
PROCEEDINGS 
 
 
 

  
 
 
 
 

 
 
Faculty of 
Mechanical Engineering 

 

 ..........................................................................................  
 

PROSPECTS IN MECHANICAL ENGINEERING 
 

8 - 12 September 2008 
 
 

 

 
 
 
 
 
 
 
 
www.tu-ilmenau.de  
 
 
 
Home / Index: 
http://www.db-thueringen.de/servlets/DocumentServlet?id=17534 

53. IWK
Internationales Wissenschaftliches Kolloquium

International Scientific Colloquium

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224756244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.db-thueringen.de/servlets/DocumentServlet?id=17534
http://www.tu-ilmenau.de


Published by 
Impressum 
 
Publisher Der Rektor der Technischen Universität Ilmenau 
Herausgeber Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. Peter Scharff 
 
Editor Referat Marketing und Studentische Angelegenheiten 
Redaktion Andrea Schneider  
 
 Fakultät für Maschinenbau 

Univ.-Prof. Dr.-Ing. habil. Peter Kurz, 
Univ.-Prof. Dr.-Ing. habil. Rainer Grünwald, 
Univ.-Prof. Dr.-Ing. habil. Prof. h. c. Dr. h. c. mult. Gerd Jäger, 
Dr.-Ing Beate Schlütter, 
Dipl.-Ing. Silke Stauche 

 
Editorial Deadline  17. August 2008 
Redaktionsschluss 
 
Publishing House Verlag ISLE, Betriebsstätte des ISLE e.V. 
Verlag Werner-von-Siemens-Str. 16, 98693 llmenau 
 
 
CD-ROM-Version: 
 
Implementation  Technische Universität Ilmenau 
Realisierung Christian Weigel, Helge Drumm 
 
Production CDA Datenträger Albrechts GmbH, 98529 Suhl/Albrechts 
Herstellung 
 
ISBN: 978-3-938843-40-6 (CD-ROM-Version) 
 
 
Online-Version: 
 
Implementation Universitätsbibliothek Ilmenau 
Realisierung  

Postfach 10 05 65 
 98684 Ilmenau 
 
 
 
 
 
 
© Technische Universität Ilmenau (Thür.) 2008 
 
The content of the CD-ROM and online-documents are copyright protected by law. 
Der Inhalt der CD-ROM und die Online-Dokumente sind urheberrechtlich geschützt. 
 
 
Home / Index: 
http://www.db-thueringen.de/servlets/DocumentServlet?id=17534 

http://www.db-thueringen.de/servlets/DocumentServlet?id=17534


53
rd

 Internationales Wissenschaftliches Kolloquium 
Technische Universität Ilmenau 

 08 – 12 September 2008 

 

M. Sagardia / T. Hulin / C. Preusche / G. Hirzinger 
 
 

Improvements of the Voxmap-PointShell Algorithm — Fast 
Generation of Haptic Data-Structures 
 
 

ABSTRACT 
 

 

The Voxmap-PointShellTM (VPS) Algorithm is a haptic rendering algorithm able to 

compute collision responses with 1 kHz update-rates with arbitrarily complex scenarios. 

This work introduces fast algorithms to generate the two haptic data-structures used by 

the VPS algorithm: voxmaps —voxelized volume structures for static objects— and 

pointshells —point-clouds describing moving objects—. For generating voxmaps, 

collision tests based on the Separating Axis Theorem are carried out. On the other hand, 

pointshells are generated utilizing optimization strategies to place points uniformly on the 

surface of the objects. The improvements in performance and quality obtained compared 

to the previous generating algorithms from DLR are included, all of them carried out on 

virtual car models provided by Volkswagen and artificial models. 

 

 

1. INTRODUCTION 
 

 

Virtual Reality (VR) simulations with haptic or touch feedback present appealing features 

for the industry. They make possible assembly checks of complex vehicle models in 

early stages of the product development process. It is also possible to use VR with 

training purposes for the future maintenance workers. 

