 + ck2Ψk2(r)ek2) .

(2.10)

4”Twice” refers to the fact that the intensity patterns of two polarization degenerated modes are
equal.
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With the approximation Ψk1 ≈ Ψk2 = Ψk (quasi polarization degeneracy) it follows:

U (r) =
N∑
k=1

Ψk(r)

[
%kxe

iϕkx

%kye
iϕky

]
=

N∑
k=1

Ψk(r)eiϕk

[
%kx

%kye
iδk

]
, (2.11)

with δk = ϕky − ϕkx, ϕk = ϕkx and ek1 = ex and ek2 = ey (∀k), i.e., ek1 · ek2 = 0.

The phase δk is called intramodal phase since it describes the phase difference between

the components of one vector mode. This intramodal phase causes the vector mode to

be elliptically polarized in general. The phases ϕkx,y of each mode are measured with

respect to a common reference phase whose value is meaningless, since only relative

phase differences are of interest. The common reference is chosen to be the phase of

the x-component of the fundamental mode. To write eq. (2.11) in a similar way to

eq. (2.9) it is necessary to form a unit vector to characterize the polarization of the

summarized vector mode:

U(r) =

[
U1(r)

U2(r)

]
=

N∑
k=1

%ke
iϕkΨk(r)

[
akx

akye
iδk

]
=

N∑
l=1

clΨl(r)el, (2.12)

with aki = %ki/
√
%2
kx + %2

ky and i = x, y and %k =
√
%2
kx + %2

ky. The vector el now

represents the desired unit vector that completely describes the modal polarization

state. The amplitudes akx and aky as well as the intramodal phase δk are sufficient to

determine the form and orientation of the modal polarization ellipses.

Note that the expression on the right-hand side of eq. (2.12) is similar to the right-hand

side of eq. (2.9) with the difference that the unit vector el is now complex to describe

the in general elliptical polarization and that the upper limit of the sum is now just

the half of the initial limit since every two quasi degenerated linearly polarized modes

have been summarized to one vector mode. The term ”vector mode” is therfore more

specifically used for the composite mode whereas its components are called ”linearly

polarized modes”.

2.5 Correlation Analysis

The expansion in eq. (2.12) is well suited for evaluation with the CGH since the or-

thogonal components Ux = |Ux| eiϕx and Uy = |Uy| eiϕy of the vector field U are easily

analyzed using a polarizer in front of the hologram. The polarizer is necessary because

the CGH can evaluate only scalar fields [35]. The reconstructed fields U rec
x and U rec

y
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under orthogonal polarizer orientations read as:

U rec
x =

N∑
l=1

%lxe
i∆ϕlxΨl and U rec

y =
N∑
l=1

%lye
i∆ϕlyΨl, (2.13)

where ∆ϕlx,y are measured to the respective reference mode of the x,y-component (see

fig. 2.7). Note that U rec
x = Ux, but only |Uy| =

∣∣U rec
y

∣∣, since the phase difference between

the scalar reconstructions ∆ϕrel = ϕy − ϕx, called relative phase, is unknown yet and

the x-component is chosen to serve as phase reference.

Because the phases ∆ϕlx,y refer to the reference mode whose phase is defined as zero

for both decompositions, U rec
y has to be multiplied with the intramodal phase term of

the reference mode δref to obtain the correct phase difference between the vector field

components (cf. fig. 2.7):[
Ux

Uy

]
=

[
U rec
x

U rec
y eiδref

]
=

N∑
l=1

Ψl

[
%lxe

i∆ϕlx

%lye
i∆ϕlyeiδref

]
=

N∑
l=1

Ψle
i∆ϕlx

[
%lx

%lye
iδl

]
, (2.14)

where δl = ∆ϕly + δref − ∆ϕlx as can be seen in fig. 2.7. Comparison with eq. (2.11)

reveals equality (∆ϕlx = ϕl), which means that the measurement of the vector field

under orthogonal polarizer orientations, in combination with the measurement of the

intramodal phase of the reference mode, provides the full information to completely

reconstruct the vector field U .

Another possibility to correctly reconstruct U from the scalar reconstructions U rec
x and

U rec
y is to use the relative phase ∆ϕrel instead of the intramodal phase of the reference

mode δref: [
Ux

Uy

]
=

[
U rec
x∣∣U rec

y

∣∣ ei(ϕx+∆ϕrel)

]
. (2.15)

φ1x

∆φ2x

φ1y

∆φ2yδref

δ2

φ1x

∆φ2x

φ1y

∆φ2y

{φly}+δref{φlx}

{φly}

Fig. 2.7 Scheme to visualize the distinction of intermodal and intramodal phase.
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The intramodal phases of the modes δl, especially that of the reference mode δref and

the relative phase ∆ϕrel, are obtained measuring the Stokes parameters, or in some

cases using an alternative approach as described in sec. 2.6. Knowing the components

of the vector field, its intensity is given by:

I = |Ux|2 + |Uy|2, (2.16)

where it is worth noticing that δref or ∆ϕrel need not to be known for determining the

intensity. To calculate the modal spectrum, the intensities at the local optical axes

of the diffraction pattern |Wlx|2 and |Wly|2 are measured under orthogonal polarizer

orientations. Thereby |Wlx,y|2 is proportional to |〈Ψl|Ux,y〉|2 [35]. As a consequence

|Wlx|2 + |Wly|2 ∝ |clalx|2 + |clalyeiδl |2 = %2
l (a

2
lx + a2

ly) = %2
lx + %2

ly = %2
l , (2.17)

since the amplitudes alx and aly are choosen to form a unit vector for each mode (see

eq. (2.12) on page 14). Therefore the modal spectrum of the vector field can be easily

obtained from the modal spectra measured under orthogonal polarizer orientations,

independent of δref or ∆ϕrel.

2.6 Measurement of the Polarization State

As described in sec. 2.4, the vector field can be decomposed into a set of in general

elliptically polarized vector modes leading to an elliptical polarization of the vector field

itself. The state of polarization is known if all parameters of the polarization ellipse

are known. These parameters determine the form of the ellipse and its orientation with

respect to the coordinate axes as well as the sense of rotation the electric field vector

will describe in time. There exist two sets of parameters that allow to completely define

the ellipse [36]:

• (a1, a2, δ) with a1, a2 > 0, δ ∈ [0, 2π]

• (a, b, ψ, sgnχ) with a, b > 0, a ≥ b, ψ ∈ [0, π], χ ∈ [−π/4, π/4].

Thereby δ is the phase difference between the x- and the y-component of the field or

of the respective vector mode. The remaining quantities are defined in fig. 2.8(a).

The parameters of the ellipse can be determined measuring the Stokes parameters or

using the alternative approach as detailed in the following sections.
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Fig. 2.8 (a) Polarization ellipse and definition of corresponding parameters. (b) Definition
of the polarization states on the Poincaré sphere.

2.6.1 Stokes Parameters

The Stokes parameters S0 . . . S3 can be defined using the parameters of the polarization

ellipse of the first or second set [36]:

S0 = a2
1 + a2

2 S0 = a2 + b2

S1 = a2
1 − a2

2 S1 = S0 cos 2χ cos 2ψ

S2 = 2a1a2 cos δ S2 = S0 cos 2χ sin 2ψ

S3 = 2a1a2 sin δ S3 = S0 sin 2χ (2.18)

The Stokes parameters can be understood as spherical coordinates leading to the

Poincaré sphere with radius S0 (cf. fig. 2.8(b)). The poles of the sphere (S3 = ±S0)

represent circular polarization, whereas the equator (S3 = 0, blue dashed line) marks

linear polarization. All other points correspond to elliptical polarization. The sense

of rotation and the orientation of the polarization ellipses are defined in fig. 2.8(b).

Measuring the Stokes parameters allows the calculation of all parameters of the po-

larization ellipse. It is important to note that the CGH-based measurement technique

equally allows to determine the Stokes parameters spatially (a1,2 = |Ux,y|, δ = ∆ϕrel)

and modally (a1,2 = %lx,y, δ = δl) resolved.

