
Development of Efficient Algorithms for
Model Predictive Control of Fast Systems

Dissertation
Zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

vorgelegt der Fakultät für Informatik und Automatisierung
der Technischen Universität Ilmenau

von Msc. Jasem Aburajabaltamimi
geboren am 02.01.1979 in Hebron-Palästina
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Abstract

Nonlinear model predictive control (NMPC) has been considered as a promising control
algorithm which is based on a real-time solution of a nonlinear dynamic optimization
problem. Nonlinear model equations and controls as well as state restrictions are treated
as equality and inequality constraints of the optimal control problem. However, NMPC
has been applied mostly in relatively slow processes until now, due to its high computa-
tional expense. Therefore, computation time needed for the solution of NMPC leads to a
bottleneck in its application to fast systems such as mechanical and/or electrical processes.

In this dissertation, a new solution strategy to efficiently solve NMPC problems is pro-
posed so that it can be applied to fast systems. This strategy combines the multiple
shooting method with the collocation on finite elements method. The multiple shooting
method is used for transforming the nonlinear optimal control problem into nonlinear pro-
gram (NLP) problem using discretization and parametrization techniques. To solve this
NLP problem the values of state variables and their gradients at the end of each shooting
need to be computed. We use collocation on finite elements to carry out this task, thus, a
high precision approximation of the state variables and their sensitivities in each shoot are
achieved. As a result, the advantages of both the multiple shooting and the collocation
method can be employed and therefore the computation efficiency can be considerably
enhanced.

Due to the nonlinear and complex optimal control problem formulation, in general, it
is difficult to analyze the stability properties of NMPC systems. In this dissertation we
propose a new formulation of the optimal control problem to ensure the stability of the
NMPC problems. It consists the following three features. First, we introduce auxiliary
states and linear state equations into the finite horizon dynamic optimization problem.
Second, we enforce system states to be contracted with respect to the auxiliary state
variables by adding inequality constraints. Thus, the stability features of the system
states will conform to the stability properties of the auxiliary states, i.e. the system
states will be stable, if the auxiliary states are stable. Third, the eigenvalues of the linear
state equations introduced will be determined to stabilize the auxiliary states and at the
same time make the optimal control problem feasible. This is achieved by considering the
eigenvalues as optimization variables in the optimal control problem. Moreover, features
of this formulation are analyzed at the stationary point of the system model.

To show the effectiveness and performance of the proposed algorithm and the new op-
timal control problem formulation we present a set of NMPC case studies. We use the
numerical algorithm group (NAG) library Mark 8 to solve numerically linear and nonlin-
ear systems that resulted from the collocation on finite elements to compute the states
and sensitivities, in addition, the interior point optimizer (IPOPT) and in C/C++ envi-
ronment. Furthermore, to show more applicability, the proposed algorithm is applied to
control a laboratory loading bridge.
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Zusammenfassung

Die nichtlineare modellprädiktive Regelung (NMPC) ist ein vielversprechender Rege-
lungsalgorithmus, der auf der Echtzeitlösung eines nichtlinearen dynamischen Optimie-
rungsproblems basiert. Nichtlineare Modellgleichungen wie auch die Steuerungs- und Zu-
standsbeschränkungen werden als Gleichungs- bzw. Ungleichungsbeschränkungen des Op-
timalsteuerungsproblems behandelt. Jedoch wurde die NMPC wegen des recht hohen
Rechenaufwandes bisher meist auf relativ langsame Prozesse angewendet. Daher bildet
die Rechenzeit bei Anwendung der NMPC auf schnelle Prozesse einen gewissen Engpass
wie z. B. bei mechanischen und/oder elektrischen Prozessen.
In dieser Arbeit wird eine neue Lösungsstrategie für dynamische Optimierungsprobleme

vorgeschlagen, wie sie in NMPC auftreten, die auch auf sog. schnelle Systeme anwendbar
ist. Diese Strategie kombiniert Mehrschieß-Verfahrens mit der Methode der Kollokation
auf finiten Elementen. Mittels Mehrschieß-Verfahren wird das nichtlineare dynamische
Optimierungsproblem in ein hochdimensionales statisches Optimierungsproblem (nonlin-
ear program problem, NLP) überführt, wobei Diskretisierungs- und Parametrisierungstech-
niken zum Einsatz kommen. Um das NLP-Problem zu lösen, müssen die Zustandswerte
und ihre Gradienten am Ende jedes Diskretisierung-Intervalles berechnet werden. In dieser
Arbeit wird die Methode der Kollokation auf finiten Elementen benutzt, um diese Aufgabe
zu lösen. Dadurch lassen sich die Zustandsgrößen und ihre Gradienten am Ende jedes
Diskretisierungs-Intervalls auch mit großer Genauigkeit berechnen. Im Ergebnis können die
Vorteile beider Methoden (Mehrschieß-Verfahren und Kollokations-Methoden) ausgenutzt
werden und die Rechenzeit lässt sich deutlich reduzieren.
Wegen des komplexen Optimierungsproblems ist es im Allgemeinen schwierig, eine Sta-

bilitätsanalyse für das zugehörige NMPC durchzuführen. In dieser Arbeit wird eine neue
Formulierung des Optimalsteuerungsproblems vorgeschlagen, durch die die Stabilität des
NMPC gesichert werden kann. Diese Strategie besteht aus den folgenden drei Eigen-
schaften. Zunächst wird ein Hilfszustand über eine lineare Zustandsgleichung in das
Optimierungsproblem eingeführt. Die Zustandsgleichungen werden durch Hilfszustände
ergänzt, die man in Form von Ungleichungsnebenbedingungen einführt. Wenn die Hilfs-
zustände stabil sind, lässt sich damit die Stabilität des Gesamtsystems sichern. Die Eigen-
werte der Hilfszustände werden so gewählt, dass das Optimalsteuerungsproblem lösbar
ist. Dazu benutzt man die Eigenwerte als Optimierungsvariable. Damit lassen sich die
Stabilitätseigenschaften in einem stationären Punkt des Systemmodells untersuchen.
Leistungsfähigkeit und Effektivität des vorgeschlagenen Algorithmus werden an Hand

von Fallstudien belegt. Die Bibliothek Numerische Algorithmus Group (NAG), Mark 8,
wird eingesetzt, um die linearen und nichtlinearen Gleichungen, die aus der Kollokation
resultieren, zu lösen. Weiterhin wird zur Lösung des NLP-Problems der Löser IPOPT
für C/C++- Umgebung eingesetzt. Insbesondere wird der vorgeschlagene Algorithmus
zur Steuerung einer Verladebrücke im Labor des Institutes für Automatisierungs- und
Systemtechnik angewendet.
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1 Introduction

1.1 Motivation and Goals

Dynamic optimization problems, also called optimal control problems, are found in many
industrial fields and many control frameworks. The aim is to find a control strategy which
minimizes a given cost functional (performance measure) and, at the same time, satisfies
a set of constraints. These constraints can be system dynamics and/or constraints on
states and controls. Besides in process engineering, optimal control has also been applied
successfully in many other disciplines such as economics, management etc.

For simple systems, an optimal control problem can be directly solved and the resulting
optimal control law applied on-line when the states are continuously measured and feeded
back to the system. If the process dynamics do not change and there is no disturbance,
the derivation of the controller can be done in advance. In the case of changing dynamics
or disturbances an adaptive control has to be employed, then the computation has to be
carried out at every sampling time. However, for many systems, the optimal control law
has to be computed off-line due to high computation time, which means that the optimal
control problem is solved before the real process operations begin.

In general, except for the simplest cases where the problem can be solved analytically,
the solution of an optimal control problem in both on-line and off-line cases is treated
numerically by using an optimization method. Simple optimal control problems were
solved previously by the so-called indirect approach which is based on the first order
optimality conditions [156]. Within the indirect methods, the optimal control problem can
be solved through several approaches such as slack variable method, interior point method
and penalty function method.

In the penalty function method, for example, inequality constraints will be converted
to equality constraints and the optimal control problem is transformed into a two-point-
boundary-value problem. All indirect methods are grouped within a strategy of ”first
optimize then discretize”. Therefore, most of indirect methods are based on finding the so-
lution that satisfies either the Hamiltonian-Jacobi- Bellman equation or the Euler-Lagrange
equation and then treat these equations numerically [33, 132]. However, indirect methods
have several disadvantages: a) it is very difficult to solve the Hamiltonian-Jacobi-Bellman
equation, b) we need to introduce and treat so-called costate variables, c) the solution of
the optimal control problem is not robust, and d) we have to have a deep insight into a
physical and mathematical nature of the optimal control problem [93].

Since 1980s, many researchers have proposed more efficient methods and algorithms to
solve optimal control problems which follow the strategy of ”first discretize and then opti-
mize” to overcome the drawbacks of the indirect methods. In these methods the solution
can be achieved by reformulating ”or approximating” the dynamic optimal control problem
to a finite dimensional nonlinear programming (NLP) problem. The reformulation can be
done by using discretization and parametrization techniques such as control parametriza-

1



1 Introduction

tion, control and state parametrization. After the discretization or parametrization the
resulting nonlinear optimization problem can be solved by a nonlinear programming algo-
rithm like sequential quadratic programming [21]. In this way, highly nonlinear complex
optimal control problems with inequality and equality constraints can be treated.
To solve nonlinear optimal control problems using a direct method, the control trajec-

tory will be parameterized, while the state trajectory can be handled with two approaches:
sequential or simultaneous approach. In the sequential approach, the state vector is han-
dled implicitly with the control vector and initial value vector, and the ordinary differential
equations (ODEs) is addressed as an initial value problem using an ODE solver like the
Runge-Kutta or Euler algorithm. Thus, the simulation and optimization will be sequen-
tially handled in each iteration of the NLP solver. The degree of freedom of the NLP
problem is only composed of the discretized control parameters. The direct single shooting
method is an example of the sequential method. In the simultaneous approach, the state
trajectory will be parameterized, too. All of the parameterized variables (both states and
controls) are considered as optimization variables in the NLP problem. The discretization
method commonly used is either collocation on finite elements [18] or multiple shooting
[26].
One of the most popular model-based control techniques is model predictive control

(MPC). The idea of this control technique is to determine the control law by solving on-
line a (nonlinear) optimal control problem on the prediction horizon. The results from this
solution are the optimal control profiles and the corresponding state trajectories (predicted
states). Only the first part of the optimal controls will be fed to the plant. At the next
sampling time the system states are measured or observed and sent to the optimal control
solver. These new measurements act as initial conditions to the dynamic system and thus
enable the optimal control problem to be solved on the new prediction horizon and the
procedure will be repeated. Linear model predictive control (LMPC) is based on a linear
model as well as linear constraints on states and controls which nowadays has been widely
applied in process industries. On the other hand, more accurate nonlinear models can
be expected to represent system dynamics more accurately. Therefore, nonlinear model
predictive control (NMPC) is needed in situations where the system behavior is strongly
nonlinear.
MPC presents a set of advantages over other control strategies since it can robustly

handle multivariable control problems with inequality constraints both on control and state
variables. However, the computation of MPC is more complex than classical controllers
due to demanding on-line computational requirements of the repetitive solution of the
optimal control problem. Thus MPC is often only be applied to ”slow” systems with a
large sampling rate since the required time to solve the optimization problem is limited.
Therefore, the implementation of MPC or NMPC to a system with fast dynamics has not
been widespread. For systems with very small time constants, the MPC implementation
needs a small sampling time and this costs prohibitive computing expense although much
efforts have been made in pervious studies for enhancing the computation efficiency [69,
121, 182]. The difficulty to maintain the balance between the computational cost and
optimal performance is one of the main reasons why MPC did not do far replace classical
controllers [68, 148]. However, MPC has more advantages than classical controllers when a
certain kind of optimality and constraint satisfaction are required. In this case it is desired
to solve the optimal control problem as fast as possible and, at the same time, it can be
easily implemented on existing or simple micro-controller hardware [138, 148].
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1.2 Thesis Contribution

The importance to enhance computational performance of MPC can be shown by the
control of a five-link robot arm [62]. It is an optimal control problem that minimizes the
time for a moving robot arm from a point to another. The minimum time is 0.15 second
by solving this optimal control problem using one of the available numerical algorithms.
But it takes 20 CPU seconds to run the computation using a fast computer. According to
this example, it is clear that the required time to calculate the optimal controller is much
more than the actual time, it means such MPC algorithms are not applicable for real time
application. Therefore it is necessary to develop new MPC algorithms for fast systems.

Furthermore, due to the nonlinearities and complexities of system dynamics and con-
straints, it is very difficult to analyze the stability of closed-loop systems by using MPC.
Therefore, the stability analysis of MPC systems has long been a challenge. Many schemes
to ensure the closed-loop stability of the MPC can be found in the literature such as sta-
bilizing the MPC system by using a terminal equality constraint, a terminal cost function
etc [124]. These stabilization methods have some limitations or shortcomings, e.g., it is
very difficult to define a proper Lyapunov function.

In summary, although many progresses have been made in the development of MPC
algorithms in previous studies, furtherer investigations are needed especially in the areas
of efficient computing and stabilization analysis. These are the major motivations and
goals of this thesis.

1.2 Thesis Contribution

The contribution of this thesis can be briefly summarized as follows:

• A new approach to the solution of optimal control problems resulting from NMPC
problems is proposed. This approach is based on the principle of direct methods
to solve the nonlinear optimal control problem by using a combination of multiple
shooting with collocation on finite elements. We first use multiple shooting to convert
the nonlinear optimal control problem into a nonlinear programming (NLP) problem.
The finite time horizon will be discretized into subintervals and then the controls in
each subinterval will be parameterized. At the same time the initial values of the
states at the beginning of each subinterval will be parameterized as well. Then col-
location on finite elements is used for the integration of the model equations and the
computation of the gradients required. Due to this combinations, the proposed con-
trol strategy possesses a higher computation efficiency; it requires a smaller amount
of computation expense compared with the existing NMPC algorithms.

The main contribution of the proposed approach to the existing multiple shooting
approaches is the employment of collocation on finite elements to calculate state val-
ues and its derivatives instead of using a standard ODE solver and internal numerical
differentiation, respectively. Moreover, in comparison to a pure collocation method,
using multiple shooting the size of the resulted NLP problem is much smaller. Fur-
thermore, since in multiple shooting the computation of each shoot is independent,
this makes a parallel computation possible. Therefore, the increase in the number of
shoots (i.e. finite elements) will not lead to more computation expense if a parallel
computation is implemented.
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1 Introduction

• We propose a new approach to ensure the stability of NMPC systems by introducing
auxiliary state variables and corresponding linear state equations. It leads to a new
formulation of NMPC problems, in which a new term is added to the performance
index to penalize the auxiliary states. System states are enforced to contract with
respect to the auxiliary state variables by adding inequality constraints. Thus the
stability properties of system states will conform to those of the auxiliary states, i.e.
the system states will be stable, if the auxiliary states are stable. The eigenvalues
of the linear state equations introduced will be determined to stabilize the auxiliary
state variables and at the same time make the optimal control problem feasible. This
is achieved by considering the eigenvalues as optimization variables in the optimal
control problem. Therefore, the solution of the optimal control problem guarantees
the feasibility, stability and optimality of the NMPC system.

We analyze the features of this new formulation of NMPC at the terminal region
and equilibrium point. It can be proven that if the prediction horizon is chosen such
that the system and auxiliary states reach a neighborhood of the equilibrium point,
the optimal eigenvector and auxiliary states can shift instable poles of the linearized
system to a stable region.

• The efficiency of the proposed approach is demonstrated through several case studies.
The computation time taken to solve these control problems is in the order of msec-
onds. Therefore this NMPC algorithm can be applied to fast systems. In addition
it is successfully implemented to control a laboratory loading bridge. Satisfactory
control performance of a moving cart with a single pendulum between two points
with highly nonlinear dynamics is achieved.

1.3 Thesis Structure

The remaining chapters of this thesis are organized as follows:

Chapter 2 gives an overview of the optimal control theory. It reviews some analytical
and numerical methods to solve optimal control problems of continuous time system.
A nonlinear optimal control problem is formulated in general form and methods that
are used to solve this problem are reviewed. These methods are classified into three
groups: dynamic programming, indirect methods and direct methods. We review the
basic procedures of dynamic programming which converts an optimal control problem
into a Hamilton-Jacobi-Bellman (HJB) equation. Indirect methods are based on the
first order optimality conditions of variations of the infinite optimal control problem
and the solution of an optimal control problem will be transformed to a solution of a
two-point-boundary-value problem which can be solved numerically by several methods:
gradient methods, shooting methods, segmentation methods. We also review the direct
methods and classify them into two groups: sequential method, like in direct single
shooting method, and simultaneous method like in collocation on finite elements method.
Finally, we introduce the principle and the structure of the MPC.

Chapter 3 reviews the direct multiple shooting method and the parameterized nonlinear
programming problem that will be treated in this thesis. We review the basic theory
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1.3 Thesis Structure

of the optimality conditions for a constrained and parameterized NLP problem. The
sequential quadratic programming (SQP) method as well as the quadratic programming
(QP) methods are described. We also present other methods to solve the NLP problems,
such as, sparse nonlinear optimizer (SNOPT) and interior point optimizer (IPOPT).

Chapter 4 presents some approaches that are used to solve differential algebraic equa-
tions (DAEs) that are normally addressed as initial value problems (IVPs). We review the
Euler method, Runge-Kutta method and collocation on finite elements approach which
will be used to solve the IVPs of the parameterized NLP problem. An error analysis of
the reviewed DAE solvers will be also given and the additional efficiency of the collocation
on finite elements solver will be provided.

Chapter 5 presents the main algorithm in this thesis. It presents the main procedures
that are needed to solve the parameterized NLP. We call this method combined multiple
shooting collocation method. The elementary steps that lead to the solutions of the
DAEs, in the parameterized NLP, using collocation on finite elements will be described.
In addition, the steps and the equations that lead to the computation of the variables’
sensitivities will be also presented. In Section 5.3 we present the proposed algorithm in
pseudocode.

Chapter 6 focuses on stability analysis of NMPC. We review the receding horizon
control principle as well as Lyapunov stability theorems. Section 6.3 reviews some schemes
that are used to ensure the stability of NMPC systems. In Section 6.4 we propose a new
approach to ensure the stability of NMPC systems. We use a quasi-infinite method to
enhance our proposed approach. Moreover, the features of the proposed approach at the
equilibrium point is analyzed

Chapter 7 presents some case-studies to show the efficiency of the proposed algorithm.
We apply the proposed algorithms to different types of case-studies on-line and off-line.
The proposed algorithm is successfully implemented to the NMPC system of a loading
bridge unit at Ilmeau University of Technology .

