
Contributions to a Trace Theory beyond

Mazurkiewicz Traces

HABILITATIONSSCHRIFT

zur Erlangung des akademischen Grades

Doctor rerum naturalium habilitatus
(Dr. rer. nat. habil.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von

Dr. rer. nat. Dietrich Kuske
geboren am 8. Juni 1965 in Kühlungsborn

Gutachter: Prof. Dr. Volker Diekert

Prof. Dr. Manfred Droste

Prof. Dr. Wolfgang Thomas

Eingereicht am: 20. Dezember 1999

Tag der Verteidigung: 21. Dezember 2000

URN: urn:nbn:de:gbv:ilm1-2011200051

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224756629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Contents

Introduction v

1 Basic definitions 1
1.1 Order theoretic definitions . 1
1.2 Monoid theoretic definitions . 4
1.3 Logic . 5
1.4 Some notations . 8

I Asynchronous cellular machines 9

2 Σ-dags and ACMs 11

3 Decidability results 21
3.1 Notational conventions and definitions 21
3.2 Well-structured transition systems 22
3.3 The emptiness is decidable for ACMs 35

4 The undecidability results 45

5 The expressive power of ACAs 61
5.1 From ACAs to MSO . 62
5.2 (Σ, k)-dags . 63

6 Other automata models for pomsets 73
6.1 Branching automata by Lodaya and Weil 73
6.2 P-asynchronous automata by Arnold 84

II Divisibility monoids 87

7 Preliminaries 89
7.1 Monoid-theoretic preliminaries . 89
7.2 Definition and basic properties of divisibility monoids 91

iii

iv CONTENTS

7.3 A Foata Normal Form . 98

8 A finite representation 105
8.1 Order-theoretic preliminaries . 105
8.2 The finite presentation . 107

9 An Ochmański-type theorem 115
9.1 Commutation grids and the rank 115
9.2 From c-rational to recognizable languages 121
9.3 From recognizable to c-rational languages 127

10 Kleene’s Theorem 133
10.1 Rational monoids . 133
10.2 Width-bounded divisibility monoids 135

11 Monadic second order logic 141
11.1 Two Büchi-type theorems . 141
11.2 The semilattice of finitely generated ideals 147
11.3 Finite distributive lattices . 162

Main theorems 165

Open problems 169

Bibliography 171

Introduction

To understand the behavior of contemporary computing devices, the concept of
parallelism or concurrency is inevitable. There are several obvious reasons for an
increasing use of these techniques: In an attempt to make programs faster one
may distribute them over several executing machines. By duplicating memory
or computation tasks, the reliability of systems can be increased. On a certain
level of abstraction, a specification is inherently concurrent since the subsystems
are thought to run independently from each other. Another aspect is that com-
munication networks consist by definition of independent subsystems that are
only loosely coupled. These observations call for a deeper understanding of the
mechanisms involved.

For sequential systems, a mathematical foundation has proved fruitful. Al-
ready the consideration of formal systems in the first half of this century laid the
ground for an distinction between (theoretically) computable and definitely not
mechanizable tasks. Complexity theory sharpens this distinction further by the
investigation of the frontier between tractable and nontractable computational
tasks. Finite automata, although they are a very restricted model of a sequential
computing device, have a rich theory as well as a wide-spread application. Their
theory is closely related to algebraic theories. Furthermore, surprising connec-
tions between different logics and automata were found. These connections make
it possible to automatize certain verification tasks in the development of software
and hardware systems.

Aiming at similar benefits, attempts to develop a mathematical formalization
of parallelism have a longstanding tradition in computer science. In the 60s, Petri
introduced nets, now called Petri nets, as a model of concurrent systems. These
Petri nets inspired many theoretical investigations and now have an extensive
theory. But the semantics of these nets is technically quite complicated and
a mathematical treatment in its full generality turns out to be cumbersome.
Another line of research in this area is based on the idea of a process algebra
introduced by Milner and Hoare in the 70s. This approach focuses more on
at programming languages. Cellular automata can be traced back to ideas of
v. Neumann but became widely known only in the 70s (in particular by Conway’s
“Game of Life”). Now they enjoy a well understood theory as well as several
extensions.

v

vi INTRODUCTION

Mazurkiewicz introduced traces, another model of concurrent behaviors, into
computer science. They can be defined in two equivalent ways, either as depen-
dence graphs or as equivalence classes of words. In both cases, one starts out
from a finite set of elementary or atomic actions, called alphabet, and a binary
dependence relation on the set of actions. Two such actions are dependent if
they e.g. use a common resource. Hence, in a parallel computation of the sys-
tem, independent actions can be performed in parallel, while dependent actions
can be performed sequentially, only. A computation of such a system is modeled
as a directed graph. The vertices of this graph correspond to events. Two such
vertices are connected by an edge iff their labels are dependent. Since the compu-
tation is meant to run in time, the graph is assumed to be acyclic. Furthermore,
we consider only finite computations and therefore finite graphs. A dependence
graph is nothing but such a finite directed acyclic graph with edges between de-
pendent vertices. Thus, a dependence graph describes the causal dependence in
a computation.

In the alternative definition, one considers sequential observations of some
parallel computation. The order in which independent actions are performed is
regarded as irrelevant. In particular, if two observations differ only in the order
of independent actions, they are identified. This defines an equivalence relation
on words (over the alphabet of actions) and a trace is an equivalence class with
respect to this equivalence.

It turns out that the linear extensions of a dependence graph form an equiva-
lence class, i.e. a trace, and that any trace can be obtained from some dependence
graph. In this sense, the two approaches are equivalent and “it is only a matter
of taste which objects are chosen for representing concurrent processes: equiva-
lence classes of strings or labelled graphs.” [Maz95, page 14]. It seems that this
dual nature of traces has contributed to a much to their success. This is not the
right place to recall the amount of results on traces that have been obtained in
the last two decades. For a in-depth surveys on the results on traces, the reader
is referred to [DR95] that concentrates on the theoretical aspects in computer
science as well as in mathematics, in particular in combinatorics.

Nonetheless, it turned out that certain limitations of traces made it necessary
to extend the model into different directions. The probably most modest exten-
sion was that to infinite or real traces. These were introduced to model not only
finite but also infinite computations. They can be defined in several equivalent
ways: as directed and downward closed sets of finite traces [Maz87], via an equiv-
alence relation on infinite words [Sta89, Kwi90] or as infinite dependence graphs
where any event dominates only a finite number of vertices. Diekert introduced
α- and δ-complex traces as metric completion of the set of finite traces with re-
spect to two different metrics [Die91, Die93] and showed in particular that they
can alternatively be defined as infinite dependence graphs with some alphabetic
information. Most of the considerations on complex traces are based on this sec-
ond characterization. Another similar extension of traces (approximating traces)

vii

is presented in the same spirit [DG98].
The generalizations mentioned so far have been introduced to model infinite

behaviors of a parallel system. Differently, the aim of semi-commutations is to
model some behaviors like the producer-consumer-example that do not fit into the
setting of a symmetric independence relation. The idea is that the consumption of
an item can be delayed after further productions, but conversely, the production
cannot be postponed after the consumption. Here, we refer the reader to the
survey [CLR95] and the literature cited therein.

Another limitation of Mazurkiewicz traces is the global and fixed indepen-
dence relation. There are certainly systems where the answer to the question
whether two particular actions can be performed concurrently depends on the
situation, e.g. on the available resources that are produced by preceding events
(cf. [KP92]). An automaton with concurrency relations [Dro90, Dro92] is a (fi-
nite) automaton whose states are equipped with independence relations, i.e. in
this model the dependence of actions can change while the system evolves. Simi-
larly to traces, one obtains an equivalence relation on the set of finite computation
sequences by identifying those sequences that differ only in the order of indepen-
dent actions. But now this independence refers to the state were the first of the
two actions is performed. Thus, originally the behavior of an automaton with
concurrency relations was defined via equivalence classes of sequential behaviors.
In [BDK95, BDK97], representing these computations by dependence graphs,
we presented a partial order semantics for these computations under some mild
assumptions on the automaton with concurrency relations.

Another approach to incorporate changing independence relations into the
model of traces is represented by context and generalized traces [BR94]. Here,
two actions might be independent in one context and dependent in another where
the context is (in the simplest form) given by the preceding action. Again, first
an equivalence of words was constructed and context traces were defined as equiv-
alence classes of words. An attempt to represent context traces by dependence
graphs succeeded only partially [BR95].

Common to all generalizations listed so far is that the independence of actions
is a binary relation. This limits their applicability since it is not possible to model
a situation were two items of some resource are claimed by three actions. In such
a situation, any two of the claiming actions might be performed concurrently and
the third one afterwards. In addition, traces and their successors do not allow
autoconcurrency. Local traces [HKT92, Hoo94] are an attempt to solve these
problems. Here, sets or even multisets of actions are declared independent and
this depends on the history of the system. A representation of such systems by
local event structures was obtained in the same papers. The forthcoming work
[KM00] aims at a representation of computations in this model by dependence
graphs.

Note that in all the extensions mentioned so far, computations were first mod-
eled as equivalence classes of sequential executions. Later (for some models much

viii INTRODUCTION

later) it was shown that these equivalence classes can be nicely represented by
structures like dependence graphs. Differently, P-traces are by definition labeled
partially ordered sets. Afterwards it is shown that they can also be obtained as
equivalence classes of certain equivalence relations [Arn91].

Besides this duality, the different extensions of Mazurkiewicz traces have
been considered under several aspects. Mazurkiewicz used traces to model the
behavior of one-safe Petri nets. Categorical adjunctions were constructed be-
tween larger classes of Petri nets and trace structures [NRT90], step transi-
tion systems (i.e. local traces) [Muk92] and concurrent automata [DS93]. The
order theoretic properties of the set of all trace-like objects was investigated
for real traces [GR93, BCS93, Kus99], for several versions of complex traces
[GP92, Teo93, DG98] and for the computations of an automaton with concur-
rency relations [Sta89, Dro90, Dro92, Kus94a, Kus94b, Sch98]. Metric and topo-
logical questions were dealt with for real traces [Kwi90, KK00], for complex and
approximating traces [Die91, Die93, DG98] and for computations of automata
with concurrency relations [KS98]. The recognizable sets of trace-like structures
were studied thoroughly. The relation to rational sets was investigated for semi-
commutations, for real and for complex traces (cf. the corresponding surveys in
[DR95]) and for computations of concurrent automata [Dro94, Dro95, Dro96].
The relation to logically axiomatizable sets can be found for finite and for real
traces in [Tho90b, EM93, Ebi94], for computations of concurrent automata in
[DK96, DK98] and for local traces in [KM00].

In the first part of the current work, we will define an extension of dependence
graphs to so called Σ-dags where Σ is a finite set of actions. They generalize not
only dependence graphs as defined above, but also CCI-sets [Arn91], dependence
graphs of computations of concurrent automata [BDK95, BDK97], and (width-
bounded) sp-pomsets [LW98b, LW98a, LW00]. Essentially, a Σ-dag is a Σ-labeled
directed acyclic graph. The edges of this graph represent the causal dependency
between the events that are modeled by the vertices. There are only two restric-
tions that we impose: First, we allow no autoconcurrency. Second, for any label
a, an event can depend on and influence at most one a-labeled event directly.

As a computational model for these Σ-dags, we investigate asynchronous cel-
lular automata. They were defined originally for dependence graphs as a truly
parallel accepting device [Zie87].1 Since then, they have been intensively stud-
ied, cf. [Zie95, DM95] for overviews. In [DG96], they were generalized in such a
way that an asynchronous cellular automaton can accept labeled posets (pom-
sets) without autoconcurrency (cf. also [Kus98, DGK00]). Here, we extend them
to the setting of Σ-dags. In the literature, infinite state systems are intensively
studied [Mol96, BE97]. We extend asynchronous cellular automata furthermore
by allowing them to have infinitely many states. To preserve some finiteness,

1The name might be misleading since these automata are not a generalization of v. Neu-
mann’s cellular automata mentioned above.

ix

the set of states is endowed with a well-quasi ordering. Thus, loosely speaking,
asynchronous cellular machines or Σ-ACMs are asynchronous cellular automata
that run on Σ-dags, have possibly infinitely many states, and are equipped with
a well-quasi ordering on these states.

The behavior of a Σ-ACM is the accepted language, i.e. a set of Σ-dags.
Hence a Σ-ACM describes a property of Σ-dags. Since the intersection as well
as the union of two acceptable sets can be accepted by a Σ-ACM, properties
describable by Σ-ACMs can become quite complex. Then it is of interest whether
the combined property is contradictory, or, equivalently, whether at least one Σ-
dag satisfies it. Thus, one would like to know whether a Σ-ACM accepts at least
one Σ-dag. Using a result from [FS98, FS01], we show that it is possible to gain
this knowledge even automatically, i.e. we show that there exists an algorithm
that on input of a Σ-ACM decides whether the Σ-ACM accepts at least one
Σ-dag. For this to hold, we restrict the asynchronous cellular machines in two
ways: The notion of “monotonicity” involves a connection between the well-quasi
ordering and the transitions of the machine. The notion “effectiveness” requires
that the machine is given in a certain finite way.

Another natural question is whether two properties are equivalent, i.e. whether
two Σ-ACMs accept the same language. Since there is a Σ-ACM that accepts
all Σ-dags, a special case of this equivalence problem is to ask whether a given
Σ-ACM accepts all Σ-dags. The latter question, called universality, essentially
asks whether the described property is always true. The corresponding ques-
tion for sequential automata has a positive answer which is a consequence of the
decidability of the emptiness: If one wants to know whether a sequential automa-
ton accepts all words, one constructs the complementary automaton and checks
whether its languages is empty. Thus, the crucial point for sequential automata
is that they can effectively be complemented. But the set of acceptable Σ-dag-
languages is not closed under complementation. Therefore, we cannot proceed as
for sequential automata. On the contrary, we show that the universality is unde-
cidable even for Σ-ACMs with only finitely many states. These finite Σ-ACMs
are called asynchronous cellular automata or Σ-ACA. The undecidability of the
universality implies that the equivalence of two Σ-ACAs, the complementability
of a Σ-ACA as well as the existence of an equivalent deterministic Σ-ACA are
undecidable, too. These results (restricted to pomsets) together with a sketch
of proof were announced in [Kus98]. The proof we give here is based on ideas
developed together with Paul Gastin.

The following chapter deals with the question which properties can be ex-
pressed by a Σ-ACA. For finite sequential automata, several answers are known
to the question which properties can be checked by a finite sequential automaton:
Kleene showed that these are precisely the rational properties. By the Myhill-
Nerode Theorem, a property can be checked by a finite sequential automaton if its
syntactic monoid is finite. Furthermore, Büchi and Elgot [Büc60, Elg61] showed
that a property of words can be checked by a finite sequential automaton if it can

x INTRODUCTION

be expressed in the monadic second order logic. This relation between a model
of a computational device (finite sequential automata) and monadic second order
logic is a paradigmatic result. It has been extended in several directions, e.g.
to infinite words [Büc60], to trees [Rab69] (cf. also [Tho90a]), to finite [Tho90b]
and to real [EM93, Ebi94] traces, and to computations of concurrent automata
[DK96, DK98]. The celebrated theorem of Zielonka [Zie87, Zie95] together with
the results from [Tho90b] states that for dependence graphs of traces, the ex-
pressive power of asynchronous cellular automata and monadic second order logic
coincide. Aiming at a similar result for Σ-dags, in Chapter 5 we show that this
is not possible in general. More precisely, we show that any recognizable set of
Σ-dags can be axiomatized by a sentence of the monadic second order logic, but
that the converse is false even for first-order logic. To overcome this, we restrict
to a subclass of all Σ-dags, called (Σ, k)-dags. This restriction makes it possible
to relabel a (Σ, k)-dag by an asynchronous cellular automaton in such a way that
one obtains a dependence graph over a certain dependence alphabet. This is the
crucial step in our proof that any monadically axiomatizable set of (Σ, k)-dags
can be accepted by a (nondeterministic) asynchronous cellular automaton. But
we show that it is necessary to allow nondeterminism in the automata since the
expressive power of deterministic Σ-ACAs will be proved to be strictly weaker.
Again, the restriction to pomsets of the results presented in this chapter can be
found in [Kus98]. Here, we generalize the presentation in [DGK00].

The final chapter of the first part is devoted to the relation between our
asynchronous cellular automata and other models of concurrent behavior. The
covering relation of a pomset without autoconcurrency is a Σ-dag. This allows us
to speak of the set of pomsets that is accepted by a Σ-ACA: A pomset (V,≤, λ)
is accepted iff its Hasse-diagram (V,−−<, λ) admits a successful run. For pom-
sets, other automata models have been proposed in the literature. In particular,
Arnold considered P-asynchronous automata [Arn91] and Lodaya and Weil dealt
with branching automata [LW98a, LW98b, LW00]. We finish our consideration of
Σ-dags and Σ-ACAs by a comparison of the expressive power of these automata
with the expressive power of our Σ-ACAs. We show that branching automata
when restricted to width-bounded languages have the same expressive power as
Σ-ACAs when restricted to series-rational pomsets. Somewhat as a byproduct,
this implies that the expressive power of branching automata on width bounded
sp-pomsets coincides with the expressive power of the monadic second order logic.
Finally, we show that any P-asynchronous automaton can be simulated by a Σ-
ACA.

The Σ-dags considered in the first part of the current work are clearly labeled
graphs. Above, I already cited A. Mazurkiewicz stating “it is only a matter of
taste which objects are chosen for representing concurrent processes: equivalence
classes of strings or labelled graphs.” [Maz95, page 14]. To satisfy those that
prefer the algebraic approach (or at least appreciate it as the author), this is

xi

followed in the second part where left divisibility monoids are considered. These
left divisibility monoids were introduced in [DK99, DK01]. As pointed out earlier,
trace monoids are defined via a finite presentation (using a set of letters Σ together
with a dependence relation on Σ). Later, algebraic properties where discovered
that characterize trace monoids (up to isomorphism) [Dub86]. Differently, left
divisibility monoids are defined in the language of monoids, i.e. via their algebraic
properties. In particular, it is required that the prefix relation be a partial order
and that for any monoid element, the set of prefixes forms a distributive lattice.
Thus, divisibility monoids involve monoid theoretic as well as order theoretic
concepts.

In Chapter 8, we show that divisibility monoids can be finitely presented.
Not only will we show that this is possible in general, but we will give a concrete
representation for any divisibility monoid. Finally, we give a decidable class of
finite presentations that give rise to all divisibility monoids.

Kleene’s theorem on recognizable languages of finite words has been gener-
alized in several directions, e.g. to formal power series [Sch61], to infinite words
[Büc60], and to infinite trees [Rab69]. More recently, rational monoids were in-
vestigated [Sak87], in which the recognizable languages coincide with the rational
ones. Building on results from [CP85, CM88, Mét86], a complete characterization
of the recognizable languages in a trace monoid by c-rational sets was obtained
in [Och85]. A further generalization of Kleene’s and Ochmański’s results to con-
currency monoids was given in [Dro95]. In Chapter 9, we derive such a result for
divisibility monoids. The proofs by Ochmański [Och85] and by Droste [Dro95]
rely on the internal structure of the elements of the monoids. Here, we do not
use the internal representation of the monoid elements, but algebraic properties
of the monoid itself. Thus, the considerations in Chapter 9 that appeared in
[DK99] can be seen as an algebraic proof of Ochmański’s Theorem.

The following chapter is devoted to the question when a divisibility monoid
satisfies Kleene’s Theorem, i.e. when the rational and the recognizable sets co-
incide. For trace monoids, this is only the case if the trace monoid is free. Our
result for divisibility monoids states that they satisfy Kleene’s Theorem iff they
are rational. A defining property of divisibility monoids is that the sets of pre-
fixes form a distributive lattice for any element of the monoid. We prove that
this set of distributive lattices is width-bounded iff the monoid satisfies Kleene’s
Theorem. We obtain these characterizations applying the theory of rational func-
tions (cf. [Ber79]) and a Foata normal form of monoid elements similar to that
for traces.

Büchi showed that the monadic second order theory of the linearly ordered set
(ω,≤) is decidable. To achieve this goal, he used finite automata. In the course of
these considerations he showed that a language in a free finitely generated monoid
is recognizable iff it is monadically axiomatizable. In computer science, this
latter result and its extension to infinite words are often referred to as “Büchi’s
Theorem” while in logic this term denotes the decidability of the monadic theory

xii INTRODUCTION

of ω. In the final chapter, I understand it in this second meaning. There, we show
that certain monadic theories associated to a divisibility monoid are decidable.
Let L denote the set of distributive lattices associated to a given divisibility
monoid. We show that the monadic theory of this class is decidable iff the
monoid satisfies Kleene’s Theorem. In general, this theory is undecidable, but the
monadic theory of the join-irreducible elements of these lattices is still decidable.
For trace monoids, this latter result just states that the monadic theory of all
dependence graphs is decidable, a corollary from [EM93, Ebi94].

At the very end, we prove an order theoretic result that is inspired by the two
decidabilities just mentioned: Together with a result from Chapter 10, we know
that the monadic theory of L is decidable if and only if L is width-bounded. In a
certain sense, we show that this does not depend on the special character of L as
the set of lattices associated with a divisibility monoid. Indeed, we show that any
set of finite distributive lattices L has a decidable monadic theory if and only if
the monadic theory of the join-irreducible elements of these lattices is decidable
and L is width-bounded.

The present work shows that there are deep connections that arise from the
theory of traces to different branches of mathematics. We finish the work with a
list of problems that show up in the course of our considerations.

Chapter 1

Basic definitions

1.1 Order theoretic definitions

1.1.1 Well quasi orders

Let A be a set. A quasi order on A is a binary relation �⊆ A×A that is transitive
and reflexive. The tuple (A,�) is called quasi ordered set. So let (A,�) be a
quasi ordered set, a ∈ A and X ⊆ A. Then we define ↑a := {b ∈ A | a � b} and
↑X :=

⋃

x∈X ↑x. A set B ⊆ A is a basis of X if ↑B = ↑X. Note that any set X
has a basis, namely itself or ↑X. In the literature, one often defines a basis for
sets X with X = ↑X, only, but in our context, it is more convenient to extend
the classical definition slightly.

We call a sequence (ai)i∈N in a quasi ordered set (A,�) good if there are i < j
with ai � aj. If no such indices exist, the sequence is bad. A well quasi order is
a quasi order � on a set A where any sequence in A is good. A wqo is a quasi
ordered set (A,�) where � is a well quasi order. Occasionally, we use wqo as an
abbreviation of well quasi order, too.

Let (A,�) be a wqo and ai ∈ A for i ∈ N. Let M consist of all indices i ∈ N

such that xi 6� xj for any j > i. Since (A,�) is a wqo, this set is finite. Choose
i0 ∈ N with M ≤ i0. Then, inductively, we find in+1 > in with ain � ain+1 , i.e.
the sequence (ai)i∈N contains an infinite non-decreasing subsequence. Now let
X ⊆ A. An element x ∈ X is minimal in X if for any y ∈ X with y � x we get
x � y. By min(X), we denote the set of minimal elements of X. Let ∼=� ∩ �.
Since� is transitive and reflexive, ∼ is an equivalence relation. Note that ↑x = ↑y
for x, y ∈ A whenever x ∼ y. Let (xi)i∈α be an enumeration of min(X) for some
ordinal α. Furthermore, let i0 = 0. Inductively, let n ∈ N and assume that in ∈ α
is chosen. If there exists i > in such that xi 6∼ xij for 0 ≤ j ≤ n, let in+1 be
the minimal such i. If this construction does not terminate, we get a sequence
(xin)n∈N with xin 6∼ xim for n < m. Since (A,�) is a wqo, there is n < m with
xin � xim . Since xim ∈ min(X), this implies xim � xin , contradicting the choice
of im. Thus, there is k ∈ N such that we find for x ∈ min(X) an index 0 ≤ j ≤ k

1

2 CHAPTER 1. BASIC DEFINITIONS

with x ∼ xij . Now let y ∈ X. Then there exists x ∈ min(X) with x � y for
otherwise we found an infinite sequence (yi)i∈N with yi ≻ yi+1, i.e. in particular
with yi 6� yj for i < j. Thus, the set {xi0 , xi1 , . . . , xik} is a finite basis of X, i.e.
we showed that any set X ⊆ A contains a finite basis.

Next, we want to define from a wqo (A,�) a quasi order on the set of finite
words over A. So let v = a1a2 . . . an and w = b1b2 . . . bm be words over A. We
define v �⋆ w iff there exists a sequence 0 < i1 < i2 < · · · < in ≤ m such that
aj � bij for 1 ≤ j ≤ n, i.e. if v is dominated by some subword of w letter by
letter. Clearly, �⋆ is transitive and reflexive, i.e. it is a quasi order on the set of
words A⋆ over A.

Higman’s Theorem [Hig52] (A⋆,�⋆) is a wqo.

Proof.1 By contradiction suppose �⋆ is no wqo. Then there exists a bad se-
quence in A⋆. Let v0 be a word of minimal length such that there exists a bad
sequence (wi)i∈N with w0 = v0. Inductively, assume we found v0, v1, . . . , vn ∈ A⋆

such that there exists a bad sequence starting with these words. Then let
vn+1 ∈ A⋆ be a word of minimal length such that v0, v1, . . . , vn, vn+1 can be
extended to a bad sequence. Note that in particular vi 6�⋆ vn+1 for 0 ≤ i ≤ n.
This construction results in a bad sequence (vi)i∈N such that, for any i ∈ N and
word w ∈ A⋆ shorter than vi, the tuple v0, v1, . . . , vi−1, w cannot be extended to
a bad sequence. Since the empty word is dominated by any word, in addition
none of these words is empty. For i ∈ N let ai ∈ A be the first letter of vi and
let wi be the remaining word, i.e. aiwi = vi. Since (A,�) is a wqo, the sequence
(ai)i∈N contains an infinite non-decreasing subsequence (aij)j∈N. Now consider
the sequence

v0, v1, . . . , vi0−1, wi0 , wi1 , wi2 , . . .

in A⋆. For 1 ≤ i < j < i0, we have vi 6�⋆ vj since the words vn form a bad
sequence. For 1 ≤ i < i0 and j ∈ N, we get vi 6�⋆ wij for otherwise vi �

⋆ aijwij =
vij , contradicting that the words vn form a bad sequence. Now let i < j and
assume wii �⋆ wij . Since aii � aij , this implies vii = aiiwii �⋆ aijwij = vij ,
again a contradiction. Hence the sequence above is bad. But this contradicts the
fact that vi0 is properly longer than wi0 and that by our choice of vi0 , the tuple
v0, v1, . . . , vi0−1, wi0 cannot be extended to a bad sequence. Thus, indeed, �⋆ is
a wqo on the set of finite words over A. �

1This proof of Higman’s theorem follows a proof given in [Die96] where the idea of a minimal
bad subsequence is attributed to Nash-Williams [NW63].

1.1. ORDER THEORETIC DEFINITIONS 3

1.1.2 Partial orders

Let A be a set. A quasi order ≤ on A is a (partial) order if it is antisymmetric.
Then (A,≤) is a partially ordered set or poset for short. Two elements a, b ∈ A
are incomparable (denoted a ‖ b) if neither a ≤ b nor b ≤ a. By ≶, we denote
the union of < and >. Hence a 6≶ b iff a ‖ b or a = b. An element c ∈ A covers
a ∈ A iff a < c and if a < b ≤ c implies b = c. We write a −−< c whenever a is
covered by c.

The set A is an antichain if any two distinct elements of A are incomparable.
If, on the contrary, any two of its elements are comparable (i.e. not incomparable),
then A is linearly ordered or a chain. An (anti-)chain X in (A,≤) is a subset
X ⊆ A such that (X,≤ ∩X ×X) is an (anti-)chain. The set X ⊆ A is convex if
for any x ≤ y ≤ z with x, z ∈ X the element y belongs to X, too. A nonempty
subset X of A is a filter if x ∈ X and x ≤ y imply y ∈ X. Dually, a nonempty
set X ⊆ A is an ideal if x ∈ X and x ≥ y imply y ∈ X. Since traditionally ideals
were called heriditary set, the set of ideals of (A,≤) is denoted by H(A,≤).

Recall that ↑a = {b ∈ A | a ≤ b}. We call this set the principal filter generated
by a. Dually, ↓a = {b ∈ A | a ≥ b} is the principal ideal generated by a. By la, we
denote the union of ↑a and ↓a, i.e. the set of elements of A that are comparable
with a. The intersection of ↑a and ↓b is denoted by [a, b]. It is the interval with
endpoints a and b. Note that this interval is nonempty iff a ≤ b. For X ⊆ A, let
↑X :=

⋃

x∈X ↑x and dually ↓X :=
⋃

x∈X ↓x denote the generated filter and ideal,
respectively. An ideal I is finitely generated if there exists a finite set X such
that I = ↓X. The set of finitely generated ideals will be denoted by Hf (A,≤).

For X ⊆ A and a ∈ A, we write X ≤ a whenever x ≤ a for all x ∈ X. In
this case a is an upper bound of X. It is a minimal upper bound if X ≤ x ≤ a
implies x = a. By mub(X), we denote the set of minimal upper bounds of X.
An upper bound a of X that is dominated by any upper bound of X is the least
upper bound , supremum or join of X. It is denoted by sup(X) or

∨

X. The
supremum of a two-elements set {a, b} is denoted by a ∨ b. Dually, lower bound ,
maximal lower bound , largest lower bound or infimum or meet are defined. The
infimum of X ⊆ A is denoted by inf(X),

∧

(X) or a∧b if X = {a, b}. An element
a ∈ A is join-irreducible if x ∨ y = a implies a ∈ {x, y} and a 6≤ A. By J(A,≤),
we denote the set of join-irreducible elements of A.

Let (A,≤) be a poset and a ∈ A. The width w(A,≤) of (A,≤) is the supre-
mum of the sizes of all antichains in A. The height of a is the supremum of all
sizes of chains C < a. We denote the height of a in (A,≤) by h(a, (A,≤)) or
shorter by h(a,A) or just by h(a). Note that the minimal elements of a poset have
height 0. The length of (A,≤) is the supremum of the heights of the elements
of A.

A partially ordered set (A,≤) is a join-semilattice iff any finite subset of A has
a supremum. It is a lattice if in addition any finite subset of A has an infimum.
Note that if (A,≤) is a lattice so is (A,≥). Two intervals [a, b] and [a′, b′] in a

4 CHAPTER 1. BASIC DEFINITIONS

lattice (A,≤) are transposed iff a = b ∧ a′ and b′ = b ∨ a′.
A lattice of finite length is semimodular if a ∧ b −−< a implies b −−< a ∨ b. A

lattice (A,≤) is modular if a ≤ c implies a∨(b∧c) = (a∨b)∧c. A lattice (A,≤) of
finite length is modular iff both (A,≤) and (A,≥) are semimodular. Furthermore,
in a modular lattice (A,≤), transposed intervals are isomorphic. More precisely,
let [b ∧ c, b] and [c, b ∨ c] be two transposed intervals and define f(x) := x ∨ c for
b∧c ≤ x ≤ b. Then this mapping f is an isomorphism of the two intervals [Bir73,
Theorem I.7.13]. A lattice (A,≤) is distributive if a∨ (b∧ c) = (a∨ b)∧ (a∨ c) for
any a, b, c ∈ A. Then one also has the dual identity a∧ (b∨ c) = (a∧ b)∨ (a∧ c).
Furthermore, any distributive lattice is modular.

Let (A,≤) be a poset. Then the set of ideals X = H(A,≤) can be ordered by
inclusion. The poset (X,⊆) is a lattice, the supremum is given by union and the
infimum by intersection. One can easily check that it is even a distributive lattice
and that an ideal I ∈ H(A,≤) is join-irreducible in this lattice if it is a principal
ideal and no singleton. Note that an ideal I ∈ H(A,≤) is join-irreducible iff it
covers a unique element of (H(A,≤),⊆).

Now let (L,≤) be a distributive lattice. Then (A,≤) := (J(A,≤),≤) is a
poset and (H(A,≤),⊆) is a distributive lattice. If L is finite, this latter lattice is
isomorphic to (L,≤) [Bir73, Theorem I.4.3].

1.2 Monoid theoretic definitions

A monoid is a set M equipped with a binary operation · : M2 → M that is
associative and admits a neutral element 1. The left divisibility relation on a
monoid (M, ·, 1) is defined by x ≤ z iff there exists y ∈ M with x · y = z. Since
the multiplication · is associative, this relation is transitive. It is in addition
reflexive since a monoid contains a neutral element. Hence (M,≤) is a quasi
ordered set. Since 1 ≤ M , the set {1} is a basis of (M,≤). In general, ≤ is
neither a partial order relation since it need not be antisymmetric (consider the
reals with addition) nor a wqo (consider the nonnegative reals with addition).

An alphabet Σ is a nonempty finite set. The set Σ⋆ of words over Σ gets
a monoid structure when equipped with the usual concatenation of words. The
neutral element is the empty word, which is denoted by ε. The monoid (Σ⋆, ·, ε)
is called the free monoid over Σ.

Let (Mi, ·i, 1i) be monoids for i = 1, 2 and let f : M1 → M2 be a function.
This function is a homomorphism if f(x ·1 y) = f(x) ·2 f(y) for x, y ∈ M1 and
f(11) = f(12). A congruence on the monoidM1 is an equivalence relation ∼ such
that xi ∼ yi for i = 1, 2 and xi, yi ∈M1 imply x1 ·1 x2 ∼ y1 ·1 y2.

A dependence alphabet or trace alphabet is an alphabet Σ endowed with a
binary relation D that is reflexive and symmetric. The relation D is called de-
pendence relation and its complement I = Σ2 \ D is the independence relation.
From a dependence alphabet (Σ, D), one defines the trace monoid M(Σ, D) as

1.3. LOGIC 5

follows: First, let ∼ denote the least congruence on the free monoid (Σ⋆, ·, ε)
with ab ∼ ba for (a, b) ∈ I. Note that two equivalent words v ∼ w over Σ have
the same length. Then M(Σ, D) = Σ⋆/∼ is a monoid whose elements are called
traces. Thus, traces are equivalence classes of words. The length |x| of a trace
is the length of any of its representatives. Originally, these monoids where con-
sidered by Cartier & Foata [CF69] under the name free partially commutative
monoids. The name trace monoid was coined by Mazurkiewicz [Maz77].

Besides this algebraic definition of trace monoids, there is another, equivalent,
construction of them: Again, one starts with a dependence alphabet (Σ, D). A
dependence graph is either empty or a triple (V,�, λ) where (V,�) is a finite
poset and λ : V → Σ is a mapping such that for x, y ∈ V , one has

• x ‖ y implies (λ(x), λ(y)) 6∈ D and

• x −−< y implies (λ(x), λ(y)) ∈ D.

As usual in mathematics, isomorphic dependence graphs are not differentiated.
On the set of dependence graphs one defines a binary operation · by

(V1,�1, λ1) · (V2,�2, λ2) = (V1∪̇V2,�1 ∪ �2 ∪(�1 ◦E◦ �2), λ1 ∪ λ2)

where E = {(x, y) ∈ V1×V2 | (λ1(x), λ2(y)) ∈ D}. Then one can easily check that
this operation is associative and that the empty dependence graph is a neutral
element.

For a ∈ Σ, let ta = ({a}, {(a, a)}, {(a, a)}) denote the dependence graph with
one vertex that is labeled by the letter a. Since the monoid M(Σ, D) is generated
by the elements [a] for a ∈ Σ, the mapping [a] 7→ ta can uniquely be extended to
a homomorphism from the trace monoid M(Σ, D) to the monoid of dependence
graphs. It turns out that this homomorphism is an isomorphism of the monoids.
Hence traces can be considered as labeled partially ordered sets. The relation
between traces, i.e. equivalence classes of words, and labeled posets can be seen
in another light, too:

Recall that x ≤ z iff there exists y ∈ M(Σ, D) such that x · y = z. Since
x < z implies |x| < |y|, on the trace monoid M(Σ, D), the left divisibility relation
is a partial order. One can show that (↓x,≤) is a distributive lattice for any
trace x. Let (V,≤, λ) be the dependence graph associated to x. Then the partial
order of join-irreducibles of (↓x,≤) is isomorphic to (V,≤). Vice versa, (↓x,≤)
is isomorphic to the set of ideals of (V,≤), i.e. to (H(V,≤),⊆).

1.3 Logic

First, we introduce the monadic second order logic MSO that allows to reason on
Σ-labeled graphs: So let Σ be an alphabet, i.e. a finite set. Let Ve = {xi | i ∈ N}
be a countable set of elementary variables and Vs = {Xi | i ∈ N} a countable

6 CHAPTER 1. BASIC DEFINITIONS

set of set variables. There are three kinds of atomic formulae, namely E(xi, xj),
Xj(xi) and λ(xi) = a for i, j ∈ N and a ∈ Σ. Formulas are built up from these
atomic formulae by the usual connectors ∧ and ¬ and by existential quantification
over elementary and over set variables. More precisely, if ϕ and ψ are formulae,
then so are ¬ϕ, ϕ ∧ ψ, ∃xiϕ and ∃Xiϕ where i ∈ N. To define when a Σ-labeled
graph (V,E, λ) satisfies a formula, let fe : Ve → V and fs : Vs → 2V be mappings.
Then
(V,E, λ) |=fe,fs E(xi, xj) iff (fe(xi), fe(xj)) ∈ E,
(V,E, λ) |=fe,fs Xj(xi) iff fe(xi) ∈ fs(Xj),
(V,E, λ) |=fe,fs λ(xi) = a iff λ ◦ fe(xi) = a,
(V,E, λ) |=fe,fs ¬ϕ iff not (V,E, λ) |=fe,fs ϕ, and
(V,E, λ) |=fe,fs ϕ ∧ ψ iff (V,E, λ) |=fe,fs ϕ and (V,E, λ) |=fe,fs ψ.
Furthermore, (V,E, λ) |=fe,fs ∃xiϕ if there exists a function ge : Ve → V such

that (V,E, λ) |=ge,fs ϕ and this function differs from fe at most in the value of xi.
Similarly, (V,E, λ) |=fe,fs ∃Xjϕ if there exists a function gs : Vs → 2V such that
(V,E, λ) |=fe,gs ϕ and this function differs from fs at most in the value of Xj .

Let (V,E, λ) be a Σ-labeled graph and let ϕ be a formula whose free variables
are among {x0, x1, . . . , xk, X0, X1, . . . , Xℓ}. Let furthermore fe, ge : Ve → V and
fs, gs : Vs → 2V be mappings such that fe(xi) = ge(xi) for 0 ≤ i ≤ k and fs(Xi) =
gs(Xi) for 0 ≤ i ≤ ℓ. Then it is an easy exercise to show that (V,E, λ) |=fe,fs ϕ
iff (V,E, λ) |=ge,gs ϕ. For this reason, one usually writes

(V,E, λ) |= ϕ[fe(x0), fe(x1), . . . , fe(xk), fs(X0), fs(X1), . . . , fs(Xℓ)]

for (V,E, λ) |=fe,fs ϕ.
A formula without free variables is called sentence. Since the satisfaction of

a sentence by a graph does not depend on the functions fe and fs, we will in this
case simply say that the sentence holds in the graph. A formula is an elementary
formula if it does not contain any set variable. To stress that some formula is
not elementary, we will speak of monadic formulas , too.

Let (V,E, λ) be some Σ-labeled graph. The elementary theory Th(V,E, λ) of
this graph is the set of all elementary sentences that hold in (V,E, λ). Similarly,
the monadic theory MTh(V,E, λ) is the set of all monadic sentences valid in the
graph. We also define the elementary and monadic theory of classes of Σ-labeled
graphs C by

Th(C) =
⋂

(V,E,λ)∈C

Th(V,E, λ), and

MTh(C) =
⋂

(V,E,λ)∈C

MTh(V,E, λ),

i.e. the elementary (monadic, respectively) theory of a class of graphs is the set
of all elementary (monadic, respectively) sentences that hold in all graphs of this
class.

1.3. LOGIC 7

Let C1 ⊆ C2 be two classes of Σ-labeled graphs. The class C1 is monadically
axiomatizable relative to C2 iff there exists a monadic sentence ϕ such that for any
(V,E, λ) ∈ C2 we have (V,E, λ) ∈ C1 iff (V,E, λ) |= ϕ. If ϕ is even an elementary
sentence, the class C1 is elementary axiomatizable. Thus, the notion “axiomatiz-
able” always refers to classes of graphs. Differently, the notion “definable” refers
to relations inside some graph: Let G = (V,E, λ) be a Σ-labeled graph, n ∈ N

and ϕ be a monadic sentence whose free variables are among {x0, x1, . . . , xn−1}.
Then

ϕG := {(v0, v1, . . . , vn−1) ∈ V n | G |= ϕ[v0, v1, . . . , vn−1]}

is the n-ary relation defined by ϕ. An n-ary relation R ⊆ V n is monadically
definable inside G if R = ϕG for some monadic formula ϕ. Elementary definable
relations are defined similarly.

Later, we will also use logical formulae to reason on unlabeled graphs. It
should be clear that this just requires that atomic formulas of the form λ(x) = a
do not occur in the formula in question. The notions satisfaction, sentence, ele-
mentary and monadic theory etc. then are the obvious restrictions of the notions
we defined above. In the last chapters of both parts, we will concentrate on
(labeled) partially ordered sets which are special (labeled) graphs. To make the
formulas more intuitive, we will occasionally use subformulas of the form x ≤ y as
a substitute for E(x, y) and x ∈ X for X(x). Recall that in the definition of the
satisfaction of a monadic formula, monadic variables range over arbitrary sets.
Therefore, we considered functions fs : Vs → 2V . If (V,≤) is a partially ordered
set, one can restrict the monadic variables to range over chains or antichains,
only. This is done by considerting functions fs : Vs → 2V where fs(X) is an
(anti-)chain for any X ∈ Vs. The resulting satisfaction relations are denoted by
|=A if set variables range over antichains, and by |=C if the set variables range
over chains, only. The monadic chain theory and the monadic antichain theory
are defined canonically by

MATh(V,≤) = {ϕ monadic sentence without λ(x) = a | (V,≤) |=A ϕ}

MCTh(V,≤) = {ϕ monadic sentence without λ(x) = a | (V,≤) |=C ϕ}

MATh(P) =
⋂

(V,E,λ)∈P

MATh(V,E, λ), and

MCTh(P) =
⋂

(V,E,λ)∈P

MCTh(V,E, λ),

where P is any set of posets.
As usual, we will use abbreviations like

ϕ ∨ ψ for ¬ϕ ∧ ¬ψ,

ϕ→ ψ for ¬ϕ ∨ ψ, and

∀xϕ for ¬∃x¬ϕ.

8 CHAPTER 1. BASIC DEFINITIONS

Finally, for some properties that can obviously be expressed by a monadic for-
mula, we will simply use their mathematical or English description as for instance
“
⋃

t∈T Xt is everything” for “∀x
∧

t∈T Xt(x)” where T is a finite set or “X is a
chain” for “∀x∀y((X(x) ∧X(y)) → (E(x, y) ∨ E(y, x)))” .

1.4 Some notations

This very last part of the first chapter is devoted to some technical notions that
will be used throughout this work. Most of them are standard in one or the other
community but might be not so usual in another.

Let A,B be sets and f : A → B. By im f , we denote the image of f , i.e.
the set {f(a) | a ∈ A} ⊆ B. The identity function A → A is denoted by idA

while the identity relation on A is ∆A = {(a, a) | a ∈ A}. For A′ ⊆ A, a function
f : A′ → B is a partial function from A to B. The set A′ is the domain dom(f)
of the partial function f . By part(A,B), we denote the set of partial functions
from A to B with nonempty domain. Already in the preceding section, I used the
symbol 2A for the powerset of A. By π1 : A× B → A, we denote the projection
to the first component of the direct product A×B. Similarly, π2 : A×B → B is
the projection to the second component. Finally, we write [n] = {1, 2, . . . , n} for
the set of positive integers up to n while n denotes the set {0, 1, 2, . . . , n− 1}.

Part I

Asynchronous cellular machines

9

Chapter 2

Σ-dags and asynchronous cellular
machines

In this chapter, we define Σ-dags and asynchronous cellular automata, the central
topics of the first part of the present work. In addition, this chapter contains
several examples that hopefully enable an intuition connected to the notions
defined.

We start with the definition of a Σ-dag. These directed acyclic graphs gener-
alise an aspect of dependence graphs known from trace theory: As defined in Sec-
tion 1.2, a dependence graph is a labeled partially ordered set (V,≤, λ). Let −−<
denote the associated covering relation. Then (V,−−<, λ), called Hasse-diagram of
the dependence graph (V,≤, λ), is an example of a Σ-dag. In particular, λ−1(a),
the set of a-labeled nodes, is linearly ordered by the reflexive and transitive clo-
sure of the edge relation −−<, and for any node y and any label a, there is at
most one a-labeled node x with x −−< y and at most one a-labeled node z with
y −−< z. These properties define a Σ-dag:

Definition 2.1.1 Let Σ be an alphabet. A Σ-dag is a triple (V,E, λ) where
(V,E) is a finite directed acyclic graph and λ : V → Σ is a labeling function such
that

1. λ−1(a) is linearly ordered with respect to E⋆ for any a ∈ Σ, and

2. for any (x, y), (x′, y′) ∈ E with λ(x) = λ(x′), λ(y) = λ(y′), we have (x, x′) ∈
E⋆ if and only if (y, y′) ∈ E⋆.

By D, we denote the set of all Σ-dags.

As usual, we will identify isomorphic Σ-dags. So let (V,E, λ) ∈ D. Since
(V,E) is acyclic, E⋆ is a partial order on V . By the first requirement, vertices
that carry the same label are comparable with respect to the partial order E⋆.
In computer science, this property is referred to as “no autoconcurrency”. In
particular, the width of the partially ordered set (V,E⋆) is bounded by |Σ| and

11

12 CHAPTER 2. Σ-DAGS AND ACMS

a

a

a

b

b

c

c

Figure 2.1: An ({a}, {b}, {c}}-dag

there is a natural covering of a Σ-dag by the |Σ| chains λ−1(a) for a ∈ Σ. Any
edge connects two such chains. The second clause ensures in particular that two
edges connecting the same chains (in the same direction) cannot “cross”. More
precisely, let (x, y), (x′, y′) ∈ E with λ(x) = λ(x′) and λ(y) = λ(y′), i.e. these
two edges connect the same chains in the same direction. Then, by the first
requirement, x and x′ are comparable with respect to E⋆, say (x, x′) ∈ E⋆. Then
the second requirement forces (y, y′) ∈ E⋆. In particular, if (x, y), (x, y′) ∈ E
with λ(y) = λ(y′), then y = y′ and dually if (x, y), (x′, y) ∈ E with λ(x) = λ(x′)
then x and x′ are forced to be equal.

Example 2.1.2 1. Let Σ = {a, b, c}. Then the labeled directed acyclic graph
depicted in Figure 2.1 is a Σ-dag.

2. Let (P,≤) be a finite partial order and λ : P → Σ be a mapping. Then
the triple (P,≤, λ) is a pomset without autoconcurrency if, for any a ∈ Σ, the set
λ−1(a) is linearly ordered by ≤ (The left dag in Figure 2.2 is a pomset without
autoconcurrency). Note that (V,E⋆, λ) is a pomset without autoconcurrency for
any Σ-dag (V,E, λ). Conversely, a pomset without autoconcurrency is not a Σ-
dag for it may violate the second requirement. Now let x −−< y denote that x < y
and there is no element properly between x and y (We say that x is covered by y).
The Hasse-diagram Ha(P,≤, λ) of (P,≤, λ) is the labeled directed acyclic graph
(P,−−<, λ). It is easily checked that this Hasse-diagram is a Σ-dag whenever
(P,≤, λ) is a pomset without autoconcurrency (cf. the right dag in Figure 2.2).

Let t = (V,E, λ) ∈ D be a Σ-dag and x ∈ V . Then the reading domain R(x)
of x is the set of all letters a from Σ that satisfy

∃y ∈ V : λ(y) = a and (y, x) ∈ E,

i.e. R(x) is the set of labels of those nodes y ∈ V that are connected with x
by an edge (y, x). Informally, these nodes can be seen as the lower neighbors of

13

a

a

a

b

b

c

c

a

a

a

b

b

c

c

Figure 2.2: A pomset without autoconcurrency and its Hasse-diagram

x in the dag (V,E, λ) (but not necessarily in the partial order (V,E⋆, λ)). For
a ∈ R(x) let ∂a(x) denote the (unique) element y of λ−1(a) with (y, x) ∈ E.
Thus, {∂a(x) | a ∈ R(x)} is the set of lower neighbors of x in the Σ-dag t.

Example 2.1.2 (continued) Let x denote the element of the Σ-dag (P,E, λ)
from Figure 2.1 depicted by a solid circle. Since x is the target of edges whose
source is labeled by a and by c, respectively, the reading domain R(x) is {a, c}.
Differently, the solid circle in the Σ-dag from Figure 2.2 is the target of only one
edge whose source is labeled by c. Hence, for this Σ-dag, R(x) = {c}.

Next we define asynchronous cellular machines, the model of parallel systems
that we are going to investigate. An asynchronous cellular machine over Σ or
Σ-ACM is a tuple

A = ((Qa,⊑a)a∈Σ, (δa,J)a∈Σ,J⊆Σ, F)

where

1. (Qa,⊑a) is an at most countable, well-quasi ordered set of local states for
any a ∈ Σ,

2. δa,J :
∏

b∈J Qb → 2Qa is a nondeterministic transition function for any
a ∈ Σ, J ⊆ Σ, and

3. F ⊆
⋃

J⊆Σ

∏

b∈J Qb is a finite set of accepting states.

One can think of a Σ-ACM as a Σ-tuple of sequential devices. The device
with index a performs the a-labeled events of an execution. Doing so, it reads
states from other consitutents of the Σ-ACM. But it changes its own state, only
(see below for a formal definition of a run).

14 CHAPTER 2. Σ-DAGS AND ACMS

A Σ-ACM is deterministic if, for any a ∈ Σ, J ⊆ Σ and qb ∈ Qb for b ∈ J
the set δa,J((qb)b∈J) is a singleton.1 The set of all local states

⋃

a∈ΣQa will be
denoted by Q.

Example 2.1.3 Let Σ be an alphabet. For a ∈ Σ let Qa := NΣ be the set of
all functions Σ → {0, 1, 2, . . . }. The local wqos ⊑a are defined by f ⊑a g iff
f(b) ≤ g(b) for any b ∈ Σ. Next, we define the transition function by

δa,J((fc)c∈J) :=

{

∅ if there exist b, c ∈ J with b 6= c and fb(c) ≥ fc(c)

{g} otherwise

where the function g : Σ → N is given by

g(b) :=

{

sup{fc(b) | c ∈ J} if a 6= b

1 + sup{fc(b) | c ∈ J} if a = b.

Furthermore, F is the set of all tuples (fc)c∈J for J ⊆ Σ with fc(b) ∈ {0, 1} for all
b ∈ Σ and fc(c) = 0 for c ∈ J . The Σ-ACM A = ((Qa,⊑a)a∈Σ, (δa,J)a∈Σ,J⊆Σ, F)
is not deterministic since in some cases δa,J((fc)c∈J) is the empty set. Defining
Q′

a := Qa∪̇{⊥} with ⊥ ⊏a f for f ∈ Qa and δ
′
a,J((fc)c∈J) = {⊥} in all cases where

it was undefined so far, we obtain a deterministic Σ-ACM A′. We will return
to this example later and show that A accepts the set of all Hasse-diagrams of
pomsets without autoconcurrency.

A Σ-ACM is called asynchronous cellular automaton over Σ (Σ-ACA for short)
provided the sets of local states Qc are finite for c ∈ Σ. Usually, for an ACA we
will assume the wqos ⊑c to be the trivial reflexive relation ∆Qc

on Qc.
Next we define how a Σ-ACM can run on a Σ-dag and when it accepts a

Σ-dag. Let t = (V,E, λ) be a Σ-dag and A a Σ-ACM. Let r : V →
⋃

a∈ΣQa be
a mapping and x ∈ V be a node of t. Then r satisfies the run condition of A at
x (relative to t) if

r(x) ∈ δλ(x),R(x)((r∂b(x))b∈R(x)).

The mapping r is a run of A on t if it satisfies the run condition for any x ∈ V .
Note that, for a run r and x ∈ V , we always have r(x) ∈ Qλ(x) since the image
of δλ(x),R(x) belongs to Qλ(x).

Although the transitions of a Σ-ACM A are modeled by functions δa,J , we
can think of them as tuples (q, (pb)b∈J) with q ∈ δa,J((pb)b∈J). Such a tuple can
be understood as a directed acyclic graph with node set {q, pb | b ∈ J} and
edges from pb to q for b ∈ J . Furthermore, the nodes are labeled by elements
of Σ × Q where q gets the label (a, q) and pb is labeled by (b, pb). Note that

1Note that a deterministic Σ-ACM is “complete” since δa,J ((qb)b∈J) 6= ∅. As usual, this is
no proper restriction since “incomplete” Σ-ACMs can be “completed” by the introduction of
an additional state.

15

on the other side a run r on a Σ-dag t = (V,E, λ) defines a (Σ, Q)-labeled dag
by t′ = (V,E, λ × r). Then r is a run iff for any y ∈ V , the restriction of
t′ to y and its lower neighbors is a transition, i.e. if t′ can be “tiled” by the
transitions. Differently from nondeterministic graph acceptors, considered e.g. in
[Tho97b, Tho97a], here we take only into account the lower neighbors and not
all neighbors of a node y. The reason for this restriction is that we understand
a Σ-dag as a process that continues in time. Having this in mind, it is clear that
the state reached by performing a node y can depend only on its history but not
on the future.

Now let r be a run on the Σ-dag t = (V,E, λ). It is successful provided there
exists a tuple (qa)a∈λ(V) ∈ F with

r(max(λ−1(a))) ⊒a qa for all a ∈ λ(V),

i.e. if the “global final state” (r(max{λ−1(a)}))a∈λ(V) dominates some accepting
state in the direct product of the wqos ⊑a. Let L(A) ⊆ D denote the set of all
Σ-dags that admit a successful run of A. Let M be a set of Σ-dags and L ⊆M .
Then we say that L can be accepted by a Σ-ACM relative to M if there is a Σ-
ACM A with L(A) ∩M = L. Sometimes we will omit the term “relative to M”
if the set M is clear from the context or if M is the set of all Σ-dags. The word
“recognize” is reserved for asynchronous cellular automata, i.e. a set of Σ-dags L
is recognizable relative to M if there exists a Σ-ACA A with L = L(A) ∩M .

Example 2.1.3 (continued) Let Σ be an alphabet and let Ha denote the set
of Hasse-diagrams of pomsets without autoconcurrency. Then Ha ⊆ D. Fur-
thermore, let A denote the Σ-ACM defined above. We show that L(A) = Ha:
For a Hasse-diagram (P,−−<, λ) ∈ Ha let r(x)(a) be the number of a-labeled
elements below x (possibly including x, cf. Figure 2.3 for an example where a
tuple (x, y, z) denotes the function {(a, x), (b, y), (c, z)}). For x ∈ P , the reading
domain R(x) is the set of labels of vertices covered by x. Thus, the vertices ∂c(x)
for c ∈ R(x) are mutually incomparable. Hence, for c ∈ R(x), the vertex ∂c(x)
dominates the largest number of c-labeled vertices among {∂d(x) | d ∈ R(x)}.
Hence r(∂c(x))(c) > r(∂d(x))(c) for d ∈ R(x) \ {c}, i.e. r is a run of A on
(P,−−<, λ). Since any tuple (gc)c∈J dominates some state from F , it is accepting,
i.e. Ha ⊆ L(A). Conversely, let r be a successful run of A on the Σ-dag (V,E, λ).
Then, for any x ∈ V , c ∈ R(x) and a ∈ Σ we have r(∂c(x))(a) ≤ r(x)(a), i.e.
ha : (V,E⋆) → N defined by ha(x) := r(x)(a) is monotone with respect to the
partial order (V,E⋆). Furthermore, by the definition of δa,J , for any x ∈ V and
c, d ∈ R(x) with c 6= d we have hc(∂c(x)) > hc(∂b(x)). Hence ∂c(x) 6≤ ∂b(x). Since
we can similarly infer ∂b(x) 6≤ ∂c(x), the elements ∂c(x) and ∂b(x) are incompa-
rable. Hence (V,E, λ) is a Hasse-diagram. Thus, the set of Hasse-diagrams can
be accepted by a Σ-ACM with infinitely many states. It is not known whether
finitely many states suffice. On the contrary, Lemma 4.1.3 below will show that

16 CHAPTER 2. Σ-DAGS AND ACMS

a, (1, 0, 0)

a, (2, 0, 0)

a, (3, 0, 0)

b, (1, 1, 0)

b, (2, 2, 0)

c, (1, 1, 1)

c, (1, 1, 2)

Figure 2.3: A run of A

the set of not-Hasse-diagrams can be accepted by a Σ-ACA, i.e. by a Σ-ACM
with only finitely many states.

Example 2.1.4 Let L be the set of all Σ-dags t satisfying

the number of d-labeled vertices of t is even for any d ∈ Σ.

This set can be accepted by a Σ-ACM that differs from the ACM A from Exam-
ple 2.1.3 only in the wqos ⊑a: Here, we define f ⊑a g iff f(b) ≤ g(b) for b ∈ Σ
and f(a) ≡ g(a) mod 2. Then a tuple (fc)c∈Σ dominates some accepting state
iff fc(c) is even for all c ∈ J . Consider the run of A on the Σ-dag in Figure 2.3:
The maximal a-labeled vertex carries a state fa with 3 = fa(a). Furthermore, let
fb and fc denote the state at the maximal b-labeled and c-labeled vertex, respec-
tively. Then the tuple (fa, fb, fc) does not dominate (in the wqo ⊑a × ⊑b × ⊑c)
any state from F , i.e. the run r is not successful.

Recall that a Σ-ACM is an asynchronous cellular automaton if the sets of
local states Qa are finite. In this case, we usually consider the identity relation
∆Qa

as the wqo ⊑a. Then, as is easy to see, any asynchronous cellular automaton
is monotone: A Σ-ACM is monotone if, for any a ∈ Σ, J ⊆ Σ, pb, p

′
b ∈ Qb for

b ∈ J and q ∈ Qa, we have

q ∈ δa,J((pb)b∈J) and pb ⊑b p
′
b for b ∈ J =⇒ ∃q′ ∈ δa,J((p

′
b)b∈J) : q ⊑a q

′.

Intuitively, this means that increasing the input of a transition does not disable
the transition and increases its output.

We finish this chapter with some examples of the expressive power of mono-
tone ACMs. In the first of these examples, we consider ACMs that run on words
over Σ. To do this, we identify a word over Σ with the Hasse-diagram of a linearly
ordered Σ-labeled poset. In this sense, we can show that the “word-language”

17

{ambn | 1 ≤ n < m} can be accepted by a monotone ACM. This in particu-
lar implies that monotone ACMs are more powerful than finite automata since
ACMs can have infinite sets of states. In addition, we will show that the set
{bnam | 1 ≤ n < m} cannot be accepted by a Σ-ACM. Thus, the set of lan-
guages acceptable by a monotone ACM is not closed under reversal. This might
be surprising at first glance, but it is not really so since the notion of well quasi
ordering as well as that of monotonicity are not symmetric.