To determine the Stokes parameters, seven measurements are necessary [14]. First the

intensity of the vector beam is measured behind a polarizer with angular orientations

of 0◦, 90◦, 45◦ and 135◦ with respect to one of the coordinate axes, leading to the
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parameters S1 and S2. Second the intensity is measured behind the pair of a quarter-

wave plate and a polarizer, whereas the former should be oriented with an angle of 0◦

and the polarizer with an angle of 45◦ and 135◦ to the chosen coordinate axes, which

leads to the parameter S3. Finally the intensity of the vector beam is measured without

any additional optical components leading to the parameter S0. The Stokes parameters

form the Stokes vector:

S =


S0

S1

S2

S3

 =


I

I0◦ − I90◦

I45◦ − I135◦

Irc − Ilc

 , (2.19)

where I0◦ , I90◦ , I45◦ and I135◦ are the intensities behind the polarizer, Irc and Ilc are the

intensities behind the pair of quarter-wave plate and polarizer, and I is the unfiltered

intensity. In the case of completely polarized light, S0 =
√
S2

1 + S2
2 + S2

3 holds, so

that the full description of the polarization state of the vector beam requires only

six measurements. Note that the mentioned intensities can be represented by the

reconstructed or measured intensities as well as by the modal powers.

2.6.2 Alternative Approach

Another way to identify the polarization state, either of the entire vector beam or of

each mode seperately, is to analyze the beam after a single polarizer that is rotated

from 0◦ to 360◦ in a small step size (e.g., 10◦). For elliptical polarization in front of the

polarizer, the intensity behind is expected to vary as C1 sin2(α + α0) + C2, where α is

the orientation angle of the polarizer and C1, C2 and α0 are constants determined by

a fit (C2 is zero for linear polarization). With these values there is easy access to the

main axes of the polarization ellipse a, b and the orientation angle ψ:

a = C1 + C2

b = C2

ψ = (k + 1)
π

2
− α0, (2.20)

where k is chosen such that ψ ∈ [0, π]. The drawback of this method is, that it does

not provide any information about the sense of rotation of the electric field vector, i.e.,

the sign of χ remains unclear. Hence, the Stokes parameters are known, except for the

sign of S3. Another disadvantage is the greater measurement effort compared to the

measurement of the Stokes parameters, that could be eliminated by using a stepping

motor for the rotation of the polarizer. The advantage is, that the parameters a, b and
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Ψ are measured directly, and are not a solution of a equation system as in the case of

the Stokes parameters. If there is one linearly polarized vector mode contained in the

mode mixture, all other intramodal phases are known and the field reconstruction is

possible.

The measurement of the Stokes parameters will be the preferred method for measuring

the polarization state in this work, since it provides the full information with less

measurement effort.

Chapter Summary

The modes of the investigated MCF are calculated using a scalar CMT and several

vectorial mode solvers. Concerning the field patterns and the effective indices of the

modes, the comparison with a commercial FEM solver reveals highest accuracy for the

multipole method. The results of the CMT become inaccurate for increasing wave-

length but are in good agreement with the FEM solver at 633 nm. The modes are

approximately described using the effective index theory.

Stronger coupling between individual cores leads to a growing synchronization of phases

and reduces the number of modes. The modes are nearly transverse with a dominating

transverse component. This property is used to summarize two degenerated linearly

polarized modes to one vector mode. The composite vector modes build a complete

orthogonal set allowing to expand arbitrary vector fields.

The reconstruction of a vector field is described by modal decomposition of its scalar

components, where the correct phase relation is determined from the measurement of

the Stokes parameters.



3 Experiments

3.1 Measurement Setup

The experimental setup as shown in fig. 3.1 basically consists of the laser source with

corresponding beam preparing components (blue), the MCF as object of investigation

(green), and the analyzing system (red).

For this work, three lasers are electively used as light source: a helium neon laser

(λ = 633 nm), a laser diode (λ = 780 nm) and a Nd:YAG laser (λ = 1064 nm). A phase

plate and a half-wave plate, respectively, are optionally used to alter the shape and

the polarization of the input beam. The beam is focussed onto the fiber end facet with

a microscope objective (MO, f = 10 . . . 25.4 mm), where the distance of the laser and

the focal length of the MO are adjusted to attain the optimal beam radius. Thereby,

the beam radius on the end facet of the fiber should match the mode field radius that

is 10 µm . . . 13 µm (λ = 633 nm . . . 1064 nm) for the examined fiber. The laser beam

parameters are determined by performing an ISO-conform caustic measurement. To

couple light into the fiber, a manual three-axes coupling stage and a six-axes nano-

positioning stage with minimal movement range of 1 µm and 100 nm, respectively, and

2 µrad are used. A manual three-axes stage is used to couple the light out. Thereby

the fiber end facet can be rotated to ensure correct orientation of the mode fields with

Fig. 3.1 Topview of the measurement setup: blue: laser source and beam preparation, green:
object of investigation, red: analysis system. LS laser source, PP phase plate (op-
tional), HWP half-wave plate (optional), MO1,2 microscope objectives, IC input
coupler, MCF multi-core fiber, OC output coupler, QWP quarter-wave plate (op-
tional), P polarizer, L1,2 lenses, BS beam splitter, CCD1,2 CCD cameras, CGH
computer-generated hologram.

20
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respect to the hologram. The magnification of the near field results from the ratio

f(L1)/f(MO2). Used magnifications are 37.5, 45 and 62.5.

After passing through a quarter-wave plate and a polarizer, that are necessary for the

determination of the polarization state, the beam is split in two branches. Via the

beam splitter, the fiber end facet is simultaneously imaged onto the CGH and a CCD

camera for recording the near-field intensity (CCD1). The CGH diffracts the beam in

various orders. The pattern of the first diffraction order is imaged onto a second CCD

camera (CCD2), whose image is used to determine the modal spectrum of the beam

for the scalar projection provided by the polarizer. Thereby the focal length of lens L2

is chosen to be 18 mm to match the size of the diffraction pattern with the one of the

CCD chip (maximum resolution: 4.4 µm (1600× 1200 pixels) and 16 Bit).

3.2 Computer-generated Hologram

The used computer-generated holograms are binary amplitude holograms with a Lee-

type coding [37]. A hologram consists of 512× 512 Lee-cells. Each cell with dimension

16× 16 µm2 is composed of four subcells with dimension 4× 16 µm2, that encode posi-

tive and negative real and imaginary parts of one complex number of the transmission

function of the hologram. The calculation of the transmission function to design the

first diffraction order in the far field is particularized in [35].

The hologram is written by laser lithography in a 70 nm-thick layer of chromium, de-

posited on a glass substrate. The smallest structure size that can be written is 700 nm.

The quality of the manufactured holograms is checked by illumination with a plane

wave with approximately constant amplitude over the aperture of the hologram. A

plane wave of constant amplitude multiplied with the transmission function of the

hologram yields the far field patterns of the modes at the local optical axes in the

Fourier plane of the hologram [35]. This is examined for the used holograms by com-

parison with the simulated diffraction patterns, revealing very good agreement and

thus indicating a high quality of the fabricated holograms.

3.3 Detection of Higher Order Modes

The calculation of the modes of the MCF is based on an idealized index distribution

with rectangular index steps, which defines the number and the shape of modes. How-

ever, the true index distribution is not exactly known. It is most likely that the cores

have a rather gaussian-shaped index profile than a rectangular one, which reduces the
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number of propagating modes as well as inevitable bending of the fiber does. There-

fore it is interesting to investigate how many modes can actually be attested. This is

achieved by searching for mode mixtures with high portion (> 60%) of a distinct higher

order mode (HOM). Using a phase plate in front of the input coupler and transversally

displace the fiber with respect to the microscope objective, the overlap to HOMs was

enhanced. For this experiment a straight and short (≈ 40 cm) fiber was used to retain

the excited HOMs. Fig. 3.2 depicts mode mixtures that contain the highest measurable

modes at 1064 nm, 780 nm and 633 nm to a large fraction.

At 1064 nm the fiber is single-mode, in contrast to the simulations that predict three

propagating modes. The residual fractions of mode 2 and 3, as seen in fig. 3.2, are

caused by the CCD background (cf. sec. 3.9), and by deformation of the near field

and the emerging beam induced by microbending (cf. sec. 3.5.1) and by aberrations of

external optical components such as lenses and beam splitter.

The highest order mode with high power fraction at 780 nm is mode 5, whose appear-

ance is clearly visible in the measured near field intensity. However, also mode 6 could

be measured up to a power fraction of 16 % in other mixtures.