Finally, Chapter 8 contains the conclusions of this thesis and recommendations for
future developments.
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2 Optimal Control Theory: Review

2.1 Optimal Control Problem of Continuous Systems

Optimal control problems have been studied in many previous works [4, 33, 67, 97, 102,
109, 151]. The main goal of optimal control is to determine an open-loop optimal control
u∗(t) or an optimal feedback control u∗(x∗(t), z∗(t), a∗, t) that forces the system to satisfy a
set of physical constraints and, at the same time, minimizes an objective functional. This
chapter reviews a general class of optimal control problems and existing solution methods
on which this dissertation is built.
An optimal control problem consists of an objective functional or performance index,

model equations usually described by a set of differential-algebraic equations (DAEs) and
path and boundary constraints of state as well as control variables.

2.1.1 Differential Algebraic Equation System

The corner stone of the optimal control problem is a mathematical model of a system. This
model is described by state equations and can be written by a set of differential algebraic
equations (DAEs) in the explicit form:

ẋ(t) = f(x(t), z(t), u(t), a, t),

g(x(t), z(t), u(t), a, t) = 0,

where x(t) ∈ R
nx and z(t) ∈ R

nz denote the differential and algebraic state vectors,
respectively, u(t) ∈ R

nu and a ∈ R
na are the control vector and a time-invariant system

parameters vector, respectively, f : Rnx × R
nz × R

nu × R
na → R

nx and g : Rnx × R
nz ×

R
nu × R

na → R
nz are continuously differentiable with respect to all its arguments in time

interval t ∈ [t0, tf ]. If the model equations are written in the implicit form, we have the
following representation

f̂(ẋ(t), x(t), z(t), u(t), a, t) = 0, (2.1a)

ĝ(x(t), z(t), u(t), a, t) = 0. (2.1b)

In this thesis we consider only nonsingular cases, i.e., the Jacobian of f̂ with respect to
ẋ (denoted by ∂f̂/∂ẋ=f̂ẋ) is nonsingular. These cases are normally addressed as index one
DAEs [30].

2.1.2 Objective Functional

An optimal control problem enables the designer to select the ”best” control vector by
minimizing (or maximizing) a given objective functional (performance index). The general
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2.1 Optimal Control Problem of Continuous Systems

Table 2.1: Typical objective functionals.

Problem subclass Lagrange term Mayer term

Minimum tracking error (x(t) − xd(t))
TQ(x(t) − xd(t)) -

+(z(t)− zd(t))
T Q̂(z(t)− zd(t))

Minimum control effort uTRu -
General optimal control (x(t) − xd(t))

TQ(x(t) − xd(t)) -
+(z(t)− zd(t))

T Q̂(z(t)− zd(t))

+u(t)TRu(t)

Minimum terminal - (x(tf )− xd(tf ))
TS(x(tf )− xd(tf ))

+(z(tf)− zd(tf ))
T Ŝ(z(tf )− zd(tf ))

Combined minimization (x(t) − xd(t))
TQ(x(t) − xd(t)) (x(tf )− xd(tf ))

TS(x(tf )− xd(tf ))

+(z(t)− zd(t))
T Q̂(z(t)− zd(t)) +(z(tf)− zd(tf ))

T Ŝ(z(tf )− zd(tf ))

+u(t)TRu(t)

Minimum fuel
nu
∑

i=1

βi|ui(t)| -

Minimum time 1 -

Bloza type objective functional can be expressed:

J(x(t), z(t), u(t), a, t) = E(x(tf ), z(tf ), a, tf) +

tf
∫

t0

L(x(t), z(t), u(t), a, t)dt.

where E and L are scalar functions, continuously differentiable in all arguments and often
called Mayer term and Lagrange term, respectively. The above cost functional is very
general and can cover a large class of practical problems in many control applications.
Performance indices of important sub-classes of optimal control problems can be found
in Table 2.1, where R is a positive definite matrix (R > 0), Q, Q̂, S and Ŝ are positive
semi-definite matrices (Q, Q̂, S, Ŝ ≥ 0) and βi > 0 [111, 132].

2.1.3 Path Constraints and Boundary Conditions

The solution of the optimal control problem must satisfy restrictions and boundary con-
ditions on the state and control variables on the time horizon. A general form of path
constraints is

s(x(t), z(t), u(t), a, t) ≥ 0, t ∈ [t0, tf ].

where s : Rnx × R
nz × R

nu × R
na → R

ns .

The typical form of path constraints are lower and upper bounds on states and controls

xmin ≤ x(t) ≤ xmax,

zmin ≤ z(t) ≤ zmax,

umin ≤ u(t) ≤ umax,

amin ≤ a ≤ amax.
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2 Optimal Control Theory: Review

The initial state and terminal equality as well as inequality constraints are considered as
boundary conditions of the optimal control problem

x(t0) = x0,

re(x(tf ), z(tf ), a, tf) = 0,

ri(x(tf ), z(tf ), a, tf) ≥ 0,

where the vector functions {re : R
nx×Rnz×Rna×R→ R

nre} and {ri : R
nx×Rnz×Rna×R→

R
nri}

2.2 Optimal Control Problem Formulation

According to the above definitions, a general formulation of an optimal control problem
starts by minimizing or ”maximizing” the objective functional. The controls and the states
that minimize an objective functional must satisfy the model equations, the path con-
straints and the boundary conditions. Therefore, the constrained optimal control problem
can be formulated as

min
u(t),x(t),z(t),a

J = E(x(tf ), z(tf ), a, tf) +

tf
∫

t0

L(x(t), z(t), u(t), a, t)dt. (2.2a)

subject to

ẋ(t) = f(x(t), u(t), z(t), a, t), t ∈ [t0, tf ], (2.2b)

g(x(t), u(t), z(t), a, t) = 0, t ∈ [t0, tf ], (2.2c)

s(x(t), z(t), u(t), a, t) ≥ 0, t ∈ [t0, tf ], (2.2d)

x(t0) = x0, (2.2e)

re(x(tf ), z(tf ), a, tf) = 0, (2.2f)

ri(x(tf ), z(tf ), a, tf) ≥ 0, (2.2g)

xmin ≤ x(t) ≤ xmax, (2.2h)

zmin ≤ z(t) ≤ zmax, (2.2i)

umin ≤ u(t) ≤ umax, (2.2j)

amin ≤ a ≤ amax. (2.2k)

If this optimal control problem is solved, we obtain an optimal objective functional J∗

with an optimal control u∗(t) and optimal system parameter a∗ with corresponding state
trajectories x∗(t) and z∗(t) for t ∈ [t0, tf ].

2.3 Optimal Control Problem Solution

Solving optimal control problems is highly motivated nowadays, since these solutions are
very important in almost all industrial fields such as chemical, electrical, mechanical, and
economical systems. Several methods are available to solve optimal control problems[62]:
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2.3 Optimal Control Problem Solution

• Dynamic Programming: The Hamilton-Jacobin-Bellman (HJB) equation and a par-
tial differential equation (PDE) in state space are solved.

• Indirect methods: Characterized as first optimization and then discretization.

• Direct methods: Characterized as first discretization and then optimization.

2.3.1 Dynamic Programming

The principle of dynamic optimization usually is known as dynamic programming [15, 17].
The idea of dynamic programming was proposed by Bellman [15]. It converts an optimal
control problem into a so-called Hamilton-Jacobi-Bellman (HJB) equation [4, 17, 33, 97].
Here we review the basic procedure in dynamic programming to solve a sub-class of the
general optimal control problem defined above. We consider the following optimal control
problem

min
u(t)

J = E(x(tf ), tf) +

tf
∫

t0

L(x(t), u(t), t)dt. (2.3a)

subject to

ẋ(t) = f(x(t), u(t), t), t ∈ [t0, tf ], (2.3b)

x(t0) = x0, (2.3c)

re(x(tf ), tf) = 0. (2.3d)

The HJB equation is given by

∂H∗(x(t), t)

∂t
= −min

u(t)
[L(x(t), u(t), t) + (

∂H∗

∂x
)Tf(x(t), u(t), t)]. (2.4)

The solution of Eq.(2.4) leads to the control law

u∗ = Υ(
∂H∗

∂t
, x(t), t) (2.5)

Substituting Eq.(2.5) in Eq.(2.4), the following partial differential equation is obtained

−
∂H∗(x(t), t)

∂t
= L(x(t),Υ(t), t) + (

∂H∗

∂x
)Tf(x(t),Υ(t), t). (2.6)

Now the gradient ∂H∗

∂x
will be computed and then substituted in Eq.(2.5), thus we obtain

the control law
u∗ = Υ̂(x(t), t) (2.7)

For more detail on derivation of HJB, see for example [4, 17, 33, 97, 132]. The HJB
equation solution is a sufficient condition for optimality. In the case of a linear quadratic
optimal problem in Eqs. (2.3a)-(2.3d), the HJB equation is reduced to a Riccati differential
equation which can be solved analytically [132]. However, in the nonlinear case it is difficult
to solve Eq.(2.6) analytically. In addition, we may not be able to easily solve the nonlinear
PDE by numerical techniques. Moreover, inequality constraints can not be considered.
That is why the research in this direction has not been followed.
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2.3.2 Indirect Methods

Indirect methods are based on the first order optimality conditions of variations of the
infinite optimal control problem. Inequality constraints will be converted into equality
constraints and the optimal control problem will be transformed to a two-point-boundary-
value problem (TPBVP) which must be solved numerically [21, 155]. We consider the
following constrained optimal control problem

min
u(t),x(t)

J = E(x(tf ), tf) +

tf
∫

t0

L(x(t), u(t), t)dt. (2.8a)

subject to

ẋ(t) = f(x(t), u(t), t), t ∈ [t0, tf ], (2.8b)

s(x(t), u(t), t) ≥ 0, t ∈ [t0, tf ], (2.8c)

x(t0) = x0, (2.8d)

re(x(tf ), tf) = 0. (2.8e)

This problem can be solved using indirect methods using three approaches [70, 129]: slack
variables, interior point or penalty function methods. In the penalty function method for
example,inequality constraints will be converted to equality constraints and the solution of
the optimal control problem will be transformed to the solution of a TPBVP which will be
solved numerically. Several kinds of numerical methods are based on the Euler-Lagrange
differential equation (EL-DEQ), are available to solve the TPBVP. One may classify these
numerical methods according to the particular approach used [1]:

Gradient methods

In these methods the optimal control problem is solved by minimizing the Hamiltonian
equation subject to the boundary-value problem [33]. In each iteration the state Eq. (2.8b)
is numerically integrated forwards in the time while the costate is integrated backwards.

Shooting methods

It is sometimes called initial value method and is the commonly used method for the
solution of the boundary-value problem [146]. Shooting method tries to determine the
unknown initial values of the costate by the given terminal condition. Then the problem
can be solved as an initial value problem by using, e.g., the Runge-Kutta method.

Segmentation methods

These methods are applied for solving TPBVP numerically. The time interval [t0, tf ] is
segmented into subintervals and the differential equations are approximated over these
segments. There are several segmentation methods according to the size of segments and
approximation procedures.
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• Segmented initial value method or multiple shooting method: It is one of the most
powerful numerical methods for solving TPBVP. The principle of multiple shooting
is to discretize the time interval [t0, tf ] by introducing additional grid points

t0 < t1 < ... < tN = tf

For the nonlinear-boundary-value problem, the shooting method calculates the values
of the states and costates at all grid points using the Newton-Raphson method or
by any roots-finding technique. More details of multiple shooting can be found in
[6, 7, 34, 35].

• Methods based on piecewise polynomial functions (spline function, Hermite interpo-
lation, collocation on finite elements etc.) The idea of these methods is approximating
the differential equations in each segment with these functions.

The principle of the collocation method is to choose a finite-dimensional space of
candidate solutions (polynomials with a certain degree) and a number of points in
the time segment (called collocation points), then these solutions which satisfy given
equations at collocation points are determined. Collocation has been applied more
successfully in direct methods [7, 34, 35, 149]. In this thesis, we apply the collocation
method in Chapter 5 to solve ODEs.

• Finite difference methods: For a high numerical accuracy the size of each segment is
taken relatively small. The use of uniform segment lengths is preferred in general,
although an adaptive segment length is possible.

However, indirect methods have several disadvantages. They require significant efforts to
convert the optimal control problem into the TPBVP. For complex systems the derivation
of the TPBVP is even not possible. In addition, inequality constraints can not be handled
with indirect methods.

2.3.3 Direct Methods

More complicated optimal control problems are normally solved by direct methods which
transform the optimal control problem into a nonlinear programming (NLP) problem of
the form [18, 28, 87, 101, 114]:

min
w

A(w) (2.9a)

subject to

B(w) = 0, (2.9b)

C(w) ≥ 0, (2.9c)

where a finite dimensional vector w represents the decision variables of this optimization
problem and the functions A, B and C are corresponding the objective function, equality
constraints and inequality constraints, respectively, after the transformation. This NLP
problem can be solved iteratively by using a sequential quadratic programming (SQP)
method. This leads to a numerical solution task, that is why direct methods are regarded
as numerical methods. In this way, inequality and equality constraints as well as highly
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nonlinear complex optimal control problems can be treated [54, 156]. In all direct methods,
discretization and parametrization methods are used for the transformation. Basically two
different classifications of direct methods are found in the literature to solve the optimal
control problem [19, 21, 75].

Sequential Method

In this approach control variables are discretized over the time horizon and model equations
are solved ”exactly” in every iteration of the NLP solver by a numerical integration method
[94]. That means only control trajectories will be parameterized and then considered
as optimization variables. The solution of the model is implicitly performed during the
integration of ODEs which are addressed as an initial value problems using one of the
available integration methods like Runge-Kutta or Euler algorithms [101, 155]. An example
of sequential methods is direct single shooting which will be briefly addressed in Section
2.3.4.

Simultaneous Method

In this method, control as well as state trajectories will be discretized and parameterized
over the time horizon [t0, tf ]. Thus the finite dimensional vector w will represent both
parameterized states and controls. The ODEs will be transformed into algebraic equality
constraints either with collocation on finite elements [20, 111] which is sketched in Section
2.3.5 or with multiple shooting [61] as shown in Chapter 3.

2.3.4 Direct Single Shooting Method

Direct single shooting reformulates the optimal control problem1 into a finite dimensional
NLP problem (2.9) [94, 101]:

min
u(t),x(t)

J = E(x(tf ), tf) +

tf
∫

t0

L(x(t), u(t), t)dt. (2.10a)

subject to

ẋ(t) = f(x(t), u(t), t), t ∈ [t0, tf ], (2.10b)

s(x(t), u(t), t) ≥ 0, t ∈ [t0, tf ], (2.10c)

x(t0) = x0, (2.10d)

re(x(tf ), tf) = 0. (2.10e)

First, the time interval [t0, tf ] is divided into equal subintervals (segments) [ti, ti+1], such
that

t0 < t1 < ... < tN = tf

where N is the total number of subintervals. Then the control vector is transformed
into a parameterized finite dimensional control vector u(t, q) that depends on the finite
dimensional parameter vector q ∈ R

N . There are several parametrization schemes [21], for

1Formulation (2.8) is repeated here for duality of presentation.

12
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example Fig 2.1 shows how the piecewise constant representation is used to parameterize a
control variable. As a sequential method a numerical simulation routine is used for solving

q0

q1

q2

q3

q4

q5

t0 t1 t2 t3 t4 t5 t6=tf
t

u(t,q)

Figure 2.1: Piecewise constant parametrization of a control (N = 6). Control intervals are
given as [ti, ti+1] for i = 0, ..., 5 with intermediate time points t1, ..., t5.

the initial value problem (IVP)

ẋ(t) = f(x(t), u(t, q), t), x(t0) = x0, t ∈ [t0, tf ],

which is solved to yield the state vector x(t, q) in the time interval [t0, tf ] as shown in Fig
2.2. It means the state vector depends on parametrization of the control vector. Since the
simulation is done over the whole time horizon this method is called direct single shooting
method. Due to the numerical simulation the model equations are eliminated from (2.10).
The path constraints are also discretized. Thus the optimal control problem Eq. (2.10) is
rewritten as

min
q

J = E(x(tf ), q) +

tf
∫

t0

L(x(t, q), u(t, q), t)dt, (2.11a)

subject to

s(x(ti, q), u(ti, q)) ≥ 0, t ∈ [t0, tf ], (2.11b)

re(x(tf ), q) = 0. (2.11c)

Fig 2.3 shows the framework of single shooting method. Here the simulation phase is
done at every iteration of the NLP solver. After the convergence of the NLP algorithm
the optimal control vector is obtained from the optimizer, while the corresponding optimal
state vector is obtained from the simulator.
It can be seen that the single shooting method depends mainly on solutions of DAEs.

That means, the solution accuracy depends on the accuracy of DAE solver and only a
’suitable’ initial guess for the control vector is needed for the optimization. On the other
hand, since the number of optimization variables is only determined by the parameterized
control vector the size of the NLP problem will be small even when we deal with a large
DAE system. This method, however, has disadvantages in comparison to other direct
methods. The knowledge of the initialization of state trajectories cannot be used, especially
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states x(t;q)

x
0

q
0 q

1

q
N−1

Time

discretized control u(t;q)
terminal
constraint

Figure 2.2: Illustration of single shooting.

Optimizer

Simulator

q*

x*(t)

q

q*

Figure 2.3: Framework of single shooting method.

in tracking problems. It has difficulties to treat instable systems. The information of the
violation of state trajectories cannot be obtained. In addition, this method can lead to
DAEs which depend on a nonlinear parameter q.

2.3.5 Collocation Method

In the collocation method both control and state trajectories will be discretized and pa-
rameterized [18, 38, 52, 78, 89, 177]. We consider the optimal control problem (2.10).
The control vector is normally parameterized with piecewise constant vector qi in each
subinterval [ti, ti+1]. The state trajectories are interpolated with intermediate collocation
points within the subinterval [ti, ti+1]. Therefore the size of the NLP problem will be the
parameter vector q, values of the state vector at the grid points wi (i.e. parameterized
states at the grid points) as well as additional variables ŵi which represent the states at
the collocation points in each subinterval.
Fig 2.4 shows the framework of the collocation method. Using collocation the continu-

ous system model is transferred into equality constraints. In this simultaneous treatment,
equality constraints are not necessarily satisfied in each NLP iteration. When the NLP
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solver converges, the equality constraints will be satisfied and both optimal control trajec-
tories and corresponding optimal state trajectories are obtained from the optimizer.

Continous system

model

u(t;q)

x(t;w)

Optimizer

Discretized

equality constraints

q*�*,w*

q �,w

Figure 2.4: Framework of the collocation method.

