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Applications 
 
 

Abstract 
 

Magnetorheological (MR) fluid belongs to the group of smart materials whose rheological 

properties can be varied rapidly by application of a magnetic field. The response time of 

magnetorheological technology is generally considered fast but there is large variation 

between estimated response times of MR devices in different studies. Typically the 

response times of MR actuation systems have been reported to be few milliseconds. 

However, a recent study has been shown the MR fluid responds to external magnetic 

field in less than 0.5ms which makes the fluid interesting possibility in high frequency 

applications. The aim of this research work is to evaluate applicability of the MR valve for 

high dynamic applications. The current status of the research related to high frequency 

magnetorheological systems will be reviewed and the main performance criteria 

affecting the dynamical response will be pointed out. Theoretical result will also be 

validated with an experimental device and the performance of the experimental system 

will be discussed via measured responses. 

 

Introduction 
 

Magnetorheological fluids were invented by Jacob Rabinow at the US National Bureau 

of Standards in 1948. At the time the technology was not ready for the breakthrough but 

ever since some industrial issues were solved, both the technical and the commercial 

benefits for various magnetorheological applications have become very promising. 

During past years magnetorheological (MR) technology has been applied widely in 

different industrial areas. Due to the nature of the technology it is very well suited for 

semi active dampers and semi active vibration control. (1) (2) 



The functional principle of magnetorheological fluid is based on micron sized 

ferromagnetic particles mixed into a base fluid. In consequence of the external magnetic 

field the ferromagnetic particles align parallel to the magnetic field lines and the shear 

stress of the fluid is increased and the volume flow is resisted or restricted. (3) The 

principle of magnetorheological effect is demonstrated in figure 1. Magnetorheological 

fluid can change from free flowing fluid into a semi solid material within a millisecond. 

This state transition of MR fluids can be used to implement various types of controllable 

dampers valves, brakes or squeeze film devices (2). The advantage of the 

magnetorheological devices is that no moving parts are needed for the valve function. 

This feature enables some novel designs compared to traditional hydraulics and makes 

the structure of the devices simpler. By directly controlling the shear strength of the fluid 

magnetorheological technology also provides simple and rapid response interface 

between electronic and mechanical systems. 

 

Figure 1, MR valve flow response to a magnetic field (4) 

 

In this paper the state of the art of the response time measurements of 

magnetorheological fluids is reviewed and the applicability of this technology in high 

frequency applications will be discussed. Some of the latest magnetorheological actuator 

applications are also reviewed. The design considerations for high frequency valves will 

be outlined and the multidisciplinary nature of MR devices is taken into consideration. 

The paper will be concluded by evaluating the performance of experimental 

magnetorheological valve designed for high dynamic applications. 



 

High frequency applications for MR technology 
 

The response time of magnetorheological technology is generally considered fast. The 

magnetorheological effect is based on the alignment of the magnetic particles in the 

magnetic field and this is demonstrated in figure (1). This organization of the particles 

will increase the shear stress of the fluid and resist or totally restrict the fluid flow. In the 

absence of a magnetic field the fluid exhibits Newtonian-like behavior, where particle 

orientation is random and the velocity profile is parabolic. In section 1 the fluid is 

exposed to the magnetic filed and the transition from free flowing fluid to Bingham plastic 

behavior begins. When the fluid reaches section 2 the particles have begun to align 

along magnetic field. At this stage the shear stress of the fluid is not yet fully developed 

but the volume flow is already resisted and the velocity profile has become blunt. In 

section 3 the shear stress of the fluid has reached its full potential and the pressure 

difference over the valve depends of the design factors of the valve. (3) 

 

Response time of magnetorheological fluid 
 

The short response time of MR fluid makes measuring of the response time of the MR 

effect itself a chalenging task. In some publications the response time of the MR devices 

has been reported but the response time is given for the total system only. Response 

time of the fluid has been documented only in few papers in the literature. Goncalves et 

al. have been studying the response time of the MR fluid perhaps most successfully and 

reported the state of the art response time of the technology. In this study the issue was 

first confronted by defining the fluid dwell time. Dwell time is defined as the amount of 

time the fluid spends in the presence of the magnetic field. The dwell time as a term is 

easy to understand when the figure 1 is considered again. In such a case which fluid is 

stationary or flowing slowly in the active region of the valve the particles in the fluid have 

enough time to form chain structures between north and south poles of the 

electromagnet in the MR valve and the fluid will develop its full potential. On the other 

hand as the velocity of the fluid flow is increased the dwell time decreases and the fluid 

may not have time to activate completely. A slit-flow rheometer was combined with a 

hydraulic actuator to perform the measurements and the experimental setup is shown in 

figure 2a. The dwell time of the fluid in the active part of the rheometer was alternated 

between 6,4 ms and 0,18 ms.  