At 633 nm, simulations predict twelve modes. The highest order mode that could be

attested at this wavelength is mode 7 (fig. 3.2, right). The existance of the modes 8 to

12 is therefore unlikely. But it is possible that a coupling situation adapted to distinct

HOMs in combination with a further reduced fiber length could reveal the propagation

of those modes, especially that of mode 8, since its propagation constant is very close

to the one of mode 7.

 

 

0.0
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1.0

Fig. 3.2 Highest detectable modes at 1064 nm (left, 96 % Mode 1), 780 nm (middle, 69 %
Mode 5) and 633 nm (right, 74 % Mode 7). Upper row: measured normalized near
field intensities (coordinates in µm ). Lower row: corresponding modal spectra.
The red dashed line marks the modal cut-off.
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3.4 Complete Field Reconstruction

Analyzing a vector beam with a polarizer in front of the hologram enables the re-

construction of the vector field intensity with its corresponding modal spectrum as

described in sec. 2.5. Combining the CGH-technique with the measurement of the

Stokes vector, the correct phase relation between the reconstructed vector field com-

ponents can be determined. With this, the vector field is completely described, based

on the well-known fields of the modes.

To determine the Stokes parameters it is necessary to measure the beam intensity af-

ter a pair of a polarizer and a quarter-wave plate, as described in sec. 2.6.1. These

intensities with corresponding modal spectra are depicted in fig. 3.3 for a selected sam-

ple beam. The variation of the relative modal weights, of the shape of the intensity

pattern, and of the power implies, that the polarization is spatially varying and that

different vector modes have quite different polarization states. The measurement of

the six intensity distributions as shown in fig. 3.3 enables the calculation of the vector

beam intensity, the overall modal spectrum and the local and modal polarization.

ll

Fig. 3.3 Measured intensities and modal spectra behind a polarizer and a pair of polarizer
and quarter-wave plate, respectively. The polarizer orientation is denoted with 0◦,
45◦, 90◦ and 135◦. The red arrows mark the measurement at the same polarizer
orientation, but with quarter-wave plate in the optical path. The power, referred
to the one at 45◦, is denoted by p.
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3.4.1 Intensity and Modal Spectrum

To obtain the vector beam intensity and its modal spectrum, two intensity measure-

ments under orthogonal polarizer orientations are necessary. Thereby the two intensity

distributions are simply added up1 as described by eq. (2.16) on page 16. The power

of the reconstructed intensities is given by the power of the measured near field in-

tensities, obtained by integration. The modal spectrum is calculated analogously via

eq. (2.17) on page 16.

The results, obtained for the sample beam of fig. 3.3, are depicted in fig. 3.4. As can be

seen, mode 4 and 5 dominate the beam with 68 % of the power leading to a near field

intensity with four lobes rotated ≈ 20◦ with respect to the coordinate system. The

remaining vector modes, that have a power fraction of 32 %, increase the intensity in

the nodal lines, which becomes clear if compared to the clear dark nodal lines in the

scalar measurement at 90◦ in fig. 3.3 (80 % of the power in mode 4 and 5). The com-

parison between measured and reconstructed intensity is done using a two-dimensional

cross-correlation coefficient as defined in [35], that is 91 % in this case. Considering

that 28 measured values with some uncertainty contribute to the reconstruction, the

accordance between both intensity distributions is very good.

Fig. 3.4 Measured and reconstructed intensity (in each case normalized to maximum value)
with corresponding modal spectrum of the beam analyzed in fig. 3.3. The cross-
correlation coefficient comparing both intensity patterns amounts to 91 %. Axes
dimensions in µm.

3.4.2 Local Polarization and Local Phase

To determine the polarization state for each point of the field, the Stokes parameters

have to be calculated using eq. (2.19) on page 18, as depicted in fig. 3.5 for the sample

beam of fig. 3.3. Thereby fig. 3.5 compares the Stokes parameters calculated from the

1The vector beam intensity could be measured directly by recording with a CCD camera without
the polarization manipulating elements. Instead, the two scalar near field intensities are added up
to keep the CGH adjusted.
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Fig. 3.5 Stokes parameters calculated from the measured intensities with normalization to
the maximum value of S0(NF) (upper row) and from the reconstructed intensities
with normalization to the maximum value of S0(rec) (lower row). Axes in µm.

measured and reconstructed intensity distributions.

Deviations mainly occur due to the discrepancies between the scalar, measured and

reconstructed intensities, that are caused by the uncertainties of the modal amplitudes

and phases (see sec. 3.9). Regarding the near field measurements, a crucial point is the

transversal realignment of the intensity patterns since a rotation of the polarizer shifts

the beam on the CCD chip. Especially, the computation of the parameters S0 . . . S3

would yield incorrect results if the shift would not be corrected2. In the case of the

MCF the realignment is done easily since the individual cores are visible in the near

field intensity pattern.

Using eq. (2.18) on page 17, the phase difference between two scalar orthogonal recon-

structions, and the intramodal phase of the reference mode can be calculated. With

this, the field is characterized completely allowing the determination of local polariza-

tion ellipses. In addition, the knowledge about the phase relation of the vector field

components allows the derivation of a new quantity, the so-called local phase θ as de-

fined in fig. 2.8 on page 17.

Consider the electric field vectors rotating with time at each point of the field in a

clockwise or counter-clockwise sense along their local polarization ellipses. At a fixed

time, each field vector will point in a different direction. The angle to the major axis

is defined to be the local phase.

Fig. 3.6 depicts the sample beam intensity with local polarization ellipses drawn at

2The high spatial frequencies in the pattern of the near field cause a high sensitivity to transverse
shift.
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(a) (b) (c)

Fig. 3.6 Local polarization of the sample beam, calculated using the intramodal phase of
the reference mode (a) and using the relative phase (b). Axes in µm. The color of
the ellipses marks the sense of rotation: right-handed (yellow), left-handed (red).
The green points mark the starting point of the electric field vector at a fixed time
- the local phase. (c) Stokes parameters of the vector field (points with intensity of
at least 40 % of the maximum intensity) presented on the Poincaré sphere.

discrete points, where the color of the ellipses marks the sense of rotation, and the

green points denote the starting points of the electric field vectors at a fixed time

t = 0. Fig. 3.6(a) and fig. 3.6(b) compare the two possibilities to reconstruct the phase

of the y-component of the vector field (eq. (2.14) and (2.15) on page 15). The compar-

ison reveals agreement in principle, but at a closer look there are some discrepancies

regarding the shape of the ellipse, the sense of rotation and the local phase. This is

explained by the uncertainty of the phase distributions of the field components3 as well

as that of the relative and intramodal phase, which results from the uncertainty of the

Stokes parameters (see above).

In fig. 3.6(c) the local polarization is presented on the Poincaré sphere. Despite the

loss of spatial information, four main polarization areas are visible. The results ob-

tained from the direct near field measurement, and from the reconstruction using the

CGH agree in general. Deviations occur due to the mentioned shift affecting the near

field measurement, and a cross-correlation coefficient smaller than one. The spatially

varying polarization, as for the sample beam of fig. 3.6, is a feature of beams consisting

of multiple modes. This is confirmed regarding fig. 3.7, where the local polarization is

investigated for a excitation wavelength of 1064 nm. At this wavelength the MCF is

single-mode leading to global polarization, i.e., all polarization ellipses have the same

3At 633 nm the phase distribution of a field component is composed of the phases of ten modes, each
intermodal phase resulting from four intensity measurements.
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(a) (b) (c)

Fig. 3.7 Local polarization of a beam at 1064 nm. Polarization ellipses and local phase
using (a) the intramodal phase of the reference mode and (b) the relative phase
(axes dimensions in µm). Colors and labeling as in fig. 3.6. (c) Stokes parameters
of the vector field (points with intensity of at least 40 % of the maximum intensity)
presented on the Poincaré sphere.

shape and point in the same direction. In addition, the local phase is flat meaning

that all points in the field are in-phase. The Poincaré representation exhibits very

small spreading of the local polarization states and the results obtained from near field

measurement and CGH-reconstruction are in excellent agreement (fig. 3.7(c)). Further,

the reconstructions of the polarization ellipses, using the intramodal phase (fig. 3.7(a))

and the relative phase (fig. 3.7(b)), respectively, yield same results at 1064 nm. This

illustrates the influence of the number of modes on the accuracy of the analysis proce-

dure.