 

Features of VR with Haptic Feedback 

In a VR set-up with force feedback the user moves a haptic device in the real world 

altering the position of objects in the virtual environment. Whenever a collision occurs, 

the collision force is felt by the user through the haptic device. Both collision detection 

and force computation are performed by the haptic rendering algorithm. 

 



Whereas visual feedback requires update rates of around 30 Hz, touch or haptic 

feedback must be generated at 1 kHz rate in order to simulate collisions realistically. 

Due to this challenging requirement it was in the past 20 years when the computers and 

the emerging methods acquired enough features to be used in haptic rendering. 

 

Haptic Rendering Algorithms 

Most of the collision detection algorithms work with polygonal objects, and a big part of 

them rely on convex objects. The strategies that most usually appear are based on the 

Separating Axis Theorem (SAT) [5,1], when the complexity of the polygonal objects is 

low. 

 

As far as the number of features —vertices, edges, faces— increases, other algorithms 

are used, such as the ones based on Minkowski differences [3], or algorithms that 

incrementally track collision areas, using the information of previous collision steps [8]. 

 

In 1995, Zilles et al. [15] introduced a new approach that uses a point —the Haptic 

Interface Point (HIP)— which symbolizes the end-effector of the haptic device. Every 

time the HIP penetrates an object, a Surface Constrained Point (SCP) is generated so 

that it remains as close as possible to the HIP, but yet on the surface. The distance 

between the HIP and the SCP is used to compute a spring-like repulsion force, which 

pushes the HIP out of the penetrated object. 

 

This idea has been further extended to algorithms that go beyond the single-point 

paradigm. Amongst them lie “God-Object” methods that replace the HIP for complex 

objects [11], or the Voxmap-PointShellTM (VPS) Algorithm. The latter, introduced by 

McNeely et al. in 1999 [9], was reimplemented and improved at DLR [7,12]. It represents 

an appealing solution to generate haptic feedback within 1 kHz update-rates even with 

almost arbitrarily complex scenarios1. 

 

The scope of this work is focused on generating voxmaps and pointshells, which are the 

haptic data-structures used by the VPS algorithm. To this end, the work has been 

                                                 
1 Although the complexity does not affect the time required for computing the collision response, there are 
parameters that influence it, e. g.: the number of points of the pointshell data-structure sets the 
computation time; or several shapes such as thin surface-like regions produce weaker collision forces than 
bulky solid objects. 



divided into the following sections: Section 2 explains the VPS algorithm, while Sections 

3 and 4 introduce new methods to generate the voxmap and the pointshell, respectively. 

Finally, Section 5 gathers generation results for models provided by Volkswagen, 

comparing former algorithms used at DLR; and Section 6 states future steps after 

summarizing the content of the paper. 

 

 

2. THE VOXMAP-POINTSHELLTM (VPS) ALGORITHM 
 

 

The VPS algorithm uses two data structures to generate the collision response: 

voxmaps and pointshells. Voxmaps are volume-based structures composed of voxels —

three-dimensional analogs of pixels— that represent static models; a voxel is named to 

be a surface-voxel whenever it represents a solid part of the model. On the other hand, 

pointshells are point-clouds that describe the surface of dynamic (moving) models, 

having each point a normal pointing inwards the object. Figure 1 gathers schematic 

examples of these data-structures. 

 

 

Figure 1: Schematical explanation of the Voxmap-PointShellTM (VPS) Algorithm. 

 

During the haptic simulation, collision detection and force computation are performed 

every 1 ms in the original VPS algorithm [9], traversing all the pointshell-points that are 

in the scene. Every time a point is inside a surface-voxel, a collision is detected. The 

penetration is calculated measuring the distance from the point to the normal plane that 

goes through the center of the voxel. The penetration and the normal yield a single 

collision force, and all the collision forces summed together yield the total repulsion 

force. More detailed explanations concerning the collision detection and force 

computation are given in [9,10,13]. 

