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ADAPTIVE NEURAL NETWORK CONTROLLER FOR FLEXIBLE-LINK ROBOT 
 

Abstract: This paper is concerned with the design of active trajectory tracking control 

structure for flexible-link manipulator based on adaptive neural network. Timoshenko 

beam theory is used to model the elastic behavior of the robot’s arm. Then the partial 

differential equation of motion corresponding to continuous model is transferred into a 

set of second-order differential equations using the finite element method.  

A simple adaptive control structure is used to dampen the end-point vibration, which is 

consisted from PD controller to stabilize the system and radial base function neural 

network with feedback error on-line learning scheme to control the elastic deflection 

and compute the joints torque that position the end effecter of multi-link flexible robot 

along prescribed trajectory. The inputs to the control system are the link’s tip normal 

deflection and the hub velocity.   

The results are presented to illustrate the advantages of the proposed controller over the 

rigid body torque. Simulation’s results show the effectiveness of the control structure 

and how it is  succeeded in reducing the end-point vibration during tracking and after 

reaching the desired position.  

 

Keywords: Flexible -link robot; neural network; adaptive control 

 

1. INTRODUCTION 

 
Flexible robot manipulators exhibit many advantages over rigid robots: they require less 

material, are lighter in weight, consume less power, require smaller actuators, are more 
maneuverable and transportable, have less overall cost and higher payload to robot weight ratio. 

Due to the flexible nature of the system, the dynamics are significantly more complex. Problems 
arise due to precise positioning requirements, system flexibility which leads to vibration, the 
difficulty in obtaining an accurate model of the system and non-minimum phase characteristics 

of the system [1]. If the advantages associated with lightness are not to be sacrificed, accurate 
models and efficient controllers have to be developed. 

Various approaches have been developed previously for modelling of flexible manipulators. 
These can be divided into two main categories: the assumed modes method and the numerical 
analysis approach. The assumed modes method looks at obtaining approximate modes by solving 

the partial differential equation characterizing the dynamic behaviour of the system. Using this 
approach, the inverse kinematics problem was solved by special developed numerical technique 

in [3] so as to dampen the vibration of flexible manipulator. Also a control method at terminal 
stage of movement had developed and engaged with PID in [4]. 
Numerical analysis techniques include finite difference (FD) and finite element (FE) methods. 

Using the  FE method for modelling the flexible links, a method  for computing the feed 
foreword torque had presented in [4, 5]. The approach was based on solving the inverse dynamic 

problem for flexible manipulators in the frequency domain.  The usage of the fast Fourier 
transform FFT and the necessity to iterate to obtain the required solution preclude this method 
from being used in real time control.  

McGinley et al. [6] had developed  a finite element model to simulate the performance of 
piezoelectric ceramic actuators, and was applied to a flexible two-arm manipulator system. 

Connected to a control voltage, the piezoelectric actuators produce control torques based on the 
optimal control theory. Also the finite element technique had  been depended for investigating 
flexible link manipulator in combination with a perturbation method or fuzzy logic, respectively 

[7, 8]. These investigations had shown that the finite element method can be used to obtain a 
good representation of the system.  



Simulation and experimental results of the response of flexible manipulator were presented in 
[9]. It had reported that using approximate modes method dose not always represent the fine 
details of the system; while in FM method, a single element is sufficient to describe the dynamic 

behaviour of a flexible manipulator reasonably well. 
In this present  work the highly nonlinear dynamic behavior of  flexible robot manipulator is 

analyzed using the FM method. The formulations includes all the nonlinear Corioles and 
centrifugal effects. A control structure is proposed that uses PD controller combined with an 
observer for velocity estimation (position measurement only is required  for feed back), while the 

adaptive neural-network is trained on- line to control the elastic deflection and compensate the 
system nonlinearities. 
 
2. EQUATIONS OF MOTION OF AN INDIVIDUAL LINK [10] 

 
The individual flexible link depicted in Figure 1.a forms part of a planar multilink manipulator 
and has a total length L, mass per unit length m , moment of inertia I, area A, Young modulus E, 

shear modulus G, and shear coefficient ?. A tip mass of value Mt is attached at one end, and a 

hub of inertia Ih at the other end. The hub is attached to the actuator. T is the unknown torque to 
be applied at the hub. Rty, Rtx, and Tt are the reaction forces and the torque at the tip that comes 

from the next link. The subscripts h and t indicate hub and tip, respectively. A point P at a 
distance x from the center of the hub has undergone elastic deflections of value ux and uy and 
rotation ?. These are defined with respect to a nominal position characterized by the moving 

frame (e1, e2) attached to the hub, that rotates at a specified (nominal) angular velocity and 

acceleration hω  and hω& , respectively.  