3.4.3 Modal Polarization

In sec. 3.4.2 the Stokes parameters of the vector field are used to reconstruct the local

polarization and the local phase. Beyond that, the CGH allows to determine modal

Stokes parameters using the absolute modal spectra. The modal polarization for the

sample beam of fig. 3.6 is depicted in fig. 3.8 in form of points on the Poincaré sphere

and normalized polarization ellipses. It can be seen that the modal polarization is

quite diverse, but S2 is mainly negative and S3 mainly positive, which means that

the polarization ellipses are mainly oriented 90◦ . . . 180◦ to the x-axis and the sense of

rotation is dominantly right-handed.
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Fig. 3.8 Modal polarization of the sample beam depicted as points on the Poincaré sphere
(left) and as normalized polarization ellipses of modes with power fraction larger
than 3 % (right, axes in a.u.).

3.4.4 Comparison of Polarization Measurement Techniques

Sec. 2.6 outlines two polarization measurement techniques. To compare both methods,

a mode mixture at 780 nm is chosen and the modal polarization ellipses are calculated.

Fig. 3.9 depicts the modal ellipses for all six modes, calculated from the measurement

of the Stokes parameters and from the 360◦-rotation of the polarizer. Whereas the

orientation angle is in excellent agreement (maximum deviation of 4◦), the absolute

value of the ellipticity |ε| = | sinχ| partially differs (maximum deviation 0.65).

Fig. 3.9 Normalized modal polarization ellipses of a beam at 780 nm, calculated from a full
rotation of a polarizer (left), and from the Stokes parameters (right), respectively.
Axes in a.u. Relative modal content of mode 1. . . 6 in %: 13.5, 36.4, 10.2, 8.1, 26.7
and 5.0.
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The discrepancies are refered to the uncertainties of the modal Stokes parameters as

well as to the deviations of the modal power curves from the sin2-fits in the case of the

full rotation of the polarizer (cf. sec. 3.9).

3.5 Modal Content and Polarization

In sec. 3.4 the complete reconstruction of the vector field is demonstrated including the

modal spectrum and the vector beam intensity as well as the local polarization, the

local phase and the modal polarization. Now, the ability of measuring those quantities

is used to get a deeper insight into the modal properties of the MCF by investigating

the behavior by systematic variation of parameters such as bending diameter, vertical

pressure, input polarization, or fiber length.

3.5.1 Dependence on Bending Diameter

Bending a fiber induces several effects that affect the fiber geometry and its index

distribution. First, it occurs a path length difference or phase retardation between

inner and outer side of the bent fiber, i.e., the side of the fiber facing the bending

center and the opposite. This effect can be numerically described by an equivalent

straight fiber with altered index distribution n′(x, y) where the phase retardation of

the outer side is attributed by an increased refractive index [38]:

n′(x, y) = n(x, y) e2x/DB (3.1)

for bending the fiber in the xz-plane and with n(x, y) the index distribution of the

unperturbed fiber and DB the bending diameter.

Second, the bend leads to tension at the outer side and compression at the inner side.

The photoelastic effect therefore causes the index to increase slightly at the compressed

side. This counteracts the previously described phase retardation which is considered

by using an effective bending diameter Deff
B ≈ 1.28DB, where the number is specific

for silica [38].

Since bending changes the refractive index along a certain direction it induces a bire-

fringence, i.e., the x- and y-component of each vector mode generally propagate with

different phase velocities or, in the theory of this work, the intramodal phase becomes

unequal zero. This is in contrast to the straight fiber, in which both components prop-

agate with approximately the same velocity (difference of the effective indices in the

order of 10−8), since the fiber is weakly guiding.
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The equivalent index distribution for a bending diameter of 10 cm is simulated in

fig. 3.10(a) as a profile along the x-direction in comparison with the corresponding pro-

file of the straight fiber. Additionally, the two dashed lines mark the effective index of

the fundamental mode at 633 nm (red) and 1064 nm (black). Defining a critical bend-

ing diameter Dcrit
B as the diameter where the effective indices of the modes fall below

the maximal cladding index at the edge of the computational domain (48 × 48 µm2),

Dcrit
B is 14 cm, 57 cm and 56 cm for the modes at 1064 nm, and 6.6 cm, 9.2 cm, 9.8 cm,

13.2 cm, 14.2 cm, 16.2 cm, 23 cm, 29 cm, 45 cm, 46 cm, 158 cm and 167 cm for the modes

at 633 nm. Regarding Dcrit
B , the large difference between the two HOMs and the fun-

damental mode at 1064 nm and of mode 11 and 12 to the lower order modes at 633 nm

indicate, that these modes are very sensitive to pertubations and might not be propa-

gating in real experimental environments, concerning for example microbends (cf. below

and sec. 3.3).

The bending induced change of the refractive index leads to a mode field distortion at

the place of bending [39]. This behavior can be observed at 1064 nm by applying local

pressure, e.g., caused by the fiber clamps as seen in fig. 3.10(b), where the short bend

length leads to no significant power loss. Note that at this wavelength there are no

HOMs that could explain the shift of the barycenter of the intensity. The measured

distortion of the near field intensity is compared to a simulation at a bending diameter

of 21.1 cm. This number is found by an optimization based on the cross-correlation

coefficient.

(a) (b)

Fig. 3.10 (a) Bending induced deformation of the index distribution (intense blue line) for
a bending diameter of 10 cm and bendig in the xz-plane. Additionally, the unper-
turbed core and cladding index (faint blue line) and the effective indices of the
fundamental mode at 633 nm (dashed red line) and 1064 nm (dashed black line)
are shown. The arrow points towards the center of the bend. (b) Bending induced
distortion (bending in yz-plane). Left: measured near field intensity at 1064 nm.
Right: simulated intensity for DB = 21.1 cm.
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The good correlation of both intensity distributions of 98 % and the disappearance of

the distortion by holding the fiber only with adhesive strips indicate, that the observed

effect is explained by microbending and not by aberrations, caused by lenses or the

beam splitter, or by an inclined fiber cleave.

To exemplarily demonstrate the detection of modal effects at bending, a mode mixture

with an initially high content of HOMs (99 %) is excited. Fig. 3.11 depicts the relative

modal spectrum when bending the fiber in a half circle with diameters ranging from

30 cm to 7 cm. Thereby, only the first ten modes are analyzed which is justified by the

weak guidance of mode 11 and 12 and their neglectable excitation efficiencies. While

bending the fiber the light injection remains unaltered.

The modal spectra reveal that the relative content of the fundamental mode increases

from initially 1 % to 62 % while the total power decreases from 77 µW to 3 µW, which

constitutes a power loss of 14 dB at 7 cm. This behavior is well known [40], and can

be applied to enhance the beam quality with the drawback of power loss. On the

contrary, the relative and absolute power of mode 4 and 5 continuously drops with

increased bending, as seen in fig. 3.11.

Additionally, the behavior of the relative and absolute modal power in fig. 3.11 points

to power transfer processes, which are most presumable for modes with close effective

indices, such as mode 2 and 3 (cf. tab.2.1 on page 9). The oscillating power curves of

mode 2 and 3 (inset of fig. 3.11) indicate a power exchange of both modes in the range

of DB = 14 . . . 9 cm.

Fig. 3.11 Modal spectrum as a function of the bending diameter DB. The inset shows the
absolute modal power for the first five modes (dashed lines to guide the eye).
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Further, the power grow of mode 3 at bending diameters from 18 . . . 16 cm can not be

solely explained by power transfer from mode 2, because the power drop of mode 2 is

distinctly less than the strengthening of mode 3. Therefore, also power flow from the

fundamental mode or the modes 4 and 5 are reasonable. Below 9 cm, all modes suffer

from power loss due to radiation. Thereby, the power of mode 2 drops faster than

that of mode 3, which can be explained by the larger extension of mode 2 in bending

direction. The marginal power fractions of mode 9 and 10 affirm that mode 11 and 12

need not to be considered in the modal expansion.