 



Improvements of the Original VPS 

Further features have been added to the algorithm. In [12] a dynamic shaping filter was 

implemented to soften the force discontinuities. On the other hand, in [10] outwards-

growing layers were used in the voxmap generating a distance-field, and the volume 

data-structure inherited geometrical properties of the polygonal model, as the vertices 

and the edges were considered to be the most important contact elements. Moreover, 

the constant-time performance set by the number of points was abandoned for the 

benefits of spatial and temporal coherence, also known as incremental behavior. Barbič 

et al. applied a hierarchy to the pointshell [2] in order to decrease the dependency on the 

total number of points by targeting only the points on the likely colliding regions. 

 

Data-Structure Generation at DLR 

As it can be seen in Figure 1, some of the most important elements in a voxmap are the 

surface-voxels, which are detected whenever a voxel in the three-dimensional grid which 

is fixed to the model contains or collides with a piece of the static object. Furthermore, 

inner and outer-voxels can be distinguished, according to whether they lie inside or 

outside the objects, respectively, and layers are generated around the voxelized surface 

both outwards and inwards. Pointshells, as mentioned, are formed with points spread on 

the surface of the moving models; each point has a vector which is normal to the surface 

pointing inwards the object. Hence, note that it is essential to detect outer and inner 

regions in order to compute the normal vectors that point inwards. 

 

The old version for generating haptic data-structures at DLR was based on the open-

source library SOLID [14]. The generation algorithm obtained first the voxmap of the 

polygonal model performing collision detection between the voxels of the three-

dimensional grid described in the bounding box of the model: if a voxel was colliding with 

an object, it was marked as a surface-voxel. The next step consisted in projecting the 

surface-voxel centers on the polygonal model, obtaining an accurate pointshell [12]. 

 

This work presents algorithms based on the same idea, but instead of SOLID library, 

own algorithms are implemented in order to speed up the process and increase the 

quality of the outcoming data-structures. 



 

3.  VOXMAP GENERATION 
 

 

The voxelization algorithm presented in this work is the following one: as first step the 

polygonal model is placed in the voxmap, where at the beginning each cube is an empty 

voxel. The algorithm goes through all the objects of the polygonal model, and per object, 

through all the polygons, which are split into triangles. For each triangle, the candidate 

voxels within its bounding box are traversed and checked for collision against the 

triangle. In case they collide, they are marked as a surface-voxel —this is done 

assigning the value 0 to the voxel—. Therefore, two main procedures appear in the 

algorithm: (i) fast navigation through the bounding box of the triangle detecting candidate 

surface-voxels and (ii) collision detection between triangle and candidate surface-voxel. 

 

 

3.1.   Navigation in the Bounding Box of the Triangle 
 

The aim of the navigation is to traverse in the bounding box of the triangle all the likely 

colliding voxels as fast as possible. Figure 2 helps to understand how this is solved. 

 

 

Figure 2: Navigation in the bounding box of the triangle detecting likely surface-voxels. 

 

For a given triangle  with vertices , first, the discreteT }2,1,0{,
3 ∈∀ℜ∈ ivi

2 axis-aligned 

bounding box ＿the one formed by the voxels＿ is detected. Second, taken the 

projection of the triangle on the xy -plane, the algorithm starts navigating along the x -

axis stepping into successive discrete  values. For a given , that defines a range of ∗
x

∗
jx



continuous x  (shadowed), the maximum and minimum y  values on the triangle are 

detected ( ). The pixels related to these extreme  values bound (in blue) the 

range of voxels in 

minmax , yy y

y -direction that are likely surface-voxels for this given  value. Third, 

for a pair ( ) that represents a pixel in the bounded segment of the  row, the 

algorithm evaluates the four corners on the plane of the triangle, obtaining 

. In a similar way as before,  and  are the real extremes 

to search for surface in the column fixed by the discrete ( ) couple. Translating them 

into voxel discrete coordinates, the start and end navigation-points in 

∗
jx

∗∗
kj yx ,

∗
jx

}4,3,2,1{, ∈∀izi )(max ii z )(min ii z

∗∗
kj yx ,

z -direction are 

obtained. 