Example 2.1.5 Let Σ = {a, b} and L = {ambn | 1 ≤ n < m} ⊆ Σ+. We
consider the words in Σ+ as Hasse-diagrams of linearly ordered sets so that L ⊆ D.
Let A denote the following Σ-ACM:
Qa = Qb = N with the usual linear order which is a wqo,

δa,J((qc)c∈J) =

∅ if b ∈ J

{1} if J = ∅

{qa + 1} otherwise, i.e. if J = {a}, and

δb,J((qc)c∈J) =

∅ if J = {a, b} or J = ∅

{max(0, qa − 1)} if J = {a}

{max(0, qb − 1)} otherwise, i.e. if J = {b}.
The state (1, 1) is the only accepting state from F . We show that the only Hasse-
diagrams of linearly ordered sets that are accepted by A are those from the set
L: So let (V,E, λ) ∈ L. It is of the form

a1 a2 . . . am b1 b2 . . . bn

with 1 ≤ n < m, λ(ai) = a and λ(bi) = b for all suitable i. Then the mapping
r : V → N with r(ai) = i and r(bi) = m − i is a run of A on (V,E, λ). It is
successful since the final global state (qc)c∈Σ equals (m,m − n) and m − n ≥ 1.
If, on the contrary, (V,E, λ) is the Hasse-diagram of a linear order, but not from
L, then
either it contains some a-labeled vertex that covers a b-labeled one,
or it contains some b-labeled vertex which is not the target of any edge,
or it is of the form ambn with m ≤ n.

In the first case, the ACA A does not have any run on (V,E, λ) due to
δa,J((qc)c∈J) = ∅ whenever b ∈ J . Similarly in the second case, since δb,∅ = ∅. In
the third case, there is a run of A on (V,E, λ), but the final global state is of the
form (m, 0) and therefore not successful.

Now let L′ = {bnam | 1 ≤ n < m} denote the set of reversed words from L.
We show that there is no monotone Σ-ACM A′ that accepts the Hasse-diagrams
that correspond to words in L′ relative to the Hasse-diagrams of linear orders:
By contradiction, assume there is such a Σ-ACA A′. For n > 0 let tn denote the
Hasse-diagram corresponding to bnan+1. Since these words belong to L′, there
exists a successful run rn of A′ on tn for any n > 0. Let qn denote the state that

18 CHAPTER 2. Σ-DAGS AND ACMS

is associated by rn to the last b-labeled vertex in tn (i.e. qn ∈ Qb is the state of
A′ that is reached after performing the b-prefix of bnan+1). Since ⊑b is a wqo,
there are n < m with qn ⊑b qm. Now consider the Hasse-diagram t associated to
the word bman+1. Since n < m, this word does not belong to L′. Nevertheless,
since A′ is monotone, there is a successful run on t = (V,E, λ): This Σ-dag has
the form:

b1 b2 . . . bm a1 a2 . . . an

The mapping rm ↾ {b1, b2, . . . , bm} satisfies the run conditions for bi relative to
t since rm is a run of A′ on tm. Furthermore, rm(bm) = qm ⊒b qn. Since
rn(a1) ∈ δa,{b}(qn) and since A′ is monotone, there exists r(a1) ∈ δa,{b}(qm)
with rn(a1) ⊑a r(a1). By induction, we obtain states r(ai) ⊒a rn(ai) such that
rm ↾ {b1, b2, . . . , bm} ∪ r is a run of A′ on t. Since r(an+1) ⊒a rn(an+1) and
rm(bm) ⊒b rn(bn), the final global state (rm(bm), r(an+1)) of this run dominates
that of rn which equals (rn(bn), rn(an+1)). But rn was successful, hence so is this
new run, i.e. t is accepted by A′.

Note that the language {bnam | 1 ≤ n < m} cannot be accepted by a finite
sequential automaton. Hence, it is not monadically axiomatizable. The last
example in this chapter gives an elementary axiomatizable set of Σ-dags that
cannot be accepted by a monotone ACM:

Example 2.1.6 Let Σ = {a, b} and let ϕ denote the first-order sentence

∀x∃y((λ(x) = a) → ((λ(y) = b) ∧ (x, y) ∈ E)).

Note that a Σ-dag satisfies ϕ iff every a-labeled element is the source of an edge
that leads to a b-labeled vertex. Furthermore, let L be the set of all Σ-dags that
satisfy ϕ. We show that L cannot be accepted by a monotone Σ-ACM:

By contradiction, we assume A to be a Σ-ACA such that L(A) = L. For
n ∈ N consider the Σ-dag tn = (Vn, En, λn) defined as follows: The set Vn equals
{ai, bi | i = 1, 2, . . . , n} with the edge relation

{(ai, ai+1) | 1 ≤ i < n} ∪ {(bi, bi+1) | 1 ≤ i < n} ∪ {(ai, bi) | 1 ≤ i ≤ n}

and the labeling λn(ai) = a and λn(bi) = b for 1 ≤ i ≤ n (cf. the first Σ-dag in
Figure 2.4 for the case n = 8).

Recall that ϕ states that every element labeled by a is the source of an edge
leading to an element labeled by b. Hence tn ∈ L. By the assumption that
A accepts those Σ-dags that satisfy ϕ, there exists a successful run rn of A on
tn for all n ∈ N. Let wn denote the word rn(a1)rn(a2)rn(a3) . . . rn(an) ∈ Q⋆

a.
By Higman’s Theorem [Hig52], there exist m < n such that wm is dominated
by a subword of wn that contains the last position, i.e. such that there exist

19

a1 a2 a3 a1 a5 a6 a7 a8

b1 b2 b3 b1 b5 b6 b7 b8

a1 a2 a3 a1 a5 a6 a7 a8

b1 b2 b3 b4 b5

Figure 2.4: cf. Example 2.1.6.

1 ≤ j1 < j2 < · · · < jm = n with rm(ai) ⊑a rn(aji). Now consider the Σ-
dag t = (V,E, λ) defined by V = {a1, a2, . . . , an, b1, b2, . . . , bm}, λ(ai) = a and
λ(bi) = b for all suitable i and the edge relation

{(ai, ai+1) | 1 ≤ i < n} ∪ {(bi, bi+1) | 1 ≤ i < m} ∪ {(aji , bi) | 1 ≤ i ≤ m}

(see the second Σ-dag in Figure 2.4 with m = 5, n = 8, j1 = 1, j2 = 3, j3 = 6, j4 =
7, and j5 = 8). Then t 6∈ L. On the other hand we construct a successful run
r of A on t as follows: Let r(ai) = rn(ai) for 1 ≤ i ≤ n. Then r satisfies the
run condition at ai since rn is a run. Recall that rm(ai) ⊑a rn(aji) = r(aji).
Since A is monotone, there exists r(b1) ∈ δb,{a}(r(aj1)) with rn(b1) ⊑b r(b1).
Inductively, we find r(bi) ∈ δb,{a,b}(r(aji), r(bi−1)) with r(bi) ⊒b rm(bi). At the
end, r(bm) ⊒b rm(bm). Thus, the final global state (r(an), r(bm)) dominates
(rm(am), rm(bm)). Since rm was successful, so is r, i.e. t ∈ L(A), a contradiction.

On the other hand, the set D \ L can easily be accepted by a Σ-ACA, i.e.
with only finitely many states. A Σ-dag does not belong to L iff it has an a-
labeled vertex that is not the source of any edge connecting it to a b-labeled
vertex, i.e. the state associated to this vertex by a possible run is not seen by
any b-labeled vertex. Thus, the idea of a Σ-ACA that accepts the complement
of L is to nondeterministically pick at least one a-labeled vertex and mark it by
a distinguished state. The b-transitions just have to check that they do not read
this distinguished state.

20 CHAPTER 2. Σ-DAGS AND ACMS

Chapter 3

Decidability results

In the preceding chapter, we defined Σ-ACMs as a model of a computing device
that can perform computation tasks concurrently. The behavior of a Σ-ACM is
the accepted language, i.e. a set of Σ-dags. Hence a Σ-ACM describes a property
of Σ-dags. Since the intersection as well as the union of two languages L(A1)
and L(A2) can be accepted by a Σ-ACM, properties describable by Σ-ACMs can
become quite complex. Then it is of interest whether the combined property
is contradictory, or, equivalently, whether at least one Σ-dag satisfies it. Thus,
one would like to know whether a Σ-ACM accepts at least one Σ-dag. In this
chapter, we show that it is possible to gain this knowledge even automatically,
i.e. we show that there exists an algorithm that on input of a Σ-ACM decides
whether the Σ-ACM accepts at least one Σ-dag. In other words, the aim of this
chapter is to show that the question “Does A accept some Σ-dag?” is decidable.
More precisely, it is shown that the set

{A | A is monotone and effective and L(A) = ∅}

is recursive. I am grateful to Peter Habermehl who pointed me to the paper
[FS98, FS01] that deals with well-structured transition systems. The proof of the
mentioned decidability rests on this result.

3.1 Notational conventions and definitions

Let N+ = {1, 2, . . . }. Nevertheless, in this chapter an expression sup(M) for
M ⊆ N+ will be understood in the structure (N,≤). The useful effect of this
convention is that sup(M) = 0 for M ⊆ N if and only if M is empty.

Let A be a set. Then in this chapter, a word is a mapping w :M → A where
M is a finite subset of N+. If M = {n1, n2, . . . , nk} with n1 < n2 < · · · < nk,
the finite sequence w(n1)w(n2) . . . w(nk) is a word in the usual sense. Two words
v : M → A and w : N → A are isomorphic (and we will identify them) if there
is an order isomorphism (with respect to the usual linear order of the natural

21

22 CHAPTER 3. DECIDABILITY RESULTS

s′ −→ t′

� �

s −→ t

Figure 3.1: Lifting of a transition in a WSTS

numbers) η :M → N with v = w◦η. By A⋆ we denote the set of all words over A.
Furthermore, for w ∈ A⋆ and a ∈ A let wa denote the word v : domw∪{n} → A
with n > domw, v ↾ domw = w and v(n) = a. By ε, we denote the empty word,
i.e. the mapping ε : ∅ → A.

Recall that we identify isomorphic Σ-dags. Hence, we can impose additional
requirements on the carrier set V as long as they can be satisfied in any isomor-
phism class. It turns out that in the considerations we are going to do in this
section, it will be convenient to assume that for any Σ-dag (V,E, λ)

V ⊆ N+ and that the partial order E⋆ is contained in the usual linear
order on N+.

Note that on the set H := λ−1(a) we have two linear orders: E⋆ and the order
≤ of the natural numbers. Since ≤ extends (V,E⋆), these two linear orders on
H coincide. Hence, for a run r of some Σ-ACM on t = (V,E, λ), the mapping
r ↾ λ−1(a) : λ−1(a) → Qa is a word over Qa whose letters occur in the order given
by (V,E⋆).

3.2 Well-structured transition systems

A transition system is a set S endowed with a binary relation →⊆ S2. For
t ∈ S, we denote by Pred(t) the set of predecessors of t in the transition system
S, i.e. the set of all s ∈ S with s → t. A well-structured transition system
or WSTS is a triple (S,→,�) where (S,→) is a transition system, � is a wqo
on S and for any s, s′, t ∈ S with s → t and s � s′ there exists t′ ∈ S with
s′ → t′ and t � t′. Thus, a WSTS is a well-quasi ordered transition system such
that any transition s → t “lifts” to a larger state s′ � s (cf. Figure 3.1). This
definition differs slightly from the original one by Finkel & Schnoebelen [FS01] in
two aspects: First, they require only s′ →⋆ t′ and they call WSTS’ satisfying our
axiom “WSTS with strong compatibility”. Secondly, and more seriously, their
transition systems are finitely branching. But it is easily checked that the results
from [FS01, Section 2 and 3] hold for infinitely branching transition systems, too.
Since we use only these results (namely of Theorem 3.6), it is not necessary to
restrict well-structured transitions systems in our context to finitely branching
ones. In [FS01], several decidability results are shown for WSTSs. In particular,
they showed

3.2. WELL-STRUCTURED TRANSITION SYSTEMS 23

Theorem 3.2.1 ([FS01, Theorem 3.6]) Let (S,→,�) be a WSTS such that
� is decidable and a finite basis of Pred(↑s) can be computed effectively for any
s ∈ S. Then there is an algorithm that solves the following decision problem:
input: two states s, t ∈ S.
output: Does there exist a state s′ ∈ S with s →⋆ s′ � t, i.e. is t dominated by
some state reachable from s?

Since in their proof the algorithm that decides the existence of the state s′ is
uniformly constructed from the decision algorithm for � and the algorithm that
computes a finite predecessor basis, one gets even more:

Theorem 3.2.2 There exists an algorithm that solves the following decision
problem:
input: 1. an algorithm that decides �,

2. an algorithm computing a finite basis for Pred(↑s) for s ∈ S, and
3. two states s and t from S
for some well-structured transition system (S,→,�).

output: Does there exists a state s′ ∈ S such that s→⋆ s′ � t?

In this section, we will show that there is an algorithm that, given a Σ-ACM,
outputs whether this ACM accepts some Σ-dag. To obtain this result we use
well-structured transition systems introduced above and in particular Theorem
3.2.2. Of course, the first idea might be to define a transition system as follows:
The states are the runs of the Σ-ACM A, i.e. we could define the state set Z to
equal {(t, r) | t ∈ D and r is a run of A on t}. The transitions of the transition
system should reflect the computation steps of the ACM A, i.e. we could define
(t, r) (t′, r′) iff there exists a maximal vertex x of t′ such that t = t′ \ {x}
and r = r′ ↾ t. Then (Z,) is indeed a transition system that mimics the
computations of the ACM A. But to make it a well-structured transition system,
we need a well-quasi order on Z that is compatible with . Since the states of
this transition system are labeled graphs, one could try the minor relation that
is a wqo on unlabeled graphs. But (at least to the author) it is not clear whether
this can be extended to labeled graphs (it is even unclear what the labeling of a
minor should be).

Recall that the transition relation of the WSTS should reflect the atomic
computation steps of the Σ-ACM A. But the labeled graph (t, r) contains much
information that is not necessary for this purpose. The only information we really
need is

1. the state sequence of the a-component of the automaton A, i.e. the Qa-word
r ↾ λ−1(a), and

2. which nodes of t can be read by an additional node x, i.e. for each a, b ∈ Σ
we need the information which a-labeled node has already been read by
some b-labeled node.

24 CHAPTER 3. DECIDABILITY RESULTS

For a Σ-ACM A = ((Qa,⊑a)a∈Σ, (δa,J)a∈Σ,J⊆Σ, F), this idea is formalized as
follows: Let t = (V,E, λ) be a Σ-dag and let r : V → Q be a run of A on t. For
a ∈ Σ, let wa := r ↾ λ−1(a). As explained in Section 3.1, λ−1(a) is a subset of N+

where the order relation E⋆ coincides with the usual linear order ≤ on N. Hence
wa : λ−1(a) → Qa is a word over Qa. Now we define mappings poswa : Σ → V as
follows: For a, b ∈ Σ, let poswa (b) denote the last position in the word wa that is
read by some b-labeled vertex. Formally

poswa (b) := sup{x ∈ λ−1(a) | ∃y ∈ λ−1(b) : (x, y) ∈ E}

where the supremum is taken in N such that, if the set is empty, we have poswa (b) =
0. Note that poswa (b) is in general not the last position in wa that is dominated
by some b-labeled vertex in the partial order (V,E⋆, λ). The tuple (wa, pos

w
a)a∈Σ

is called the state associated with the run r, denoted state(r) := (wa, pos
w
a)a∈Σ.

Example 2.1.3 (continued) Let t = (V,E, λ) be the Σ-dag and let r denote
the run of A depicted in Figure 2.3 (page 16). Then we have the following:

va = (1, 0, 0)(2, 0, 0)(3, 0, 0)

vb = (1, 1, 0)(2, 2, 0)

vc = (1, 1, 1)(1, 1, 2)

posva = {(a, 2), (b, 2), (c, 0)}

posvb = {(a, 0), (b, 1), (c, 1)}

posvc = {(a, 0), (b, 0), (c, 1)}

This situation is visualized in Figure 3.2. There, the words va, vb and vc are
drawn vertically. On the left of a node, the associated state of A can be found.
The letter b at the right of the second a-node indicates that this node equals
posva(b). Finally, posva(c) = 0 is indicated by the fact that c does not appear at
the right of the word va.

As explained above, we want the set of states S to contain state(r). Thus,
S ⊆

∏

a∈Σ(Q
⋆
a × NΣ). Now we define the state set S completely:

S :=

{

(wa, pos
w
a)a∈Σ ∈

∏

a∈Σ

(Q⋆
a × NΣ) | im(poswa) ⊆ domwa ∪ {0} for a ∈ Σ

}

.

Note that 0 6∈ N+ and therefore in general im poswa 6⊆ domwa.

3.2. WELL-STRUCTURED TRANSITION SYSTEMS 25

(1, 0, 0)

(2, 0, 0)

(3, 0, 0)

(1, 1, 0)

(2, 2, 0)
(1, 1, 1)

(1, 1, 2)

a, b
b, c

c

va

vb

vc

Figure 3.2: The state state(r) of the run from Figure 2.3

The state (wa, pos
w
a)a∈Σ is a successor of the state (va, pos

v
a)a∈Σ, denoted

(va, pos
v
a)a∈Σ → (wa, pos

w
a)a∈Σ, iff there exist a ∈ Σ, ∅ 6= J ⊆ Σ, pb ∈ Qb for

b ∈ J and q ∈ Qa such that

(i) q ∈ δa,J((pb)b∈J),

(ii) wc =

{

vcq for c = a

vc otherwise,

(iii) poswc (b) = posvc(b) for all b, c ∈ Σ satisfying either c 6∈ J or a 6= b, and

(iv) posvc(a) < poswc (a) ∈ dom vc such that vc ◦ poswc (a) = pc for c ∈ J .

In this chapter, we will refer to these conditions just as (i),(ii) etc.
The following example indicates that state(r) → state(r′) whenever (t, r)

(t′, r′), i.e. that the transition system (S,→) really reflects the computations of
the ACM A. Even more, we will show that (under some additional assumptions
on A) the states of the form state(r) for some run r are precisely those states
that are “reachable” in the transition system (S,→) (cf. Lemma 3.3.2). This will
enable us to prove the desired decidability result.

Example 2.1.3 (continued) Let t′ denote the extension of the Σ-dag t from
Figure 2.3 by an a-labeled node as indicated in Figure 3.3 (first picture). Fur-
thermore, this picture shows an extension r′ of the run r, too. The second picture
depicts the state state(r′). The reader might check that state(r′) is a successor
state of state(r).

First, we will show that the result of Finkel & Schnoebelen can indeed be
applied, i.e. that we can extend the transition system (S,→) to a well-structured
transition system.

So we have to extend the wqo ⊑a on Qa to words over Qa: To do this, recall
that we consider words as mappings from a finite linear order into the well-quasi

26 CHAPTER 3. DECIDABILITY RESULTS

a, (1, 0, 0)

a, (2, 0, 0)

a, (3, 0, 0)

a, (4, 0, 2)

b, (1, 1, 0)

b, (2, 2, 0)

c, (1, 1, 1)

c, (1, 1, 2)

(1, 0, 0)

(2, 0, 0)

(3, 0, 0)

(4, 0, 2)

(1, 1, 0)

(2, 2, 0)
(1, 1, 1)

(1, 1, 2)

b

a

b, c
c

a

va

vb

vc

Figure 3.3: A successor state of state(r) from Figure 3.2

3.2. WELL-STRUCTURED TRANSITION SYSTEMS 27

ordered set Qa. Therefore, an embedding η : v →֒ w is defined to be an order
embedding of dom v ∪ {0} into domw ∪ {0} such that

η(0) = 0, η(sup dom v) = sup domw, and v(i) ⊑a w ◦ η(i) for i ∈ dom v.

Thus, there is an embedding η : v →֒ w iff one obtains v from w by first deleting
some letters (but not the last) and then decreasing the remaining ones with
respect to ⊑a. If ⊑a is trivial (i.e. the identity relation ∆Qa

), there exists such
an embedding iff v is a subword of w and the last letters of v and w coincide.
Now a quasi-order � on the states of the transition system (S,→) is defined by
(va, pos

v
a)a∈Σ � (wa, pos

w
a)a∈Σ iff

there exist embeddings ηa : va →֒ wa such that ηa ◦ posva = poswa for
any a ∈ Σ.

As explained above, the existence of the embeddings ηa ensures that va is dom-
inated by some subword (including the last letter) of wa letter by letter. The
requirement ηa ◦posva = poswa ensures that the pointer poswa (b) (if not 0) points to
some position in this subword and that this position corresponds (via ηa) to the
position in va to which posva(b) points. It is obvious that � is reflexive and tran-
sitive, i.e. � is a quasiorder. If ⊑a is a partial order for any a ∈ Σ, the relation
� is even a partial order since (va, pos

v
a)a∈Σ � (wa, pos

w
a)a∈Σ implies |va| ≤ |wa|

for any a ∈ Σ.

Lemma 3.2.3 Let A be a Σ-ACM. Then (S,�) is a well quasi ordering.

Proof. Let w ∈ Q⋆ and posw : Σ → domw. We construct a word w′ over the
set Q× 2Σ by domw′ := domw and w(i) := (w(i), (posw)−1(i)). Now let v ∈ Q⋆

and posv : Σ → dom v and construct v′ ∈ (Q × 2Σ)⋆ similarly. Then there is
an embedding η : v →֒ w with η ◦ posv = posw iff there exists an embedding
η′ : v′ →֒ w′. Thus, (va, pos

v
a)a∈Σ � (wa, pos

w
a)a∈Σ iff v′a can be embedded into w′

a

for any a ∈ Σ.
By Higman’s Theorem [Hig52], words over a well-quasi ordered set (Q,⊑)

form a wqo with respect to the embeddability. Since the direct product of finitely
many wqos is a wqo, the lemma follows. �

Even though the set of states of the transition system (S,→) is equiped with
a wqo as we saw in the lemma above, the triple (S,→,�) is in general not a
WSTS. For this to hold, we need that the underlying Σ-ACA is monotone: A
Σ-ACM is monotone if, for any a ∈ Σ, J ⊆ Σ, pb, p

′
b ∈ Qb for b ∈ J and q ∈ Qa,

we have

q ∈ δa,J((pb)b∈J) and pb ⊑b p
′
b for b ∈ J =⇒ ∃q′ ∈ δa,J((p

′
b)b∈J) : q ⊑a q

′.

28 CHAPTER 3. DECIDABILITY RESULTS

Intuitively, this means that increasing the input of a transition does not disable
the transition and increases its output. Furthermore note that any asynchronous
cellular automaton is monotone since there the wqo ⊑a is just the identity relation
∆Qa

on the finite set Qa.

Theorem 3.2.4 Let A be a monotone Σ-ACM. Then S(A) = (S,→,�) is a
well-structured transition system.

Proof. Let (vc, pos
v
c)c∈Σ, (wc, pos

w
c)c∈Σ and (v′c, pos

v′

c)c∈Σ be states from S such
that

(v′c, pos
v′

c)c∈Σ
�

(vc, pos
v
c)c∈Σ → (wc, pos

w
c)c∈Σ.

Let ηc : vc →֒ v′c denote embeddings that witness (vc, pos
v
c)c∈Σ � (v′c, pos

v′

c)c∈Σ.
Since (vc, pos

v
c)c∈Σ → (wc, pos

w
c)c∈Σ, there exist a ∈ Σ, ∅ 6= J ⊆ Σ, pb ∈ Qb for

b ∈ J , and q ∈ Qa satisfying (i)-(iv).
In particular (by (i)) q ∈ δa,J((pb)b∈J). By (iv), we get in addition pc =

vc(pos
v
c(a)) ⊑c v

′
c ◦ ηc(pos

v′

c (a)) =: p′c. Hence, by the monotonicity of the Σ-ACM
A, there exists q′ ∈ δa,J((p

′
b)b∈J) such that q ⊑a q

′.
Let w′

a := v′aq
′ and w′

c := v′c for c 6= a. Extend ηa to η′a by η′a := ηa ∪
{(sup domwa, sup domw′

a)} and η′c := ηc for c 6= a and define posw
′

c := η′c ◦ pos
w
c

for c ∈ Σ. Then (w′
c, pos

w′

c)c∈Σ ∈ S and (wc, pos
w
c)c∈Σ � (w′

c, pos
w′

c)c∈Σ wit-
nessed by the embeddings η′c. It remains to show that (w′

c, pos
w′

c)c∈Σ is a suc-
cessor of (v′c, pos

v′

c)c∈Σ, i.e. we have to prove that (i)-(iv) hold for (v′c, pos
v′

c)c∈Σ,
(w′

c, pos
w′

c)c∈Σ, a, J and p′b for b ∈ J and q′: Property (ii) follows from the defini-
tion of w′

c. Now let b, c ∈ Σ with c 6∈ J or a 6= b. Then posw
′

c (b) = η′c ◦ pos
w
c (b) =

η′c◦pos
v
c(b) since (iii) holds for the undashed elements. Since posvc(b) ∈ dom vc, we

have η′c ◦ pos
v
c(b) = ηc ◦ posvc(b) = posv

′

c (b), i.e. we showed (iii). To verify (iv), let
c ∈ J . Then posv

′

c (a) = ηc ◦ posvc(a) = η′c ◦ pos
v
c(a) < η′c ◦ pos

w
c (a) since (iv) holds

for the undashed elements and η′c is an order embedding. Since η′c ◦ poswc (a) =
posw

′

c (a), we get posv
′

c (a) < posw
′

c (a) ∈ im ηc. Since poswc (a) 6= 0 and η′c is injec-
tive, we obtain posw

′

c (a) = η′c ◦ pos
w
c (a) 6= 0, i.e. posw

′

c (a) ∈ im ηc \ {0} ⊆ dom v′c.
Finally, v′c ◦ pos

v′

c (a) = p′c holds by the choice of p′c. �

To apply Theorem 3.2.2 to the WSTS (S,→,�), our next aim is to show that
in (S,→,�) a finite predecessor basis, i.e. a finite basis of Pred(↑(wc, pos

w
c)c∈Σ),

can be computed for any state (wc, pos
w
c)c∈Σ. Note that ↑(wc, pos

w
c)c∈Σ in this

expression is meant with respect to the wqo �. Before we can prove this (cf.
Lemma 3.2.8), we consider the quasiorder ⊑ on S: For v, w ∈ Q⋆

a, let v ⊑′
a w iff

|v| = |w| and there exists an embedding of v into w. Note that whenever v ⊑′
a w

we can obtain w from v by simply enlarging the letters of v independently from

3.2. WELL-STRUCTURED TRANSITION SYSTEMS 29

each other. Since comparable words (with respect to ⊑′
a) have the same length,

⊑′
a is only a quasiorder, but not a wqo. Similarly to ⊑′

a, we define (va, pos
v
a)a∈Σ ⊑

(wa, pos
w
a)a∈Σ iff |va| = |wa| for a ∈ Σ and (va, pos

v
a)a∈Σ � (wa, pos

w
a)a∈Σ.

We call a Σ-ACM effective if there is an algorithm that given a ∈ Σ, J ⊆ Σ,
pb ∈ Qb for b ∈ J and q ∈ Qa computes a finite basis of

{

((p′b)b∈J , q
′) ∈

∏

b∈J

Qb ×Qa

∣

∣

∣

∣

∣

q′ ∈ δa,J((p
′
b)b∈J), q ⊑a q

′ and pb ⊑b p
′
b for b ∈ J

}

with respect to the direct product
(
∏

b∈J ⊑b

)

× ⊑a. We call such an algorithm
a basis algorithm of A. Intuitively, an ACM is effective if a finite basis of all
transitions above a given tuple of states can be computed. Note that this tuple
is not necessarily a transition. On the other hand, we do not require that the set
of all transitions, i.e. the set {(q, (pb)b∈J) | q ∈ δa,J((pb)b∈J)} is a recursive subset
of Qa ×

∏

b∈J Qb, and this might not be the case as the following example shows.
Furthermore note that any asynchronous cellular automaton is effective since (as
a finite object) it can be given explicitly.

Example 3.2.5 Let Σ = {a} and Qa = N. On this set, we consider the complete
relation N × N as wqo ⊑a. Furthermore, let M be some non recursive subset of
N and define, for n ∈ N:

δa,{a}(n) =

{

{n, n+ 1} if n ∈M

{n} if n 6∈M.

Furthermore, let δa,∅ = {1}. Now let t = (V,E, λ) be a Σ-dag (i.e. t is the Hasse-
diagram of a finite linear order) and let r : V → N be some mapping. Then r is
a run of the Σ-ACA A = (Qa, (δa,J)J⊆{a}, F) iff r(x) ≤ r(x + 1) ≤ r(x) + 1 for
any x ∈ V and {x ∈ V | r(x) 6= r(x + 1)} ⊆ M . Since this latter inclusion is
not decidable, one cannot decide whether r is a run. On the other hand, A is
effective since {(1, 1)} is a finite basis of any nonempty subset of Qa ×Qa.

The preceding example suggests the question whether L(A) is recursive for
any monotone and effective Σ-ACM A. Later (Corollary 3.3.5), we will show that
this is indeed the case. Anyway, for an effective ACM, we can show:

Lemma 3.2.6 There is an algorithm that, on input of an alphabet Σ, a basis
algorithm for an effective Σ-ACM A and a state (wc, pos

w
c)c∈Σ ∈ S, outputs a

finite basis with respect to ⊑ of the set of all states (v′c, pos
v′

c)c∈Σ ∈ S satisfying

∃(w′
c, pos

w′

c)c∈Σ : (v′c, pos
v′

c)c∈Σ −→ (w′
c, pos

w′

c)c∈Σ

⊑

(wc, pos
w
c)c∈Σ

30 CHAPTER 3. DECIDABILITY RESULTS

Proof. In this proof, we assume that domw = {1, 2, . . . , sup domw} for any
word w 6= ε.

First, we describe the algorithm:
For any a ∈ Σ and any ∅ 6= J ⊆ Σ that satisfy
(a) wa 6= ε and sup domwa 6∈ im poswa and
(b) poswb (a) 6= 0 for b ∈ J
compute a finite basis B(a, J) of the set of all tuples ((p′b)b∈J , q

′) ∈
∏

b∈J Qb×Qa

satisfying
(c) q′ ∈ δa,J((p

′
b)b∈J), wa(sup domwa) ⊑a q

′ and wb ◦ poswb (a) ⊑b p
′
b for b ∈ J .

Such a finite basis can be computed by an application of the basis algorithm with
q = wa(sup domwa) and pb = wb(pos

w
b (a)) for b ∈ J .

For any ((p′b)b∈J , q
′) ∈ B(a, J), let (w′

c, pos
w′

c)c∈Σ ∈ S denote the uniquely deter-
mined state that satisfies
(d) domw′

c = domwc and posw
′

c = poswc for c ∈ Σ and

(e) w′
c(i) =

p′c if c ∈ J, i = posw
′

c (a)

q′ if c = a, i = sup domw′
a

wc(i) otherwise.

For c ∈ Σ, let v′c denote the word over Qc uniquely determined by

(f) dom v′c =

{

domw′
a \ {sup domw′

a} for c = a

domw′
c otherwise, and

(g) v′c = w′
c ↾ dom v′c.

Finally, output the finite set of states (v′c, pos
v′

c)c∈Σ that satisfy
(h) posv

′

c (b) = posw
′

c (b) for b, c ∈ Σ with c 6∈ J or a 6= b and
(j) posv

′

c (a) < posw
′

c (a) for c ∈ J .
First we show that for any (v′c, pos

v′

c)c∈Σ that is output by the algorithm above
we have (v′c, pos

v′

c)c∈Σ → (w′
c, pos

w′

c)c∈Σ ⊒ (wc, pos
w
c)c∈Σ:

Since (v′c, pos
v′

c)c∈Σ is output, there exist a ∈ Σ, ∅ 6= J ⊆ Σ, p′b ∈ Qb for
b ∈ J with ((p′b)b∈J , q

′) ∈ B(a, J) and q′ ∈ Qa such that (a)-(j) hold. For c ∈ Σ,
the identity function ηc : domwc ∪ {0} → domw′

c ∪ {0} satisfies ηc ◦ poswc =
posw

′

c by (d). By (c) and (e), we obtain wc(i) ⊑c w
′
c ◦ ηc(i) for i ∈ domwc.

Hence (wc, pos
w
c)c∈Σ � (w′

c, pos
w′

c)c∈Σ. Since in addition |wc| = |w′
c|, we get

(wc, pos
w
c)c∈Σ ⊑ (w′

c, pos
w′

c)c∈Σ.
It remains to show that (i)-(iv) (page 25) hold for the states (v′c, pos

v′

c)c∈Σ and
(w′

c, pos
w′

c)c∈Σ and for a, J, p′b for b ∈ J and q′:
(i): This is immediate since (c) holds.
(ii): If c 6= a, (f) and (g) imply v′c = w′

c. Furthermore, these two statements also
ensure w′

a = v′aw
′
a(sup domw′

a) = v′a q
′ by (e).

(iii): This is immediate by (h).
(iv): Let c ∈ J . Then, by (j), posv

′

c (a) < posw
′

c (a). Hence posw
′

c (a) 6= 0 and
therefore posw

′

c (a) ∈ domw′
c. For c 6= a, this implies posw

′

c ∈ dom v′c since,
by (f), dom v′c = domw′

c. To deal with the case a = c, recall that poswa (a) 6=
sup domwa by (a). Hence, from (d), we can infer posw

′

y (a) 6= sup domw′
a and

3.2. WELL-STRUCTURED TRANSITION SYSTEMS 31

therefore posw
′

a (a) ∈ domw′
a \ {sup domw′

a} = dom v′a by (f). Thus, we showed
posv

′

c (a) < posw
′

c (a) ∈ dom v′c for c ∈ J . Again, let c ∈ J . Then v′c(pos
w′

c (a)) =
w′

c(pos
w′

c (a)) = p′c by (e).
It remains to show that a state (v′′c , pos

v′′

c)c∈Σ ∈ S dominates some output of
our algorithm whenever there exists a state (w′′

c , pos
w′′

c)c∈Σ ∈ S such that:

(v′′c , pos
v′′

c)c∈Σ −→ (w′′
c , pos

w′′

c)c∈Σ

⊑

(wc, pos
w
c)c∈Σ

Since (v′′c , pos
v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ, there exist a ∈ Σ, ∅ 6= J ⊆ Σ, p′′b ∈ Qb

for b ∈ J and q′′ ∈ Qa satisfying (i)-(iv). We show that a and J satisfy (a)
and (b):
(a): Since (w′′

c , pos
w′′

c)c∈Σ ⊒ (wc, pos
w
c)c∈Σ, it holds |wa| = |w′′

a| = |v′′aq
′′| > 0 by

(ii) and therefore wa 6= ε. Furthermore, im posw
′′

a ⊆ dom v′′a∪{0} by (iii) and (iv).
But dom v′′a = domw′′

a \{sup domw′′
a} by (ii) and therefore sup domwa 6∈ im poswa .

(b): Let c ∈ J . Then posw
′′

c (a) ∈ dom v′′c 6∋ 0 by (iv). Hence posw
′′

c (a) 6= 0 which
does not belong to dom v′′c .

Furthermore note that wb(pos
w
b (a)) ⊑b w

′′
b (pos

w′′

b (a)) = v′′b (pos
w′′

b (a)) = p′′b by
(iv) for any b ∈ J . Similarly, wa(sup domwa) ⊑a w

′′
a(sup domw′′

a) = q′′ by (iv) and
(by (i)) q′′ ∈ δa,J((p

′′
b)b∈J). Since B(a, J) is a basis, there is ((p′b)b∈Σ, q

′) ∈ B(a, J)
such that p′b ⊑b q

′′
b for b ∈ J , q′ ⊑a q

′′ and (c) holds. Now construct (w′
c, pos

w′

c)c∈Σ
and v′c for c ∈ Σ according to (d)-(g) and set posv

′

c = posv
′′

c . To show (h),
let b, c ∈ Σ with c 6∈ J or a 6= b. Then, by (iii), posv

′′

c (b) = posw
′′

c (b). Since
(wd, pos

w
d)d∈Σ ⊑ (w′′

d , pos
w′′

d)d∈Σ is witnessed by the identity functions, we get
posv

′′

c (b) = posw
′′

c (b) = poswc (b) = posw
′

c (b) where the last equality holds by (d).
Thus, (h) holds. To show (j), let c ∈ J . Then, by (iv), posv

′′

c (a) < posw
′′

c (a) and
we can continue as above by posv

′′

c (a) < posw
′′

c (a) = poswc (a) = posw
′

c (a) thereby
proving (j). Hence h := (v′c, pos

v′′

c)c∈Σ is a state from S that is output by our
algorithm. It remains to check h ⊑ (v′′c , pos

v′′

c)c∈Σ which is left to the interested
reader. �

32 CHAPTER 3. DECIDABILITY RESULTS

Lemma 3.2.7 Let (xc, pos
x
c)c∈Σ, (w

′′
c , pos

w′′

c)c∈Σ and (v′′c , pos
v′′

c)c∈Σ be states from
S with

(v′′c , pos
v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ

�

(xc, pos
x
c)c∈Σ

Then there exist states (wc, pos
w
c)c∈Σ, (v

′
c, pos

v′

c)c∈Σ and (w′
c, pos

w′

c)c∈Σ such that

1. |wc| − |xc| ≤ 2|Σ|+ 1 for c ∈ Σ and

2. (v′′c , pos
v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ

� �
(v′c, pos

v′

c)c∈Σ → (w′
c, pos

w′

c)c∈Σ
⊑

(wc, pos
w
c)c∈Σ

�

(xc, pos
x
c)c∈Σ

Proof. Since (v′′c , pos
v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ, there are a ∈ Σ, ∅ 6= J ⊆ Σ,
pb ∈ Qb for b ∈ J and q ∈ Qa such that (i)-(iv) (page 25) hold. Let ηc : xc →֒ w′′

c

be embeddings that witness (xc, pos
x
c)c∈Σ � (w′′

c , pos
w′′

c)c∈Σ. We may assume
that ηc is just the identity function, i.e. dom xc ⊆ domw′′

c , xc(i) ⊑c w
′′
c (i) for

i ∈ dom xc, sup dom xc = sup domw′′
c , and posxc = posw

′′

c for c ∈ Σ.
First, we define (w′

c, pos
w′

c)c∈Σ: For c ∈ Σ, let

domw′
c := (dom xc ∪ im posv

′′

c ∪ im posw
′′

c ∪{sup dom v′′c }) \ {0}

and w′
c = w′′

c ↾ domw′
c. Furthermore, let posw

′

c := posw
′′

c = posxc . Then imposw
′

c ⊆
dom xc ∪ {0} ⊆ domw′

c ∪ {0} ensures (w′
c, pos

w′

c)c∈Σ ∈ S.
We show (w′

c, pos
w′

c)c∈Σ � (w′′
c , pos

w′′

c)c∈Σ: Note that dom xc ⊆ domw′′
c . Fur-

thermore, im posv
′′

c ⊆ dom v′′c ∪ {0} and (v′′c , pos
v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ imply
imposv

′′

c \{0} ⊆ domw′′
c . Since imposw

′′

c \{0} ⊆ domw′′
c and sup dom v′′c ∈

domw′′
c ∪ {0}, we therefore get domw′

c ⊆ domw′′
c . Thus, the identity function

η′c := iddomw′
c∪{0} : domw′

c∪{0} → domw′′
c ∪{0} is an order embedding that sat-

isfies w′
c(i) = w′′

c ◦ η
′
c(i) for i ∈ domw′

c. Since (v
′′
c , pos

v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ, we
have dom v′′c ⊆ domw′′

c and therefore sup dom v′′c ≤ domdomw′′
c = sup dom xc.

Hence sup domw′
c = sup dom xc = sup domw′′

c . Thus, η′ : w′
c →֒ w′′

c is an em-
bedding. Since posw

′

c = posw
′′

c , we in addition get posw
′′

c = η′c ◦ posw
′

c implying
(w′

c, pos
w′

c)c∈Σ � (w′′
c , pos

w′′

c)c∈Σ.
Next, define (wc, pos

w
c)c∈Σ by domwc = domw′

c, pos
w
c := posw

′

c and

wc(i) :=

{

xc(i) if i ∈ dom xc

w′
c(i) otherwise.

3.2. WELL-STRUCTURED TRANSITION SYSTEMS 33

Again, since imposwc = imposw
′

c ⊆ domw′
c ∪ {0} = domwc ∪ {0}, the tuple

(wc, pos
w
c)c∈Σ belongs to S. Furthermore | domwc| = | domw′

c| ≤ | dom xc| +
| im posw

′′

c |+| im posv
′′

c |+1 implies |wc|−|xc| ≤ 2|Σ|+1. Thus, the first statement
holds.

Note that dom xc ⊆ domw′
c = domwc. Furthermore, we showed above

sup dom xc = sup domw′
c; hence sup dom xc = sup domwc. Finally, for i ∈

dom xc, we have xc(i) = wc(i). Thus, the identity function dom xc ∪ {0} →
domwc ∪ {0} is an embedding of xc into wc. Since, in addition, poswc = posw

′

c =
posxc , we get (xc, pos

x
c)c∈Σ � (wc, pos

w
c)c∈Σ.

For i ∈ dom xc, we have wc(i) = xc(i) ⊑c w
′′
c (i) = w′

c(i). Now (wc, pos
w
c)c∈Σ ⊑

(w′
c, pos

w′

c)c∈Σ follows immediately since wc(i) = w′
c(i) for i ∈ domw′

c \ dom xc,
domwc = domw′

c and poswc = posw
′

c .
Finally, we construct (v′c, pos

v′

c)c∈Σ: Let dom v′c := domw′
c∩dom v′′c , and define

v′c := w′
c ↾ dom v′c and posv

′

c := posv
′′

c for c ∈ Σ. Then (v′c, pos
v′

c)c∈Σ ∈ S since
imposv

′

c = imposv
′′

c ⊆ (domw′
c ∩ dom v′′c) ∪ {0} = dom v′c ∪ {0}. For i ∈ dom v′c,

we have v′c(i) = w′
c(i) = w′′

c (i) by the definition of v′c and of w′
c, respectively.

In addition, i ∈ dom v′′c and, from (v′′c , pos
v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ, we obtain
w′

c(i) = v′′c (i) i.e. we showed v′c(i) = v′′c (i).
Now let c 6= a. Above, we showed sup domw′

c = sup domw′′
c . We infer v′′c =

w′′
c from (v′′c , pos

v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ. Therefore sup domw′
c = sup dom v′′c .

Hence dom v′c = domw′
c ∩ dom v′′c implies sup dom v′c = sup dom v′′c . Thus, for

c 6= a, the identity function dom v′c ∪ {0} → dom v′′c ∪ {0} is an embedding of
v′c into v′′c . Next we show this fact for c = a: Since dom v′a = domw′

a ∩ dom v′′a ,
we obtain dom v′a ≤ sup dom v′′a . Furthermore, sup dom v′′a ∈ domw′

a ∪ {0} and
sup dom ∈ dom v′′a ∪ {0} imply sup dom v′′a ∈ dom v′a ∪ {0}. Hence sup dom v′′a =
sup dom v′a. Thus, indeed, the identity function dom v′c ∪ {0} → dom v′′c ∪ {0}
is an embedding of v′c into v′′c for any c ∈ Σ. Since posv

′′

c = posv
′

c , we have
(v′c, pos

v′

c)c∈Σ � (v′′c , pos
v′′

c)c∈Σ as required.
It remains to show (v′c, pos

v′

c)c∈Σ → (w′
c, pos

w′

c)c∈Σ, i.e. that (ii)-(iv) hold for
the states (v′c, pos

v′

c)c∈Σ and (w′
c, pos

w′

c)c∈Σ and for a, J , pb for b ∈ J and q:
(ii) For c 6= a we have dom v′c = domw′

c ∩ dom v′′c = domw′
c ∩ domw′′

c since
dom v′′c = domw′′

c follows from (v′′c , pos
v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ. Now domw′
c ⊆

domw′′
c implies dom v′c = domw′

c. Thus v′c = w′
c ↾ dom v′c = w′

c. Similarly, we
obtain dom v′a = domw′

a ∩ dom v′′a = domw′
a ∩ (domw′′

a \ {sup domw′′
a}). Recall

that sup domw′
a = sup domw′′

a and therefore dom v′a = domw′
a \ {sup domw′

a}.
Since w′

a(sup domw′
a) = q, we obtain w′

a = v′aq from v′a = w′
a ↾ dom v′a.

(iii) Let b, c ∈ Σ with c 6∈ J or a 6= b. Then posv
′

c (b) = posv
′′

c (b) and posw
′′

c (b) =
posw

′

c (b). Using (iii) for the states (v′′c , pos
v′′

c)c∈Σ and (w′′
c , pos

w′′

c)c∈Σ, we obtain
posv

′′

c (b) = posw
′′

c (b) and therefore posv
′

c (b) = posw
′

c (b) as required.
(iv) Let c ∈ J . Since (iv) holds for the states (v′′c , pos

v′′

c)c∈Σ and (w′′
c , pos

w′′

c)c∈Σ, we
get posv

′

c (a) = posv
′′

c (a) < posw
′′

c (a) = posw
′

c (a) and posw
′′

c (a) ∈ dom v′′c . Since, in
addition, posw

′

c (a) ∈ domw′
c∪{0}, we infer posw

′

c (a) ∈ dom v′′c ∩ (domw′
c∪{0}) =

dom v′′c ∩ domw′
c = dom v′c. Finally, we get v

′
c ◦ pos

w′

c (a) = v′′c ◦ posw
′′
c (a) = pc. �

34 CHAPTER 3. DECIDABILITY RESULTS

Lemma 3.2.8 There exists an algorithm that solves the following problem:
input: 1. an alphabet Σ,

2. a basis algorithm of an effective and monotone Σ-ACM A,
3. a finite basis Bc of (Qc,⊑c) and an algorithm to decide ⊑c for

c ∈ Σ, and
4. a state (xc, pos

x
c)c∈Σ ∈ S

output: a finite basis of the set Pred(↑(xc, posxc)c∈Σ).

Proof. For simplicity, let M denote the set Pred(↑(xc, posxc)c∈Σ). Let H be the
finite set of all states (wc, pos

w
c)c∈Σ in S that satisfy

dom xc ⊆ domwc,
wc(i) = xc(i) for i ∈ dom xc and wc(i) ∈ Bc otherwise,
posxc = poswc and
|wc| − |xc| ≤ 2|Σ|+ 1 for c ∈ Σ.
Note that H can be computed effectively. Furthermore, the identity functions

witness (xc, pos
x
c)c∈Σ � (wc, pos

w
c)c∈Σ for (wc, pos

w
c)c∈Σ ∈ H.

For (wc, pos
w
c)c∈Σ ∈ H, by Lemma 3.2.6, we can compute a finite basis

B((wc, pos
w
c)c∈Σ) (with respect to ⊑) of the set of all states (v′c, pos

v′

c)c∈Σ sat-
isfying

∃(w′
c, pos

w′

c)c∈Σ ∈ S : (v′c, pos
v′

c)c∈Σ → (w′
c, pos

w′

c)c∈Σ

⊑

(wc, pos
w
c)c∈Σ.

Let (v′c, pos
v′

c)c∈Σ ∈ B((wc, pos
w
c)c∈Σ). Then there exists a state (w′

c, pos
w′

c)c∈Σ
that is a successor of (v′c, pos

v′

c)c∈Σ and dominates (wc, pos
w
c)c∈Σ with respect

to ⊑. Since (xc, pos
x
c)c∈Σ � (wc, pos

w
c)c∈Σ, we therefore get (xc, pos

x
c)c∈Σ �

(w′
c, pos

w′

c)c∈Σ. But this implies (v′c, pos
v′

c)c∈Σ ∈ Pred(↑(xc, posxc)c∈Σ), i.e. we
showed B((wc, pos

w
c)c∈Σ) ⊆ Pred(↑(xc, posxc)c∈Σ) =M . Now define

B :=
⋃

(wc,poswc)c∈Σ∈H

B((wc, pos
w
c)c∈Σ).

It remains to show that B is a basis of M : So let (v′c, pos
v′

c)c∈Σ ∈ B. Then
there exist (wc, pos

w
c)c∈Σ ∈ H and (w′

c, pos
w′

c)c∈Σ ∈ S such that
(v′c, pos

v′

c)c∈Σ → (w′
c, pos

w′

c)c∈Σ

⊑

(wc, pos
w
c)c∈Σ

�

(xc, pos
x
c)c∈Σ.

3.3. THE EMPTINESS IS DECIDABLE FOR ACMS 35

Hence (w′
c, pos

w′

c)c∈Σ � (xc, pos
x
c)c∈Σ and therefore (v′c, pos

v′

c)c∈Σ ∈ M , i.e. we
showed B ⊆M which implies ↑B ⊆ ↑M .

Now let (v′′c , pos
v′′

c)c∈Σ ∈ M . Then there exists (w′′
c , pos

w′′

c)c∈Σ ∈ S such that
(v′′c , pos

v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ � (xc, pos
x
c)c∈Σ. Hence, by Lemma 3.2.7, there

are (wc, pos
w
c)c∈Σ ∈ H, (v′c, pos

v′

c)c∈Σ ∈ B and (w′
c, pos

w′

c)c∈Σ ∈ S with

(v′′c , pos
v′′

c)c∈Σ → (w′′
c , pos

w′′

c)c∈Σ

� �

(v′c, pos
v′

c)c∈Σ → (w′
c, pos

w′

c)c∈Σ

⊑

(wc, pos
w
c)c∈Σ

�

(xc, pos
x
c)c∈Σ.

Hence v′′ ∈ ↑B and therefore M ⊆ ↑B. Since this trivially implies ↑M ⊆ ↑B,
the set B is indeed a finite basis of M . �

3.3 The emptiness is decidable for ACMs

To apply the decidability result of Finkel and Schnoebelen (Theorem 3.2.2) to
Σ-ACMs, we have to relate runs of a Σ-ACM and paths in the transition system
(S,→). Roughly speaking, states of the form state(r) for some run r correspond to
reachable states in (S,→). Unfortunately, the truth is not that simple. Therefore,
we need some more notions: Let Σ be an alphabet. A weak Σ-dag is a triple
(V,E, λ) where (V,E) is a finite directed acyclic graph and λ : V → Σ is a
labeling function such that

1. for all x, y ∈ min(V,E⋆) with λ(x) = λ(y), we have x = y, and

2. for any (x, y), (x′, y′) ∈ E with λ(x) = λ(x′), λ(y) = λ(y′), we have x = x′

if and only if y = y′.

Note that any Σ-dag is a weak Σ-dag. Similarly to Σ-dags, we can define R(y) for
a node y in a weak Σ-dag (V,E, λ) to be the set of all labels λ(x) with (x, y) ∈ E.
Since in a weak Σ-dag for any node y and any a ∈ R(y) there is a unique node
x with λ(x) = a and (x, y) ∈ E, we can also use the notion ∂a(y) to denote this
vertex. Hence, for a Σ-ACM A, we can speak of a mapping r : V → Q that
satisfies the run condition at a node x ∈ V relative to t.

36 CHAPTER 3. DECIDABILITY RESULTS

Lemma 3.3.1 There exists an algorithm that on input of an alphabet Σ and a
function f : Σ → Σ outputs an asynchronous cellular automaton A(f) such that

1.
⋃

f∈ΣΣ L(A(f)) = D, and

2. for any weak Σ-dag t = (V,E, λ), any f : Σ → Σ and any mapping r
that satisfies the run condition of A(f) for any x ∈ V relative to t, the set
λ−1(a) is a chain w.r.t. E⋆ for any a ∈ Σ.

Proof. First, we give the construction of the ACAs A(f): Let f : Σ → Σ.
The set of local states shared by all processes equals the set of nonempty partial
functions from Σ to itself, i.e. Q = Qa = part(Σ,Σ) for a ∈ Σ. The transition
functions δa,J are defined by

δa,∅ = {g ∈ part(Σ,Σ) | a ∈ dom(g) = f−1(a) 6= ∅}

and for J 6= ∅ by

g ∈ δa,J((gb)b∈J) ⇐⇒ a ∈ dom(g) and (∀c ∈ dom(g)∃b ∈ J : gb(c) = a)

for gb ∈ part(Σ,Σ) for b ∈ J . Finally, all tuples of local states are accepting.
To show the first statement, let t = (V,E, λ) ∈ D be a Σ-dag. Since t

is a Σ-dag, nodes that carry the same label are linearly ordered with respect
to E⋆. Hence, we can choose maximal chains Ca ⊆ V with λ−1(a) ⊆ Ca for
any a ∈ Σ. Note that the minimal node of the chain Ca is minimal in t. We
set f(a) := λ(minCa) and obtain a function f : Σ → Σ. To prove the first
statement, it remains to show that A(f) accepts t: We define a mapping r :
V → Q = part(Σ,Σ) with dom(r(x)) = {a ∈ Σ | x ∈ Ca}. Now let x ∈ V
and a ∈ dom(r(x)). If there exists y ∈ Ca with (x, y) ∈ E, then there exists a
least such node y since Ca is a chain. Let r(x)(a) be the label of this minimal
node. If there is no such node y, define r(x)(a) := a. Since x ∈ Cλ(x) for any
x ∈ V , the function r(x) is indeed nonempty and therefore belongs to Q. Now
let y ∈ V be some node with a = λ(y). We want to show that r satisfies the
run condition of A(f) at y relative to t: First let y be minimal in t. Since
λ−1(a) ⊆ Ca, we get a ∈ dom(r(y)). Now let b ∈ f−1(a), i.e. f(b) = a. Then by
the choice of f , we get a = λ(minCb). Since Cb is a maximal chain, the node
minCb is minimal in t. Since t is a Σ-dag, its minimal nodes carry mutually
different labels. Hence y = minCb ∈ Cb. This implies b ∈ dom(r(y)) and
therefore f−1(a) ⊆ dom(r(y)). Conversely let b ∈ dom(r(y)). Then y ∈ Cb

and, since y is minimal in t, y = minCb. Hence a = λ(y) = λ(minCb) = f(b)
ensures dom(r(y)) ⊆ f−1(a). Thus, the mapping r satisfies the run condition of
A(f) at the minimal nodes of t relative to t. Now let y ∈ V be nonminimal.
Then J := R(y) 6= ∅. Since y ∈ λ−1(a) ⊆ Ca, we get a ∈ dom(r(y)). Now let
c ∈ dom(r(y)), i.e. y ∈ Cc. Since Cc is a maximal chain, there exists a lower

3.3. THE EMPTINESS IS DECIDABLE FOR ACMS 37

neighbor (with respect to the partial order E⋆) x of y which belongs to the chain
Cc. Hence (x, y) ∈ E and c ∈ dom(r(x)). Furthermore, x is not maximal in
(V,E⋆). Let y′ ∈ Cc be minimal with (x, y′) ∈ E. Then λ(y′) = r(x)(c). Since
(x, y) ∈ E+ and y ∈ Cc, we obtain xE+y′E⋆y which ensures y′ = y. Hence
λ(y) = r(x)(c).

Now we prove the second statement of the lemma. Let f : Σ → Σ be some
mapping. Furthermore let t = (V,E, λ) be a weak Σ-dag and let r : V → Q be
a mapping that satisfies the run condition of A(f) for any node x ∈ V relative
to t. We will prove that Ca := {x ∈ V | a ∈ dom(r(x))} is a chain. Since by
the definition of the transition functions δa,J we have λ(x) ∈ dom(r(x)) for any
x ∈ V , this will imply λ−1(a) ⊆ Ca and therefore that λ−1(a) is linearly ordered.

Now let x, y ∈ Cc. Since r satisfies the run condition of A(f), there exist
x0, x1, . . . , xn ∈ V such that x0 ∈ min(t), xn = x, (xi, xi+1) ∈ E for 0 ≤ i < n,
and c ∈ dom(r(xi)) and r(xi)(c) = λ(xi+1) for 0 ≤ i < n.

Similarly, we find nodes y0, y1, . . . , ym ∈ V such that y0 ∈ min(t), ym = y,
(yi, yi+1) ∈ E for 0 ≤ i < m, and c ∈ dom(r(yi)) and r(yi)(c) = λ(yi+1) for
0 ≤ i < m. Without loss of generality, we may assume n ≤ m.

Since c ∈ dom(r(x0)) and R(x0) = ∅, we obtain c ∈ f−1(λ(x0)) since the
run condition is satisfied at the node x0. Hence f(c) = λ(x0) and similarly
f(c) = λ(y0). Since the minimal nodes of the weak Σ-dag t carry different
labels, this implies x0 = y0. By induction, let 0 ≤ i < n with xi = yi. Then
(xi, xi+1) ∈ E, (yi, yi+1) ∈ E and λ(xi+1) = r(xi)(c) = r(yi)(c) = λ(yi+1). Since
t is a weak Σ-dag, this implies xi+1 = yi+1. Thus, we get x = xn = ynE

⋆y as
required. �

Let A be some Σ-ACM and S(A) = (S,→,�) be the associated WSTS. A
state (wa, pos

w
a)a∈Σ ∈ S is a depth-1-state if

1. |wa| ≤ 1 for a ∈ Σ,

2. poswa (b) = 0 for a, b ∈ Σ, and

3. wa(min dom(wa)) ∈ δa,∅ for a ∈ Σ with wa 6= ∅.

Let (wa, pos
w
a)a∈Σ be some depth-1-state. Let V = {a ∈ Σ | wa 6= ∅} and E = ∅.

Finally, let λ = idV . Since wa(min dom(wa)) ∈ δa,∅ for a ∈ V , the mapping
a 7→ wa(min dom(wa)) is a run of A on the Σ-dag t = (V,E, λ). Furthermore, the
Σ-dag t is (considered as a partial order) an antichain since E = ∅. If conversely
t is an antichain and r is a run of A on t, then state(r) is a depth-1-state.

Now let Ai = ((Qi
a,⊑

i
a)a∈Σ, (δ

i
a,J)a∈Σ,J⊆Σ, F

i) for i = 1, 2 be two Σ-ACMs.
Then the direct product A1 × A2 = ((Qa,⊑a)a∈Σ, (δa,J)a∈Σ,J⊆Σ, F) has the fol-

38 CHAPTER 3. DECIDABILITY RESULTS

lowing obvious definition:

Qa := Q1
a ×Q2

a,

⊑a := ⊑1
a × ⊑2

a

δ(a,J)((p
1
b , p

2
b)b∈J) := δ1(a,J)((p

1
b)b∈J)× δ2(a,J)((p

2
b)b∈J), and

F := {(q1a, q
2
a)a∈J | (qia)a∈J ∈ F i for i = 1, 2}.

It is easily seen that the direct product of monotone and effective ACMs is mono-
tone and effective, again. Furthermore, this direct product accepts the intersec-
tion of the two languages, i.e. L(A1 × A2) = L(A1) ∩ L(A2). Hence, to decide
whether L(A) is empty, by the first statement of the preceding lemma, it suffices
to decide whether L(A × A(f)) is empty for each function f : Σ → Σ. This is
essentially the reason why we now start to consider these direct products.

Lemma 3.3.2 Let A′ be a Σ-ACM and f : Σ → Σ. Let A = A′ ×A(f) and let
S(A) = (S,→,�) be the WSTS associated with A. Let (wa, pos

w
a)a∈Σ be a state

of (S,→). Then the following are equivalent:

(1) There exist a Σ-dag t and a run r of the Σ-ACM A on t such that state(r) =
(wa, pos

w
a)a∈Σ.

(2) The state (wa, pos
w
a)a∈Σ is reachable from some depth-1-state in the transi-

tion system (S,→).