The dependence of the modal polarization state on the bending diameter is depicted

in fig. 3.12 regarding the orientation angle Ψ of the polarization ellipses, the normal-

ized difference of the modal amplitudes in x- and y-direction (a1 − a2)/(a1 + a2) with

a1,2 = %x,y, and the intramodal phase δ (uncertainty considerations cf. sec. 3.9). The

excitation light from the helium neon laser is linearly polarized (polarization extinction

ratio PER = 34 dB) in y-direction as marked with solid black lines in fig. 3.12. It can

be seen that except for the fundamental mode that preserves the polarization direction

of the input light, all modes experience strong rotations of the polarization ellipses

with bending. Effects that cause such rotations are, e.g., twist-induced optical activity

[41], a change of the intramodal phase caused by an altered birefringence, polarization

dependent loss or power coupling. Induced optical activity can be excluded, because

the fiber was not twisted on purpose and the proportionality factor between twist angle

and polarization rotation angle is far too small to explain the large measured rotations

[41]. Since the fiber is weakly guiding, a polarization dependence of the bending loss is

neglectable [42]. In fact, power coupling between the two degenerated linearly polar-

ized modes and a changing intramodal phase explain the polarization rotation (cf. 3.12

middle and right). This behavior is expected, since the cross section of the investigated

MCF does not include polarization-maintaining elements.

Fig. 3.12 Modal polarization for the first five modes as a function of the bending diameter
DB in comparison with the polarization of the input light: orientation angle (left),
normalized difference of modal amplitudes (middle) and intramodal phase (right).
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Therefore, the propagation constants of each two polarization-degenerated modes are

very close favoring power coupling and yielding a high sensitivity to statistical bire-

fringence [43].

The bending behavior of the MCF at 1064 nm is illustrated in fig. 3.13. The exciting

Nd:YAG laser is lineraly polarized in x-direction (PER = 15.4 dB) and its polarization

is rotated ≈ 136◦ using a half-wave plate to excite both polarization components of

the fundamental mode. Evidently, the polarization of the fundamental mode is stable

down to a bending diameter of 19 cm and agrees in orientation with the input light.

Stronger bending increases the intramodal phase and some power couples into the x-

component leading to a rotation of the polarization ellipse. The power loss at 16.5 cm

amounts to 16.2 dB, which demonstrates the weaker guidance at 1064 nm, compared

to 633 nm.

Fig. 3.13 Polarization of the fundamental mode (dashed lines) at 1064 nm as a function of the
bending diameter DB in comparison with the polarization of the input light (solid
line): orientation angle (left), ratio of modal amplitudes (middle) and intramodal
phase (right). The inset depicts the total power.

3.5.2 Dependence on Vertical Pressure

To investigate the reaction of the modes on vertical pressure (in direction of -y) the fiber

is jammed between two parallel plates that are compressed via a screw clamp. There-

with, the fiber is uniformly strained along 2 cm. A laser diode (780 nm, PER = 22 dB)

provides the excitation light and is rotated to enable a polarization with major axis

oriented at ≈ 135◦. While straining the fiber the light injection is unaltered.

The two major effects that are to be expected to change the modal properties are

strain-induced birefringence due to the photoelastic effect, and deformation of the

fiber geometry leading to geometrical birefringence [44].

Fig. 3.14 depicts the behavior of the modal power and polarization as a function of the

rotation angle of the screw. Thereby the acting vertical force can be assumed to scale
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Fig. 3.14 Modal power and polarization for the modes at 780 nm as a function of the screw
rotation angle θr: modal power (left), normalized difference of modal amplitudes
(middle) and intramodal phase (right). The modal power is absolute and normal-
ized to the initial total power.

linearly with the rotation angle4 because the vertical shift is small (4.2 µm/1◦).

As evident from fig. 3.14 the modal powers of mode 1, 2 and 5 show damped oscil-

lations. Thereby, the power oscillation of mode 1 is out of phase with mode 2 and 5

indicating intermodal power exchange. Mode 3 and 4 do not contribute to the power

transfer and are attenuated more strongly at high mechanical load. Further, fig. 3.14

reveals strong power coupling between each two polarization-degenerated modes, rep-

resented by variations of (a1 − a2)/(a1 + a2). Regarding the intramodal phase, it is

apparent that mode 1, 2 and 5 show similar behavior as well as mode 3 and 4. While

the intramodal phases of the first group are nearly independent of the vertical pres-

sure, except for a 180 ◦-phase jump of the fundamental mode, the intramodal phases

of mode 3 and 4 slightly decrease and exhibit oscillations for increased strain. Thereby

the behavior of mode 2 and 5 is quite remarkable, since a constant5 intramodal phase

implies a constant modal beat length LB,l = λ/Bl with Bl = |nxeff,l−n
y
eff,l|, and therefore

a constant modal birefringence Bl. A possible explanation is, that for mode 2 and 5

nxeff and nyeff are altered in such a way, that the difference is kept constant.

The total power loss amounts to 3.9 dB which is far less than the observed power loss

at bending.

3.5.3 Dependence on Input Polarization

Bending and compressing the fiber results in fiber internal stress. The polarization

of the input light is an external parameter, whose variation is expected to give more

reproducible results since the fiber needs not to be changed in some way.

4The tightening torque of the screw for each rotation angle is unknown and therewith the constant
of proportionality.

5Standard deviations: 10 ◦ for mode 2 and 18 ◦ for mode 5.
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To change the input polarization, the linearly polarized beam from the Nd:YAG and

helium neon laser is rotated in polarization by means of a half-wave plate. A ro-

tation of the input polarization by θin continuously redistributes the power of each

two polarization-degenerated modes, i.e., the term (a1 − a2)/(a1 + a2) decreases with

Ψ = 0◦ . . . 90◦ and increases with Ψ = 90◦ . . . 180◦, where a1 ∝ cos Ψ and a2 ∝ sin Ψ for

linearly polarized light. Neglecting fiber twist and intramodal power coupling, i.e., the

proportion of a1 and a2 stays constant, the orientation angle of the modal polarization

ellipses Ψl equals θin. The modal ellipticity εl is then expected to change as:

εl =
2a1,la2,l sin δl
a2

1,l + a2
2,l

= 2 cos Ψl sin Ψl sin δl = Cl cos Ψl sin Ψl (3.2)

where Cl = 2 sin δl, and sin δl is independent of Ψl since δl = 2πBlL/λ with L the fiber

length and Bl depending only on the fiber geometry and possible stress.

Fig. 3.15 illustrates the polarization of the fundamental mode depending on θin. As

expected, the polarization ellipse of the fundamental mode is aligned with the input

light for all θin, confirming the absence of intramodal power coupling. Further, fig. 3.15

reveals an oscillating ellipticity as described by eq. (3.2). Note that the oscillations

are explained by the change of a1 and a2, that define the rectangle which confines the

polarization ellipse (cf. fig 2.8(a) on page 17), and not by the polarization beatings

itself since L is constant. A best fit of the ellipticity curve (solid black line) reveals

excellent agreement with the measured values and enables the calculation of B0L:

B0L =
λ

2π
arcsin

(
C

2

)
. (3.3)

From C = 1.14 follows B0L = 5.9 µm and with L ≈ 3 m, the modal birefringence of

the fundamental mode is calculated to be B0 = 2× 10−6.

Fig. 3.15 Polarization of the fundamental mode (dashed blue lines) at 1064 nm as a function
of the input polarization angle: orientation angle (left), ellipticity (middle) and
intramodal phase (right). The dashed black line marks the orientation of the input
polarization and the solid black lines illustrate predictions based on eq. (3.2).
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Coupling linear polarized light into the fiber, aligned to the axes of birefringence, will

preserve the linear polarization as indicated by the zero-crossings of ε. In the present

case the zeros of ε are shifted by 17◦ with respect to the x- and y-axis (Ψ = 0◦, 90◦),

suggesting a tilt of the axes of birefringence. Whereas in the rotated coordinate system

of birefringence the intramodal phase is flat and only jumps by 180◦ as Ψ becomes

larger than 90◦, the intramodal phase becomes nonlinear in the coordinate system of

analysis (x- and y-axis). To model the behavior of ε and δ in the analysis system, the

modal amplitudes need to be changed to a1,l ∝ cos(Ψl + ∆Ψ) and a2,l ∝ sin(Ψl + ∆Ψ)

with ∆Ψ = 17◦ as determined from the fit. With this, the intramodal phase varies as

depicted in fig. 3.15, which is in good agreement with the measurement. The small

deviations are caused by the variations of the output and input orientation angle.

Whereas in the single-mode regime, the dependence of ε gives information about the

amount of birefringence and the orientation of its axes, the modal behavior at 633 nm is

more complex, as demonstrated in fig. 3.16. Thereby, the behavior of Ψ(θin), ε(θin) and

δ(θin) is depicted for the two bending diameters 45 cm and 5.5 cm for the first six modes.