 

                 

Figure 2a) Slit-flow rheometer                    2b) Yield stress as a function of dwell 
                                 time (3) 

 

The resulting experimental yield stress data as a function of dwell time is shown in figure 

2b. The measurements were repeated for magnetic field strengths of 100 kA/m, 150 

kA/m and 200 kA/m and the response time of the fluid was 0,24 ms, 0,20 and 0,19 ms 

respectively. The results also indicated that the response time of the fluid decreased as 

magnetic field strength increased. (4) 

 

High frequency actuators 
 

Based on the research result reviewed in the previous chapter it should be possible to 

develop highly dynamical magnetorheological actuators or valves. However there are 

only few studies demonstrating MR devices with response times in the scale of few 

milliseconds. This is probably mainly caused by the fact that the design process of a MR 

valve is a multidisciplinary task combining the design of control electronics, the design of 

power electronics, the magnetic design, the hydraulic design and the design of the MR 

fluid. Failure in any of these areas will limit the performance of the valve on a poor level 

even thought other areas would operate well. For example: It can be easily understood 

that if the response time of the current control circuit of the coils is more than 10 

milliseconds, it is not possible to measure faster response from hydraulic circuit. On the 

other hand if the hydraulic circuit is designed poorly and the natural frequency of the 

hydraulic circuit is well below the maximum bandwidth of the current control circuit, the 

hydraulic circuit will not respond rapidly to the pressure changes created by the 

magnetic field in the fluid gaps. When the response of the magnetic circuit and the 

dynamics of the MR fluid are combined with these factors it makes it considerably more 

difficult to decide which part of the valve works well and which part is the bottle neck.  

Many papers have been published evaluating the performance of magnetorheological 



dampers, valves and MR brakes. Most of the studies seem to have examined 

magnetorheological dampers because it is perhaps the most attractive application of this 

technology. This is due to the fact that the construction of a linear MR fluid damper is 

very simple and similar to conventional viscous fluid damper. The damping oil is just 

replaced with MR fluid and active fluid is led from one side of the moving piston to 

another through annular flow channels in which the MR fluid can be activated by 

magnetic field. MR fluid dampers are typically characterized by large damping force and 

low power consumption. In figure 3 a typical MR damper construction is presented and 

the functional parts are pointed out. See e.g. (5-9) 

 

Figure 3, Draft of MR-damper (2) 

 

In reviewing the literature a detailed description of the response time of 

magnetorheological dampers is seldom given. However, the current state of the art in 

the field of damper dynamics is documented by (5). The damper employed in this study 

was commercially available RD-1005-3 used in Lord Corporation’s Motion Master® Ride 

Management system. The excitation of the damper was realized by using a material 

testing system (MTS) ranging the constant velocity from 0,1 to 4 in/s. The response time 

of the damper was measured by applying a step control to the coil current during the 

constant piston velocity and measuring the change in the damping force. A 

demonstration of approach for finding damper response time is shown in figure 4a and 

response time as a function of coil current is presented in figure 4b for two input 

velocities. In this study the response time of the magnetorheological damper was 

reported to be an average of 20 ms beyond the velocity of 1 in/s. However, in this study 

the response time of the damper was defined from the increasing point of the damping 

force up to 95% of the maximum force. In the literature it has been well documented that 

magnetorheological fluid has a certain response time measured from the applying the 

magnetic field before the shear stress of the fluid begins to increase. (4) If the response 

time of the damper would have been defined from the control signal to the damping force 

response could the response time be even a little bit more moderate. 