 

Therefore, given a discrete , the  navigation values are delimited. For each discrete 

( ) couple ＿which is contained in the pixelized shadow of the triangle＿ the 

algorithm goes up in -direction and checks for collision every voxel contained between 

the delimited discrete  coordinates. 

∗
x

∗
y

∗∗
yx ,

z

∗
z

 

This first approach can be understood as constructing a tight bounding box around the 

triangle, contained in the former axis-aligned bounding box; the walls of this new box are 

aligned with the plane of the triangle and its edges. Obviously, the number of collision 

tests to be carried out with this approach decreases drastically compared to a more 

naïve approach that would consist in checking for collision all the voxels in the bounding 

box. 

 

Nonetheless, it is possible to decrease more the number of collision checks working with 

a modified second approach. Instead of checking for collision all the voxels between the 

 extreme values in the column of a pixel ( ), it is possible to narrow the span in  

by checking for collision the voxels upwards from maximal  and downwards from 

minimal . Once the first surface-voxels are detected in both directions, the voxels 

between them are directly marked to be surface-voxels, without performing more 

collision checks. 

∗
z

∗∗
yx ,

∗
z

∗
z

∗
z

                                                                                                                                                         
2 Discrete entities are marked with ∗ . 



However, this second approach turns out to be faster only with high resolutions, as it is 

going to be shown in Section 5. 

 

 

3.2.   Collision Detection between Triangle and Voxel 
 

The algorithm performs collision detection between the candidate surface-voxel and the 

triangle using the Separating Axis Theorem (SAT), in a similar way as explained in [1]. 

The SAT states that two convex objects collide with each other if and only if there is an 

axis where their projections overlap. If no such axis exists, both objects are disjoint. 

Hence, the strategy consists in simplifying the problem into one dimension. 

 

 

Figure 3: Collision detection between triangle and voxel using the Separating Axis Theorem (SAT). Red: 

three coordinate axes ; Green: the normal axis n ; Blue: nine cross-axes . },,{ 210 eee }{ ija

 

In the three dimensional world, the axes to be checked for collision are the normal 

vectors of the faces and the cross products between each pair of edges. As shown in 

Figure 3, the triangle is described by its three vertices , being its 

edges , 

}2,1,0{,
3 ∈∀ℜ∈ ivi

01 vv −=0f 12 vv −=1f  and 20 vv −=2f . The voxel is determined with its center 

＿which is considered to be the origin＿ and its edge-size . s



There are 13 axes to be checked for overlap, which can be classified into three groups: 

1. The three COORDINATE AXES }0,0,1{=0e , }0,1,0{=1e  and }1,0,0{=2e , representing 

the normal vectors to the faces of the voxel (in red in Figure 3). The three vertices 

of the triangle are projected on each axis to check whether the projection of the 

triangle on those axes overlaps the projection of the voxel, which is a region of 

width  centered in the origin. s

2. The NORMAL OF THE TRIANGLE  (in green). The vertices of the voxel (green 

points) that define the vector which is aligned with  are checked for their relative 

position against the plane of the triangle 

n

n

π . 

3. The nine axes that result from performing the CROSS PRODUCT between the edges 

of the voxel and the triangle: }2,1,0{,, ∈∀×= jijiij fea . A detailed explanation of 

the procedure is given at [1,13]. 

As soon as the algorithm detects that there is overlap between a projected triangle-voxel 

pair in one of the axes, it can be stated that the triangle and the voxel are colliding, thus, 

the algorithm ends and the voxel is marked as surface-voxel. A triangle-voxel pair is not 

colliding if and only if all the tests in the 13 axes return “no overlap”. 

 

Layering 

After having traversed all the objects detecting each surface-voxel, the inner and outer 

parts of the model are recognized on the voxmap using the Flood-fill algorithm extended 

to the third dimension3. Afterwards, layers are added to the voxelized surface —the 

number of layers is a parameter chosen in the function-call—: the first outer layer is 

formed by voxels with value -1, whereas the first inner layer is created with voxels of 

value 1. The absolute voxel-value increases linearly according to the number of layer 

away from the surface. 