Proof. Throughout this proof, let A = ((Qa,⊑a)a∈Σ, (δa,J)a∈Σ,J⊆Σ, F).
(1) → (2): Let t = (V,E, λ) be a Σ-dag and r : V → Q a run of A on t.

Recall that we assume V ⊆ N+ with x < y whenever (x, y) ∈ E. We can in
addition require that x ∈ min(V,E⋆) and y ∈ V \min(V,E⋆) imply x < y. Since
the linear order ≤ of natural numbers extends the partial order E⋆ on V , we can
enumerate V such that V = {x1, x2, . . . , xn} with xi < xi+1. Furthermore, there
is k ∈ N+ such that min(V,E⋆) = {x1, x2, . . . , xk} by our additional requirement.
For i = k, k + 1, k + 2, . . . , n, let Vi := {x1, x2, . . . , xi}, ti := (Vi, E, λ) and
ri : Vi → Q be the restriction of r to Vi. Then, for all suitable i, ri is a run of the Σ-
ACM A on the Σ-dag ti. Furthermore, Vk = {x1, x2, . . . , xk} is the set of minimal
nodes of t with respect to E⋆ and tk is the restriction of t to its minimal nodes.
Hence state(rk) is a depth-1-state. It remains to prove state(ri) → state(ri+1) for
k ≤ i < n to obtain the desired result by induction. Let (va, pos

v
a)a∈Σ = state(ri)

and (wa, pos
w
a)a∈Σ = state(ri+1). Furthermore, let a = λ(xi+1), J = R(xi+1),

pb = r∂b(xi+1) for b ∈ J , and q = r(xi+1).
We show that (i)-(iv) hold for these elements: Since i+1 > k, the node xi+1 is

not minimal in t. Hence it is the target of some edge from E, i.e. J 6= ∅. Since ri+1

is a run on ti+1, we get q ∈ δa,J((pb)b∈J) and therefore (i). Since Vi+1\Vi = {xi+1}
and ri = ri+1 ↾ Vi, we get ri ↾ λ

−1(c) = ri+1 ↾ λ
−1(c) for c 6= a. Hence wc = vc

3.3. THE EMPTINESS IS DECIDABLE FOR ACMS 39

for c 6= a. Furthermore, wa = ri+1 ↾ λ
−1(a) = (ri ↾ λ

−1(a)) ri+1(xi+1) = vaq.
Thus, we showed (ii). Note that the only edges in ti+1 that do not belong to ti
are of the form (x, xi+1) with λ(x) ∈ R(xi+1) = J , i.e. their source is labeled by
an element of J while the target is labeled by a. Hence, for b, c ∈ Σ with c ∈ J
or a 6= b, we have posvc(b) = poswc (b), i.e. (iii) holds.

To show (iv), let c ∈ J . Then poswc (a) = ∂c(xi+1) since there is an edge
(x, xi+1) in ti+1 with λ(x) = c. Let y, z ∈ Vi such that λ(y) = a and λ(z) = b
with (z, y) ∈ E. Then y < xi+1 and therefore z < ∂c(xi+1) by the second
requirement on Σ-dags. Hence posvc(a) < poswc (a). Since ∂c(xi+1) ∈ Vi, we also
get poswc (a) ∈ λ−1(c) ∩ Vi = dom vc. By the very definition of pc, we have
wc ◦ poswc (a) = r ◦ poswc (a) = r∂c(xi+1) = pc, i.e. (iv) holds. Thus we showed
state(ri) → state(ri+1) and therefore the implication (1) → (2).

(2) → (1): When we defined the concept of a depth-1-state, we showed that
they are of the form state(r) for some run r of A. Hence the implication (2) → (1)
holds for depth-1-states and it remains to show that, given a run r, any successor
of state(r) in (S,→) is of the form state(r′) for some run r′ of the Σ-ACM A. So
let t = (V,E, λ) be a Σ-dag and let r : V → Q be a run of A on t. Furthermore,
let state(r) = (va, pos

v
a)a∈Σ → (wa, pos

w
a)a∈Σ. Then there exist a ∈ Σ, ∅ 6= J ⊆ Σ,

pb ∈ Qb for b ∈ J and q ∈ Qa such that (i)-(iv) hold. Define V ′ := V ∪̇ {z}
and let λ′ := λ ∪ {(z, a)}. The set of edges E ′ will consist of all edges from E
and some edges of the form (x, z) with x ∈ V . According to the definition of a
run, we should have additional edges with λ(x) ∈ J only and, conversely, for any
c ∈ J there has to be a new edge (x, z) with λ(x) = c. Furthermore, the state at
the source of this new edge should equal pc. By (iv), poswc (a) ∈ dom vc = λ−1(c).
Hence poswc (a) belongs to V and is labeled by c. Now we define

E ′ := E ∪̇ {(poswc (a), z) | c ∈ J}.

Then (V ′, E ′) is a dag since the only new edges have a common target z. We show
that t′ = (V ′, E ′, λ′) is a weak Σ-dag: Since J 6= ∅, there is an edge whose target
is z, i.e. z is not minimal in (V ′, (E ′)⋆). In other words min(t) = min(t′). Since
t is a Σ-dag, this implies that the minimal nodes of t′ carry mutually different
labels as required by the first axiom for weak Σ-dags. Now let (x, y), (x′, y′) ∈ E ′

with λ(x) = λ(x′) and λ(y) = λ(y′). We have to show x = x′ ⇐⇒ y = y′. Since
t is a Σ-dag, this holds if (x, y), (x′, y′) ∈ E. So assume (x, y) ∈ E ′ \E, i.e. y = z
and x = poswc (a) for some c ∈ J . If x = x′, we get x′ = x = poswc (a) > posvc(a)
by (iv) since c ∈ J . Thus, x′ > sup{x ∈ λ−1(c) | ∃y ∈ λ−1(a) : (x, y) ∈ E}.
Hence (x′, y′) 6∈ E and therefore y′ = z = y. Conversely assume y = y′. Then
x = poswλ(x)(a) = poswλ(x′)(a) = x′. Thus, t′ is indeed a weak Σ-dag.

Now let r′ := r ∪̇ {(z, q)}. For x ∈ V , this mapping satisfies the run condition
of A relative to t and therefore relative to t′. Since the edges in t′ with target z
are of the form (poswc (a), z) with c ∈ J , we have R(z) = J and ∂c(z) = poswc (a)
for c ∈ J . Hence, by (iv), r∂c(z) = pc for c ∈ J . Since q ∈ δa,J((pc)c∈J), the

40 CHAPTER 3. DECIDABILITY RESULTS

mapping r′ satisfies the run condition at z relative to t′, too. Recall that A is the
direct product of A′ and A(f). Hence π2 ◦ r′ satisfies the run condition of A(f)
at any node x ∈ V ′ relative to the weak Σ-dag t′. Hence, by Lemma 3.3.1 (2),
the set (λ′)−1(b) is a chain w.r.t. (E ′)⋆ for any b ∈ Σ. To show that t′ is a Σ-dag,
it remains to prove the second condition, i.e. that for any (x, y), (x′, y′) ∈ E ′ with
λ(x) = λ(x′) and λ(y) = λ(y′) we have

(x, x′) ∈ (E ′)⋆ ⇐⇒ (y, y′) ∈ (E ′)⋆.

Since t is a Σ-dag, this equivalence holds if (x, y), (x′, y′) ∈ E.
So assume (x′, y′) ∈ E ′ \ E. Then y′ = z. Since λ(y) = λ(y′), the nodes y

and y′ = z are ordered w.r.t. (E ′)⋆. Since z = y′ is maximal in t′ w.r.t. (E ′)⋆,
this implies (y, y′) ∈ (E ′)⋆. We show (x, x′) ∈ (E ′)⋆: If (x, y) 6∈ E, we are
done since then y = y′ and therefore x = x′. So assume (x, y) ∈ E. Since
(x′, y′) ∈ E ′ \ E, there exists c ∈ J with x′ = poswc (a). Hence x′ > posvc(a)
by (iv). But posvc(a) = sup{x ∈ λ−1(c) | ∃y ∈ λ−1(a) : (x, y) ∈ E} and the
node x is contained in this set. Hence, indeed x′ > x w.r.t. the linaer order on
the natural numbers. Since x′ and x carry the same label, they are comparable
w.r.t. E⋆. Hence (x, x′) ∈ E⋆. Thus, we showed the required equivalence in case
(x′, y′) ∈ E ′ \ E.

Now assume (x, y) ∈ E ′ \ E and therefore y = z. First, let (x, x′) ∈ (E ′)⋆

and therefore x ≤ x′. Since x = poswc (a) for some c ∈ J , we obtain x ≥ x′ as
above. Hence x = x′ and, since t′ is a weak Σ-dag, y = y′. Thus, we showed
(y, y′) ∈ (E ′)⋆. Now assume (y, y′) ∈ (E ′)⋆. Since (x, y) ∈ E ′ \ E, we obtain
similarly to above, (y′, y) ∈ (E ′)⋆, i.e. y = y′. Since t′ is a weak Σ-dag, this
implies x = x′.

Thus, t′ is indeed a Σ-dag. Hence r′ is a run of the Σ-ACM A on the Σ-dag t′.
It is an easy exercise to show state(r′) = (wa, pos

w
a)a∈Σ proving the implication

(2) → (1). �

By Theorem 3.2.4 and Lemma 3.2.8, we can apply Theorem 3.2.2 to (S,→,�),
i.e. there is an algorithm that, given a monotone and effective Σ-ACM A and a
state (wc, pos

w
c)c∈Σ ∈ S, decides whether (wc, pos

w
c)c∈Σ is dominated by some

reachable state in the WSTS (S,→,�). It remains to transfer this decidability
to the question whether the language accepted by A is empty:

Let A′ = ((Q′
a,⊑

′
a)a∈Σ, (δ

′
a,J)a∈Σ,J⊆Σ, F

′) be a Σ-ACM and f : Σ × Σ. De-
fine A = A′ × A(f) and let A = ((Qa,⊑a)a∈Σ, (δa,J)a∈Σ,J⊆Σ, F). Furthermore,
let Bc be a finite basis of the set of local states Qc of the product automaton
A = A′ ×A(f) for c ∈ Σ. Now let J ⊆ Σ and let qc be some local state from the
product automaton for c ∈ J . We define States((qc)c∈J) to consist of all states
(wc, pos

w
c)c∈Σ from S(A) such that for all c ∈ Σ:

|wc| ≤ |Σ|, (wc = ε ⇐⇒ c 6∈ J), and wc ∈ B⋆
c qc for c ∈ J.

3.3. THE EMPTINESS IS DECIDABLE FOR ACMS 41

Note that due to the restrictions |wc| ≤ |Σ| and wc ∈ B⋆
c qc ∪ {ε}, the set

States((qc)c∈J) is finite. Since, in addition, the set F of accepting states of
A′ × A(f) is finite, we even have that

⋃

q∈F States(q) is finite. The following
lemma states that L(A′ × A(f)) is not empty iff some state of this finite set
⋃

q∈F States(q) is dominated by a state in S(A′ ×A(f)) that is reachable from a
depth-1-state.

Lemma 3.3.3 Let A′ be a Σ-ACM, f : Σ → Σ and A = A′×A(f). Furthermore,
let S(A) = (S,→,�). Then the following are equivalent:

1. A accepts some Σ-dag, i.e. L(A) ∩ L(A(f)) 6= ∅.

2. There exist an accepting state (qa)a∈J of A, a depth-1-state (v′a, pos
v′

a)a∈Σ
from S, a state (wa, pos

w
a)a∈Σ ∈ States((qa)a∈J) and a state (w′

a, pos
w′

a)a∈Σ
in S such that (v′a, pos

v′

a)a∈Σ →⋆ (w′
a, pos

w′

a)a∈Σ � (wa, pos
w
a)a∈Σ.

Proof. Let t = (V,E, λ) ∈ L(A). Then there exists a successful run r of A
on t. By Lemma 3.3.2, state(r) = (w′

a, pos
w′

a)a∈Σ is reachable from some depth-
1-state (v′a, pos

v′

a)a∈Σ. Since r is successful, there is (qc)c∈λ(V) ∈ F such that
w′

c(sup domw′
c) = r(supλ−1(c)) ⊒c qc for c ∈ λ(V) =: J .

For a ∈ Σ, define a word wa ∈ B⋆
aqa ∪ {ε} as follows: Let domwa :=

(imposw
′

a ∪{sup domw′
a}) \ {0}. If domwa 6= ∅, let wa(max domwa) := qa. For

1 ≤ i < maxdomw′
a choose wa(i) ∈ Ba with wa(i) ⊑a w

′
a(i). Furthermore, let

poswa = posw
′

a . Then (wa, pos
w
a)a∈Σ � (w′

a, pos
w′

a)a∈Σ witnessed by the identity
mapping from domwa ∪ {0} to domw′

a ∪ {0}. By the very construction it can
easily be checked that (wc, pos

w
c)c∈Σ ∈ States((qc)c∈J) ⊆

⋃

q∈F States(q).
Conversely, let (qa)a∈J ∈ F be an accepting state of A. Furthermore, let

(wa, pos
w
a)a∈Σ ∈ States((qa)a∈J) and suppose (v′a, pos

v′

a)a∈Σ →⋆ (w′
a, pos

w′

a)a∈Σ �
(wa, pos

w
a)a∈Σ for some depth-1-state (v′a, pos

v′

a)a∈Σ. We assume furthermore that
(w′

a, pos
w′

a)a∈Σ � (wa, pos
w
a)a∈Σ is witnessed by the embeddings ηa : wa →֒ w′

a. By
Lemma 3.3.2, there exists a Σ-dag t = (V,E, λ) and a run r of A on t such that
(w′

a, pos
w′

a)a∈Σ = state(r). Since w′
a is the empty word iff wa is empty, we obtain

λ(V) = {a ∈ Σ | w′
a 6= ε} = {a ∈ Σ | wa 6= ε}. For a ∈ Σ with wa 6= ε, i.e. for

a ∈ λ(V), we have w′
a(sup domw′

a) ⊒a wa(sup domwa) = qa. Hence the run r is
successful. �

Summarizing the results of this section, finally we show that the emptiness of
effective and monotone Σ-ACMs is uniformly decidable:

42 CHAPTER 3. DECIDABILITY RESULTS

Theorem 3.3.4 There exists an algorithm that solves the following decision
problem:
input: 1. an alphabet Σ,

2. a basis algorithm of an effective and monotone Σ-ACM A′,
3. the set of final states F ′ of A′,
4. a finite basis of (Qc,⊑c), and an algorithm to decide ⊑c for c ∈ Σ.

output: Is L(A′) empty?

Proof. We may assume that there is a ∈ Σ such that δa,∅ = {⊥} and δc,∅ = ∅
for c 6= a. Then there is only one depth-1-state (vc, pos

v
c)c∈Σ.

By Lemma 3.3.1 (1), it holds L(A′) =
⋃

f∈ΣΣ L(A′ ×A(f)). Hence it suffices
to decide the emptiness of L(A′ × A(f)) for f : Σ → Σ. So let A = A′ ×A(f).
Note that this Σ-ACM if monotone and effective, that we have access to a basis
algorithm for this ACM, that we know a finite basis for the sets of local states
and that we can decide the wqos of local states for any c ∈ Σ. Now let S(A) =
(S,→,�) be the associated transition system. By Theorem 3.2.4, it is a WSTS.
It is clear that � is decidable using the algorithms that decide the wqos of local
states in A. By Lemma 3.2.8, from a state (wa, pos

w
a)a∈Σ ∈ S, a finite basis of the

set Pred(↑(wa, pos
w
a)a∈Σ) can be computed effectively. Hence, by Theorem 3.2.2

the set of states that are dominated by a state reachable from (va, pos
v
a)a∈Σ is

recursive. Since
⋃

q∈F States(q) is finite, the result follows from Lemma 3.3.3. �

A consequence of Theorem 3.3.4 is that for any monotone and effective Σ-
ACM A the membership in L(A) is decidable:

Corollary 3.3.5 Let A be a monotone and effective Σ-ACM. Then the set L(A)
is recursive.

Proof. Let t ∈ D be some Σ-dag. Then one can easily construct a Σ-ACA At

with L(At) = {t}. Hence L(A×At) is empty iff t 6∈ L(A). Since the emptiness
of L(A×At) is decidable, so is the question “t ∈ L(A)?”. �

Unfortunately, Theorem 3.3.4 keeps the promise made by the title of this
section only partially since we have to impose additional requirements on the
Σ-ACMs:

• Of course, one cannot expect that the emptiness for arbitrary Σ-ACMs is
decidable. There is even a formal reason: In general, a Σ-ACM is an infinite
object that has to be given in some finite form. Hence some effectiveness
requirement is necessary.

3.3. THE EMPTINESS IS DECIDABLE FOR ACMS 43

• On the other hand, the monotonicity originates only in our proof using
well structured transition systems. These transition systems clearly require
some monotonicity but it is not clear whether this is really needed for the
result on asynchronous cellular machines.

Recall that by Example 2.1.3 the set of Hasse-diagrams of all pomsets without
autoconcurrency over an alphabet Σ can be accepted by some Σ-ACM. One can
check that the ACM we gave is not monotone. Unfortunately, we were not able to
construct a monotone Σ-ACM accepting all Hasse-diagrams nor did we succeed
in showing that such a Σ-ACM does not exist. If we were able to accept all
Hasse-diagrams by a monotone and effective Σ-ACM, the question “Is L(A)∩Ha
empty?” would be decidable for monotone and effective ACMs A.

An asynchronous cellular automaton over Σ is a Σ-ACM where the sets of
local states Qc are finite for c ∈ Σ. Hence the identity relations on Qc for c ∈ Σ
are well quasi orders. Thus, the set of Σ-ACAs A with L(A) 6= ∅ is recursive. It is
easily seen that a deterministic ACA can effectively be complemented. Similarly,
one can effectively construct a deterministic ACA that accepts the intersection
of two languages accepted by deterministic ACAs. Hence, as a consequence of
the theorem above, the equivalence of deterministic Σ-ACAs is decidable. The
following chapter shows that this is not the case for nondeterministic Σ-ACAs.

44 CHAPTER 3. DECIDABILITY RESULTS

Chapter 4

The undecidability results

The result of the preceding chapter shows that one can automatically check
whether a property of Σ-dags described by a Σ-ACM is contradictory. Another
natural question is whether two properties are equivalent, i.e. whether two Σ-
ACMs accept the same language. Since there is a Σ-ACM that accepts all Σ-dags,
a special case of this equivalence problem is to ask whether a given Σ-ACM ac-
cepts all Σ-dags. This latter question, called universality, essentially asks whether
the described property is always satisfied.

The corresponding question for finite sequential automata has a positive an-
swer which is a consequence of the decidability of the emptiness: If one wants
to know whether a sequential automaton accepts all words, one constructs the
complementary automaton and checks whether its language is empty. Thus,
the crucial point for sequential automata is that they can effectively be comple-
mented. But Example 2.1.6 shows that the set of acceptable Σ-dag-languages is
not closed under complementation. Therefore, Theorem 3.3.4 does not imply that
the universality of an Σ-ACM is decidable. On the contrary, we show that the
universality is undecidable even for Σ-ACAs. This implies that the equivalence
of two Σ-ACAs, the complementability and the determinisability of a Σ-ACA are
undecidable, too. This result was announced in [Kus98] for Hasse-diagrams to-
gether with the sketch of a proof. This original proof idea used the undecidability
of the Halting Problem. Differently, our proof here is based on the undecidability
of the Tiling Problem. This change, as well as the formulation and proof of Lem-
mas 4.1.4 and 4.1.5 were obtained in collaboration with Paul Gastin. Throughout
this section, let Σ = {a, b} if not stated otherwise.

Let C be a finite set of colors with white ∈ C. A mapping τ : {W,N,E, S} → C

is called a tile. Since the elements W, N etc. stand for the cardinal points, a tile
can be visualized as follows:

45

46 CHAPTER 4. THE UNDECIDABILITY RESULTS

τ(W)

τ(N)

τ(E)

τ(S)
�
�
�

�
�

�
�@

@
@

@
@

@
@

Now let T be a set of tiles and k, ℓ ∈ N+. A mapping T : [k] × [ℓ] → T is a
tiling of the grid [k]× [ℓ] provided for any (i, j) ∈ [k]× [ℓ] we have

1. f(i, j)(W) =

{

white if i = 1

f(i− 1, j)(E) otherwise

2. f(i, j)(S) =

{

white if j = 1

f(i, j − 1)(N) otherwise

Note that then f(i, j)(E) = f(i+1, j)(W) for i < k, and similarly f(i, j)(N) =
f(i, j + 1)(S) for j < ℓ. An infinite tiling is a mapping f : N+ × N+ → T such
that for any k ∈ N+ the restriction of f to [k] × [k] is a tiling. It is known that
for a set T of tiles the existence of an infinite tiling is undecidable [Ber66].

A set of grids is unbounded if, for any k, ℓ ∈ N+, it contains a grid [k′] × [ℓ′]
with k ≤ k′ and ℓ ≤ ℓ′.

Lemma 4.1.1 Let T be a set of tiles for the finite set of colors C. Then T allows
an infinite tiling iff the set of grids that allow a tiling is unbounded.

Proof. Let f : N+ × N+ → T be an infinite tiling. Then, for k, ℓ ∈ N+, let
k′ = max(k, ℓ). By definition, the restriction of f to [k′] × [k′] is a tiling. Thus,
the set of tilable grids is unbounded.

For the converse let T denote the set of all tilings of squares [k]× [k] for some
k ∈ N+ ordered by inclusion. Then this is a tree. Any node of the tree has finitely
many upper neighbors. Since the set of all tilable grids is unbounded, all squares
can be tiled. Hence T is infinite. By König’s Lemma, it has an infinite branch
(fi)i∈N+ . Then f =

⋃

i∈N+ fi is an infinite tiling. �

To encode the tiling problem into our setting of Σ-dags, we will consider the
(k, ℓ)-grids [k]× [ℓ] with k, ℓ ∈ N+ and the edge relation

E ′ = {((i, j), (i, j + 1)) | 1 ≤ i ≤ k, 1 ≤ j < ℓ} ∪

{((i, j), (i+ 1, j)) | 1 ≤ i < k, 1 ≤ j ≤ ℓ}.

Let ≤ be the reflexive and transitive closure of E ′. Then the partial orders
([k] × [ℓ],≤) contain antichains of size min(k, ℓ). Hence they do not fit into our
setting of Σ-dags where the size of antichains is restricted to n. Therefore, we
define

47

((i, j), (i′, j′)) ∈ E iff ((i, j), (i′, j′)) ∈ E ′ or j + 2 = j′, i = ℓ and i′ = 1

(see Figure 4.1). The Σ-dag ([k] × [ℓ], E, λ) is the folding of the grid [k] × [ℓ] or
a folded grid . Let � denote the transitive and reflexive closure of E. Then the
partially ordered set ([k]× [ℓ],�) contains antichains of size 2, only, and E is the
covering relation of �. Furthermore, the chains {(i, 2j + 1) | i ∈ [k], 2j + 1 ∈ [ℓ]}
and {(i, 2j) | i ∈ [k], 2j ∈ [ℓ]} form a partition of the partial order ([k] × [ℓ],�).
We label the elements (i, 2j + 1) of the first chain by a. Similarly, the elements
(i, 2j) of the second chain are labeled by b. Thus, two elements get the same label
iff their second components have the same parity. Note that in the folded grid
all vertices except (1, 1) have a lower neighbor labeled by a, and that all vertices
(i, j) with j > 1 have a lower neighbor labeled by b. Hence for 1 ≤ i ≤ k and
1 ≤ j ≤ ℓ it holds

R(i, j) =

∅ for i = j = 1

{a} for 1 < i ≤ k, j = 1 or (i, j) = (1, 2)

{a, b} otherwise.

Furthermore, we have

∂a(i, j) =

undefined for i = j = 1

(i− 1, j) for 1 < i ≤ k, j odd

(k, j − 2) for i = 1, 1 < j ≤ ℓ odd

(i, j − 1) for j even, and

∂b(i, j) =

undefined for j = 1 or (i, j) = (1, 2)

(i− 1, j) for 1 < i ≤ k, j even

(k, j − 2) for i = 1, 1 < j ≤ ℓ even

(i, j − 1) for j > 2 odd.

Let G comprise the set of all folded grids, i.e. we define G ⊆ D by

G = {([k]× [ℓ], E, λ) | k, ℓ ∈ N+}.

Next, from a set of tiles T , we construct a Σ-ACA AT that recognizes among
all folded grids those that allow a tiling. This automaton guesses a tile for any
vertex and checks that it is a tiling. So let C be a finite set of colors and T a set
of tiles. Then the ACA AT is given by Qa = Qb = T × {0, 1} and

48 CHAPTER 4. THE UNDECIDABILITY RESULTS

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

- - - - -

- - - - -

- - - - -

- - - - -

- - - - -

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

1 2 3 4 5 6
i -

1

2

3

4

5

j

6

aaaaaaaaaaaaaaa

aaaaaaaaaaaaaaa

aaaaaaaaaaaaaaa

Y

Y

Y

r r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r

- - - - - - - - - - - - - - - - -

- - - - - - - - - - -

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�
�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj

HHHHHHHHj
(1, 1) (6, 5)

(6, 1)
��*

(1, 3)
HHY

(1, 2)

Figure 4.1: The folded grid ([6]× [5], E)

δa,∅ = {g ∈ T | g(W) = g(S) = white} × {1},

δa,{a}((qa, sa)) = {g ∈ T | g(W) = qa(E), g(S) = white} × {0},

δa,Σ((qc, sc)c∈Σ) =

{

{g ∈ T | g(W) = white, g(S) = qb(N)} × {1} if sb = 1

{g ∈ T | g(W) = qa(E), g(S) = qb(N)} × {0} if sb = 0,

δb,Σ((qc, sc)c∈Σ) =

{

{g ∈ T | g(W) = white, g(S) = qa(N)} × {1} if sa = 1

{g ∈ T | g(W) = qb(E), g(S) = qa(N)} × {0} if sa = 0.

All tuples of local states are accepting. Now let t = (V,E, λ) be a folded
grid with V = [k] × [ℓ] and let f be a tiling of this grid. We define a mapping
r : [k]× [ℓ] → T by

r((i, j)) =

{

(f(i, j), 1) if i = 1

(f(i, j), 0) if i > 1

and show that it is a successful run of AT : Since f is a tiling of [k]× [ℓ], we get
f(1, 1)(W) = f(1, 1)(S) = white. Hence r(1, 1) = (f(1, 1), 1) ∈ δa,∅ = δλ(1,1),R(1,1).
Now let 1 < i ≤ ℓ. Since f is a tiling, we have f(i, 1)(W) = f(i − 1, 1)(E)
and f(i, 1)(S) = white. Hence r(i, 1) = (f(i, 1), 0) ∈ δa,{a}((f(i − 1, 1), sa))

49

for any sa ∈ {0, 1}. Note that λ(i, 1) = a and R(i, 1) = {a}. Furthermore,
∂a((i, 1)) = (i − 1, 1). Hence we get r(i, 1) ∈ δλ(i,1),R(i,1)(r∂a((i, 1))), i.e. the run
condition of AT is satisfied at all nodes of the form (i, 1) with i ∈ [k].

Next consider a vertex (1, j) with 1 < j ≤ k odd. Then r(1, j − 1) equals
(f(1, j−1), 1). Since f is a tiling, we obtain f(1, j)(W) = white and f(1, j)(S) =
f(1, j − 1)(N). Hence

r(1, j) = (f(1, j), 1) ∈ δa,Σ(r(k, j − 2), r(1, j − 1)).

Since j > 2 is odd, λ(1, j) = a and R(1, j) = Σ. From 3 ≤ j we get (k, j − 2) =
∂a((1, j)) and (1, j − 1) = ∂b((1, j)). Thus, we showed

r(1, j) ∈ δλ(1,j),R(1,j)(r∂a((1, j)), r∂b((1, j))).

For j even we can argue similarly. Hence we showed that the run condition of
AT is satisfied at all nodes of the form (i, 1) or (1, j) with i ∈ [k] and j ∈ [ℓ].

It remains to consider a vertex (i, j) with 1 < i ≤ k and 1 < j ≤ ℓ. Assume
j to be even. Since i > 1, r(i, j − 1) = (f(i, j − 1), 0). Since f is a tiling, we
have f(i, j)(W) = f(i − 1, j)(E) and f(i, j)(S) = f(i, j − 1)(N). Hence r(i, j) =
(f(i, j), 0) ∈ δb,Σ(r(i, j − 1), r(i − 1, j)). Since j is even, λ(i, j) = b. Note
that R(i, j) = Σ, ∂a((i, j)) = (i, j − 1) and ∂b((i, j)) = (i − 1, j). Hence we
have r(i, j) ∈ δλ(i,j),R(i,j)(r∂a((i, j)), r∂b((i, j))). Again, for j odd we can argue
similarly. Thus the mapping r is a run of the ACA AT on t. Since any tuple is
accepting, t ∈ L(AT). Thus we showed that AT accepts all foldings of grids that
allow a tiling.

Conversely, let r be a successful run of AT on the folded grid t = (V,E, λ)
with V = [k] × [ℓ]. We show that f := π1 ◦ r is a tiling: First observe that
π2 ◦ r(i, j) = 1 iff (i, j) is minimal in (V,�) or (i, j) has a lower neighbor x ∈ V
with λ(x) 6= λ(i, j) and π2 ◦ r(x) = 1. Since (i, j − 1) is the only possible lower
neighbor with a different label, π2 ◦ r(i, j) = 1 iff i = j = 1 or π2 ◦ r(i, j− 1) = 1.
Hence by induction π2 ◦ r(i, j) = 1 iff i = 1.

Since r is a run and λ(1, 1) = a, we obtain r(1, 1) ∈ δλ(1,1),∅. Hence f(1, 1)(W)
and f(1, 1)(S) both equal white, i.e. f satisfies the conditions for a tiling at the
point (1, 1).

Next let 1 < i ≤ k. Then R(i, 1) = {a}, λ(i, 1) = a and ∂a((i, 1)) = (i− 1, 1).
Since r is a run, this implies r(i, j) ∈ δa,{a}(r(i − 1, 1)). The definition of δa,{a}
implies f(i, 1)(W) = f(i− 1, 1)(E) and f(i, 1)(S) = white since π1 ◦ r(i− 1, 1) =
f(i− 1, 1). Hence f ↾ ([k]× [1]) is a tiling.

Now let 1 < j ≤ ℓ be odd. Then R(1, j) = Σ, λ(1, j) = a, ∂a((1, j)) = (k, j−2)
and ∂b((1, j)) = (1, j − 1). Since r is a run, this implies

r(1, j) ∈ δa,Σ(r(k, j − 2), r(1, j − 1)).

Note that π2 ◦ r(1, j−1) = 1. Hence by the definition of δa,Σ, f(1, j)(W) = white
and f(1, j)(S) = f(1, j − 1)(N). Since we can argue similarly for j even, the
restriction f ↾ ([1]× [ℓ]) of f is a tiling.

50 CHAPTER 4. THE UNDECIDABILITY RESULTS

It remains to consider the case 1 < i ≤ k and 1 < j ≤ ℓ. Then R(i, j) = Σ.
Now let j be even. Then λ(i, j) = b, ∂a((i, j)) = (i, j−1) and ∂b((i, j)) = (i−1, j).
Since r is a run, r(i, j) ∈ δb,Σ(r(i, j − 1), r(i − 1, j)). Since i > 0, we have
π2 ◦ r(i, j − 1) = 0. Thus the definition of δb,Σ yields f(i, j)(W) = f(i− 1, j)(E)
and f(i, j)(S) = f(i, j − 1)(N). Again, for j odd we can argue similarly. Thus, f
is indeed a tiling of the grid [k]× [ℓ], i.e. we proved

Lemma 4.1.2 Let t be the folding of the grid [k] × [ℓ]. Then t ∈ L(AT) iff
[k] × [ℓ] admits a tiling. In particular, L(AT) ∩ G is the set of all foldings of
tilable grids. �

Note that AT accepts the foldings of an unbounded set of grids iff it accepts
all folded grids. Lemma 4.1.1 and 4.1.2 imply that AT accepts an unbounded
set of grids iff T admits an infinite tiling. Since the existence of an infinite tiling
is undecidable, it is undecidable whether a given Σ-ACA A accepts the foldings
of an unbounded set of grids and therefore whether G ⊆ L(A). Since G is not
recognizable (cf. Lemma 4.1.9 below), this result cannot be used immediately
to show the undecidability of the equivalence of ACAs. Nevertheless, it is a
milestone in our proof that continues by showing that D\G is recognizable. This
will imply that for a tiling systems T the set of all Σ-dags that are
a) no folded grid, or
b) a folded grid that can be tiled
is recognizable. But this set equals D iff the tiling system T allows an infinite
tiling, and the latter is undecidable. Thus, indeed, it remains to show that D \G
is recognizable.

Recall that Ha ⊆ D is the set of Hasse-diagrams in D. It is easily seen that
(V,E, λ) ∈ D belongs to Ha iff it satisfies

(x, z), (y, z) ∈ E =⇒ (x, y) 6∈ E+

for all x, y, z ∈ V . Then G ⊆ Ha ⊆ D implies D \G = D \ Ha ∪ Ha \G.
By Example 2.1.3, the set of Hasse-diagrams can be accepted by a Σ-ACM.

Next, we prove that the complement of this set can be accepted using only finitely
many states, i.e. by a Σ-ACA:

Lemma 4.1.3 There exists a Σ-ACA AHaco with AHaco = D \ Ha.

Proof. We present an automaton Aa that recognizes all Σ-dags (V,E, λ) satis-
fying

there are an a-labeled vertex x and vertices y and z with
(x, z), (y, z) ∈ E and (x, y) ∈ E+.

(⋆)

Let Ab be the analogous automaton that accepts all Σ-dags satisfying the above

51

condition where x is supposed to carry the label b. Then D\Ha = L(Aa)∪L(Ab)
is recognizable.

To construct Aa, let Qa = Qb = {0, 1, 2, 3}. Then, the transition functions
are defined as follows:

δa,J((qj)j∈J) =

{0, 1} if {qj | j ∈ J} ⊆ {0}

{3} if 3 ∈ {qj | j ∈ J}

{2, 3} if {qj | j ∈ J} = {1, 2}

{2} otherwise, and

δb,J((qj)j∈J) =

{0} if {qj | j ∈ J} ⊆ {0}

{3} if 3 ∈ {qj | j ∈ J}

{2, 3} if {qj | j ∈ J} = {1, 2}

{2} otherwise.

A tuple of states is accepting, i.e. belongs to F , if it contains the local state 3.
Let t = (V,E, λ) ∈ D satisfy (⋆). Then there are x, y, z with λ(x) = a,

(x, z), (y, z) ∈ E and (x, y) ∈ E+. Define a mapping (cf. Figure 4.2) r : V → Q
by

r(v) :=

0 if x 6≤ v

1 if v = x

3 if z ≤ v

2 otherwise.

In Figure 4.2, this mapping is depicted. There, solid vectors correspond to edges
from E, the dotted vector connecting x and y denotes that (x, y) ∈ E+. Further-
more, the dashed lines indicate the borders between e.g. r−1(0) and r−1(2), the
values taken by r in an area is written there. Note that the small triangle around
x depicts r−1(1) and contains x only.

We have to show r(v) ∈ δλ(v),R(v)((r∂b(v))b∈R(v)) (⋆⋆) for any v ∈ V : Note that
r−1(3) is a principal filter. Each nonminimal element of this filter reads a state 3,
i.e. these elements satisfy (⋆⋆). Since (x, z), (y, z) ∈ E and x and y are different,
they carry different labels. Hence λ(x) = a implies λ(y) = b. Thus we have
R(z) = Σ, r∂a(z) = 1 and r∂b(z) = 2. Hence (⋆⋆) holds for the minimal element
z of this principal filter, too. The set r−1(2) = {v ∈ V | x < v, z 6≤ v} is convex.
Note that 2 ∈ δc,J((qd)d∈J) iff 3 6∈ {qd | d ∈ J} 6⊆ {0}. Now let v ∈ r−1(2). Since
z 6≤ v, 3 6∈ {r∂c(v) | c ∈ R(v)}. If v is nonminimal in r−1(2), it satisfies (⋆⋆) since
it reads the state 2. The minimal elements read the state at the vertex x which
equals 1. Hence they satisfy (⋆⋆), too. Note that {∂c(x) | c ∈ R(x)} ⊆ r−1(0).
Hence x satisfies (⋆⋆). Since, finally, r−1(0) is an order ideal, (⋆⋆) holds for its
elements, too. Thus, r is a successful run of Aa.

Conversely, let r be a successful run of Aa on a Σ-dag t = (V,E, λ). For
simplicity, let ≤:= E⋆ denote the partial order induced by the edge relation E.

52 CHAPTER 4. THE UNDECIDABILITY RESULTS

e

e

e

�
�
�
�
�
�
�
��

@
@@I

p p p
p p p
p p p
p p p
p p p
p p p�

x 1

2 y

z

3

0@@

@@

��

��

��

��

@@

@@

��

��

Figure 4.2: cf. Proof of Lemma 4.1.3

Then r−1(3) is a filter, i.e. an upward closed subset of V with respect to ≤. Since
the run is successful, this filter is not empty. Note that an element of r−1(3) is
minimal in this filter iff it reads a state 1 and a state 2. Since the filter in question
is not empty, it contains a minimal element z and there are elements x, y ∈ V
with (x, z), (y, z) ∈ E, r(x) = 1 and r(y) = 2. Whenever a vertex v carries the
state 2, it reads the state 1 or the state 2. Hence, by induction, we find x′ ∈ V
with (x′, y) ∈ E+ and r(x′) = 1. Since r(x) = r(x′) = 1, they both carry the label
a implying that they are comparable. Furthermore, {r∂c(x) | c ∈ R(x)} ⊆ {0}
and {r∂c(x′) | c ∈ R(x′)} ⊆ {0}. Since, as is easy to see, r−1(0) is an order ideal
(i.e. downword closed), this implies x = x′. Hence (x, y) ∈ E+, i.e. all Σ-dags
accepted by Aa satisfy the condition (⋆). �

Before showing that Ha\G is recognizable within Ha, we need an internal char-
acterization of those Hasse-diagrams that are folded grids. This characterization
is based on the notion of an alternating covering chain: Let t = (V,−−<, λ) ∈ Ha
and C ⊆ V . The set C is called alternating covering chain if it is a chain (with
respect to ≤:=−−<⋆) such that

1. for all y ∈ C with y 6= min(C), there exists x ∈ C with x −−< y and
λ(x) 6= λ(y), and

2. for all y ∈ C with y 6= max(C), there exists z ∈ C with y −−< z and
λ(y) 6= λ(z).

Since we consider only Hasse-diagrams of width 2, it is easy to see that for any
x ∈ V there exists a unique maximal alternating covering chain C with x ∈ C.
This chain is denoted by C(x).

53

Lemma 4.1.4 Let t = (V,−−<, λ) ∈ Ha be a Hasse-diagram. Then t ∈ G if and
only if

(1) for any x ∈ V , the element minC(x) does not dominate any b-labeled vertex,
and

(2) for any x, y ∈ V with x −−< y such that y does not dominate any b-labeled
element, we have (A) ∀x′ ∈ C(x)∃y′ ∈ C(y) : x′ −−< y′

(B) ∀y′ ∈ C(y)∃x′ ∈ C(x) : x′ −−< y′.

Proof. First, let k, ℓ ∈ N+ and define Ki = {i} × [ℓ] for 1 ≤ i ≤ k. Then,
in the folded grid ([k] × [ℓ], E), Ki is a chain. Since ((i, j), (i, j + 1)) ∈ E and
λ(i, j) = a iff j is odd, it is even an alternating covering chain. We show that
it is maximal: Let x −−< min(Ki) = (i, 1). Then x = (i − 1, 1) and therefore
λ(x) = a = λ(i, 1). Hence Ki cannot be extended downwards. Similarly, let
y ∈ [k]× [ℓ] with (i, ℓ) = maxKi −−< y. Then y = (i+ 1, ℓ) and therefore carries
the same label as (i, ℓ). Hence Ki is indeed a maximal alternating covering chain.
Hence, for (i, j) ∈ [k] × [ℓ], C(i, j) = Ki. Now it is routine to check properties
(1) and (2) (cf. Figure 4.1).

Conversely, suppose t = (V,−−<, λ) satisfies the conditions (1) and (2) and
let ≤ denote the transitive and reflexive closure of −−<. By (1), λ(minC(x)) = a
for any x ∈ V . Now let {a1, a2, . . . , ak} = {minC(x) | x ∈ V }. Since each ai
is labeled by a, this set forms a chain. So let a1 < a2 · · · < ak. Since (again by
(1)) none of the elements ai dominates a b-labeled vertex, we have even a1 −−<
a2 . . . −−< ak. For simplicity, let Ci := C(ai). The tuple (Ci)i∈[k] is a partition

of V . We denote the jth element of the ith alternating covering chain Ci by x
j
i ,

i.e. Ci = {x1i , x
2
i , x

3
i . . . , x

ℓi
i } with ai = x1i −−< x2i −−< x3i . . . −−< xℓii . Note that

λ(xji) = a iff j is odd and that ℓi is the size of the chain Ci.

Claim 1 for any 1 ≤ i < k and any 1 ≤ j ≤ ℓi we have j ≤ ℓi+1 and x
j
i −−< xji+1.

This is shown inductively on j. Clearly, 1 ≤ ℓi+1 since ai+1 = x1i+1. We

already remarked that x1i −−< x1i+1. Now suppose 1 < j ≤ ℓi and xj−1
i −−<

xj−1
i+1 . We can apply (2A) since x1i −−< x1i+1 and xji ∈ Ci. Hence there exists

y′ ∈ Ci+1 with xji −−< y′. Since Ci+1 is a chain containing xj−1
i+1 and y′, these

two elements are comparable. If y′ ≤ xj−1
i+1 , we had xj−1

i −−< xji −−< y′ ≤ xj−1
i+1 ,

contradicting xj−1
i −−< xj−1

i+1 . Hence xj−1
i+1 < y′. Since they both belong to the

alternating covering chain Ci+1, there exists y′′ ∈ Ci+1 with xj−1
i+1 −−< y′′ ≤ y′.

From x1i −−< x1i+1 and y′′ ∈ Ci+1, we obtain by (2B) the existence of x′′ ∈ Ci

with x′′ −−< y′′. Now the elements xj−1
i and x′′ are comparable. If x′′ ≤ xj−1

i ,
we had x′′ ≤ xj−1

i −−< xj−1
i+1 −−< y′′, contradicting x′′ −−< y′′. Hence xj−1

i < x′′.

Since x′′, xji ∈ Ci, they are comparable. Now xj−1
i −−< xji implies xji ≤ x′′. Hence

we have xji ≤ x′′ −−< y′′ ≤ y′ and xji −−< y′. This implies y′ = y′′. Recall that

54 CHAPTER 4. THE UNDECIDABILITY RESULTS

xj−1
i+1 −−< y′′ ∈ Ci+1. Hence we showed y′ = xji+1, i.e. j ≤ ℓi+1 and xji −−< xji+1 as

claimed.

Claim 2 For any 1 ≤ i < k and any 1 ≤ j ≤ ℓi+1, we have j ≤ ℓi and x
j
i −−< xji+1.

Again, this is shown by induction on j. Clearly, 1 ≤ ℓi since ai = x1i . Now,

x1i −−< x1i+1 follows from Claim 1. Now suppose 1 < j ≤ ℓi such that xj
′

i −−< xj
′

i+1

for any j′ < j. Then we can apply (2B) since x1i −−< x1i+1 and xji+1 ∈ Ci. Hence

there exists x′ ∈ Ci with x′ −−< xji+1. Since xj
′

i −−< xj
′

i+1 for j′ < j, we have

x′ 6= xj
′

i for j′ < j. Hence the chain Ci contains at least j elements, i.e. j ≤ ℓi.
Now xji −−< xji+1 follows from Claim 1.

Note that Claim 1 in particular implies ℓ1 ≤ ℓ2 · · · ≤ ℓk. Similarly, by Claim
2, ℓ1 ≥ ℓ2 · · · ≥ ℓk, i.e. ℓ1 = ℓ2 · · · = ℓk =: ℓ. Hence g : [k]× [ℓ] → V : (i, j) 7→ xji
is a bijection.

Claim 3 For 1 ≤ i ≤ i′ ≤ k and 1 ≤ j ≤ ℓ, xji′ is the least element of Ci′

dominating xji , i.e. x
j
i′ = min{x ∈ Ci′ | x

j
i ≤ x}.

This is trivial for i = i′. For i + 1 = i′ it is clear by Claim 1. By induction,
suppose we showed that xji′−1 is the least element of Ci′−1 that dominates xji . Let

xj
′

i′ be the least element of Ci′ dominating xji . Since |Σ| = 2, this element xj
′

i′ has

at most two lower neighbors, namely xj
′−1
i′ (if j′ > 1) since it precedes xj

′

i′ in the

alternating covering chain Ci′ , and x
j′

i′−1 by Claim 1. Since xji is not dominated

by xj
′−1
i′ ∈ Ci′ , we therefore have x

j′

i′−1 ≥ xji . Hence, by the induction hypothesis,

j′ ≥ j. Since xji ≤ xji′−1 −−< xji′ , we therefore showed that xji′ is the least element

in Ci′ dominating xji .

Now we show that the bijection g : ([k]×[ℓ], E) → (V,−−<) is order preserving:
Let (i, j), (i′, j′) ∈ [k]× [ℓ] with ((i, j), (i′, j′)) ∈ E. Then we have
a) i = i′ and j + 1 = j′, or
b) i+ 1 = i′ and j = j′, or
c) i = k, i′ = 1 and j + 2 = j′.

In the first case, we get immediately xji −−< xj
′

i′ since they are consecutive
elements of the alternating covering chain Ci. In the second case, Claim 1 implies
xji −−< xj

′

i′ . In the third case, we get g(i, j) = xjk and g(i′, j′) = xj+2
1 . Since j

and j + 2 have the same parity, λ(xjk) = λ(xj+2
1) and therefore xjk and xj+2

1 are
comparable. If xj+2

1 ≤ xjk, by Claim 3 we have xjk ≥ xj+2
k which is properly larger

than xjk, a contradiction. Hence xjk < xj+2
1 , i.e. g(i, j) < g(i′, j′). Thus we showed

that g is order preserving.
Next we show that f = g−1 : (V,−−<) → ([k]× [ℓ], E) is order preserving. So

let xji , x
j′

i′ ∈ V with xji −−< xj
′

i′ . If xji and x
j′

i′ carry the same label, j and j′ have
the same parity. Hence λ(i, j) = λ(i′, j′). This ensures that (i, j) and (i′, j′) are

comparable. If (i′, j′) � (i, j), we get xj
′

i′ = g(i′, j′) ≤ g(i, j) = xji since g is order

preserving. But this contradicts the assumption xji −−< xj
′

i′ . Hence (i, j) < (i′, j′),

55

i.e. f(xji) < f(xj
′

i′). Now assume that xji and xj
′

i′ carry different labels. Since

xji −−< xj
′

i′ this implies that they belong to the same maximal alternating covering

chain, i.e. i = i′ and j + 1 = j′. But then f(xji) = (i, j)E(i, j + 1) = f(xj
′

i′). �

Now we are able to show that D \G is recognizable by a Σ-ACA.

Lemma 4.1.5 There exists a Σ-ACA A such that L(A) = D \G.

Proof. By Lemma 4.1.3, there exists a Σ-ACA AHaco with L(AHaco) = D \Ha.
From G ⊆ Ha ⊆ D, we get D\G = D\Ha∪Ha\G. Hence it suffices to construct
a Σ-ACA A with L(A) ∩ Ha = Ha \G.

As a prerequisite, we give an ACA A1 that marks all vertices which dominate
a b-labeled vertex: Let Q1

a = Q1
b = {0, 1} where 0 stands for “does not dominate

any b-labeled vertex”. The transition functions are defined by δ1b,J((qc)c∈J) = {1}
and

δ1a,J((qc)c∈J) =

{

{1} if 1 ∈ {qc | c ∈ J}

{0} otherwise

for any J ⊆ Σ and qc ∈ Q1
c . Then, obviously, for any run r of A1 on a Hasse-

diagram t = (V,−−<, λ), we have r(x) = 0 iff b 6∈ {λ(y) | y ≤ x} as claimed.

Next we prove that the set of Hasse-diagrams violating Lemma 4.1.4(1) can
be accepted by a Σ-ACA relative to Ha: Note that Lemma 4.1.4(1) is violated iff
there exists an a-labeled vertex x that dominates, but does not cover any b-labeled
vertex. To find such a vertex, we enrich the automaton A1 by a second component
that propagates the information whether a transition of the form δa,{a}(1) has
been applied. If the run of this enriched automaton uses such a transition, it
accepts, otherwise, it rejects. Note that the application of the transition δa,{a}(1)
at a vertex x denotes that x is a-labeled, does not cover any b-labeled vertex, and
dominates such a vertex according to the definition of A1. Hence the enriched
automaton A¬(1) accepts precisely those Σ-pomsets that violate Lemma 4.1.4(1).

It remains to prove that the negation of statement (2) of Lemma 4.1.4 can
be recognized. First, we show how to guess the element x and to mark the chain
C(x): Let Q′ = {0, 1, 2} where 2 stands for “belongs to C(x)”, 1 for “does not
belong to C(x), but dominates an element of C(x)”, and 0 for “does not dominate
any element from C(x) . The transition functions of the automaton A′ are given
by

δ′a,J((qc)c∈J) =

{2} if b ∈ J, qb = 2

{1} if a ∈ J, qa > 0 or b ∈ J, qb = 1

{0, 2} otherwise

56 CHAPTER 4. THE UNDECIDABILITY RESULTS

δ′b,J((qc)c∈J) =

{2} if a ∈ J, qa = 2

{1} if b ∈ J, qb > 0 or a ∈ J, qa = 1

{0} otherwise.

Let r be a run of this automaton on the Hasse-diagram t = (V,−−<, λ). If x ∈ V
with r(x) > 0 then, either x covers some y with r(y) > 0, or λ(x) = a. Hence the
set of all vertices x with r(x) > 0 (if not empty) is a principal filter (with respect
to the partial order ≤ induced by −−<) whose minimal element is labeled by a.
In this principal filter, r(x) = 2 holds iff x covers some y with different label and
r(y) = 2, or x is the minimal element of the principal filter. Hence, the set of all
x ∈ V with r(x) = 2 forms an alternating covering chain whose least element is
labeled by a. Using the automaton A1, it is easily possible to ensure that this
minimal element does not dominate any b-labeled vertex. Thus, we can construct
a Σ-ACA A2 = ((Q2

a, Q
2
b), (δ

2
a,J , δ

2
b,J)J⊆Σ, F

2) and subsets Sx, Sy ⊆ Q2
a ∪Q

2
b such

that for any successful run r on a Hasse-diagram t = (V,−−<, λ), we have

(a) r−1(Sx) and r−1(Sx) form nonempty alternating covering chains with min-
imal elements x and y,

(b) x and y do not dominate any b-labeled vertex, and

(c) x −−< y.

Note that t = (V,−−<, λ) violates Lemma 4.1.4(2B) iff there exists a successful
run r of the ACA A2 on t and an element y′ ∈ V with r(y′) ∈ Sy that does not
cover any x′ ∈ V with r(x′) ∈ Sx. Since this can easily be checked, we are
therefore able to construct a Σ-ACA A¬(2B) such that L(A¬(2B)) ∩ Ha is the set
of all Hasse-diagrams t that violate Lemma 4.1.4(2B).

To check the negation of Lemma 4.1.4(2A), we again use the automaton A2

that marks nondeterministically two alternating covering chains C(x) and C(y).
This automaton will be enriched by the ability to mark some vertices from C(x)
and check that they are not covered by any element from C(y). More formally,
let Q3 = Q2 × {0, 1}. For z ∈ {a, b}, the transition function is given by

δ3z,J((qc, sc)c∈J) =

{

(δ2z,J((qc)c∈J) \ S
y)× {0, 1} if ∃c ∈ J : (qc ∈ Sx ∧ sc = 1)

δ2z,J((qc)c∈J)× {0, 1} otherwise.

As before, a successful run r of A3 on a Hasse-diagram t = (V,−−<, λ) determines
two alternating covering chains C(x) = r−1(Sx × {0, 1}) and C(y) = r−1(Sy ×
{0, 1}). Now suppose there is some x′ ∈ V with r(x) ∈ Sx×{1}. Then, according
to the definition of the transition function δz,J , there is no y

′ ∈ C(y) with x′ −−< y′

(since otherwise r(y′) 6∈ Sy × {0, 1}, a contradiction). Hence, in this case, (2A)
does not hold. Since the existence of a vertex x with r(x) ∈ Sx × {1} is easily

57

checked, we can construct a Σ-ACA A¬(2A) such that L(A¬(2A)) ∩ Ha is the set
of all Hasse-diagrams t that violate condition Lemma 4.1.4(2A).

Combining the automata A¬(1), A¬(2B) and A¬(2A), we get a Σ-ACA A′ such
that L(A′)∩Ha is the set of all Hasse-diagrams t that violate condition (1) or (2).
Using Lemma 4.1.3 and Lemma 4.1.4, one gets a Σ-ACA A with L(A) = D\G.�

Lemma 4.1.6 Let T be a set of tiles. Then there exists a Σ-ACA A(T) such
that L(A(T)) is the set of all Σ-dags that are no folded grid or a folding of a grid
that allows a tiling by T .

Proof. By Lemma 4.1.5, there exists a Σ-ACA A′ with L(A′) = D \ G. By
Lemma 4.1.2, L(AT) ∩ G is the set of all foldings of tilable grids. Let A(T)
denote the disjoint union of A′ and AT . Then A(T) has the desired property. �

Theorem 4.1.7 Let Σ be an alphabet with at least two letters. Then there is no
algorithm that on input of a Σ-ACA A decides whether it accepts all Σ-dags, i.e.
whether L(A) = D.

Proof. It is clearly sufficient to consider the case Σ = {a, b}. Let C be a finite
set of colors and T be a set of tiles. By Lemma 4.1.6, A(T) accepts all Σ-dags iff
all grids allow a tiling. But this is equivalent to the existence of an infinite tiling
which is undecidable. �

Since there is a Σ-ACA that accepts all Σ-dags, we get as an immediate

Corollary 4.1.8 Let Σ be an alphabet with at least two letters. Then the equiv-
alence of Σ-ACAs, i.e. the question whether L(A1) = L(A2), is undecidable.

With M = G, the following lemma implies in particular that G cannot be
accepted by a Σ-ACA. Thus, the set of recognizable languages in D is not closed
under complementation since D\G is acceptable by Lemma 4.1.5. Our next goal
is to show that it is even undecidable whether a given ACA can be complemented.

Lemma 4.1.9 Let M ⊆ G be such that for any i ∈ N+ there exist k, ℓ ∈ N+

with i ≤ k and 1 < ℓ such that ([i] × [ℓ], E, λ) ∈ M . Let A be a Σ-ACA with
M ⊆ L(A). Then L(A) 6⊆ G.

58 CHAPTER 4. THE UNDECIDABILITY RESULTS

Proof. Let k ≥ |Qb|+ 3 and 1 < ℓ such that ([k]× [ℓ], E, λ) ∈ M . Then k − 3
is at least the number of states of the second process of A. Since A accepts
all elements of M , there is a successful run r of A on ([k]× [ℓ], E, λ). Since k is
sufficiently large, there existm,n with 1 < m < n < k such that r(m, ℓ) = r(n, ℓ).

Now delete all vertices (m′, ℓ) in [k] × [ℓ] with m < m′ ≤ n, i.e. define P to
be the set [k] × [ℓ] \ {(m′, ℓ) | m < m′ ≤ n}. Furthermore, let E ′ := (E ∩ P 2) ∪
{((m, ℓ), (n+1, ℓ))}. Then one can easily check that (P,E ′, λ ↾ P) is a Σ-dag that
does not belong to G. We show that the restriction of the run r to P is a successful
run of A on (P,E ′, λ): Note that the node (n+1, ℓ) is the only one from P whose
set of lower neighbors in ([k] × [ℓ], E, λ) (where it equals {(n, ℓ), (n + 1, ℓ − 1)})
and in (P,E ′, λ ↾ P) (where it equals {(m, ℓ), (n + 1, ℓ − 1)}) differ. But since
r(m, ℓ) = r(n, ℓ), this does not influence the run condition. Hence (P,E ′, λ ↾ P)
is accepted by A, i.e. L(A) 6⊆ G. �

Theorem 4.1.10 Let Σ be an alphabet with at least two letters. Then there is
no algorithm that on input of a Σ-ACA A decides any of the following questions:
1. Is D \ L(A) recognizable?
2. Is A equivalent with some deterministic Σ-ACA?

Proof. Again, it is sufficient to consider the case Σ = {a, b}. Let T be a finite
set of tiles and let A(T) be the Σ-ACA from Lemma 4.1.6, i.e. A(T) accepts a
Σ-dag t = (V,E, λ) iff
a) t is no folded grid, or
b) t is a folded grid that allows a tiling by T .
Then L := D \L(A(T)) is the set of all folded grids that do not allow a tiling by
T . We show that L is recognizable iff T allows an infinite tiling:

If T allows an infinite tiling, L is empty and therefore trivially recognizable.
Conversely, let A be a Σ-ACA that recognizes L. By contradiction, suppose that
T does not allow an infinite tiling. Then, by Lemma 4.1.1, the set of tilable grids
is not unbounded, i.e. there exist k, ℓ ∈ N+ such that for any k′ ≥ k and ℓ′ ≥ ℓ
the grid [k′] × [ℓ′] cannot be tiled. Thus, any folding of a grid [k′] × [ℓ] with
k′ ≥ k belongs to L. Let M := {[k′] × [ℓ] | k′ ≥ k}. Then this set satisfies the
condition of Lemma 4.1.9 and M ⊆ L = L(A). Hence L(A) 6⊆ G, contradicting
L(A) = L ⊆ G.

This finishes the proof of the first statement since the existence of an infinite
tiling and therefore the recognizability of D \ L(A(T)) is undecidable.

Along the same line we can prove the second statement: If A(T) is equivalent
with a deterministic Σ-ACA, D\L(A(T)) is recognizable since any deterministic
Σ-ACA can be complemented. Hence D \ L(A(T)) = ∅ and therefore T allows
an infinite tiling. Conversely, if T allows an infinite tiling, D \ L(A(T)) = ∅
implying L(A(T)) = D. But this set can be recognized deterministically, i.e. the

59

ACA A(T) is equivalent with a deterministic one. �

By Corollary 4.1.8, the equivalence of two Σ-ACAs is undecidable. Rice’s
Theorem states that for any Turing machine M, the set of equivalent Turing
machines is not recursive. This does not hold for Σ-ACAs in general: Let L ⊆ D

be finite. Then the set of Σ-ACAs A with L(A) = L is recursive: Let n :=
max{|V | | (V,E, λ) ∈ L}. Then, given a Σ-ACA A, one can first check whether
L(A) ∩ {(V,E, λ) ∈ D | |V | ≤ n} = L since the set {(V,E, λ) ∈ D | |V | ≤ n}
is finite and L(A) is recursive. In addition, one can easily construct from A a
Σ-ACA A′ such that L(A′) = L(A) \ {(V,E, λ) ∈ D | |V | ≤ n} (the Σ-ACA A′

has to count the vertices up to n and accepts only if A accepts and there are at
least n+1 nodes). Now, by Theorem 3.3.4, it can be checked whether L(A′) = ∅,
i.e. whether L(A) = L.