 

                          

Figure 4a) Response time definition      4b) Response time as a function of 
current(5) 

 

The response time of the magnetorheological damper has also been studied by Kajaste 

et al. (10). In their study an experimental MR damper was constructed by combining a 

symmetric hydraulic cylinder with a highly dynamic magnetorheological valve. The 

damper was attached to a servo hydraulic system and the damping force and the 

pressure differences over the MR valve were measured. The test setup is shown in 

figure 5a. The dynamic response of the damper was measured by the same kind of 

procedure as in the study by Galvin et al. Figure 5b shows how the experimental MR 

damper reacts to the step input in coil current. 
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Figure 5a) Test setup for MR damper         5b) Dynamic force response of the     
                                              damper (10) 

The results reported in this study prove that notably faster response time of the MR 

damper is attainable and technology is applicable for high frequency semi-active 

damping applications. Response time reported in this study can be estimated to be over 

10 times faster than the measured by (11) and the damping force level three times 

higher. (5) 

A lot of effort has also been invested in studying the magnetorheological brakes and 

clutches. The working principles of MR brake and clutch are almost identical and the 



magnetorheological effect can be utilized to increase in counteracting torque. The 

advantage of the MR brake is likewise in the case of MR damper the ability to execute 

the function of the device without any moving mechanical valve parts. However, the 

results documented in literature have been reporting typically the design considerations 

of the device, magnetic design of the actuator and static properties of the brake. (12) 

Dynamic performance of the MR brakes and clutches has not been studied so much. 

In one paper found in the literature the response time of the MR brake is evaluated and 

some considerations to improve the response time are proposed. The influence of the 

modifications is validated by experimental measurements. In this study by Takesue et al. 

(13) two approaches are proposed for improving the response time of the MR brake: one 

reduces the eddy current by changing the material and the other reduces the counter-

magnetic flux. The layout of the MR brake is shown in figure 6a. In eddy current’s point 

of view the approach of changing materials was focused on magnetically inactive parts. 

The material of the connection part in the analyzed region and the coin bobbin was 

changed to cast nylon and bakelite, respectively. This state of modification was called 

advanced actuator 1. In addition to changing the materials, the shape of the actuator 

was changed in order to increase the magnetic reluctance and reduce the counter flux. 

MR actuator with modified geometry was called advanced actuator 2.  After 

modifications the response of the magnetic circuit and the response of the torque of the 

brake were measured and the torque response measurements are presented in figure 

6b.  

     

Figure 6a) Layout of the MR brake           6b) Torque measurements (13) 

 

The documented results shown in figure 6b prove that in this study the response time of 

the MR break could be reduced to 5 ms which is reported to be one-ninth of the original 

response time. It is also notable that the increase of the dynamic performance did not 

compromise the maximum torque. 



 

Design considerations of a high dynamic MR valve 
 

In this chapter the starting points for the design process are discussed. It was pointed 

out in the previous chapters that the design process of an MR valve is a multidisciplinary 

task. The factors related to the performance of the valve are listed here and some of 

them are discussed in more detail. It is, however, well beyond the scope of this paper to 

describe the entire design process of an optimal high frequency valve. Factors affecting 

the performance of a magnetorheological valve are: 

• Properties of the MR fluid 

• Design of flow channels and the hydraulic circuit. 

• Mechanical design and stiffness of the structure 

• Magnetic circuit: the coil, geometry and materials 

• Power electronics 

• Control electronics 

Each of these can be divided into subcategories if they are examined more closely. In 

addition the demands for the performance of the MR vary in different applications. 

Usually it is more expensive and more difficult to design the performance of the valve on 

any of these areas to be very good. The required performance criteria should be kept in 

mind from the beginning of the design process and the valve should not be designed to 

better than needed on any aspect. 

 

Hydraulic design 
The requirements for the hydraulic power controlled by the valve and the properties of 

the MR fluid define the possible geometries for the fluid gaps. In MR valve applications 

the geometry of the flow channel is mainly defined by the desired maximum pressure 

difference created by the valve and the maximum volume flow in the off state. Yet the 

geometry for a single fluid gap is not uniquely defined based on the power requirements 

but the geometry can be chosen from a set of different possibilities. 

The behavior of a magnetorheological valve is very different from a traditional hydraulic 

valve because of the nature of the MR phenomenon. If MR valve is compared with 

traditional hydraulic components it is more like a rapidly controllable pressure relief valve 

rather than a traditional servo or a proportional valve.  This is caused by the fact that the 

behavior of the magnetorheological fluid differs significantly from Newtonian fluids.  