In the collocation method, the system model

ẋ(t) = f(x(t), u(t), t), t ∈ [t0, tf ].

is replaced by finite equality constraints

Ci(qi, wi, ŵi, wi+1) = 0, i = 0, ..., N − 1.

Similarly, the objective functional is discretized and approximated in each subinterval

Li(qi, wi, ŵi, wi+1)

Then we obtain the following large-scale and sparse NLP problem[51]:

min
q,w,ŵ

E(wN) +

N−1
∑

i=0

Li(qi, wi, ŵi, wi+1) (2.12a)

subject to

Ci(qi, wi, ŵi, wi+1) = 0, i = 0, ..., N − 1, (2.12b)

s(qi, wi, ŵi, wi+1) ≥ 0, i = 0, ..., N − 1, (2.12c)

w0 = x0, (2.12d)

re(wN) = 0. (2.12e)

Since the NLP problem obtained by the collocation method is very sparse, this structure
can be utilized to reduce the computation time. The main advantages of the collocation
method in comparison to single shooting method are that it uses the information of state
trajectories in the initialization. In addition, an asymptotical stability can be obtained
since it can easily handel path and terminal constraints on state variables.
However, due to the simultaneous treatment of both controls and states the dimension

of the NLP problem can be too high to be solved efficiently. Moreover the dimension of
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2 Optimal Control Theory: Review

the NLP problem will be further increased if the discretization error needs to be updated.
Therefore the collocation approach is normally not applied to optimal control problems,
even it is applied to many practical optimal control problems off-line [38, 160, 166].

In this thesis, we use collocation on finite elements to approximate state trajectories in
each subinterval which [91] is combined with direct multiple shooting briefly discussed in
the following.

2.3.6 Direct Multiple Shooting

This method combines the advantages of simultaneous methods like collocation method
with the main advantages of the single shooting method, so that it is sometimes called
a hybrid method [65]. In this method the transcription of the optimal control problem
(2.10) into a NLP problem starts with way similar to the single shooting method. The
time interval [t0, tf ] is divided into N equal subintervals [28, 64, 156]. Then the control
trajectory vector is transformed into a parameterized finite dimensional control vector
u(t, q) that depends on the finite dimensional vector q ∈ R

N . In addition, state trajectories
are discretized by the same grid points. The initial values of state trajectories in each
subinterval are also parameterized. Through this discritization, the continuous model
equations are transformed into discritized equality constraints, where the terminal value of
state in each subinterval is equal the initial value of the state in next subinterval. Therefore,
the equality constraints are needed to be solved for the computation of state variables on
the grid points in each NLP iteration. Fig. 2.5 shows the framework of the direct multiple
shooting method. The difference from the collocation method is that we need only the
control and states at the grid points as optimization variables in the NLP formulation. In
Chapter 3, we will discuses the direct multiple shooting method in detail.

Continous system

model

u(t;q)

x(t;w)

Optimizer

Discretized

equality constraints

q*

w*

q w

Figure 2.5: Framework of multiple shooting method.

Fig. 2.6 summarizes some direct and indirect methods discussed above for solving opti-
mal control problems.
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Figure 2.6: Computation methods of optimal control problems using direct and indirect
approaches.

2.4 Model Predictive Control (MPC)

The principle of model predictive control (MPC) is to create a formulation that solves on-
line the finite optimal control problem subject to model equations and constrains involving
states and controls [13, 46, 76, 99, 115, 116, 122, 128, 140, 142, 169] as described, e.g., by
Eq. (2.2).

The model is used to predict the process output at a future time horizon by finding
a control sequence that minimizes a certain objective functional using the theory of the
optimal control [36]. We assume that the system is described by a set of index one
DAEs (2.2b) with initial condition the x(t0) = x0. Here we define the prediction horizon
over which the optimal control problem is solved (Tp = tf − t0). Using MPC, first the
optimal control u(t) is applied to the plant over the control horizon (Tc < Tp). If there
are no disturbances and no model-plant mismatch then we can apply the input u(t)
over the time horizon t ∈ [t0, tf ]. But when disturbances are presented and model-plant
mismatches, the computed control strategy will lead to poor performance. Therefore, a
feedback mechanism will be implemented, that means, the open loop computed input
function will be implemented only until the next measurement is available. Fig. 2.7
shows the basic principle of model predictive control, Fig. 2.8 shows the basic structure
of MPC, as applied in closed-loop. We use the system model to predict the future plant
outputs, based on past and current values and optimal future controls as well as the
system constraints. Accordingly, the MPC methodology can be summarized:

1. Measure and/or estimate state variables at time instant t.

2. Compute an optimal control vector by solving an open-loop optimal control problem
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Figure 2.7: Principle of model predictive control (MPC).

over a future prediction horizon Tp subject to model equations, constrains on states and
controls based on measured and/or estimated state variables.

3. Apply the first part of the computed optimal controls until the new state measure-
ments and/or estimations are available.

4. Continue with step 1.

Plant

State estimator

u

x

z

System model

Cost function

+

constraints

Dynamic Optimizer

MPC controller

Figure 2.8: Basic MPC control loop.

MPC (also called long-rang Predictive Control (LRPC) [36]) has been considered as a
promising control algorithm in recent years. Many different algorithms have been presented
in the literature to discuss MPC. MPC has been used in many complex applications such
as control of robot manipulators [108, 175], clinical anaesthesia [112], cement plant [49],
chemical plants [16, 48, 50] and steam generators [144, 145].
Moreover, MPC is very attractive especially for plant operators with limited knowledge

of control since MPC concepts are easy to understand and tuned. The advantages of MPC
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2.5 Nonlinear Model Predictive Control (NMPC)

can be summarized as follows: 1) It can be used to control different complex processes, even
systems that include long time delays as well as systems that are instable. 2) It solves the
open-loop optimal control problem on-line. 3) It can handle linear and nonlinear systems.
4) It can compensate dead time. 5) It introduces feed forward control in a natural way to
compensate for the measurable disturbances.
However, MPC has also disadvantages. The derivation of the resulting control law

is more complex than that of classical controllers (e.g. PID controller). If the process
dynamics do not change, the derivation of the controller can be done in advance. But in
the case of an adaptive control all the computations have to be carried out at every sample
time. When the inequality constraints are considered, an iterative solution scheme has
to be used and then the expense of the required computation is even higher. Thus MPC
has been only implemented to ’slow’ dynamic systems and for ’large sampling rates’ [68]
despite the advances of the computational tools.

2.5 Nonlinear Model Predictive Control (NMPC)

Linear MPC is an efficient algorithm which handles intrinsic multivariable and constraints.
In many cases the selection of the desired operating range coupled with nonlinear process
behaviors can degrade the process performance and destabilize the closed loop system.
Nonlinear MPC (NMPC) can relieve this performance degradation.
The concept of NMPC is similar to linear MPC where the control problem is formulated

to solve on-line a finite open-loop optimal control problem considering nonlinear model
equations of the system and possibly nonlinear constraints on controls and states. However,
an infinite horizons problem is very difficult in the nonlinear case, so that a moving horizon
technique is used instead. That means a constant control horizon TC is chosen. If the
control horizon TC is sufficiently large, the computed optimal control, state and output
variables are supposed to have a ’good’ approximation of the exact solutions for the infinite
horizon problem [123].
Several theoretical and computational aspects of NMPC were discussed in the literature.

In Chapter 6 we will review NMPC approaches that guarantee the closed-loop stability
and propose an approach to stabilize the NMPC systems.

2.6 Summary

In this chapter the basic optimal control problem is formulated. To the solution of the op-
timal control problem two important strategies (direct and indirect) are reviewed. Within
indirect method, the optimal control problem can be solved by slack variable method,
penalty function method or interior point method. Within direct methods the problem
will be transformed in nonlinear programming (NLP) problem using direct single shooting
problem, collocation method or direct multiple shooting, then NLP problem will be solved
by using a sequential quadratic programming (SQP) method. Moreover, the basic principle
of (nonlinear) model predictive control (MPC) is reviewed.
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3 Direct Multiple Shooting

In this chapter, we present and analyze a numerical method for solving the optimal control
problem (2.2). This method, which is called direct multiple shooting, originally proposed
by Bock and Plitt [28]. It converts a continuous nonlinear optimal control problem into
a NLP problem. The resulting NLP problem can be solved using a sequential quadratic
programming (SQP) method, interior point optimizer (IPOPT) or sparse nonlinear opti-
mizer (SNOPT). A new algorithm is proposed to solve this NLP problem. This algorithm
is realized in the framework of the numerical algorithm group (NAG) library 8 [88] and
IPOPT [178] for the SQP and in C/C++ for the rest of the computations.

3.1 Problem Transformation

In this section, the optimal control problem (2.2) is converted into a finite dimensional
nonlinear programming (NLP) problem using the direct multiple shooting approach. This
algorithm can be summarized by the following steps [63, 72, 73, 107, 110, 120, 152, 162]:

1. Divide the time horizon into equal subintervals.

2. Parameterize the control function in each subinterval.

3. Parameterize the initial conditions of the states in each subinterval.

4. Calculate the state trajectories in each subinterval and the values of the states at the
end of each subinterval using the parameterized values of the states at the beginning
of each subinterval.

5. Define continuity constraints to maintain continuity of the states between the subin-
tervals.

6. Evaluate the objective function in each subinterval and formulate the NLP problem

7. Solve the NLP problem.

In the following, we explain these steps in detail.

Controls and States Discretization

In all direct methods, a discretiztion strategy is required. It means, the optimal control
problem over the time horizon [t0, tf ] will be discretized. First, we divide the time horizon
[t0, tf ] into equal subintervals [ti, ti+1], such that

t0 < t1 < ... < tN = tf (3.1)

where N is the total number of subintervals.
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3.1 Problem Transformation

At the same time, the control and the state variables are discretized according to the
time subintervals, such that

ui(t) ∀ t ∈ [ti, ti+1), (3.2a)

xi(t) ∀ t ∈ [ti, ti+1), (3.2b)

zi(t) ∀ t ∈ [ti, ti+1). (3.2c)

where i = 0, 1, ..., N − 1. Where ti is the node between two neighboring subintervals.

Control Parametrization

Each piecewise control vector ui(t) is parameterized by a parameter vector vi in each
subinterval [ti, ti+1] as shown in Fig. 3.1.

ui(t) = ui(t, vi) ∀ t ∈ [ti, ti+1). (3.3)

where i = 0, 1, ..., N − 1.
For the control parametrization piecewise constants, linear or either polynomial functions

can be used. Here, for simplicity, we parameterize the control trajectories ui(t) by the
piecewise constant representation, i.e.

ui(t) = vi, ∀ t ∈ [ti, ti+1), i = 0, 1, ...N − 1, (3.4a)

u(tN) = vN = vN−1. (3.4b)

Now we have N + 1 parameterized control vectors, v0, v1, ..., vN , where the vector
vi ∈ R

nu . We notice from the piecewise constant parametrization that continuities of
the control trajectories are not guaranteed. However, if these continuities are desired, the
control variables can be parameterized by piecewise polynomials and treated as additional
differential state variables whose time derivatives can be controlled [60].

u(t)

v0

v1

v2

vN=vN-1

t1 t2 tNt0

t

Figure 3.1: Control parametrization.

State Parametrization

For the state parametrization, the differential state vector x(t) is decoupled from the
algebraic state vector z(t) in the solution of DAEs (2.2b) on the N subintervals. We
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3 Direct Multiple Shooting

parameterize the initial condition of each state vector in each subinterval

xi(ti) = hx
i , (3.5a)

zi(ti) = hz
i . (3.5b)

where i = 0, 1, ..., N−1. Since the value of state variables at the end of the last subinterval
should be considered the time and state indices will be i = 0, 1, ..., N . Therefore we have
2(N +1) state vectors hx

0 , h
x
1 , ..., h

x
N where hx

i ∈ R
nx as shown in Fig. 3.2 and hz

0, h
z
1, ..., h

z
N

where hz
i ∈ R

nz . For the compactness, we combine the vectors hx
i and hz

i in one vector
hi = [hx

i
T hz

i
T ]T .

x(t)

h0
x

h1
x

h2
x

hN
x

t1 t2 tNt0

t

Figure 3.2: State parametrization.

Now, all control and state variables we will combine in one vector

w = [vT0 hx
0
T hz

0
T vT1 hx

1
T hz

1
T ... vN

T hx
N

T hz
N

T aT ]T ,

where w ∈ R
(nu+nx+nz)(N+1)+na . For the dimensions of the variables see Eq. (2.2).

State Trajectory Solution

The state trajectories in each subinterval need to be solved. These solutions can be con-
sidered as solutions of initial value problems (IVPs) in each subinterval when the control
vector u(t) and the parameter vector a are parameterized by piecewise constants

ẋi(t) = f(xi(t), zi(t), vi, a, t), ∀t ∈ [ti, ti+1), (3.6a)

0 = g(xi(t), zi(t), vi, a, t), (3.6b)

xi(ti) = hx
i , i = 0, 1, ..., N − 1. (3.6c)

Note that the solutions xi(t) and zi(t) are usually independent in each subinterval
[ti, ti+1], thus the notations xi(hi, vi, t) and zi(hi, vi, t) are used to represent this indepen-
dence. In existing multiple shooting algorithms like the multiple shooting code (MUSCOD)
[104, 131] a so-called internal numerical differentiation (IND) [25, 27] approach is used to
approximate the state trajectories in each subinterval. The original version of this code
uses a Runge-Kutta-Fehlberg method of order 7/8 [71]. In this thesis we use the method
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3.1 Problem Transformation

of collocation on finite elements [1, 7, 35, 52, 53, 149] to approximate the solutions of
the IVPs. In Chapter 4 we will present methods commonly used to solve these IVPs and
briefly discuss the accuracy of each method in comparison to that of the method used in
this thesis.

Algebraic Consistency Conditions

The multiple sooting nodes with parameters hx
i , h

z
i and vi will be imposed in the algebraic

Eq. (2.2c) to construct a relaxed algebraic consistency conditions

g(hx
i , h

z
i , vi, a) = 0, i = 0, 1, ..., N.

It simply means that the algebraic state equation must be satisfied at joint points.

Continuity Constraints

Since the continuities of differential state trajectories must be guaranteed, so-called node
matching conditions are introduced which force the terminal values xi(hi, vi, a, ti+1) of each
state trajectory in each subinterval [ti, ti+1] to be equal parameterized initial conditions
of state trajectories hx

i+1 in the next subinterval [ti+1, ti+2]. From Eqs. (3.4) to (3.6) the
continuity constraints result to

hx
i+1 − xi(h

x
i , h

z
i , vi, a, ti+1) = 0, i = 0, 1, ..., N − 1.

The parameterized initial value of the differentiable state vector hx
0 is also needed to be

equal to the initial value vector x0 in the this formulation

hx
0 = x0

Path Constraint Discretization

The path constraints on the states and controls are imposed pointwise at the nodes and
the terminal constraints at the terminal point.

s(hx
i , h

z
i , vi, a) ≥ 0, i = 0, 1, ..., N − 1,

re(h
x
N , h

z
N , a) = 0,

ri(h
x
N , h

z
N , a) ≥ 0,

Objective Function Discretization

The vectors xi(t) and zi(t) as well as the parameter vectors vi will be used to compute the
Lagrange term of Eq.(2.2a) in the subinterval [ti, ti+1]

L(hx
i , h

z
i , vi, a) =

ti+1
∫

ti

L(xi(t), zi(t), vi, a, t)dt

where i = 0, 1, ..., N − 1.
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3 Direct Multiple Shooting

Furthermore, the value of the parameter hi = (hx
i , h

z
i ) is also used to compute the Mayer

term in Eq.(2.2a)
E(x(tf ), z(tf ), a, tf) = E(hx

N , h
z
N , a, tN).

Therefore the final form of a discretized objective function can be written as

J = E(hx
N , h

z
N , a, tN ) +

N−1
∑

i=0

L(hx
i , h

z
i , vi, a). (3.7)

3.2 Resulting Nonlinear Programming Problem

Based on the above multiple shooting method, the finite dimensional NLP problem that
results from the nonlinear optimal control problem (2.2) can be summarized:

min
v0...,vN−1,
hx
0 ...,h

x
N ,

hz
0...,h

z
N
,a

J = E(hx
N , h

z
N , a, tN) +

N−1
∑

i=0

L(hx
i , h

z
i , vi, a), (3.8a)

subject to

g(hx
i , h

z
i , vi, a) = 0, i = 0, 1, ..., N, (3.8b)

hx
0 − x0 = 0, (3.8c)

hx
i+1 − xi(h

x
i , h

z
i , vi, a, ti+1) = 0, i = 0, 1, ..., N − 1, (3.8d)

s(hx
i , h

z
i , vi, a) ≥ 0, i = 0, 1, ..., N, (3.8e)

re(h
x
N , h

z
N , a) = 0, (3.8f)

ri(h
x
N , h

z
N , a) ≥ 0. (3.8g)

The NLP problem (3.8) can be rewritten in a shorter form:

min
w

A(w), (3.9a)

subject to

B(w) = 0, (3.9b)

C(w) ≥ 0, (3.9c)

with a finite dimensional vector w ∈ R
nw , nw = (N+1)(nu+nx+nz)+na, the scalar function

A(w) : Rnw → R. The vector functions {B(w) : Rnw → R
nB}, nB = (N+1)(nx+nz)+nre,

{C(w) : Rnw → R
nC}, nC = (N + 1)ns + nri, where

w = [vT0 hx
0
T hz

0
T vT1 hx

1
T hz

1
T ... vN

T hx
N

T hz
N

T aT ]T ,

A(w) = E(hx
N , h

z
N , a) +

N−1
∑

i=0

L(hx
i , h

z
i , vi, a),

B(w) =













hx
0 − x0

hx
i+1 − xi(ti+1; h

x
i , h

z
i , vi, a)

g(hx
i , h

z
i , vi, a)

g(hx
N , h

z
N , vN , a)

re(h
x
N , h

z
N , a)












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and

C(w) =





s(hx
i , h

z
i , vi, a)

s(hx
N , h

z
N , vN , a)

ri(h
x
N , h

z
N , a)





where i = 0, 1, ..., N − 1.

Fig. 3.3a shows a graphical description of an initialization of a simple optimal control
problem using direct multiple shooting in 4 subintervals. In this figure, initial guesses for
vi and hx

i are given inside the boundary values, i.e. the initial guess should be feasible. The
profiles of the state variables are computed by solving the model equations. When the NLP
problem (3.9) is solved, optimal values of control and state trajectories will be obtained as
shown schematically in Fig. 3.3b. We can see from Fig. 3.3 that an integration of the state
trajectory over the whole time interval [t0, tf ] is not required, but this integration is done
separately over the subintervals [ti, ti+1]. Moreover using the optimal state and control
trajectories the equality and inequality constraints will be satisfied, and the performance
index A(w) will be minimized. In Section 3.3 several methods to solve the NLP problem
(3.9) will be presented.