It is not clear whether there are other sets L ⊆ D such that the question
whether L(A) = L can be decided.

60 CHAPTER 4. THE UNDECIDABILITY RESULTS

Chapter 5

The expressive power of ACAs

This chapter deals with the question which properties can be expressed by a Σ-
ACA. By Corollary 3.3.5, the expressible properties are at least recursive. On
the other hand, Example 2.1.6 shows that not all recursive sets of Σ-dags are
recognizable. The situation is similar to that of finite sequential automata and
sets of words: Any language that is accepted by a finite sequential automaton is
recursive, but the converse is false. In this setting, several answers are known to
the question which properties can be checked by a finite sequential automaton:
Kleene showed that these are precisely the rational properties. By the Myhill-
Nerode Theorem, a property can be checked by a finite sequential automaton if its
syntactic monoid is finite. Furthermore, Büchi and Elgot [Büc60, Elg61] showed
that a property of words can be checked by a finite automaton if and only if it can
be expressed in the monadic second order logic. This relation between a model
of a computational device (finite sequential automata) and monadic second order
logic is a paradigmatic result. It has been extended in several directions, e.g. to
infinite words [Büc60], to trees [Rab69], to finite [Tho90b] and to real [EM93,
Ebi94] traces, and to computations of concurrent automata [DK96, DK98]. This
relation does clearly not hold for Σ-ACMs in general: Example 2.1.5 provides
a word language that can be accepted by a Σ-ACM (that is even monoton and
effective), but not by a finite sequential automaton. Hence, this set of Σ-dags
cannot be axiomatized in monadic second order logic. Therefore, we examine
whether there is such a close relation between Σ-ACAs and MSO.

It is shown that any recognizable set can be axiomatized by a sentence of the
monadic second order logic. Since the converse is not true (cf. Example 2.1.6),
we then restrict furthermore to so called (Σ, k)-dags and show that a set of (Σ, k)-
dags is recognizable (relative to the set of all (Σ, k)-dags and even relative to the
set of all Σ-dags) iff it can be monadically axiomatized. But it is necessary to
allow nondeterminism in the automata since the expressive power of deterministic
Σ-ACAs is shown to be strictly weaker.

61

62 CHAPTER 5. THE EXPRESSIVE POWER OF ACAS

5.1 From ACAs to MSO

In this section, we will prove that for any ACAsA, there exists a monadic sentence
which axiomatizes the language accepted by A. The proof of this result follows
[DG96] (see also [DGK00]). There, the restricted case of Σ-dags that are Hasse-
diagrams was dealt with. The only difference between this former result and the
result we are going to prove now is the following: The monadic second order
logic considered in [DG96] makes statements on partial orders and not on dags.
Since the partial order E⋆ can be expressed by a monadic formula over dags,
this is no difference as far as the expressive power is concerned. But one needs
more quantifier alternations which is the reason why in our setting the following
theorem states only the existence of a monadic sentence which might not be
existential.

Theorem 5.1.1 Let A be a possibly nondeterministic Σ-ACA. There exists a
monadic sentence ϕ over Σ such that

L(A) = {t ∈ D | t |= ϕ}.

Proof. Let A = ((Qa)a∈Σ, (δa,J)a∈Σ,J⊆Σ, F) be a Σ-ACA. We will construct a
monadic sentence which will be satisfied exactly by the Σ-dags that are accepted
by A. Let k be the number of states in

⋃

a∈ΣQa. We may assume that
⋃

a∈ΣQa =
[k] = {1, . . . , k}. The following sentence ψ claims the existence of a successful
run of the automaton.

ψ = ∃X1 . . . ∃Xk

(

partition(X1, . . . , Xk) ∧
(

∀x trans(x)
)

∧ accepted
)

We will now explain this sentence and give the sub-formulas partition, trans
and accepted. A run over a Σ-dag t = (V,E, λ) is coded by the set-variables
X1, . . . , Xk. More precisely, Xi stands for the set of vertices mapped to the state
i by the run. The formula partition(X1, . . . , Xk) ensures that the set-variables
X1, . . . , Xk describe a mapping from V to

⋃

a∈ΣQa:

partition(X1, . . . , Xk) =

∀x
∨

i∈[k]

x ∈ Xi

 ∧

(

∧

1≤i<j≤k

Xi ∩Xj = ∅

)

.

Then, we have to claim that this labeling of vertices by states agrees with the
transition functions of the automaton.

trans(x) =
∨

q∈δa,J ((qb)b∈J)

(

λ(x) = a ∧ x ∈ Xq ∧ ∀y ((y, x) ∈ E → λ(y) ∈ J)

∧
∧

b∈J

∃y ((y, x) ∈ E ∧ λ(y) = b ∧ y ∈ Xqi)

)

5.2. (Σ, K)-DAGS 63

where the disjunction ranges over all letters a ∈ Σ, states q ∈ Qa, subsets J ⊆ Σ
and tuples (qb)b∈J ∈

∏

b∈J Qb such that q ∈ δa,J ((qb)b∈J).
It remains to state that the run reaches a final state of the automaton. Let

accepted denote the disjunction of the following sentence for (fb)b∈J ∈ F :

(

∀x
(

λ(x) ∈ J
)

∧
∧

b∈J

∃x
(

(¬∃y (λ(x) = λ(y) ∧ x < y)) ∧ λ(x) = b ∧ x ∈ Xfb

)

)

.

Since the formula ψ describes an accepting run of the automaton for Σ-dags,
we get the statement of the theorem. �

Note that the proof of the theorem above makes use of the finiteness of the sets
of local states Qa in a Σ-ACA. The first language from Example 2.1.5 shows that
this finiteness is necessary for the theorem to hold: The language given there
can be accepted by a monotone ACM but it is not regular and therefore not
monadically axiomatizable. Furthermore, Example 2.1.6 shows that the converse
of the theorem does not hold: There, we presented a language that is elementary
axiomatizable, but not acceptable by a monotone ACM and can therefore in
particular not be accepted by a Σ-ACA.

5.2 (Σ, k)-dags

Theorem 4.1.10 in particular implies that the set of recognizable Σ-dag-languages
is not closed under complementation. Hence, there are monadically axiomatizable
languages that cannot be accepted by any Σ-ACA. This section is devoted to the
class of (Σ, k)-dags that we introduce next where the expressive power of Σ-ACAs
and MSO coincide. The results presented here were originally shown for Hasse-
diagrams in [Kus98]. Here, the presentation follows [DGK00] and is in addition
extended to (Σ, k)-dags.

Let t = (V,E, λ) be a Σ-dag. Furthermore, let k be a positive integer and
Cℓ ⊆ V for 1 ≤ ℓ ≤ k. We call the tuple (C1, C2, . . . , Ck) a k-chain covering of t
if

1. Cℓ is a chain with respect to the partial order E⋆ for ℓ = 1, 2, . . . , k,

2. V =
⋃

ℓ∈[k]Cℓ and

3. for any (x, y) ∈ E, there exists ℓ ∈ [k] with x, y ∈ Cℓ and there is no element
of Cℓ properly between x and y (i.e. xE⋆zE+y and z ∈ Cℓ imply x = z).

The Σ-dag t is a (Σ, k)-dag if it has a k-chain covering. Let Dk denote the set of
all (Σ, k)-dags.

64 CHAPTER 5. THE EXPRESSIVE POWER OF ACAS

Example 2.1.6 (continued) Consider the first Σ-dag in Figure 2.4. It can
be covered by the chains Ci = {a1, a2, . . . , ai, bi, bi+1, bi+2, . . . , b8} for 1 ≤ i ≤ 8.
Hence it is a (Σ, 8)-dag. The reader may check that it is not possible to cover
it by fewer chains, i.e. that it is not a (Σ, k)-dag for k < 8. Recall that the set
L cannot be accepted by a Σ-ACA. Later (Theorem 5.2.9) we will see that the
reason for this is that L is not contained in Dk for any k ∈ N.

Example 5.2.1 Let (Σ, D) be some trace alphabet and (V,≤, λ) ∈ M(Σ, D).
Then (V,≤, λ) is a pomset without autoconcurrency. Hence the Hasse-diagram
t = Ha(V,≤, λ) of this trace is a Σ-dag. Even more, it is a (Σ, k)-dag with
k = |D|: For (a, b) ∈ D, let Ca,b = λ−1(a) ∪ λ−1(b) ⊆ V . Since a and b are
dependent, this set is a chain. Now let x, y ∈ V with x −−< y. Then λ(x) and
λ(y) are dependent, i.e. x and y belong to some chain Ca,b with (a, b) ∈ D.

As explained above, we want to show that the expressive power of Σ-dags and
of MSO relative to the class of (Σ, k)-dags coincide. Opposite to this statement,
the following proposition shows that this does not hold for deterministic Σ-ACAs.

Proposition 5.2.2 Let k ∈ N with k > 1 and let the alphabet Σ contain at least
two letters. Then there exists a set of (Σ, k)-dags that is monadically axiomatiz-
able relative to Dk, but not acceptable by any deterministic Σ-ACA.

Proof. It suffices to prove the statement for k = 2, and Σ = {a, b}. So, let L
consist of all (Σ, k)-dags (V,E, λ) over Σ that have a largest (with respect to E⋆)
vertex. This language is trivially axiomatizable in MSO relative to Dk.

We show that there is no deterministic Σ-ACA A accepting among the (Σ, k)-
dags all those that have a largest vertex: By contradiction, assume A is such a
Σ-ACA. Let ℓ = |Qa|+2 and consider the (Σ, k)-dag t = (V,E, λ) with vertex set
V = {ai | i = 1, 2, . . . , ℓ}∪{b1}, a1Ea2 . . . EaℓEb1 and with the canonical labeling
λ with λ(ai) = a and λ(b1) = b. Then t ∈ L. Hence there is a successful run r
of A on t. Since ℓ > |Qa| + 1, there are i < j < ℓ such that r(ai) = r(aj). Now
consider the (Σ, k)-dags t1 and t2 with V1 = V2 = {aℓ | ℓ = 1, 2, . . . , j}∪ {b1} and
the canonical labeling. The edge relations are defined by a1E1a2E1a3 . . . E1ajE1b1
(i.e. E⋆

1 is a linear ordering with largest element b1) and a1E2a2E2a3 . . . E2aj and
aiE2b1 (i.e. in E⋆

2 , the a-labeled elements are linearly ordered, but the maximal
element b1 covers ai and is not the largest element of (V2, E

⋆
2)). Since t1 ∈ L, there

is a successful run r1 of A on t1. Since A is deterministic, we have r1(aℓ) = r(aℓ)
for ℓ ≤ j. This implies r1(ai) = r1(aj) since the equality holds for the run
r. Hence r1 is a run on t2, too. The global final state of r1 considered on t1
equals that of r1 considered on t2. Hence t2 is accepted by A, contradicting our
assumption since t2 does not have any largest vertex. �

5.2. (Σ, K)-DAGS 65

Thus, differently from traces, for (Σ, k)-dags the deterministic ACAs are
strictly weaker in expressive power than the monadic second order logic. The
aim of the following considerations is to show that nondeterministic ACAs have
the same expressive power as monadic second order logic in the class of (Σ, k)-
dags for any k ∈ N. First, we define k-chain mappings. Later, we will see that a
Σ-dag admits a k-chain mapping iff it is a (Σ, k)-dag.

Definition 5.2.3 Let t = (V,E, λ) be a Σ-dag, k ∈ N and Λ : V → (2[k] \ {∅}).
The function Λ is a k-chain mapping if

(1) for all minimal vertices x, y ∈ V , if x 6= y then Λ(x) ∩ Λ(y) = ∅,

(2) for all non minimal vertices y ∈ V and ℓ ∈ Λ(y), there exists x ∈ V with
(x, y) ∈ E and ℓ ∈ Λ(x),

(3) for all vertices x ∈ V that are not maximal and for all ℓ ∈ Λ(x), the set
{y ∈ V | (x, y) ∈ E, ℓ ∈ Λ(y)} is empty or has a least element, and

(4) for all (x, y) ∈ E, there is ℓ ∈ Λ(x) ∩ Λ(y) such that for any z ∈ V with
xE+zE+y it holds ℓ 6∈ Λ(z).

The following lemma relates k-chain mappings and k-chain coverings thereby
justifying the name k-chain mapping.

Lemma 5.2.4 Let t = (V,E, λ) be a Σ-dag. Then t ∈ Dk iff there exists a k-
chain mapping. In particular, if Λ is a k-chain mapping of t and ℓ ∈ [k], then the
set Λ−1(ℓ) = {x ∈ V | ℓ ∈ Λ(x)} is a chain with respect to E⋆ and (Λ−1(ℓ))ℓ∈[k] is
a k-chain covering. Conversely, if (Cℓ)ℓ∈[k] is a maximal k-chain covering, then
Λ(x) = {ℓ ∈ [k] | x ∈ Cℓ} defines a k-chain mapping.

Proof. Let t ∈ Dk. Then there exists a k-chain covering (Cℓ)ℓ∈[k] of t. We
may assume that the chain covering (Cℓ)ℓ∈[k] is maximal with respect to the
componentwise inclusion (i.e. incorporating any vertex newly into one of the
chains Cℓ destroys its property to be a k-chain covering). Now define Λ(x) :=
{ℓ ∈ [k] | x ∈ Cℓ}. Then Λ : V → (2[k] \ {∅}) since V =

⋃

ℓ∈[k]Cℓ. Since Cℓ

is a chain for each ℓ ∈ [k], any two different minimal elements of t belong to
disjoint sets of chains. Hence the first property of Definition 5.2.3 is satisfied.
Now let y ∈ V be non minimal and ℓ ∈ Λ(y). Since the k-chain covering (Cℓ)ℓ∈[k]
is maximal, there exists x ∈ V with (x, y) ∈ E and ℓ ∈ Λ(x). Hence, the second
requirement is satisfied. The targets in Cℓ of edges that originate in a nonmaximal
vertex x are linearly ordered. Hence this set admits a least element as required
by the third condition. If (x, y) ∈ E, there exists ℓ ∈ [k] such that x, y ∈ Cℓ

and no element of Cℓ is properly between x and y. Hence ℓ ∈ Λ(x) ∩ Λ(y) and
for any z properly between x and y we have ℓ 6∈ Λ(z). Thus, we proved the last
statement of Definition 5.2.3.

66 CHAPTER 5. THE EXPRESSIVE POWER OF ACAS

Conversely, let Λ be a k-chain mapping of the Σ-dag t. For ℓ ∈ [k], define
Cℓ := {x ∈ V | ℓ ∈ Λ(x)}. Since Λ(x) 6= ∅ for all x ∈ V , we get V =

⋃

ℓ∈[k]Cℓ.

By the last property for Λ, for any (x, y) ∈ E there exists ℓ ∈ [k] with x, y ∈ Cℓ

such that no element of Cℓ lies properly between x and y. It remains to show
that Cℓ is a chain for any ℓ: Let x, y ∈ Cℓ. By the second property of Λ, there
exists a sequence x0, x1, . . . xm = x of elements of Cℓ with x0 minimal in (V,E⋆)
and (xi, xi+1) ∈ E. We can even assume that xi+1 is the least element of Cℓ above
xi such that (xi, xi+1) ∈ E. Similarly, there exist elements y0, y1, . . . yn = y of Cℓ

with y0 minimal in (V,E⋆) and (yj, yj+1) ∈ E such that yj+1 is the least element
of Cℓ above yj with (yj, yj+1) ∈ E. Now let m ≤ n. By the first property of
Λ, x0 = y0. Let 0 ≤ i < m be such that xi = yi. This element is the source
of edges going to xi+1 and to yi+1. Since we chose xi+1 and yi+1 minimal in Cℓ

above xi = yi with (xi, xi+1) ∈ E and (yi, yi+1) ∈ E, we obtain xi+1 = yi+1. This
shows that (x, y) ∈ E⋆, i.e. Cℓ is a chain. �

Next we construct an ACA Ak that accepts a Σ-dag iff it is a (Σ, k)-dag. This
ACA will be used later to relabel (Σ, k)-dags into traces.

Recall that part([k],Σ) is the set of partial functions g from [k] to Σ with
dom(g) 6= ∅. We write part(k,Σ) for this set part([k],Σ). For a partial function
f ∈ part(k,Σ), we first define an ACA Ak(f) whose local states are partial
functions in part(k,Σ). Intuitively, a node x of some simple (Σ, k)-dag t will be
labeled by the partial function g in some run of Ak(f) if dom(g) is the set of
chains Cℓ going through x and for all ℓ ∈ dom(g), g(ℓ) is the next action for the
chain ℓ. The partial mapping f is in some sense the initial state of the automaton
Ak(f): f(ℓ) = a iff the chain ℓ starts with an action a. As we will see, runs of
this automaton correspond to k-chain mappings.

More precisely, the ACA Ak(f) is defined as follows: The set of local states
(common for all processes) is Q = part(k,Σ). For a ∈ Σ, let δa,∅ consist of all
nonempty partial functions g ∈ Q with dom(g) = f−1(a). For ∅ 6= J ⊆ Σ and
gb ∈ Q for b ∈ J , we let δa,J((gb)b∈J) be the set of all nonempty partial functions
g ∈ Q such that

1. for b ∈ J there exists ℓ ∈ dom(g) with gb(ℓ) = a and

2. for ℓ ∈ dom(g) there exists b ∈ J with gb(ℓ) = a.

Finally, all tuples of states are accepting. Let Ak denote the disjoint union of
the automata Ak(f) for all partial functions f ∈ part(k,Σ). Note that not all
runs of Ak are successful, only those that lie completely inside Ak(f) for some
f ∈ part(k,Σ) are. This can be easily checked by considering the final global
state.

The following lemma shows that the k-chain mappings Λ on a Σ-dag t coincide
precisely with the mappings dom ◦r : V → 2[k] where r is a successful run of the
automaton Ak constructed above.

5.2. (Σ, K)-DAGS 67

Lemma 5.2.5 For k ∈ N and t = (V,E, λ) ∈ D, we have:

1. for any successful run r of Ak on t, the mapping dom ◦r : V → 2[k] \ {∅} is
a k-chain mapping.

2. For any k-chain mapping Λ on t, there exists a successful run r of Ak on t
such that Λ = dom ◦r.

Proof. 1. Let r : V → part(k,Σ) be a successful run of Ak on t and let
Λ = dom ◦r. There exists a partial function f ∈ part(k,Σ) such that r is a run
of Ak(f). Now let x, y ∈ V be minimal and distinct. Then r(x) ∈ δλ(x),∅, and
therefore dom ◦r(x) = f−1(λ(x)). Similarly, dom ◦r(y) = f−1(λ(y)). Since x and
y are incomparable with respect to E⋆, λ(x) 6= λ(y). Hence Λ(x) and Λ(y) are
disjoint. Thus we showed the first condition of Definition 5.2.3.

Now, let x ∈ V be non minimal. For b ∈ R(x), there exists a unique vertex
xb ∈ V with (xb, x) ∈ E and λ(xb) = b. Let also gb = r(xb) and g = r(x). Since r
satisfies the run condition of A(f) at x, we have g ∈ δλ(x),R(x)((gb)b∈R(x)). Now we
deduce that for all ℓ ∈ Λ(x) = dom(g), there exists b ∈ R(x) with ℓ ∈ dom(gb) =
Λ(xb) showing Definition 5.2.3 (2). Next, we show Definition 5.2.3 (4) for the
edge (xb, x): Since g ∈ δλ(x),R(x)((gb)b∈R(x)), there is ℓ ∈ dom(g) ∩ dom(gb) =
Λ(x) ∩ Λ(xb) such that r(xb)(ℓ) = λ(x). Now assume xbEzE

⋆x with ℓ ∈ Λ(x).
Then xb = ∂b(x). Since r is a run of Ak(f), we obtain λ(z) = r(xb)(ℓ) = λ(x).
This shows that z and x are targets of edges that originate in xb, and that
they carry the same label λ(x). Hence they are equal, i.e. there is no element
z properly between xb and x such that ℓ ∈ Λ(z). Thus, Definition 5.2.3 (4)
holds. To show Definition 5.2.3(3), let x ∈ V and ℓ ∈ Λ(x) such that the set
{y ∈ V | (x, y) ∈ E and ℓ ∈ Λ(x)} is not empty. Note that this set is a subset of
the chain Cℓ. Hence it has a least element.

2. Assume now that Λ is a k-chain mapping. We will construct a successful
run r of Ak such that dom ◦r = Λ. Let x ∈ V . Indeed, the domain of the partial
function r(x) ∈ part(k,Σ) will be Λ(x). Now, for all ℓ ∈ dom(r(x)) = Λ(x), if
there is y ∈ V with (x, y) ∈ E and ℓ ∈ Λ(y), then, by Definition 5.2.3 (3), there is
a least such y. If such a vertex y exists then we set r(x)(ℓ) = λ(y) and otherwise
we set r(x)(ℓ) = a for some a ∈ Σ (in this last case, we can give any value since
it will never be used).

Let f ∈ part(k,Σ) be the partial function defined by ℓ ∈ dom(f) iff there
exists a minimal vertex x ∈ V with ℓ ∈ Λ(x) and in this case we set f(ℓ) = λ(x).
Note that f is well-defined thanks to Definition 5.2.3 (1).

We show that indeed r is a run of Ak(f): Clearly, if x ∈ V is minimal then
we have dom(r(x)) = Λ(x) = f−1(λ(x)) as required by the initial transitions of
Ak(f).

Now, let x ∈ V be non minimal. For all b ∈ R(x), let (xb, x) ∈ E be such that
λ(xb) = b. We will show that r(x) ∈ δλ(x),R(x)(r(xb)b∈R(x)). First, for all b ∈ R(x),

68 CHAPTER 5. THE EXPRESSIVE POWER OF ACAS

by Definition 5.2.3 (4), there exists ℓ ∈ Λ(x) ∩ Λ(xb) = dom(r(x)) ∩ dom(r(xb))
such that no element z with ℓ ∈ Λ(z) lies properly between xb and x. By the
construction of r(xb), it follows that r(xb)(ℓ) = λ(x). Second, for ℓ ∈ dom(r(x)) =
Λ(x), there exists b ∈ R(x) with ℓ ∈ Λ(xb) = dom(r(xb)) by Definition 5.2.3 (2).
By definition of r(xb), it follows that r(xb)(ℓ) = λ(x). Thus we have shown that
r is a run of Ak(f) which concludes the proof. �

As an immediate consequence of the lemma above and Lemma 5.2.4, we obtain

Corollary 5.2.6 For k ∈ N, we have L(Ak) = Dk. �

Now we define a trace alphabet (Γ, D) as follows: Let

Γ := Σ× (2[k] \ {∅}).

The dependence relation D is defined by

D = {((a,M), (b,N)) |M ∩N 6= ∅ or a = b}.

This binary relation on Γ is obviously reflexive and symmetric. Thus (Γ, D) is
indeed a dependence alphabet. Let M(Γ, D) denote the trace monoid over (Γ, D).
Now let t = (V,≤, λΓ) be a trace over (Γ, D). From this trace, we define a Σ-dag
as follows: For x, y ∈ V let (x, y) ∈ E iff there exists ℓ ∈ π2 ◦ λΓ(x) ∩ π2 ◦ λΓ(y)
such that

x = max{w < y | ℓ ∈ π2 ◦ λΓ(w)}.

Now let Π(V,≤, λ) = (V,E, π1 ◦ λΓ).
For an arbitrary trace t ∈ M(Γ, D), Π(t) is a directed acyclic graph whose

vertices are labeled by elements from Σ. Let M′ denote the set of all traces
t ∈ M(Γ, D) such that Π(t) ∈ Dk, i.e. that are mapped to a (Σ, k)-dag by the
mapping Π. Note that the relation E defined above is monadically definable in
(V,≤, λΓ). Since in addition the set of (Σ, k)-dags is monadically axiomatizable
relative to all Σ-labeled dags, the set M′ is axiomatizable relative to M(Γ, D).

Next, we define the “inverse” of Π: Let t = (V,E, λ) be a (Σ, k)-dag. Then
there exists a maximal k-chain covering (Cℓ)ℓ∈[k]. For y ∈ V , define

λΓ(y) := (λ(y), {ℓ ∈ [k] | y ∈ Cℓ}).

The following lemma in particular implies that any (Σ, k)-dag is the image under
Π of some trace from M′, i.e. Π(M′) = Dk.

Lemma 5.2.7 Let t = (V,E, λ) be a (Σ, k)-dag and let (Ci)i∈[k] be a maximal
k-chain covering of t. Let λΓ(x) = (λ(x), {ℓ ∈ [k] | x ∈ Cℓ}) for x ∈ V . Then
Π(V,E⋆, λΓ) = t and (V,E⋆, λΓ) ∈ M′.

5.2. (Σ, K)-DAGS 69

Proof. Let ≤ denote the partial order E⋆. First we show that (V,≤, λΓ) is a
trace from M(Γ, D): Let x, y ∈ V with x −−< y (with respect to the partial order
≤). Then (x, y) ∈ E. Since (Ci)i∈[k] is a k-chain covering, there exists ℓ ∈ [k]
with x, y ∈ Cℓ. Hence ℓ ∈ π2 ◦ λΓ(x) ∩ π2 ◦ λΓ(y) implying (λΓ(x), λΓ(y)) ∈ D.
Now let x, y ∈ V be incomparable. Since Ci is a chain with respect to ≤ for
1 ≤ i ≤ k, we get ∅ = π2 ◦ λΓ(x) ∩ π2 ◦ λΓ(y). Since (V,E, λ) is a Σ-dag, x
and y carry different labels from Σ. Hence we showed (λΓ(x), λΓ(y)) 6∈ D which
concludes the proof that (V,≤, λΓ) is a trace.

Now let Π(V,E⋆, λΓ) = (V,E ′, λ′). Then, λ′ = π1 ◦ λΓ = λ. It remains to
show E = E ′. So let (x, y) ∈ E. Since (Cℓ)ℓ∈[k] is a k-chain covering, there exists
ℓ ∈ [k] such that x, y ∈ Cℓ and no z ∈ Cℓ lies properly between x and y. Hence
x = max{w ∈ Cℓ | w < y} implying x = max{w < y | ℓ ∈ π2 ◦ λΓ(w)}. Hence
(x, y) ∈ E ′.

If, conversely, (x, y) ∈ E ′, then there exists ℓ ∈ π2 ◦ λΓ(y) such that x =
max{w < y | ℓ ∈ π2 ◦ λΓ(w)}. Since π2 ◦ λΓ(x) = {ℓ ∈ [k] | x ∈ Cℓ}, we obtain
x ∈ Cℓ. In addition, x < y implies xE+y. By contradiction, assume (x, y) 6∈ E.
Then there exists z ∈ V with xE+zE+y. Since there is no element of Cℓ properly
between x and y, the set Cℓ∪{z} is a chain with respect to E⋆. Since (x, y) 6∈ E,
the tuple (C1, . . . , Cℓ−1, Cℓ∪{z}, Cℓ+1, . . . , Ck) is a k-chain covering contradicting
our assumption that (Cℓ)ℓ∈[k] is maximal. Thus, we showed (x, y) ∈ E. �

Lemma 5.2.8 Let ϕ be a sentence of the monadic second order logic over the
alphabet Σ. Then there exists a sentence ψ of the monadic second order logic
over the alphabet Γ using the binary relation ≤ such that

{Π(s) | s ∈ M(Γ, D) and s |= ψ} = {t ∈ Dk | t |= ϕ}.

Proof. The sentence ϕ contains atomic formulas of the form λ(x) = a for
a ∈ Σ and of the form (x, y) ∈ E. Replace any occurrence of an atomic formula
λ(x) = a by

∨

A∈Γ,π1(A)=a λΓ(x) = A. There is a monadic formula η using the
relation ≤ and the mapping λΓ that states for any two vertices x, y in a trace
t ∈ M(Γ, D) that there exists ℓ ∈ [k] such that x = max{w < y | ℓ ∈ π2 ◦λΓ(w)}.
Replace any subformula of ϕ of the form (x, y) ∈ E by η(x, y). The result of
these replacements is denoted by ϕ. Note that ϕ is a sentence of the monadic
second order logic over the alphabet Γ using the relation ≤. Now let s ∈ M′.
Then it is easily seen that s |= ϕ iff Π(s) |= ϕ. Furthermore, there is a monadic
second order sentence µ axiomatizing M′ relative to M(Γ, D). Thus, we have the
required equality for ψ = η ∧ ϕ. �

Before showing that any monadically axiomatizable set of (Σ, k)-dags can be
accepted by an ACA, we have to introduce a variant of asynchronous cellular

70 CHAPTER 5. THE EXPRESSIVE POWER OF ACAS

automata. This variant is meant to work on traces from M(Γ, D). Differently
from ACAs considered so far, not every letter of Γ has its own sequential process,
but some of the processes are collected into one new sequential component. This
collection is given by a partition of Γ into dependence cliques: So let Γi ⊆ Γ
for i ∈ [n] be mutually disjoint sets satisfying Γi × Γi ⊆ D (i.e. the letters
from Γi are mutually dependent). A trace-ACA over (Γi)i∈[n] is a tuple A =
((Qi)i∈[n], (δa,J)a∈Γ,J⊆[n], F) where

• Qi is a finite set of local states for process i,

• δa,J :
∏

j∈J → 2Qi is a local transition function with a ∈ Γi, and

• F ⊆
⋃

∅6=J⊆[n]

∏

j∈J Qj is a set of final states.

As remarked earlier, these automata will run on traces from M(Γ, D), more pre-
cisely, on the Hasse-diagram of a trace. The only difference in the definition of
a run for trace-ACAs is that the transition δa,J writes into the process i with
a ∈ Γi. Thus the formal definition is an obvious variation of that from page 14.
Therefore, we omit it here.

Theorem 5.2.9 Let ϕ be a monadic sentence over the alphabet Σ and let k ∈ N.
Then there exists a Σ-ACA A such that L(A) = {t ∈ Dk | t |= ϕ}.

Proof. By Lemma 5.2.8, there is a monadically axiomatizable set L ⊆ M(Γ, D)
such that Π(L) = {t ∈ Dk | t |= ϕ}. Hence by [Tho90b, EM96], the set L is
recognizable in M(Γ, D).

For a ∈ Σ, let Γa = {(a,M) ∈ Γ} denote the set of letters from Γ whose first
component equals a. Then Γa is a dependence clique in (Γ, D) and the sets Γa

are mutually disjoint and cover Γ. By an immediate variant of Zielonka’s result
[Zie87] (cf. also [CMZ93, Die90]), there exists a trace-ACA

Aϕ = ((Qϕ
a)a∈Σ, (δ

ϕ

(a,M),J)(a,M)∈Γ,J⊆Σ, F
ϕ)

over (Γa)a∈Σ) that accepts L relative to M(Γ, D).
Furthermore, letAk = ((Qa)a∈Σ, (δa,J), F) be the ACA constructed above that

accepts the set of all (Σ, k)-dags. We define a Σ-ACA A′ = ((Q′
a)a∈Σ, (δ

′
a,J), F

′)
over the alphabet Σ as follows: Q′

a = Qa × Qϕ
a and a tuple (gb, qb)b∈J belongs

to F ′ iff (gb)b∈J ∈ F and (qb)b∈J ∈ Fϕ. To define the transition functions,
let δ′a,J((gb, qb)b∈J) be the set of all pairs (g, q) satisfying g ∈ δa,J((gb)b∈J) and
q ∈ δϕ(a,M),J((qb)b∈J) with M = dom(g). Note that a run of the Σ-ACA A′

“contains” a run of Ak. This run “relabels” the (Σ, k)-dag t in consideration into
some trace s ∈ Π−1(t) (see Lemmas 5.2.5 and 5.2.7). The trace s is in fact the
actual input of the trace-ACA Aϕ. Therefore, the (Σ, k)-dag t is accepted by A′

iff s ∈ Π−1(t) is accepted by Aϕ, that is, iff t |= ϕ. �

5.2. (Σ, K)-DAGS 71

Our methods in particular imply that the monadic theory of Dk is decidable
for any k ∈ N: Let ϕ be a monadic sentence. Using Lemma 5.2.8, we can build
a monadic sentence ψ that axiomatizes a preimage under Π of the models of ϕ
in Dk. Hence ¬ψ is a tautology iff ¬ϕ is. Since the monadic theory of traces is
decidable [EM96], the result follows. There is another, more direct way to prove
this decidability: Given k ∈ N, one can bound the pathwidth (cf. [Bod98] for an
overview) of the dags in Dk by some n. Since Dk is monadically axiomatizable,
and since the monadic theory of the dags of pathwidth at most n is decidable
[Cou90], the decidability follows. Anyway, using Theorem 5.1.1, one obtains the
following result:

Corollary 5.2.10 There exist algorithms that solve the following decision prob-
lems:
input: an alphabet Σ, k ∈ N and a Σ-ACA A.
output: Is L(A) ∩ Dk empty?

Is L(A) contained in Dk?
Does L(A1) ∩ Dk = L(A2) ∩ Dk?

Recall that by Proposition 5.2.2 the expressive power of deterministic Σ-ACAs
does not capture that of monadic second order logic relative to Dk. Hence, we
get in particular that nondeterministic ACAs are strictly more powerful than
deterministic ACAs within the class Dk for k ≥ 2 and the same holds for the set
of all Σ-dags (which we already knew from Theorem 4.1.10). In this latter case,
the set of Σ-ACAs that have an equivalent deterministic Σ-ACA is not recursive
(Theorem 4.1.10). It is an open question whether this holds for the class of
(Σ, k)-dags, too, i.e. whether there is an algorithm that given a Σ-ACA A and
a positive integer k decides whether there exists a deterministic Σ-ACA Ad such
that L(A) ∩ Dk = L(Ad) ∩ Dk.

72 CHAPTER 5. THE EXPRESSIVE POWER OF ACAS

Chapter 6

Other automata models for
pomsets

The covering relation of a pomset without autoconcurrency is a Σ-dag. This
allows us to speak of the set of pomsets that is accepted by an asychronous
cellular automaton: A pomset (V,≤, λ) is accepted by the Σ-ACA A iff its Hasse-
diagram (V,−−<, λ) belongs to L(A). Actually, this was the original intention
when asynchronous cellular automata were generalized from dependence graphs
to more general structures in [DG96] (cf. also [Kus98, DGK00]).

For pomsets, other automata models have been considered in the literature.
In particular, Arnold considered P-asynchronous automata [Arn91] and Lodaya
and Weil dealt with branching automata [LW98a, LW98b, LW00]. The primary
aim of this chapter is to compare the expressive power of these automata with the
expressive power of our Σ-ACAs. Somewhat as a byproduct, we obtain results
on the relation between these other automata models and monadic second order
logic.

6.1 Branching automata by Lodaya and Weil

In several papers, Lodaya and Weil considered branching automata and proved
results analogous to Kleene’s and to Myhill-Nerod’s Theorems [LW98b, LW98a,
LW00]. Their automata work on so call series-parallel pomsets, sp-pomsets for
short, defined as follows: A labeled partial order (V,≤, λ) is a sp-pomset if the
partially ordered set (N,≤N) cannot be embedded into (V,≤) (cf. Figure 6.1).
To give an alternative description of sp-pomsets (that also explains the name) we
need some more notation: Let t1 = (V1,≤1, λ1) and t2 = (V2,≤2, λ2) be labeled
partial orders with V1 ∩ V2 = ∅. The serial product t1 · t2 of them is the labeled
partial order

(V1 ∪ V2,≤1 ∪ ≤2 ∪V1 × V2, λ1 ∪ λ2).

73

74 CHAPTER 6. OTHER AUTOMATA MODELS FOR POMSETS

x1

x2

x3

x4

Figure 6.1: The partially ordered set (N,≤)

Thus, in t1 · t2, the pomset t2 is put on top of the pomset t1. On the contrary,
the parallel product t1 ‖ t2 is defined to be

(V1 ∪ V2,≤1 ∪ ≤2, λ1 ∪ λ2),

i.e. here the two partial orders are set side by side. Now it is a result in the
folklore of order theory that a partially ordered set is series-parallel iff it can be
constructed from the one-point partial orders by the application of the operations
· and ‖. In other words, the set of all sp-pomsets SP(Σ) over the alphabet Σ is
the least class of Σ-labeled partial orders containing the one-point pomsets that
is closed under the application of the serial product · and the parallel product ‖.
Hence the set SP(Σ) is equipped with two operations, the serial and the parallel
product. They can naturally be extended to sets of sp-pomsets by

S · T := {s · t | s ∈ S, t ∈ T} and

S ‖ T := {s ‖ t | s ∈ S, t ∈ T}

for S, T ⊆ SP(Σ). One can even consider the iteration of the two operations
defined by

S⋆ := {s1 · s2 · s3 · · · sn | n ≥ 1, si ∈ S} and

S⊕ := {s1 ‖ s2 ‖ s3 · · · ‖ sn | n ≥ 1, si ∈ S}

for S ⊆ SP(Σ). A set S ⊆ SP(Σ) is rational if it can be constructed from the
finite subsets of SP(Σ) by the operations ∪, ·, ‖, ⋆, and ⊕. It is weakly rational
if the operation ⊕ is applied to languages of the form K · L, only. Finally it
is series-rational if it can be constructed from the finite subsets of SP(Σ) by
the operations ∪, ·, ‖, and ⋆ (i.e. without the parallel iteration). Clearly, any
series-rational language is weakly rational and any weakly rational language is
rational. These two implications cannot be inverted for (a ‖ a)⊕ is rational and
not weakly rational and a⊕ is weakly rational but not series-rational. Since in
the construction of series-rational languages the parallel iteration cannot appear,
for any series-rational language S there exists an n ∈ N with w(s) ≤ n for any
s ∈ S, i.e. any series-rational language is width-bounded .

6.1. BRANCHING AUTOMATA BY LODAYA AND WEIL 75

Example 6.1.1 Let a denote the a-labeled one-point pomset for any a ∈ Σ. Now
let a, b ∈ Σ. Then a ‖ b ‖ b is an antichain of three elements two of which are
labeled by b and the third by a. Furthermore, S = (a ‖ a)⊕ is a rational language.
It consists of all antichains of an even number of a-labeled vertices. In particular,
S is not width-bounded and therefore not series-rational. Furthermore, S cannot
be monadically axiomatizable since it is impossible to axiomatize the finite sets
of even size in this logic relative to all finite sets.

The example above showed that not every rational sp-language can be monad-
ically axiomatized. It is not clear which additional features should be adjoint to
MSO to obtain precisely the expressive power of rational sp-languages. Even
though there are rational languages that cannot be monadically axiomatized,
this does not occur in the context of weakly rational languages:

Proposition 6.1.2 Let S be a weakly rational language. Then there exists a
monadic sentence σ such that S = {t ∈ SP(Σ) | t |= σ}.

Proof. Clearly, any finite set of sp-pomsets can be monadically axiomatized.
Now let S and T be two sets of sp-pomsets axiomatized by the monadic sentences
σ and τ , respectively. Then S∪T is axiomatized by σ∨τ . The set S ‖ T consists
of all sp-pomsets satisfying

∃X(∀x∀y(x ∈ X ∧ y 6∈ X → x ‖ y) ∧ σ ↾ X ∧ τ ↾ Xco)

where σ ↾ X is the restriction of σ to the set X and τ ↾ Xco that of τ to the
complement of X. Similarly, S · T is axiomatized by

∃X(∀x∀y(x ∈ X ∧ y 6∈ X → x < y) ∧ σ ↾ X ∧ τ ↾ Xco).

Next we show that S⋆ can be described by a monadic sentence: The idea of
a sentence axiomatizing S⋆ is to color the vertices of an sp-pomset s by two
colors such that the coloring corresponds to a factorization in factors s = s1 · s2 ·
s3 · · · sn where every factor si belongs to S. The identification of the S-factors
will be provided by the property of being a maximal convex one-colored set. More
formally, we define ϕ = ∃X∃Y (ϕ1 ∧ ϕX ∧ ϕY) where ϕ1 asserts that X and Y
form a partition of the set of vertices. The formula ϕX states that the maximal
subsets of X that are convex satisfy σ, i.e.

ϕX = ∀Z(Z ⊆ X ∧ Z is convex ∧

∀Z ′(Z ⊆ Z ′ ⊆ X ∧ Z ′ is convex → Z = Z ′)

→ σ ↾ Z)

and the formula ϕY is defined similarly with Y taking the place of X.

76 CHAPTER 6. OTHER AUTOMATA MODELS FOR POMSETS

Finally, we have to deal with the parallel iteration ⊕. Recall that it is applied
to languages of the form S = S1 · S2, only. Hence, any element of the iterated
language S (as a partial order) is connected. Thus, the informal sentence

ϕ = ∀Z(Z is connected → σ ↾ Z)

axiomatizes S⊕. Since in monadic second order logic the transitive closure of
the comparability relation ≤ ∪ ≥ can be defined, one can express that a set is
connected. Hence, S⊕ can be monadically axiomatized whenever S is the product
of two monadically axiomatizable languages. �

Thus, rational languages are not necessarily monadically axiomatizable, but
weakly rational languages and therefore series-rational languages are monadically
axiomatizable. On the other hand, the set of all sp-pomsets is trivially axiom-
atizable but not weakly rational. At the end of this section, we will see that
the only missing property for being series-rational is width-bounded, i.e. that a
width-bounded set of sp-pomsets is series-rational iff it is monadically axiomati-
zable. This answers an open question from [LW00]. As a tool in this proof, we
use (which is no surprise in the context of this Habilitationsschrift) Σ-ACAs and
branching automata that we introduce next:

Definition 6.1.3 A branching automaton is a tuple B = (S, Ts, Tf , Tj , I, A)
where
S is a finite set of states,
I and A are subsets of S of initial and accepting states, respectively,
Ts ⊆ S × Σ× S is the set of sequential transitions ,
Tf ⊆ S × (S × S) is the set of fork transitions , and
Tj ⊆ (S × S)× S is the set of join transitions .

Branching automata were introduced in [LW98b] in a slightly more general
form. But it is easy to see that the definition given here yields the same expressive
power. Since branching automata are meant to run on sp-pomsets, their runs can
be defined by induction on the construction of sp-pomsets from the one-point
pomsets by serial and parallel product. Let p, r ∈ S be states of the branching
automaton B and let a be the one-point a-labeled pomset. Then there is a run
from p to r on a (denoted p

a
−→ r) iff (p, a, r) ∈ Ts. Now let s, t be sp-pomsets.

Then there is a run p
s·t
−→ r iff there exists a state q ∈ S and runs p

s
−→ q and

q
t

−→ r. Finally, there is a run p
s‖t
−→ r iff there are states p1, p2, r1, r2 ∈ S,

a fork transition (p, (p1, p2)) ∈ Tf , runs p1
s

−→ r1 and p2
t

−→ r2, and a join
transition ((r1, r2), r) ∈ Tj (this definition is visualized in Figure 6.2, edges that
form a fork or a join transition are connected by an angle at their sources or their
targets). An sp-pomset s is accepted by B iff there exist ι ∈ I and q ∈ A and
a run ι

s
−→ q. By L(B) we denote the set of sp-pomsets accepted by B. The

6.1. BRANCHING AUTOMATA BY LODAYA AND WEIL 77

p

p1

p2

r1

r2

r
s

t

Figure 6.2: A run on s ‖ t

concepts of (serial-)rational sets and of accepted language are closely connected
as the following theorem shows:

Theorem 6.1.4 ([LW98a, LW00]) Let S be a set of sp-pomsets. Then S is
rational iff it can be accepted by some branching automaton. Moreover, S is serial-
rational iff it is width-bounded and can be accepted by some branching automaton.

In [LW00], Lodaya and Weil give other characterizations of serial-rational
languages by algebraic means and by additional requirements on branching au-
tomata (“fork-acyclic branching automata”). Since these characterizations are
not used in our considerations, the interested reader is referred to the literature.

Remark 6.1.5 Let SPwa(Σ) denote the set of sp-pomsets without autoconcur-
rency, i.e. the set of sp-pomsets t = (V,≤, λ) for which λ−1(a) is a chain for any
a ∈ Σ. There exists a branching automaton B with L(B) = SPwa(Σ).

Proof. Consider the following branching automaton:
the set of states is 2Σ,
the sequential transitions are given by (M,a,M ∪ {a}),
the fork transitions are of the form (M, (M1,M2)) where M1 ∪̇M2 =M ,
the join transitions are of the form ((M1,M2),M) where M1 ∪̇M2 =M ,
the only initial state is ∅, and any state is accepting.

Inductively, one gets M
s

−→ N iff s ∈ SPwa(Σ) and N =M ∪λ(s). Hence this
branching automaton accepts the sp-pomsets without autoconcurrency. �

6.1.1 From branching automata to ACAs

Let B be a branching automaton whose accepted language is contained in SPwa(Σ).
Next, we want to show that L(B) can be accepted by a Σ-ACA. By Theorem 6.1.4
and Proposition 6.1.2, L(B) is monadically axiomatizable. Thus, it remains to
show that an monadically axiomatizable width-bounded language in SPwa(Σ) can

78 CHAPTER 6. OTHER AUTOMATA MODELS FOR POMSETS

be accepted by a Σ-ACA. The following lemma shows that we can use the concept
of (Σ, k)-dag that proved suitable when accepting a monadically axiomatized set
by a Σ-ACA.

Lemma 6.1.6 Let t ∈ SPwa(Σ). Then the Hasse-diagram Ha(t) is a (Σ, |Σ|2)-
dag.

Proof. To ease the notions, when speaking of a k-chain covering of the pomset
t = (V,≤, λ) we mean a k-chain covering of its Hasse-diagram Ha(t). A k-chain
covering of the Σ-dag t is saturated if any vertex x ∈ V belongs to at least |Σ|
chains. We show by induction on the construction of the sp-pomset t that it has a
saturated w(t) · |Σ|-chain covering (w(t) it the width of (V,≤)). This is obviously
true for the one-point pomset t = (V,≤, λ) setting Ci = V for 1 ≤ i ≤ |Σ|.

Now let s = (Vs,≤s, λs) and t = (Vt,≤t, λt) be sp-pomsets without autocon-
currency and let (Ci)i∈[w(s)·|Σ|] and (C ′

i)i∈[w(t)·|Σ|] be saturated chain-coverings of
s and t, respectively.

Note that w(s) + w(t) = w(s ‖ t) and that

Ci :=

{

Ci for 1 ≤ i ≤ w(s) · |Σ|

C ′
i−[w(s)·|Σ| for w(s) · |Σ| < i ≤ (w(s) + w(t)) · |Σ|

defines a saturated chain covering with w(s ‖ t) · |Σ| chains of the parallel product
s ‖ t.

Now we consider the sequential product. By symmetry, is suffices to consider
the case w(s) ≥ w(t). Furthermore, we may assume that any chain Ci contains
a maximal vertex in s and any chain C ′

i contains a minimal vertex in t. Let
max(s) = {x1, x2, . . . , xm} denote the maximal vertices in s. We renumber the
chains of the saturated chain covering of s such that {Ci,j | 1 ≤ j ≤ mi} for
1 ≤ i ≤ m are those chains that contain xi. Then mi ≥ |Σ| since the chain
covering of s is saturated. Similarly, let min(t) = {y1, y2, . . . , yn} be the minimal
vertices of t and let {C ′

i,j | 1 ≤ j ≤ ni} be the set of chains containing yi for
1 ≤ i ≤ n. Again, ni ≥ |Σ|. Furthermore, m ≤ w(s) and n ≤ w(t) since max(s)
and min(t) are antichains.

To define the chain covering of s · t, let 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then
i ≤ m ≤ |Σ| ≤ nj and similarly j ≤ n ≤ |Σ| ≤ mi. Hence the chains C ′

j,i and

Ci,j contain yj and xi, respectively. Set Ci,j := Ci,j ∪ C ′
j,i. Note that

∑m
i=1mi is

the number of chains in the chain covering of s, i.e. this sum equals w(s) · |Σ|.
Similarly,

∑n

i=1 ni = w(t) · |Σ|. Furthermore, {(i, j) | 1 ≤ i ≤ m,n < j ≤ ni} is
the set of indices of chains in s that are not coupled with a chain in t so far. Since
w(s) ≥ w((t), there is a surjective mapping η from {(i, j) | 1 ≤ i ≤ m,n < j ≤ ni}
onto {(j, i) | 1 ≤ j ≤ n,m < i ≤ mj}. Now define Ci,j := Ci,j ∪ C ′

η(i,j) for

1 ≤ i ≤ m and n < j ≤ ni. Then the chains Ci,j with 1 ≤ i ≤ n and 1 ≤ j ≤ ni

6.1. BRANCHING AUTOMATA BY LODAYA AND WEIL 79

form a saturated chain covering of s · t with w(s) · |Σ| = w(s · t) · |Σ| chains. �

Theorem 6.1.7 Let B be a branching automaton. Then there exists a Σ-ACA
A such that Ha(L(B) ∩ SPwa(Σ)) = L(A).

Proof. By Remark 6.1.5, the set SPwa(Σ) can be accepted by a branching au-
tomaton. By [LW00, Theorem 4.6], the set of languages in SPwa(Σ) that can
be accepted by a branching automaton is closed under intersection. Hence
L = L(B) ∩ SPwa(Σ) is acceptable by a branching automaton. In addition, L
is width-bounded since any t ∈ SPwa(Σ) has width at most |Σ|. Thus, by The-
orem 6.1.4, L is serial-rational and therefore monadically axiomatizable relative
to all sp-pomsets by Proposition 6.1.2. Hence the set Ha(L) = {Ha(t) | t ∈ L}
is monadically axiomatizable relative to all Σ-dags. Since, by Lemma 6.1.6,
Ha(L) ⊆ D|Σ|2 , we can apply Theorem 5.2.9 and obtain the existence of the re-
quired Σ-ACA. �

6.1.2 From ACAs to branching automata

Next, we want to show the inverse implication of the theorem above. This proof is
direct, i.e. we construct from a Σ-ACA A = ((Qa)a∈Σ, (δa,J)a∈Σ,J⊆Σ, F) a branch-
ing automaton B = (S, Ts, Tf , Tj , I, A) such that Ha(L(B)) = L(A)∩Ha(SPwa(Σ)):

• The state space S of B is given by S =
⋃

J⊆Σ

∏

b∈J Qb. Note that the empty
tuple, denoted () is contained in S. Furthermore, for s = (sb)b∈J ∈ S we
define dom(s) = J .

• For any s, s′ ∈ S and a ∈ Σ, we define a sequential transition (s, a, s′) if
dom(s′) = {a} and s′(a) ∈ δa,dom(s)(s).

• For s ∈ S, there is a fork transition s→ (s, s), i.e. the branching automaton
can always duplicate its states and these are the only fork transitions.

• For s1, s2, s ∈ S, there is a join-transition (s1, s2) → s if dom(s1) and
dom(s2) are disjoint and nonempty and s = s1 ∪ s2.

• The set of initial states is given by I = {()}, i.e. the empty tuple is the only
initial state.

• The set of final states A equals F .

80 CHAPTER 6. OTHER AUTOMATA MODELS FOR POMSETS

sp(f)

· t

···
···
···
···
··

∼=
sp(f ′)

Figure 6.3: cf. Lemma 6.1.8

For a tuple f ∈ S, let sp(f) denote the sp-pomset (dom(f),∆dom(f), iddom(f)),
i.e. sp(f) is an antichain of size dom(f) and the nodes are labeled by the elements
of dom(f). Now we can show a correspondence between the runs of the branching
automaton B and the Σ-ACA A:

Lemma 6.1.8 Let t = (V,≤, λ) ∈ SPwa(Σ) and f, f
′ ∈ S. Then the following are

equivalent:
(i) There is a run of B on t from f to f ′.
(ii)There is a mapping r : dom(f) ∪̇ V → Q such that

(a) r extends f ,
(b) r satisfies the run condition relative to Ha(sp(f) · t) for vertices in V ,
(c) dom(f ′) = λ ◦max(t), and
(d) r(maxλ−1(b)) = f ′(b) for b ∈ dom(f ′).

To ease the understanding of the proof of this lemma, we first try to visualize
statement (ii) (cf. Figure 6.3): The first box denotes sp(f). The nodes in this box
are mutually incomparable since sp(f) is an antichain. The second box depicts
the sp-pomset t. All of its nodes are larger than all nodes from the first box
since we consider the sequential product of these two. The maximal nodes in
the sp-pomset t (i.e. those behind the dotted line) correspond to sp(f ′) by (c).
This correspondence is given by b 7→ max(λ−1(b)) for any vertex b in sp(f ′). Now
the second statement asserts the existence of a map r : dom(f)∪̇V → S that
coincides with f in the first box, with f ′ in the maximal elements of t, and that
satisfies the run-condition for nodes in the big box. Having this visualization in
mind, the following proof is straightforward.

Proof. Since we deal with sp-pomsets, we can prove the lemma by induction on
the construction of t from the one-point sp-pomsets. So let a ∈ Σ and consider

the one-point sp-pomset t = ({1},∆{1}, {(1, a)}). If there is a run f
t

−→ f ′ of
B, there is a corresponding a-labeled transition (f, a, f ′) in B, i.e. dom(f ′) = {a}
and f ′(a) ∈ δa,dom(f)(f). Now define r : dom(f) ∪̇ {1} → S by r ↾ dom(f) = f
and r(1) = f ′(a). Then (a) is trivial and (b) holds for the vertex 1. Furthermore,

6.1. BRANCHING AUTOMATA BY LODAYA AND WEIL 81

sp(f)

· s

···
···
···
···
···

∼=
sp(f ′)

sp(f ′)

· t

···
···
···
···
···

∼=
sp(f ′′)

Figure 6.4: The case s · t in the proof of Lemma 6.1.8

dom(f ′) = {a} = {λ(1)} = λ ◦ max(t) ensures (c). Finally, r(maxλ−1(a)) =
r(1) = f ′(a) finishes the proof of (i)⇒(ii) for one-point pomsets.

Conversely, assume (ii) holds for the one-point pomset t. Then in particular
r ↾ dom(f) = f and r(1) = f ′(a). Since the reading domain of 1 in the Hasse
diagram Ha(sp(f) · t) is dom(f), and since r satisfies the run-condition for 1, we
obtain r(1) ∈ δa,dom(f)(f). Hence there is an a-labeled transition (f, a, f ′).

Now we come to the induction argument. So let s = (Vs,≤s, λs) and t =
(Vt,≤t, λt) be sp-pomsets without autoconcurrency that satisfy the equivalence
of (i) and (ii) for any f, f ′ ∈ S.

The case s · t. Let f, f ′′ ∈ S be states of B and suppose there is a run of B
on s · t from f to f ′′. Then there exists f ′ ∈ S such that f

s
−→ f ′ and f ′ s

−→ f ′′.
Hence there are mappings rs and rt that satisfy (a)-(d). The situation is depicted
in Figure 6.4. Note that the sp-pomset sp(f) · s · t is obtained from sp(f) · s and
sp(f ′)·t by identifying a vertex b ∈ dom(f ′) with the maximal b-labeled vertex of s
(which belongs to max(s) by (c)). By (d), we have rs(maxλ−1

s (b)) = f ′(b) = rt(b),
i.e. this identification behaves well with respect to the mappings rs and rt. Now
it is immediate that r = rs ∪ (rt ↾ Vt) satisfies the conditions (a)-(d) with respect
to the sp-pomset sp(f) · s · t, i.e. one obtains (ii).

Conversely, assume (ii) holds, i.e. there is a mapping r : dom(f)∪Vs∪Vt → S
such that r, f , s ·t and f ′′ satisfy (a)-(d). Then define dom(f ′) := λs◦max(s) and
f ′(b) = r(maxλ−1

s (b)) for b ∈ dom(f ′). Furthermore, let rs = r ↾ dom(f)∪Vs. To
define the mapping rt : dom(f ′) ∪ Vt, let rt ↾ Vt = r ↾ Vt and, for b ∈ dom(f ′) =
max(s), set rt(b) = f ′(b) = r(maxλ−1

s (b)). Now we have (a)-(d) for rs, f , s and
f ′. Hence by the induction hypothesis f

s
−→ f ′. Since dom(f ′) = λs ◦ max(s)

and f ′(b) = rs(maxλ−1
s (b)) for b ∈ dom(f ′), the same holds for rt, f

′, t and f ′′

implying f ′ t
−→ f ′′. Thus, f

s·t
−→ f ′′, i.e. we showed the equivalence of (i) and

(ii) for the sequential product s · t.
The case s ‖ t. Since s ‖ t has no autoconcurrency, the two sp-pomsets carry

disjoint labels, i.e. λs(Vs)∩λt(Vt) = ∅. Now let f, f ′ ∈ S be such that f
s‖t
−→ f ′ in

B. Then this run consists of a fork transition f → (f, f) followed by two parallel

runs f
s

−→ f1 and f
t

−→ f2 that are joint at the end in a join transition (f1, f2) →

82 CHAPTER 6. OTHER AUTOMATA MODELS FOR POMSETS

sp(f)

������*

HHHHHHj

�
	

sp(f)

· s

···
···
···
···
···

∼=
sp(f1)

sp(f)

· t

···
···
···
···
···

∼=
sp(f2)

sp(f ′)

������*

HHHHHHj
�

Figure 6.5: The case s ‖ t in the proof of Lemma 6.1.8

f ′ (cf. Figure 6.5). Applying the induction hypothesis to the two parallel runs, we
get two mappings rs and rt such that rs, f , s and f1 satisfy (a)-(d) and similarly
rt, f , t and f2. Now define r := rs ∪ rt. Note that dom(rs) ∩ dom(rt) = dom(f)
where rs and rt coincide with f . Hence r : dom(f) ∪ Vs ∪ Vt → S is well defined
and we obtain (a) and (b) for r, f and s ‖ t immediately. To verify (c), note that
dom(f ′) = dom(f1) ∪ dom(f2) and therefore dom(f ′) = λ ◦max(s ‖ t). Now (d)
follows since dom(f1) and dom(f2) are disjoint. Thus, we showed the implication
(i)⇒(ii).

For the other implication assume r, f , s ‖ t and f ′ satisfy (a)-(d). Then
r ↾ dom(f) ∪ Vs, f , s and f ′ ↾ λs ◦max(s) =: f1 satisfy (a)-(d). Similarly, we get
(a)-(d) for r ↾ dom(f) ∪ Vt, f , t and f ′ ↾ λt ◦max(t) =: f2. Hence there are runs

f
s

−→ f1 and f
t

−→ f2 in B. Starting with the fork transition f → (f, f), then
performing the two runs in parallel and finally joining them by the join transition

(f1, f2) → f ′ gives a run f
s‖t
−→ f ′ as required. �

Recall that for a run r on t = (V,E, λ) ∈ D of a Σ-ACA, the states at the
maximal a-labeled nodes (maxλ−1(a))a∈λ(V) decide whether it is successful or
not. On the contrary, in the lemma above, we have an assertion on the states at
the maximal nodes max(t), only. Call a run r on t weakly successful if the states
at the maximal nodes are accepting, i.e. if (r(x))x∈max(t) ∈ F . Let Lw(A) denote
the set of Σ-dags that admit a weakly successful run of A. We show that for
any Σ-ACA A there exists another Σ-ACA A′ such that L(A) = Lw(A′): The
Σ-ACA A′ simulates the run of A on some Σ-dag t and additionally guesses the
maximal a-labeled node of t for each letter a that occurs in t. To do this, along

6.1. BRANCHING AUTOMATA BY LODAYA AND WEIL 83

a weakly successful run of A′ on t, any local process a nondeterministically picks
one and only one node x with λ(x) = a. This node sends a signal (Enda, pa)
upwards where pa is the local state at the guessed node. This signal is forwarded
upwards by all transitions. The Σ-ACA A′ stops if an a-labeled node receives the
signal Enda since this means that the guessed a-labeled node was not maximal
in its chain λ−1(a). By reading the states at the maximal nodes from max(t), we
can now recover the final state of each process a and accept or reject the Σ-dag
according to the acceptance condition of A.