The magnetic field induced yield stress in the fluid is often represented as a Bingham 



plastic having magnetic field dependent yield strength. For stresses Ĳ above the field 

dependent yield stress Ĳ0, the flow is governed by Bingham’s equation. In the Bingham 

model the total shear stress is given by 

( )
..

0 sgn γηγττ +⎟
⎠
⎞

⎜
⎝
⎛= H   0ττ >  (1) 

0
.

=γ   0ττ < , (2) 

where 0τ  is the yield stress caused by the magnetic field;  is the shear rate and 
.

γ η  is 

the field-independent viscosity. (14) 

When MR fluids are used in a valve application and the Bingham plastic model of the 

behaviour is adopted the pressure difference over the valve can be estimated with a 

following equation. 

d

l

wd

Ql
P 0

3
5,2

12 τη
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where l is the length of the flow channel, w is the width of the fluid channel Q is the 

volumetric flow rate and d is the height of the fluid gap. (15) It can be seen from equation 

(3) that the pressure difference is a sum of two terms. The first term describes the 

pressure difference caused by the viscous flow of the fluid and the second term is the 

pressure difference caused by the field dependent yield stress. If the pressure difference 

caused by the second term is not exceeded, there will be no flow through the valve.  

 
Magnetic design 
A magnetic circuit is needed to increase the yield stress of the MR fluid. When the 

geometry of the fluid gap is known the magnetic circuit must be designed so that the 

desired operation point of the fluid can be achieved. Usually more than 250kA/m 

magnetic field strengths are required to achieve the full performance of the MR fluid. 

This requirement is not exceptional in the magnetic devices but can not be achieved 

without proper design. (16) Typically equation (4) can be used to approximate the most 

important parameters of the magnetic circuit of magnetorheological valve. (17) 

dHlHNI MRFeFe += , (4) 

where N is the number of ampere turns, I is the electric current of the coil, HFe is the 

magnetic field in the iron core, lfe is the length of the magnetic path in the iron core and 

HMR is the magnetic field in MR fluid. When the operation point is decided and the height 

of the fluid gap is known the ampere turns needed in the coil can be determined. After 

this the geometry of the magnetic cores can be designed and selection of the magnetic 



core material can be done based on the required magnetic flux density in the magnetic 

circuit. 

Finite element programs can be used to model the magnetic circuit more precisely. FEM 

modeling of the magnetorheological valve has been presented e.g. in (18) Numerical 

methods are especially useful when more complex magnetic circuit geometries are 

designed. 

If MR fluid device is going to be used in application requiring fast dynamical response 

more attention should be given to the selection of the proper core material. The selection 

of the material will have an effect on the eddy currents in the magnetic core and the 

response time of the magnetic circuit can be reduced if the core is chosen so that eddy 

currents are reduced. There are many different commercial magnetic materials available 

for high frequency applications. However getting specially made magnetic cores is 

expensive and difficult in general.  

 

Construction of the MR valve 
 

The experimental valve presented in this paper is a square shaped magnetorheological 

valve and it is specially designed for high dynamic applications. The MR valve consists 

of the aluminum body, laminated iron cores and coils and it has two separately 

controlled edges. The magnetic circuit of the valve is designed so that the magnetic field 

can be switched on and off rapidly.  Figure (7) shows the MR valve without side cover 

plates. 

 

Figure 7, MR valve without side covers 

When the valve is assembled, the pressure supply line will be attached to the cover 

plate. MR fluid flows through the cover plate to the supply channel which distributes the 

volume flow equally over the width of the MR control edge 1. Next the MR fluid changes 



its direction and flows through the MR control edge 1. 

After the first control edge the MR fluid flows to the actuator pressure measurement and 

continues to the supply of the second control edge. After the MR control edge 2 the MR 

fluid ends up to the tank channel from where it is lead through the cover plate to the tank 

line. 

The dimensions for the MR valve are listed in table (1). 

Dimension Value 

Length of the fluid gap 2*15mm 

Width of the fluid gap 36mm 

Height of the fluid gap 0.35mm 

Length of the valve 

(outside) 

110mm 

Height of the valve (outside) 87mm 

Width of the valve (outside) 54mm 

Table 1, Dimensions of the MR valve 

 

Measurements of the prototype MR valve 
 

The measured results of the experimental MR valve are presented in this chapter. The 

results include the measurements of the static pressure measurements with constant 

coil current and dynamic step response measurements.  