 

 

4.  POINTSHELL GENERATION 
 

 

The pointshell of a virtual model is obtained from its previously generated voxmap, 

projecting on the polygonal objects the surface-voxel centers. Similarly to how it was 

                                                 
3 The algorithm works with a LIFO stack that speeds up the filling process. It starts at a corner-voxel of 
the virtual model. 



done in the previous section, the algorithm traverses each object and triangle, and for 

each triangle the surface-voxels are regarded. Having a surface-voxel and its triangle, 

two algorithms are compared in order to determine the best approach. 

 

The first method projects the center of the voxel on the plane of the triangle obtaining 

P′ ; subsequently, P′  is projected on the boundaries of the triangle, taking into account 

in which Voronoi region of the triangle the former P′  is located. This last step yields P ′′ , 

which is the targeted point. 

 

The second method consists in solving an optimization problem. This approach is the 

finally chosen one, given that its implementation requires on average 37 % of the time 

spent by the first algorithm, using arbitrary triangles and points. In the following lines the 

optimization approach is explained. 

 

A triangle  defined by its vertices , can be described using the scalar 

variables  and the vectors , 

T }2,1,0{,
3 ∈∀ℜ∈ ivi

ts, 0v=B 010 vv −=E  and 021 vv −=E  [4], as follows: 

 

}.1],1,0[],1,0[:),{(),(

),( 0

≤+∈∈=∈
++=

tststsDts

tsts 1ǼEBT
 

Equation 1 

 

Given a point , the closest point on the triangle to 3ℜ∈P P  can be obtained by 

minimizing the square distance function between P  and : ),( tsT
2

),(),( PtstsQ −= T .  

The statement of the optimization problem yields 

 

⎪
⎩

⎪
⎨

⎧

≥−−=
≥=
≥=

+++++=

,01),(

0),(

0),(

222),(min

3

2

1

22

tstsg

ttsg

stsg

tosubjected

fetdsctbstastsQ

 

Equation 2 

 
where  are easily obtainable scalar parametersfaK 4. The Karush-Kuhn-Tucker 

conditions applied to Equation 2 yield the following nonlinear system with five equations 

                                                 
4 )()(),(),(,,, 10111000 PPfPePdcba −⋅−=−⋅=−⋅=⋅=⋅=⋅= BBBEBEEEEEEE . 



and five unknowns —variables  and the Lagrange multipliers ts, }3,2,1{, ∈∀ jjλ —: 

 

}.3,2,1{

0

0),(),(

∈∀
⎪⎭

⎪
⎬
⎫

=

=∇−∇ ∑
j

g

tsgtsQ

jj

j

jj

λ

λ
 

Equation 3 

 

This system in Equation 3 generates a set of seven solutions. One of them denotes a 

point that is inside the triangle, whereas the other six represent points which are located 

on the boundary of the triangle, being each one linked to one of the six Voronoi regions 

of the triangle. The discrimination between the possible seven solutions is done 

regarding whether the values of the variables fulfill their requirements: 0,),( ≥∈ jDts λ . 

 

The pointshell generation is performed in two phases. In the first one, all the projected 

points are computed using the optimization method, but only the projected points that lie 

inside the triangle are stored into the structure of the pointshell, marking the surface-

voxels which they belong to as “projected”. The rest of the boundary-points are stored 

separately, indexing also the voxel from which they were obtained. 

 

In the second phase all the boundary-points are traversed looking whether their origin-

voxel was already projected. In case it was not, the boundary-point is added to the 

pointshell, marking the origin-voxel as “projected”. 

 

In the performed experiments only 0.06 - 1.3 % of the boundary-points were recovered 

in the second phase, but considering them is essential to avoid possible gaps in the 

point-cloud. 

 

After generating each pointshell-point, the next step is computing the normal associated 

to each node, because the normal vectors generated by CAD programs point sometimes 

in the wrong direction. The normal-vectors are obtained analyzing the neighborhood of 

the pointshell-point in the voxmap — a region formed by 5 x 5 x 5 voxels—. Setting the 

origin in the voxel where the point is located, all the vectors that go from this origin to 

each neighbor voxel-center are summed premultiplied by their voxel-value —recall that 

the voxmap has inwards and outwards layers, with positive and negative voxel-values, 



respectively—. The normal of the pointshell is the normalized value of this vector. 