3.3 NLP Problem Solution

The goal of this section is to present numerical methods that solve the NLP problem
(3.9). We first define a gradient vector ∇A(w) = [ ∂A

∂w0
, ..., ∂A

∂wnw−1
], Jacobian matrices

∇wB(w) = ∂B
∂w

and ∇wC(w) = ∂C
∂w

with dimensions nw × nB and nw × nC , respectively.
We assume that Hessian matrices ∇2

wwA, ∇
2
wwB and ∇2

wwC are available. In the following,
basic definitions and theorems are given.

Definition 3.1 (Feasibility):
A point w∗ ∈ R

nw is feasible in the NLP problem (3.9) if B(w∗) = 0 and C(w∗) ≥ 0 (i.e.
all equality and inequality constraints are satisfied).

We note that the vector w∗ may not minimize the function A(w) although it is a feasible
point.

Definition 3.2 (Local Optimality):
A point w∗ ∈ R

nw is a local minimizer (or a local minimum solution) of the NLP problem
(3.9) if:

• w∗ is a feasible point and

• w∗ satisfies A(w∗) ≤ A(w) for all feasible neighborhoods of w∗.

Definition 3.3 (Global Optimality):
A point w∗ ∈ R

nw global minimizer of the NLP problem (3.9) if:

• w∗ is a local minimizer of the NLP problem (3.9) and

• for all existing w∗ ∈ R
nw such that A(w∗) ≤ A(w) for all feasible points w 6= w∗.
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Figure 3.3: Multiple shooting method- initial and finial trajectory (N=4).

Definition 3.4 (Lagrangian Function and Lagrangian Multipliers):
A Lagrangian function is defined to investigate the local optimality of the NLP problem
(3.9) by introducing Lagrangian multiplier vectors λ ∈ R

nB and µ ∈ R
nC which correspond
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3.3 NLP Problem Solution

one-to-one to the constraint functions B and C, respectively, such that,

L(w, λ, µ) = A(w)− λTB(w)− µTC(w). (3.10)

Theorem 3.1 (Karush-Kuhn-Tucker Conditions):
Consider the NLP problem (3.9) has a Lagrangian function (3.10). Then w∗ is a local
optimum of the NLP problem (3.9) if the triple (w∗, λ∗, µ∗) satisfies the following necessary
conditions:

• Stationarity condition:

∇L(w∗, λ∗, µ∗) = ∇A(w∗)−
∂B

∂w∗
λ∗ −

∂C

∂w∗
µ∗ = 0. (3.11a)

• Primal feasibility conditions:

B(w∗) = 0, (3.11b)

C(w∗) ≥ 0. (3.11c)

• Dual feasibility condition:
µ∗ ≥ 0, (3.11d)

• Complementary slackness condition:

µ∗
iCi(w

∗) = 0, i = 1, 2..., nC . (3.11e)

Definition 3.5 (Karush-Kuhn-Tucker Point):
A triple (w∗, λ∗, µ∗) is called a Karush-Kuhn-Tucker (KKT) point when it satisfies the
condition (3.11) of Theorem 3.1.

Definition 3.6 (Weakly Active and Strongly Active Constraints [60]):
If the inequality constraints C(w∗) ≥ 0 are active, i.e. C(w∗) = 0, then

• the inequality constraints C(w∗) ≥ 0 are weakly active constraints if the comple-
mentary condition (3.11e) is satisfied such that µ∗ = 0.

• the inequality constraints C(w∗) ≥ 0 are strongly active constraints if the comple-
mentary condition (3.11e) is satisfied such that µ∗ > 0.

3.3.1 Quadratic Programming (QP)

One of the most important classes of the NLP problems (3.9) is a NLP problem with
quadratic objective function and linear constraints which is called quadratic programming
(QP) problem [135]. This type of the NLP problems is very important since it is consid-
ered as a subproblem in methods for general constrained optimization such as sequential
quadratic programming method. The quadratic programming (QP) problem can be for-
mulated as

min
w

1

2
wTAQPw + aTQPw, (3.12a)
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3 Direct Multiple Shooting

subject to

BQPw + bQP = 0, (3.12b)

CQPw + cQP ≥ 0, (3.12c)

where the matrices AQP ∈ R
nw × R

nw , BQP ∈ R
nB × R

nw and CQP ∈ R
nC × R

nw are
predefined constant matrices and vectors aQP ∈ R

nw , bQP ∈ R
nB and cQP ∈ R

nC are
predefined constant vectors. AQP is a symmetric and positive definite matrix.
Many algorithms have been developed to solve QP problems. Here we show one of the

algorithms mostly used for the solution.

Definition 3.7 (Lagrangian of QP Problem):
The Lagrangian of the QP problem (3.12) is given by:

LQP (w, λQP , µQP ) = wTAQPw + aQP − λT
QP (BQPw + bQP )− µT

QP (CQPw + cQP ) (3.13)

where λQP ∈ R
nB and µQP ∈ R

nC .

Applying the KKT conditions (3.11) in Theorem 3.1 to a KKT point (w∗, λ∗
QP , µ

∗
QP ), we

find that

AQPw
∗ + aQP − BT

QPλ
∗
QP − CQPµ

∗
QP = 0, (3.14a)

bQP +BQPw
∗ = 0, (3.14b)

cQP + CQPw
∗ ≥ 0, (3.14c)

µ∗
QP ≥ 0, (3.14d)

µ∗
QP i

(cQP i
+ CQP i

w∗) = 0, i = 1, 2, ..., nC. (3.14e)

This problem is usually solved by the active-set method [5]. A unique solution, i.e. KKT
point, of the QP problem (3.12) can be found for inequality constraints (3.12b) by assuming
that the QP problem (3.12) is feasible and the combined constraint matrix (BT

QP , CQP ) has
full rank nB + nC .

3.3.2 Sequential Quadratic Programming (SQP)

Sequential quadratic programming or succussive quadratic programming (SQP) [5, 170,
174], is considered one of the the most effective and robust algorithms for solving NLP
problems. We consider the short form of the resulting NLP problem, as described in
Section 3.2,

min
w

A(w), (3.15a)

subject to

B(w) = 0, (3.15b)

C(w) ≥ 0, (3.15c)

where w ∈ R
nw is a finite dimensional vector, A(w) : Rnw → R is a scalar function ,

{B(w) : Rnw → R
nB}, {C(w) : Rnw → R

nC} are vector functions and at least one of the
constraints is nonlinear.
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3.3 NLP Problem Solution

Solving the NLP problem using SQP is based on solving a series of quadratic program-
ming subproblems that are designed to minimize a quadratic approximation of the objective
function subject to linearized constraints. SQP starts with a point, wk, k = 0, 1, ..., in
the NLP problem (3.15) by a quadratic programming (QP) subproblem, and then uses the
solution to the subproblem to construct a better approximation with a new point wk+1.
This process is iterated to create a sequence of approximations that will converge to a
solution w∗. If the problem is unconstrained SQP reduces to Newton’s method for finding
a point where the gradient of the objective vanishes. If the problem has only equality
constraints the SQP method, which uses an exact penalty function, is equivalent to apply-
ing Newton’s method to the first-order optimality conditions, or KKT conditions, of the
problem [4, 135].

Lemma 3.1 (Exact Penalty Function):
Suppose that the triple (w∗, λ∗, µ∗) satisfies the KKT conditions (3.11) to the problem
(3.15), furthermore, the functions A and B are convex and the function C is affine. If a
penalty function is defined as

Pe(w) = A(w) + ρ

(

nw
∑

i

max (0, Bi(w)) +

nw
∑

i

|Bi(w)|

)

, (3.16)

where ρ > 0, and ρ is large enough such that

ρ ≥ max{µ∗, |λ|},

then the vector w∗ is also a global minimum of the function Pe(w):

Proof. A proof of this lemma can be found in [5].

Definition 3.8 (Search Direction and Relaxation Factor):
Consider the NLP problem (3.15) with a Lagrangian L(w, λ, µ). Newton’s method takes
a step in a direction towards a near optimal solution of the problem. If the Newton’s
method begins with initial guess (wk, λk, µk) then the characterization of the next iterate
(wk+1, λk+1, µk+1) is given by

(wk+1, λk+1, µk+1) = (wk, λk, µk) + αk(∆wk,∆λk,∆µk) (3.17)

where α ∈ (0, 1] is the relaxation factor of the Newton’s method [5, 24, 104, 158] and
(∆wk,∆λk,∆µk) ∈ (Rnw ,RnB ,RnC ) solves a second-order approximation of a stationary
point condition for the Lagrange

∇2L(wk, λk, µk)





∆wk

∆λk

∆µk



 = −∇L(wk, λk, µk). (3.18)

From Eq. (3.18), we yield:





∇2
wwL(wk, λk, µk) ∇B(wk) ∇C(wk)
∇B(wk) 0 0
∇C(wk) 0 0









∆wk

∆λk

∆µk



 = −





∇wL(wk, λk, µk)
B(wk)
C(wk)



 . (3.19)
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3 Direct Multiple Shooting

System (3.19) of linear equations has a KKT point corresponds to the quadratic program-
ming problem:

min
w

1

2
∆wk

THk∆wk +∇A(wk)∆wk, (3.20a)

subject to

B(wk) +∇B(wk)∆wk = 0, (3.20b)

C(wk) +∇C(wk)∆wk ≥ 0. (3.20c)

where Hk = ∇2
wwL(wk, λk, µk) is the Hessian matrix of the Lagrangian L or its approxi-

mation. This problem is a second-order approximation of the Lagrangian with respect to
the primal vector w, and the original constraints have been replaced by their first-order
approximations at wk.

Theorem 3.2 (Convergence of the SQP Method):
The SQP algorithm terminates at a KKT point for the problem (3.15) for every wk ∈ R

nw ,
a symmetric and positive definite Hessian ∇2

wwL(wk, λk, µk) or its approximation if

• the QP problem (3.20) has a unique solution,

• the unique Lagrangian multiplier vectors λ and µ satisfying ρ ≥ max{λ, µ} where
ρ > 0 is the penalty parameter (see Eq. (3.16)) and

• the sequence of the Hessian or its approximation is bounded and that every point of
this sequence is positive definite.

Proof. The proof of Theorem 3.2 can be found in [5].

Approximation of the Hessian

The analytical computation of the Hessian of the Lagrange is very expensive, thus in many
SQP implementations, the identity matrix I is used as initial Hessian approximation H0.
This approximation, however, is quit unsatisfactory. A more ’reasonable’ approximation
of Hessian [45, 105, 139] has been studied.

The Hessian matrix Hk has n2
w elements and is hence under-determined by these nw

equations. Additional requirements, such as making Hk symmetric and positive definite,
can be a result in particular quasi-Newton methods. Starting from H0 = I, Hk+1 is
calculated from Hk using a rank-one or rank-two matrix update. In particular, this allows
us to update the factorization of Hk to efficiently obtain the factorization of Hk+1 using
standard algorithms in linear algebra [5, 135]. There are many algorithms that can be used
to compute the approximation Hk+1. One of the most famous and effective algorithms is
the so-called Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [32, 79, 85, 163] where

Hk+1 = Hk −
Hkσk(Hkσk)

T

σT
k Hkσk

+
φkφ

T
k

φT
k φk

, (3.21)

with σk = wk+1 − wk and φk = ∇A(wk+1)−∇A(wk).
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3.3 NLP Problem Solution

Summary of SQP Algorithm

To summarize the SQP method, the NLP problem (3.15) is solved starting from an initial
guess w0, then each iteration k will result in

wk+1 = wk + αk∆wk, k = 0, 1, ... (3.22)

where αk ∈ (0, 1] is the step length factor and ∆wk is the search direction. The search
direction is derived from the solution of the quadratic programming (QP) sub-problem:

min
w

1

2
∆wk

THk∆wk +∇A(wk)∆wk, (3.23a)

subject to

B(wk) +∇B(wk)∆wk = 0, (3.23b)

C(wk) +∇C(wk)∆wk ≥ 0. (3.23c)

where Hk is the BFGS approximation of the Hessian of the Lagrangian function (3.10) and
can be given by:

Hk =

{

I if k = 0,

Hk−1 −
Hk−1σk−1(Hk−1σk−1)

T

σT
k−1Hk−1σk−1

+
φk−1φ

T
k−1

φT
k−1φk−1

if k > 0.
(3.24)

where I ∈ R
nw × R

nw is the identity matrix , σk = wk+1 − wk and φk = ∇A(wk+1) −
∇A(wk). Algorithm 1 [5, 135] is normally used to solve the NLP problem in many dynamic
optimization frameworks, e.g. MUSCOD [103, 106].

Algorithm 1 SQP Algorithm

Initialization: given (w0, λ0, µ0), H0 and an objective function.
Step 0: set k = 0.
Step 1: Formulate and solve the QP problem (3.23) to obtain (∆wk) and the

multipliers (∆λk,∆µk).
Step 2: Choose the step length factor αk.
Step 3: Set (wk+1, λk+1, µk+1) = (wk, λk, µk) + αk(∆wk,∆λk,∆µk).
Step 4: Stop if (wk+1, λk+1, µk+1) converges.
Step 5: Compute Hk+1.
Step 6: Set k = k + 1, go to Step 1.

3.3.3 Sparse Nonlinear Optimizer (SNOPT)

One of the most effective algorithms in the optimization community is the sparse nonlinear
optimizer (SNOPT) [82–84]. Here we summarize the main features of the SQP algorithm
used in SNOPT. The basic structure of the SQP method involves major and minor itera-
tions. The major iterations generate a sequence of iterates wk that satisfy the constraints
within both the equality B(w) and the inequality C(w) constraints and converge to a point
that satisfies the nonlinear constraints and the first-order optimality conditions. Therefore
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3 Direct Multiple Shooting

the linear constraints are decoupled from the nonlinear constraints, and both equality and
inequality constraints can be written as inequality constraints. The NLP problem (3.15)
can be rewritten as

min
wmin≤w≤wmax

A(w), (3.25a)

subject to

Dmin ≤ D(w) ≤ Dmax, (3.25b)

Fmin ≤ Fw ≤ Fmax, (3.25c)

where D(w) ∈ R
nD is used to construct the nonlinear inequality constraints (3.25b)

from the nonlinear functions in both B(w) and C(w). We assume that D(w) is smooth
and differentiable. F ∈ R

nF × R
nF is a sparse matrix and used to construct linear

inequality constraints (3.25c) from both B(w) and C(w). Note that the boundaries
Dmin, Dmax, Fmin, and Fmax are chosen carefully to convert the equality constraints in
Eq. (3.15b) into inequality constraints. SNOPT then converts the general constraints
(3.25b) and (3.25c) to equalities by introducing a vector of slack variables s ∈ R

nD+nF .
Thus, the NLP problem (3.25) will be:

min
w,s

A(w), (3.26a)

subject to

D(w)− sD = 0, (3.26b)

Fw − sF = 0, (3.26c)

with the slack variables sD ∈ R
nD , sF ∈ R

nF and s = [sTD sTF ]
T . We note that the slack

variables are introduced in both sides of Eqs. (3.25c) to (3.25b). In each major iteration
k a QP subproblem is used to generate a search direction for the next iterate wk+1. The
constraints of the subproblem are consist from the linear constraints Fw− sF = 0 and the
linearized constraints

D(wk) +∇D(wk)(w − wk)− sD = 0,

consequently, the QP subproblem can be written as [82]:

min
w,sD,sF

1

2
∆wk

THk∆wk +∇A(wk)∆wk, (3.27a)

subject to the linear and linearized equality constraints

∇D(wk)w − sD = −D(wk) +∇D(wk)wk, (3.27b)

Fw − sF = 0, (3.27c)

where ∇A(wk) and Hk are a gradient and a quadratic approximation to the Hessian of the
Lagrangian LS, respectively, where

LS(w, sD, sF , λS, µS) = A(w)− λT
S(D(w)− sD)− µT

S (Fw − sF ),

where a vector and λS ∈ R
nD and µS ∈ R

nF are Lagrangian multiplier vectors, and
∇D(wk) is a Jacobian matrix, whose elements are first derivatives of D(w) evaluated at

32



3.3 NLP Problem Solution

wk. A BFGS update is applied after each major iteration. If some of the variables enter
the Lagrangian linearly the Hessian will have some zero rows and columns. If the nonlinear
constraints appear, then only the leading nD rows and columns of the Hessian need to be
approximated. Inside each major iteration, the QP subproblem (3.27) will be also solved
iteratively [84]. In each QP iteration, which is called minor iteration, a system of linear
equations will be solved.
The main advantages of the SNOPT are

• SNOPT is suitable for large-scale linear and quadratic programming and for linearly
constrained optimization, as well as for general nonlinear programs. That means, it
is more efficient on large NLP problems if only some variables enter nonlinearly.

• SNOPT finds solutions that are locally optimal solutions that are often global solu-
tions. Ideally any nonlinear functions should be smooth with pre-provided gradients,
but discontinuities in the function gradients can often be tolerated if they are not
too close to an optimum.

• SNOPT uses a sequential quadratic programming (SQP) algorithm and the search
directions are obtained from QP subproblems that minimize a quadratic model of
the Lagrangian function subject to linearized constraints.

• SNOPT requires relatively few evaluations of the problem functions. Thus it is
especially effective if the objective or constraint functions (and their gradients) are
expensive to evaluate.

The main steps of the SNOPT algorithm and more information can be found in [83].