 

 
 
 

 
 
 

 
                                  

a                                                                       b 
    

a- Nominal motion (dashed) and elastic deformation (solid)    b- Finite element partition for        

flexible link. 
Figure 1.  Flexible link manipulator 

 
As a consequence of the elastic deflections and rotating nominal motion, the point P is subjected 

to a total translational acceleration ap and angular acceleration pω& . Using the principles of 

relative motion, the acceleration of the point P can be set in terms of the translation and angular 

accelerations at the hub, ah and hω& , angular velocity hω  at the hub, and the relative velocity vrel 

and acceleration arel of point P. The latter are due to the elastic deflections ux and uy with respect 

to the moving frame. In vectorial notation: 
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where  )()()( 21p tutux yx eer ++=  is the position of P after deformation, relative to the 

hub. 

(1) 



The components of the relative velocity are xu&  and yu& . Those of the relative acceleration are xu&&  

and yu&& . Performing the vectorial operations involved in Eq.(1) the following components of the 

accelerations are obtained: 
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Using the Timoshenko beam theory which includes the effects of shear deformation and rotatory 

inertia, the principle of virtual displacements can be used directly to set up the equations of 
motion. Then the displacement field can be discretized using the finite element under pin-free 

boundary conditions (Figure 1.b). A set of interpolation functions are defined within each body: 
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Where iH   are the interpolation functions; i

xu , 
i

yx , iθ  indicate the nodal or generalized 

deflection, and n is the number of nodes. 
Then following the standard procedures for the formation and assemblage of element matrices, 

the equations of motion of the link may be expressed by a set of time varying differential 
equations in the form: 
 

 
where M and K are the conventional finite element mass and stiffness matrices, respectively. Cc 

and Kc are the time varying Coriolis and centrifugal stiffness matrices that depend on the 

nominal angular velocity 
h

ω  and acceleration hω&  of the link. Matrix C has been added to 

represent the internal viscous damping of the material. Vector T contains one non-zero term 

only, and that is the unknown torque at the hub. Finally, F contains the reactions and the torque 
at the end of the link and the known forces produced by the rotating frame effect. Also in our 
presentation, we will refer to  vt as the elastic normal deflection at the tip, and vi as all the other 

internal finite element elastic degrees of freedom of the manipulator.  
 

3. CONTROL DESING  

 
It is well known that most of the industrial robot manipulators are equipped with the simplest PD 
controller. The PD controller requires measurements of both link's positions and velocities. It is 

very important to realize the PD control scheme with only position measurement. One of the 
possible methods is to use a velocity observer. The most popular model- free observers are high-
gain observers, which can estimate the derivative of the output [11]. 

If the link velocity (x2) is not measurable and the dynamics of the system are unknown, a high 
gain observer may be used to estimate x2. The high gain observer is of the form shown below 

[12]: 
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e               Small positive parameter. 
L1 & L2     Positive definite matrices. 
 

Feedback Error Neural Learning Technique (FENL) 
 

An adaptive control can be constructed by using the feedback error neural learning (FENL)  
technique. In the FENL structure, the reference value (x1

d) and the output of the system (x1) 
adopted as the inputs of the neural network (NN) in order to learn the inverse dynamics of the 

control systems [13]. The objective of the control is to minimize the error (e) which has defined 
as the difference between the reference (desired) value (x1

d) and the output of the system (x1). In 

the FENL method, the output of the conventional feedback controller (uc) is used for calculating 
the NN output error (Figure 2). When the output of the conventional controller (uc) becomes 
zero, the error also becomes zero. Therefore, the objective of the control is satisfied.  Also the 

total control signal (u) which will be applied to the system becomes the sum of the conventional 
output (uc) and the neural network output (uNN): 

In [14] reported that the above control scheme had effectively compensated the effects of 
friction, gravity, and system nonlinearities for rigid robot-manipulator.   
 