 

5.  RESULTS 
 

 

This section contains the generation results performed on a computer with an Intel® D 

processor at 3.4 GHz, with Linux openSuse 10.2 operating system and 2 GB of memory. 

The models that were used in the tests are shown on Figure 4. 

 

 

Figure 4: Models used for the evaluation. Top: polygonal models; bottom: haptic data-structures (voxmap, 
pointshell) with different resolutions (voxel-size, s). (A) Artificial model: 7,088 triangles, s=2.0; (B) Brake: 
24,251 triangles, s=4.0; (C) VW Polo: 3,024,231 triangles, s=5.0. 

 

Quality 

Figure 5 shows the quality improvements obtained with the new algorithms. Concerning 

the voxmap, the old voxelizer that used SOLID library generated too few or too many 

voxels, according to several tuning parameters. 

 

The lack of surface-voxels yielded holes that made impossible the filling task mentioned 

in Section 3. Due to this, the layering could not be performed, and the normal vectors of 

the pointshell could not be computed. The excess of voxels degenerated in cases like 

the one shown in the picture, were surface-voxels appeared where there is free space. 

All these problems disappear with the new voxelizing algorithm, obtaining accurate 

discrete representations. 

 



 

Figure 5: Quality enhancements achieved on the voxmap and the pointshell using the new algorithms. 

 

 

 

Figure 6: Number of pointshell-points obtained with the old and the new algorithms. 

 



In the case of the pointshell, the new algorithm avoids generating superfluous points that 

appeared with the old versions. In fact, the aim of the pointshell is to describe a model 

for a given resolution (voxel-edge size, ) uniformly and with the fewest possible points; 

in this way, the new algorithm is able to describe a model with higher resolutions for a 

given amount of points. The chart on 

s

Figure 6 shows how the dashed curves that 

represent the number of points generated with the old algorithms against the resolution 

lie always above the solid ones, which are related to the new algorithms. 

 

Performance 

Figure 7 shows performance increase ratios. These ratios were calculated dividing the 

generation times of the old algorithms by the generation times of the new ones. It can be 

seen that the voxmap generation is from 2 to 52 times faster than in the old process, 

depending on the model and the resolution of the haptic data-structure. This gain in 

performance increases with the resolution. Table 1 contains some simulation results, in 

order to show the absolute time which is required. There, additional time records are 

shown in the case of the voxmap generation, such as the loading time —changing in 

memory the polygonal models— and the initialization time —arranging the empty 

voxmap grid after computing the bounding box of the model—. 

 

Notice that in the case of the voxelization of the VW Polo (case (e)), the new algorithm is 

able to obtain a voxmap of resolution =2.0 in less than eight minutes, whereas the old 

version required almost three hours. The explained second approach turns out to be 

faster only from certain high resolutions on ＿approximately, artificial model: 1.98x10

s

8 

voxels; brake: 6.1x107 voxels; VW Polo: 4.66x107 voxels＿. Further tests with different 

models can lead to a condition that decides to use the first or the second approach 

according to parameters like the number of triangles and the resolution ＿number of 

voxels in the voxmap＿. 

 

In the case of the pointshell, the speed increase factor ranges from 1.8 to 19, depending 

on the models and the resolutions that are used.  

 



 

Figure 7: Increase in performance comparing the time required by the new and the old algorithms to 

generate the haptic data-structures (Table 1: ). Left: voxmap generation; right: pointshell 

generation. Examples from 

newold tt /

Table 1 are shown with letters. 