Theorem 6.1.9 Let A be a Σ-ACA. Then there exists a branching automaton
B such that Ha(L(B)) = L(A) ∩ Ha(SP(Σ)).

Proof. By the consideration above, it suffices to show that Lw(A)∩Ha(SP(Σ))
can be accepted by a branching automaton B. So let B be the branching au-
tomaton we constructed above. Furthermore, let t = (V,≤, λ) ∈ SPwa(Σ). Then

t ∈ L(B) iff there is a run ()
t

−→ f for some f ∈ F . Note that sp(()) = ∅.

Hence the existence of the run ()
t

−→ f of B is by Lemma 6.1.8 equivalent to
the existence of a run r on ∅ · t = t of A satisfying dom(f) = λ ◦ max(t) and
r(maxλ−1(b)) = f(b) for b ∈ dom(f), i.e. to the existence of a weakly successful
run of A. Thus, we showed

Ha (L(B) ∩ SPwa(Σ)) = Lw(A) ∩ Ha(SPwa(Σ)) = Lw(A) ∩ Ha(SP(Σ)).

By Remark 6.1.5, the set SPwa(Σ) can be accepted by a branching automaton.
Since, by [LW00, Theorem 4.6], the set of sp-languages acceptable by branching
automata is closed under intersection, there exists a branching automaton B as
required. �

By Theorems 6.1.7 and 6.1.9, branching and asynchronous cellular automata
have the same expressive power when restricted to sp-pomsets without autocon-
currency. Since the Hasse-diagrams of these pomsets are (Σ, |Σ|2)-dags, we can
conclude that the expressive power of branching automata coincides with that
of MSO when restricted to sp-pomsets without autoconcurrency. We finish the
consideration of branching automata showing that this latter result holds for all
width-bounded sp-languages thereby answering an open question from [LW00]:

Theorem 6.1.10 Let L ⊆ SP(Σ) be a width-bounded sp-language. Then L can
be accepted by a branching automaton iff it is monadically axiomatizable.

Proof. By Theorem 6.1.4, a width-bounded language can be accepted by a
branching automaton iff it is serial-rational. Since any serial-rational language
can be monadically axiomatized by Proposition 6.1.2, we get the implication

84 CHAPTER 6. OTHER AUTOMATA MODELS FOR POMSETS

⇒. For the other implication, let n be a bound for the width of elements of
L and define Σ′ := Σ × 2[n]. The mapping (a,M) 7→ a naturally induces a
projection π from SP(Σ′) onto SP(Σ). Now let ϕ be a monadic sentence over Σ
that axiomatizes L. In ϕ, replace any subformula λ(x) = a by

∨

∅6=M⊆[n] λ(x) =

(a,M) and denote the resulting sentence by ϕ′. Then a sp-pomset t over Σ′

satisfies ϕ′ iff π(t) |= ϕ, i.e. iff π(t) ∈ L. Since any s ∈ L has width at most
n, there exists even an sp-pomset without autoconcurrency t ∈ SPwa(Σ

′) with
π(t) = s. So let L′ denote the set of all sp-pomsets without autoconcurrency
t ∈ SPwa(Σ

′) with π(t) ∈ L. Then π(L′) = L and L′ is monadically axiomatized
relative to SPwa(Σ

′) by ϕ′. Hence, by Lemma 6.1.6 and Theorem 5.2.9, Ha(L′) can
be accepted by a Σ′-ACA. Using Theorem 6.1.9, we obtain a branching automaton
over Σ′ that accepts L′. By [LW00, Theorem 4.6], this implies that L = π(L′)
can be accepted by a branching automaton over Σ since the set of languages
acceptable by branching automata is closed with respect to projections. �

Recall that any serial-rational language is weakly rational and any weakly
rational language is monadically axiomatizable. Furthermore, there are rational
languages that are not monadically axiomatizable (consider (a ‖ a)⊕) but I do
not know any weakly rational language that cannot be monadically axiomatized.
Hence it seems reasonable to try whether the expressive power of MSO captures
that of weakly rational expressions. To capture all rational languages, one pre-
sumably needs the ability to count modulo: The language (a ‖ a)⊕ consists of all
antichains of even size. Such an ability is contained in Courcelle’s logic [Cou90].
But there, he also allows to quantify over sets of edges which seems not to be
appropriate when one tries to capture rational sp-languages.

6.2 P-asynchronous automata by Arnold

Generalizing the asynchronous automata for traces, Arnold defined P-asynchro-
nous automata that are meant to accept Σ-labeled pomsets without autocon-
currency [Arn91]. In this section, we present in a condensed form some of his
definitions and then show that the accepting power of P-asynchronous automata
is captured by that of Σ-ACAs.

The tuple B = ((Si)i∈I , (δa,J)a∈Σ,J⊆I , ι, F, I, (Da)a∈Σ) is a P-asynchronous au-
tomaton over the alphabet Σ provided

1. I is a finite set of indices with Σ ⊆ I,

2. Si for i ∈ I is a finite set of local states of process i,

3. δa,J :
∏

j∈J Sj →
∏

j∈J Sj is a local transition function for a ∈ Σ and
∅ 6= J ⊆ I,

6.2. P-ASYNCHRONOUS AUTOMATA BY ARNOLD 85

4. Da : Sa → 2I \ {∅} is a mapping for a ∈ Σ,

5. ι ∈
∏

i∈I Si is the initial state and F ⊆
∏

i∈I Si is the set of accepting states.

Above, I said that P-asynchronous automata are meant to accept pomsets.
But the way they do this is more involved than for ACAs. First, from an P-
asynchronous automaton, one defines a sequential automaton over Σ as follows:
The set of states is the direct product of the local state spaces S =

∏

i∈I Si. The
transition function is defined in two steps: Let a ∈ Σ and s = (si)i∈I ∈ S. Then
J := Da(s) is a subset of I. Let (s′j)j∈J := δa,J((sj)j∈J) and, for i ∈ I \J s′i := si.
Then δ(s, a) := (s′i)i∈I . In other words, the transition function δ : S × Σ → S
changes only some components of its state space. The function Da decides, which
components are changed according to which local transition function δa,J . Then
the tuple (S, δ, ι, F) is a classical sequential automaton over the alphabet Σ. Now
let w = a1a2 . . . an ∈ Σ⋆ be some word over Σ. Since the sequential automaton
derived from B is total and deterministic, there is an initial computation path of
the form

ι = (s0i)i∈I
a1−→ (s1i)i∈I

a2−→ (s2i)i∈I
a3−→ · · ·

an−→ (sni)i∈I .

For 1 ≤ ℓ ≤ n, let Jℓ := Daℓ(s
ℓ−1
aℓ

) 6= ∅, i.e. Jℓ is the set of components of I that are
changed in the ℓth computation step. Then σ(w) := (a1, J1)(a2, J2) . . . (an, Jn)
is a word over Γ := Σ × (2I \ {∅}). On the alphabet Γ, we again consider the
dependence relation

D = {((a,M), (b,N)) ∈ Γ2 |M ∩N 6= ∅ or a = b}.

Let [σ(w)] = (V,≤, λΓ) denote the trace from M(Γ, D) associated to the word
σ(w). Finally, let π1 : Γ → Σ be the projection to the first component of a letter
from Γ. Then [w]B := (V,≤, π1 ◦ λΓ) is a Σ-labeled partially ordered set. Note
that it is completely determined by the word w ∈ Σ⋆, i.e. the P-asynchronous
automaton B defines a mapping from Σ⋆ into the set of Σ-labeled partial orders.
The image of this mapping is denoted by P (B) = {[w]B | w ∈ Σ⋆}. A set of
Σ-labeled pomsets P is a-regular if there exists a P-asynchronous automaton B
with P (B) = P .

Let w ∈ Σ⋆ and let (V,≤, λ) = [w]B denote the associated partial order. Since
in (Γ, D) pairs with the same letter from Σ are dependent, i.e. ((a,M), (a,N)) ∈
D for any M,N , this partial order has no autoconcurrency. Furthermore, the Σ-
dag (V,−−<, λ) admits a |D|-chain covering since the Hasse-diagram of the trace
[σ(w)] is a (Γ, |D|)-dag by Example 5.2.1.

Now let again B be a P-asynchronous automaton and let (S, δ, ι, F) denote
the sequential automaton derived from B. We write W (B) for the set of words
that are accepted by (S, δ, ι, F) and call this set the word language accepted by
B. The pomset-language accepted by B is defined by

L(B) := {[w]B | w ∈ W (B)}.

86 CHAPTER 6. OTHER AUTOMATA MODELS FOR POMSETS

Note that any set of Σ-labeled pomsets that can be accepted by a P-asynchronous
automaton is contained in some a-regular set since L(B) ⊆ P (B). In particular,
for any P-asynchronous automaton B, the set Ha(L(B)) of Hasse-diagrams of
accepted pomsets consists of (Σ, k)-dags for some k. On the other hand, for k > 1,
there is no P-asynchronous automaton B with Ha(L(B)) = Dk. In particular, P-
asynchronous automata cannot accept Dk relative to Dk+1. Since this is possible
by a Σ-ACA (cf. Corollary 5.2.6), the expressive power of Σ-ACAs is not captured
by that of P-asynchronous automata. But, on the contrary, any P-asynchronous
automaton can be simulated by a Σ-ACA:

Theorem 6.2.1 Let B be a P-asynchronous automaton over Σ. Then there exists
a Σ-ACA A with Ha(L(B)) = L(A).

Proof. The word language σ(W (B)) = {σ(w) | w ∈ W (B)} is recognizable
in Γ⋆. By [Arn91, Lemma 5.1], σ(W (B)) is closed with respect to the trace
equivalence, i.e. if w′ ∈ σ(W (B)) and v′ ∈ Γ⋆ with [w′] = [v′], then v′ ∈ σ(W (B)).
Hence the trace language {[σ(w)] | w ∈ W (B)} ⊆ M(Γ, D) is recognizable. By
[EM96], it can be monadically axiomatized, say, by the sentence ϕ. In ϕ, replace
any subformula of the form λΓ(x) = (a,M) by λ(x) = a ∧ {i ∈ I | x ∈ Ci} = M
and denote the resulting formula by ϕ′. Now consider the following sentence ψ:

∃i∈ICi : (Ci is a chain for i ∈ I

∧∀x, y : (x −−< y → (λ(x) = λ(y) ∨ x, y ∈ Ci for some i ∈ I))

∧∀x, y : (x ‖ y → λ(x) 6= λ(y))

∧ϕ′

)

Then ψ axiomatizes L(B). Since the order relation ≤ can be monadically defined
from the covering relation, we get that Ha(L(B)) can be monadically axiomatized.
This is a set of Σ-dags and, even more, it is contained in Dk with k = |D|. Hence,
by Theorem 5.2.9, it can be accepted by some Σ-ACA A. Thus, we showed
Ha(L(B)) = L(A) for some Σ-ACA A. �

Thus, the advantage of P-asynchronous automata is that they are determinis-
tic and therefore can easily be complemented. But this complementation always
refers to the set P (B), i.e. the complemented P-asynchronous automaton accepts
P (B) \ L(B). On the other hand, the expressive power of P-asynchronous au-
tomata is strictly weaker than that of asynchronous cellular automata.

Part II

Divisibility monoids

87

Chapter 7

Preliminaries

In the introduction, I explained that traces can be defined in two different ways:
either as combinatorial structures (dependence graphs) or as elements of a free
partially commutative monoid. The first part of the present work generalized the
first approach considering Σ-dags. Now we are going to deal with a generalization
of the second approach, i.e. we consider divisibility monoids. It might not be clear
at first glance that they indeed generalize trace monoids since the divisibility
monoids are defined in a different spirit than trace monoids, but from Theorem
8.2.10 it follows immediately that any trace monoid is a divisibility monoid. It
is the aim of this part to carry over large parts of the theory of recognizable
languages in the trace monoid to our setting of divisibility monoid.

This chapter starts with some simple monoid-theoretic preliminaries. Then,
we introduce left divisibility monoids and show some of their basic properties
that will be useful in our further considerations. These definitions as well as
the results in the first two sections are taken from [DK99, DK01]. In the last
Section 7.3 of this chapter, a Foata Normal Form for the elements of a divisibility
monoid is defined and considered. This Foata Normal Form, besides the fact that
it stresses the connection with trace monoids, will be useful later in Chapter 10
where we will characterize when a divisibility monoid satisfies Kleene’s Theorem.

7.1 Monoid-theoretic preliminaries

A triple (M, ·, 1) is a monoid if M is a set, · : M ×M → M is an associative
operation and 1 ∈ M is the unit element satisfying 1 · x = x · 1 = x for any
x ∈ M . Let (M, ·, 1) be a monoid and X ⊆ M . Then, by 〈X〉 we denote the
submonoid of M generated by X, i.e. the intersection of all submonoids of M
that contain X. If 〈X〉 = M , X is a set of generators of M . The monoid M is
finitely generated if it has a finite set of generators. Let X be a set. Then X⋆

denotes the set of all words over X. With the usual concatenation of words and
the empty word as unit element, this becomes a free monoid generated by X.

89

90 CHAPTER 7. PRELIMINARIES

Let M = (M, ·, 1) be a monoid. We call M cancellative if x · y · z = x · y′ · z
implies y = y′ for any x, y, y′, z ∈M . This in particular ensures that M does not
contain a zero element (i.e. an element z such that z ·x = x·z = z for any x ∈M).
Now let x · y = z. Then, in a cancellative monoid y is uniquely determined. We
denote it by x−1z. For x, y ∈M , x is a left divisor of y (denoted x ≤ y) if there
is z ∈M such that x · z = y. In general, the relation ≤ is not antisymmetric.

Lemma 7.1.1 Let (M, ·, 1) be a cancellative monoid and a ∈ M . Then the
mapping a : (M,≤) → (a·M,≤) defined by a(x) := a·x is a preorder isomorphism.

Proof. Since the monoid M is cancellative, the mapping a is bijective. Now let
b, c ∈ M . If ab ≤ ac, we find d ∈ M such that abd = ac. Now b ≤ c follows by
cancellation. The other implication is trivial. �

Let T := (M \ {1}) \ (M \ {1})2. The set T consists of those elements of M
that do not have a proper divisor, its elements are called irreducible. Note that
T has to be contained in any set generating M .

The set of rational sets in a monoid (M, ·, 1) is the least class C ⊆ 2M such
that

• all finite subsets of M belong to C,

• X · Y = {x · y | x ∈ X, y ∈ Y } and X ∪ Y belong to C whenever X, Y ∈ C,
and

• 〈X〉 belongs to C whenever X ∈ C.

A set L ⊆M is recognizable iff there exists a finite monoid (S, ·, 1) and a homo-
morphism η : M → S such that L = η−1η(L). Recognizable sets are sometimes
called recognizable languages. It is easily verified that the set of recognizable
languages in a monoid (M, ·, 1) is closed under the usual set-theoretic operations
like union, intersection and complementation. Furthermore, in any monoid the
empty set as well as the whole set are recognizable.

In general, the sets of recognizable and of rational subsets of a monoid are
different and even incomparable. For finitely generated monoids, it is known
that any recognizable set is rational (and that this property characterizes the
finitely generated monoids). The other implication holds in particular in finitely
generated free monoids:

Kleene’s Theorem ([Kle56]). Let T be a finite set. Then a set L ⊆ T ⋆ is
rational iff it is recognizable.

Now let T be a finite set and L ⊆ M := T ⋆. Since the set of recognizable
languages is closed under the usual set-theoretic operations, the set of rational
languages in the free monoid T ⋆ enjoys these closure properties.

7.2. DEFINITION AND BASIC PROPERTIES OF DIVISIBILITYMONOIDS91

For x ∈ T ⋆, let α(x) denote the alphabet of x comprising all letters of T
that occur in x. Then LB := 〈B〉 ∩ L \ (

⋃

A⊂B 〈A〉) with B ⊆ T is the set of
elements x of L with α(x) = B. If L is rational, the language LB is rational,
too. The language L is monoalphabetic if L = LB for some B ⊆ T . The class
of monoalphabetic-rational languages (m-rational for short) in T ⋆ is the smallest
class C ⊆ 2T

⋆

satisfying

• all finite subsets of T ⋆ belong to C,

• X · Y and X ∪ Y belong to C whenever X, Y ∈ C, and

• 〈X〉 belongs to C whenever X ∈ C is monoalphabetic.

The following lemma seems to be folklore but we could not find an explicit
reference.

Lemma 7.1.2 Let T be a finite set. Then a language in T ⋆ is rational iff it is
m-rational.

Proof. The implication ⇐ is trivial. For the other implication, one shows by
induction on the size of B ⊆ T that 〈L〉B is m-rational for any rational language
L. Then the result follows since 〈L〉 is the union of these languages.

For B = ∅, the statement is trivial. Now observe that

〈L〉B =
⋃

X,Y⊂B

LX ·
〈

LB ∪ (L · L)B ∪
⋃

LC 〈L〉D LE

〉

· LY

where the inner union is taken for all C,D,E ⊆ B with C ∪ D ∪ E = B and
C∪D 6= B 6= D∪E. Hence by the induction hypothesis for D ⊂ B, the languages
〈L〉D are m-rational and therefore 〈L〉B is so, too. �

7.2 Definition and basic properties of

divisibility monoids

Definition 7.2.1 A monoid (M, ·, 1) is called a left divisibility monoid provided
the following hold

1. M is cancellative and its irreducible elements form a finite set of generators
of M ,

2. x ∧ y exists for any x, y ∈M , and

3. (↓x,≤) is a distributive lattice for any x ∈M .

92 CHAPTER 7. PRELIMINARIES

Note that by the third axiom the prefix relation in a left divisibility monoid is
a partial order relation. Since, by Lemma 7.1.1, y ≤ z implies x · y ≤ x · z, a left
divisibility monoid is a left ordered monoid. Ordered monoids where the order
relation is the intersection of the prefix and the suffix relation were investigated
e.g. in [Bir73] under the name “divisibility monoid”. Despite that we require
more than just the fact that (M, ·,≤) be a left ordered monoid this might explain
why we call the monoids defined above “left divisibility monoid”. Since Birkhoff’s
divisibility monoids will not appear in our investigations any more, we will simply
speak of “divisibility monoids” as an abbreviation for “left divisibility monoid”.

Let (M, ·, 1) be a divisibility monoid and let x, y ∈ M with x · y = 1. Then
1 ≤ x ≤ 1 implies x = 1 since by the third axiom ≤ is a partial order. Hence we
have y = x · y = 1, i.e. there are no proper divisors of the unit element.

Example 7.2.2 It is easily seen that any (finitely generated) trace monoid is a
left divisibility monoid. Now let Σ = {a, b, c, d} be an alphabet. Let ∼1 be the
least congruence on the free monoid Σ⋆ that identifies the words ab and cd. In
a trace monoid, the equality ab = cd implies {a, b} = {c, d} for any generators
a, b, c, d. Hence the quotient monoid Σ⋆/∼1 is not a trace monoid. But, as we
will see later, it is a divisibility monoid. Similarly, let ∼2 identify aa and bb.
Again, Σ⋆/∼2 is no trace but a divisibility monoid. Finally, identifying aa and
bc again results in a divisibility monoid. The proof that these three monoids are
indeed divisibility monoids is delayed to Chapter 8 where we will give a finite
representation for divisibility monoids (cf. Theorem 8.2.10).

Since a divisibility monoid (M, ·, 1) is generated by the set T of its irreducible
elements, there is a natural epimorphism nat : T ⋆ → M . Now let A ⊆ M and
x ∈M with A ≤ x. Since (↓x,≤) is a lattice, the supremum y of A in this lattice
exists. Now let z ∈M be an upper bound of A in (M,≤) which is not necessarily
in the lattice ↓x. Then y and z have an infimum y ∧ z in (M,≤). This infimum
is an upper bound of A dominated by y. Thus y = y ∧ z ≤ z. Hence y is even
the supremum of A in the partially ordered set (M,≤). Thus we showed that
any set, bounded above, has a supremum in (M,≤) (Lemma 7.2.3 below will
show that bounded sets are finite). This supremum of A can be viewed as the
least common multiple of A, whereas the infimum of A is the greatest common
(left-)divisor of A. Note that (M,≤) is not necessarily a lattice since it may
contain unbounded pairs of elements. By Lemma 7.1.1, multiplication in a left
divisibility monoid (M, ·, 1) from the left (but not from the right) distributes over
infima and suprema, i.e. a·(b∧c) = ab∧ac for any b, c ∈M and a·(b∨c) = ab∨ac
provided {b, c} (or, equivalently, {ab, ac}) is bounded above. This is essential in
the following proof that shows that any element of a divisibility monoid has only
finitely many left divisors:

7.2. DEFINITION AND BASIC PROPERTIES OF DIVISIBILITYMONOIDS93

Lemma 7.2.3 Let (M, ·, 1) be a divisibility monoid and m ∈ M . Then ↓m is
finite.

Proof. Let T ⊆M be the set of irreducible elements ofM . Then T is a finite set
of generators ofM . By contradiction, assume n ∈ Nminimal such that there exist
x1, . . . , xn ∈ T with ↓(x1 · x2 . . . xn) infinite. Then n ≥ 2. Let m := x1 · x2 . . . xn.
Since the set ↓m is an infinite distributive lattice, it contains an infinite chain
C. By Lemma 7.1.1, ({y ∈ M | x1 ≤ y ≤ m},≤) ∼= (↓(x2 · x3 . . . xn),≤). Since
n is minimal, the sets ↓x1 and {y ∈ M | x1 ≤ y ≤ m} are finite. Hence there
exist x, y ∈ C such that x < y, x ∨ x1 = y ∨ x1 and x ∧ x1 = y ∧ x1. Since
↓m is distributive and complements in a distributive lattice are unique [Bir73,
Corollary to Theorem II.13], this implies x = y contradicting x < y. �

Thus, for an elementm of a divisibility monoid, (↓m,≤) is a finite distributive
lattice. Let |m| denote the length of this lattice which equals the size of any
maximal chain deduced by 1. It is easily checked that x −−< y iff there exists
t ∈ T with x · nat(t) = y for any x, y ∈ M . Hence the maximal chains in ↓m
correspond to the words w ∈ T ⋆ with nat(w) = m. This implies that any two
such words have the same length which equals |m|.

By the second requirement on divisibility monoids, the partial order (M,≤)
can be seen as the set of compacts of a Scott-domain. The lemma above ensures
that it is even the set of compacts of a dI-domain (cf. [Ber78, Win87]). Thus, we
have in particular (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) whenever the left hand side is
defined.

Let M again be a divisibility monoid. Two elements x and y are independent
(denoted by x I y) if x ∧ y = 1 and {x, y} is bounded above. In this case
the supremum x ∨ y exists in M . Since M is cancellative, there is a unique
element z such that y · z = x ∨ y. This element z is called the residuum of x
after y and denoted by x ↑ y. Note that it is defined for independent elements
x and y only. Hence x ↑ y is defined iff y ↑ x is defined and in this case
x(y ↑ x) = y(x ↑ y). Fixing x ∈ M , we get a unary partial function cx from M
to M by dom(cx) := {y ∈M | x I y} and cx(y) := y ↑ x. The function cx will be
called the commutation behavior of x. We may turn it into a total function on
M by introducing an additional element. Therefore an equation cx(y) = cz(y

′)
means “cx(y) is defined iff cz(y

′) is defined and in this case they are equal”.
As an example, consider the trace monoid over the dependence alphabet

(Σ, D). Then the infimum of two traces s and t is trivial whenever no letter
occurs in s as well as in t. In this case the set {s, t} is bounded iff any letter from
s is independent from any letter from t. Hence s and t are independent according
to our definition above if and only if they are independent in the sense of trace
theory. Now assume s and t to be independent traces. Then their supremum
equals st = ts. Hence the residuum of s after t equals s, i.e. the commutation be-

94 CHAPTER 7. PRELIMINARIES

havior ct is contained in the identity function idM(Σ,D) and is completely given by
the set of letters that occur in t. In other words, the notion of a “commutation
behavior” in a trace monoid is pretty trivial, but in the context of divisibility
monoids it turns out to be of great importance as most of our proofs rely on this
concept.

Lemma 7.2.4 Let (M, ·, 1) be a divisibility monoid and x, y ∈M with xI y. The
commutation behavior cx is injective on its domain. Furthermore, |y| = |cx(y)|.

Proof. Let y, y′ ∈ dom(cx) with cx(y) = cx(y
′). Then x ∧ y = x ∧ y′ = 1. By

the definitions of ↑ and cx we get x ∨ y = x(y ↑ x) = x(y′ ↑ x) = x ∨ y′. Hence
y and y′ are complements of x in the lattice ↓(x ∨ y). Since complements in a
distributive lattice are unique [Bir73], this implies y = y′.

To show that cx is length preserving, let z = x ∨ y = x · cx(y). Then x is the
complement of y in the distributive lattice ↓z. Hence the height of z is the sum
of the heights of x and y in this lattice [Bir73]. �

Next we show some formulas satisfied by the commutation behaviors that will
be useful in our subsequent considerations.

Lemma 7.2.5 Let (M, ·, 1) be a divisibility monoid and x, x′, y, z ∈M .

1. x I yz iff x I y and cy(x) I z.

2. cyz(x) = cz(cy(x)); in other words x ↑ (yz) = (x ↑ y) ↑ z.

3. cx(yz) = cx(y) · ccy(x)(z); equivalently yz ↑ x = (y ↑ x) · (z ↑ (x ↑ y)).

4. If cx = cx′ and y I x then ccy(x) = ccy(x′).

Proof. 1. First we show the implication ⇒. Therefore, let x I yz. Then
x ∧ yz = 1 and the set {x, yz} is bounded above. Hence x ∧ y = 1 and {x, y} is
bounded above since y ≤ yz, i.e. x I y. To show that cy(x) I z, note that cy(x) is
defined since x and y are independent. Then ycy(x) = x ∨ y by the definition of
cy. Note that {x, yz} and therefore {x, y, yz} is bounded above. Hence {x∨y, yz}
is bounded above. Now the boundedness of {cy(x), z} follows by x ∨ y = ycy(x)
and Lemma 7.1.1. Furthermore,

y · (cy(x) ∧ z) = ycy(x) ∧ yz by Lemma 7.1.1
= (x ∨ y) ∧ yz
= (x ∧ z) ∨ (y ∧ yz) by distributivity
= 1 ∨ y = y since x I yz and y ≤ yz

Since M is cancellative, we showed cy(x) ∧ z = 1.

7.2. DEFINITION AND BASIC PROPERTIES OF DIVISIBILITYMONOIDS95

To show the inverse implication, let x I y and cy(x) I z. Then x ∧ yz ≤
(x ∨ y) ∧ yz = ycy(x) ∧ yz. By Lemma 7.1.1 this equals y(cy(x) ∧ z). Since
cy(x) I z we get x ∧ yz ≤ y. Hence x ∧ yz = x ∧ y ∧ yz = 1 ∧ yz = 1 since x I y.
To show that {x, yz} is bounded, note that {ycy(x), yz} is bounded by cy(x) I z
and Lemma 7.1.1. Hence {x ∨ y, yz} and therefore {x, yz} are bounded which
finishes the proof of the first statement.
2. Since M is cancellative, the following equation implies cyz(x) = cz(cy(x)):

yzcyz(x) = x ∨ yz by the definition of the function cyz
= (x ∨ y) ∨ yz since y ≤ yz
= ycy(x) ∨ yz
= y(cy(x) ∨ z) by Lemma 7.1.1
= yzcz(cy(x)).

3. Similarly, cx(yz) = cx(y)ccy(x)(z) follows from the following equation since we
can cancel x from the left:

xcx(yz) = x ∨ yz = x ∨ y ∨ yz since y ≤ yz
= ycy(x) ∨ yz since x ∨ y = ycy(x)
= y(cy(x) ∨ z) by Lemma 7.1.1
= ycy(x)ccy(x)(z) = (x ∨ y)ccy(x)(z)
= xcx(y)ccy(x)(z).

4. Let z ∈ dom(ccy(x)). By the second statement and cx = cx′ , we obtain
cx(y)ccy(x)(z) = cx(yz) = cx′(yz) = cx′(y)ccy(x′)(z) = cx(y)ccy(x′)(z). Now we can
conclude ccy(x)(z) = ccy(x′)(z) by cancelling cx(y) from the left. �

Note that the second statement implies cz ◦ cy = cyz where ◦ is the usual
concatenation of partial functions. Hence the set CM = {cx | x ∈ M} is closed
under concatenation. Since c1 is the identity function on M , (CM , ◦, c1) is a
monoid, the monoid of commutation behaviors of M . The function c :M → CM

with c(x) := cx is a monoid antihomomorphism. We say that M has finite
commutation behavior if CM is finite, i.e. there are only finitely many different
functions cx (x ∈M). Actually, it is not clear whether this is a definite restriction
since we do not know any divisibility monoid with infinite commuation behavior.
But, on the other hand, we did not succeed in proving that any divisibility monoid
has finite commutation behavior.

96 CHAPTER 7. PRELIMINARIES

Later, we will need the following

Lemma 7.2.6 Let M be a divisibility monoid and x, y ∈ M with x I y and
cx ⊆ idM . Then ccy(x) ⊆ idM .

Proof. Let z ∈ dom(ccy(x)), i.e. z I cy(x). Then (by Lemma 7.2.5(1)) x I yz
implying cx(yz) = yz. But cx(yz) = yz ↑ x = (y ↑ x) · (z ↑ (x ↑ y)) = y · ccy(x)(z)
by Lemma 7.2.5(3). Since we can cancel y from the left, we get z = ccy(x)(z), i.e.
ccy(x) ⊆ idM . �

Recall that nat : T ⋆ → M is a homomorphism. Thus, one can easily define
functions dx : T ⋆ → T ⋆ for x ∈ M such that nat ◦dx = cx ◦ nat. E.g. one
could choose any normal form function NF: M → T ⋆ with nat ◦NF(x) = x for
x ∈ M and then define dx(w) :=NF◦cx ◦ nat(w). But then im(dx) consists of
normal forms, only. Thus, this partial function was not injective on its domain.
In addition, an equation similar to Lemma 7.2.5(3) was very unlikely to hold.
Therefore, we follow another way: Recall that for t ∈ T and x ∈M with xI t we
have |t| = |cx(t)| by Lemma 7.2.4 and therefore cx(t) ∈ T . Hence dx(t) := cx(t)
(if tI x) is a partial function mapping T to T . We extend it to a partial function
from T ⋆ to T ⋆ by dx(tu) := dx(t)dct(x)(u). Then one can easily check that

dx(t1t2 . . . tn) = dx(t1)dcnat(t1)(x)(t2)dcnat(t1t2)(x)(t3) . . . dcnat(t1t2...tn−1)
(x)(tn)

and therefore
dx(uv) = dx(u)dcnat(u)(x)(v). (7.1)

Now let x, y ∈ M , t ∈ T and u ∈ T ⋆. We get immediately dxy(t) = cxy(t) =
cy(cx(t)) = dy(dx(t)) since cx and cy are length preserving. Now we can conclude

dy(dx(tu)) = dy(dx(t)dct(x)(u)) by (7.1)
= dy(dx(t)) · dcdx(t)(y)(dct(x)(u)) by (7.1)

= dxy(t) · dct(x)cdx(t)(y)(u)

= dxy(t) · dct(xy)(u)
= dxy(tu).

Now let v ∈ T ⋆ be a word over T . Then we define dv := dnat(v). Thus, dom(dv) =
{u ∈ T ⋆ | nat(u) I nat(v)}. We write u I v for u ∈ dom(dv). Note that, similarly
to cx, we have the following

Lemma 7.2.7 Let (M, ·, 1) be a divisibility monoid and u, v, w ∈ T ⋆.

dvw(u) = dw(dv(u)),

du(vw) = du(v) ddv(u)(w), and

nat(dv(u)) = cnat(v)(nat(u)).

Furthermore, du is injective on its domain and length preserving.

7.2. DEFINITION AND BASIC PROPERTIES OF DIVISIBILITYMONOIDS97

Proof. Immediate by Lemmas 7.2.5 and 7.2.4. �

Let DM = {du | u ∈ T ⋆} be the set of all commutation behaviors of words
over T . Then (DM , ◦, dε) is a monoid and d : T ⋆ → DM : u 7→ du is a monoid
antihomomorphism by Lemma 7.2.7. Since nat(t) = t for t ∈ T , in this case the
third equation can be written as dv(t) = cnat(v)(t). Using the first and the third
equation from Lemma 7.2.7, the mapping du 7→ cnat(u) turns out to be a monoid
homomorphism from (DM , ◦, dε) onto (CM , ◦, c1). The following lemma shows
that it is injective, i.e. that it is even an isomorphism.

Lemma 7.2.8 Let u, v ∈ T ⋆. Then du = dv iff cnat(u) = cnat(v).

Proof. The implication ⇒ is immediate by the third equation from Lemma
7.2.7. Now let cnat(u) = cnat(v). If t ∈ T and du(t) is defined, then cnat(u)(t) =
cnat(v)(t) and therefore dv(t) is defined. Furthermore, du(t) = cnat(u)(t) = dv(t)
proving the claim for arguments from T . Now let w ∈ T ⋆. Then du(tw) =
du(t) dct(nat(u))(w). By the above argument, du(t) = dv(t). Furthermore, by
Lemma 7.2.5(4), cct(nat(u)) = cct(nat(v)). Now dct(nat(u))(w) = dct(nat(v))(w) follows
from the induction hypothesis. Hence du(tw) = dv(t) dct(nat(v))(w) = dv(tw). �

Let u, u′, v, w ∈ T ⋆. If dw(u) = v and nat(u) = nat(v), by the third equation
in Lemma 7.2.7, it holds nat(dw(u

′)) = nat(v). Conversely, assume nat(dw(u
′)) =

nat(v). Then the following lemma shows that there exists u ∈ T ⋆ with dw(u) = v
(by the injectivity of cnat(w) in addition nat(u) = nat(u′)).

Lemma 7.2.9 Let x, y ∈ M and ti ∈ T for 1 ≤ i ≤ n such that cx(y) =
nat(t1t2 . . . tn). Then there exist si ∈ T for 1 ≤ i ≤ n such that dx(s1s2 . . . sn) =
t1t2 . . . tn. These elements si of T are unique.

Proof. Since x ∧ y = 1, the intervals [1, y] and [x, x ∨ y] are transposed and
therefore isomorphic by [Bir73, Theorem I.13] and an isomorphism is given by
a 7→ a ∨ x for a ∈ ↓y. Inductively, define si to be the unique element in M with
nat(s1s2 . . . si)∨x = x ·nat(t1t2 . . . ti). Then one can easily show that si does not
have a proper divisor. In addition, ti+1 = si+1 ↑ (x↑nat(s1s2 . . . si)) and therefore
dx(s1s2 . . . sn) = t1t2 . . . tn. The uniqueness is immediate by the proof. �

98 CHAPTER 7. PRELIMINARIES

7.3 A Foata Normal Form

Throughout this section, let (M, ·, 1) be a fixed divisibility monoid and let T
denote the set of its irreducible elements. For simplicity, let J(x) denote the
join-irreducible elements of the distributive lattice ↓x for any x ∈ M . We define
the set of cliques Cℓ to consist of all nonempty subsets of T that are bounded
above. Since any subset of M that is bounded above has a supremum, we have
Cℓ = {A ⊆ T | ∅ 6= A and sup(A) exists}. Let A ∈ Cℓ. Then any two distinct
elements s, t ∈ A are bounded above. Furthermore, since s is an atom in the
partially ordered set (M,≤), the infimum of s and t belongs to {1, s}. But s and
t are incomparable. Hence we showed that any two distinct elements of A are
independent. But this property does not characterize the cliques. The reason is
that even if any two elements of A ⊆ T are bounded above, the set A need not
be bounded.

Next we define the set FNF consisting of words over Cℓ as

{A1A2 . . . An ∈ Cℓ⋆ | ∀t ∈ Ai+1∀B ∈ Cℓ : supB 6= (supAi) · t for 1 ≤ i < n}.

Since the condition that constitutes membership in FNF is local, FNF is a rational
language in Cℓ⋆. In addition, FNF is closed under cancellation from the left and
from the right, i.e. U, V,W ∈ Cℓ⋆ with U V W ∈ FNF implies V ∈ FNF. Let α′ :
Cℓ→M denote the mapping that associates with any clique A ∈ Cℓ its supremum
supA inM . This mapping can be extended uniquely to a monoid homomorphism
α from Cℓ⋆ to M . Then α(A1A2 . . . An) = (supA1) · (supA2) · · · (supAn). This
mapping is surjective since α({t1}{t2} . . . {tn}) = t1 · t2 · · · tn for any ti ∈ T and
T generates M . On the other hand, it is easily seen not to be injective. The set
FNF is particularly useful since it provides normal forms for the elements of M ,
i.e. since the restriction of α to FNF is a bijection (cf. Lemma 7.3.3). But before
we can prove this lemma, we need some more order theory:

Let (L,≤) be a distributive lattice and x ∈ L. Then the set ↑x together
with the partial order ≤ ∩ (↑x×↑x) is a distributive lattice with join-irreducible
elements J(↑x). Note that in general J(↑x) 6= J(L) ∩ ↑x. The following lemma
relates the join-irreducible elements of L and those of (↑x,≤).

Lemma 7.3.1 Let (L,≤) be a finite distributive lattice and x ∈ J(L). The map-
ping f : J(L) \ ↓x→ J(↑x) with f(y) = x ∨ y is an order isomorphism.

Proof. Let y ∈ J(L) \ ↓x. First we show that f(y) ∈ J(↑x): Let a, b ∈ L with
x ≤ {a, b} and a ∨ b = x ∨ y. Then we have y = y ∧ (x ∨ y) = y ∧ (a ∨ b) =
(y ∧ a) ∨ (y ∧ b). Since y is join-irreducible in (L,≤), this implies (without loss
of generality) y = y ∧ a, i.e. y ≤ a. Thus, we have {x, y} ≤ a ≤ x ∨ y. Hence,
a = x∨ y proving that x∨ y is join-irreducible in the distributive lattice (x↑,≤).

To show that f is order preserving and reflecting, let y1, y2 ∈ J(L). Clearly,
y1 ≤ y2 implies x ∨ y1 ≤ x ∨ y2. Suppose conversely x ∨ y1 ≤ x ∨ y2. Then

7.3. A FOATA NORMAL FORM 99

y1 ≤ x ∨ y2. Since y1 6≤ x, we obtain y1 ≤ y2 from the fact that y1 is prime in
(L,≤). �

Lemma 7.3.2 Let W = A1A2 . . . An ∈ FNF and x := α(W) ∈ M . Then we
have A1 = {t ∈ T | t ≤ x}, and α(A1A2 . . . Ai) = sup{y ∈ J(x) | h(y, J(x)) < i}
for 1 ≤ i ≤ n.

Proof. Since t ≤ α(A1) ≤ α(W) = x for t ∈ A1, the inclusion “⊆” is immediate.
For simplicity, let A = {t ∈ T | t ≤ x}. Then A ∈ Cℓ and (↓(supA),≤) is
isomorphic to the power set of A, ordered by inclusion. If A1 6= A, there is t ∈ T
with sup(A1) · t ≤ α(A) ≤ x = α(A1)α(A2A3 . . . An). By cancellation, we get
t ≤ α(A2A3 . . . An). Inductively, this implies t ∈ A2 since A2A3 . . . An ∈ FNF.
Hence we found t ∈ A2 and a clique A ∈ Cℓ such that sup(A1) · t ≤ sup(A).
Since (↓ sup(A),≤) is isomorphic to the powerset of A, there is B ⊆ A with
sup(A1) · t = sup(B), contradicting A1A2 ∈ FNF.

Note that {y ∈ J(x) | h(y, J(x)) < 1} = {t ∈ T | t ≤ x}. Hence the second
statement holds for i = 1. Now assume

a := α(A1A2 . . . Ai−1) = sup{y ∈ J(x) | h(y, J(x)) < i− 1}.

Then a ·z = x with z = α(AiAi+1 . . . An). Since AiAi+1 . . . An ∈ FNF, by the first
statement, Ai = {t ∈ T | t ≤ z} follows. Thus α(A1A2 . . . Ai) = α(A1A2 . . . Ai−1)·
α(Ai) = a · sup{t ∈ T | t ≤ z}. Then α(A1A2 . . . Ai) = a ∨ sup{at | t ∈ T, t ≤ z}
by Lemma 7.1.1. Note that {at | t ∈ T, t ≤ z} is the set of elements of the
distributive lattice ([a, az],≤) of height 1 in this lattice. Hence it is the set of
elements of height 0 in the set (J([a, az]),≤) of join-irreducibles. Now Lemma
7.3.1 implies

{at | t ∈ T, t ≤ z} = {y ∈ J([a, az]) | h(y, J([a, az])) = 0}

= {a ∨ y′ | y′ ∈ J(az) \ ↓a and h(y′, J(az) \ ↓a) = 0}.

Since ↓a ∩ J(az) = {y′ ∈ J(az) | h(y′, J(az)) < i− 1}, we get

{at | t ∈ T, t ≤ z} = {a ∨ y′ | y′ ∈ J(az) and h(y′, J(az)) = i− 1}

and therefore

α(A1A2 . . . Ai) = a ∨ sup{a ∨ y′ | y′ ∈ J(az) and h(y′, J(az)) = i− 1}

= a ∨ sup(y ∈ J(az) | h(y, J(az) = i− 1}

= sup{y′ ∈ J(az) | h(y′, J(az)) < i}.

�

Now the bijectivity of α ↾ FNF follows:

100 CHAPTER 7. PRELIMINARIES

Lemma 7.3.3 The mapping α ↾ FNF : FNF →M is bijective.

Proof. The injectivity follows inductively from the first statement of Lemma
7.3.2. To show surjectivity, let x, y ∈ M \ {1}, A = {t ∈ T | t ≤ x}, a = sup(A),
a · y = x and B = {t ∈ T | t ≤ y}. It is sufficient to show that AB ∈ FNF,
i.e. that A,B ∈ Cℓ and that sup(C) 6= sup(A) · t for any t ∈ B and C ∈ Cℓ. But
A and B are nonempty since x 6= 1 6= y, and A and B have suprema since they
are bounded by x and y, respectively. Thus, A,B ∈ Cℓ. Now assume t ∈ B and
C ∈ Cℓ with sup(C) = sup(A) · t. Then, for any s ∈ C: s ≤ sup(A) · t ≤ x implies
s ∈ A, i.e. C ⊆ A. But this contradicts sup(C) > sup(A). �

Thus, for any x ∈ M , the set α−1(x) ∩ FNF is a singleton. We denote the
unique preimage of x in FNF by fnf(x) and call it the Foata Normal Form of x.
An immediate consequence of the second statement of Lemma 7.3.2 is

Corollary 7.3.4 Let x ∈ M . Then |fnf(x)| exceeds the length of the partially
ordered set (J(x),≤) by 1.

Next we show that the Foata Normal Form of nat(w) can be computed from
the word w ∈ T ⋆ by an automaton. In general, this automaton has infinitely
many states. But for “width-bounded divisibility monoids” (cf. Section 10.2) it
will be shown to be finite. This finiteness will be the basis for our proof that
“width-bounded divisibility monoids” are rational and therefore satisfy Kleene’s
Theorem.

An automaton over a monoid M is a quintuple A = (Q,M,E, I, F) where

1. Q is a set of states,

2. E ⊆ Q×M ×Q is a set of transitions, and

3. I, F ⊆ Q are the sets of initial and final states, respectively.

The automaton A is finite if E is. We will write p
a
→ q for (p, a, q) ∈ E. A

computation in A is a finite sequence of transitions:

p0
a1→ p1

a2→ p2 · · ·
an→ pn.

It is successful if p0 ∈ I and pn ∈ F . The label of the computation is the element
a1 ·a2 · · · an of the monoid M . For a computation with first state p0, last state pn
and label a, we will usually write p0

a
→ pn without mentioning the intermediate

states. The behavior of A is the subset |A| of M consisting of labels of successful
computations in A.

If the monoid M is a direct product M1×M2 of two monoids, it is convenient
to think of M1 as the input and of M2 as the output of the automaton. Then the

7.3. A FOATA NORMAL FORM 101

automaton computes from an input in M1 an output from M2. In our context,
the input will be in the free monoid T ⋆ and the output in the free monoid Cℓ⋆

(actually, in the recognizable language FNF ⊆ Cℓ⋆). Therefore, we will construct
an automaton AM over the monoid T ⋆×Cℓ⋆ as follows. The state set is the direct
product of M and Cℓε := Cℓ ∪ {ε}, the only initial state is (1, ε) and the set of
final states is {1} × Cℓε. Now let (x,A), (z, C) ∈ M × Cℓε and (t, B) ∈ T × Cℓε.

Then (x,A)
(t,B)
→ (z, C) iff

1. t ≤ x, B = ε, t · z = x and C = A, or

2. t I x, B = C 6= ε, AB ∈ FNF, and t · z = x · (supB).

Since the transition relation is defined for labels from T×Cℓε, only, the length of a
computation equals that of the input word from T ⋆. Furthermore, the transition
relation E in this automaton is deterministic since, for any state (x,A) and any
(t, B) ∈ T × Cℓε at most one of the conditions t ≤ x or t I x can be satisfied.
Thus, the starting state and the label of a computation determine its last state
completely. This final state is described in the following lemma.

Lemma 7.3.5 Let w ∈ T ⋆, B1B2 . . . Bm ∈ Cℓ⋆, z ∈M and C ∈ Cℓε.

Then in the automaton AM , (1, ε)
(w,B1B2...Bm)

−→ (z, C) iff

(i) |fnf ◦ nat(w)| = m,

(ii) fnf(nat(w) · z) = B1B2 . . . Bm, and

(iii) C = Bm.

Proof. We prove the lemma by induction on the length of the input word
w. Since the only computation with input word ε ∈ T ⋆, starting in (1, ε), is

(1, ε)
(ε,ε)
→ (1, ε), the statement is obvious for |w| = 0. Now assume that the

statement holds whenever |w| < n.
Now, let v ∈ T ⋆ and t ∈ T with vt = w and |w| = n and assume that

(1, ε)
(w,B1B2...Bm)

−→ (z, C) holds. First, consider the case that the last transition in

this computation is of the first kind, i.e. that (1, ε)
(v,B1B2...Bm)

−→ (t ·z, C)
(t,ε)
→ (z, C).

Then fnf(nat(w)z) = fnf(nat(v) · tz) which equals B1B2 . . . Bm by the induc-
tion hypothesis. Thus, (ii) holds. To show (i), note that m = |fnf(nat(v))| ≤
|fnf(nat(vt) · z)| = m, i.e. |fnf(nat(vt))| = m. Finally, (iii) holds since by the in-
duction hypothesis C = Bm. Now assume that the last transition is of the second

kind, i.e. there is a state (x,A) such that (1, ε)
(v,B1B2...Bm−1)

−→ (x,A)
(t,Bm)
→ (z, C)

with tI x, Bm = C 6= ε, ABm ∈ FNF, and tz = x(supBm). By the induction hy-
pothesis, |fnf(nat(v))| = m − 1, fnf(nat(v) · x) = B1B2 . . . Bm−1 and A = Bm−1.
Then nat(vt) · z = nat(v) · x · sup(Bm) = α(B1B2 . . . Bm). Since the words

102 CHAPTER 7. PRELIMINARIES

B1B2 . . . Bm−1 and Bm−1Bm = ABm belong to FNF, we have B1B2 . . . Bm ∈ FNF,
i.e. we showed (ii). It remains to show that m is the length of fnf(vt). Clearly,
m−1 = |fnf(nat(v))| ≤ |fnf(nat(vt)·z)| = m. Now assume |fnf(nat(vt))| = m−1.
Then, by Corollary 7.3.4, the partially ordered set (J(nat(vt)),≤) has length
m − 2, i.e. J(nat(vt)) ⊆ {y ∈ J(nat(w)z) | h(y, J(nat(w)z)) ≤ m − 2}. Hence
from Lemma 7.3.2 we get

nat(vt) = sup J(nat(vt))

≤ sup{y ∈ J(nat(w)z) | h(y, J(nat(w)z)) ≤ m− 2}

= α(B1B2 . . . Bm−1) = nat(v)x

by the induction hypothesis. Hence t ≤ x by cancellation, contradicting t I x.
Thus, we showed |fnf(nat(vt))| = m, i.e. (iii).

Conversely, let |fnf(nat(vt))| = m, fnf(nat(vt)·z) = B1B2 . . . Bm and C = Bm.

We want to show (1, ε)
(vt,B1B2...Bm)

−→ (z, C). First, assume |fnf(nat(v))| = m. Then

(t · z, C)
(t,ε)
→ (z, C). Since |fnf(nat(v))| = m, fnf(nat(v) · t · z) = B1B2 . . . Bm and

C = Bm, we can apply the induction hypothesis and get (1, ε)
(v,B1B2...Bm)

−→ (t·z, C).

Thus, (1, ε)
(vt,B1B2...Bm)

−→ (z, C).
Now consider the case |fnf(nat(v))| < m. Since nat(v) −−< nat(vt) in the

partially ordered set (M,≤), there is y ∈ J(nat(vt)) with J(nat(v))∪̇{y} =
J(nat(vt)). Hence the length of (J(nat(v)),≤) and that of (J(nat(vt)),≤) dif-
fer at most by one, i.e. |fnf(nat(v))| = m − 1 by Corollary 7.3.4. Therefore,
nat(v) ≤ α(B1B2 . . . Bm−1) by Corollary 7.3.4. Since the length of the partially
ordered set (J(α(B1B2 . . . Bm−1),≤)) is m− 2 and that of (J(nat(vt)),≤) equals
m− 1, we get nat(vt) 6≤ α(B1B2 . . . Bm−1).

From nat(v) ≤ α(B1B2 . . . Bm−1), we deduce the existence of x ∈ M such
that nat(v) · x = α(B1B2 . . . Bm−1). This implies in particular fnf(nat(v) · x) =
B1B2 . . . Bm−1. In addition, nat(v)·x·α(Bm) = α(B1B2 . . . Bm−1Bm) = nat(vt)·z.

Hence xα(Bm) = t · z. To show (x,Bm−1)
(t,Bm)
→ (z, Bm), it remains to prove tI x.

Since {t, x} ≤ t · z and t ∈ T , it is sufficient to ensure t 6≤ x. So assume t ≤ x.
Then J(nat(vt)) ⊆ J(nat(v) · x). Hence the length of J(nat(vt)) is bounded by
that of (J(nat(v) ·x),≤) which equals m−2 since fnf(nat(v) ·x) = B1B2 . . . Bm−1.

But this contradicts |fnf(nat(vt))| = m. Hence indeed (x,Bm−1)
(t,Bm)
→ (z, Bm).

Recall that |fnf(nat(v))| = m− 1 and fnf(nat(v) ·x) = B1B2 . . . Bm−1. Hence,

we can use the induction hypothesis and obtain (1, ε)
(v,B1B2...Bm−1)

−→ (x,Bm−1).

But this implies (1, ε)
(vt,B1B2...Bm)

−→ (z, Bm) since (x,Bm−1)
(t,Bm)
→ (z, Bm). �

Now we can show that the automaton AM computes for any input word w ∈ T ⋆

the Foata Normal Form fnf ◦ nat(w) of the associated element of the divisibility
monoid M :

7.3. A FOATA NORMAL FORM 103

Theorem 7.3.6 Let M be a divisibility monoid. Then the behavior |AM | of the
automaton AM is the relation {(w, fnf(nat(w)) | w ∈ T ⋆} in T ⋆ × Cℓ⋆, i.e. the
automaton computes the function fnf ◦ nat : T ⋆ → Cℓ⋆.

Proof. By Lemma 7.3.5, an element (w,W) of T ⋆×Cℓ⋆ is the label of a successful
computation, i.e. of a computation that starts in (1, ε) and ends in {1} × Cℓε, if
and only if fnf(nat(w) · 1) = W . �

104 CHAPTER 7. PRELIMINARIES

Chapter 8

A finite representation

By definition, trace monoids M are finitely presented, i.e. there exists a finite
set of equations of the form ab = ba with a, b ∈ Σ such that M is isomorphic to
Σ⋆/ 〈ab = ba | (a, b) ∈ I〉. Later, an algebraic characterization of trace monoids
was found [Dub86]. Differently, divisibility monoids are defined by their algebraic
properties. In this chapter, we show that they can be finitely presented (cf.
Theorem 8.2.10). Not only will we show that this is possible in general, but
we will give a concrete representation for any divisibility monoid (cf. Lemma
8.2.1). Finally, we give a decidable class of finite presentations that give rise to
all divisibility monoids. But first, we prove two order-theoretic results that we
will need in this context.

8.1 Order-theoretic preliminaries

Lemma 8.1.1 Let (M,≤) be a partially ordered set with least element such that

1. ↓x is finite for any x ∈M , and

2. for any x, y1, y2, z with x −−< y1, y2 and {y1, y2} ≤ z, the least upper bound
y1 ∨ y2 in (M,≤) exists.

Then any two elements of M that are bounded above have a least upper bound in
(M,≤).

Proof. Let y1, y2, z ∈M with y1, y2 ≤ z. We have to show that y1 and y2 admit
a supremum. It can be assumed that y1 and y2 are incomparable for otherwise
we were done. Since (M,≤) has a least element there is x ∈ M with x ≤ y1, y2.
Since ↓z is finite, the size of the chains in [x, z] is bounded. We will prove the
existence of y1 ∨ y2 by induction on the size of these chains.

If any chain in [x, z] has size at most 2, we have x −−< y1, y2. Hence y1 ∨ y2
exists. Now assume that any chain in [x, z] has at most n + 1 elements. Let

105

106 CHAPTER 8. A FINITE REPRESENTATION

Ci for i = 1, 2 be maximal chains in [x, z] containing yi. Since Ci is maximal,
it contains x. Let xi be the least element of Ci \ {x}. Since y1 and y2 are
incomparable, this implies x −−< xi ≤ yi for i = 1, 2. Hence the supremum
x1 ∨ x2 =: a exists. Note that xi is a lower bound of yi and a. Since x −−<
xi ≤ z, the chains in the interval [xi, z] contain at most n elements. Hence by
the induction hypothesis y′i := yi ∨ a exist for i = 1, 2. Since x −−< x1 ≤ a, the
size of the chains in the interval [a, z] is bounded by n. Hence we can apply the
induction hypothesis to y′1 and y′2 and obtain the existence of their supremum
y′1 ∨ y

′
2.

We show that b := y′1 ∨ y′2 is the supremum of y1 and y2: Since yi ≤ y′i, we
obtain yi ≤ b for i = 1, 2. Now let c be an upper bound of y1 and y2. Then it is
an upper bound of x1 and x2 and therefore of a, too. Hence y′i ≤ c for i = 1, 2
and therefore b ≤ c. �

By the Vilhelm-Šik-Jakubik Theorem (cf. [Ste91, Theorem 4.14]), any finite
semimodular lattice that is not modular contains a non-modular interval of length
3. Next, we prove a similar result that distinguishes modular from distributive
lattices1

Lemma 8.1.2 Let (L,≤) be a finite modular but non-distributive lattice. Then
it contains a non-distributive interval of length 2.

Proof. Let [a, b] be a minimal non-distributive interval. Since [a, b] is modular
and non-distributive, there are mutually distinct elements y1, y2, y3 ∈ [a, b] with
yi ∧ yj = a and yi ∨ yj = b for 1 ≤ i < j ≤ 3 by [Bir73, Theorem II.13]. Hence
the intervals [a, yi] and [yj , b] are transposed for i 6= j. Since the lattice (L,≤) is
modular, all these intervals are mutually isomorphic [Bir73, Theorem I.13].

Let a −−< a′ ≤ y1. Let y
′
2 := y2 ∨ a′ and y′3 := y3 ∨ a′. Then y′2 and y′3 belong

to the interval [a′, b] which is distributive since it is a proper subinterval of [a, b]
(cf. Figure 8.1). Hence we have

b = b ∧ b
= (y1 ∨ y′3) ∧ (y′2 ∨ y

′
3) since yi ≤ y′i ≤ b

= (y1 ∧ y′2) ∨ y
′
3 since y1, y

′
2, y

′
3 ∈ [a′, b]

and this interval is distributive
= (y1 ∧ (y2 ∨ a′)) ∨ y′3
= ((y1 ∧ y2) ∨ a′) ∨ y′3 since a′ ≤ y1 and [a, b] is modular
= y′3 since (y1 ∧ y2) = a ≤ a′ ≤ y′3.

Since a = a′ ∧ y3 and b = y′3 = a′ ∨ y3, the intervals [a, a′] and [y3, b] are
transposed and therefore isomorphic. Hence y3 −−< b. Since the intervals [a, yi]

1We give the proof although, by [FGL90, p. 270], it “is a well known result in the folklore
of lattice theory”.

8.2. THE FINITE PRESENTATION 107

a

y1 y2 y3

b

a′

y′2
y′3

Figure 8.1: The elements from the proof of Lemma 8.1.2

and [yj, b] are mutually isomorphic, we therefore get a −−< y1 −−< b, i.e. the
interval [a, b] has length 2. �

8.2 The finite presentation

Since a divisibility monoid M is generated by the set T of its irreducible ele-
ments, there is a congruence ∼ on the free monoid T ⋆ such that the quotient
T ⋆/∼ is isomorphic to M . The following result that was shown in [DK99, DK01]
states that this congruence is quite natural and that the monoid M is finitely
presentable.

Lemma 8.2.1 Let M be a divisibility monoid and T the set of its irreducible
elements. Let ∼ denote the least congruence on the free monoid T ⋆ containing
{(ab, cd) | a, b, c, d ∈ T and a · b = c · d}. Then ∼ is the kernel of the natural
epimorphism nat : T ⋆ →M . In particular, M ∼= T ⋆/∼.

Proof. Throughout this proof, we denote the product of a, b ∈ T in the monoid
M by a · b, while the word is denoted by ab. Thus, a · b = nat(ab) ∈ M and
ab ∈ T ⋆.

Note that u ∼ v implies that u and v have the same length.
Clearly, the kernel of nat contains ∼ since a·b = c·d implies nat(ab) = nat(cd)

for a, b, c, d ∈ T . For the converse, let u, v ∈ T ⋆ with nat(u) = nat(v). We show
u ∼ v by induction on the length of u: If |u| = 0, clearly, nat(u) = nat(v) = 1,
so u = v = ε. If |u| = 1 then u = v ∈ T .