3.3.4 Interior Point Optimizer (IPOPT)

The interior point or barrier SQP method is also one of the most efficient algorithms
for solving large-scale NLP problems. In this thesis, we use IPOPT, a software package
developed by Wächter and Bigeler [178] based on the interior point method, to solve the
resulting NLP problem (3.9). IPOPT uses the general and typical NLP problem form that
frequently arises and is treated in the literature [18, 137, 180, 181, 183] :

min
w

A(w), (3.28a)

subject to

B(w) = 0, (3.28b)

c ≤ C(w) ≤ c, (3.28c)

where (c and c) ∈ R
nC are vectors of upper and lower bound values for the inequality

constraints C(w), respectively. Since the structure of the resulting NLP problem is already
defined in Eq. (3.9) the vectors of upper and lower bound values are c = [c0, ..., cnC−1]

T =
[0, ..., 0]T and c = [c0, ..., cnC−1]

T = [∞, ...,∞]T .
In IPOPT the inequality constraints are transformed into equality constraints. This is

done by adding a logarithmic barrier term to the objective function and non-negative slack
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3 Direct Multiple Shooting

variables (s, s) to the inequality constraints. Thus the NLP problem (3.28) is reformulated
as:

min
w

A(w)− ζl

nC−1
∑

i=0

ln(si + si), (3.29a)

subject to

B(w) = 0, (3.29b)

C(w)− s− c = 0, (3.29c)

C(w) + s− c = 0, (3.29d)

where s = [s0 ... snC−1]
T , s = [s0 ... snC−1]

T and a barrier parameter ζl > 0 is enforced to
decrease towards zero iteratively with index l. As ζl tends zero, as the iterations progress,
the solution of problem (3.29) approaches a local solution w∗. The IPOPT code applies
the Newton method to KKT conditions derived from problem (3.29). Then a following
sparse linear system needs to be solved at every iteration k [137, 172]:

















M1k 0 Sk 0 0 0

0 M2k 0 Sk 0 0
−Sk 0 0 0 ∇CT (wk) 0
0 −Sk 0 0 −∇CT (wk) 0
0 0 ∇C(wk) −∇C(wk) ∇

2
wwlζ(wk) −∇B

T (wk)
0 0 0 0 −∇B(wk) 0

































∆s
∆s
∆µ1

∆µ2

∆w
∆λ

















= −













Skµ1k − ζle
Skµ2k − ζle

−(C(wk)− sk − ck)
−(C(wk) + sk − ck)

∇A(wk)−∇B(wk)λk −∇C(wk)µ1k −∇C(wk)µ2k













, (3.30)

where λ, µ1 and µ2 are the Lagrangian multipliers, M1 = diag(µ1), M2 = diag(µ2), S =
diag(s), S = diag(s), e = [1 ... 1]T and ∇2

wwlζ(w) is the Hessian of the Lagrangian Lζ ,

Lζ(w, λ, s, s, µ1, µ2) = A(w)− λTB(w)− µT
1 (C(w)− s− c)− µT

2 (C(w) + s− c). (3.31)

By solving the linear equation (3.30) we can obtain a direction of the Newton method.
Rewriting Eq.(3.30) in a reduced form

[

Hk −∇BT (wk)
−∇B(wk) 0

] [

∆w
∆λ

]

= −

[

Γ
B(w)

]

(3.32)

we compute for ∆w and ∆λ, where Hk = ∇
2
wwLζ +∇C(wk)(S

−1
k µ1−S

−1

k µ2)∇C
T (wk), and

Γ = ∇wLζ −∇C(wk)(S
−1
k µ1−S

−1

k µ2)∇C
T (wk)+S−1

k ∇sLζ −S
−1

k ∇sLζ . From ∆w and ∆λ
we compute ∆s, ∆s, ∆µ1 and ∆µ2.

∆s = ∇CT (wk)∆w −∇µ1Lζ , ∆s = ∇CT (wk)∆w −∇µ2Lζ ,

∆µ1 = S−1
k (−µ1k ·∆s−∇sLζ), ∆µ2 = S

−1

k (−µ2k ·∆s+∇sLζ).
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3.3 NLP Problem Solution

The primal variables w, s and s and the dual variables can be updated from

wk+1 = wk + αp
k∆w, λk+1 = λk + αd

k∆λ,

sk+1 = sk + αp
k∆s, µ1k+1 = µ1k + αd

k∆µ1,

sk+1 = sk + αp
k∆s, µ2k+1 = µ2k + αd

k∆µ2,

(3.33)

where scalars αp, αd ∈ (0, 1] are step length values of the primal and the dual parameters,
respectively [171].
The IPOPT code [180] applies Algorithm 2 to solve the NLP problem. More information

on the IPOPT method can be found in [29, 39, 134, 137, 178]. The advantages of the
IPOPT method over other SQP methods can be summarized as follows:

• IPOPT uses a simple computation of search directions.

• The reduced linear system (3.30) can be solved by several approaches using state-of-
the-art linear algebra packages.

• IPOPT considers a number of alternative Merit functions to find the line search.

• Jacobian and Hessian in the IPOPT can be sparse, see (3.30).

• In the implementation of IPOPT, the program stores only nonzero terms in the sparse
matrix to save memory space.

Algorithm 2 IPOPT algorithm [179]

Step 0: Initialization

Set k = 0, define a barrier parameter ζ0 > 0 and choose a starting initial guess
(s0, s0, µ10, µ20, w0, λ0) that satisfies strict positivity conditions.

Step 1: Compute the Newton direction:

Obtain the Newton system Eq. (3.30) at the current point and solve for a Newton
direction (∆s,∆s,∆µ1,∆µ2,∆w,∆λ).

Step 2: Update variables:

Compute step length factors αp
k and αd

k in a direction of (∆s,∆s,∆w,∆λ,∆µ1,
∆µ2) and update the variables using Eq. (3.33).

Step 3: Test for convergence:

If the new point satisfies the convergence criteria, stop.
Otherwise set k = k + 1, update the barrier parameter ζl, and go to Step 1.

Table 3.1 shows a comparison between SNOPT and IPOPT. From this comparison we
conclude that if the large-scale NLP problem contains many linear constraints it is more
efficient to solve it using SNOPT. However, using multiple shooting, the nonlinear model
equations and constrains (2.2b) to (2.2k) cause nonlinear constraints (3.9b) to (3.9c), and
thus it can be solved more efficiently using IPOPT. For this reason, we use IPOPT to solve
the NLP problems.
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3 Direct Multiple Shooting

Table 3.1: Comparison between SNOPT and IPOPT.

SNOPT IPOPT

Large NLP problem Yes Yes

NLP with many linear constraints More efficient Less efficient

NLP with many nonlinear constraints Less efficient More efficient

Transformation inequalities Through slack variables Through slack variables

into equalities and barrier term

Each iteration solves QP problem System of linear equations

Convergence method KKT KKT

CPU time Less in case of many Less in case of many

linear constraints nonlinear constraints

Sparsity of Jacobian and Hessian Yes Yes

Memory reserved in the program More Less

Numerical Implementation for Solving NLP problems

All NLP solvers are based on iterative algorithms. In each iteration, all the information of
the NLP problem must be computed or approximated and then be provided to the NLP
solver. These informations are the objective function A(w) and its gradient with respect
to the vector w, ∇wA(w), the equality, B(w), and inequality, C(w), functions (see, e.g.,
Eq. (3.15)) and their Jacobians with respect to the vector w, ∇wB(w) and ∇wC(w),
respectively, and the Hessian (or its approximation) of the Lagrangian ∇2

wwLNLP .

w

( ), ( ), ( )A w B w C wÑ Ñ Ñ

w A, B, C

w

2

wwLÑ

* *,A w

Figure 3.4: Informations follow SQP iteration.

The output of each NLP solver iteration is an objective function value and near converged
variable vector w as shown in Fig. 3.4. When the vector w has converged (i.e. the KKT
conditions are satisfied) then the iteration will be quitted. The sensitivity information,
i.e. ∇wA(w), ∇wB(w) and ∇wC(w), plays an important role in each iteration and its
computation requires much CPU-time. In the available multiple shooting algorithms, e.g.
MUSCOD, it is done by the integration of DAEs by means of a DAE solver and then the
chain-rule for the sensitivity computation is used. In this work we employ the method
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3.3 NLP Problem Solution

of collocation on finite elements to carry out the DAE integration and compute these
sensitivities for each shooting as will be described in Chapter 5.

37



4 Solution of Differential Algebraic
Equations

4.1 Introduction

In Chapter 3 the nonlinear optimal control problem was transformed into a large and spares
NLP problem. The transformation of the optimal control problem into a NLP problem
implies that the equality constraints of this NLP problem guarantees the continuity prop-
erty of state trajectories. Each parameterized initial condition in each subinterval must be
equal to a terminal value of the state in the previous subinterval. To find these terminal
values we have to compute the state trajectories in each subinterval independently. In
other words, we have to solve DAEs of the system model in each subinterval.
After parameterizing controls and algebraic states, we solve the following initial value

problem (IVP):

ẋi(t) = f(xi(t), zi(t), vi, a, t), ∀t ∈ [ti, ti+1), (4.1a)

0 = g(xi(t), zi(t), vi, a, t), (4.1b)

xi(ti) = hx
i i = 0, 1, ..., N − 1. (4.1c)

In the the following, some general approaches for the solution of DAEs are briefly sum-
marized. Specifically, available multiple shooting algorithms for the solution of IVP (4.1)
are given attention. In the existing multiple-shooting algorithms like MUSCOD [66, 103],
typical Euler and Runge-Kutta methods are used to solve the IVP. In this work, we use
collocation on finite elements (CFE) to solve the ODE integration problem. In addition,
sensitivities that are needed in each shoot will be also computed using the same method.
The accuracy and the speed of this new approach will be compared with other DAE solvers.
In general and for simplicity of presentation, it is assumed that the DAE (4.1) can be

rewritten in an explicit, or a normal form

ẏi = f(yi(t), t), (4.2)

where yi(t) ∈ R
ny . To rewrite the IVP (4.1) in the form of (4.2), we consider the following

reformulation. For this, we differentiate the constraint equation (4.1b) with respect to t
to get

ẋi(t) = f(xi(t), zi(t), vi, a, t), (4.3a)

∇xi
gẋi +∇zigżi = −ġ(xi(t), zi(t), vi, a, t), (4.3b)

xi(ti) = hx
i . (4.3c)

If∇gzi is nonsingular, the system (4.3) is an explicit ODE then it is called index one system.
Then, the vectors xi(t) and zi(t) can be merged into one differentiable vector yi(t). If this is
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4.1 Introduction

not the case, using algebraic manipulations and coordinate transformations, the problem
(4.3) can be written in the form of (4.1) with possibly different x and z vectors. We
differentiate the resulting constraint equations again. If an explicit DAE results, we say
that the original problem has index two. If the new system is not an explicit DAE, we
repeat the process again. This process is finite and is repeated until explicit differential
equations are obtained corresponding to the variables z. The number of differentiation
steps required is known as the index of the DAE [30].
After coupling the state vectors x(t) and z(t) into a single differentiable vector, a piece-

wise polynomial function is used to parameterize the control ui(t) and piecewise constant
functions for the parameters a, for a consistent representation (it may not be necessary
if we consider a given u(t) and a). These can be simply treated as additional polynomial
states. Therefore, we can define a new state vector yi(t) ∈ R

(nx+nu+nz+na) so that:








ẋi(t)
żi(t)
u̇i(t)
ȧi(t)









=









f(xi(t), zi(t), ui, a, t)
ĝ(xi(t), zi(t), vi, a, t)

ṗui (t)
0









=⇒

(

ẏi(t) = f̂(yi(t), t)
yi(ti) = [hx

i hz
i vi a(t0)]

T

)

(4.4)

where t ∈ [ti, ti+1], p
(.)
i denotes a piecewise polynomial function representation and ĝ is a

reformulated function which is derived from the function g (e.g. like the implicit equation
(4.3b)). Since, in general, it is difficult to find an analytic solution of the IVP (4.4), the
solution is usually done numerically. Therefore, many numerical algorithms have been
developed for the solution of DAEs [8]. The effectiveness of these algorithms depends on
the type of discretization strategy used in the algorithms.
For sake of convenience, on each interval [ti, ti+1], i = 0, ..., N − 1 the following typical

ODE

ẏi(t) = f(yi(t), t), t ∈ [ti, ti+1],

yi(ti0) = yi0,
(4.5)

is considered, where ti0 = ti and yi, yi0 ∈ R
ny for i = 0, ..., N − 1.

Definition 4.1 (ODE Discretiztion):
Given a constant M > 1, the time interval [ti, ti+1] is divided into M equal subintervals
[tik, ti(k+1)], k = 0, ...,M such that

ti = ti0 < ti1 < ... < tiM = t(i+1)0. (4.6)

The consideration of the ODE (4.5) at the time points ti, ti0, ti1, ..., tiM is called as a sub-
discretization of the ODE on the interval [ti, ti+1].

The satisfaction of the Lipschitz condition is frequently required for error estimation and
convergence statements of ODE discretization methods. And it is defined as:

Definition 4.2 (Lipschitz Condition and Lipschitz Constant):
A function y(t) is said to satisfy the Lipschitz condition at a point ta if there is a constant
L > 0 such that

|y(t)− y(ta)| ≤ L|t− ta|, (4.7)

for all t in some neighborhood of ta. The constant L is called the Lipschitz constant for
y(t) in a neighborhood of ta.
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4 Solution of Differential Algebraic Equations

In the following sections some well-known ODE discretization strategies are briefly sum-
marized.

4.2 Euler Method

One of the simplest approaches for the numerical integration of ODEs is the Euler method
which is classified as a one-step method and computes a discrete sequence of y at the
arguments tik, k = 0, 1...,M, and i = 0, 1, ..., N, (see Definition 4.1), using a difference
equation [8, 9, 157, 167]

yi(k+1) = yik + ξf(yik, tik), (4.8a)

or
yi(k+1) = yik + ξf(yi(k+1), ti(k+1)), (4.8b)

where ξ = ti(k+1)− tik = (ti+1− ti)/M . Here, Eqs. (4.8a) and (4.8b) are called explicit and
implicit Euler equations, respectively. If a fast ODE solution is needed, a small number
M should be used but this causes an inaccurate approximation of yi(t).
Taking the first two terms of the Taylor series expansion of yi(ti(k+1)) = yi(tk + ξ), it

follows that

yi(tik + ξ) = y(tik) + ξf(tik, y(tik)) +O(ξ2), (4.9)

where values yik and yi(k+1) are numerical approximations of yi(tik) and yi(tik + ξ), respec-
tively. The expression O(ξ2) represents the error term in the Euler method.
In general, the explicit one-step method can be written as

yi(k+1) = yik + ξΦ(tik, yik; ξ),

yi(ti0) = yi0,

i = 0, 1, ..., N − 1, k = 0, 1, ...,M − 1.

(4.10)

Definition 4.3 (Global Error [30]):
The global error from the approximation of the solution of yi(t) in Eq. (4.5) is defined by

eik = yi(tik)− yik, i = 0, 1, ..., N − 1, k = 0, 1, ...,M. (4.11)

Definition 4.4 (Truncation Error):
If a general one step method is used to approximate the function yi(t) in Eq. (4.5), then
the truncation error of the one step method, Tik, i = 0, 1, ..., N, k = 0, 1, ...,M, is defined
by [92]

Eik =
yi(ti(k+1))− yi(tik)

ξ
− Φ(tik, yik; ξ). (4.12)

Definition 4.5 (Truncation Error of Euler method):
If the Euler method is used to approximate yi(t) in Eq. (4.5) using a step size ξ ∈
[0, ti+1 − ti], then the truncation error is given by:

Eik = O(ξ) (4.13)

This means that the truncation error of Eular method is order one.
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4.3 Runge-Kutta Methods

Theorem 4.1 (Global Error in Terms of the Truncation Error):
If the function f(y(t), t), t ∈ [ti, ti+1]; i = 0, 1..., N, is continuous of its arguments, Φ in
Eq. (4.10) satisfies a Lipschitz condition with respect to y that is, there exists a positive
constant LΦ such that, for 0 ≤ ξ ≤ ξ0 and for all (t, α) and (t, β) in rectangular

D = {(t, y) : t0 ≤ t ≤ EM , |y − y0| ≤ C}

we have that

|Φ(t, y; Φ)− Φ(t, β; ξ)| ≤ LΦ|α− β|.

Then assuming that |yk − y0| ≤ C, k = 1, 2...,M, it follows that

|ek| ≤
E

LΦ
(eLΦ(tk−t0) − 1), k = 0, 1, ...,M. (4.14)

where E = max0≤k≤M−1 |Ek|.

Proof. The proof of Theorem 4.1 can be found in [92] or [167]. This Theorem enables to
estimate the global error based on the truncation error which can be computed.

4.3 Runge-Kutta Methods

Runge-Kutta (RK) methods are also considered as one-step methods, but have a high
order truncation error of the Taylor series. Eq. (4.10) characterizes the general form of
the one-step method. In simple Euler methods, only a first order of accuracy is obtained
and we need to evaluate the function f only at one time point at (tik, yik). The objective
of RK methods is to achieve higher accuracy by abdicating from the efficiency of Euler’s
method through re-evaluating the value of f at the intermediate points between tik and
ti(k+1).

One of the most frequently used RK methods is known as a classical fourth-order method
(RK4) which is characterized by

yi(k+1) = yik +
1

6
ξ(κ1 + 2κ2 + 2κ3 + κ4). (4.15)

where the coefficients

κ1 = f(tik, yik)

κ2 = f(tik +
1

2
ξ, yik +

1

2
ξκ1)

κ3 = f(tik +
1

2
ξ, yik +

1

2
ξκ2)

κ4 = f(tik + ξ, yik + ξκ3)

(4.16)

where κ2 and κ3 represent approximations to the derivative ẏ at points on the solution
curve, intermediate between tik and ti(k+1). For more detail on RK methods you can refer
to [8, 9, 30, 34, 92, 157].
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4 Solution of Differential Algebraic Equations

Definition 4.6 (Truncation Error of RK Methods):
If a RK method of order ρ is used to approximate yi(t) in Eq. (4.5) using a step size
ξ ∈ [0, ti+1 − ti], this RK method has an order of accuracy ρ and the truncation error is
given by:

Tik = O(ξρ) (4.17)

In MUSCOD [103, 106] a Runge-Kutta method1 is used to integrate the DAEs. More-
over, since RK methods divide the time subinterval (i.e. shooting time) into a finite number
of small subintervals as shown in Fig. 4.1.

t0 ti0 tiM=ti+1ti

y(ti)=yi0

yiM=y(ti+1)y*(t)

y(t)

yi(M-1)

Figure 4.1: Integration using Runge-Kutta.

In the following sections we discuss the error and the efficiency of RK methods. We
present a more accurate and well-known method to solve the DAEs which called collocation
on finite elements. This higher accuracy leads to a high accuracy of state trajectories and
their sensitivities. The sensitivity of terminal point of each shooting with respect to the
initial point of the shooting in MUSCOD (i.e. ∂yi+1

∂yi
) can be computed using the chain-rule

∂yi+1

∂yi
=

∂yiM
∂yi0

=
∂yiM

∂yi(M−1)

×
∂yi(M−1)

∂yi(M−2)

× ...×
∂yi1
∂yi0

.

The RK method which is used in MUSCOD will be compared with the collocation method
which will be used in this thesis to solve the state variables and their sensitivities.