At 45 cm, the modes exhibit a large diversity regarding the orientation Ψl. Note that

there are also some modes with opposed dependence. As in the single-mode regime at

1064 nm, the modal ellipticities are oscillating, but this time εl is not centered around

zero for all modes, e.g., for mode 6. In fact, modes 4 and 5 are strongly elliptically

polarized independent of θin.

Fig. 3.16 Polarization of the first six modes at 633 nm as a function of the input polariza-
tion angle for two different bending diameters: orientation angle (left), ellipticity
(middle) and intramodal phase (right).
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This indicates intramodal power coupling, so that even if the input linear polarization

is aligned to the axes of birefringence, this polarization state is not preserved. This

means that the description with eq. (3.2) on page 35 is no longer suitable. Regarding

the intramodal phase, the modal diversity is obvious, but mode 1 and 3 show similar

behavior as in the experiment at 1064 nm.

For stronger bending (DB = 5.5 cm), the modal diversity of Ψl is reduced, indicating an

increased modal birefringence. The ellipticity is still oscillating, but this time the modes

are phase shifted to each other, in contrast to the behavior at DB = 45 cm. Further,

the amplitudes and phases of εl are changed compared to the respective measurement

at 45 cm, especially mode 4 and 5 become linearly polarized at distinct θin.

3.5.4 Dependence on Fiber Length

Monitoring the modal content and the modal polarization while cutting the fiber is

an interesting approach, since it enables direct access to the modal polarization beat

length and birefringence and might reveal power coupling effects.

In practice, cutting the fiber between two modal decomposition experiments is a chal-

lenging task since the adjustment of the setup needs to be retained. Further, the

influence of disturbing effects such as bending must be minimized. In the experiment

the setup is adjusted for the initial fiber length, and the position of the central core

of the MCF, as visible in the near field intensity, is saved. The fiber is re-aligned af-

ter cutting the output facet by shifting the central core to the saved coordinates. To

exclude differential influence of bending, the bending diameter was enlarged to exceed

60 cm6. The input facet of the fiber remains fixed while cutting the output side.

Fig. 3.17 depicts the relative modal power for excitation with the laser diode (780 nm)

as a function of ∆x, where l = l0−∆x and l, and l0 are the actual and initial fiber length

(l0 ≈ 3 m). In an unperturbed fiber, the modes should propagate independently with

preserved amplitudes. The apparent changes in relative modal power confirm power

coupling, indicating pertubations of the modal propagation. Thereby, the total power

is stable. Because of the large bending diameter and the fixation of the fiber ends with

adhesive stripes, modal power changes due to macro- or microbending are excluded.

Therefore, variations of fiber internal parameters, such as core diameter, pitch or re-

fractive index along the propagation direction are probable to cause the changes in the

modal power. Therefore, the measurement is an indication that the coherence of the

core array is in the range of only a few centimeters. Thereby, ”coherence of the array”

6A straight fiber would have necessitated the change of the position of the output coupling stage and
therewith would have caused the loss of adjustment.
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refers to the fact that only phase locking of the individual cores leads to the appearence

of modes (supermodes), as it is the case for a perfect index structure. Pertubations

may lead to phase fluctuations in individual cores yielding a redistribution of modes.

The polarization beatings are not examined since the fiber could not be cleaved with

smaller periods as ≈ 3 cm.

Fig. 3.17 Relative modal power as a function of the fiber length at 780 nm.

3.6 Decomposition into Other Basis Systems

As shown in sec. 2.3.3, the field emerging from the MCF can be decomposed in an

arbitrarily chosen basis set. The only requirements are the orthogonality and the

completeness of the basis functions. Therefore, the modes that are implemented in

the hologram need not necessarily to be the MCF modes as calculated by the mode

solvers (cf. sec. 2.2). An obvious choice are the LP (linear polarized) modes that are

usually used to describe mode fields of weakly guiding step-index fibers. Free space

modes such as Laguerre-Gaussian (LG) or Hermite-Gaussian (HG) modes are also

imaginable. However, in general it is true that the better suited the basis system, the

less basis functions are needed to compose the field.

Fig. 3.18 illustrates the decomposition of a MCF beam into ten LP modes, whose

overlap to the actual MCF modes is maximized (value of overlap integrals of mode

1. . . 10 in %: 97.5. . . 92.9). The restriction to ten modes is equivalent to a truncation

of the sum in eq. (2.9) on page 13. The correlation of 93.3 % between reconstructed

(fig. 3.18 (a)) and measured near field (inset in fig. 3.18 (b)) reveals good agreement and

justifies the limitation to ten modes. Note that due to the truncation the high spatial

frequencies in the near field intensity can not be described. The measured amplitudes
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Fig. 3.18 Decomposition of MCF beam into step-index LP modes. (a) reconstruction from
LP modes. (b) LP mode spectrum with measured near field intensity (inset).
(c) reconstruction from MCF modes. Axes dimensions given in µm.

(fig. 3.18 (b)) and phases from the decomposition in the LP modes are also applied to

reconstruct the near field intensity using the corresponding MCF modes (fig. 3.18 (c)),

whose correlation to the measured intensity is excellent (96.2 %). This indicates that

the truncation error is more than acceptable.

Decomposition in other basis sets is particularly attractive if only modal amplitudes are

of interest, or if fast analysis is required. Using LP modes, or the mentioned free space

modes, there is no need to make use of complicated mode solvers. Instead it would be

worthwhile to implement LP modes for different mode field diameters and V-parameters

in holograms in stock, or to use a spatial light modulator (SLM) to iteratively adapt

the basis system. In both cases the laborious fabrication of a hologram with the actual

modes could be omitted, yielding a much faster and more flexible mode analysis.

3.7 Beam Quality

The beam quality, represented by the M2 factor, is a common and simple measure to

evaluate the focusability and the diffraction of a beam. These attributes are of great im-

portance in fields of applications, such as laser material processing or laser microscopy.

Therefore, this section is intended to present results of simulations and measurements

regarding the beam quality of the investigated fiber, and to give suggestions on how to

improve the beam quality.

3.7.1 Beam Quality of the Modes

The modulation of the modal intensity distribution determines the diffraction of a mode

in free space. The stronger the intensity is modulated, the higher the M2 factor [45].

Therefore, there is the trend of increasing M2 with ascending mode number, as depicted
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in fig. 3.19(a) for the modes at 633 nm. Note that the local drops in the M2 factor are

caused by the fact that the modes are sorted by the effective indices and not by the

number of intensity lobes (cf. fig. 2.3 on page 9).

Analogously, reducing the wavelength yields an increase of the M2 value of the respec-

tive mode at this wavelength, as demonstrated in fig. 3.19(b). This is explained by

the stronger power confinement in the cores towards lower wavelengths, increasing the

modulation of the intensity (cf. insets of fig. 3.19(b)).

The results of fig. 3.19 are obtained by numerically propagating the mode fields using

the angular spectrum method [46]. The simulated intensity patterns at discrete points

in z are used to simulate a virtual caustic measurement, based on the determination

of the moments of the beam, and conform to the ISO-standard [47].

(a) (b)

Fig. 3.19 (a) M2 factor of the modes at 633 nm. (b) M2 factor of the respective fundamental
modes as a function of the wavelength. The insets depict the modal intensity at
400 nm and 1200 nm. The M2 values at the investigated wavelengths are marked
with red points.

3.7.2 Comparison of CGH and ISO Measurement

Based on the considerations of sec. 3.7.1 it is possible to determine the M2 factor of

real mode mixtures, using the ability of the CGH-technique to completely reconstruct

the field, and the virtual caustic measurement. For direct measurement, the branch of

the near field recording (CCD1 in fig. 3.1 on page 20) is extended by an additional lens

to ensure ISO-conformity. Further, the polarizer is removed.