 
 

VOXMAP 

Generation 
Model s  Voxels Load Initialize 

oldt  newt  
Filling newold tt /=Δ

– – # sec. sec. sec. sec. sec. – 

Artificial (a) 0.5 237,717,488 0.1190 1.1856 338.24 16.562 2.3423 20.42

Brake (b) 1.0 38,524,026 0.1919 104.1 3.614 0.4994 28.8

Brake (c) 0.5 302,685,600 
0.3954

1.5112 821.5 15.684 3.7512 52.4

VW Polo (d) 5.0 44,311,554 0.2290 614.7 69.179 0.6992 8.9

VW Polo (e) 2.0 680,652,000 
18.972

3.6188 9860.0 442.29 9.9486 22.3

POINTSHELL 

Model s  Points (new) oldt  newt  newold tt /=Δ  

– – # sec. sec. – 

Artificial (f) 8.0 10,954 3.215 0.6319 5.09

Artificial (g) 2.0 182,464 244.75 137.412 1.78

Brake (h) 6.0 7,287 6.107 0.4465 13.68

Brake (i) 1.5 207,490 559.9 302.974 1.85

VW Polo (j) 40.0 12,161 203.2 11.223 18.11

 
Table 1: Examples containing time values obtained with old and new algorithms. Each case is marked with 
a letter; the chart of Figure 7 displays all the performance increases of the marked cases. 



 

 

Remark 1: Given that the required time depends on the computer, this work focuses on 

relative values that are not affected by the computer which is used. The absolute values 

in Table 1 give a practical impression of the speed. 

 

Remark 2: Cases (f), (h) and (j) from Table 1 correspond to pointshells with around 

8,000 points. This amount is the approximate number of points for which collision 

detection and force computation can be performed within 1 ms running the VPS 

algorithm with the used computer. 

 

Remark 3: An example that is comparable case (e) is given in [10]. There, a landing 

gear model with 2.76x106 triangles is used to generate a voxmap of 4.59x108 voxels. 

The required time using a two processor 2.8 GHz Xeon PC with 2 GB of RAM running 

Windows XP is of 1,353 seconds, compared to the 442.29 seconds required by 

voxelization algorithm explained here ＿running on the computer specified at the 

beginning of this section. 

 
 

6.  CONCLUSION AND FUTURE WORK 
 

 

Very fast algorithms for generating voxmaps and pointshells, the haptic data-structures 

of the Voxmap-PointShellTM (VPS) Algorithm, were presented in this work. 

 

The voxelization algorithm navigates in the bounding box of each triangle of the original 

polygonal model detecting the probable surface-voxels, and performs collision tests to 

these candidate voxels based on the Separating Axis Theorem. In comparison to the old 

algorithms implemented at DLR, the obtained discrete representations show an 

improved quality —no holes or excessive surface-voxels— and faster generation speed 

—with increase factors between 2 to 52, depending on the model and the resolution—. 

 

The pointshell generator projects the surface-voxel centers on the original polygonal 

model based on a nonlinear optimization method that finds the closest points on the 

surface to the voxel-centers. The new pointshells are described without the redundant 

points that appeared in the old versions, being possible to work with higher resolutions. 



Besides of that, the generation speed is between 1.8 and 19 times faster than the old 

one, depending on the resolution and the model. 

 

The quality improvements are significantly important, given that the original VPS 

algorithm strongly relies on its data-structures to obtain realistic collision responses. The 

generation speed, although not as critical as the performance of the VPS algorithm itself, 

is an important feature to build virtual environments almost instantaneously or at least 

within few minutes, compared to the hours required before for some resolutions. 

 

Regarding data-structure generation, possible future steps involve comparing the current 

algorithms to others. A candidate voxelization algorithm has already been chosen [6], 

and possible comparison indicators are listed in [13]. In the case of the pointshell 

generation, the main improvements are focused on increasing the performance of the 

algorithm, given that the actual methods handle big amounts of boundary points, of 

which only 0.06 – 1.3 % are taken into the final pointshell, investing a considerable 

amount of time in discarding superfluous points. 

 

Besides of that, implementing hierarchies for voxmaps and pointshells is very 

interesting; in the case of the voxmap it produces storage improvements [9], whereas 

hierarchical pointshells increase the performance of the VPS itself. In [2] an appealing 

sphere-point tree is presented, which is able to localize interference areas. Hence, it 

checks for collision only the points within these areas. 