4.4 Collocation on Finite Elements

A high precision approximation of yi(t) will be achieved using a collocation on finite ele-
ments (CFE) method [7]. In this method the time interval [ti, ti+1] is considered as one
element and the function yi(t) is approximated by a polynomial. The approximating poly-
nomial in each element has to be satisfied exactly at a finite number of intermediate points
which are called collocation points. That means the CFE method approximates a DAE
solution in a time interval using an interpolating function with a number of intermediate

1The of RK method depends on the version of this software.
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4.4 Collocation on Finite Elements

points. The derivative of this interpolating function should be equal to the derivative of
the differential state yi(t) at the collocation points. As a result, we will obtain a system of
nonlinear equations with anonymous variables of yi(t) at collocation points. We solve this
system of nonlinear equations using one of the roots-finding techniques such as a Newton-
Raphson method. To sketch the CFE method, the following definitions and theorems are
needed.

Definition 4.7 (Time Segmentation):
The time interval [ti, ti+1] is divided or segmented into M subintervals ’segments’
[tik, ti(k+1)], therefore, each time point has two indices (i and k) such that

ti = ti0 < ti1 < ... < tiM = t(i+1)0 (4.18)

where M is the number of collocation points and k = 1, ...,M . Fig 4.2 shows the time
segmentation of the time horizon. Each interval [ti, ti+1] is called a finite element with three
collocation points, each finite element has M collocation points and the total number of
mesh points in the time horizon are (N + 1).

1 ( 1)0i it t- -= ( 1) 0i M it t- = ( 1)N M Nt t- =

itD
Finite element

Collocation points (M)

Mesh points (N+1)

Figure 4.2: Time segmentation using collocation on finite elements.

We define the beginning of each finite element to be equal to the last collocation point
of the previous element, that means

ti0 = t(i−1)M , i = 1, ...N,

t00 = t0,

t(N−1)M = tN = tf .

Theorem 4.2 (Weierstrass Approximation Theorem):
Suppose that y(t) is continuous on [ti, ti+1]. For each e > 0, there exists a polynomial P (t),
with a property

|y(t)− P (t)| < e, ∀t ∈ [ti, ti+1]

Proof. The proof of Theorem 4.2 can be found in most elementary texts on numerical
analysis such as [14].
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4 Solution of Differential Algebraic Equations

Theorem 4.3 (Orthogonal Function Set):
Suppose a set S = {p0(t), p1(t), ..., pM(t)} has linearly independent functions pk(t) on
[ti0, tiM ], ω is a weight function such that ω(t) 6= 0, t ∈ [ti0, tiM ]. A least-square approxi-
mation of the function y(t) on [ti0, tiM ] is given by

P (t) =
M
∑

k=0

yijpk(t)

if the set S is an orthogonal set such as

tiM
∫

ti0

ω(t)pj(t)pk(t) =

{

0 if k 6= k,

αk > 0 if k = k.
(4.19)

Proof. The proof of Theorem 4.3 can be found in [34].

Theorem 4.4 (Interpolating Lagrange Polynomial):
If a function y(t), t ∈ [ti0, tiM ] has M + 1 distinct values at the numbers, ti0, ti1, ..., tiM ,
then a unique polynomial P (t), t ∈ [ti0, tiM ] of degree M exists with

y(tik) = P (tik), for each k = 0, 1, ....M.

where this polynomial is given by

P (t) =
M
∑

j=0

yi(tij) · Tij(t). (4.20)

where Tij is a Lagrange polynomial for each j = 0, 1, ...,M,

Tij(t) =

M
∏

k=0
k 6=j

t− tik
tij − tik

(4.21)

here indices j = 0, 1, ...,M denote the Lagrange polynomials and k = 0, 1, ...,M denote
the collocation points in each finite element [ti0, tiM ].
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4.4 Collocation on Finite Elements

y(i-1)1

y(i-1)2
yi2

yi1

y(i+1)2

y(i+1)1

y(i-1)0 y(i-1)M=yi0 yiM=y(i+1)0

ti-1 ti ti+1

y

t0 tf

Figure 4.3: Principle of collocation on finite elements.

We use Theorem 4.4 to approximate the solution of the IVP (4.5). Fig. 4.3 shows
the principle of collocation on 3 elements, where the number of collocation points in one
element is M = 3. We assume that the number of finite elements is equal to the number
of shoots for discretizing the dynamic system over the time horizon. An element means
a time interval in which both the collocation and shooting will be carried out for the
discretization.

Theorem 4.5 (Error Term of the Interpolating Lagrange Polynomial):
Suppose a function y(t) is M +1 times differentiable and has the values at the collocation
points, ti0, ti1, ..., tiM , then for each t ∈ [ti0, tiM ], there is ξ(t) ∈ [ti0, tiM ] such as

y(t) = P (t) +
f (M+1)(ξ(t))

(M + 1)!

M
∏

k=0

(t− tik) (4.22)

where P (t) is the interpolating polynomial given in Eq. (4.20) in Theorem 4.4. The error
formula of the Lagrangian polynomial of degree M is given by

e(t) =
f (M+1)(ξ(t))

(M + 1)!

M
∏

k=0

(t− tik) (4.23)

Proof. The proof of Theorem 4.5 can be found in [9, 34].

To compute the approximating function P (t) we have to determine the Lagrange poly-
nomial Tij and to solve the state values at the collocation points tij. We take the roots of
Legendre polynomials as collocation points [9, 34, 77, 141]. In addition, to determine the
values yi(tij) from the IVP (4.5), we need to rewrite Eq. (4.20) and combine Eq. (4.5)
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4 Solution of Differential Algebraic Equations

with Eq. (4.20), then we get

(

M
∑

j=1

Ṫij(t).yi(tij)) + Ṫi0(t).yi(ti0)− f(yi(t), t) = 0 (4.24)

Substituting the M collocation points in Eq. (4.24) and writing it in a matrix form leads
to:

F (Yik, Yi0) = ẆikYik + diag
(

Ẇi0

)

Yi0 − fi(yi(tik)) = 0 (4.25)

where Wik =







Ti1(ti1) · · · TiM(ti1)
...

. . .
...

Ti1(tiM) · · · TiM (tiM)






, Wi0 =







Ti1(ti0)
...

TiM(ti0)






, Yik =

[

yi(ti1), · · · , yi(tiM)
]T

and Yi0 =
[

yi(ti0), · · · , yi(t0M)
]T
∈ R

M . We solve now the nonlinear Eq. (4.25) for
yi(ti1), · · · , yi(tiM), by using the Newton-Raphson methods as described below.

Newton-Raphson Method

The Newton-Raphson method is one of numerical methods to solve a general nonlinear
algebraic equation system:

F (Y ) = 0 (4.26)

where F : RnY → R
nY . Newton-Rapshon method uses a derivative based method and tries

to improve an initial guess for a solution vector iteratively using a linearization procedure.
We use an index l to denote a Newton-Raphson iteration. If there exists a present initial
guess, Y l = Y 0, for the solution of Eq. (4.26), the function F is written for Y as a Taylor
series expansion about Y l as follows:

F (Y l) +
∂F (Y l)

∂Y
(Y l+1 − Y l) ∼= 0 (4.27)

where ∂F (Y l)
∂Y

∈ R
nY ×nY is a Jacobian and can be evaluated analytically by using first

patrials for each entry. The Newton-Rhaphson method will converge and quit the iterations
if the following two criterions are satisfied

|Y l − Y l−1| ≤ ε1

|F l(Y l)| ≤ ε2
(4.28)

where ε1 and ε2 are Newton-Raphson method tolerances be determined by the user. Sys-
tems of nonlinear equations may have local solutions and it may fail, thus the Newton-
Raphson method may converge to different solutions depending on an initial guess. In
that case, it is suggested to use physically reasonable initial guess. A Newton-Raphson
Algorithm 3 is used to solve a system of nonlinear equations.
Note that the inverse of the Jacobian matrix information is needed in each iteration to

compute the difference ∆Y = [∂F (Y )
∂Y

]−1F (Y ), which is almost impossible since it is time-
consuming for large-scale systems. Thus, either direct direct factorization-based techniques
or iterative linear algebra techniques ar used to solve such large systems of linear equations
[55, 150, 173].
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4.4 Collocation on Finite Elements

Algorithm 3 Newton-Raphson algorithm

Input: Nonlinear function F (Y ), Jacobian [∂F (Y )
∂Y

], initial guess Y 0, tolerances (ε1 and
ε2), maximum number of iterations .
Output: Approximate solution Y .
Step 1: Set l = 1.
Step 2: If l is less that the number of iterations, do Steps 3-6.

Step 3: Set Y = Y 0 − [∂F (Y )
∂Y

]−1F (Y )
Step 4: If |Y − Y 0| < ε1 and |F (Y )| < ε2
Output Y .
Stop

Step 5: Set l = l + 1.
Step 6: Set Y 0 = Y .

Else :
Stop.

Theorem 4.6 (Truncation Error of CFE using Legendre Roots):
If the roots of the shifted Legendre polynomials are considered as collocation points, tik, i =
0, 1..., N − 1, k = 1, ...,M in Eq. (4.21), then the truncation error of the approximated
solution is O(ξ2M), where ξ is the step size between two collocation points and M is the
total number of the collocation points which is equivalent to the order of the Legendre
polynomial.

Proof. The proof of Theorem 4.6 can be found in [53].

To investigate the result of Theorem 4.6 for solving the IVP (4.5), the step size ξ must
be less than one. This can be guaranteed by transforming the time interval from [t0, tf ]
into [0, 1] if tf − t0 > 1. Algorithm 4, collocation on finite elements (CFE), is considered
to solve the IVP (4.5).

When we use a piecewise constant parametrization for the control vector u(t) and since
the parameter vector a is time invariant, there is no need to define M collocation points for
the control and the parameter vectors in each finite element. Furthermore, the algebraic
state z(t) can be dealt without reformulation into differential state as in Eq. (4.4) since all
states (algebraic and differential) are approximated with the Lagrange polynomials when
the collocation method is used. Thus we can now decouple the state variables (x(t) and
z(t)), the control variables ui(t) and parameters a from each other, i.e. we return to IVP:

ẋi(t) = f(xi(t), zi(t), vi, a, t), ∀t ∈ [ti, ti+1),

0 = g(xi(t), zi(t), vi, a, t),

xi(ti) = hx
i i = 0, 1, ..., N − 1.
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4 Solution of Differential Algebraic Equations

Algorithm 4 Collocation on finite elements

Input:Time interval [t0, tf ], ordinary differential equation ẏ(t) = f(y, t), Jacobian ma-
trix [∂ẏ/∂y], initial condition y(t) = y0, total number of elements N , total number of the
collocation points M , tolerances of Newton-Raphson (ε1 and ε2), maximum number of
the Newton-Raphson iterations.
Output: Approximate solution P (t) ∼= y(t).
Step 1: If tf − t0 > 1

Step 2: Transform the time interval from [t0, tf ] into [0, 1].
Step 3: Use the time segmentation method (Definition 4.7) according the roots of shifted
Legendre polynomials to construct the sequence {tik} where i = 0, 1..., N and k =
0, 1, ...,M .
Step 4: Initialize Y00 = y0, P (t) = 0.
Step 5: For i = 0 : N − 1

Step 6: Define collocation points (tik, yik).
Step 7: Construct Eq. (4.25).
Step 8: Use the Jacobian matrix [∂ẏ

∂y
] to find the matrix [ ∂Fi

∂Yik
].

Step 9: Solve Fi(Yik) = 0 using Algorithm 3.

Step 10: Put P (t) = P (t) +
∑M

j=0(
M
∏

k=0
k 6=j

t−tik
tij−tik

) · yi(tij).

Step 11: Put Y(i+1)0 = YiM

Step 12: Return the transformation [t0, tf ]← [0, 1]
Step 12: Output y(t) ∼= P (t).
Stop.

Therefore the matrix Eq. (4.25) can be rewritten as:

F x
i (Xik, Zik) = Ẇik(t)Xik + diag

(

Ẇi0

)

Xi0 − fi(xi(tik), zi(tik), vi, a) = 0 (4.29a)

F z
i (Xik, Zik) = g(Xik, Xi0, Zik, Zi0, vi, a) = 0 (4.29b)

where Wik =







Ti1(ti1) · · · TiM(ti1)
...

. . .
...

Ti1(tiM ) · · · TiM(tiM)






, Wi0 =







Ti1(ti0)
...

TiM(ti0)






, Xik =

[

xi(ti1), · · · , xi(tiM)
]T
,

Xi0 =
[

xi(ti0), · · · , xi(ti0)
]T

=
[

hx
i , · · · , h

x
i

]T
∈ R

M , Zik =
[

zi(ti1), · · · , zi(tiM )
]T
, Zi0 =

[

zi(ti0), · · · , zi(ti0)
]T

=
[

hz
i , · · · , h

z
i

]T
∈ R

M ,
F x
i : R

M × R
M → R

M and F z
i : R

M × R
M → R

M . Therefore, Fi(Xik, Zik) =
[F x

i
T (Xik, Zik) F z

i
T (Xik, Zik)]

T = 0, where Fi : R
2M → R

2M . Then the differential and
algebraic states will be

xi(t) =Wik(t)Xik +Wi0IMXi0,

zi(t) =Wik(t)Zik +Wi0IMZi0,

respectively. Accordingly, Algorithm 5 is needed to solve the discretized nonlinear equa-
tions in the resulted NLP from the multiple shooting approach when the piecewise constant
parametrization is used for the control and parameter vectors.
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Algorithm 5 Collocation on finite elements using a piece-wise constant parametrization
for controls and the parameters

Input:Time interval [t0, tf ], DAEs , algebraic state equation g(x, z, u, a, t) = 0, Jaco-
bian matrices [∂ẋ

∂x
], [∂ẋ

∂z
], [ ∂g

∂x
] and [∂g

∂z
], initial condition x(t) = x0, piecewise constant

parametrization for u and a, number of elements N , number of the collocation points
M , tolerances of Newton-Raphson (ε1 and ε2) and maximum number of the Newton-
Raphson iterations.
Output: Approximate solutions Px(t) ∼= x(t) and Pz(t) ∼= z(t).
Step 1: If tf − t0 > 1

Step 2: Transform the time interval from [t0, tf ] into [0, 1].
Step 3: Use the time segmentation method (Definition 4.7) according the roots of shifted
Legendre polynomials to construct the sequence {tik} where i = 0, 1..., N and k =
0, 1, ...,M .
Step 4: Initialize X00 = x0, Px(t) = 0 and Pz(t) = 0.
Step 5: For i = 0 : N − 1

Step 6: Define collocation points (tik, xik) and (tik, zik).
Step 7: Construct the Eq. (4.29).
Step 8: Use the Jacobian matrices [∂ẋ

∂x
], [∂ẋ

∂z
], [ ∂g

∂x
] and [∂g

∂z
] to find the Jacobian

matrices [ ∂Fi

∂Xik
], [ ∂Fi

∂Zik
], [ ∂Fi

∂Xik
] and [ ∂Fi

∂Zik
].

Step 9: Solve Fi(Xik, Zik) = 0 using Algorithm 3.

Step 10: Put Px(t) = Px(t) +
M
∑

j=0

(
M
∏

k=0
k 6=j

t−tik
tij−tik

) · xi(tij) and

Pz(t) = Pz(t) +
M
∑

j=0

(
M
∏

k=0
k 6=j

t−tik
tij−tik

) · zi(tij).

Step 11: Put X(i+1)0 = XiM , Z(i+1)0 = ZiM .
Step 12: Return the transformation [t0, tf ]← [0, 1]
Step 13: Output: x(t) ∼= Px(t) and z(t) ∼= Pz(t).
Stop.

Since x ∈ R
nx and z ∈ R

nz , the dimensions of the variables are Xik ∈ R
Mnx , Zik ∈ R

Mnz

and Zi0 ∈ R
M and the function Fi(Xik, Zik) is defined as Fi : R

Mnx+Mnz → R
Mnx+Mnz .

4.5 Error Analysis of ODE Solver

An accurate solution of ODE for yi(t), i = 0, 1, , N − 1, will provide an accurate solution

of the trajectory y(t) and accurate sensitivities ∂x(ti+1)
∂xi

, ∂x(ti+1)
∂zi

,∂x(ti+1)
∂ui

and ∂x(ti+1)
∂a

, respec-
tively. In this section, the accuracy of the ODE solution with two different methods will
be analyzed. It can be concluded that a more accurate ODE solution will be obtained by
using the CFE method.
For the error analysis the interval ∆ti is selected, as shown in Fig. 4.4. If y(t), t ∈

[ti, ti+1] is solved using constant controls u(ti) and parameters ai, the trajectory x∗(t) will
approximate x(t) with an error bound (tolerance) e(t).
Fig. 4.5 shows the integration using the explicit RK method in one time interval. This

method is used for the integration of the ODEs in the existing multiple shooting codes
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t0 ti

x(ti)

x(ti+1)

x*(t)

x(t)

x(t)

e(t)

eNRM

ti=ti0 ti+1=tiM

Figure 4.4: Error bound using piecewise constant control.

t0 ti=ti0 tiM=ti+1
�

ti

x(ti)

x(ti+1)

u(ti)

x*(t)

��

x(t)

u(t)

Figure 4.5: State solution within one time interval in MUSCOD.

like MUSCOD. Each subinterval ∆ti is divided into M equal subintervals where ti = ti0 <
ti1 < ... < tiM = ti+1 and ∆σ = ti(j+1) − tij, j = 0, 1...,M, i = 0, 1, ..., N − 1. When ∆σ
is chosen too small, i.e. even the value of M and/or N are large, the local truncation error
e(t) becomes small, but the computation will be expensive [103].

The solution formulation obtained by RK methods has local truncation error which
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4.5 Error Analysis of ODE Solver

was addressed in its classical version by Stetter [165] and Zadunaisky [185].The idea of
this formulation becomes the basis for the acceleration technique known as iterated defect
correction [80, 98]. The classical error estimate due to Stetter works satisfactorily at the
mesh points (i.e., when the solution values at the grid points are disregarded) but fails to
be asymptotically correct for finer grids including grid points.

The local truncation error at the points (ti(k+1), y(ti(k+1))) of the R-th order RK solver as
shown in Definition 4.6 is given by O(ξM+1) [11, 35, 155, 159]. However, if a fast solution
is needed, i.e. ∆σ is large or a small number of sub-subintervals M , we have a significant
truncation error at the points (tik, y(tik)), k = 0, 1, ...,M, tik ∈ [ti, ti+1]. This error will
be increased at points (t, y∗(t)), t ∈ [δk, δk+1] due to the RK method itself. In addition,

the error in the sensitivities ∂x(ti+1)
∂xi

, ∂x(ti+1)
∂zi

,∂x(ti+1)
∂ui

and ∂x(ti+1)
∂a

will also increase. For
this reason, a small ∆σ is always chosen in MUSCOD [103] to guarantee high accuracy
integration.