The results of the CGH-based M2 determination are compared to direct caustic mea-

surements in tab. 3.1 for five different mode mixtures. Whereas the results of both

techniques at 633 nm are in good agreement, there is a larger relative discrepancy
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λ [nm] M2(ISO) M2(CGH) ∆M2 [%] dominant modes n(x %)

1064 1.16 1.26 9 1(98)

633 2.46 2.52 3 1(67), 2(11), 3(7)
3.07 3.09 1 1(29), 2(26), 3(28)
3.12 3.19 3 1(12), 2(15), 3(45), 4(10), 5(12)
3.71 3.99 7 2(25), 4(27), 5(34)

Tab. 3.1 Comparison of the M2 factor determined by direct caustic measurement (ISO) and
by complete field reconstruction (CGH).

regarding the results at 1064 nm. Considering the M2 of the fundamental mode at

1064 nm, marked in fig. 3.19(b), the result obtained by direct caustic measurement is

too small. This is caused by beam clipping due to small apertures, as they are con-

stituted by the beam splitter. At 633 nm, the effect is less critical since the smaller

wavelength causes a lower diffractive spread of the high spatial frequencies with signif-

icant power as seen in fig. 3.20. Thereby the larger M2 factor at 633 nm with respect

to 1064 nm, e.g., of the fundamental mode, is caused by the the higher power fraction

propagating off axis (cf. fig. 3.20). The tendency of larger M2 obtained by the CGH-

technique are explained by seeming HOMs which occur due to the background of the

CCD (cf. sec. 3.9).

Whereas the uncertainty of the direct caustic measurement amounts to 0.05, the un-

certainty of the CGH-measurement depends on the reconstruction quality (cf. sec. 3.9).
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Fig. 3.20 Normalized absolute value of the field of the fundamental mode at 1064 nm (left)
and 633 nm (right) after propagation of 800 µm in free space. The high spatial
frequency components are clearly seen to spread off axis (axes in µm).
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3.7.3 Methods Enhancing the Beam Quality

Concerning the beam quality, it is obvious from fig. 3.19 on page 40 that even the fun-

damental mode of the MCF, especially at 633 nm, is far away from a Gaussian beam

with M2 = 1. Therefore it might be interesting to further reduce the M2 factor of

beams emerging from MCFs to enhance the attractivity of the fiber for certain appli-

cations. Three different possibilities are suggested in the following.

As demonstrated in sec. 3.5.1, bending the fiber yields an increasing power fraction of

the fundamental mode. This effect is tantamount to an increased beam quality with

stronger bending. Reducing the bending diameter from 30 cm to 7 cm, lowers the M2

value from 3.83 to 2.72 in the experiment of fig. 3.11 on page 31. The drawback of this

method is the already mentioned total power loss (cf. sec. 3.5.1).

A possibility that avoids this disadvantage is represented by Fourier filtering. Thereby,

the off axis propagating high spatial frequencies, as seen in fig. 3.20 as six hexagonally

arranged field lobes, are blocked by an aperture acting as a lowpass filter. To demon-

strate the effect of the method, the integration area in the evaluation of the caustic

measurement is appropriately chosen, yielding a reduction of the M2 from 2.46 to 1.40

for the second sample beam of tab. 3.1. A physical aperture could be used in the

form of an apodized absorption filter. At 1064 nm, a M2 reduction from 1.25 to 1.01 is

possible due to simulations. The impact of filtering on the M2 is considered by [48] for

photonic crystal fibers, but is far more effective for MCFs.

An opportunity that goes along without power loss and beam manipulation is the ex-

citation of distinct mode mixtures. Due to intermodal interferences the M2 of a mode

mixture can be smaller than that of the fundamental mode. A simple example for

this is the superposition of the fundamental mode and mode 6. With the appropriate

phase difference of 0 or π, depending on the definition of the phase of the modes, and

an optimized power ratio, the outer ring of cores of mode 6 is out of phase with mode 1,

leading to destructive interference. The superposition of those modes yields an M2 of

1.79 at 633 nm. However, the superposition in proper phase relation requires a precise

adjustment of the fiber length, which might be laborious if the modal beat length is in

the order of millimeters or less.

3.8 Talbot Effect

For any periodic structure there exists a self-imaging phenomenon called Talbot imag-

ing or Talbot effect [46]. One outcome of the effect is the reproduction of an initial

intensity distribution after a distance zT, where zT is the so-called Talbot length, which
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depends on the type of the periodic structure.

The Talbot length for an infinitely extended hexagonal pattern of period Λ is

zT = 1.5 Λ2/λ [49]. With Λ = 5.5 µm, zT becomes 42.6 µm at 1064 nm, and 71.7 µm at

633 nm. Moving the end facet of the fiber in z-direction with the nano-positioning unit,

and recording the near field intensity with a CCD at 633 nm, the reproduction of the

initial intensity distribution of a mode mixture with high fundamental mode content

can be observed at a translation of 70 µm, as seen in fig. 3.21. This value is in good

agreement with the theoretical prediction. Further, an inverse structure is measured

at half the Talbot distance (cf. fig. 3.21). The wavelength of 633 nm is used in the

experiment since it provides the best resolution of the near field. Note that the corre-

lation between the intensity distributions at z = 0 and z = zT is detected by eye. To

introduce a more quantitative criterion of comparison, the propagation of individual

modes is simulated (cf. sec. 3.7.1), and the correlation is evaluated using the correlation

coefficient as defined in [35]. Doing so, mode 1 reproduces its intensity distribution af-

ter z = 41.7 µm with 99.5 % correlation at 1064 nm, and after z = 71.8 µm with 96.8 %

correlation at 633 nm. For ascending mode number the Talbot length increases whereas

the correlation drops. This is refered to the complex phase and amplitude structure

of the HOMs and depicts an important issue for mode selection. For example, this

property is exploited to select the fundamental mode in MCF lasers in so-called Talbot

cavities [8].

Fig. 3.21 Measured beam intensity of a mode mixture with high content of fundamental
mode (633 nm) at various distances from the near field plane (z = 0 µm).

3.9 Uncertainty Considerations

This section is intended to name possible sources of errors and to make suggestions on

how to avoid them. Thereby, it is out of the scope of this work to qualitatively describe

the origin and evolution of errors in detail.

One of the main experimental challenges may be the correct adjustment of the CGH
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with respect to the object of investigation, and to find the local optical axes that de-

fine the grid of pixels at which the intensity is measured (correlation answers). This

is usually done by illumination with a symmetric intensity distribution at the exam-

ination wavelength as provided by single modes. Especially HOMs are suitable for

this case since they exhibit very narrow intensity peaks in their correlation answers.

But exciting single modes to a high fraction (> 95 %) is often laborious and mostly

possible only for the fundamental mode, e.g., by bending. A fraction of other modes

will lead to shifted grid coordinates and therewith to wrong modal amplitudes and

phases. However, recent studies revealed that a broadband source is well suited to find

the correct coordinates since it provides uniformly shining cores. If the hologram is

illuminated with a symmetric intensity distribution, the CGH can be transversally ad-

justed according to the symmetry of the correlation answers. In z-direction, the CGH

is placed at the position of the beam waist with a flat phase. Thereby, a transverse or

longitudinal shift of the CGH, a deviation from the beam radius the CGH is designed

for, and aberrations of the lenses will lead to wrong correlation answers. Uncertainties

of the focal lengths of the lenses, especially at different wavelengths, and of the fiber

geometry are possible sources of error regarding the beam radius.

Another critical point is the background of the diffraction pattern as caused by cam-

era noise and light scattering from the CGH and from inhomogeneities and impurities

of the lenses and optical filters. In the case of the Nd:YAG laser, also pump light

might contribute to the background. The background leads to non-vanishing correla-

tion answers of modes that are in fact not contained in the mode mixture. The CCD

background, regarding the modal amplitudes, is 1 % per mode channel as determined

from the seeming amplitudes of mode 2 and 3 at 1064 nm.

To measure the polarization of the field, a quarter-wave plate and a rotatable polarizer

are necessary (cf. fig. 3.1 on page 20). The rotation of the polarizer deflects the beam,

so that the CGH may be adjusted for a certain rotation angle, and is out of adjustment

for another. The resulting beam pointing instability was minimized by shortening of

the path length from polarizer to CGH (25 cm) and to adjust the CGH for a rotation

angle in the middle of the measurement range. The main part of the deflection is

caused by non-perpendicular incidence on the polarizer leading to a maximal shift of

10 pixels, and not by the inherent deflection of 5” (=̂ 5 µm ≈̂ 1 pixel). The shift of the

near field intensity can be corrected due to the visible cores, which is a crucial point for

determining the Stokes parameters spatially resolved. Further, the mechanical forces

acting by rotation of the polarizer necessitate a high stability of its mounting.