 

Figure 2 Control structure for flexible- link robot  
 

Special Concerns and Techniques to Control Flexible Link  
 
In general, the control of flexible manipulators to achieve and maintain accurate positioning can 

not be easily accomplished, and therefore many control techniques were presented in literatures. 
Tip deflection of flexible link is an important control parameter so as to achieve smooth  

trajectory tracking [3]. In literatures this parameter was used in different controlling schemes. 
For  example, this parameter was considered in [4, 5] by letting the link’s tip no rmal elastic 
deflection equal to zero for calculating the torque in the frequency domain. Jnifene et al. [15], 

used strain gauges in order to measure the elastic deflection of the vibrating link. Then this 
deflection used as an input error to a fuzzy logic control system so as to reduce the tip vibration 

in the response to a step input. From the above we can conclude that the tip normal elastic 
deflection should be used in the feedback control.  
In our work, we propose to use the tip normal elastic deflection in calculating and forming the 

proportional part of the PD controller, and this also logically will led to incorporate it in the 

NNc uuu += (6) 
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feedback error on-line learning scheme of the NN system. The derivative part of the PD 
controller is constructed on the error difference between the desired hub velocity and the 
estimated hub velocity. The estimated hub velocity as explained before is calculated by the high-

gain observer (equation 5). The latter will maintain the stability of the proposed control system 
because it depends on the response of the hub at which the link is attached. 

Considering linear displacements, the total deflection y(x,t) at a distance x from the frame origin 
can be described as a function of both the rigid body motion ?h(t) and elastic deflection uy(x,t) 
as[9]:  

 
 

 

 

4. GROWING RADIAL BASIS FUNCTION NEURAL NETWORKS  

 
Radial basis function with Gaussian functions have good local interpolation function and global 
generalization, thus they have extensively been used as the basis of NNs for nonlinear system 

identification and control [16]. In case of a Gaussian basis function, the output of the RBF-NN 
with N number of neurons is expressed as: 

 

 
 

 
 
 

where w, µ, s   are the weights, centers and 
widths, respectively and ¦ ¦  denotes the Euclidean norm.    

The input vector is x and ? comprises the set of parameters to be tuned by a learning algorithm. 
Figure 3 shows the structure of this neural network. 
 

 
Figure 3 Radial basis function neural network 

 

The main problem of RBF is that the total number of neurons tends to grow dramatically with 
the input dimension. This becomes particularly important when large dimension RBF-NNs are 

used in real- time problems. In order to avoid the dimensionality problems generated by standard 
RBF, Platt[17] proposed a sequential learning technique for RBF-NNs, where the emphasis was 
to learn quickly, generalize well and have a compact representation. The resulting architecture 
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was called the Resource Allocating Network (RAN) and has proven to be suitable for online 
modeling of non-stationary processes. The RAN learning algorithm proceeds as follows: 

• Current estimation error criteria, error must be bigger than a threshold: 

 
 

where  y(k) is the function to be approximated by neural 
network at time k.  

• Novelty criteria, the nearest center distance must be bigger than a threshold: 
 
 

 

• Windowed mean error criteria, windowed mean error must be bigger than a threshold: 

 
 

 
where T is the time of past data. 
 

When all the above three criteria are satisfied, a new neuron (N+1) is added to the network; this 
new neuron is initialized with the following center, width and weight,  respectively: 

 
 
 

 
 

 
Where ? is a constant called "overlapping factor".  
 

When one (or more) of the criteria is not satisfied, the vector ?(k) containing the tuning 
parameters of the RBF-NN is updated using the following relationship:  

 
 
 

 
where e(k) is the prediction error and ? is the learning rate and ?(k) is the vector of parameters to 

be updated. 
 
A further improvement to the above algorithm was proposed by MRAN[18]. The growing and 

pruning mechanisms remains unchanged, while the parameters are updated following a 'winner 
takes it all' strategy. In practice only the  parameters of the most activated neuron are updated, 

while all the other are unchanged. This strategy implies a significant reduction of the number of 
parameters to be updated online, and for this reason it is particularly suitable for online 
applications.  