108 CHAPTER 8. A FINITE REPRESENTATION

Now let u = u1u2 . . . un and v = v1v2 . . . vn with ui, vi ∈ T and n ≥ 2. If
u1 = v1, we get nat(u2u3 . . . un) = nat(v2v3 . . . vn) by cancellation. By the induc-
tion hypothesis, this implies u2u3 . . . un ∼ v2v3 . . . vn and therefore u1u2 . . . un ∼
v1v2 . . . vn. Thus assume u1 6= v1. Then u1, v1 are elements of the finite distribu-
tive lattice ↓ nat(u). Hence there exist b, d ∈M such that u1 · b = v1 ·d = u1∨ v1.
One even has b, d ∈ T since the distributive lattice ↓ nat(u) is semimodular
[Bir73]. Note that u1b ∼ v1d by the definition of ∼. Since u1∨v1 ≤ nat(u), we find
y ∈ T ⋆ such that (u1 ∨ v1) · nat(y) = nat(u). Hence nat(u1u2 . . . un) = nat(u1by)
and therefore nat(u2 . . . un) = nat(by) by cancellation. The induction hypothesis
ensures u2 . . . un ∼ by. Now we have nat(v1dy) = (u1 ∨ v1) · nat(y) = nat(u) =
nat(v) implying nat(dy) = nat(v2v3 . . . vn). Now dy ∼ v2v3 . . . vn follows from the
induction hypothesis since the length of v2v3 . . . vn equals n − 1. Thus, we have
u1u2 . . . un ∼ u1by ∼ v1dy ∼ v1v2 . . . vn. �

In particular, Lemma 8.2.1 states that any divisibility monoid is (up to iso-
morphism) given by the equations a · b = c · d for irreducible elements a, b, c, d
that hold in M . Next, we want to characterize, which sets of equations of this
form give rise to divisibility monoids.

For the rest of this section, let T be a finite set and E a set of word equations
over T of the form ab = cd for a, b, c, d ∈ T . Let ∼ denote the least congruence on
the free monoid T ⋆ that contains E. In addition, let M := T ⋆/∼ be the quotient
of the free monoid with respect to ∼. Furthermore, we require that the following
hold in the monoid M for any a, b, c, a′, b′, c′ ∈ T :

(i) (↓(a · b · c),≤) is a distributive lattice,

(ii) a · b · c = a · b′ · c′ or b · c · a = b′ · c′ · a implies b · c = b′ · c′, and

(iii) a · b = a′ · b′, a · c = a′ · c′ and a 6= a′ imply b = c.

We will show that M is a divisibility monoid.

Remark 8.2.2 Let (M, ·, 1) be a divisibility monoid. Let T be the set of irre-
ducible generators of M and let E consist of all equations of the form a · b = c · d
with a, b, c, d ∈ T that hold inM . Then by Lemma 8.2.1,M ∼= T

⋆
/
〈

E
〉

. Further-

more, the distributivity in (i) is trivial since it holds for any x ∈ M . Similarly,
(ii) is a special instance of the cancellation property in M . To show (iii) assume
a · b = a′ · b′, a · c = a′ · c′ and a 6= a′. Then ab ∧ ac exists. Note that a and a′

are distinct lower bounds of {ab, ac}. Hence the infimum of ab and ac lies above
a and a′ and below ab. But since a and a′ are direct predecessors of ab, this
implies ab ∧ ac = ab. Hence ab = ac implying b = c by cancellation. Thus, any
divisibility monoid can be obtained this way.

8.2. THE FINITE PRESENTATION 109

Example 8.2.3 As an example, consider the monoidM = T ⋆/ 〈(ab, cd), (de, ed)〉
where a, b, c, d, e are mutually different elements of the finite set T . Properties
(i) and (ii) are easily checked by considering all possible situations. The third
property is trivially satisfied. Let η : (N×N,+, (0, 0)) → (M, ·, 1) be the monoid
homomorphism defined by η(1, 0) = d and η(0, 1) = e. Then the preimage of the
rational language L = 〈(d · e)〉 ⊆M in N×N is {(n, n) | n ∈ N}. Since this set is
not recognizable, L is not recognizable in M . Hence Kleene’s Theorem does not
hold in M . Furthermore, in any trace monoid ab = cd for irreducible elements
a, b, c and d implies {a, b} = {c, d}. Since this is not satisfied by (M, ·, 1), this
monoid is not free partially commutative.

Next, consider M1 = T ⋆/ 〈(ab, cc)〉 and M2 = T ⋆/ 〈(aa, bb)〉 where a, b, c are
pairwise different elements of the finite set T . Again, these two monoids satisfy
the conditions (i),(ii) and (iii). They are no trace monoids by the same argument
as above. We only mention for the sake of completeness that these two are nei-
ther concurrency monoids as considered in [Dro95, Dro96, DK96, DK98] (where
we extend the multiplication freely whenever it was the null element), since in
concurrency monoids ab = cc implies a = b = c.

Lemma 8.2.4 Let a, b, c ∈ T . Then ab ∼ ac or ba ∼ ca implies b = c.

Proof. First let ab ∼ ac. Then abb ∼ acb and abc ∼ acc. By (ii), this implies
bb ∼ cb and bc ∼ cc. Now (iii) ensures b = c. Now let ba ∼ ca. Then bba ∼ bca
implying by (ii) bb ∼ bc. By what we saw before, this implies b = c. �

If v and w are words over T satisfying v ∼ w, then w is obtained from v by
a finite sequence of transformations according to the set of equations E. We call
two words strongly equivalent if this sequence has length 1. More formally, v and
w are strongly equivalent (v ≈ w) if there are words x, y ∈ T ⋆ and an equation
ab = cd in E such that v = xaby and w = xcdy. Thus, w can be obtained
from v by replacing two consecutive letters by equivalent ones (according to the
set of equations E). To recall the position where this change has been made, we
sometimes write it as an index to ≈, i.e. with the symbols from above, v ≈|x|+1 w.
In the same spirit, let ≈>i=

⋃

j>i ≈j. Then v ≈>i w denotes that one change
has been made to obtain w from v and that this change occurred at a position
behind i. Then ∼ is the least equivalence on the set T ⋆ that contains the relation
≈.

For a word w 6= ε, let wh denote the first letter (the “head”) and wt the remain-
ing word (the “tail”), i.e. wh ∈ T and w = whwt. For a sequence (w0, w1, . . . wk)
of nonempty words, we will consider the number of changes in the first position,
i.e.

changes(w0, w1, . . . wk) := |{i | 0 ≤ i < k and wh
i 6= wh

i+1}|.

110 CHAPTER 8. A FINITE REPRESENTATION

tj

wh
j

tj+1

vhj+1

vj
wt

j = vtj+1

≈

∼

Figure 8.2: Condition (2) and (3) from Lemma 8.2.5

Let v, w ∈ T ⋆ with v ∼ w. The distance d(v, w) denotes the minimal number
of changes at the first position in a sequence that transforms v to w. More
formally, it is the minimum over all integers changes(w0, w1, . . . , wk) where wi

are words over T with v = w0, wi ≈ wi+1 and wk = w.
Before showing that the distance is bounded, we give an alternative definition:

Lemma 8.2.5 Let v, w ∈ T ⋆ with v ∼ w. Then d(v, w) is the least integer m
such that there exist tj ∈ T and vj, wj ∈ T ⋆ for 0 ≤ j ≤ m with

(1) v = t0v0,

(2) vj ∼ wj for 0 ≤ j ≤ m,

(3) tjw
h
j ≈ tj+1v

h
j+1, w

t
j = vtj+1, tj 6= tj+1 for 0 ≤ j < m, and

(4) tmwm = w.

The second and third statement are visualized by Figure 8.2.

Proof. By the definition of d(v, w), it is sufficient to prove that the existence
of xi ∈ T ⋆ with v = x0, xi ≈ xi+1, xn = w and m = changes(x0, . . . , xn) is
equivalent to the existence of ti ∈ T and vi, wi ∈ T ⋆ satisfying (1)-(4).

First, let xi ∈ T ⋆ (0 ≤ i ≤ n) with v = x0, xi ≈ xi+1, xn = w, and
changes(x0, . . . , xn) = m. There exist 0 = i0 < i1 < · · · < im < im+1 = n + 1
with

(a) xhij−1 6= xhij for 0 < j ≤ m and

(b) xhij = xhk for 0 ≤ j ≤ m and ij ≤ k < ij+1.

8.2. THE FINITE PRESENTATION 111

Let tj := xhij , vj := xtij and wj := xtij+1−1 for 0 ≤ j ≤ m. Then v =

x0 = xh0x
t
0 = t0v0 ensures property (1). Since im < im+1 = n + 1, we get

im ≤ n < im+1. Now (b) with j = m and k = n implies tm = xhim = xhn.
This implies tmwm = xhnx

t
n = xn = w which in turn proves property (4). To

show (2), let 0 ≤ j ≤ m. Then xhk = tj for ij ≤ k < ij+1 and tjvj = xij ≈
xij+1 ≈ xij+2 · · · ≈ xij+1−1 = xhij+1−1x

t
ij+1−1 = tjwj. Hence, by Lemma 8.2.4, the

strong equivalence xk ≈ xk+1 is induced by some change at a higher position,
i.e. xk ≈>1 xk+1. But this implies xtk ≈ xtk+1 and therefore vj ∼ wj. To show
(3), note that tj 6= tj+1 holds by (a). By (b) and the definition of wj, we have
tjwj = xhij+1−1x

t
ij+1−1 = xij+1−1. Similarly, tj+1vj+1 = xhij+1

xtij+1
= xij+1

by the
definition of tj+1 and vj+1. Since xij+1−1 ≈ xij+1

we therefore get tjwj ≈ tj+1vj+1.
From (a), we obtain tj = xhij+1−1 6= xhij+1

= tj+1. Hence tjwj ≈1 tj+1vj+1 and
therefore (3).

Conversely, let tj, vj and wj satisfy (1)-(4) and consider the sequence

(t0v0, t0w0, t1v0, t1w1, . . . , tnvn, tnwn).

Since vj ∼ wj, we can put additional words between tjvj and tjwj all of which
start with tj such that the resulting sequence has the desired form. �

Now we can show that the distance is bounded by 1.

Lemma 8.2.6 Let v, w ∈ T ⋆ with v ∼ w. Then

(1) d(v, w) ≤ 1 and

(2) if vh = wh, then vt ∼ wt.

Proof. First of all suppose d(v, w) ≤ 1 and vh = wh. Since v and w have
the same first letter, d(v, w) 6= 1, i.e. d(v, w) = 0. Hence there is a sequence of
words transforming v to w that leaves the first letter unchanged. This implies
vt ∼ wt. Thus, (1) implies (2) and we have to show the first statement, only.
This is done by induction on the length of v which equals that of w. If |v| ≤ 1,
we get d(v, w) = 0. Next we consider the case |v| = 2. Then (↓[vhvtvt],≤) is a
distributive lattice by (i). Using (ii), one gets that (↓[v],≤) is a sublattice. Since
it is of length 2, it contains at most 2 elements different from 1 and from [v].
Hence d(v, w) ≤ 1.

By induction, we assume that (1) and (2) hold for any v′, w′ ∈ T ⋆ with v′ ∼ w′

and |v′| < |v|.
Assume n := d(v, w) > 1. By Lemma 8.2.5, there are ti ∈ T and vi, wi ∈ T ⋆

for 0 ≤ i ≤ n such that
v = t0v0,
vi ∼ wi for 0 ≤ i ≤ n,
tiw

h
i ≈ ti+1v

h
i+1, w

t
i = vti+1, ti 6= ti+1 for 0 ≤ i < n, and

tnwn = w.

112 CHAPTER 8. A FINITE REPRESENTATION

We prove that there exist words x, y ∈ T ⋆ satisfying w0 ∼ x, y ∼ v2 and
t0x

h ≈ t2y
h or t0x

h = t2y
h. Once we will have found them, we can conclude

t0w0 ∼>1 t0x(≈1 ∪ =)t2y ∼>1 t2v2 which decreases the number of changes at the
first position, contradicting n = d(v, w).

First we consider the case t0 = t2 and show that x = w0 and y = v2 are the
desired elements: By t0w

h
0 ≈ t1v

h
1 and t0v

h
2 = t2v

h
2 ≈ t1w

h
1 , (iii) implies vh1 = wh

1

since t0 6= t1. Thus we have t0x
h = t0w

h
0 ≈ t1v

h
1 = t1w

h
1 ≈ t2v

h
2 = t0y

h. Applying
Lemma 8.2.4 to t0x

h and t0y
h, we get xh = yh, i.e. t0x

h = t2y
h as required.

Now let t0 6= t2. If vh1 = wh
1 , we had t0w

h
0 ∼ t1v

h
1 = t1w

h
1 ∼ t2v

h
2 . As we

saw above, ↓[t0wh
0] contains at most 2 elements different from 1 and from [t0w

h
0].

Since t0, t1 and t2 are three elements of this set, we derived a contradiction.
Hence we showed vh1 6= wh

1 . By the induction hypothesis for v1 and w1, we get
d(v1, w1) ≤ 1. Since they start with different letters, their distance is 1, i.e. there
are in particular a, b ∈ T and z ∈ T ⋆ such that v1 ∼>1 v

h
1az ≈1 w

h
1bz ∼>1 w1.

This ensures
t0w

h
0a ≈1 t1v

h
1a ≈2 t1w

h
1b ≈1 t2v

h
2 b.

Hence t0 and t2 are different elements of the distributive lattice (↓[t0wh
0a],≤).

Therefore, there are c, d, e ∈ T with t0c ∼ t2d and t0ce ∼ t0w
h
0a. The latter in

particular implies ce ∼ wh
0a by (ii). Thus we have

t2v
h
2 b ∼ t0w

h
0a ∼ t0ce ≈1 t2de

which implies vh2 b ∼ de by (ii) again. From the induction hypothesis (2), applied
to the equivalence vh1az ∼ v1 = vh1v

t
1, the equivalence az ∼ vt1 = wt

0 follows.
Similarly, bz ∼ wt

1 = vt2 follows from wh
1bz ∼ w1 = wh

1w
t
1. Hence we have

• w0 = wh
0w

t
0 ∼ wh

0az ≈1 cez =: x,

• v2 = vh2v
t
2 ∼ vh2 bz ≈1 dez =: y, and

• t0x
h = t0c ≈ t2d = t2y

h.

This proves that x = cez and y = dez satisfy the desired properties. �

Corollary 8.2.7 (M, ·, 1) is left cancellative and hence the left divisor relation
≤ is a partial order on M .

Proof. Cancellation is immediate by Lemma 8.2.6 (2). To prove the antisym-
metry of ≤, one uses the simple observation that 1 = [ε] has no left divisor. �

8.2. THE FINITE PRESENTATION 113

Lemma 8.2.8 Let x ∈ M and s, t ∈ T with s 6= t such that {xs, xt} is bounded
above in (M,≤). Then there exists a ∈ T such that xsa is the least upper bound
of xs and xt in (M,≤).

Proof. Since by Lemma 7.1.1 the function y 7→ xy is an order isomorphism, it is
sufficient to consider the case x = 1. Let y ∈ M with s, t ≤ y. By Lemma 8.2.6,
there are ay, by ∈ T with say ≈ tay and [say] ≤ y. Now let z ∈ M be some
upper bound of s and t. Then, as for y, we obtain az, bz ∈ T with saz ≈ taz and
[saz] ≤ z. Now (iii) implies ay = az. Hence xsay is the supremum of xs and xt
in the partially ordered set (M,≤). �

Lemma 8.2.9 For x, y ∈M , (↓x,≤) is a distributive lattice and x ∧ y exists.

Proof. Clearly, ↓x ⊆ {[v] | v ∈ T ⋆, |v| ≤ |x|} is finite. By Lemma 8.2.8, we
can apply Lemma 8.1.1. Hence (↓x,≤) is a lattice since any two elements of ↓x
are bounded above. It is even semimodular by Lemma 8.2.8. To show that it
is modular, consider some interval [y, yabc] of ↓x with y ∈ M and a, b, c ∈ T .
By left-cancellation (Corollary 8.2.7), it is sufficient to deal with the case y = 1.
But then [1, abc] = ↓(abc) which is distributive by (i) and therefore in particular
modular. Hence by the Vilhelm-Šik-Jakubik Theorem [Ste91, Theorem 4.14], ↓x
is modular. To show distributivity, we consider some interval of length 2 and
argue similarly using Lemma 8.1.2.

The set ↓x ∩ ↓y is finite and bounded. Hence, by Lemma 8.1.1, it has a least
upper bound which is the maximal lower bound of x and y, i.e. x ∧ y exists. �

Now we can prove the main theorem of this chapter.

Theorem 8.2.10 Let T be a finite set and E a set of equations of the form
ab = cd with a, b, c, d ∈ T . Let ∼ be the least congruence on T ⋆ containing E.
Then M := T ⋆/∼ is a divisibility monoid if and only if (i)-(iii) hold for any
a, b, c, b′, c′ ∈ T :
(i) (↓(a · b · c),≤) is a distributive lattice,
(ii) a · b · c = a · b′ · c′ or b · c · a = b′ · c′ · a implies b · c = b′ · c′, and
(iii) a · b = a′ · b′, a · c = a′ · c′ and a 6= a′ imply b = c.
Furthermore, each divisibility monoid arises this way.

Proof. By Remark 8.2.2, it remains to show that T and E satisfying (i)-(iii)
define a divisibility monoid. By Corollary 8.2.7 and Lemma 8.2.9, it remains to
prove that (M, ·, 1) is right cancellative. For this, it suffices to show that xa = ya
with x, y ∈ M and a ∈ T implies x = y. By contradiction, assume that x 6= y.

114 CHAPTER 8. A FINITE REPRESENTATION

Since the lattice ↓xa is distributive, z := x∧y −−< x, y, i.e. there are b, c ∈ T with
x = zb and y = zc. Hence zba = zca. Now ba = ca follows from Corollary 8.2.7.
Lemma 8.2.4 ensures b = c and therefore x = y. �

Let (Σ, D) be a dependence alphabet. Let E denote the set of all equations
ab = ba for (a, b) ∈ Σ2 \D. Then M(Σ, D) = Σ⋆/ 〈E〉. One can easily check that
the three properties (i), (ii) and (iii) of the theorem above hold. Hence a trace
monoid is indeed a divisibility monoid.

Chapter 9

An Ochmański-type theorem

Kleene’s Theorem on recognizable languages of finite words has been generalized
in several directions, e.g. to formal power series [Sch61] and to infinite words
[Büc60]. More recently, rational monoids were investigated [Sak87], in which the
recognizable languages coincide with the rational ones. Building on results from
[CP85, CM88, Mét86], a complete characterization of the recognizable languages
in a trace monoid by c-rational sets was obtained in [Och85]. A further gener-
alization of Kleene’s and Ochmański’s results to concurrency monoids was given
in [Dro95]. In this chapter, we derive such a result for divisibility monoids. The
proofs by Ochmański [Och85] and by Droste [Dro95] rely on the internal structure
of the elements of the monoids. Here, we do not use the internal representation
of the monoid elements, but algebraic properties of the monoid itself. The results
presented in this chapter were obtained together with Manfred Droste. They
appeared in [DK99] and the presentation follows [DK01].

9.1 Commutation grids and the rank

In trace theory, the generalized Levi Lemma (cf. [DM97]) plays an important role.
It was extended to concurrency monoids in [Dro95]. Here, we develop a further
generalization to divisibility monoids using commutation grids. This enables us
to obtain the concept of “rank” of a language for these monoids, similar to the one
given by Hashigushi [Has91] for trace monoids. Let M be a divisibility monoid
and x, y ∈M . Recall that cx(y) = y ↑x. Sometimes (for instance in the following
definition), it is more convenient to use this notation for the functions du, too.
Therefore, we define v ↑ u := du(v) whenever the latter is defined for u, v ∈ T ⋆.

Definition 9.1.1 For 0 ≤ i ≤ j ≤ n let xij, y
j
i ∈ M (∈ T ⋆, respectively). The

tuple (xij, y
j
i)0≤i≤j≤n is a commutation grid in M (in T ⋆, respectively) provided

the following holds for any 0 ≤ i < j ≤ n:
xij I y

j−1
i , xij ↑ y

j−1
i = xi+1

j , and yj−1
i ↑ xij = yji .

115

116 CHAPTER 9. AN OCHMAŃSKI-TYPE THEOREM

A commutation grid can be depicted as in Figure 9.1. There, edges depict
elements fromM (T ⋆, resp.) and an angle denotes that the two edges correspond
to independent elements. Note that in any of the small squares in Figure 9.1,
the lower left corner is marked by an angle. This indicates that xijy

j
i = yj−1

i xi+1
j

because of xijy
j
i = xij(y

j−1
i ↑ xij) = xij ∨ yj−1

i = yj−1
i (xij ↑ y

j−1
i) = yj−1

i xi+1
j . By

Lemma 7.2.5 (1)-(3), for any rectangle in the grid (xij, y
j
i)0≤i≤j≤n the bottom

and the left side are independent and their residuum is the top (the right) side,
respectively. By induction, it is easy to show that

(x01x
0
2 . . . x

0
n) · (y

n
0 y

n
1 . . . y

n
n) = (x00y

0
0)(x

1
1y

1
1)(x

2
2y

2
2) . . . (x

n
ny

n
n).

The right hand side of this equation is the diagonal border of the grid in Fig-
ure 9.1.

Let (M, ·, 1) be a divisibility monoid and (xij, y
j
i)0≤i≤j≤n a commutation grid

in M or in T ⋆. For a sequence 0 = i0 < i1 < · · · < im+1 = n, we construct
a subgrid (akl , b

l
k)0≤k≤l≤m as follows: Define akl := xikil x

ik
il+1x

ik
il+2 . . . x

ik
il+1−1 and

blk := y
il+1−1
ik

y
il+1−1
ik+1 . . . y

il+1−1
ik+1−1 (for m = 4 and ~ı = (0, 1, 5, 7, 9), this grid is marked

by thick lines in Figure 9.1). Then (akl , b
l
k)0≤k≤l≤m is a commutation grid in M

or T ⋆. We call it the subgrid generated by the sequence (ik)0≤k≤m.

Let (xij, y
j
i)0≤i≤j≤n be a commutation grid in T ⋆. Then it is immediate that

(nat(xij), nat(y
j
i))0≤i≤j≤n is a commutation grid inM . The following lemma deals

with the converse implication. More precisely, let a commutation grid in M be
given and suppose that u0j , v

n
j ∈ T ⋆ are representatives of monoid elements at

the left and the upper border of the commutation grid. Then the lemma states
that this tuple of words can be extended to a commutation grid in T ⋆ that is
compatible with the commutation grid in M we started with.

Lemma 9.1.2 Let (xij, y
j
i)0≤i≤j≤n be a commutation grid in M and let u0j , v

n
j be

words from T ⋆ that satisfy nat(u0j) = x0j and nat(vjn) = yjn for 0 ≤ j ≤ n. Then

there exists a commutation grid (uij, v
j
i)0≤i≤j≤n with nat(uij) = xij and nat(vji) = yji

for 0 ≤ i ≤ j ≤ n.

Proof. For 1 ≤ i ≤ j ≤ n let uij := d
y
j−1
i

(ui−1
j). Using Lemma 7.2.7, one can

check that nat(uij) = xij and that therefore ui−1
j ∈ dom(d

y
j−1
i

). To construct the

elements vji , we use Lemma 7.2.9: Let vji be the unique word over T such that
vji ↑ u

i
j+1 = vj+1

i . Then nat(vji) = yji is immediate since yji ∈ M is the unique

complement of xij+1 in the distributive lattice [xij+1, x
i
j+1 ∨ yji]. It is clear that

(uij, v
j
i)0≤i≤j≤n is a commutation grid because of nat(uij) = xij and nat(vji) = yji

for 0 ≤ i ≤ j ≤ n. �

9.1. COMMUTATION GRIDS AND THE RANK 117

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

x00

x01

x02

x03

x04

x05

x06

x07

x08

x09

x11

x12

x13

x14

x15

x16

x17

x18

x19

x22

x23

x24

x25

x26

x27

x28

x29

x33

x34

x35

x36

x37

x38

x39

x44

x45

x46

x47

x48

x49

x55

x56

x57

x58

x59

x66

x67

x68

x69

x77

x78

x79

x88

x89 x99

y00

y10 y11

y20 y21 y22

y30 y31 y32 y33

y40 y41 y42 y43 y44

y50 y51 y52 y53 y54 y55

y60 y61 y62 y63 y64 y65 y66

y70 y71 y72 y73 y74 y75 y76 y77

y80 y81 y82 y83 y84 y85 y86 y87 y88

y90 y91 y92 y93 y94 y95 y96 y97 y98 y99

�
xij xi+1

j

yj−1
i

yji

hi,j
���

hi,j+1

@@R

hi+1,j
@@I

hi+1,j+1

��	

Figure 9.1: A commutation grid

The elements hi,j fromM marking the corners of the small square in Figure 9.1
are defined by

hi,j := (x00x
0
1 . . . x

0
j−1) · (y

j−1
0 yj−1

1 . . . yj−1
i−1).

Then hi,j+1 = hi,j · xij and hi+1,j = hi,j · y
j−1
i . Hence by Lemma 7.1.1, hi,j =

hi,j+1 ∧ hi+1,j and hi+1,j+1 = hi,j+1 ∨ hi+1,j. These relations will be used in
the proof of the following lemma. It can be read as the converse of the equality
(x00x

0
1 . . . x

0
n)·(y

n
0 y

n
1 . . . y

n
n) = (x00y

0
0)(x

1
1y

1
1)(x

2
2y

2
2) . . . (x

n
ny

n
n): Whenever the product

of two elements of M equals the product of finitely many elements, there exists
a corresponding commutation grid. This lemma is the announced extension of
Levi’s Lemma from trace theory into our setting of divisibility monoids.

Lemma 9.1.3 Let z0, z1, . . . , zn, x, y ∈ M with x · y = z0 · z1 · · · zn. Then there

118 CHAPTER 9. AN OCHMAŃSKI-TYPE THEOREM

exists a commutation grid (xij, y
j
i)0≤i≤j≤n in M such that

• x = x00x
0
1 . . . x

0
n,

• y = yn0 y
n
1 . . . y

n
n, and

• zi = xiiy
i
i for i = 0, 1, . . . , n.

Proof. Let h0,j := x∧ z0z1 . . . zj−1 and hj,j = z0 · z1 . . . zj−1 (for 0 ≤ j ≤ n+1).
Note that h0,j ≤ h0,j+1 and hj,j ≤ hj+1,j+1. Furthermore, let hi,j := h0,j ∨ hi,i
for 0 < i < j ≤ n + 1 (this supremum exists since {h0,j, hi,i} is bounded by xy).
Then hi+1,j+1 = h0,j+1 ∨ hi+1,i+1 = h0,j+1 ∨ h0,j ∨ hi+1,i+1 ∨ hi,i = hi,j+1 ∨ hi+1,j.

Now let 0 ≤ i < j ≤ n+1. Then h0,j+1∧hi+1,i+1 = x∧z0z1 · · · zj∧z0z1 · · · zi =
h0,i+1 ≤ h0,j, and so

hi,j+1 ∧ hi+1,j = (h0,j+1 ∨ hi,i) ∧ (h0,j ∨ hi+1,i+1)

= (h0,j+1 ∧ h0,j) ∨ (h0,j+1 ∧ hi+1,i+1)

∨(hi,i ∧ h0,j) ∨ (hi,i ∧ hi+1,i+1)

= h0,j ∨ h0,i+1 ∨ (hi,i ∧ h0,j) ∨ hi,i

= h0,j ∨ hi,i (since h0,i+1 ≤ h0,j and hi,i ∧ h0,j ≤ hi,i)

= hi,j.

Now the elements xij and y
j
i for 0 ≤ i ≤ j ≤ n of the commutation grid are the

monoid elements uniquely determined by hi,j+1 = hi,j ·xij and hi+1,j+1 = hi,j+1 ·y
j
i .

Since hi,j+1 ∧ hi+1,j = hi,j and hi+1,j+1 = hi,j+1 ∨ hi+1,j, Lemma 7.1.1 implies
xij ∧ y

j−1
i = 1 and xij ∨ y

j−1
i = xijy

j
i = yj−1

i xi+1
j . Hence xij I y

j−1
i , xij ↑ y

j−1
i = xi+1

j

and yj−1
i ↑ xij = yji . Thus, we showed that (xij, y

j
i)0≤i≤j≤n is a commutation grid

in M .
Note that x00x

0
1 . . . x

0
n = h0,n+1 = x ∧ z0z1 . . . zn = x ∧ xy = x. Furthermore,

hj,j · zj = hj+1,j+1 = hj,j ·x
j
j · y

j
j implies zj = xjj · y

j
j since M is cancellative. Hence

we have

x(yn0 y
n
1 . . . y

n
n) = (x00x

0
1 . . . x

0
n)(y

n
0 y

n
1 . . . y

n
n)

= (x00y
0
0)(x

1
1y

1
1)(x

2
2y

2
2) . . . (x

n
ny

n
n)

= z0z1 . . . zn = xy.

This equality implies y = yn0 y
n
1 . . . y

n
n. �

It is reasonable that the elements yji in a commutation grid do not completely
determine the elements xij. The following lemma describes the freedom we have
in choosing these elements: as long as we keep the commutation behaviors in the
first column, we can complete the commutation grid.

9.1. COMMUTATION GRIDS AND THE RANK 119

Lemma 9.1.4 Let (xij, y
j
i)0≤i≤j≤n be a commutation grid in M , and, for 0 ≤

j ≤ n, let w0
j ∈ M with cx0

j
= cw0

j
. Then there exists a commutation grid

(wi
j, y

j
i)0≤i≤j≤n in M .

Proof. By Lemma 7.2.5(1), x0j I y
j−1
0 yj−1

1 . . . yj−1
j−1 for any 0 ≤ j ≤ n. Since the

commutation behaviors of x0j and w0
j coincide, this implies w0

j I y
j−1
0 yj−1

1 . . . yj−1
i−1

for 0 ≤ i ≤ j ≤ n. Hence wi
j := w0

j ↑ (yj−1
0 yj−1

1 . . . yj−1
i−1) is defined. Using

Lemma 7.2.5(1), we get wi
j I y

j−1
i . By Lemma 7.2.5(2), wi+1

j = wi
j ↑ y

j−1
i . Since

xij = x0j ↑ y
j−1
0 yj−1

1 . . . yj−1
i−1 and cx0

j
= cw0

j
, Lemma 7.2.5(4) implies cxi

j
= cwi

j
.

Hence yji = cxi
j
(yj−1

i) = cwi
j
(yj−1

i) = yj−1
i ↑ wi

j. �

Recall that nat(dv(u)) = cnat(v)(nat(u)) for any words u, v by Lemma 7.2.7.
Using Lemma 9.1.2, one gets as a direct consequence

Corollary 9.1.5 Let (uij, v
j
i)0≤i≤j≤n be a commutation grid in T ⋆, and, for 0 ≤

j ≤ n, let w0
j ∈ T ⋆ with du0

j
= dw0

j
. Then there exists a commutation grid

(wi
j, v

j
i)0≤i≤j≤n in T ⋆.

Similarly as above, a direct consequence of Lemma 9.1.3 is the existence of
commutation grids in T ⋆:

Corollary 9.1.6 Let z0, z1, . . . , zn, u, v ∈ T ⋆ with nat(uv) = nat(z1z2 . . . zn).
Then there exists a commutation grid (uij, v

j
i)0≤i≤j≤n in T ⋆ such that

1. nat(u) = nat(u00u
0
1 . . . u

0
n),

2. nat(v) = nat(vn0 v
n
1 . . . v

n
n), and

3. nat(zi) = nat(uiiv
i
i) for i = 0, 1, . . . , n.

Note that the equations in the corollary above do not hold in the free monoid
T ⋆ but only in the divisibility monoid M . But if the words zi are actually from
T ∪ {ε} (i.e. their length is at most 1), we can replace the third statement by

3’. zi = uiiv
i
i for i = 0, 1, . . . , n.

Now we can introduce the notion of rank in the present context. For traces, it
was defined and shown to be very useful by Hashigushi [Has91], cf. [DR95, Ch. 6]
and [DM97]. Recall that nat(X) = {nat(w) | w ∈ X} for any set X ⊆ T ⋆ of
words over T .

120 CHAPTER 9. AN OCHMAŃSKI-TYPE THEOREM

Definition 9.1.7 Let u, v ∈ T ⋆ and X ⊆ T ⋆ such that nat(uv) ∈ nat(X). Let
rk(u, v,X), the rank of u and v relative to X, denote the minimal integer n such
that there exists a commutation grid (uij, v

j
i)0≤i≤j≤n in T ⋆ with

1. nat(u) = nat(u00u
0
1 . . . u

0
n),

2. nat(v) = nat(vn0 v
n
1 . . . v

n
n),

3. u00v
0
0u

1
1v

1
1 . . . u

n
nv

n
n ∈ X.

Let u, v ∈ T ⋆ and X ⊆ T ⋆ such that nat(uv) ∈ nat(X). Then there exists
z ∈ X with nat(z) = nat(uv). Let z = z1z2 . . . zn with zi ∈ T . Then n = |uv|
and by Corollary 9.1.6 (with 3’ instead of 3) we find an appropriate commutation
grid. Hence rk(u, v,X) ≤ |uv|. If not only nat(uv) ∈ nat(X) but even uv ∈ X
we can choose n = 0, u00 = u and v00 = v and obtain rk(u, v,X) = 0. We define
the rank rk(X) of X by

rk(X) := sup{rk(u, v,X) | u, v ∈ T ⋆, nat(uv) ∈ nat(X)} ∈ N ∪ {∞}.

A word language X ⊆ T ⋆ is closed if nat(u) ∈ nat(X) implies u ∈ X for any
u ∈ T ⋆. Since rk(u, v,X) = 0 whenever uv ∈ X, the rank of a closed language
equals 0.

Theorem 9.1.8 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior (i.e. the monoid CM is finite). Let X ⊆ T ⋆ be a recognizable language
of finite rank. Then nat(X) is recognizable in M .

Proof. Let n = rk(X) ∈ N be the rank of X. Since X is recognizable, there
is a finite monoid S and a homomorphism η : T ⋆ → S that recognizes X. Since
the mapping u 7→ du is an antihomomorphism from T ⋆ into the finite monoid
(DM , ◦, dε), we may assume that η(u) = η(v) implies du = dv.

For x ∈M , let R(x) denote the set

{(ηd(u0), ηd(u1) . . . ηd(un))d∈DM
| u0, u1, . . . , un ∈ T ⋆ and x = nat(u0u1 . . . un)}.

Then R(x) is a subset of (Sn+1)|DM |. Since DM and S are finite, there are only
finitely many sets R(x). Once we will have shown

R(x) = R(z) ⇒ x−1 nat(X) = z−1 nat(X),

we thus have that {x−1 nat(X) | x ∈M} is finite. Hence nat(X) is recognizable.
So let R(x) = R(z) and let y ∈ x−1 nat(X), i.e. xy ∈ nat(X). Since rk(X) =

n, there exists a commutation grid (uij, v
j
i)0≤i≤j≤n in T ⋆ such that

• x = nat(u00u
0
1 . . . u

0
n),

9.2. FROM C-RATIONAL TO RECOGNIZABLE LANGUAGES 121

• y = nat(vn0 v
n
1 . . . v

n
n), and

• u00v
0
0u

1
1v

1
1 . . . u

n
nv

n
n ∈ X.

Then (ηd(u00), ηd(u
0
1) . . . ηd(u

0
n))d∈DM

∈ R(x) = R(z). Hence there exist words
w0

j ∈ T ⋆ with

(1) ηd(w0
j) = ηd(u0j) for each 0 ≤ j ≤ n and d ∈ DM , and

(2) z = nat(w0
0w

0
1 . . . w

0
n).

In (1), consider d = dε which equals the identity on T ⋆. Then η(w0
j) = η(u0j)

and therefore (by our assumption on η) dw0
j
= du0

j
. Hence we can apply Corol-

lary 9.1.5 and obtain a commutation grid (wi
j, v

j
i)0≤i≤j≤n in T ⋆. Now consider

d = d
v
j−1
0 v

j−1
1 ...v

j−1
j−1

∈ DM . Note that wj
j = w0

j ↑ (v
j−1
0 vj−1

1 . . . vj−1
j−1) = d(w0

j). Hence

η(wj
j) = ηd(w0

j) = ηd(u0j) = η(ujj). Now we can conclude

η(w0
0v

0
0w

1
1v

1
1 . . . w

n
nv

n
n) = η(w0

0)η(v
0
0)η(w

1
1)η(v

1
1) . . . η(w

n
n)η(v

n
n)

= η(u00)η(v
0
0)η(u

1
1)η(v

1
1) . . . η(u

n
n)η(v

n
n)

= η(u00v
0
0u

1
1v

1
1 . . . u

n
nv

n
n) ∈ η(X).

Hence w0
0v

0
0w

1
1v

1
1 . . . w

n
nv

n
n ∈ X. Since (nat(wi

j), nat(v
j
i))0≤i≤j≤n is a commuta-

tion grid in M , we obtain zy = nat(w0
0v

0
0w

1
1v

1
1 . . . w

n
nv

n
n) ∈ nat(X). Hence

y ∈ z−1 nat(X) and therefore x−1 nat(X) = z−1 nat(X) as claimed above. �

9.2 From c-rational to recognizable languages

In this section, we prove closure properties of the set of recognizable languages in
a divisibility monoid. These closure properties correspond to c-rational languages
that we introduce first:

Let (M, ·, 1) be a divisibility monoid. An element x ∈ M is connected if the
distributive lattice ↓x does not contain any pair of complementary elements. In
other words, there are no independent y, z ∈M \{1} such that x = y∨z = ycy(z).
A set L ⊆M is connected if all of its elements are connected; a language X ⊆ T ⋆

is connected if nat(X) ⊆M is connected.
Let t be a trace over the dependence alphabet (Σ, D). In trace theory, this

trace is called “connected” if the letters occurring in it induce a connected sub-
graph of (Σ, D). One can easily check that this is the case iff t is not the supremum
of two independent traces, i.e. iff t is connected in the sense defined above. For
rational trace languages, to be recognizable it suffices that the iteration is ap-
plied to connected languages, only. In other words, there is a subset of the trace

122 CHAPTER 9. AN OCHMAŃSKI-TYPE THEOREM

monoid C (the connected traces) such that the iteration is applied to languages
included in C, only. Already for concurrency monoids (cf. [Dro95, Dro96]), it is
not sufficient to restrict to connected languages. But there, one still has finitely
many pairwise disjoint sets Cq such that the iteration can be restricted to subsets
of Cq. For divisibility monoids, we did not find such sets in general (for labeled
divisibility monoids, they exist – see below). Therefore, we impose an internal
condition on those languages that we want to iterate:

A language X ⊆ T ⋆ is residually closed if for any u ∈ X and v ∈ T ⋆ with
u I v the following holds:

v ∈ X ⇐⇒ du(v) ∈ X.

Thus X is residually closed if it is closed under the application of du and d−1
u for

elements u of X. Note that this need not hold for all u ∈ T ⋆. A language L ⊆M
is residually closed iff {w ∈ T ⋆ | nat(w) ∈ L} is residually closed.

Now we define c-rational languages: The set of c-rational sets in a divisibility
monoid M is the least class C ⊆ 2M such that

• all finite subsets of M belong to C,

• X · Y and X ∪ Y belong to C whenever X, Y ∈ C, and

• 〈X〉 belongs to C whenever X ∈ C is connected and residually closed.

Now we are going to show that the set of recognizable languages is closed
under multiplication.

Lemma 9.2.1 Let (M, ·, 1) be a divisibility monoid and X, Y ⊆ T ⋆ be closed.
Then rk(XY) ≤ 1.

Proof. Let u, v ∈ T ⋆ with nat(uv) ∈ nat(XY). Then there exist z0 ∈ X and
z1 ∈ Y such that nat(uv) = nat(z0z1). By Corollary 9.1.6, there exists a commu-
tation grid (uij, v

j
i)0≤i≤j≤1 in T ⋆ such that

nat(u) = nat(u00u
0
1), nat(v) = nat(v10v

1
1),

nat(z0) = nat(u00v
0
0), and nat(z1) = nat(u11v

1
1).

Since X and Y are closed, this implies u00v
0
0 ∈ X and u11v

1
1 ∈ Y . Hence

rk(u, v,XY) ≤ 1. �

9.2. FROM C-RATIONAL TO RECOGNIZABLE LANGUAGES 123

a1 a2 b

c c ↑ a1

v

Figure 9.2: The elements from Lemma 9.2.3

Corollary 9.2.2 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Let K,L ⊆M be recognizable. Then K · L is recognizable.

Proof. Let X := {u ∈ T ⋆ | nat(u) ∈ K} and Y := {u ∈ T ⋆ | nat(u) ∈ L}.
Then K ·L = nat(XY), and X and Y are closed and recognizable in T ⋆. Hence,
by Kleene’s Theorem, XY is recognizable in T ⋆. By Lemma 9.2.1, the rank of
XY is finite. Hence Theorem 9.1.8 ensures that nat(XY) is recognizable in M .

�

The rest of this section is devoted to the proof that 〈L〉 is recognizable for
any recognizable language L ⊆ M that is connected and residually closed. But
first, we prove some technical lemmas that will be used later on.

Lemma 9.2.3 Let (M, ·, 1) be a divisibility monoid with finite commutation be-
havior. Let a1, a2, b, c, v ∈ T ⋆ such that da1a2 = db ⊆ idT ⋆, c I a1, (c ↑ a1)v I a2b
and a1 6= ε 6= v. Then nat((a1 ↑ c)v) is not connected.

Proof. Throughout this proof, we make extensive use of the equations given in
Lemma 7.2.7 without mentioning it again.

By (c↑a1)vIa2b, we get in particular (c↑a1)vIa2, and (c↑a1)v↑a2 ∈ dom(db).
Furthermore, it implies c ↑ a1 I a2 and therefore (together with c I a1) c I a1a2

124 CHAPTER 9. AN OCHMAŃSKI-TYPE THEOREM

and c ↑ a1a2 = c. Now we can conclude (with ṽ := v ↑ (a2 ↑ (c ↑ a1)))

b I (c ↑ a1)v ↑ a2 = ((c ↑ a1) ↑ a2) (v ↑ (a2 ↑ (c ↑ a1)))

= (c ↑ a1a2)ṽ

= cṽ.

Thus we get cṽ = (c ↑ a1)v ↑ a2 ∈ dom(da1a2) and therefore cṽ ↑ a1a2 = cṽ. In
particular, we have a1 I cṽ implying (a1 ↑ c) I ṽ.

Hence we have (c↑a1)v↑a2 = cṽ = (cṽ↑a1)↑a2. This implies (c↑a1)v = cṽ↑a1
since da2 is injective. Note that cṽ↑a1 = (c↑a1)(ṽ↑(a1↑c)). Hence by cancellation
we get v = ṽ ↑ (a1 ↑ c). This implies nat(ṽ) ∨ nat(a1 ↑ c) = nat((a1 ↑ c)v).

Since a1 6= ε and dc is length preserving, we have a1↑c 6= ε, i.e. nat(a1↑c) 6= 1.
Similarly, v 6= ε implies nat(ṽ) 6= 1. Finally (a1 ↑ c) I ṽ proves that nat((a1 ↑ c)v)
is not connected. �

Before proving that the iteration of a residually closed and connected language
in M has finite rank, we cite a special case of Ramsey’s Theorem (cf. [Cam94]
for the general formulation):

Ramsey’s Theorem [Ram30] Let c, r be positive integers. Then there is a
positive integer Rr(c) such that for any mapping d of the two-elements subsets of
[Rr(c)] into [c] there exists an r-elements subset A ⊆ [Rr(c)] such that we have
d(B) = d(C) for any two-elements subsets B and C of A.

First we use Ramsey’s Theorem to show that in a divisibility monoid with
finite commutation behavior, for any sufficiently long sequence u1, u2, . . . un of
elements of T ⋆, there is a nonempty fragment of this sequence such that the
commutation behavior of uiui+1 . . . uj is contained in the identity.

Lemma 9.2.4 Let M be a divisibility monoid with finite commutation behavior
and let ui ∈ T ⋆ for 1 ≤ i ≤ R3(|DM |). Then there exist 1 ≤ i < j < k ≤ R3(|DM |)
such that duiui+1...uj−1

= dujuj+1...uk−1
⊆ idT ⋆.

Proof. For simplicity, let n = R3(|DM |). Consider the mapping d′ from the
2-elements subsets of [n] into DM with d′({i, j}) = duiui+1...uj−1

where i < j. By
Ramsey’s Theorem, there are 1 ≤ i < j < k ≤ n with d′({i, j}) = d′({i, k}) =
d′({j, k}) =: f . Note that f is an idempotent partial function since d′({i, k}) =
d′({j, k}) ◦ d′({i, j}). In addition, f is injective on its domain by Lemma 7.2.7,
implying f ⊆ idT ⋆ . �

9.2. FROM C-RATIONAL TO RECOGNIZABLE LANGUAGES 125

Lemma 9.2.5 Let M be a divisibility monoid with finite commutation behavior,
(uij, v

j
i)1≤i≤j≤n a commutation grid in T ⋆ with n ≥ R3(|DM |) and uii 6= ε 6= vii.

Then there exists 1 ≤ i ≤ n such that nat(uiiv
i
i) is not connected.

Proof. By Lemma 9.2.4, there are 1 ≤ i < j < j ≤ n with

du0
i ui+10 ...u

0
j−1

= du0
juj+10 ...u

0
k−1

= du0
i ui+10 ...u

0
k−1
.

With a1 = u0i , a2 = u0i+1u
0
i+2 . . . u

0
j−1, x = u0juj+10 . . . u

0
k−1, y = vi−1

0 vi−1
1 . . . vi−1

i−1

and v = vii, the assumptions of Lemma 9.2.3 are satisfied. Hence nat(uiiv
i
i) is not

connected. �

Theorem 9.2.6 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Let X ⊆ T ⋆ be closed, connected, and residually closed. Then the rank
rk(〈X〉) of X is at most R3(|DM |) + 1 and therefore finite.

Proof. Let u, v ∈ T ⋆ with nat(uv) ∈ nat(〈X〉) = 〈nat(X)〉. Then there ex-
ist n ∈ N and x0, x1, . . . , xn ∈ X such that nat(uv) = nat(x0x1 . . . xn). By
Corollary 9.1.6, there exists a commutation grid (uij, v

j
i)0≤i≤j≤n in T ⋆ such that

nat(u) = nat(u00u
0
1 . . . u

0
n), nat(v) = nat(vn0 v

n
1 . . . v

n
n) and nat(xi) = nat(uiiv

i
i).

Since X is closed and connected, the latter implies that uiiv
i
i ∈ X is connected.

There exist m ≤ n and −1 = i0 < i1 < i2 · · · < im < im+1 = n+ 1 such that

• uikik and vikik are nonempty for 0 < k < m+ 1,

• uii or v
i
i is empty for 0 ≤ i ≤ n with i 6∈ {i0, i1, . . . , im+1}.

Consider the subgrid (aij, b
j
i)0≤l≤ℓ≤m induced by the sequence (0, i1, i2, . . . , im, n).

Then akk = uikiku
ik
ik+1 . . . u

ik
ik+1−1 and bkk = v

ik+1−1
ik

v
ik+1−1
ik+1 . . . v

ik+1−1
ik+1−1 are not empty.

Hence, by Lemma 9.2.5, m ≤ R3(|DM |).
Let 0 ≤ k ≤ m and ik < i < ik+1. Then uiiv

i
i ∈ X. Since one of uii and v

i
i is

empty, the other belongs to X, i.e. uii, v
i
i ∈ X ∪ {ε}.

Now we show uij, v
j
i ∈ X ∪ {ε} by induction on j for ik < i ≤ j < ik+1:

Assume ik + 1 = j. Then the claim is trivial since i = j follows. Now assume
that for any ik ≤ i ≤ l ≤ ik+1 with l < j we have uil, v

l
i ∈ X ∪ {ε}. Then

uij ↑ (v
j−1
i vj−1

i+1 . . . v
j−1
j−1) = ujj ∈ X ∪{ε}. Note that the upper index j−1 of the v’s

is properly between ik and j. Hence by the induction hypothesis vj−1
i′ ∈ X ∪ {ε}

for i′ = i, i+ 1, . . . , j − 1. Since X and therefore X ∪ {ε} is residually closed, we
get uij ∈ X∪{ε}. On the other hand, vji = vj−1

i ↑uij. By the induction hypothesis,

vj−1
i ∈ X ∪ {ε}. Hence vji ∈ X ∪ {ε} since uij is an element of this residually
closed language.

126 CHAPTER 9. AN OCHMAŃSKI-TYPE THEOREM

Now consider the subgrid (aij, b
i
j)0≤i≤j≤2m+1 that is generated by the sequence

(i1, i1 + 1, i2, i2 + 1, . . . , im, im + 1). Then

a2k2k = uik+1
ik+1u

ik+1
ik+2u

ik+1
ik+3 . . . u

ik+1
ik+1−1,

b2k2k = v
ik+1−1
ik+1 v

ik+1−1
ik+2 v

ik+1−1
ik+3 . . . v

ik+1−1
ik+1−1,

a2k+1
2k+1 = uikik , and

b2k+1
2k+1 = vikik .

Note that all the factors of a2k2k and of b2k2k belong to X ∪ {ε}. This implies
a2k2kb

2k
2k ∈ 〈X〉. Thus, the commutation grid (aij, b

j
i)0≤i≤j≤2m+1 satisfies

• nat(u) = nat(u00u
0
1 . . . u

0
n) = nat(a00a

0
1 . . . a

0
2m+1),

• nat(v) = nat(vn0 v
n
1 . . . v

n
n) = nat(b2m+1

0 b2m+1
1 . . . b2m+1

2m+1) and

• aiib
i
i ∈ 〈X〉.

Therefore rk(u, v, 〈X〉) ≤ 2m+ 1 ≤ 2R3(|DM |) + 1. �

Corollary 9.2.7 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Let L ⊆M be connected, recognizable, and residually closed. Then the
iteration 〈L〉 of L is recognizable.

Proof. Let X := {w ∈ T ⋆ | nat(w) ∈ L}. Note that M and X satisfy the
assumptions of Theorem 9.2.6. Hence the rank rk(X) is finite. By the theorem
of Kleene, 〈X〉 is recognizable in T ⋆. By Theorem 9.1.8, 〈L〉 = nat(〈X〉) is
recognizable in M . �

Summarizing the results for obtained so far, we can show that any c-rational
language is recognizable.

Theorem 9.2.8 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Let L ⊆M be c-rational. Then L is recognizable.

Proof. By Lemma 7.2.3, ↓x is finite for any x ∈M . Hence finite languages inM
are recognizable. By Corollary 9.2.2 and 9.2.7, the set of recognizable languages
in M is closed under products and the operation 〈.〉 applied to connected and
residually closed languages. �

9.3. FROM RECOGNIZABLE TO C-RATIONAL LANGUAGES 127

9.3 From recognizable to c-rational languages

In this section, we will derive conditions on divisibility monoidsM which are suf-
ficient to ensure that all recognizable languages in M are c-rational. Let (M, ·, 1)
a divisibility monoid. Recall that an equation nat(ab) = nat(cd) where a, b, c, d
are irreducible generators of M states that the different sequential executions ab
and cd give rise to the same effect. If now a 6= c, the effect of a in the execution
cd has to be resumed by that of d. Therefore, we consider the least equivalence ≡
on the irreducible generators of M identifying a and d that occur in an equation
ab = cd with a 6= c. To show that any recognizable language is c-rational, we need
the property that nat(ab) = nat(cd) and a ≡ c imply a = c for any irreducible
elements a, b, c, d ∈ T . It is immediate that this is equivalent to the existence of a
function ρ : T → E into some set E satisfying ρ(s) = ρ(s ↑ t) and ρ(s) 6= ρ(t) for
any s, t ∈ T with sI t. Such a function is called labeling function. Since T is finite,
we can assume E to be finite, too. A divisibility monoidM together with a label-
ing function ρ is a labeled divisibility monoid (M,ρ). The label sequence of a word
u0u1 . . . un ∈ T ⋆ is the word ρ(u0)ρ(u1) . . . ρ(un) ∈ E⋆. We extend the mapping ρ
to words over T by ρ(tw) = {ρ(t)}∪ρ(w). Hence ρ is a monoid morphism into the
finite monoid (2E,∪, ∅). By Lemma 8.2.1, nat(u) = nat(v) implies ρ(u) = ρ(v)
for any u, v ∈ T ⋆. Therefore, it is reasonable to define ρ(nat(u)) := ρ(u), i.e. to
extend ρ to a monoid morphism from (M, ·, 1) to (2E,∪, ∅).

A language L ⊆ M is monoalphabetic if ρ(x) = ρ(y) for any x, y ∈ L. The
class of mc-rational languages in the labeled divisibility monoidM is the smallest
class C ⊆ 2M satisfying

• any finite subset of M is in C,

• whenever L,K ∈ C then L ∪K ∈ C and L ·K ∈ C, and

• whenever L ∈ C is connected and monoalphabetic then 〈L〉 ∈ C.

Note that differently from c-rational languages, here the iteration is restricted to
connected and monoalphabetic languages that are not explicitly required to be
residually closed. Nonetheless, any mc-rational language is c-rational as Corollary
9.3.2 states.

Lemma 9.3.1 Let (M,ρ) be a labeled divisibility monoid and x, y ∈M with xIy.
Then ρ(x) ∩ ρ(y) = ∅, ρ(y) = ρ(y ↑ x), and ρ(x) ∪ ρ(y) = ρ(x ∨ y).

Proof. By contradiction, assume ρ(x) ∩ ρ(y) 6= ∅. Then there exist monoid
elements x1, x2, y1, y2 ∈ M and s, t ∈ T such that x = x1sx2, y = y1ty2 and
ρ(s) = ρ(t). Clearly, x1sIy1t. By Lemma 7.2.5(1) and (3), we have s I (y1t↑x1) =
(y1↑x1)(t↑(x1↑y1)). Hence s′ := s↑(y1↑x1)I (t↑(x1↑y1)) =: t′ by Lemma 7.2.5(1).
Furthermore, ρ(s) = ρ(s′) and ρ(t) = ρ(t′). But this contradicts the definition of
a labeling function. Hence the first statement is shown.

128 CHAPTER 9. AN OCHMAŃSKI-TYPE THEOREM

By a simple induction on the length of x and y we get ρ(y ↑x) = ρ(y), i.e. the
second statement. Now the last assertion follows since ρ(x ∨ y) = ρ(x(y ↑ x)) =
ρ(x) ∪ ρ(y ↑ x) = ρ(x) ∪ ρ(y). �

Corollary 9.3.2 Let (M, ·, 1, ρ) be a labeled divisibility monoid. Then any mc-
rational language in M is c-rational.

Proof. Let x, y ∈ M with ρ(x) = ρ(y) and x I y. Then Lemma 9.3.1 ensures
x = y = 1. Hence any monoalphabetic language is residually closed. This implies
that mc-rational languages are c-rational. �

Now let � be a linear order on the set E and let u ∈ T ⋆. We say that the
word u is in lexicographical normal form if nat(u) = nat(v) implies that the label
sequence of v is lexicographically larger than or equal to that of u. Let LNF be
the set of all words in lexicographic normal form.

Note that so far there may exist different words u and v in LNF with nat(u) =
nat(v). We show that this is impossible: So assume that u, v ∈ T ⋆ have the same
label sequence and satisfy nat(u) = nat(v) Let s (t) be the first letter of u (of v,
respectively) and suppose s 6= t. Then nat(s) and nat(t) are incomparable since
they have the same length. Thus the infimum of them is properly smaller than
nat(s). Since 1 is the only element which is properly smaller than the irreducible
element nat(s), we get nat(s) ∧ nat(t) = 1. Since nat(s) and nat(t) are bounded
above by nat(u) = nat(v), we have s I t. Hence ρ(s) 6= ρ(t), contradicting the
fact that the label sequences of u and v coincide. Hence s = t. Cancelling s
and t from the left of u and v, respectively, we can proceed by induction. At the
end, we obtain u = v. Hence, for any x ∈ M there exists at most one u ∈ LNF
such that x = nat(u). Since, on the other hand, the lexicographical order on
E⋆ is a well-order, the set of label sequences of words u with nat(u) = x has a
least element. Hence, for any x ∈ M there exists a unique word u ∈ LNF with
x = nat(u). This word is called the lexicographic normal form of x. We denote
it by lexNF(x).

Next, we characterize the set of words in lexicographic normal form. This
result generalizes the characterization of lexicographic normal forms for trace
monoids given in [AK79].

9.3. FROM RECOGNIZABLE TO C-RATIONAL LANGUAGES 129

Lemma 9.3.3 Let (M,ρ) be a labeled divisibility monoid and let � be a linear
order on T . Let ui ∈ T for 0 ≤ i ≤ n. Then u0u1 . . . un ∈ LNF iff

uj ∈ duiui+1...uj−1
(T) ⇒ ρ(ui) ≺ ρ(uj) (⋆)

for 0 ≤ i < j ≤ n.

Proof. For simplicity, let u := u0u1 . . . un. First let u ∈ LNF and assume there
are i, j with 0 ≤ i < j ≤ n such that uj ∈ duiui+1...uj−1

(T) and ρ(ui) � ρ(uj).
Then there is t ∈ T with uj = duiui+1...uj−1

(t). Hence

nat(u) = nat(u0 . . . ui−1tdt(ui . . . uj−1)uj+1 . . . un)).

Since ρ(ui) � ρ(uj) = ρ(t), the label sequence of u is larger than or equals that
of u0 . . . ui−1tdt(ui . . . uj−1)uj+1 . . . un). Since u is in lexicographical normal form,
this implies in particular ρ(ui) = ρ(t), contradicting t ∈ dom(dui

). Thus, u
satisfies the property (⋆).

Conversely, let the word u satisfies the property (⋆). Let v ∈ nat(u) with
u 6= v. We claim that u is lexicographically smaller than v. Note that any suffix
of u satisfies (⋆). Hence we may assume that the first letter t of v is different
from u0. Then nat(t) and nat(u0) are bounded above by nat(u). Since they are
different irreducible elements inM , their infimum is trivial. Hence nat(t)Inat(u0)
implying ρ(t) 6= ρ(u0). Let j be the least integer such that ρ(t) ∈ ρ(u0u1 . . . uj).
By Lemma 9.3.1, nat(t) and nat(u0u1 . . . uj) are not independent. Since they are
bounded by nat(u), the infimum cannot be 1. Hence nat(t) ≤ nat(u0u1 . . . uj).
Since on the other hand the infimum of nat(t) and nat(u0u1 . . . uj−1) is trivial,
the supremum of these two equals nat(u0u1 . . . uj). Hence uj = du0u1...uj−1

(t).
Since u satisfies (⋆), this implies ρ(u0) ≺ ρ(uj) = ρ(t) and hence our claim. Thus
u ∈ LNF. �

Using the lemma above, we show that the set of words in lexicographic normal
form is recognizable:

Lemma 9.3.4 Let (M,ρ) be a labeled divisibility monoid. Then LNF is recog-
nizable in the free monoid T ⋆.

Proof. Recall that DM = {du | u ∈ T ⋆} is a monoid consisting of partial
functions from T ⋆ to T ⋆. These functions are length preserving. In particular,
they map elements of T to elements of T . Hence DM ↾ T := {du ↾ T | u ∈ T ⋆}
is a monoid. It is finite since T is finite. Recall furthermore, that the mapping
T ⋆ → DM defined by u 7→ du is a monoid antihomomorphism. Hence the mapping
from T ⋆ to DM ↾ T with u 7→ du ↾ T is a monoid antihomomorphism, too. This
implies that the sets Xd := {u ∈ T ⋆ | du ↾ T = d} for d ∈ DM ↾ T are recognizable
in T ⋆. Hence they are rational by Kleene’s Theorem.