 

Static pressure measurements 
The pressure difference over MR control edges was measured with different current 

values. During the measurements a constant, small fluid flow was forced through the 

valve. It was noticed that if there is not any flow before coil current is increased, MR fluid 

can form a ‘plug’ in the inlet of the valve. Therefore pressure will increase more than 

models predict and in addition the measurements will not be repeatable.  

In figure (8) two repeated static pressure measurements are plotted in the same figure. It 

can be seen that the measurements are repeatable and the magnetorheological valve 

can create a pressure difference of over 7.5MPa with 4A coil current. 



 

Figure 8, Static pressure measurements 

 
Dynamic pressure measurements 
When dynamic pressure measurements were done the maximum supply pressure level 

was set to 8.0MPa. The frequency of the square wave reference signal was 40Hz in 

order to measure how fast the MR valve was able to generate the maximum pressure 

difference. Figure (9) shows one period of the step response experiment.  

 

Figure 9, Pressure step response 

It can be seen from figure (9), that the valve can be used to control the pressure in full 

8.0Mpa pressure range. It can be also noted that there occurs some oscillation in the 

pressure difference in rise period and fall period. The cause of the pressure oscillations 

was not fully clarified but one likely explanation could be the pressure shock caused by 

the sudden pressure change.  

The rising edge of the step response is investigated in more detail in figure (10). Some 

interesting points are marked in this figure and the coordinates of the corresponding 

points are given in table (2). The reference point of step response is plotted with square, 

the point where the pressure starts to rise is plotted with circle and the maximum 



operating pressure point is plotted with diamond. 

 

Figure 7, The rise period of the step response 

Symbol Time [ms] Pressure [Mpa] 

Ƒ Square 4,91 0,041 

ż Circle 5,28 0,524 

◊ Diamond 5,77 7,719 

Table 2 Symbol coordinates from the figure (10) 

 

The delay time for the MR valve can be evaluated by measuring the time difference 

between square and circle symbols. The delay time was measured to be 0,37ms. 

Another interesting feature which can be evaluated from the figure (10) is the rate of the 

pressure change. The rise rate can be evaluated between circle and diamond or square 

and diamond whether the delay time is neglected or not. If the delay time of the valve is 

neglected, the pressure difference can be calculated to rise with the speed of 

14.7MPa/ms. If the delay is taken into account, the pressure rises with the rate of 

8.9MPa/ms. The full pressure difference was achieved in 0,86ms.  

The black curve in the figure (10) represents the supply pressure. It can be seen that 

there is a gap in the supply pressure during the rise period of the actuator pressure. The 

drop of the supply pressure was tried to be compensated with a small high dynamic 

accumulator but it could not be completely be avoided.  

The results of dynamic measurements are in accordance with the results published in 

(14). If the response time of the MR fluid is less than one millisecond the response of the 

valve should be in approximately same scale. The performance of the valve was not 

clearly optimal but it shows that rapid pressure differences can be created with MR 

technology.  



 

Conclusions 
 

This paper presented a review of the state of the art of in MR fluid technology in high 

frequency applications. During past years magnetorheological technology has been 

applied widely in different industrial areas and there is plenty of MR applications 

documented in the literature. Even though there is only few studies about high frequency 

applications of MR technology.   

This study presented some main design considerations which should be taken into 

account when applying MR fluids in high dynamic applications. In consequence of the 

multidisciplinary nature of magnetorheological technology all these factors together will 

establish an interaction chain which will define the dynamic range and the performance 

of the MR device. Generally a satisfactory solution will be found even if some 

compromises are made. However, if the objective of the MR device design is to strive for 

the best possible performance, it means that every sub factor of the interaction chain 

needs to be optimized. 

Performance of an MR valve for highly dynamic applications was also experimentally 

investigated in this study. An experimental valve was built by the authors to demonstrate 

the fast response time of MR technology.  It was shown that with a proper design a 

pressure difference of 7.7Mpa with response time of 0.86 milliseconds can be achieved. 

The maximum rate of pressure raise was 14,7MPa/ms. Controlling about 1kW of 

hydraulic power with response time of less than 1 millisecond offers some interesting 

possibilities in designing servo actuators based on MR technology. Future work is also 

planned in applying the MR valve for actuator applications and its applicability in e.g. 

active vibration damping applications will be investigated. 
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