 
5. SIMULATION ANALYSIS 

 
In order to illustrate the performance of the proposed control system we describe in this section 

some results. A robot manipulator is simulated consists of two flexible links and two revolute 
joints driven directly by servo motors. Each link in this simulation is modeled with 5 finite 
elements. The links are made out of  aluminum and have the following characteristics [4]:  

First link:  L=0.66 m, A=  1.2097 x 10-4 m2, I=2.2864x10-10 m4, Mt =1.049 kg, Ih=0.0011823 
kg.m2   
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Second link: L=0.66 m, A= 0.5842 x 10-4 m2, I=2.5753x10-11 m4, Mt =0.0248 kg, Ih=0.00048 
kg.m2   
 

While the material properties are the following: E=7.11 *1010  N/m2 , mass density ?=2715 
kg/m3 , shear coefficient ?=5/6 and a damping ratio 0.002. The cross-section of the link is such 

that the arm is rigid in the vertical direction and flexible in the horizontal direction. The 
following PD controller gains are chosen to stabilize the system are Kp=[ 31 0; 0 45] and Kd=[60 
0; 0 80]. The following observer design parameters are adopted [19]: L1=[42.71  0; 0 42.71], 

L2=[84.3242 0; 0  84.3242],  and e=0.003. The NN parameters are shown in Table(1).  
Figure 4 shows a comparison of the total tip deflection, resulting from our proposed control 

scheme (dotted curve) and the rigid body torque (dashed curve). The rigid body torque is 
calculated on the base of controlling the hub position and velocity only. While our proposed 
control scheme provides an excellent tracking of the tip trajectory, the rigid torque induces a 

large oscillation in the tip motion.  
 

Another test for our proposed control structure is the response to sinusoidal desired trajectory. 
Figs. 5-7 show the hub angle (?h) position, tip total deflection (yt), and tip normal elastic 
deflection (uty) for both links, respectively. Vibration exists at the beginning of motion because 

the system is not trained yet. High vibration is recognized on the first link  because of the  actions 
from the first motor and the reaction from the second. Also high tracking error exists at the 

beginning of motion for link 2. Then after 3seconds excellent tracking is achieved.   
 
 

Table 1: The Neural Network Updating Parameters  
 

Parameter Value Description 

No. of inputs :N i 12 Friction Nonlinearity 

No. of outputs: No 2 Approximated output  

Max. no. neurons: Nmax 5 Limits for the network growth 

Tuning radius  5 Limits for the updated neurons  

[ ?w, ?s , ? µ ] [0.05, 0.01, 0.01] 
Learning Rates for the weights, widths 

& centers 

[E1, E2, E3] [0. 1, 0.2, 0.1] 
Thresholds for three condition of 

growing criteria 

? 6.4 
Activation Function Overlapping 

Factor 

 
 



 

Figure 4  Comparison of the tip total deflection, our proposed control scheme (dotted curve) and 
the rigid body torque (dashed curve) 

 

 
 

 

Figure 5 Hub angular position of two-link manipulator for sinusoidal input  
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Figure 6 Tip total deflection  of two- link manipulator for sinusoidal input 

 
 

 
 

 Figure 7 Tip normal elastic deflection  of two-link manipulator for sinusoidal input 
 

 
 
6. CONCLUSIONS 

 
The Radial Basis Function neural network with the learning algorithm is a good universal 

approximators for any non-smooth nonlinear function. A  PD controller alone can not cancel the 
effect of nonlinearity to achieve accurate  tracking behavior for the system. The Radial Basis 

Function NN has a dynamic structure due to the pruning strategy, thus it has convergence to the 
desired target, which makes it suitable for real-time on-line learning.  
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Simulated case-studies for flexible arm had shown the effectiveness of the suggested control 
scheme. The NN with feedback error on-line learning scheme improves the system performance 
in terms of tracking accuracy. Using the link’s tip  normal deflection  and the hub velocity as 

inputs to the neural network controller had resulted in a significant reduction in the end-point 
vibration of the flexible multi-link robot manipulator. Combining the PD controller with the NN 

was found to improve the trajectory tracking and controlling the end-point vibration  of the 
flexible manipulator during the tracking process and after reaching the desired position.  
A very important feature of the proposed control scheme is that not only the tip trajectory is 

tracked but also that the vibration is minimized; so that the actual motion of the whole system 
resembles that of a rigid system.   
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