The original idea of the defect correction was presented by Zadunaisky [185] is that ”when
the numerical integration of the given system ẏ = f(y, t) generates the approximate values
then the integration interpolates sets of M +1 successive componentwise by polynomials of
degree M . The asymptotic orders of the iteration steps turned out to be O(ξ2M), O(ξ3M), ...,
where M denotes the order of the method, the global error of which is estimated in the single
iteration steps” [1, 10].

Furthermore, when the CFE method is used to approximate the trajectory vector y(t),
the subinterval ∆ti will have M collocation points as shown in Fig. 4.3, and the system
of algebraic equations Eq. (4.25) will be solved. The solution of ODE has an error due
to solving the nonlinear algebraic system, εNRM , at the points (δk, y

∗(δk)) as shown in Fig
4.41.

Using a larger number of M leads to a more accurate trajectory y(t) and makes the size
of the nonlinear algebraic equation system larger, thus the solution of this resulted system
will take more computation time. In addition, the location of the collocation points will
affect the error function e(t) [1, 35, 50]. Several schemes were presented in the literature in
order to compromise between the error, the number and placement of collocation points.
Cuthrell and Bigler [50, 52] imposed an error minimization strategy to obtain accurate
subinterval solution by locating the collocation points on the subinterval over which the
error will be minimized and leads to accurate solution of the ODE. Russell and Christian
[149] presented a strategy for the development of the subinterval placement to choose a
’good’ distribution of the subintervals. Ascher et al [7] used iterative extrapolation to limit
the approximation error. DeBoor [54] presented a method to select the subintervals in outer
loop and solve the collocation equation, then repositioning the subintervals until obtaining
a better approximation. A far reaching result was proved by deBoor and Swartz [53].
They considered high degree polynomials and used the zeros of the Legendre polynomials
[77, 141] and proved that the method of CFE is equivalent to the fully-implicit RK method
under certain circumstances. First the collocation is done at the Gaussian roots and second
the elements of Butcher’s block array are specified in certain way for the RK method and
the error in the function and in its derivative at the end of each elements is O(ξ2M). In
addition, the method converges since the error can be made as small as desired by adding
more elements. For more information you may refer to [1, 51].

1The maximum tolerance of the Newton method of all case studies in this work will be controlled within
the square root of the machine precision [11].
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4 Solution of Differential Algebraic Equations

Based on above results, if the IVP (4.5) is solved by dividing the interval [ti, ti+1] into
M subintervals by using RK and CFE methods, the accuracy in each case will be O(ξρ+1)
and O(ξ2M), respectively. Accordingly, an additional accuracy will be obtained by CFE if
2M > ρ+ 1 and the same step size (ξ < 1) is selected.

Example 4.1 (A Simple Demonstrative IVP ):
Here, a demonstrative example that shows the high accuracy of CFE and compares the
integrator error with RK is considered:

ż(z, t) = z, t ∈ [0 1]

z(0) = 1
(4.30)

The analytical solution for this IVP is z(t) = exp(t). We use CFE and the RK method
(order 4) to compute the numerical solution of this problem. For comparison, first, we
select the mesh grid M = 3 for t ∈ [0 1]. The maximum local truncation error at the mesh
points using CFE and RK4 are 1×10−9 and 1.23×10−3, respectively, while the maximum
global truncation error using both methods are 4.2× 10−3 and 3.204× 10−2, respectively.
The CPU time2 of this example using CFE was 19µseconds. The problem was solved by
the RK method with the same accuracy and the CPU time was 28µsecond.

2The simulation is done using ”Pentium 4”, 3 GHz and 1G Byte RAM.
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5 A Combined Multiple
Shooting-Collocation Method

5.1 Introduction

In this Chapter we will introduce the main algorithm of this thesis which is a combination
of multiple shooting and CFE. In Section 3.1 the optimal control problem Eq. (2.2) is
converted into a finite dimensional NLP problem (3.9) using the direct multiple shooting
approach. To solve the resulted IVPs in this NLP problem, we use collocation on finite
elements as addressed in Section 4.4. In addition, we compute the gradients (sensitives)
information for the NLP solution as shown in Fig. 3.4 by taking a Taylor expansion of
the functions of the state variables. In Section 5.2 an elementary theory to drive the main
algorithm will be presented.

5.2 ODE Solution and Sensitives

To solve the resulted NLP problem described in Section 3.2 we need to compute all of
the information needed for each SQP iteration as described in Fig 3.4. To avoid the
computation of integrals we redefine the Lagrange term of the objective function as an
additional state equation. That means the objective function will be the summation of
the Mayer term and the terminal value of the additional state. Therefore the nonlinear
optimal control problem can be rewritten as:

min
u(t),x(t),z(t),a

J = E(x(tf ), z(tf ), a, tf) + x(Lag)(tf ). (5.1a)

subject to

ẋ(Mod)(t) = f(x(t), u(t), z(t), a, t), t ∈ [t0, tf ], (5.1b)

ẋ(Lag)(t) = L(x(t), z(t), u(t), a, t), t ∈ [t0, tf ], (5.1c)

g(x(t), u(t), z(t), a, t) = 0, t ∈ [t0, tf ], (5.1d)

s(x(t), z(t), u(t), a, t) ≥ 0, t ∈ [t0, tf ], (5.1e)

x(Mod)(t0) = x
(Mod)
0 , (5.1f)

x(Lag)(t0) = x
(Lag)
0 = 0, (5.1g)

xT
0 = [x(Mod)T

0 x(Lag)T

0 ], (5.1h)

re(x(tf ), z(tf ), a, tf) = 0, (5.1i)

ri(x(tf ), z(tf ), a, tf) ≥ 0, (5.1j)
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5 A Combined Multiple Shooting-Collocation Method

xmin ≤ x(t) ≤ xmax, (5.1k)

zmin ≤ z(t) ≤ zmax, (5.1l)

umin ≤ u(t) ≤ umax, (5.1m)

amin ≤ a ≤ amax. (5.1n)

where x(Mod)(t) ∈ R
nx , x(Lag)(t) ∈ R, are the state vector and the derivative of the La-

grangian term of the original objective function, respectively, x(Mod)(t0) ∈ R
nx is an initial

state vector, x(Lag)(t0) ∈ R is the initial value of the Lagrange term and normally is equal

to zero, x(t) = [x(Mod)T (t) x(Lag)T (t)]T ∈ R
nx+1, z(t) ∈ R

nz , u(t) ∈ R
nu and a ∈ R

na . The
optimal control problem (5.1) is discretized using the multiple shooting approach stated in
Chapter 3, therefore we yield the NLP problem of form (3.9). In addition, in the equality
constraints hx

i+1 − xi(h
x
i , h

z
i , vi, a, ti+1) = 0 and g(hx

i , h
z
i , vi, a, ti) = 0 the information hx

i

and hz
i is needed which will be provided by solving the IVPs (4.4). Now in the IVP (4.4)

the dimension of the vector yi(t) ∈ R
(nx+nu+nz+na+1).

5.2.1 Sensitivity Calculations

Required by the NLP solver, we evaluate the sensitivities ∂B(w)
∂w

by calculating the Jacobian
∂yi(ti+1)
∂yi(ti)

= ∂yi(tiM )
∂yi(ti0)

by the first order Taylor-expansion of Eq. (4.24)

Ẇik

∂Yik

∂Yi0

+ diag
(

Ẇi0

)

−
∂fi(yi(tik))

∂Yi0

= 0 (5.2)

where ∂Yik

∂Yi0
and ∂fi(yi(tik))

∂Yi0
are Jacobian matrices with dimension M ×M . In addition, the

last point of an element is used as the initial point to the next element, i.e. tiM = t(i+1)0.

Defining ∂Yik

∂Yi0
= Ψik, we have

ẆikΨik + diag
(

Ẇi0

)

−
∂fi(yi(tik))

∂Yik

Ψik = 0 (5.3)

or equivalently

Ψik = −[Ẇik −
∂fi(yi(tik))

∂Yik

]−1diag
(

Ẇi0

)

(5.4)

In fact, Eq. (5.3) is a linear equation system and thus can be solved by a LU factorization
using the forward and backward substitution [86]. The dimension of the Jacobian Ψik is
(Mny)× (Mny). From the computed value ΨiM the Jacobians can be gained as

∂yi(tiM)

∂yi(ti0)
=



















IM 0 0 0 0 0 0 0 0 0 · · · 0
Ψ0M IM 0 0 0 0 0 0 0 · · · 0
0 0 Ψ1M 0 0 0 0 0 0 · · · 0
0 0 0 0 Ψ2M IM 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
. . . 0

0 0 0 0 0 0 0 0 0 · · · Ψ(N−1)M IM



















, (5.5)

where IM is a unit matrix. For the piecewise constant form of the control and the parameter
variables, there is no need to define M collocation points for the controls and parameters.
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5.2 ODE Solution and Sensitives

Thus we can write Eq. (4.24) by decoupling the state variables from controls, i.e. we define
the vector γ(t) instead of y(t) and vector q which combines the control vector vi and the
parameter vector a, such as

(

ẋi(t)
żi(t)

)

=

(

f(xi(t), zi(t), vi, a, t)
ĝ(xi(t), zi(t), vi, a, t)

)

=⇒





γ̇i(t) = f̂(γi(t), qi, t)

γi(ti) = [hx
i
T hz

i
T ]T

qi = [vi
T aT ]T





where γi(t) ∈ R
nγ , qi ∈ R

nq , nγ = nx + nz + 1 and nq = nu + na. Then we define Γi0 and
Γik instead of Yi0 and Yik , respectively, so that

S(Γi0,Γik, qi) = ẆikΓik + diag
(

Ẇi0

)

Γi0 − fi(γi(tik), qi) = 0 (5.6)

where Γik =
[

γi(ti1) · · · γi(tiM )
]T

and Γi0 =
[

γi(ti0) · · · γi(ti0)
]T
.

The first order Taylor-expansion of Eq. (5.6) leads to

∂S

∂Γi0

∆Γi0 +
∂S

∂Γik

∆Γik +
∂S

∂qi
∆qi = 0 (5.7)

According Eq. (5.7), the sensitivities can be computed by

∆Γik

∆Γi0

∼=
∂Γik

∂Γi0
= −

(

∂S

∂Γik

)−1
∂S

∂Γi0
(5.8a)

∆Γik

∆qi
∼=

∂Γik

∂qi
= −

(

∂S

∂Γik

)−1
∂S

∂qi
(5.8b)

where {S : Rnγ×RM(nγ)×Rnq → R
M(nγ)}. From the solutions of Eq. (5.8), the last column

of the Jacobian matrices ∂Γik

∂Γi0
=
[

∂γi1
∂γi0

· · · ∂γiM
∂γi0

]T

and ∂Γik

∂qi
=
[

∂γi1
∂qi

· · · ∂γiM
∂qi

]T

lead to

the sensitivity ∂B
∂w

. The sensitivity ∂C
∂w

can be obtained from the direct differentiation of
the states with respect to w.
The sensitivities have to be computed from time interval to time interval, therefore

we consider the dimensions of the state and control vectors where γi =
[

γ1
i ... γ

nγ

i

]T
=

[

x1
i ... xnx+1

i z1i ... znz

i

]T
, S = [S1 ... Snγ ]

T
= [S1 ... Snx+1 Snx+2 ... Snx+nz+1]

T
and q =

[q1 ... qnq ]
T
= [v1i ... vnu

i a1 ... ana ]
T
in each interval i, where i = 0, 1, ..., N − 1. Hence, we

have the Jacobians

∂S

∂Γi0
=

























∂S1

∂x1
i0

· · · ∂S1

∂x
nx+1
i0

∂S1

∂z1i0
· · · ∂S1

∂z
nz
i0

...
...

...
...

...
...

∂Snx+1

∂x1
i0

· · · ∂Snx+1

∂x
nx+1
i0

∂Snx+1

∂z1i0
· · · ∂Snx+1

∂z
nz
i0

∂Snx+2

∂x1
i0

· · · ∂Snx+2

∂x
nx+1
i0

∂Snx+2

∂z1i0
· · · ∂Snx+2

∂z
nz
i0

...
...

...
...

...
...

∂Snx+nz+1

∂x1
i0

· · · ∂Snx+nz+1

∂x
nx+1
i0

∂Snx+nz+1

∂z1i0
· · · ∂Snx+nz+1

∂z
nz
i0

























=





















Ẇi0 · · · 0 0 · · · 0
...

...
...

...
...

...

0 · · · Ẇi0 0 · · · 0

0 · · · 0 Ẇi0 · · · 0
...

...
...

...
...

...

0 · · · 0 0 · · · Ẇi0





















,
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∂S

∂qi
=























∂S1

∂v1i
· · · ∂S1

∂v
nu
i

∂S1

∂a1
· · · ∂S1

∂ana

...
...

...
...

...
...

∂Snx+1

∂v1i
· · · ∂Snx+1

∂v
nu
i

∂Snx+1

∂a1
· · · ∂Snx+1

∂ana

∂Snx+2

∂v1i
· · · ∂Snx+2

∂v
nu
i

∂Snx+2

∂a1
· · · ∂Snx+2

∂ana

...
...

...
...

...
...

∂Snx+nz+1

∂v1i
· · · ∂Snx+nz+1

∂v
nu
i

∂Snx+nz+1

∂a1
· · · ∂Snx+nz+1

∂anz























=

























∂f1

∂v1i
· · · ∂f1

∂v
nu
i

∂f1

∂a1
· · · ∂f1

∂ana

...
...

...
...

...
...

∂fnx+1

∂v1i
· · · ∂fnx+1

∂v
nu
i

∂fnx+1

∂a1
· · · ∂fnx+1

∂ana

∂ĝ1

∂v1i
· · · ∂ĝ1

∂v
nu
i

∂ĝ1

∂a1
· · · ∂ĝ1

∂ana

...
...

...
...

...
...

∂ĝnz

∂v1i
· · · ∂ĝnz

∂v
nu
i

∂ĝnz

∂a1
· · · ∂ĝnz

∂ana

























∂S

∂Γik

=

























∂S1

∂x1
ik

· · · ∂S1

∂x
nx+1
ik

∂S1

∂z1
ik

· · · ∂S1

∂z
nz
ik

...
...

...
...

...
...

∂Snx+1

∂x1
ik

· · · ∂Snx+1

∂x
nx+1
ik

∂Snx+1

∂z1
ik

· · · ∂Snx+1

∂z
nz
ik

∂Snx+2

∂x1
ik

· · · ∂Snx+2

∂x
nx+1
ik

∂Snx+2

∂z1
ik

· · · ∂Snx+2

∂z
nz
ik

...
...

...
...

...
...

∂Snx+nz+1

∂x1
ik

· · · ∂Snx+nz+1

∂x
nx+1
ik

∂Snx+nz+1

∂z1
ik

· · · ∂Snx+nz+1

∂z
nz
ik

























=

























Ẇik −
∂f1

∂x1
ik

− ∂f1

∂x2
ik

· · · − ∂f1

∂x
nx
ik

− ∂f1

∂x
nx+1
ik

...
...

...
...

...

−∂fnx+1

∂x1
ik

−∂fnx+1

∂x2
ik

· · · −∂fnx+1

∂x
nx
ik

Ẇik −
∂fnx+1

∂x
nx+1
ik

− ∂ĝ1

∂x1
ik

− ∂ĝ1

∂x2
ik

· · · − ∂ĝ1

∂x
nx
ik

− ∂ĝ1

∂x
nx+1
ik

...
...

...
...

...

−∂ĝnz

∂x1
ik

−∂ĝnz

∂x2
ik

· · · − ∂ĝnz

∂x
nx
ik

− ∂ĝnz

∂x
nx+1
ik

− ∂f1

∂z1
ik

− ∂f1

∂z2
ik

· · · − ∂f1

∂z
nz−1
ik

− ∂f1

∂z
nz
ik

...
...

...
...

...

−∂fnx+1

∂z1
ik

−∂fnx+1

∂z2
ik

· · · −∂fnx+1

∂z
nz−1
ik

−∂fnx+1

∂z
nz
ik

Ẇik −
∂ĝ1

∂z1
ik

− ∂ĝ1

∂x2
ik

· · · − ∂ĝ1

∂n
nz−1
ik

− ∂ĝ1

∂z
nz
ik

...
...

...
...

...

−∂ĝnz

∂z1
ik

−∂ĝnz

∂z2
ik

· · · − ∂ĝnz

∂z
nz−1
ik

Ẇik −
∂ĝnz

∂x
nz
ik

























,

where fnx+1 = ẋLag = L(x(t), z(t), u(t), a, t), ∂f(.)

∂v
(.)
i

= ∂f(.)

∂u(.) |u(.)=v
(.)
i

, ∂f(.)

∂x
(.)
ik

= ∂f(.)

∂x(.) |x(.)=x
(.)
ik

,

∂f(.)

∂z
(.)
ik

= ∂f(.)

∂z(.)
|
z(.)=z

(.)
ik

, ∂ĝ(.)

∂x
(.)
ik

= ∂ĝ(.)

∂x(.) |x(.)=x
(.)
ik

and ∂ĝ(.)

∂z
(.)
ik

= ∂ĝ(.)

∂z(.)
|
z(.)=z

(.)
ik

, in addition the vectors

x = [x1 · · · xnx xnx+1]T , where xnx+1 = xLag, z = [z1 . . . znz ]T , u = [u1 · · · unu ]T

and a = [a1 · · · ana ]T . Note that the Jacobian matrices ∂S
∂Γi0

, ∂S
∂qi

and ∂S
∂Γik

have the
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dimensions (M × (nx + nz + 1) × (nx + nz + 1)), (M × (nx + nz + 1)) × (nu + na))
and (M × (nx + nz + 1) × M × (nx + nz + 1)), respectively. Therefore the sensitivity
matrices ∂Γik

∂Γi0
and ∂Γik

∂q
have the dimensions (M × (nx + nz + 1) × (nx + nz + 1)) and

(M × (nx + nz + 1)× (nu + na)), respectively, such that

∂Γik

∂Γi0

=



























∂x1
ik

∂x1
i0

· · ·
∂x1

ik

∂x
nx+1
i0

∂x1
ik

∂z1i0
· · ·

∂x1
ik

∂z
nz
i0

...
. . .

...
...