 

Finally, it is worth to mention the idea of recognizing the shape, both in the voxmaps and 

the pointshells, in order to exploit this information to increase the performance of the 

VPS when using thin or stick-like objects. 

 

Acknowledgements 

The authors of this work would like to express their gratitude to Volkswagen for 

supporting this research topic and for providing the models used to perform the tests. 

 

 

References: 
[1] Akenine-Möller, T.: Fast 3D Triangle-Box Overlap Testing, Journal of graphic tools, vol. 6, nr. 1, pp. 29-33, 2001. 
[2] Barbič, J.; James, D.L.: Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced 

deformable models, Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 
SESSION: Real-time simulation, pp. 171-180, 2007. 



[3] Cameron, S.: Enhancing GJK: Computing Minimum and Penetration Distances between Convex Polyhedra, Int. Conf. 
Robotics & Automation, 1997. 

[4] Eberly, D.: Distance between Point and Triangle in 3D, 1999. 
[5] Gottschalk, S.; Lin, M. C.; Manocha, D.: OBB-Tree: A Hierarchical Structure for Rapid Interference Detection, Computer 

Graphics Journal, vol. 30, Annual Conference Series, pp. 171-180, 1996. 
[6] Huang, J.; Yagel R.; Filippov V.; Kurzion Y.: An Accurate Method for Voxelizing Polygon Meshes, IEEE Symposium on 

Volume Visualization, pp. 119-126, 1998. 
[7] Hulin, T.; Preusche C.; Hirzinger, G.: Haptic Rendering for Virtual Assembly Verification (Poster), WorldHaptics 

Conference 2005, Pisa - Italy, 2005. 
[8] Lin, M. C.; Canny, J. F.: A Fast Algorithm for Incremental Distance Calculation, IEEE International Conference on 

Robotics and Automation, pp. 1008-1014, 1991. 
[9] McNeely, W.A.; Puterbaugh, K.D.; Troy, J.J.: Six Degree-of-Freedom Haptic Rendering Using Voxelmap Sampling, Proc. 

of SIGGRAPH, 1999. 
[10] McNeely, W.A.; Puterbaugh, K.D.; Troy, J.J.: Voxel-Based 6-DOF Haptic Rendering Improvements, Proceedings of the 

2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 171-180, 2006. 
[11] Ortega, M.; Redon, S.; Coquillart, S.: A Six Degree-of-Freedom God-Object Method for Haptic Display of Rigid Bodies, 

IEEE Transactions on Visualization and Computer Graphics, vol. 13, iss. 3, pp. 458-469, 2007. 
[12] Renz, M.; Preusche, C.; Pötke, M.; Kriegel, H.-P.; Hirzinger, G.: Stable Haptic Interaction with Virtual Environments Using 

an Adapted Voxmap-Pointshell Algorithm, Proc. Of Eurohaptics, 2001. 
[13] Sagardia, M.: Enhancements of the Voxmap-PointShell Algorithm, Master's Thesis (DLR-TECNUN), 2008. 
[14] van den Bergen, G.: Proximity Queries and Penetration Depth Computation on 3D Game Objects, Proc. Game 

Developers Conf., 2001. 
[15] Zilles, C.; Salisbury, J.: A constraint based god-object method for haptic display, Proceedings of the IEE/RSJ International 

Conference on Intelligent Robots and Systems, Human Robot Interaction, and Cooperative Robots, 1995. 

 
 
Authors: 
Mikel Sagardia 
Thomas Hulin 
Carsten Preusche 
Prof. Dr.-Ing. Gerd Hirzinger 
DLR (German Aerospace Center) 
Member of the Helmholtz Association 
Institute of Robotics and Mechatronics 
Oberpfaffenhofen, D-82234 Wessling 
Muenchner Str. 20 
Phone: +49 8153 28-1221 
Fax: +49 8153 28-1134 
E-mail: Mikel.Sagardia@dlr.de 