130 CHAPTER 9. AN OCHMAŃSKI-TYPE THEOREM

For S ⊆ T , d ∈ DM or d ∈ DM ↾ T , let d(S) := {d(s) | s ∈ S ∩ dom(d)}
which is a finite set. Now by Lemma 9.3.3 the set of words over T that are not
in lexicographical normal form equals the rational language

T ⋆ \ LNF =
⋃

s∈T
d∈DM ↾T

T ⋆{s}Xd (ds ◦ d)({t ∈ T | ρ(t) � ρ(s)}) T ⋆.

Hence LNF is recognizable. �

The crucial point in Ochmański’s proof of the c-rationality of recognizable
languages in trace monoids is that whenever a square of a word is in lexicographic
normal form, it is actually connected. This does not hold any more for labeled
divisibility monoids. But we can show that whenever a product of |E|+ 2 words
having the same set of labels is in lexicographic normal form, it is connected
(cf. Corollary 9.3.6). This enables us to show that recognizable languages are
mc-rational.

For a set A ⊆ E and u ∈ T ⋆ let nA(u) denote the number of maximal factors
w of u with ρ(w) ⊆ A or ρ(w) ∩ A = ∅. The number nA(u) is the number of
blocks of elements of A and of E \A in the label sequence of u. For example, let
u = u1u2 . . . un ∈ T ⋆ with ui 6= ε, ρ(u2i) ⊆ A and ρ(u2i+1) ⊆ E \A for all suitable
i. Then n = nA(u) = nE\A(u). Furthermore, we put nA(x) := nA(lexNF(x)) for
x ∈M .

Lemma 9.3.5 Let (M, ·, 1, ρ) be a labeled divisibility monoid, x, y ∈M and xIy.
Then nρ(x)(x ∨ y) ≤ |E|+ 1.

Proof. If nρ(x)(x∨y) = 1, the statement is trivial. So let nρ(x)(x∨y) ≥ 2. Since
nA(x ∨ y) = nE\A(x ∨ y) for any A ⊆ E, we may assume that the label sequence
of lexNF(x ∨ y) starts with a letter from A := ρ(x).

Hence there exist words u, v ∈ T+ and u′ ∈ T ⋆ with ρ(u) ⊆ A, ρ(v) ⊆ E \ A
and lexNF(x ∨ y) = uvu′. Now let a be the first letter of u and b the first one
of v.

First we show ρ(nat(ub) ∧ y) = ρ(b): Let h := nat(ub) ∧ y. Then there exist
uniquely determined k, l ∈M with nat(ub) = h ·k and y = h · l. By Lemma 7.1.1,
k I l. Hence ρ(k) ∩ ρ(l) = ∅ by Lemma 9.3.1. We write #eh for the number
of occurrences of the letter e ∈ E in the label sequence of any representative of
h ∈ M , which is well-defined by Lemma 8.2.1 and the requirements on ρ. So
we get on the other hand, #e nat(ub) = #eh + #ek and #ey = #eh + #el for
any e ∈ E. Hence #eh = min(#e nat(ub),#ey). Note that ρ(b) ∈ ρ(y). Hence
ρ(b) ∈ ρ(h). Now let e ∈ ρ(y) \ ρ(b). Then e 6∈ ρ(x) and therefore #eh = 0. Thus
ρ(nat(ub) ∧ y) = ρ(b).

9.3. FROM RECOGNIZABLE TO C-RATIONAL LANGUAGES 131

Hence there exists a word w ∈ T ⋆ with x ∨ y = nat(w) such that the label
sequence of w starts with ρ(b). Since the label sequence of the lexicographical
normal form of x ∨ y starts with ρ(a), we get ρ(a) ≺ ρ(b).

So let lexNF(x ∨ y) = u0v0u1v1 . . . unvn with ui 6= ε for all i ≤ n, vi 6= ε for
i < n, ρ(ui) ⊆ A and ρ(vi) ⊆ E\A. Let ai (bi) be the first letter of ui for i ≤ n (vi
for i < n, resp.). Using Lemma 7.1.1, we can apply the above result inductively
and obtain ρ(ai) ≺ ρ(bi) ≺ ρ(ai+1) for each i < n. Hence 2n+ 1 ≤ |E|. �

Corollary 9.3.6 Let X ⊆ T ⋆ be a monoalphabetic language. Then nat(w) is
connected for any word w ∈ X |E|+2 ∩ LNF.

Proof. Let n = |E|+1. Then there exist xi ∈ nat(X) with nat(w) = x0x1 . . . xn.
Now let x, y ∈ M with x I y and x ∨ y = nat(w). Then ρ(x) ∩ ρ(y) = ∅ by
Lemma 9.3.1. If ρ(xi) ∩ ρ(x) 6= ∅ and ρ(xi) ∩ (E \ ρ(x)) 6= ∅ for all 0 ≤ i ≤ n,
we would obtain nρ(x)(nat(w)) > n = |E|+1, contradicting Lemma 9.3.5. Hence
there exists i ∈ {0, 1, . . . , n} such that ρ(xi) ⊆ ρ(x) or ρ(xi) ⊆ E \ ρ(x).

First consider the case ρ(xi) ⊆ ρ(x). Since X is monoalphabetic, this implies
ρ(xj) = ρ(xi) ⊆ ρ(x) for all 0 ≤ j ≤ n. Now ρ(y) = ∅ follows from the inclusions
ρ(y) ⊆ ρ(w) ⊆ ρ(x) and from ρ(x) ∩ ρ(y) = ∅. Hence y = 1.

Now consider the case ρ(xi) ⊆ E \ ρ(x). From Lemma 9.3.1, we obtain
ρ(x)∪ρ(y) = ρ(nat(w)) ⊇ ρ(xi) and this implies ρ(xi) ⊆ ρ(y). Now we can argue
as above (with x and y interchanged) and obtain x = 1. �

Corollary 9.3.7 Let (M, ·, 1, ρ) be a labeled divisibility monoid. Let L ⊆ M be
recognizable. Then L is mc-rational.

Proof. Let X := {u ∈ T ⋆ | nat(u) ∈ L} ∩ LNF. Since any x ∈M has a unique
lexicographical normal form, we have nat(X) = L. Then X is recognizable in T ⋆

and therefore rational. By Lemma 7.1.2, it can be constructed from finite lan-
guages in T ⋆ by the operation ·, ∪ and 〈.〉 applied to monoalphabetic languages,
only. Since X ⊆ LNF, any intermediate language in the construction of X is
contained in LNF, too. Let Y be such an intermediate language and suppose
that the iteration 〈.〉 is applied to Y . Hence Y is monoalphabetic. Then 〈Y 〉 is
another intermediate language and therefore contained in LNF. Hence by Corol-
lary 9.3.6, nat(Y)|E|+2 is connected. Note that 〈Y 〉 = (

⋃

0≤i≤|E|+1 Y
i)
〈

Y |E|+2
〉

.

Therefore, we can construct nat(X) = L as required. �

We can summarize our results on recognizable, c-rational and mc-rational
languages as follows.

132 CHAPTER 9. AN OCHMAŃSKI-TYPE THEOREM

Theorem 9.3.8 Let (M, ·, 1, ρ) be a labeled divisibility monoid with finite com-
mutation behavior. Let L ⊆M . Then the following are equivalent:
1. L is recognizable
2. L is c-rational
3. L is mc-rational.

Proof. The implications 2 → 1 → 3 → 2 are Theorem 9.2.8, Corollary 9.3.7
and 9.3.2, respectively. �

Chapter 10

Kleene’s Theorem

Theorem 9.3.8 characterizes the recognizable languages in a divisibility monoid
with finite commutation behavior using the concept of c-rationality which is a
stronger notion than rationality. The aim of this section is to characterize those
divisibility monoids that satisfy Kleene’s Theorem: A divisibility monoid (M, ·, 1)
is width-bounded provided there exists n ∈ N with w(↓x,≤) ≤ n for any x ∈ M .
Thus, a divisibility monoid is width-bounded if there is a uniform bound for the
width of the lattices ↓x. Hence in the partial order (M,≤), bounded antichains
have a uniformly bounded size. Note that a free monoid is width-bounded with
n = 1 and that a direct product of two free monoids is not width-bounded. Hence
a trace monoid is width-bounded iff it is free.

10.1 Rational monoids

Rational monoids are the main tool in our proof that any width-bounded di-
visibility monoid satisfies Kleene’s Theorem. This concept was introduced by
Sakarovitch [Sak87]. He showed that rational monoids satisfy Kleene’s Theorem
and considered closure properties of this class of monoids (cf. also [PS90] where
the latter topic was extended). In this section, we recall some definitions and
results from [Sak87] and prove a first statement concerning divisibility monoids.

Let (M, ·, 1) be a monoid. A generating system of M is a pair (X,α) where
X is a set and α : X⋆ →M is a surjective homomorphism. Then the kernel of α,
i.e. the binary relation kerα = {(v, w) ∈ X⋆×X⋆ | α(x) = α(y)}, is a congruence
relation on the free monoid X⋆.

An idempotent function β : X⋆ → X⋆ with ker β = kerα is a description of
(X,α). We can think of β(v) as a normal form of the word v. Note that (X,α)
might have several descriptions. But for any such description β, M ∼= T ⋆/ ker β
since ker β = kerα.

Let (M, ·, 1) be a divisibility monoid. In Section 7.3, we defined the set Cℓ
to consist of all nonempty subsets of T of pairwise independent elements that

133

134 CHAPTER 10. KLEENE’S THEOREM

are bounded in (M,≤). Furthermore, α was defined to be the extension of the
function A 7→ sup(A) to a homomorphism from Cℓ⋆ onto M . Hence the tuple
(Cℓ, α) is a generating system of the divisibility monoid (M, ·, 1). Furthermore,
we constructed an automaton A on the monoid T ⋆ × Cℓ⋆ that computes the
function fnf ◦ nat : T ⋆ → Cℓ⋆ by Theorem 7.3.6. The following proof uses this
function to show that β := fnf◦α is a description of the generating system (Cℓ, α):

Lemma 10.1.1 Let (M, ·, 1) be a divisibility monoid. Then fnf ◦α : Cℓ⋆ → Cℓ⋆ is
a description of (Cℓ, α).

Proof. For any A ∈ Cℓ, choose some word wA ∈ T ⋆ with nat(wA) = α(A). Then
there exists a homomorphism ψ : Cℓ⋆ → T ⋆ that extends the mapping A 7→ wA.
In addition, nat ◦ψ : Cℓ⋆ →M satisfies

nat ◦ψ(A1A2 . . . An) = nat(wA1wA2 . . . wAn
)

= nat(wA1) · nat(wA2) · · · nat(wAn
)

= α(A1) · α(A2) · · ·α(An)

= α(A1A2 . . . An),

i.e. α = nat ◦ψ. Hence β = fnf ◦ nat ◦ψ.
It remains to show that β is idempotent and that ker β = kerα: Since fnf(x)

is the unique word in FNF with α(fnf(x)) = x, we have α ◦ fnf = idM . Hence
β ◦β = fnf ◦α◦ fnf ◦α = fnf ◦ idM ◦α = β, i.e. β is idempotent. Now let v, w ∈ Cℓ⋆

with α(v) = α(w). Then, clearly, β(v) = fnf ◦ α(v) = fnf ◦ α(w) = β(w), i.e.
ker(α) ⊆ ker(β). Conversely, β(v) = β(w) implies α ◦ fnf ◦ α(v) = α ◦ fnf ◦ α(w)
and therefore ker β ⊆ kerα by α ◦ fnf = idM . �

A function β : M → N mapping one monoid into another can be seen as a
subset of M ×N . Since this direct product is a monoid, we can speak of rational
sets in M × N . In this spirit, a function β : M → N is a rational function if it
is a rational set in M ×N .

A monoid (M, ·, 1) is a rational monoid if there exists a generating system
(X,α) of M that has a rational description. Loosely speaking, a monoid is
rational if there is a rational normal form function β that determines M . Let
β : X → X be a rational description of the rational monoid M . Since the image
of a rational set under a rational function is a rational set, the set β(X⋆) is
rational in the free monoid X⋆. Hence M = α ◦ β(X⋆) is rational in M . Since
any rational set in M is contained in a finitely generated submonoid of M , this
implies that a rational monoid is finitely generated.

The key property of rational monoids that will be used in our considerations
is that they satisfy Kleene’s Theorem:

10.2. WIDTH-BOUNDED DIVISIBILITY MONOIDS 135

Theorem 10.1.2 ([Sak87, Theorem 4.1]) Let M be a rational monoid and
L ⊆M . Then L is rational iff it is recognizable.

Suppose the trace monoid M(Σ, D) is rational. Then it satisfies Kleene’s
Theorem implying that it is free. Since, conversely, any free monoid is rational,
a trace monoid is rational iff it is free.

10.2 Width-bounded divisibility monoids

10.2.1 Width-bounded divisibility monoids are rational

In this section, we will show that the description fnf ◦α of the generating system
(Cℓ, α) for a width-bounded divisibility monoid is a rational function. To this
purpose, we first show that the function fnf ◦ nat is rational. This is based on
the following theorem that characterizes rational subsets in a monoid.

Theorem 10.2.1 ([EM65]) Let M be a monoid. A set L ⊆M is rational iff it
is the behavior of a finite automaton over M .

Recall that an automaton is finite whenever its set of transitions is finite.
Since the transitions of the automaton A from Theorem 7.3.6 are elements of the
set Q× (T × Cℓε)×Q, and since the set T × Cℓε is finite, it suffices to show that
there are only finitely many reachable states. To this purpose, we show that the
length of the monoid elements in reachable states is bounded. But first, we need
the following lemma on the lattices ↓x for x ∈ M . As known from traces, the
width of these lattices is in general unbounded. Here we show that nevertheless
the width of the join-irreducible elements is bounded by T :

Lemma 10.2.2 Let (M, ·, 1) be a divisibility monoid and x ∈M . Then the width
of (J(x),≤) is at most |T |.

Proof. Let A ⊆ J(x) be an antichain. Define

b := sup{y ∈ J(x) | ¬∃a ∈ A : a ≤ y}.

Since ↓b ∩ J(x) equals {y ∈ J(x) | ¬∃a ∈ A : a ≤ y} and since A is an antichain,
it is the set of minimal elements of the partially ordered set J(x)\↓b. By Lemma
7.3.1, |A| equals the number of minimal elements of J([b, x]). Since [b, x] and ↓b−1x
are order isomorphic by Lemma 7.1.1, |A| is the number of minimal elements of
J(b−1x), i.e. of elements t ∈ T with t ≤ b−1x. Hence |A| ≤ |T |. �

Now we can bound the number of reachable states in the automaton A.

136 CHAPTER 10. KLEENE’S THEOREM

Lemma 10.2.3 Let (M, ·, 1) be a width-bounded divisibility monoid such that
w(↓x,≤) ≤ n for any x ∈ M . Let x, y ∈ M with |fnf(xy)| = |fnf(x)|. Then
|y| < 2(n+ 1)|T |.

Proof. By contradiction, assume |y| ≥ 2(n+1)|T |. Since x ≤ xy, the set J(x) is
an ideal in (J(xy),≤). Hence, for v ∈ J(x) and w ∈ J(xy), it holds w 6≤ v. The size
of J(x) equals the length (↓x,≤) and therefore of x and similarly for xy. Hence
J(xy)\J(x) contains at least 2(n+1)|T | elements. By Lemma 10.2.2, J(xy)\J(x)
has width at most |T |. Hence the elements of J(xy)\J(x) occupy at least 2(n+1)
different heights, i.e. there are natural numbers 0 ≤ n1 < n2 · · · < n2(n+1) such
that there exists wi ∈ J(xy) \ J(x) with h(wi, J(xy)) = ni for 1 ≤ i ≤ 2(n + 1).
Since |fnf(xy)| = |fnf(x)|, the partially ordered sets J(xy) and J(x) have the same
length by Lemma 7.3.2. Hence, for 1 ≤ i ≤ 2(n + 1) there exists vi ∈ J(x) with
h(vi, J(xy)) = ni. Since h(wi, J(xy)) ≤ h(vj, J(xy)) for 1 ≤ i ≤ n ≤ j ≤ 2(n+1),
the elements from {wi | 1 ≤ i ≤ n + 1} and {vj | n + 1 ≤ j ≤ 2(n + 1)} are
mutually incomparable. Then I(i, j) := ↓{w1, w2, . . . , wi, vn+1, vn+2, . . . , vn+1+j}
is a finitely generated ideal in (J(xy),≤). Note that wj 6≤ wi for 1 ≤ i < j ≤ n+1
and similarly vj 6≤ vi for n + 1 ≤ i < j ≤ 2(n + 1). Hence the ideals I(i, n − i)
for 1 ≤ i ≤ n + 1 are pairwise incomparable, i.e. (H(J(xy),≤),⊆) contains an
antichain of n + 1 elements. Since (↓xy,≤) ∼= (H(J(xy),≤),⊆), this contradicts
our assumption. �

The proof of the following theorem is based on the fact that the description
fnf ◦ α of the generating system (Cℓ, α) for a width-bounded divisibility monoid
is rational:

Theorem 10.2.4 Any width-bounded divisibility monoid is a rational monoid.

Proof. Let M be a width-bounded divisibility monoid. By Theorem 7.3.6,
the automaton A computes the function fnf ◦ nat : T ⋆ → Cℓ⋆. To show that
this is rational, it remains to prove that the number of reachable states in A
is finite (since the transitions are labeled by the finite set T × Cℓε). Let (z, C)
be a reachable state of A. Then, by Lemma 7.3.5, there exists x ∈ M with
|fnf(x)| = |fnf(xz)|. Hence, by Lemma 10.2.3, the length of z is bounded by
2(n + 1)|T | where n is the global bound for the size of bounded antichains in
(M,≤). Since Cℓ is finite, this implies that there are only finitely many reachable
states in A.

Recall that (Cℓ, α) is a generating system ofM . By Lemma 10.1.1, the function
fnf ◦ α : Cℓ⋆ → Cℓ⋆ is a description of (Cℓ, α). To show that this description
is rational, consider the homomorphism ψ : Cℓ⋆ → T ⋆ defined in the proof of
Lemma 10.1.1, where we also showed α = nat ◦ψ and therefore β = fnf ◦ nat ◦ψ.
Since ψ is a homomorphism, it is a rational relation from Cℓ⋆ into T ⋆, i.e. β splits

10.2. WIDTH-BOUNDED DIVISIBILITY MONOIDS 137

into two rational relations Cℓ⋆ → T ⋆ and T ⋆ → Cℓ⋆. Since T ⋆ is a free monoid, by
[EM65] (cf. [Sak87, Proposition A.16]), β is rational. �

Remark. By [Sak87, Theorem 4.1], Kleene’s Theorem holds in any rational
monoid. Thus, the theorem above implies that in a width-bounded divisibility
monoid the rational and the recognizable sets coincide. There is an alternative
proof of this weaker result that follows the line of the proof of Theorem 9.3.8:
Let (M, ·, 1) be a width-bounded divisibility monoid (M, ·, 1) with w(↓x,≤) ≤ n
for any x ∈ M . Then one shows that its monoid of commutation behaviors CM

has at most |T |n+1 − 1 + |T |(n+1)(|T |n+1−1) elements. Hence any such monoid has
finite commutation behavior. The crucial point then is to show that the rank of
X is bounded by 2n for any X ⊆ T ⋆.

10.2.2 Rational divisibility monoids are width-bounded

Our next goal is to show that the width-boundedness is not only sufficient but
also necessary for Kleene’s Theorem to hold. We start with two lattice-theoretic
lemmata.

Lemma 10.2.5 Let (P,≤) be a partially ordered set, M,N ⊆ P sets with n− 1
elements each such that any m ∈M is incomparable with any n ∈ N . Then there
exists a semilattice embedding of [n − 1] × [n − 1] into (Hf (P),⊆). If (P,≤) is
finite, this embedding can be chosen to preserve infima, too.

Proof. Let M = {m1,m2 . . . ,mn−1} and N = {n1, n2 . . . , nn−1} be linear ex-
tensions of (M,≤) and (N,≤), i.e. mi ≤ mj or ni ≤ nj implies i ≤ j. Then
I(i, j) := ↓{m1, . . . ,mi, n1, . . . , nj} is a finitely generated ideal and therefore an
element of Hf (P,≤). Furthermore, ({I(i, j) | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1},⊆)
is the desired subposet of Hf (P,≤). �

Next, we want to prove that any distributive lattice of sufficient width contains
a large grid. Recall that Rn+1(6

n) is a Ramsey number (cf. Ramsey’s Theorem
on page 124).

Theorem 10.2.6 Let (L,≤) be a finite distributive lattice with w(L) ≥ Rn+1(6
n).

Then there exists a lattice embedding of [n− 1]× [n− 1] into (L,≤).

Proof. First we consider the case w(J(L)) ≥ 2n. Then there exists an antichain
A ⊆ J(L) containing 2n elements. Let M and N be disjoint subsets of A of size
n. Then Lemma 10.2.5 implies the statement.

138 CHAPTER 10. KLEENE’S THEOREM

Now assume w(J(L)) = k < 2n. By Dilworth’s Theorem [Dil50], there are
chains C1, C2, . . . , Ck ⊆ J(L) with J(L) =

⋃

i=1,...k Ci. For x ∈ L and 1 ≤ ℓ ≤ k
let ∂ℓ(x) denote the maximal element of Cℓ below x if it exists, and ⊥ otherwise.
To ease the notations in this proof, we will consider ⊥ as an additional element
of J(L) which is minimal. Since L is distributive, x =

∨

1≤i≤k ∂i(x) for any x ∈ L.
Since w(L) ≥ Rn+1(6

n), there is an antichain A = {x1, x2, . . . , xm} in L with
m ≥ Rn+1(6

n). Now we define a mapping gi,j : {1, 2, . . . , k} → {<,=, >} for
1 ≤ i < j ≤ m by gi,j(ℓ) = θ iff ∂ℓ(xi)θ∂ℓ(xj) (with θ ∈ {<,=, >}). For xi 6= xj,
we define g(xi, xj) = gmin{i,j},max{i,j}. Thus, g maps the two-elements subsets of
A into {<,=, >}{1,2,...,k}. Since this set contains at most 32n = 6n elements and
since m > Rn+1(6

n), we can assume g(xi, xj) = g(xi′ , xj′) =: f for i, j, i′, j′ ∈
{1, 2, . . . , n + 1} with i 6= j and i′ 6= j′. Then f(ℓ1) 6=“=” for some 1 ≤ ℓ1 ≤ k
since otherwise x1 = x2. Similarly, there is an index 1 ≤ ℓ2 ≤ k with f(ℓ2) 6∈
{=, f(ℓ1)} since otherwise x1 and x2 are comparable. Without loss of generality,
we assume f(1) =“<” and f(2) =“>”. Then ∂1(x1) < ∂1(x2) < . . . ∂1(xn+1) and
∂2(x1) > ∂2(x2) > . . . ∂2(xn+1). Thus, Cj := {∂j(xi) | 1 < i < n + 1} for j = 1, 2
is a chain in J(L) containing n− 1 elements.

Let 1 < i < n + 1 with ∂1(xi) ≥ ∂2(xi). Then xi+1 ≥ ∂1(xi+1) > ∂1(xi) ≥
∂2(xi) > ∂2(xi+1) and ∂2(xi), ∂2(xi+1) ∈ C2. But this contradicts the definition
of ∂2(xi+1) as the maximal element of C2 below xi+1. Symmetrically, we can
argue if ∂1(xi) ≤ ∂2(xi) (with xi−1 in place of xi+1). Thus, ∂1(xi) and ∂2(xi) are
incomparable for 1 < i < n+ 1.

Now let 1 < i < j < n + 1 with ∂1(xj) ≥ ∂2(xi). Then ∂2(xi) > ∂2(xj) since
i < j, i.e. ∂1(xj) > ∂2(xj), a contradiction to what we showed above. Similarly,
we can argue in the cases ∂1(xj) ≤ ∂2(xi), ∂1(xi) ≥ ∂2(xj) and ∂1(xi) ≤ ∂2(xj).

Thus, we found two chains C1 and C2 in J(L) of size n − 1 whose elements
are mutually incomparable. Now Lemma 10.2.5 implies that [n− 1]× [n− 1] can
be lattice embedded into (H(J(L)),⊆) ∼= L. �

The following lemma implies that the free commutative monoid with two
generators can be embedded into a divisibility monoid if the size of bounded
antichains is unbounded.

Lemma 10.2.7 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Let z ∈ M with w(↓z) ≥ Rn+2(6

n+1) where n = R3(|CM |) + 1. Then
there exist x, y ∈M \ {1} such that x I y, cy(x) = x and cx(y) = y.

Proof. By Theorem 10.2.6, there is a lattice embedding η : [n− 1]2 → ↓z. By
cancellation, we may assume η(0, 0) = 1. For 0 ≤ i ≤ n− 2 there is xi ∈M \ {1}
with η(i, 0) · xi = η(i+ 1, 0). By Lemma 9.2.4, there are 0 ≤ i < j ≤ n− 1 with
cxixi+1···xj−1

⊆ idM . Furthermore, there are yℓ ∈M\{1} with η(i, ℓ)·yℓ = η(i, ℓ+1).
Using Lemma 9.2.4 again, there are 0 ≤ k < ℓ ≤ n− 1 with cykyk+1···yℓ−1

⊆ idM .

10.2. WIDTH-BOUNDED DIVISIBILITY MONOIDS 139

Let x := η(i, k)−1η(j, k) and y := η(i, k)−1η(i, ℓ) = ykyk+1 · · · yℓ−1. Then
cy ⊆ idM .

To show cx ⊆ idM , note that η(i, 0) = η(i, k) ∧ η(j, 0) since i < j. Hence,
by Lemma 7.1.1, 1 = η(i, 0)−1η(i, 0) = η(i, 0)−1η(i, k) ∧ η(i, 0)−1η(j, 0), i.e.
η(i, 0)−1η(i, k) and η(i, 0)−1η(j, 0) are independent.

Similarly, we get η(i, k) ∨ η(j, 0) = η(j, k) since i < j and therefore

η(i, 0)−1η(i, k) ∨ η(i, 0)−1η(j, 0) = η(i, 0)−1η(j, k)

= η(i, 0)−1η(i, k) η(i, k)−1η(j, k).

Thus η(i, 0)−1η(j, 0) ↑ η(i, 0)−1η(i, k) = η(i, k)−1η(j, k) = x. Since the commu-
tation behavior of xixi+1 · · · xj−1 = η(i, 0)−1η(j, 0) is contained in the identity,
Lemma 7.2.6 indeed implies cx ⊆ idM .

It remains to show x I y: Since η(j, k), η(i, ℓ) ≤ η(j, ℓ), the elements x and y
are bounded in (M,≤). Furthermore, η(i, ℓ) ∧ η(j, ℓ) = η(i, k) implies x ∧ y = 1.

�

Now we can characterize the divisibility monoids that satisfy Kleene’s Theo-
rem.

Theorem 10.2.8 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Then the following are equivalent
1. M is width-bounded,
2. M is rational, and
3. any set L ⊆M is rational iff it is recognizable.

Proof. The implication 1 ⇒ 2 follows from Theorem 10.2.4, and the implication
2 ⇒ 3 from [Sak87, Theorem 4.1]. Now assume M not to be width-bounded.
Then, by Lemma 10.2.7, there are x, y ∈M \ {1} such that x I y, cx(y) = y and
cy(x) = x. Hence we can embed the monoid (N×N,+, (1, 1)) into M (extending
the mapping (1, 0) 7→ x and (0, 1) 7→ y to a homomorphism). Since {(i, i) | i ∈ N}
is rational but not recognizable in (N×N,+, (0, 0)), its image is so in M . Hence
M does not satisfy Kleene’s Theorem, i.e. the implication 3 ⇒ 1 is shown. �

Remark. Note that the assumption onM to have finite commutation behavior
is necessary for the implication 3 ⇒ 1, only. On the other hand, the implications
1 ⇒ 2 ⇒ 3 can be shown without this assumption. It is not clear whether the
other implications, in particular that any rational divisibility monoid is width-
bounded can be shown without this assumption.

140 CHAPTER 10. KLEENE’S THEOREM

Chapter 11

Monadic second order logic

11.1 Two Büchi-type theorems

Büchi showed that the monadic second order theory of the linearly ordered set
(ω,≤) is decidable. To achieve this goal, he used automata. In the course of these
considerations it was shown that a language in a free finitely generated monoid is
recognizable iff it is monadically axiomatizable. In computer science, this latter
result and its extension to infinite words are often referred to as “Büchi’s Theo-
rem” while in logic it denotes the decidability of the monadic theory of ω. Here, I
understand it in this second meaning, i.e. it is the aim of this section to show that
certain monadic theories associated to a divisibility monoid are decidable. In par-
ticular, it will be shown that the monadic theory MTh({(J(↓m),≤) | m ∈ M})
is decidable for any divisibility monoid with finite commutation behavior.

Let (L,≤) be a finite distributive lattice. Let x, y ∈ L with x −−< y. Then
there exists a uniquely determined join-irreducible element z ∈ J(L) such that
z ≤ y and z is incomparable with x. We denote this element by prim(x, y). Then
x ∨ prim(x, y) = y.

Lemma 11.1.1 Let (M, ·, 1) be a divisibility monoid. Furthermore, let s, t ∈ T
and u, v ∈ M . Then prim(u, us) and prim(usv, usvt) are incomparable iff there
exist x1, x2 ∈M and s′ ∈ T such that

sv = x1s
′x2, s

′ = cx1(s) and t ∈ im(cs′x2).

The situation of the lemma is depicted by Figure 11.1.

Proof. First, assume prim(u, us) and prim(usv, usvt) =: b to be incomparable.
Since b is join-irreducible, there is a uniquely determined element a ∈ M with
a −−< b. Assume us ≤ uva. Then prim(u, us) ≤ u ∨ prim(u, us) = us ≤ a < b,
contradicting prim(u, us) ‖ b. Hence us 6≤ u ∨ a. Furthermore, u ∨ a < us ∨ a
for otherwise us ≤ us ∨ a = u ∨ a contradicting to what we just showed. Hence

141

142 CHAPTER 11. MONADIC SECOND ORDER LOGIC

u

s

v

t

x1

s′

x2

t′

Figure 11.1: cf. Lemma 11.1.1

u∨a −−< us∨a, i.e. there exists s′ ∈ T with (u∨a)·s′ = us∨a. Let x1 := u−1(u∨a),
i.e. u ∨ a = ux1. Then ux1s

′ = sup(u, us, a) = ux1 ∨ us implying s′ = x1 ∨ s. On
the other hand, us 6≤ u ∨ a = ax1, i.e. s 6≤ x1 implies s ∧ x1 = 1 since s ∈ T .
Hence x1 I s and therefore s′ = s ↑ x1 = cx1(s).

Next we show u∨a −−< u∨b. Clearly, a ≤ b implies u∨a ≤ u∨b. Assume them
to be equal. Since b is join-irreducible and above a, this implies b ≤ u ≤ usv.
But this contradicts b∨usv = prim(usv, usvt)∨usv = usvt > usv. Since a −−< b
we get u ∨ a −−< u ∨ b. Hence there exists t′ ∈ T with u ∨ a · t′ = u ∨ b.

Let x2 ∈M be given by (us ∨ a) · x2 = usv. It remains to show that we have
t = t′ ↑ s′x2: First note that ux1t

′ = u ∨ b and

ux1s
′x2 = (u ∨ a)s′x2 = (us ∨ a)x2 = usv.

Hence ux1t
′∨ux1s′x2 = u∨b∨usv = usvt = ux1s

′x2t. This implies t′∨s′x2 = s′x2t
and therefore in particular s′x2 −−< t′ ∨ s′x2. Since t′ ∈ T , this implies t′ I s′x2
and t = t′ ↑ s′x2.

Conversely, let s′, t′ ∈ T and x1, x2 ∈ M such that we have sv = x1s
′x2,

s′ = s ↑ x1 and t = t′ ↑ s′x2. Then s∨ x1 = x1s
′ implying us∨ ux1 = ux1s

′. Now
ux1 ∨ prim(u, us) = ux1 ∨ u ∨ prim(u, us) = ux1 ∨ us = ux1s

′ follows.

Similarly, t′ ∨ s′x2 = s′x2t and therefore ux1t
′ ∨ ux1s′x2 = ux1s

′x2t or, since
ux1t

′x2 = usv, ux1t
′ ∨ usv = usvt. On the other hand, we have usv ∨ ux1t

′ =
ux1s

′x2∧ux1t′ = ux1(s
′x2∧t′) = ux1 since s

′x2I t′. Hence the two prime intervals
(ux1, ux1t

′) and (usv, usvt) are transposed. Thus we get ux1∨prim(usv, usvt) =
ux1 ∨ prim(ux1, ux1t

′) = ux1t
′.

11.1. TWO BÜCHI-TYPE THEOREMS 143

Since t′ and s′x2 are independent, t′ and s′ are in particular incomparable.
Hence so are ux1s

′ and ux1t
′. Since, as we saw above, ux1 ∨ prim(u, us) =

ux1s
′ and ux1 ∨ prim(usv, usvt) = ux1t

′, prim(u, us) and prim(usv, usvt) are
incomparable. �

Lemma 11.1.2 Let M be a divisibility monoid with finite commutation behavior
CM . Then there exists a monadic formula less over the signature {≤, λ} with two
free elementary variables such that for any w ∈ T ⋆:

(J(↓[w]), <) ∼= (dom(w), {(x, y) ∈ (dom(w))2 | w |= less(x, y)}).

Proof. For c ∈ CM let Lc denote the set of all x ∈ M with cx = c. Then, for
s, t ∈ T , we have

Ms,t := {x1s
′x2 | x1, x2 ∈M, s′ ∈ T such that s′ = cx1(s) and t ∈ im(cs′x2)}

=
⋃

s′∈T

(
⋃

{Lc | c ∈ CM , c(s
′) = s} · s′ ·

⋃

{Lcx | x ∈M, t ∈ im(cs′x)}).

Since M has finite commutation behavior and x 7→ cx is a monoid antihomomor-
phism, this set is recognizable by Corollary 9.2.2. Hence {w ∈ T ⋆ | [w] ∈Ms,t} is
recognizable in T ⋆ and therefore axiomatizable by a monadic sentence ϕs,t. Now
we define

less(x, y) :=
∧

s,t∈T

(λ(x) = s ∧ λ(y) = t ∧ x < y ∧ ¬ϕ′
s,t)

where ϕ′
s,t is the restriction of ϕs,t to the positions between x and y, i.e. to the

set {z ∈ dom(w) | x ≤ z < y}. Now the lemma follows easily by the preceding
lemma. �

Theorem 11.1.3 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior CM . Then the monadic theory MTh({(J(↓m), <) | m ∈ M}) is decid-
able.

Proof. Let ϕ be a monadic sentence over the signature {<}. In ϕ, replace any
subformula of the form x < y by less(x, y) and denote the resulting sentence by
ϕ. Then, for any w ∈ T ⋆, we have w |= ϕ iff (J(↓[w]), <) |= ϕ. Since the monadic
theory of the words over T is decidable, the result follows. �

By the theorem above, the monadic theory of {(J(↓m),≤) | m ∈ M} is
decidable. The union of all these sets is J(M), the set of join-irreducibles in

144 CHAPTER 11. MONADIC SECOND ORDER LOGIC

(M,≤). The following theorem shows that the monadic theory of this set is not
decidable in general:

Theorem 11.1.4 Let (Σ, D) be a finite dependence alphabet. Then the monadic
theory of (J(M(Σ, D)),≤) is decidable iff D is transitive.

Proof. Let D be transitive. Then J(M(Σ, D),≤) is the disjoint union of trees of
the form ({1, 2, . . . , k}⋆,≤). Since the monadic theory of these uniformly branch-
ing trees is decidable [Rab69], so is the monadic theory of their disjoint union
[She75].

On the other hand, suppose D not to be transitive. Then there are a, b, c ∈ Σ
with (a, b), (b, c) ∈ D and (a, c) 6∈ D. We show how to encode an undirected graph
(V,E) into two antichains A and B of J(M(Σ, D)): Suppose V = {1, 2, . . . , n}.
The vertices are represented by the elements of the set A := {akckb | 1 ≤ k ≤ n}.
Furthermore, the edges of the graph (V,E) correspond to the elements of the
antichain B := {aicjb | (i, j) ∈ E}. Then, for any “vertices” x, y ∈ A, there is
an edge in the graph (V,E) iff there exist x′, y′ ∈ J(M(Σ, D)) and z ∈ B such
that x′ −−< x, z and y′ −−< y, z. Since this can be expressed by an elementary
formula, we can easily reduce the elementary theory of graphs to the monadic
antichain theory of (M(Σ, D),≤). �

Again, by Theorem 11.1.3, the monadic theory MTh{J(↓x,≤) | x ∈ M} is
decidable for any divisibility monoid with finite commutation behavior. This
does not imply that the monadic theory MTh{(↓x,≤) | x ∈ M} is decidable. A
counterexample is provided by the free commutative monoid with two generators
since this monoid contains, for any n ∈ N, an element x such that (↓x,≤) is
the grid ([n]2,≤). We will show that these grids are the only reason for the
undecidability.

To this aim, we first show that for a given divisibility monoid (M, ·, 1) with
finite commutation behavior, the set of lattices (↓m,≤) for m ∈ M is finitely
axiomatizable in monadic second order logic (Corollary 11.1.7).

Let Σ be a finite alphabet and consider the elementary logic that is appropriate
to reason on Σ-labeled partially ordered sets. Furthermore, we deal with pomsets
without autoconcurrency, only, i.e. we consider structures t = (V,≤, λ) where
(V,≤) is a finite partially ordered set and λ : V → Σ is a mapping such that
λ−1(a) is linearly ordered in (V,≤). In this setting, one can write down a formula
ϕ with two free variables x and y such that

ϕt = {(x, y) ∈ E2 | t |= ϕ(x, y)}

is a linear extension of ≤. For traces over (Σ, D) this was shown in [EM96].
For Σ-labeled partially ordered sets that are associated to the computations of
stably concurrent automata, it has been observed independently in [DK96]. The

11.1. TWO BÜCHI-TYPE THEOREMS 145

most compact formula that defines a linear order in pomsets without autoconcur-
rency can be found in [DM97]. They consider traces only. Nonetheless, following
their argumentation verbatim, one can easily see that their formula defines a lin-
ear order extension of the partial order of any pomset without autoconcurrency.
Knowing this, the following lemma is an immediate reformulation:

Lemma 11.1.5 There exists a monadic formula lin(x, y, C1, . . . , Cm) satisfying:
For any finite partial order (P,≤) of width at most n and any chains Ci ⊆ P for
1 ≤ i ≤ m such that P =

⋃

1≤i≤mCi and Ci ∩ Cj = ∅ for 1 ≤ i < j ≤ m, the
relation

lin(P,≤,C1,...,Cm) = {(x, y) ∈ P 2 | (P,≤) |= lin(x, y, C1, . . . , Cm)}

is a linear order extending ≤.

Theorem 11.1.6 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. There exists a monadic sentence ϕ such that for any finite partial order
(P,≤):

(P,≤) |= ϕ ⇐⇒ there exists x ∈M with J(↓x,≤) ∼= (P,≤).

Proof. Let m = |T | denote the number of irreducible elements of the monoid
(M, ·, 1). By Lemma 11.1.2, there exists a formula less that defines the partially
ordered set J(↓[w], <) inside the word w ∈ T ⋆. In this formula, replace any
subformula of the form λ(z) = t by z ∈ Mt and any subformula of the form
z ≤ z′ by lin(z, z′, C1, C2, . . . , Cm). The result is denoted by less′. Now let
ϕ(C1, C2, . . . , Cm) denote the following formula

∃t∈TMt (
⋃

t∈T

Mt = everything ∧

Ms ∩Mt = ∅ for s 6= t ∧

∀x, y(x < y ↔ less′(x, y, C1, . . . , Cm))

).

Let x ∈ M and (Ci)1≤i≤m be a tuple of mutually disjoint chains whose union
equals J(↓x,≤). For simplicity, let (P,≤) := J(↓x,≤). Then lin(P,≤,C1,...,Cm)

defines a linear order that extends ≤. This linear order defines a maximal chain
in the lattice (↓x,≤) which corresponds naturally to a word w ∈ T ⋆ with nat(w) =
x. Now let Mt be the set of positions in w that are labeled by the irreducible
element t ∈ T . Then the sets Mt satisfy the first two conditions of the formula
ϕ. Furthermore, by Lemma 11.1.2, the last statement holds as well. Hence
(P,≤) |= ϕ(C1, . . . , Cm). On the contrary, let (P,≤) be a finite partial order,
Ci mutually disjoint chains whose union is P such that (P,≤) |= ϕ(C1, . . . , Cm).
Let P = (x1, x2, . . . , xk) be the enumeration of P that is completely defined by

146 CHAPTER 11. MONADIC SECOND ORDER LOGIC

(P,≤) |= lin(xi, xi+1, C1, . . . , Cm). Now consider the word w = t1t2 . . . tk with
xi ∈ Mti for all i. Due to the construction of less′ from less and Lemma 11.1.2,
(P,≤) ∼= (J(↓(nat(w)),≤)). Hence we found a monoid element x = nat(w) such
that (P,≤) ∼= (J(↓m,≤).

Finally, let ϕ denote the formula

∃1≤i≤mCi (
⋃

1≤i≤m

Ci = everything ∧

Ci ∩ Cj = ∅ for 1 ≤ i < j ≤ m ∧

ϕ

).

By Lemma 10.2.2, any partially ordered set J(↓x,≤) for x ∈ M has width at
most m. Hence by Dilworth’ Theorem, there are mutually disjoint chains Ci that
cover P . Now the statement of the theorem follows by the consideration above.

�

Since the set of join-irreducible elements of a distributive lattice is definable
inside the lattice, we obtain as a direct consequence of the theorem above the
following

Corollary 11.1.7 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. There exists a monadic sentence ψ such that for any finite partial order
(P,≤) it holds:

(P,≤) |= ψ ⇐⇒ ∃x ∈M : (↓x,≤) ∼= (P,≤).

Let (M, ·, 1) be a width-bounded divisibility monoid. To show that in this
case the monadic theory MTh({(↓x,≤) | x ∈ M}) is decidable, we now show
that the set of lattices {(↓x,≤) | x ∈ M} is contained in a set of lattices whose
monadic theory is decidable. Then, by the corollary above, the decidability of
MTh({(↓x,≤) | x ∈M}) follows easily:

An undirected graph (T,K) is a tree if for any s, t ∈ T , there is a unique
path connecting s and t. Now let (V,E) be a finite directed graph and n ∈ N.
Then (V,E) has tree-width at most n if there exists a tree (T,K) and a mapping
ψ : T → 2V such that

1. for any (x, y) ∈ E, there is t ∈ T with x, y ∈ ψ(T),

2. for any s, t, u ∈ T such that t is on the path connecting s and u, we have
ψ(s) ∩ ψ(u) ⊆ ψ(t),

3.
⋃

s∈T ψ(i) = V , and

4. |ψ(t)| < n for any t ∈ T .

11.2. THE SEMILATTICE OF FINITELY GENERATED IDEALS 147

Lemma 11.1.8 Let n ∈ N and (L,≤) a finite distributive lattice of width at
most n. Then the graph (L,−−<) has tree width at most 2n.

Proof. Let m denote the length of L. The tree (T,K) that we construct is (the
Hasse diagram of) the linear order on {1, 2, . . . ,m}. Let ψ(i) be the set of all
vertices in (L,≤) of height i− 1 or i.

Now let x, y ∈ L with x −−< y. Then, since L is distributive, h(y)−h(x) = 1,
i.e. x, y ∈ ψ(h(y)). Hence the first property is satisfied. For the second note
that ψ(i) ∩ ψ(k) = ∅ whenever there is i < j < k. Hence it is trivially satisfied.
Similarly, the third requirement holds trivially. Finally, ψ(i) consists of two
antichains. Since the size of these antichains is bounded by n, the last requirement
|ψ(i)| ≤ 2n follows. �

Theorem 11.1.9 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Then the monadic theory MTh{(↓m,≤) | m ∈ M} is decidable iff M
is width-bounded.

Proof. First, let (M, ·, 1) be width-bounded by n. Then any lattice (↓x,≤)
has tree-width at most 2n by the preceding lemma. Now let µ be a monadic
sentence. Then, by Corollary 11.1.7, µ belongs to MTh({(↓x,≤) | x ∈ M}) iff
ψ → µ is satisfied by all finite distributive lattices of tree width at most 2n. But
this question is decidable by [Cou90].

If, on the other hand, (M, ·, 1) is not width-bounded, by Theorem 10.2.6,
any grid ([n]2,≤) can be embedded into some lattice (↓x,≤). Since the monadic
theory of these grids is undecidable, the monadic theory of all lattices (↓x,≤)
with x ∈M is undecidable. �

Let (M, ·, 1) be a divisibility monoid and let L denote the set of all distributive
lattices (↓x,≤) for x ∈ M . Then, by Theorem 11.1.3, the monadic theory of
J(L) := {J(L,≤) | (L,≤) ∈ L} is decidable. By the theorem above, MTh(L) is
decidable iff the width of the elements of L is uniformly bounded. As an encore
which is not directly related to divisibility monoids, we show in the following
two sections that this last connection between the bounded width of a class of
distributive lattices L and the decidability of MTh(J(L)) holds in general and is
not a particular feature of divisibility monoids.

11.2 The semilattice of finitely generated ideals

It is the aim of this section to relate the monadic theory of a set of partially
ordered sets to the monadic theory of the semilattices of finitely generated ide-

148 CHAPTER 11. MONADIC SECOND ORDER LOGIC

als that are associated with these partially ordered sets. In particular, we are
interested in the relation between the decidabilities of these theories.

Remark 11.2.1 Let P be a set of partially ordered sets. Then MTh(P) can be
reduced in linear time to MTh(Hf (P)).

Proof. Recall that a partially ordered set (P,≤) is isomorphic to JHf (P,≤).
Hence, a sentence is satisfied by (P,≤) iff its restriction to the join-irreducible
elements is valid in Hf (P,≤). Since this restriction can be computed in linear
time, the statement follows. �

Theorem 11.2.2 Let P be a set of partially ordered sets and n ∈ N such that
w(P,≤) ≤ n for any (P,≤) ∈ P. Then Th(Hf (P)) can be reduced to Th(P) in
linear time.

Proof. The idea of the proof is that any finitely generated ideal in (P,≤), i.e.
any element of Hf (P,≤) is generated by at most n elements of P . Therefore, the
reduction r is defined by

r(∃xα) = (∃x1∃x2 . . . ∃xnr(α)),

r(x ≤ y) = (
∧

1≤i≤n

∨

1≤j≤n

xi ≤ yj),

r(α ∨ β) = (r(α) ∨ r(β)), and

r(¬α) = ¬r(α).

Identifying a tuple (x1, x2, . . . , xn) in P with its ideal x1 ↓ ∪x2 ↓ ∪ · · · ∪ xn↓,
one easily verifies that

Hf (P,≤) |= ϕ ⇐⇒ (P,≤) |= r(ϕ)

for any elementary sentence ϕ and any (P,≤) ∈ P. Hence, in particular, r
reduces Th(Hf (P)) to Th(P) in linear time. �

As an immediate consequence of the above, we obtain

Corollary 11.2.3 Let P be a set of partially ordered sets and n ∈ N such that
w(P,≤) ≤ n for any (P,≤) ∈ P. Then Th(Hf (P)) is decidable iff Th(P) is
decidable.

11.2. THE SEMILATTICE OF FINITELY GENERATED IDEALS 149

11.2.1 From MTh(Hf(P)) to MTh(P)

Our next aim is to show a similar result for the monadic theories MTh(Hf (P))
and MTh(P). Note that the basic idea of the reduction of Th(Hf (P)) to Th(P)
is the replacement of an element of Hf (P,≤) by an n-tuple in (P,≤). If we
want to extend this to sets of elements in Hf (P,≤), it would be natural to con-
sider n-ary relations in (P,≤). But this is not possible in monadic second order
logic. Therefore, we have to perform some extra work to encode certain n-ary
relations using sets of elements of P , only. This is the content of the following
considerations that lead to Corollary 11.2.9.

Lemma 11.2.4 Let (C,≤) be a linearly ordered set and let k ∈ N. Then C splits
into 2k mutually disjoint subsets C(j) (1 ≤ j ≤ 2k) satisfying
(⋆) For any 1 ≤ j ≤ 2k and for any x, y ∈ C(j) with x < y, the interval

x ↑ ∩y↓ ⊆ C contains at least k elements.

Proof. Let α be an ordinal and let C = {xβ | β < α} be an enumeration of C.
By transfinite induction, we construct the subsets C(j) as follows: Let β < α and
assume that we constructed a partition (Cβ(j))1≤j≤2k of {xγ | γ < β} satisfying
(⋆). Consider the sets

M = {x ∈ C | x < xβ, |x ↑ ∩xβ ↓ | ≤ k} and

N = {x ∈ C | x > xβ, |xβ ↑ ∩x ↓ | ≤ k}.

Since they are linearly ordered, M and N both contain at most k − 1 elements.
Hence there is 1 ≤ j ≤ 2k with Cβ(j) ∩ (M ∪ N) = ∅. Now define Cβ+

(j) :=
Cβ(j)∪{xβ} and Cβ+1(i) := Cβ(i) for i 6= j. Then (Cβ+1(j))1≤j≤2k is a partition
of {xγ | γ < β + 1} satisfying (⋆). For a limit ordinal β, we set Cβ(j) :=
⋃

γ<β C
γ(j) for 1 ≤ j ≤ 2k. Now C(j) := Cα(j) finishes the construction. �

Definition 11.2.5 The partial order (P,≤) has diabolo width at most m if, for
any X, Y ⊆ P such that X × Y ⊆ ‖, we have |X| ≤ m or |Y | ≤ m.

The Figure 11.2 depicts this notion: Let (P,≤) be a partially ordered set of
diabolo width at most m and let X ⊆ P be a set width more than m elements.
Then the set Y := P \ (X ↑ ∪X↓) is incomparable with X. Hence it contains at
most m elements.1

Note that the width is at most double the diabolo width of a partially ordered
set.

1The name “diabolo width” was chosen since in this picture the set X ↑ ∪X↓ looks like a
diabolo – a juggling prop that the author hopes to master eventually.

150 CHAPTER 11. MONADIC SECOND ORDER LOGIC

X

X↑

X↓

Y Y

Figure 11.2: Diabolo width

Let (P,≤) be a partial order and let C1, C2 ⊆ P be chains in (P,≤). We
define an equivalence relation ∼ on C2 by x ∼ y iff C1 ∩ xl = C1 ∩ yl, i.e. iff x
and y are comparable with the same elements of the first chain C1.

Lemma 11.2.6 Let (P,≤) be a partial order of diabolo width at most m. Let
C1, C2 ⊆ P be chains in (P,≤) and let k = (2m+3)2. Let xi ∈ C2 with xi 6∼ xi+1

and xi < xi+1 for 1 ≤ i < k. Then C1 ⊆ x1 ↑∪xk↓, i.e. there is no element in C1

that is incomparable with both x1 and xk.

Proof. For 1 ≤ i ≤ k, let ⇓xi = {x ∈ C1 | x < xi} and ⇑xi = {x ∈ C1 | x > xi}.
Then ⇓xi ∪ ⇑xi consists of those elements from C1 \ {xi} that are comparable
with xi. Hence ⇓xi ⊆ ⇓xi+1 and ⇑xi ⊇ ⇑xi+1. Since xi 6∼ xi+1 and xi < xi+1, we
have ⇓xi (⇓xi+1 or ⇑xi) ⇑xi+1 for 1 ≤ i < k. First we show ⇓xi (⇓xi+2m+3

for 1 ≤ i ≤ k − 2m− 3:
By contradiction, assume 1 ≤ i ≤ k − 2m − 3 with ⇓xi = ⇓xi+2m+3. Let

x ∈ X := ⇑xi \ ⇑xi+m+1 and let m + 1 < ℓ ≤ 2m + 3. If x is comparable with
xi+ℓ, we get x < xi+ℓ for otherwise xi+m+1 < xi+ℓ ≤ x. Thus x ∈ ⇓xi+ℓ = ⇓xi,
i.e. x ∈ ⇓xi ∩ ⇑xi, a contradiction since this set is empty. Thus, any element
of X is incomparable with xi+ℓ for m + 1 < ℓ ≤ 2m + 3, i.e. X and Y :=
{xi+m+2, xi+m+3 . . . xi+2m+3} are incomparable sets. Since Y contains more than
m elements and since the diabolo width of (P,≤) is m, X contains at most m
elements implying that there is 0 ≤ j < m with ⇑xi+j \ ⇑xi+j+1 = ∅. But this
contradicts our assumption that xi+j 6∼ xi+j+1. Thus, we proved ⇓xi (⇓xi+2m+3.

11.2. THE SEMILATTICE OF FINITELY GENERATED IDEALS 151

Now let yi := x(2m+3)i for 1 ≤ i ≤ ℓ := k
2m+3

= 2m+ 3, i.e. y1 < y2 < · · · < yℓ
is a subsequence of x1 < x2 < · · · < xk such that ⇓yi (⇓yi+1 for 1 ≤ i < ℓ.

To prove the final goal C1 ⊆ ↑x1 ∪ ↓xk, assume by contradiction that x is an
element of C1 \ (x1 ↑ ∪xk↓) and let 1 ≤ i ≤ m+ 1 and z ∈ Z := ⇓y2m+3 \ ⇓ym+2.
Since z and x belong to the chain C1, they are comparable. Then z < x for
otherwise x ≤ z ≤ y2m+3 ≤ xk would contradict our assumption on x. In case
z ≥ yi (z ≤ yi), we had x > z ≥ yi ≥ x1 (z ≤ yi ≤ ym+2), contradicting our
assumption on x (on z, respectively). Hence z and yi are incomparable, i.e. the
sets {y1, y2, . . . , ym+1} and Z are incomparable. Since they both contain more
than m elements, the diabolo width of (P,≤) is larger than m, a contradiction.�

Let (P,≤) be a partially ordered set. By a slight abuse of notation, we call
an n-tuple (x1, x2, . . . , xn) ∈ P n an antichain if the set {x1, x2, . . . , xn} is an
antichain. Note that in particular the tuple (a, a, . . . , a) is an antichain for any
a ∈ P . By Antichains, we denote the set of all tuples that are antichains.

Lemma 11.2.7 Let (P,≤) be a partial order of diabolo width at most m. Let
C1, C2 ⊆ P be chains in (P,≤). For any M ⊆ C1 × C2 ∩ Antichains, there exist
sets Mi,j ⊆ Ci for i = 1, 2 and 0 ≤ j < 4m(2m+ 3)2 such that

M =

4m(2m+3)2
⋃

j=0

M1,j ×M2,j

 ∩ Antichains.

Proof. Similarly to the preceding lemma, let k = (2m+3)2. First, we split the
chain C2 into the set Cs

2 of those elements that belong to a small ∼-equivalence
class and its complement, i.e.

Cs
2 = {y ∈ C2 : |[y]| ≤ m}, and

C l
2 = C2 \ C

s
2 = {y ∈ C2 : |[y]| > m}

where [y] denotes the ∼-equivalence class containing y. Using Lemma 11.2.4, next
we split C1 and C

s
2 into 2·k·m disjoint subchains C1(j) and C

s
2(j) for 1 ≤ j ≤ 2km

such that, for any x, y ∈ C1(j) (∈ Cs
2(j), respectively) with x < y the interval

↑x∩↓y contains at least km elements from C1(j) (from Cs
2(j), respectively). This

ensures that between any two elements of C1(j), there are more than m elements
of C1. Similarly, we will use that between two elements of Cs

2(j) there are at least
k ·m elements of Cs

2 . To finish the construction, let

M l(j) = M ∩ C1(j)× C l
2, and

M s(j) = M ∩ C1 × Cs
2(j)

152 CHAPTER 11. MONADIC SECOND ORDER LOGIC

for 1 ≤ j ≤ 2km. We establish the lemma showing that M equals the set of
antichains that occur in

H =
⋃

1≤j≤2km

[

π1(M
l(j))× π2(M

l(j)) ∪ π1(M
s(j))× π2(M

s(j))
]

.

Let (x, y) ∈ M . In case y ∈ C l
2, there is 1 ≤ j ≤ 2km with x ∈ C1(j). Hence

(x, y) ∈ M ∩ C1(j) × C l
2 = M l(j). Now (x, y) ∈ π1(M

l(j)) × π2(M
l(j)) ⊆ H

follows immediately. In case y ∈ Cs
2 , we find 1 ≤ j ≤ 2km with y ∈ Cs

2(j). Now
(x, y) ∈ π1(M

s(j))×π2(M s(j)) ⊆ H follows, i.e. we showedM ⊆ H∩Antichains.
Conversely, we have to show that antichains from π1(M

l(j)) × π2(M
l(j)) or

from π1(M
s(j)) × π2(M

s(j)) belong to M for any 1 ≤ j ≤ 2km. So let 1 ≤
j ≤ 2km and (x1, x2), (y1, y2) ∈ M l(j) with x1 ‖ y2. We want to show x1 = y1
implying (x1, y2) = (y1, y2) ∈ M . By contradiction assume x1 6= y1. Since
x1, y1 ∈ C1(j), they are comparable. We assume x1 < y1 (the case y1 < x1 is
dual). As remarked earlier, there are more than m elements of C1 between x1 and
y1, in particular |x1 ↑ ∩y1 ↓ | > m. All elements of this interval are incomparable
with y2 since its endpoints x1 and y1 are. Thus we found incomparable sets
x1 ↑ ∩y1↓ and [y2] both larger than m. Since this contradicts the assumption on
the diabolo width of (P,≤), we obtain x1 = y1 and therefore

π1(M
l(j))× π2(M

l(j)) ∩ Antichains ⊆M for any 1 ≤ j ≤ 2km.

Finally, let 1 ≤ j ≤ 2km and (x1, x2), (y1, y2) ∈ M s(j) with x1 ‖ y2. To show
x2 = y2, we now assume by contradiction x2 < y2. Similarly to above, there are at
least km elements of Cs

2 in the interval x2 ↑∩y2↓. Since |[x]| ≤ m for any x ∈ Cs
2 ,

the chain Cs
2 ∩ x2 ↑ ∩y2↓ contains k mutually not ∼-equivalent elements. Hence,

by Lemma 11.2.6, C1 \ (x2 ↑ ∩y2↓) = ∅, contradicting x1 ∈ C1 and x2 ‖ x1 ‖ y2.�

Theorem 11.2.8 Let (P,≤) be a partial order of diabolo width at most m and let
n > 1. Let Ci ⊆ P be chains for 1 ≤ i ≤ n and let M ⊆

∏

1≤i≤nCi ∩Antichains.
Then M is the intersection of Antichains with (2m+ 2)n sets of the form

⋂

1≤a<b≤n

4m(2m+3)2
⋃

ℓ=1

[

P a−1 ×Ma,b
ℓ × P b−a−2 ×Na,b

ℓ × P n−b−1
]

(⋆)

where Ma,b
ℓ , Na,b

ℓ ⊆ P for all suitable a, b and ℓ.