Transmittance and reflectance of the beam splitter depend on the rotation angle of

the polarizer, which influences the determination of the local and modal polarization
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as well as the intensity reconstruction and the modal spectrum. By measuring this

dependence for each wavelength, this effect is easily corrected.

Polarizer and quarter-wave plate are adjusted by eye with respect to the x- and y-axis

(defined by the 0◦ and 90◦ lines of the polarizer scale). To calculate the Stokes param-

eters as outlined by eq. (2.19) on page 18, the fast axis of the quarter-wave plate has to

be oriented in y-direction. The uncertainty of alignment of polarizer and quarter-wave

plate is assumed to be less than 5◦, besides the uncertainty of the orientation of the

real fast axis with respect to the mark on the housing of 3◦.

Additionally, instabilities of the laser power affect the uncertainty of the vector beam

intensity and its polarization. Whereas high frequency fluctuations are circumvented by

averaging the correlation answers over many CCD frames (usually 20), slowly varying

power drifts would necessitate the application of a reference detector. The uncertainty

in the modal amplitude and phase from statistical reasons are estimated by measuring

the fluctuations of amplitude and phase over 100 frames at 1064 nm with a saturation

degree of the CCD camera ranging from 93 % to 4 %. Thereby the uncertainties vary

in-between 0.4 % . . . 2 % and 2◦ . . . 6◦.

Chapter Summary

The CGH-based measurement technique is used to completely characterize fields emerg-

ing from a MCF. The field reconstruction yields the beam intensity, the modal spec-

trum, the local polarization, the local phase and the modal polarization as demon-

strated at a sample beam at 633 nm. The capabilities of the method enable the de-

tailed investigation of modal properties as a function of parameters such as bending

diameter, strain, polarization state of the excitation light, and fiber length, revealing

characteristic features of the MCF.

The generality of the field decomposition principle is demonstrated by choosing an

appropriate set of step-index fiber LP modes as basis set. Advantages and possible

applications of this approach are outlined.

The beam quality of mode mixtures at different wavelengths is determined by numeri-

cal propagation and direct caustic measurement, yielding consistent results. The three

suggested possibilities to enhance the beam quality are applicable to other fibers than

MCFs as well.

Finally, the Talbot effect for MCF modes is considered yielding a self-imaging length

depending on the mode number and wavelength.
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The potential of the CGH-method is based on the precise knowledge of the mode fields

of the considered structure. Therefore, the modes of the investigated multicore fiber

(MCF) are calculated using different approaches, such as a scalar coupled mode theory

(CMT), four different vectorial mode solvers (finite element method (FEM, COMSOL),

finite difference method (FD), multipole method (MP, CUDOS), source model tech-

nique (SMT)), and an equivalent step-index model (ESI). By comparing the results to

that of the FEM solver for the first six modes at 633 nm, highest accuracy is achieved

by the MP solver, regarding the effective indices (mean discrepancy 8 × 10−9) and

the mode fields (mean overlap 99.96 %). In contrast to the vectorial mode solvers,

the results of the CMT become inaccurate with increased wavelength, but are in good

agreement with the FEM solver at 633 nm.

Stronger coupling between individual cores causes a growing synchronization of phases

and reduces the number of modes. According to calculations, twelve, six and three

modes are propagating at 633 nm, 780 nm and 1064 nm, respectively. Experimentally

determined numbers are seven, six and one for the corresponding wavelengths, con-

cluded from the highest exciteable modes.

The modes are transverse in good approximation with a dominating transverse compo-

nent (power of the z-component ≈ 10−4, and power of the weak transverse component

10−3 . . . 10−9 of the power of the dominant transverse component), yielding a nearly

complete and orthogonal set of linearly polarized modes. Thereby, each degenerated

pair of linearly polarized modes can be superposed to form a set of vector modes,

each vector mode having two non-vanishing field components in general. This reduced

set can compose arbitrary vector fields, whose reconstruction is theoretically described

by modal decomposition of its scalar components. The correct phase relation, as de-

termined from the measurement of the Stokes parameters, completes the information

about the vector field.

The field reconstruction is experimentally demonstrated at a sample beam at 633 nm,

including the determination of quantities such as beam intensity, local polarization,

local phase, modal spectrum and modal polarization. Thereby, the local phase de-

scribes the position of the electric field vector on the polarization ellipse at a fixed time.

46
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Comparing the local polarization at 633 nm to the global one in the single mode regime

at 1064 nm, emphasizes this property to be a feature of multimodal beams.

Using the capability of the CGH-technique, enables to investigate the modal polariza-

tion and modal power as a function of parameters such as bending diameter, strain,

input polarization, and fiber length, revealing characteristics of the MCF.

Thereby, bending enhances the relative content of the fundamental mode, as shown

at a sample beam at 633 nm. Comparing the total power loss at 633 nm to the one

at 1064 nm, much higher sensitivity to bending is detected at the near infrared wave-

length. The variation of the input polarization at 1064 nm gives rise to a preserved

orientation angle of the modal polarization ellipse and an oscillating ellipticity, which is

theoretically explained yielding a modal birefringence of 2× 10−6. Whereas at 633 nm

the orientation angle is not preserved at a bending diameter of 45 cm, stronger bending

to 5.5 cm enhances the correlation between input and output polarization direction,

indicating an increased birefringence. Further, intermodal as well as intramodal power

coupling could be demonstrated while bending and straining the fiber, or by varying

the fiber length. Thereby, the last mentioned effect suggests a coherence loss of the

core array within few centimeters.

The generality of the field decomposition principle is demonstrated by choosing an ap-

propriate set of step-index fiber LP (linearly polarized) modes as basis set. Advantages

and possible applications of this approach are a faster and more flexible modal analysis,

enabling the characterization of unknown fiber structures.

Determining the beam quality of mode mixtures at different wavelengths by numerical

propagation as well as direct caustic measurement, yields consistent results with devi-

ations smaller than 10 %, regarding the M2 value. Three possibilities are discussed to

enhance the beam quality, such as Fourier filtering, fiber bending, and modal super-

position, reducing the M2 factor for the considered examples as far as 57 %, 71 % and

73 % of the initial value, respectively.

The self-imaging length of the modes is measured and simulated, and compared to

analytical results, revealing agreement for the fundamental mode. Higher order modes

(HOMs) reproduce their intensity distributions in larger distances, which is essential

for mode selection in Talbot cavities of MCF lasers.

Finally, the uncertainties of modal amplitudes and phases on the one hand, and of the

polarization on the other, are considered as well as their sources. Future investigations

are necessary to estimate those uncertainties in detail, to improve the adjustment of

the CGH and of the polarization analyzing elements, and to establish an efficient back-

ground correction with the aim of an increased measurement accuracy.

Further, investigations concerning the mutual coherence of the modes as a function of
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the fiber length would be of interest. In fact, the coherence length of the laser is known,

but statistical fluctuations in the fiber geometry or refractive index may destroy locked

phase relations. Thereby, the CGH may additionally be used to measure the degree of

coherence. Regarding the array of cores, this subject depicts especially for MCFs an

interesting field of research.

Another issue is the extension of the real-time ability of the CGH-technique. Indeed,

the modal decomposition of a scalar field is currently done with 7.5 Hz, but the modal

content and polarization of the entire vector beam, whose measurement presently takes

several minutes, should be on hand with the same measurement rate. The application

of an automatized rotating quarter-wave plate or the use of several polarizers may con-

stitute possible solutions. Real-time recording of modal content and polarization would

actually increase the understanding of the processes taking place within the fiber, and

boost the attractivity of the CGH-technique for an even larger field of applications.
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Ahmed, A. Voss, and T. Graf, Applied Physics B: Lasers and Optics 97, 599 (2009).

[4] M. M. Vogel, M. Abdou-Ahmed, A. Voss, and T. Graf, Opt. Lett. 34, 2876 (2009).

[5] G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion,
Opt. Lett. 28, 387 (2003).

[6] M. Koshiba, K. Saitoh, and Y. Kokubun, IEICE Electronics Express 6, 98 (2009).

[7] N. Elkin, A. Napartovich, V. Troshchieva, and D. Vysotsky, Optics Communications 277, 390
(2007).

[8] Y. Huo and P. Cheo, J. Opt. Soc. Am. B 22, 2345 (2005).

[9] E. J. Bochove, P. K. Cheo, and G. G. King, Opt. Lett. 28, 1200 (2003).

[10] B. Shalaby, V. Kermène, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. Ab-
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