Proof. By Lemma 11.2.4, we split the chains Ci into 2m+2 disjoint subchains
Ci(j) for 1 ≤ j ≤ 2m such that for any x, y ∈ Ci(j) with x < y the interval
↑x ∩ ↓y contains at least m + 1 elements from P . For ~ ∈ {1, 2, . . . , 2m + 2}n

let M~ = M ∩
∏

1≤i≤nCi(ji). Then M is the union of the sets M~. Since there
are (2m+ 2)n sets M~, it suffices to show that any such set is the intersection of

11.2. THE SEMILATTICE OF FINITELY GENERATED IDEALS 153

Antichains with a set of the form (⋆). Let 1 ≤ a < b ≤ n. Applying Lemma 11.2.7
to the set πa,b(M~) and the chains Ca(ja) and Cb(jb), we obtain the existence of

sets Ma,b
ℓ ⊆ Ca(ja) and N

a,b
ℓ ⊆ Cb(jb) for 1 ≤ ℓ ≤ 4m(2m+ 3)2 such that

πa,b(M~) =

4m(2m+3)2
⋃

ℓ=1

Ma,b
ℓ ×Na,b

ℓ ∩ Antichains.

Let H~ denote the set of all antichains in

⋂

1≤a<b≤n

4m(2m+3)2
⋃

ℓ=1

[

P a−1 ×Ma,b
ℓ × P b−a−2 ×Na,b

ℓ × P n−b−1
]

.

Note that H~ equals the set of all antichains (x1, x2, . . . , xn) ∈ P n such that
(xa, xb) ∈ πa,b(M~) for any 1 ≤ a < b ≤ n. Thus, in particular, H~ is a subset
of
∏

1≤i≤nCi(ji) since πa,b(M~) ⊆ Ca(ja)× Cb(jb). Since H~ is of the form (⋆), it
remains to show that M~ = H~.

The inclusion M~ ⊆ H~ is immediate for any element (x1, x2, . . . , xn) of M~ is
an antichain satisfying (xa, xb) ∈ πa,b(M~) for all suitable a, b.

We show by induction on the size of I ⊆ {1, 2, . . . , n} that πI(H~) ⊆ πI(M~)
which, for I = {1, 2, . . . , n} establishes the claim and therefore the theorem. If
I contains precisely two elements, the inclusion πI(H~) ⊆ πI(M~) is immediate
by what we said above. Now let I contain at least three elements and assume
that πJ(H~) ⊆ πJ(M~) for any proper subset J of I. For notational simplicity,
we assume I = {1, 2, . . . , c} for some 3 ≤ c ≤ n. Let (x1, x2, . . . , xc) ∈ πI(H~).
Then, by the induction hypothesis, there are elements xii ∈ Ci(ji) such that

(x1, . . . , xi−1, x
i
i, xi+1, . . . , xc) ∈ πI(M~)

for any i ∈ I. If for some 1 ≤ i ≤ c we even have xi = xii, we thus get
immediately (x1, . . . , xc) ∈ πI(M~). Now assume xi 6= xii for all 1 ≤ i ≤ c. Since
xi, x

i
i ∈ Ci(ji), they are comparable. Since I contains at least three elements,

there are 1 ≤ a < b ≤ c with xa < xaa and xb < xbb or with xa > xaa and
xb > xbb. By symmetry, it suffices to deal with the first case. Recall that xa 6≶ xb
since (x1, . . . , xc) (as an element of πI(H~)) is an antichain. Similarly, xaa 6≶ xb and
xbb 6≶ xa since (x1, . . . , xa−1, x

a
a, xa+1, . . . , xc) and (x1, . . . , xb−1, x

b
b, xb+1, . . . , xc) are

antichains as elements of πI(M~). Thus x
a
a and xbb are incomparable for otherwise

xaa ≤ xbb implied xa < xbb. Since {xa, xaa} and {xb, xbb} are incomparable sets, so
are the intervals xa ↑ ∩xaa↓ and xb ↑ ∩xbb↓. Recall that xa < xaa are both elements
of Ca(ja). Thus, the interval xa ↑ ∩xaa↓ consists of at least m + 1 elements, and
similarly the interval xb ↑ ∩xbb↓. This contradicts the assumption that (P,≤) has
diabolo width at mostm. Therefore, it is impossible that xi 6= xii for all 1 ≤ i ≤ c.
This finishes the induction step, i.e. we have indeed πI(H~) ⊆ πI(M~). �

154 CHAPTER 11. MONADIC SECOND ORDER LOGIC

Corollary 11.2.9 Let m ∈ N and n = 2m. Then there exists a natural number ℓ
and a monadic formula ϕ(x1, . . . , xn, X1, X2, . . . , Xℓ) such that, for any partially
ordered set (P,≤) of diabolo width at most m and any set R of antichains in P ,
there are sets M1, . . . ,Mℓ ⊆ P with

R = {{x1, x2, . . . , xn} ⊆ P | (P,≤) |= ϕ(x1, . . . , xn,M1, . . .Mℓ}.

Proof. We explain the idea of the formula and leave the technicalities to the
interested reader: We are concerned with partially ordered sets of width at most
n, only. Hence any element of R contains at most n elements. By Dilworth’
Theorem [Dil50], the partially ordered set (P,≤) can be covered by n disjoint
chains C1, . . . , Cn. For I ⊆ {1, 2, . . . , n}, let RI denote the set of all antichains
in R that meet a chain Ci iff i ∈ I. In particular, the set RI contains sets of
size |I|, only. Thus, we can identify it with an |I|-ary relation on P such that
RI ⊆

∏

i∈I Ci. Now, applying Theorem 11.2.8, we easily construct a formula ϕI

with |I| free elementary variables and (2m+2)|I|n(n− 1)4m(2m+3)2 · 2 free set
variables such that there exist sets Mi with

RI = {(y1, . . . , y|I|) | (P,≤) |= ϕI(yi,Mi)}.

The formula ϕ is a simple Boolean combination of the formulas ϕI . �

Theorem 11.2.10 Let P be a set of partially ordered sets and m ∈ N such that
any (P,≤) in P has diabolo width at most m. Then MTh(Hf (P)) can be reduced
to MTh(P) in linear time.

Proof. Let ϕ and ℓ denote the formula and the natural number from Corol-
lary 11.2.9. The reduction r is defined by

r(∃xα) = (∃x1∃x2 . . . ∃xnr(α)),

r(x ≤ y) = (
∧

1≤i≤n

∨

1≤j≤n

xi ≤ yj),

r(∃Mα) = (∃M1∃M2 . . . ∃Mℓr(α)),

r(x ∈M) = ϕ(x1, x2, . . . , xn,M1,M2, . . . ,Mℓ),

r(α ∨ β) = (r(α) ∨ r(β)), and

r(¬α) = ¬r(α).

Differently from the proof of Theorem 11.2.2, we spell out the equivalence

Hf (P,≤) |= ϕ ⇐⇒ (P,≤) |= r(ϕ) in some more detail:
Let V be a countable set of individual variables and W that of set variables.

We use these variables in monadic formulas that are interpreted over Hf (P,≤).

11.2. THE SEMILATTICE OF FINITELY GENERATED IDEALS 155

By V ′ := V ×{1, 2, . . . , n} and W ′ := W ×{1, 2, . . . , ℓ} we denote the individual
and set variables when speaking on the partial orders in P. For simplicity, we
abbreviate (x, i) by xi and similarly (A, j) by Aj for x ∈ V and A ∈ W .

Let (P,≤) be a partially ordered set in P. With any a ∈ Hf (P,≤), we
associate an n-tuple f ′(a) in P with {f ′(a)1, f

′(a)2, . . . , f
′(a)n} = max(a). Such

an n-tuple exists since a is a finitely generated ideal in (P,≤) implying that it
has at most n maximal elements. Furthermore, a =

⋃

1≤i≤n f
′(a)i↓. Note that

the coordinates of the tuple f ′(a) are incomparable if not equal.
Similarly, we find a function g′ that maps subsets of Hf (P,≤) to ℓ-tuples of

subsets of P as follows: Let M ⊆ Hf (P,≤) be a set of finitely generated ideals
in (P,≤). By R, we denote the set of all (≤ n)-subsets max(a) of P for some
a ∈M , i.e. R = {max(a) | a ∈M}. Then R is a set of antichains in the partially
ordered set (P,≤) of diabolo width at most m. Hence, by Corollary 11.2.9 there
exist sets M1,M2, . . . ,Mℓ ⊆ P with

R = {{x1, x2, . . . , xn} ⊆ P | (P,≤) |= ϕ(x1, . . . , xn,M1, . . .Mℓ}.

For 1 ≤ j ≤ ℓ, let g′(M)j := Mj. Then we obtain for any M ⊆ Hf (P,≤) and
any a ∈ Hf (P,≤):

a ∈M iff (P,≤) |= ϕ(f ′(a), g′(M)).

Now let (f, g) be an interpretation of the elementary variables V and the set
variables W in Hf (P,≤), i.e. f : V → Hf (P,≤) and g : W → 2Hf (P,≤). By
f ⋆(xi) := (f ′ ◦ f(x))i and g⋆(Mj) := (g′ ◦ g(M))j for xi ∈ V ′ and Mj ∈ W ′, we
define an interpretation (f ⋆, g⋆) of V ′ and W ′ in (P,≤) from (f, g).

To finish the proof, one shows by induction on the monadic formula ϕ that

Hf (P,≤) |=(f,g) ϕ iff (P,≤) |=(f⋆,g⋆) r(ϕ). This is an easy exercise which is left to
the reader. �

11.2.2 Decidable monadic theory implies bounded
diabolo width

The theorem above implies in particular that MTh(Hf (P)) is decidable whenever
MTh(P) is decidable and the diabolo width of the elements of P is bounded
above. In this section, we will show that also the other implication holds. In
addition, we consider the question when the monadic chain and the monadic
antichain theories are decidable.

It will be convenient to use the notation m for the set {0, 1, . . . ,m} of non-
negative integers properly smaller than m. Let G denote the set of all finite grids,
seen as distributive lattices, i.e. the set of all distributive lattices (m,≤)× (n,≤)
for m,n > 1. Given a Turing machine M , one can easily formulate a monadic

156 CHAPTER 11. MONADIC SECOND ORDER LOGIC

sentence which is satisfied by the partially ordered set L = (m × n,≤) iff the
machine stops after m steps using n cells of the tape. Hence there is a monadic
sentence µ such that µ ∈ MTh(G) iff M does not stop, i.e. the monadic theory of
G is undecidable. For this encoding, one has to quantify over arbitrary subsets
of the grid. In the sequel, we will show that not only the monadic theory of
the grids, but also their monadic antichain and their monadic chain theory are
undecidable.

The antichain theory

Lemma 11.2.11 The monadic theory of G can be reduced to the monadic an-
tichain theory of G in linear time.

Proof. The grid graph of dimension (m,n) is the structure (m× n,Em,n) with
((i, j), (i′, j′)) ∈ Em,n iff i = i′ and j + 1 = j′ or i + 1 = i and j = j′ for any
(i, j), (i′, j′) ∈ m × n. Let GG denote the set of all structures isomorphic to
some grid graph. (Note that for technical convenience, for grid graphs we allow
m = n = 1 but not for the distributive lattices). Note that the grid graph of
dimension (m,n) is the Hasse diagram of the grid (m×n,≤). Hence it suffices to
reduce the monadic theory of the set of all grid graphs to the monadic antichain
theory of G.

For a monadic sentence ϕ over the binary relation symbol E, we construct a
monadic formula over the vocabulary ≤ as follows: First, we restrict the quan-
tification in ϕ to the new set variable X. Afterwards, any subformula of the form
(x, y) ∈ E is replaced by

sup(x, y) ∈ E1 ∪ E2 ∧ inf(x, e) ≤ inf(y, e).

Let ϕ′ denote the result of this procedure. Then ϕ′ is a monadic formula with
free variables contained in {X,E1, E2, e}.

Now we describe the reduction of MTh(GG) to MATh(G): It is easily seen
that there is a monadic sentence γ such that a graph (X,E) satisfies γ iff it
belongs to GG. Let ϕ be a monadic sentence over the binary relation symbol E.
Then define

ϕ := ∀X∀E1∀E2∀e(e ∈ J → (γ′ → ϕ′)).

We show that ϕ belongs to MTh(GG) iff ϕ belongs to MATh(G):
First let ϕ ∈ MTh(GG). Furthermore, let m,n > 1 and L := (m × n,≤).

Let X,E1, E2 ⊆ L be antichains and e ∈ J(L) with (L,≤) |=A γ′(X,E1, E2, e).
We have to show that (L,≤) |= ϕ′(X,E1, E2, e). First, define a binary relation
E ⊆ X2 by (x, y) ∈ E iff sup(x, y) ∈ E1 ∪ E2 and inf(x, e) ≤ inf(y, e). By the
construction of γ′ and the fact that (L,≤) |=A γ

′(X,E1, E2, e), the graph (X,E)
satisfies γ, i.e. it is isomorphic to a grid graph. Hence (X,E) |= ϕ implying
(L,≤) |=A ϕ

′(X,E1, E2, e) as required.

11.2. THE SEMILATTICE OF FINITELY GENERATED IDEALS 157

Conversely, let ϕ ∈ MATh(G) and let m,n ∈ N. To show (m× n,En,m) |= ϕ,
we consider the grid L = ((mn+ 1)2,≤). First, we define the following sets:
X := {(i,mn− i) | 0 ≤ i < mn},
E1 := {(i,mn− i− 1) | 0 ≤ i < mn, i mod n 6= n− 1}, and
E2 := {(i, (m− 1)n− i) | 0 ≤ i < (m− 1)n}. Note that these sets are antichains
for increasing i increases the first and decreases the second component of any
of their elements. Finally, let e := (mn, 1) ∈ J(L). Since L |= ϕ, we obtain
L |= (γ′ → ϕ′)(X,E1, E2, e). Next, we define a binary relation E on X by

(x, y) ∈ E : ⇐⇒ sup(x, y) ∈ E1 ∪ E2 and inf(x, e) ≤ inf(y, e).

We show that (X,E) and (m × n,Em,n) are isomorphic: Define the bijection
f : m×n→ X by f(a1, a2) := (a1n+a2,mn−a1n−a2). The following sequence
of equivalences establishes that f is a graph isomorphism:

((a1, a2), (b1, b2)) ∈ Em,n

⇐⇒ a1 + 1 = b1 and a2 = b2, or
a1 = b1 and a2 + 1 = b2

⇐⇒ a1 ≤ b1 and either
(a1n+ a2,mn− b1n− b2) ∈ E1, or
(a1n+ a2,mn− b1n− b2) ∈ E2

⇐⇒ inf(f(a1, a2), e) = a1 ≤ b1 = inf(f(b1, b2), e) and
sup(f(a1, a2), f(b1, b2)) ∈ E1 ∪ E2

⇐⇒ (f(a1, a2), f(b1, b2)) ∈ E.

Hence (X,E) ∼= (m × n,Em,n) implying (X,E) |= γ. By the construction of E
and of γ′, this implies L |=A γ

′(X,E1, E2, e) and therefore L |=A ϕ
′(X,E1, E2, e).

By the same argument, (X,E) |= ϕ, i.e. ϕ ∈ MTh(GG). �

Since the monadic theory MTh(G) is undecidable, so is the monadic antichain
theory MATh(G) by the lemma above. Note that G = Hf (P) whereP contains all
finite partial orders that consist of two incomparable chains. These partial orders
have unbounded diabolo width. Next we want to generalize this undecidability
to any class Hf (P) where the elements of P have unbounded diabolo width.

Before doing so, we need some prerequisites: Let (P,≤) be a partially ordered
set, A ⊆ P an antichain and a ∈ A. On A, we define a binary relation Ra by
(x, y) ∈ Ra iff x ∨ a ≤ y ∨ a. There is a monadic formula ϕ with free variables A
and a such that (P,≤) |=A ϕ(A, a) iff

1. (A,Ra) is a finite linear order, and

158 CHAPTER 11. MONADIC SECOND ORDER LOGIC

2. for any x, y, x′, y′ ∈ A with (x, y), (x′, y′) ∈ Ra we have

x ∨ y ≤ x′ ∨ y′ ⇐⇒ (x, x′), (y′, y) ∈ Ra.

Assume A and a have these properties. Now let b ∈ A and define

G(b, A) := {x ∨ y | x, y ∈ A, b ≤ x ∨ y}.

We show that (G(b, A),≤) is a grid: For (x, y) ∈ Ra by the second property
b ≤ x ∨ y iff (x, b), (b, y) ∈ Ra since b = b ∨ b and (b, b) ∈ Ra. Let a1, a2, . . . , ak
be the enumeration of A according to the linear order Ra. Then (ai, aj) ∈ Ra for
1 ≤ i ≤ j ≤ k. Thus, we showed that the mapping

f : ({a1, a2, . . . , am}, Ra)× ({am, am+1, . . . , ak}, R
−1
a) → (G(b, A),≤)

(ai, aj) 7→ ai ∨ aj

is an order isomorphism where b = am. Hence the poset (G(b, A),≤) is isomorphic
to the grid (m× (k −m+ 1),≤), i.e. G(b, A) is a grid.

On the other hand, let P be a class of partially ordered sets such that the
diabolo width of its elements is not bounded above. We show that for any n ∈ N

there exists a poset (P,≤) ∈ P, an antichain A ⊆ Hf (P,≤), a, b ∈ A such that

Hf (P,≤) |=A ϕ(A, a) and G(b, A) ∼= (n × n,≤): By Lemma 10.2.5 P contains
a poset (P,≤) allowing a semilattice embedding f : ((2n)2,≤) →֒ Hf (P,≤).
Let A := {f(i, 2n − i) | 0 ≤ i < 2n}, a := f(0, 2n) and b := f(n, n). Then
a ∨ f(i, 2n − i) ≤ a ∨ f(j, 2n − j) iff i ≤ j for i, j ∈ 2n since f is a semilattice
embedding. Hence (A,Ra) is a finite linearly ordered set as required by the
first property stated by ϕ. Now let i, j, i′, j′ ∈ 2n with i ≤ j and i′ ≤ j′. Then
f(j, 2n−i) = f(i, 2n−i)∨f(j, 2n−j) ≤ f(i′, 2n−i′)∨f(j′, 2n−j′) = f(j′, 2n−i′) iff
i ≤ i′ and j ≥ j′, i.e. the second property holds as well. Hence Hf (P,≤) satisfies
ϕ(A, a). Since, for i, j ∈ 2n it holds f(i, 2n − i) ∨ f(j, 2n − j) ≥ b = f(n, n) iff
n ≤ i and n ≥ j, the mapping f is an isomorphism from ((2n)2,≤) to G(b, A) as
claimed above.

Lemma 11.2.12 Let P be a set of partially ordered sets such that the diabolo
width of its members is not bounded above. Then the monadic antichain theory
MATh(G) can be reduced to the monadic antichain theory MATh(Hf (P)).

Proof. A monadic sentence ψ belongs to MATh(G) iff the monadic sentence
∀A∀a, b((ϕ(A, a)∧ b ∈ A) → ψ′) belongs to MTh(Hf (P)) where ψ′ is the restric-
tion of ψ to G(b, A). �

Thus, with P as above, the undecidable monadic theory MTh(G) can be
reduced to the monadic antichain theory MATh(Hf (P)). Hence this antichain
theory is undecidable.

11.2. THE SEMILATTICE OF FINITELY GENERATED IDEALS 159

The chain theory

The following two lemmas imply a similar result for the monadic chain theory
MCTh(Hf (P)). But differently from Lemma 11.2.11, the following lemma does
not reduce the full monadic theory of G but the monadic antichain theory to its
chain theory. The main ingredient of the proof is the following: Let n,m > 1 and
L := (m × n,≤). Then e := (1,m) and e := (n, 1) are maximal join irreducible
and incomparable elements of L. We define a partial order ⊑ on L by x ⊑ y iff
inf(x, e) ≤ inf(y, e) and inf(x, e) ≥ inf(y, e). For x = (x1, x2) and y = (y1, y2), it
holds inf(x, e) = x2 and inf(x, e) = x1. Hence x ⊑ y iff x2 ≤ y2 and x1 ≥ y1. In
other words, (m× n,⊑) equals (m,≥)× (n,≤) and is therefore isomorphic to L.
Now let x and y be incomparable with respect to ⊑. Then x1 < y1 and x2 < y2
or vice versa. In particular x ≤ y or y ≤ x. Hence antichains in (m × n,⊑) are
chains in (m× n,≤) (the converse implication does not hold).

Lemma 11.2.13 The monadic antichain theory MATh(G) can be reduced in lin-
ear time to the monadic chain theory MCTh(G).

Proof. Let ϕ be a monadic formula not containing the variables e and e. In ϕ,
replace any atomic formula x ≤ y by

inf(x, e) ≤ inf(y, e) ∧ inf(x, e) ≥ inf(y, e)

and replace any subformula of the form ∃Xψ by ∃X(antichain⊑(X) ∧ ψ) where
antichain⊑(X) denotes the formula

∀x, y((x, y ∈ X ∧ inf(x, e) ≤ inf(y, e)) → inf(x, e) ≤ inf(y, e)).

The subformula antichain⊑(X) is satisfied by a set X iff its elements are mutually
incomparable with respect to ⊑. Denote the result of these replacements by ϕ′.

Let m,n ≥ 1, e = (1,m) and e = (n, 1). As a prerequisite, we show that
(m×n,⊑) |=A ϕ iff (m×n,≤) |=C ϕ

′ by induction: Clearly, (m×n,⊑) |=A x ≤ y
iff x ⊑ y iff (m×n,≤) |=C inf(x, e) ≤ inf(y, e)∧ inf(x, e) ≥ inf(y, e) which equals
(x ≤ y)′. Now let ϕi (i = 1, 2) be monadic formulas such that for any antichains
Xi w.r.t. ⊑ and elements xj:

(m× n,⊑) |=A ϕi(X1, . . . , Xk, x1, . . . , xℓ)

⇐⇒

(m× n,≤) |=C ϕ
′
i(X1, . . . , Xk, x1, . . . , xℓ).

It is straightforward to check that this equivalence holds for ¬ϕ1, ϕ1∧ϕ2 and for
∃xℓϕ1, too. The only nontrivial case in the induction is the formula ϕ = ∃Xkϕ1:
So let Xi ⊆ m × n be antichains w.r.t. ⊑ for 1 ≤ i < k and let xj ∈ m × n.
Then (m× n,⊑) |=A ϕ(X1, . . . , Xk−1, x1, . . . , xℓ) iff there exists an antichain Xk

160 CHAPTER 11. MONADIC SECOND ORDER LOGIC

w.r.t. ⊑ such that (m × n,⊑) |=A ϕ1(X1, . . . , Xk, x1, . . . , xℓ). By the induction
hypothesis, this is equivalent to (m×n,≤) |=C ϕ

′
1(X1, . . . , Xk, x1, . . . , xℓ). By the

remarks preceding this lemma, Xk is a chain w.r.t. ≤. Hence the last statement is
equivalent to (m×n,≤) |=A (∃Xk(antichain⊑(Xk)∧ϕ′

1))(X1, . . . , Xk−1, x1, . . . , xℓ)
which equals ϕ′.

Now it is straightforward to show that for a monadic sentence ϕ it holds
(m× n,≤) |=A ϕ iff (m× n,≤) |=C ∃e, e(e, e ∈ max(J) ∧ e 6= e ∧ ϕ′) which is the
desired reduction. �

Lemma 11.2.14 Let P be a set of partially ordered sets such that the diabolo
width of its members is not bounded above. Then the monadic chain theory
MCTh(G) can be reduced to the monadic chain theory MCTh(Hf (P)).

Proof. By Lemma 10.2.5, there is (P,≤) ∈ P such that Hf (P,≤) contains
a subposet that is isomorphic to the square grid of dimension (n, n). Now we
describe the reduction: Let ϕ be a monadic sentence. Then ϕ is the sentence
∀C1, C2∀x1, y1, x2, y2 :

([C1, C2 are finite and incomparable chains ∧
(x1, y1 ∈ C1 ∧ x2, y2 ∈ C2 → (x1 ∨ x2 ≤ y1 ∨ y2 ↔ (x1 ≤ y1 ∧ x2 ≤ y2)))]

→ ϕ′)
where ϕ′ is the restriction of ϕ to the set {x ∨ y | x ∈ C1, y ∈ C2}.

Suppose ϕ ∈ MCTh(Hf (P)) and let m,n ∈ N and let L = (m × n,≤). We
show L |=C ϕ: By the consideration above, there exists (P,≤) ∈ P such that
{I(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is isomorphic to L. We consider the two finite
chains C1 := {I(i, 0) | 1 ≤ i ≤ m} and C2 := {I(0, j) | 1 ≤ j ≤ n}. Then one
can easily check that the properties stated by ϕ hold. Hence L |=C ϕ.

Conversely, let ϕ ∈ MCTh(G). Let (P,≤) ∈ P, C1, C2 ⊆ Hf (P,≤) be finite
incomparable chains such that for any xi, yi ∈ Ci it holds x1 ∨ x2 ≤ y1 ∨ y2 iff
x1 ≤ y1 and x2 ≤ y2. Then the set of suprema {x ∨ y | x ∈ C1, y ∈ C2} is
isomorphic to the grid (|C1| × |C2|,≤). Since (|C1| × |C2|,≤) |=C ϕ, we obtain
{x ∨ y | x ∈ C1, y ∈ C2} |=C ϕ and therefore Hf (P,≤) |=C ϕ. �

11.2. THE SEMILATTICE OF FINITELY GENERATED IDEALS 161

Now we can prove a result on the monadic theories analogously to Corol-
lary 11.2.3:

Theorem 11.2.15 Let P be a set of partially ordered sets.

1. The following are equivalent:

(i) The monadic theory MTh(Hf (P)) is decidable.

(ii) The monadic chain theory MCTh(Hf (P)) is decidable.

(iii) the monadic theory MTh(P) is decidable and the diabolo width of the
elements of P is bounded above.

(iv) the monadic chain theory MCTh(P) is decidable and the diabolo width
of the elements of P is bounded above.

2. The monadic antichain theory MATh(Hf (P)) is decidable if and only if the
elementary theory Th(P) is decidable and the diabolo width of the elements
of P is bounded above.

Proof. The implication (i)⇒(ii) is trivial. Now assume MCTh(Hf (P)) to be
decidable. Next we show the implication (ii)⇒(iv): The monadic chain theory
MCTh(P) is decidable by Remark 11.2.1. By contradiction, assume that the dia-
bolo width of the elements of P is unbounded. By Lemmas 11.2.11, 11.2.13, and
11.2.14, the monadic theory of the grids MTh(G) can be reduced to the monadic
chain theory of Hf (P), contradicting the decidability of this latter theory.

For the implication (iv) ⇒ (iii) note that the width of the elements of P is
bounded by n, say. Hence any subset of P with (P,≤) ∈ P is the union n chains.
Therefore, the monadic theory of P can be reduced to the monadic chain theory
of P. Hence (iii) holds. The last implication (iii) ⇒ (i) follows from Theorem
11.2.10.

It remains to show the second statement: The decidability of MATh(Hf (P))
trivially implies that of Th(Hf (P)) and therefore that of Th(P). The diabolo
with of the elements of P is bounded above by Lemmas 11.2.11 and 11.2.12.
Thus, we showed one implication.

Conversely, let the diabolo width of the elements of P be bounded by n
and let Th(P) be decidable. Since then the width of the elements of P is uni-
formly bounded by 2n, the elementary theory Th(Hf (P)) is decidable by Corol-
lary 11.2.3. In addition, the width of the elements of Hf (P) is bounded above
by some m ∈ N. Hence any antichain contains at most m elements implying
that MATh(Hf (P)) can be reduced to Th(Hf (P)). Hence the monadic antichain
theory MATh(Hf (P)) is decidable. �

162 CHAPTER 11. MONADIC SECOND ORDER LOGIC

11.3 Finite distributive lattices

Since, for any finite distributive lattice (L,≤) it holds (L,≤) ∼= Hf J(L,≤), we
can now characterize the sets of finite distributive lattices having a decidable
monadic (chain, antichain) theory:

Corollary 11.3.1 Let L be a set of finite distributive lattices.

1. The following are equivalent:

(i) The monadic theory MTh(L) is decidable.

(ii) The monadic chain theory MCTh(L) is decidable.

(iii) the monadic theory MTh(J(L)) is decidable and the width of the ele-
ments of L is bounded above.

(iv) the monadic chain theory MCTh(J(L)) is decidable and the width of
the elements of L is bounded above.

2. The monadic antichain theory MATh(L) is decidable if and only if the ele-
mentary theory Th(J(L)) is decidable and the width of the elements of L is
bounded above.

Proof. Since Hf (J(L)) = L, it remains to show that the width of the elements
of L is bounded if and only if the diabolo width of the elements of J(L) is bounded.
In the proof of Lemma 11.2.14 we saw that a bounded width of the elements of
L implies a bound of the diabolo width of the elements of J(L).

To show the other implication assume dw(J(L,≤)) < n − 2 for any lattice
(L,≤) ∈ L. By contradiction, suppose that the width of the elements of L is
unbounded. Then there exists (L,≤) in L such that w(L,≤) ≥ Rn+1(6

n). By
Theorem 10.2.6, there exists a lattice embedding η : [n − 1] × [n − 1] → L. Let
A := J(L) ∩ ↓η(1, n− 1) and B := J(L) ∩ ↓η(n− 1, 1). Since the elements η(1, i)
and η(j, 1) are pairwise incomparable for i, j > 1, A \B and B \A both contain
at least n − 2 elements. Furthermore, these two sets are incomparable. Hence
the diabolo width of J(L,≤) is at least n− 2, a contradiction. �

Now let L1 and L2 be sets of finite distributive lattices. Suppose that the
elementary theories of L1 and L2 are decidable. Then, as an easy consequence of
the Feferman-Vaught Theorem, the set of direct products of lattices from L1 and
lattices from L2 has a decidable elementary theory. Next, we want to characterize
when this set has a decidable monadic (chain, antichain) theory:

11.3. FINITE DISTRIBUTIVE LATTICES 163

Corollary 11.3.2 Let L1 and L2 be sets of finite distributive lattices and define
L := {(L1,≤) × (L2,≤) | (Li,≤) ∈ Li}. If MTh(Li) (MATh(Li), MCTh(Li),
resp.) is decidable, then MTh(L) (MATh(L), MCTh(L), resp.) is decidable iff
L1 or L2 is finite.

Proof. We give the proof for the monadic theories, only. The other cases can
be handled similarly. If both L1 and L2 are infinite, we find for any n ∈ N lattices
(L1,≤) ∈ L1 and (L2,≤) ∈ L2 of length at least n. Then the width of the direct
product (L1,≤) × (L2,≤) is at least n, i.e. the width of the lattices in L is not
bounded. Hence MTh(L) is undecidable.

Conversely let L1 be finite. Then there is n ∈ N with |L1| ≤ n for any lattice
(L1,≤) ∈ L1. Since MTh(L2) is decidable, we can assume w(L2) ≤ n. Note
that the width w(L1 ×L2,≤) is at most |L1| ·w(L2,≤) for any finite distributive
lattices (L1,≤) and (L2,≤). Hence w(L) ≤ n2. It remains to show that J(L) has
a decidable monadic theory: For finite distributive lattices (L1,≤) and (L2,≤),
one has J(L1 × L2,≤) = J(L1,≤)∪̇ J(L2,≤). Thus, we have to show that the
monadic theory of {(P1,≤)∪̇(P2,≤) | (Pi,≤) ∈ J(Li)} is decidable. This follows
from the composition theorem from Shelah [She75] (cf. [Tho97a] for the proof of
this result) since MTh(J(Li)) is decidable. �

Note that the in the corollary above we assumed from the very beginning
that MTh(Li) is decidable for i = 1, 2. Actually, the finiteness of L1 or L2 follows
without this assumption from the decidability of MTh(L). We finish this section
with an example of classes L1, L2 and L as in the corollary above such that
L1 is finite, L has a decidable monadic theory but the monadic theory of L2 is
undecidable:

Example 11.3.3 For simplicity, let 2 denote the Boolean lattice ({1, 2},≤). Let
L1 consist of the lattices 2i for 0 ≤ i ≤ 2 (i.e. L1 contains the one-point-lattice,
the Boolean lattice and the diamond). Let Lin denote the set of finite linear
orders and let P ⊆ Lin be an undecidable set of linear orders. We define a set
of finite distributive lattices L2 ⊆ {2i × (L,≤) | 0 ≤ i ≤ 2, (L,≤) ∈ Lin} by
2i × (L,≤) ∈ L2 iff

1. i ∈ {0, 2} and (L,≤) ∈ Lin, or

2. i = 1 and (L,≤) ∈ P.

Then L2 is a set of finite distributive lattices. It is undecidable since the subset
of L2 of lattices of width 2 corresponds to P which was chosen to be undecidable.
Hence, in particular, L2 has an undecidable monadic theory. It is straightforward
to show that the set of direct products of lattices from L1 and L2 equals the set
{2i × (L,≤) | 1 ≤ i ≤ 5, (L,≤) ∈ Lin} = L. Since Lin has a decidable monadic
theory, we can apply the corollary above and obtain that MTh(L) is decidable.

164 CHAPTER 11. MONADIC SECOND ORDER LOGIC

Remark The important property that we used in this section is the isomor-
phism of (L,≤) and Hf J(L,≤) whenever (L,≤) is a finite distributive lattice.
The reader may check that Corollary 11.3.1 holds verbatim if we require L to
consist of distributive lattices satisfying this isomorphism. In Corollary 11.3.2,
we obtained that MTh(L) is decidable if and only if L1 or L2 is a finite set of
finite lattices.

Main theorems

Theorem 3.3.4 There exists an algorithm that solves the following decision
problem:
input: 1. an alphabet Σ,

2. a basis algorithm of an effective and monotone Σ-ACM A′,
3. the set of final states F ′ of A′,
4. a finite basis of (Qc,⊑c), and an algorithm to decide ⊑c for c ∈ Σ.

output: Is L(A′) empty?

Corollary 3.3.5 Let A be a monotone and effective Σ-ACM. Then the set L(A)
is recursive.

Theorem 4.1.7 Let Σ be an alphabet with at least two letters. Then there is
no algorithm that on input of a Σ-ACA A decides whether it accepts all Σ-dags,
i.e. whether L(A) = D.

Corollary 4.1.8 Let Σ be an alphabet with at least two letters. Then the
equivalence of Σ-ACAs, i.e. the question whether L(A1) = L(A2), is undecidable.

Theorem 4.1.10 Let Σ be an alphabet with at least two letters. Then there is
no algorithm that on input of a Σ-ACA A decides any of the following questions:
1. Is D \ L(A) recognizable?
2. Is A equivalent with some deterministic Σ-ACA?

Theorem 5.1.1 Let A be a possibly nondeterministic Σ-ACA. There exists a
monadic sentence ϕ over Σ such that L(A) = {t ∈ D | t |= ϕ}.

Theorem 5.2.9 Let ϕ be a monadic sentence and let k ∈ N. Then there exists
a Σ-ACA A such that L(A) = {t ∈ Dk | t |= ϕ}.

Theorem 6.1.7 Let B be a branching automaton. Then there exists a Σ-ACA
A such that Ha(L(B) ∩ SPwa(Σ)) = L(A).

Theorem 6.1.9 Let A be a Σ-ACA. Then there exists a branching automaton
B such that Ha(L(B)) = L(A) ∩ Ha(SP(Σ)).

165

166 CHAPTER 11. MONADIC SECOND ORDER LOGIC

Theorem 6.1.10 Let L ⊆ SP(Σ) be a width-bounded sp-language. Then L can
be accepted by a branching automaton iff it is monadically axiomatizable.

Theorem 6.2.1 Let B be a P-asynchronous automaton over Σ. Then there exists
a Σ-ACA A with Ha(L(B)) = L(A).

Theorem 8.2.10 Let T be a finite set and E a set of equations of the form
ab = cd with a, b, c, d ∈ T . Let ∼ be the least congruence on T ⋆ containing
E. Then M := T ⋆/∼ is a divisibility monoid if and only if (i)-(iii) hold for any
a, b, c, b′, c′ ∈ T :
(i) (↓(a · b · c),≤) is a distributive lattice,
(ii) a · b · c = a · b′ · c′ or b · c · a = b′ · c′ · a implies b · c = b′ · c′, and
(iii) a · b = a′ · b′, a · c = a′ · c′ and a 6= a′ imply b = c.
Furthermore, each divisibility monoid arises this way.

Theorem 9.1.8 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Let X ⊆ T ⋆ be recognizable and n := rk(X) be finite. Then nat(X) is
recognizable in M .

Theorem 9.2.8 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Let L ⊆M be c-rational. Then L is recognizable.

Theorem 9.3.8 Let (M, ·, 1, ρ) be a labeled divisibility monoid with finite com-
mutation behavior. Let L ⊆M . Then the following are equivalent:
1. L is recognizable
2. L is c-rational
3. L is mc-rational.

Theorem 10.2.8 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Then the following are equivalent
1. M is width-bounded,
2. M is rational, and
3. any set L ⊆M is rational iff it is recognizable.

Theorem 11.1.3 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Then the monadic theory MTh({(J(↓m), <) | m ∈M}) is decidable.

Theorem 11.1.4 Let (Σ, D) be a finite dependence alphabet. Then the monadic
theory of (J(M(Σ, D)),≤) is decidable iff D is transitive.

Theorem 11.1.9 Let (M, ·, 1) be a divisibility monoid with finite commutation
behavior. Then the monadic theory MTh{(↓m,≤) | m ∈ M} is decidable iff M
is width-bounded.

MAIN THEOREMS 167

Theorem 11.2.2 Let P be a set of partially ordered sets of uniformly bounded
width. Then Th(Hf (P)) can be reduced to Th(P) in linear time.

Theorem 11.2.10 Let P be a set of partially ordered sets whose diabolo width
is uniformly bounded. Then MTh(Hf (P)) can be reduced to MTh(P) in linear
time.

Corollary 11.3.1 Let L be a set of finite distributive lattices.

1. The following are equivalent:

(i) The monadic theory MTh(L) is decidable.

(ii) The monadic chain theory MCTh(L) is decidable.

(iii) the monadic theory MTh(J(L)) is decidable and the width of the ele-
ments of L is bounded above.

(iv) the monadic chain theory MCTh(J(L)) is decidable and the width of
the elements of L is bounded above.

2. The monadic antichain theory MATh(L) is decidable if and only if the
elementary theory Th(J(L)) is decidable and the width of the elements of
L is bounded above.

168 CHAPTER 11. MONADIC SECOND ORDER LOGIC

Open problems

We list some questions that are left open in the present work. For more details
see the page indicated.

• Is the emptiness of L(A) for nonmonotone but effective asynchronous cel-
lular machines decidable (page 43)? Furthermore, we did not consider the
complexity of the emptiness problem for asynchronous cellular machines or
automata.

• Is it decidable whether an asynchronous cellular machine accepts some
Hasse-diagram (page 43)?

• For which sets of Σ-dags L is the set of Σ-ACAs A with L(A) = L recursive
(page 59)?

• Let k ∈ N. Is the set of Σ-ACAs A satisfying L(A) ∩ Dk = L(Ad) ∩ Dk for
some deterministic Σ-ACA Ad recursive (page 71)?

• Is there an extension of the monadic second order logic that allows one to
axiomatize precisely the rational sp-languages (page 75)?

• Does there exist a divisibility monoid with infinite commutation behavior
(page 95)? If this is the case, is the property to have finite commutation
behavior decidable on input of a presentation as in Theorem 8.2.10?

• Is it possible to find finitely many sets Cq in a divisibility monoid such
that rational sets where the iteration is applied to subsets of Cq only are
recognizable (page 122)?

• We showed that any rational divisibility monoid with finite commutation
behavior is width-bounded. Is this implication valid without the assumption
“finite commutation behavior” (if there exists a divisibility monoid with
infinite commutation behavior at all, page 139)?

• Is the property to be width-bounded (i.e. to satisfy Kleene’s Theorem)
decidable on input of a presentation as in Theorem 8.2.10?

169

170 CHAPTER 11. MONADIC SECOND ORDER LOGIC

Bibliography

[AK79] A.V. Anisimov and D.E. Knuth. Inhomogeneous sorting. International
Journal of Computer and Information Sciences, 8:255–260, 1979.

[Arn91] A. Arnold. An extension of the notions of traces and of asynchronous
automata. Informatique Théorique et Applications, 25:355–393, 1991.

[BCS93] P. Boldi, F. Cardone, and N. Sabadini. Concurrent automata, prime
event structures and universal domains. In M. Droste and Y. Gurevich,
editors, Semantics of Programming Languages and Model Theory, pages
89–108. Gordon and Breach Science Publ., OPA Amsterdam, 1993.

[BDK95] F. Bracho, M. Droste, and D. Kuske. Dependence orders for computa-
tions of concurrent automata. In STACS’95, Lecture Notes in Comp.
Science vol. 900, pages 467–478. Springer, 1995.

[BDK97] F. Bracho, M. Droste, and D. Kuske. Representation of computations in
concurrent automata by dependence orders. Theoretical Comp. Science,
174:67–96, 1997.

[BE97] O. Burkart and J. Esparza. More infinite results. Bulletin of the
EATCS, 62:138–159, 1997. Columns: Concurrency.

[Ber66] R. Berger. The undecidability of the domino problem. Mem. Am. Math.
Soc. vol. 66. AMS, 1966.

[Ber78] G. Berry. Stable models of typed λ-calculi. In 5th ICALP, Lecture
Notes in Comp. Science vol. 62, pages 72–89. Springer, 1978.

[Ber79] J. Berstel. Transductions and context-free languages. Teubner Studi-
enbücher, Stuttgart, 1979.

[Bir73] G. Birkhoff. Lattice Theory. Colloquium Publications vol. 25. American
Mathematical Society, Providence, 1973.

[Bod98] Hans L. Bodländer. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Comp. Science, 209:1–45, 1998.

171

172 BIBLIOGRAPHY

[BR94] I. Biermann and B. Rozoy. Context traces and transition systems. In
ISCIS IX, Antalya, Türkei, 1994.

[BR95] I. Biermann and B. Rozoy. Graphs for generalized traces. In
STRICT95, pages 101–115. Berlin, 1995.

[Büc60] J.R. Büchi. On a decision method in restricted second order arith-
metics. In E. Nagel et al., editor, Proc. Intern. Congress on Logic,
Methodology and Philosophy of Science, pages 1–11. Stanford Univer-
sity Press, Stanford, 1960.

[Cam94] P.J. Cameron. Combinatorics. Cambridge Univ. Press, 1994.

[CF69] P. Cartier and D. Foata. Problemes combinatoires de commutation et
rearrangements. Lecture Notes in Mathematics vol. 85. Springer, Berlin
- Heidelberg - New York, 1969.

[CLR95] M. Clerbout, M. Latteux, and Y. Roos. Semi-Commutations. In
[DR95], pages 487–552. 1995.

[CM88] P. Cori and Y. Métivier. Approximation of a trace, asynchronous au-
tomata and the ordering of events in distributed systems. In ICALP’88,
Lecture Notes in Comp. Science vol. 317, pages 147–161. Springer, 1988.

[CMZ93] R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings
and asynchronous cellular automata. Information and Computation,
106:159–202, 1993.

[Cou90] B. Courcelle. The monadic second-order logic of graphs. I: Recognizable
sets of finite graphs. Information and Computation, 85:12–75, 1990.

[CP85] P. Cori and D. Perrin. Automates et commutations partielles.
R.A.I.R.O. - Informatique Théorique et Applications, 19:21–32, 1985.

[DG96] M. Droste and P. Gastin. Asynchronous cellular automata for pomsets
without autoconcurrency. In CONCUR’96, Lecture Notes in Comp.
Science vol. 1119, pages 627–638. Springer, 1996.

[DG98] V. Diekert and P. Gastin. Approximating traces. Acta Inf., 35:567–593,
1998.

[DGK00] M. Droste, P. Gastin, and D. Kuske. Asynchronous cellular automata
for pomsets. Theoretical Comp. Science, 247:1–38, 2000. (Fundamental
study).

[Die90] V. Diekert. Combinatorics on Traces. Lecture Notes in Comp. Science
vol. 454. Springer, 1990.

BIBLIOGRAPHY 173

[Die91] V. Diekert. On the concatenation of infinite traces. In C. Choffrut
et al., editor, 8th STACS, Lecture Notes in Comp. Science vol. 480,
pages 105–117. Springer, 1991.

[Die93] V. Diekert. On the concatenation of infinite traces. Theoretical Comp.
Science, 113:35–54, 1993.

[Die96] R. Diestel. Graphentheorie. Springer, 1996.

[Dil50] R.P. Dilworth. A decomposition theorem for partially ordered sets.
Annals of Mathematics, 51:161–166, 1950.

[DK96] M. Droste and D. Kuske. Logical definability of recognizable and ape-
riodic languages in concurrency monoids. In Computer Science Logic,
Lecture Notes in Comp. Science vol. 1092, pages 467–478. Springer,
1996.

[DK98] M. Droste and D. Kuske. Recognizable and logically definable lan-
guages of infinite computations in concurrent automata. International
Journal of Foundations of Computer Science, 9:295–313, 1998.

[DK99] M. Droste and D. Kuske. On recognizable languages in divisibility
monoids. In G. Ciobanu and Gh. Paun, editors, FCT99, Lecture Notes
in Comp. Science vol. 1684, pages 246–257. Springer, 1999.

[DK01] M. Droste and D. Kuske. Recognizable languages in divisibility
monoids. Mathematical Structures in Computer Science, 11:741–770,
2001.

[DM95] V. Diekert and A. Muscholl. Construction of asynchronous automata.
In [DR95], pages 249–267. 1995.

[DM97] V. Diekert and Y. Métivier. Partial commutation and traces. In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages
Volume 3, pages 457–533. Springer, 1997.

[DR95] V. Diekert and G. Rozenberg. The Book of Traces. World Scientific
Publ. Co., 1995.

[Dro90] M. Droste. Concurrency, automata and domains. In 17th ICALP,
Lecture Notes in Comp. Science vol. 443, pages 195–208. Springer, 1990.

[Dro92] M. Droste. Concurrent automata and domains. Intern. J. of Found. of
Comp. Science, 3:389–418, 1992.

[Dro94] M. Droste. A Kleene theorem for recognizable languages over concur-
rency monoids. In 21th ICALP, Lecture Notes in Comp. Science vol.
820, pages 388–398. Springer, 1994.

174 BIBLIOGRAPHY

[Dro95] M. Droste. Recognizable languages in concurrency monoids. Theoretical
Comp. Science, 150:77–109, 1995.

[Dro96] M. Droste. Aperiodic languages in concurrency monoids. Information
and Computation, 126:105–113, 1996.

[DS93] M. Droste and R.M. Shortt. Petri nets and automata with concurrency
relations - an adjunction. In M. Droste and Y. Gurevich, editors, Se-
mantics of Programming Languages and Model Theory, pages 69–87.
Gordon and Breach Science Publ., OPA, Amsterdam, 1993.

[Dub86] C. Duboc. Commutations dans les monöıdes libres: un cadre théorique
pour l’étude du parallelisme. Thèse, Faculté des Sciences de l’Université
de Rouen, 1986.

[Ebi94] W. Ebinger. Charakterisierung von Sprachklassen unendlicher Spuren
durch Logiken. PhD thesis, Universität Stuttgart, 1994.

[Elg61] C.C. Elgot. Decision problems of finite automata design and related
arithmetics. Trans. Am. Math. Soc., 98:21–51, 1961.

[EM65] C.C. Elgot and G. Mezei. On relations defined by generalized finite
automata. IBM J. Res. Develop., 9:47–65, 1965.

[EM93] W. Ebinger and A. Muscholl. Logical definability on infinite traces. In
20th ICALP, Lecture Notes in Comp. Science vol. 700, pages 335–346.
Springer, 1993.

[EM96] W. Ebinger and A. Muscholl. Logical definability on infinite traces.
Theoretical Comp. Science, 154:67–84, 1996.

[FGL90] E. Fried, G. Grätzer, and H. Lakser. Projective geometries as cover-
preserving sublattices. Algebra Universalis, 27:270–278, 1990.

[FS98] A. Finkel and Ph. Schnoebelen. Fundamental structures in well-
structured infinite transition systems. In LATIN’98, Lecture Notes
in Comp. Science vol. 1380, pages 102–118. Springer, 1998. Extended
Abstract of [FS01].

[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems
everywhere! Theoretical Comp. Science, 256:63–92, 2001.

[GP92] P. Gastin and A. Petit. Poset properties of complex traces. In 17th
MFCS, Lecture Notes in Computer Science vol. 629, pages 255–263.
Springer, 1992.

BIBLIOGRAPHY 175

[GR93] P. Gastin and B. Rozoy. The poset of infinitary traces. Theoretical
Comp. Science, 125:167–204, 1993.

[Has91] K. Hashigushi. Recognizable closures and submonoids of free partially
commutative monoids. Theoretical Comp. Science, 86:233–241, 1991.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc., 2:326–336, 1952.

[HKT92] P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan. A trace se-
mantics for Petri nets. In W. Kuich, editor, ICALP’92, Lecture Notes
in Comp. Science vol. 623, pages 595–604. Springer, 1992.

[Hoo94] P.W. Hoogers. Behavioural aspects of Petri nets. PhD thesis, Rijksuni-
versiteit te Leiden, 1994.

[KK00] R. Kummetz and D. Kuske. The topology of Mazurkiewicz traces.
Technical Report MATH-AL-11-2000, TU Dresden, 2000. Accepted
for Theoretical Computer Science.

[Kle56] S.C. Kleene. Representation of events in nerve nets and finite automata.
In C.E. Shannon and J. McCarthy, editors, Automata Studies, Annals
of Mathematics Studies vol. 34, pages 3–40. Princeton University Press,
1956.

[KM00] D. Kuske and R. Morin. Pomsets for local trace languages: Recogniz-
ability, logic and Petri nets. Journal for Languages, Automata, and
Combinatorics, 2000. To appear.

[KP92] S. Katz and D. Peled. Defining conditional independence using col-
lapses. Theoretical Comp. Science, 101:337–359, 1992.

[KS98] D. Kuske and R.M. Shortt. Topology for computations of concurrent
automata. International Journal of Algebra and Computation, 8:327–
362, 1998.

[Kus94a] D. Kuske. Modelle nebenläufiger Prozesse – Monoide, Residuensysteme
und Automaten. PhD thesis, Universität GHS Essen, 1994.

[Kus94b] D. Kuske. Nondeterministic automata with concurrency relations and
domains. In S. Tison, editor, Colloquium on Trees in Algebra and
Programming, Lecture Notes in Comp. Science vol. 787, pages 202–
217. Springer, 1994.

[Kus98] D. Kuske. Asynchronous cellular automata and asynchronous automata
for pomsets. In CONCUR’98, Lecture Notes in Comp. Science vol.
1466, pages 517–532. Springer, 1998.

176 BIBLIOGRAPHY

[Kus99] D. Kuske. Symmetries of the partial order of traces. Order, 16:133–148,
1999.

[Kwi90] M. Kwiatkowska. A metric for traces. Information Processing Letters,
35:129–135, 1990.

[LW98a] K. Lodaya and P. Weil. A Kleene iteration for parallelism. In V. Arvind
and R. Ramanujam, editors, FST and TCS 98, Lecture Nodes in Com-
puter Science vol. 1530, pages 355–366. Springer, 1998.

[LW98b] K. Lodaya and P. Weil. Series-parallel posets: algebra, automata and
languages. In M. Morvan, Ch. Meinel, and D. Krob, editors, STACS98,
Lecture Nodes in Computer Science vol. 1373, pages 555–565. Springer,
1998.

[LW00] K. Lodaya and P. Weil. Series-parallel languages and the bounded-
width property. Theoretical Comp. Science, 237:347–380, 2000.

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their interpreta-
tion. Technical report, DAIMI Report PB-78, Aarhus University, 1977.

[Maz87] A. Mazurkiewicz. Traces theory. In W. Brauer et al., editor, Petri Nets,
Applications and Relationship to other Models of Concurrency, Lecture
Notes in Comp. Science vol. 255, pages 279–324. Springer, 1987.

[Maz95] A. Mazurkiewicz. Introduction to trace theory. In V. Diekert and
G. Rozenberg, editors, The Book of Traces, chapter 1, pages 3–42.
World Scientific Publ. Co., 1995.

[Mét86] Y. Métivier. On recognizable subsets of free partially commutative
monoids. In ICALP’86, Lecture Notes in Comp. Science, pages 254–
264. Springer, 1986.

[Mol96] Faron Moller. Infinite results. In U. Montanari and V. Sassone, editors,
CONCUR’96, Lecture Notes in Comp. Science vol. 1119, pages 195–
216. Springer, 1996.

[Muk92] M. Mukund. Petri nets and step transition systems. International
Journal of Foundations of Computer Science, 3:443–478, 1992.

[NRT90] M. Nielsen, G. Rosenberg, and P.S. Thiagarajan. Behavioural notions
for elementary net systems. Distributed Computing, 4:45–59, 1990.

[NW63] C.St.J.A. Nash-Williams. On well-quasi-ordering finite trees. Proc.
Camb. Philos. Soc., 59:833–835, 1963.

BIBLIOGRAPHY 177

[Och85] E. Ochmański. Regular behaviour of concurrent systems. Bull. Europ.
Assoc. for Theor. Comp. Science, 27:56–67, 1985.

[PS90] M. Peletier and J. Sakarovitch. Easy multiplications. II. Extensions of
rational semigroups. Information and Computation, 88:18–59, 1990.

[Rab69] M.O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

[Ram30] F.P. Ramsey. On a problem of formal logic. Proc. London Math. Soc.,
30:264–286, 1930.

[Sak87] J. Sakarovitch. Easy multiplications. I. The realm of Kleene’s Theorem.
Information and Computation, 74:173–197, 1987.

[Sch61] M.P. Schützenberger. On the definition of a family of automata. Inf.
Control, 4:245–270, 1961.

[Sch98] V. Schmitt. Stable trace automata vs full trace automata. Theoretical
Comp. Science, 200:45–100, 1998.

[She75] S. Shelah. The monadic theory of order. Annals of Mathematics,
102:379–419, 1975.

[Sta89] E.W. Stark. Connections between a concrete and an abstract model
of concurrent systems. In 5th Conf. on the Mathematical Foundations
of Programming Semantics, Lecture Notes in Comp. Science vol. 389,
pages 53–79. Springer, 1989.

[Ste91] M. Stern. Semimodular lattices. Teubner Texte vol. 125. Teubner, 1991.

[Teo93] D. Teodosiu. Bereichstheoretische Eigenschaften komplexer Spuren.
Master’s thesis, Universität Stuttgart, 1993.

[Tho90a] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 133–191. Elsevier
Science Publ. B.V., 1990.

[Tho90b] W. Thomas. On logical definability of trace languages. In V. Diekert,
editor, Proceedings of a workshop of the ESPRIT BRA No 3166: Al-
gebraic and Syntactic Methods in Computer Science (ASMICS) 1989,
Report TUM-I9002, Technical University of Munich, pages 172–182,
1990.

[Tho97a] W. Thomas. Ehrenfeucht games, the composition method, and the
monadic theory of ordinal words. In J. Mycielski et al., editor, Struc-
tures in Logic and Computer Science, A Selection of Essays in Honor

178 BIBLIOGRAPHY

of A. Ehrenfeucht, Lecture Notes in Comp. Science vol. 1261, pages
118–143. Springer, 1997.

[Tho97b] W. Thomas. Languages, automata, and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, pages 389–455.
Springer Verlag, 1997.

[Win87] G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozen-
berg, editors, Petri nets: Applications and Relationships to Other Mod-
els of Concurrency, Lecture Notes in Comp. Science vol. 255, pages
325–392. Springer, 1987.

[Zie87] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. -
Informatique Théorique et Applications, 21:99–135, 1987.

[Zie95] W. Zielonka. Asynchronous automata. In [DR95], pages 205–248. 1995.

Index

R(x), 12

[a, b], 3

[n], 8

AM, 101

Cℓ, 98

D, 11

∆A, 8

Dk, 63

GG, 156

G, 47

H(A,≤), 3

Hf (A,≤), 3

J(A,≤), 3

MATh(V,≤), 7

MATh(P), 7

MCTh(V,≤), 7

MCTh(P), 7

MTh(V,E, λ), 6

MTh(C), 6

Pred(t), 22

SP(Σ), 74

SPwa(Σ), 77

S(A), 28

Th(V,E, λ), 6

Th(C), 6
∨

(X), 3
∧

(X), 3

dom(f), 8

↓X, 3

fnf(x), 100

idA, 8

im f, 8

inf(X), 3

mub(X), 3

nat, 92

part(A,B), 8

πi, 8

state(r), 24

sup(X), 3

n, 8

↑X, 1, 3

↑a, 1

la, 3

a −−< c, 3

a ≶ b, 3

a ‖ b, 3

h(a,A), 3

k-chain mapping, 65

w(A,≤), 3

x I y, 93

x ↑ y, 93

Σ-dag, 11

weak, 35

(Σ, k)-dag, 63

a-regular, 85

ACA, 14

ACM, 13

effective, 29

monotone, 16

alternating covering chain, 52

antichain, 3

asynchronous cellular automaton, 14

asynchronous cellular machine, 13

automaton over a monoid, 100

axiomatizable

elementary, 7

monadically, 7

basis, 1

basis algorithm, 29

behavior, 100

bound

largest lower, 3

least upper, 3

lower, 3

maximal lower, 3

minimal upper, 3

upper, 3

branching automaton, 76

cancellative, 90

chain, 3

chain covering, 63

saturated, 78

179

180 INDEX

cliques, 98

closed

residually, 122

commutation behavior, 93

finite, 95

congruence, 4

connected, 121

convex, 3

cover, 3

definable, 7

dependence alphabet, 4

dependence graph, 5

dependence relation, 4

divisibility monoid, 91

divisibility relation, 4

filter, 3

principal, 3

finitely generated, 89

FNF, 100

Foata normal form, 100

formula

elementary, 6

monadic, 6

free monoid, 4

function

partial, 8

generators, 89

grid

commutation, 115

folded, 47

grid graph, 156

Hasse-diagram, 12

height, 3

Higman’s Theorem, 2

homomorphism, 4

ideal, 3

principal, 3

incomparable, 3

independence relation, 4

independent, 93

infimum, 3

irreducible, 90

join, 3

join-irreducible, 3

join-semilattice, 3

Kleene’s Theorem, 90

language

weakly rational sp-, 74

closed word, 120

rational sp-, 74

series-rational sp-, 74

width-bounded sp-, 74

lattice, 3

distributive, 4

modular, 4

semimodular, 4

left divisibility monoid, 91

left divisibility relation, 4

left divisor, 90

length, 3

lexicographical normal form, 128

linearly ordered, 3

Manfred Droste, 115

meet, 3

minimal, 1

monoalphabetic, 91, 127

monoalphabetic-rational language, 91

monoid

labeled divisibility, 127

language

c-rational, 122

mc-rational, 127

rational, 134

MSO, 5

order, 3

P-asynchronous automaton, 84

Paul Gastin, 45

Peter Habermehl, 21

pomset

series-rational, 73

sp-, 73

pomset without autoconcurrency, 12

poset, 3

product

parallel, 74

serial, 73

quasi order, 1

Ramsey’s Theorem, 124

rank, 120

rational language, 90

reading domain, 12

recognizable language, 90

relation

BIBLIOGRAPHY 181

definable, 7

relation defined by ϕ, 7

residuum, 93

run, 14

˜ condition, 14

successful, 15

weakly successful, 82

sentence, 6

strongly equivalent, 109

subgrid, 116

supremum, 3

theory

elementary, 6

monadic, 6

monadic antichain, 7

monadic chain, 7

trace alphabet, 4

trace monoid, 5

transition

fork, 76

join, 76

sequential, 76

transposed, 4

tree width, 146

well quasi order, 1

well-structured transition system, 22

width, 3

-bounded, 133

wqo, 1

WSTS, 22