. . .
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with k = 1, ...,M . Each entry of the last Jacobian matrices has a dimension M × 1 which
means that the last row of each entry represents the sensitivity of the terminal point of
each element with respect to the initial point of the element.
From (5.1a) the gradient vector ∂A

∂w
will be

∂A

∂w
=
[

0 · · · 0 0 ∂E
∂hx

N
1 ∂E
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N

∂E
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]

. (5.11)
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The sensitivity matrix ∂C

∂w
can be found by direct differentiation with respect to w,
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5.3 Solution Algorithm

Multiple shooting method depends mainly on the SQP iteration. Inside each SQP iterate
gradient values of the objective function and Jacobian of the constraints as well as the
approximated Hessian need to be computed. The main steps of the proposed approach
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are shown in Fig. 5.1. In the algorithm implantation, piecewise constant parameters are
used for the controls and we use three collocation points to solve the model equations and
compute the sensitivities. Generally the number of the collocation points can be deter-
mined by the user. When a higher accuracy is needed, more collocation points should be
used, but this will lead to more computation time. In addition, a higher order Lagrangian
polynomial can cause oscillating state behaviors inside an element. Therefore, the three-
point-collocation is unusually used for the discretization. We use the roots of Legendre
polynomials as the collocation points in each element [77]. Then the locations of the three-
point-collocation in an element will be ti0 = ti, ti1 = α1(ti+1− ti)+ ti, ti2 = α2(ti+1− ti)+ ti
and ti3 = α3(ti+1− ti)+ ti where α1, α2 and α3 are the roots of Legendre polynomials [141].
Since we define the last point of an element as the initial point of the next element i.e.
tiM = t(i+1)0, the locations of the collocation points will then be

ti0 = ti,

ti1 = α̂1(ti+1 − ti) + ti,

ti2 = α̂2(ti+1 − ti) + ti,

ti3 = ti+1.

(5.14)

where α̂1 = α1/α3 and α̂2 = α2/α3. On the other hand, the typical form of the path
inequality constraints are normally minimum and maximum bounds on states and controls,
thus the sensitivity matrix ∂C

∂w
will be
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In this case, we do not need to compute the Jacobian since we can define the bounds at
the problem initialization. However, we use Algorithm 61 to implement the solution of
the NMPC problem even we do not have a path inequality constraints. In the algorithm
implementation, we first transform the algebraic states into differential states.

This approach has several advantages which can be summarized as follows:

1. The optimal control problem will be transformed into NLP problem using multiple
shooting, and an efficient NLP solver, IPOPT, is used for the solution. In addition,
the collocation on finite elements method is used for the integration of the model
equations and the computation of the gradient required.

1In the realized framework, the the numerical algorithm group (NAG) library Mark 8 [88] is used to solve
the linear and nonlinear systems and the interior point optimizer (IPOPT) [180] is used to solve the
NLP problem.
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Algorithm 6 Optimization using multiple shooting and collocation

Input: time horizon [t0, tf ], number of intervals N , number of differential states nx,
number of algebraic states nz, number of controls nu, number of parameters na, lower and
upper bounds of all variables, differential and algebraic state equation, path constraints,
initial guess, optimizer tolerance and Hessian approximation.
Output: optimal state trajectories, optimal control trajectories, optimized performance
index and CPU time.
Step 1: NLP problem initialization.

Time horizon.
Intervals [ti ti+1].
Upper and lower bounds for states, controls and constraints.
Given initial state.
Initial guess w0.

Step 2: Define the continuity constraint B(w) Eq. (3.9b).
Step 3: Define the path constraint C(w) Eq. (3.9c).
Step 4: Initialize the three collocation points for each interval Eq. (5.14).
Step 5: Compute the constraint equations and their sensitivities.

Solve the equation (5.6) using the Newton-Raphson method.
Solve equation (5.8) using LU factorization.

Step 6: Compute objective function (3.9a) and its sensitivity.
Step 7: Solve NLP iteration.

If KKT is not satisfied go to Step 4.
Stop.

Due this combination, the proposed approach has a higher computation efficiency
since the collocation on finite elements method requires a smaller amount of com-
putation expense compared with the typical DAE solvers. This small computation
expense is justified by the fact that the collocation on finite elements method approx-
imates each state variable by an interpolating function in each time interval with a
number of collocation points. This process results in a system of nonlinear equation
and therefore an efficient root-finding technique, e.g. Newton-Raphson, will be used
to compute the collocation points. Furthermore, the collocation on finite elements
method needs only to solve a system of linear equations, which is obtained by taking
the first order Taylor expansion of the system of nonlinear equations, to compute
the necessary sensitivities for the NLP problem, and thus a fast and well-suited LU
factorization method can be used for this solution. On the other hand, typical DAE
solvers use the integration of multisteps to compute the state variables in each time
interval. This integration normally costs additional time if the number of steps is
increased. In addition, the variable sensitivities will be also computed using a multi-
steps method if the typical DAE solver is used. This method uses the derivatives of
the integrated steps and the chain-rule to these derivatives, which also increase the
time expense.

At the same time, more accuracy of the system states can be obtained using col-
location on finite elements since the truncation error of the state variable will be
O(ξ2M) if the roots of Lagender polynomials are used to locate the positions of the
collocation points in each element, where ξ is the time length between two successive
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Figure 5.1: Structure of proposed approach.

collocation points and M is the number of the collocation points. In addition, more
truncation error will be yielded in the state variables if a typical DAE solver is used.
This error is characterized by a Taylor series and given by O(ξρ) where ξ is the step
size and ρ is the order of DAE solver.

This accurate solutions of the state variables also provide accurate sensitives which
lead to more accuracy in the solution of the optimal control problem.
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2. In comparison to the collocation method, by using multiple shooting the size of
the resulted NLP problem is much smaller. Since the size of the NLP problem in
multiple shooting is only composed of the parameterized states and controls at the
time nodes, while if the collocation method is used the state and control variables
at the collocation points in each finite elements are also considered as the variables
of the NLP problem. In addition, since the sensitivity of the problem in each time
interval is independent using multiple shooting the sensitivity matrix is more sparse
if the collocation method is used.

3. Since in multiple shooting the integrations on each multiple shooting intervals are
completely independent, this makes a parallel computation possible. Therefore, the
increase of the number of time intervals will not lead to more computation expense
if a parallel computation is implemented.
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6 Stability Analysis

In this Chapter we present the principle of the receding horizon control (RHC) and discuss
important schemes that have been used to analyze the stability of NMPC systems. In
addition, we propose a new approach to ensure the stability of a wide class of NMPC
systems.

6.1 Receding Horizon Control

To introduce RHC we need first to review the principle of an optimal feedback control. We
assume that the optimal control problem (2.2) at a given initial condition, x(t0) = x0, has
an optimal control u∗(x0, t) with corresponding differential and algebraic states x∗(x0, t)
and z∗(x0, t), respectively, where t ∈ [t0, tf ], as well as an optimal parameter vector a∗.
In addition, at a certain time point, e.g., t1 ∈ [t0, tf ] we have a corresponding state x1 =
x∗(x0, t1), so that the optimal control with the new updated initial condition x1 instead
of x0 is u∗(x1, t) and an optimal feedback control function is uf = u∗(x0, t0). Using this
feedback control function, a closed-loop DAE system can be redefined

ẋ(t) = f(xp(t), uf(t), zp(t), a, t), t ∈ [t0, tf ],

g(xp(t), uf(t), zp(t), a, t) = 0, t ∈ [t0, tf ].

where uf(t) is an optimal feedback control and xp(t) and zp(t) are closed-loop state vectors.
Within the receding horizon the state values (x0, x1, ...) will be measured continuously at
the instants t0, t1, ... where t1 ∈ [t0, tf ], t2 ∈ [t1, tf + ∆ti]... and ∆t = ti+1 − ti, then the
optimal control prblem will be solved to compute optimal controls uf(x0, t0), u

f(x1, t1), ... .
Nonlinear optimal control problems with finite time horizons can be solved by the pro-

posed approach presented in Chapter 5. When an infinite time horizon in the optimal
control problem is considered, i.e. tf →∞, then the optimality conditions can hold for the
trajectories x∗

∞(x0, .), z
∗
∞(x0, .) and u∗

∞(x0, .) and the feedback control law can be defined
accordingly as uf

∞(x0) = u∗
∞(x0, t0).

To ensure a nominal stability of the corresponding closed-loop system for steady-state
tracking problems we define an objective functional

V∞(x0) =

∞
∫

0

L (x(t), z(t), u(t), a, t) dt (6.1)

that satisfies L(x, z, u, a) > 0, ∀ (x, z, u, a) 6= (xS, zS, uS, a) and L(xS, zS, uS, a) = 0 at
the steady-state (xS, zS, uS). As the optimal cost functional (6.1) remains finite, it serves
as a Lyapunov function for the closed-loop system. That means

V∞(xS) = 0 and

V∞(x0) > 0
(6.2)
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where x0 6= xS , so that

L(.) < 0, ∀xp(t) 6= xS (6.3)

which means that the steady-state value of the closed-loop trajectory x(t) will be accumu-
lated to be equal the finite value xS [164].

Generally, it is difficult to handel this problem for nonlinear and constrained systems.
Therefore, a so called moving horizon or receding horizon control principle is usually used
to treat the infinite horizon problems. Fig. 6.1 shows how the receding horizon control
performs, where a finite prediction horizon (TP ), say [t0, tf ], is chosen to carry out the
optimization task and a constant control horizon (TC), say [t0, tc], will be chosen such that
the length of the control horizon is smaller than or equal to the length of the prediction
horizon. However, if the control horizon is sufficiently large, the computed optimal state
trajectory vectors x∗(t) and z∗(t) and the control trajectory u(t) are expected to be similar
to the corresponding values in the infinite horizon case.

We assume that the system states are measurable, then the basic concept of receding
horizon can be summarized as: at the current instant, say ti, the optimal control is obtained
on a fixed finite horizon, e.g. [ti, ti+N∆t] whereN∆t is the length of the prediction horizon.
This optimal control will be obtained by solving a predefined optimal control problem based
on the current measurements of the states, xi, in the optimal control problem. The optimal
control vector will be applied to the system over a control horizon, e.g. [ti, ti+P∆t] where
P < N and P∆t is the length of the control horizon . The states will be measured again
at the end of the control horizon. These state measurements will be considered again as
initial conditions of the optimal control problem and the procedure is then repeated at the
next prediction horizon, say [ti + P∆t, ti + P∆t +N∆t]. The term ”receding horizon” is
introduced, since the horizon recedes as time proceeds as shown in Fig 6.1.

To implement the RHC using the proposed optimization approach presented in Chapter
5 we apply Algorithm 7.

Algorithm 7 Receding horizon control

Input: optimization (prediction) horizon (TP = tf − t0), control horizon (TC = tc− t0),
number of subintervals N , number of differential states nx, number of algebraic states
nz, number of controls nu, number of parameters na, lower and upper bounds of all
variables, model equations, initial condition vector x0, path constraints, initial guess,
optimizer tolerance and hessian approximation.
Output: optimal state trajectories, optimal control trajectories, optimized performance
index and CPU time for every optimal control problem solution.
Step 0: Set k = 0.
Step 1: Solve the optimal control problem by applying Algorithm 6.

The result of this step is an optimal control vector u∗(t), t ∈ [t0, t0 + TP ].
Step 2: Apply the optimal control vector (u∗(t), t ∈ [t0, t0 + TC) to the system.
Step 3: Measure the system states xk+1 at t = t0 + TC .
Step 4: Set x0 = xk+1

Step 5: Set k = k + 1, t0 = t0 + TC and tf = t0 + TP then go to Step 1.
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Figure 6.1: Principle of receding horizon control.

6.2 Lyapunov Stability Theory

Lyapunov stability theory is a necessary tool to analyze the stability of NMPC systems with
constraints. In this section we review previous studies which will be used in the sequel
to analyze the stability properties of NMPC systems. First we consider the following
nonlinear differential equation

ẏ = f(y, t) y(t0) = y0 y ∈ R
ny (6.4)

With a direct method of Lyapunov we can determine the stability of the system without
explicitly integrating the differential equation (6.4). The idea of the method is to analyze
a ’measure of energy’ in a system, then a rate of change of the energy of the system can
be studied to ensure the stability. To make this precise, we need the following definitions
and notations.

Definition 6.1 (Scalar and Euclidean Norms):
For a given state vector y ∈ R

ny , |y| and ‖y‖2 represent its scalar norm and Euclidean
norm, respectively, in addition, ‖y‖2Q = yTQy is a weighted Euclidean norm of y ∈ R

ny

where Q is a positive definite matrix (Q > 0) [164, 176].

Definition 6.2 (Equilibrium Point):
A point ηy ∈ R

ny is an equilibrium point of differential Eq. (6.4) if f(ηy, t) = 0 and ηy is
the point at which the plant operates at a steady-state [96, 164].
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Definition 6.3 (Local Lyapunov Stability):
The equilibrium point ηy is locally Lyapunov stable if all solutions which start near ηy
remain near ηy for all time.
Thus, for each ε > 0 and each t0 ∈ R+, there exists δ = δ(ε) such that if ‖y0‖ <

δ(ε) then ‖y(t)‖ < ε, ∀t ≥ t0 [130, 164, 176].

Definition 6.4 (Asymptotical Stability):
The equilibrium point ηy is uniformly asymptotically stable if ηy is locally stable and
solutions starting near ηy tend towards ηy as t→∞.
That means for each t0 ∈ R+ there exists δ > 0 such that if ‖y0‖ < δ, then

lim
t→∞

y(t) = ηy [130, 164, 176].

Definition 6.5 (Exponential Stability):
The equilibrium point ηx ∈ R

n of the system is exponentially stable if it is asymptoti-
cally stable and if there exist constants α, β and δ > 0 such that

‖y(t)‖ ≤ α‖y0‖e
−βt ∀t ≥ t0, ∀y0 with ‖y0‖ < δ. (6.5)

The largest constant β utilized in Eq. (6.5) is called the rate of convergence [96, 130,
176].

Definition 6.6 (Locally Positive Definite Function):
A continuous function V (y, t) : {Rny×R+ → R} is a locally positive definite function (with
respect to the origin) if for some ǫ > 0 and some continuous, strictly increasing function
a(p) : R+ → R,

V (0, t) = 0 and V (y, t) ≥ a(‖y‖) ∀y ∈ R
ny , ‖y‖ < ǫ, (6.6)

where ǫ is the radius of the ball around the origin [130].

Definition 6.7 (Positive Definite Function):
A continuous function V (y, t) : {Rny × R+ → R} is a positive definite function if it is a
locally positive definite function and, furthermore, lim

p→∞
a(p) =∞ [96].

Definition 6.8 (Decrescent Function):
A continuous function V (y, t) : {Rny × R+ → R} is decrescent for ǫ > 0 and some contin-
uous, strictly increasing function b : {R+ → R} if [130]

V (y, t) ≥ b(||y||) ∀y ∈ R
ny , ‖y‖ < ǫ, ∀t ≥ t0. (6.7)

Using these definitions, the basic theorem of Lyapunov can be derived to determine
stability for a system by studying an appropriate energy function.

Theorem 6.1 (Basic Theorem of Lyapunov [96]):
When V (y, t) is a non-negative function with V̇ (y, t) along the trajectories of the system
where

V̇ (y, t) = V̇ (y, t)|ẏ=f(y,t) =
∂V

∂t
+

∂V

∂y
f
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6.3 Schemes to Ensure the Stability of the NMPC

• If V (y, t) is positive definite and V̇ (y, t) ≤ 0 is locally in y and for all t, then the
origin of the system is locally stable.

• If V (y, t) is positive definite and decrescent, and V̇ (y, t) ≤ 0 locally in y and for all
t, then the origin of the system is uniformly locally stable.

• If V (y, t) is positive definite and −V̇ (y, t) is locally positive definite, then the origin
of the system is uniformly locally asymptotically stable.

• If V (y, t) is positive definite and −V̇ (y, t) is positive definite, then the origin of the
system is globally uniformly asymptotically stable.

Proof. The proof of Theorem 6.1 can be found in [176].

The search for a Lyapunov function that establishes the stability of an equilibrium
point could be arduous, thus Theorem 6.1 gives only a sufficient condition. To apply the
Lyapunov stability theory to NMPC of a constrained system, we define an optimal control
problem with a Lyapunov performance index. A typical example of a suitable Lyapunov
objective functional is a quadratic objective functional

J =

tk+TP
∫

tk

(‖x‖2Qx
+ ‖z‖2Qz

+ ‖u‖2Ru
+ ‖a‖2Ra

)dt. (6.8)

This optimal control problem minimizes the objective functional J , Eq. (6.8), subject to
the system Eqs. (2.2b) to (2.2k). We will analyze the stability of this problem in Section
6.3.

6.3 Schemes to Ensure the Stability of the NMPC

A stability analysis of NMPC systems has long been a challenge due to the nonlinear
problem formulation. There are many approaches to ensure the nominal stability for the
steady-state. Some of the most straightforward ways to achieve stability can be summa-
rized as follows:

• Using stability constraints (besides the control and state constraints) by introducing,
e.g.,

1. terminal equality constraints [95],

2. terminal cost functions into the open-loop optimal control problem [143],

3. terminal constraint set [127] or

4. terminal cost or constraint set [47, 161].

• Introducing a Lyapunov function for an infinite prediction horizon.

• Approximating the nonlinear system by a linear system at the stationary point [40,
41].

• Introducing contractive constraints with contractive parameters to the optimal con-
trol problem.

67



6 Stability Analysis

0

0

x(t)

Optimized
controls

Past
controls

t
f

u(t)

Predicted state

Prediction horizon (T
p
)

x
0

Control horizon

t
0
+T

c

(T
c
)

u
0
0

Terminal point

t
0 t

0
+δ

Figure 6.2: Principle of terminal equality constraints.

Terminal Equality Constraints

It can be shown that a stability for a NMPC system can not be guaranteed, if a finite
prediction horizon is employed [16, 22, 37]. But if a terminal constraint is introduced,
an asymptotic stability can be achieved [12, 81, 125, 187]. In this method, an open-
loop nonlinear optimal control problem (2.2) will be defined such that the Mayer term
(terminal cost) E(.) and the terminal constraints (2.2f) satisfy E(.) ≡ 0 and the vector
function{re : R

nx × R
nz × R

na → R
nx}, respectively.

The first algorithm in the literature was presented by Keerthi an Gilbert [95] and Mayne
and Michalska [123]. Fig. 6.2 shows schematically how the terminal equality constraint
enforces a state to satisfy a terminal condition in the optimal control problem. If the
prediction horizon is short the terminal constraints will force an excessive control effort
and the computational load will be increased as the prediction horizon is increased [117].
Moreover, in the case of continuous feedback control the instable system can be stabilized
using the NMPC with terminal equality constraints [125].
Although using the terminal equality constraints to guarantee stability is an intuitive

approach, it increases significantly the on-line computation necessary to solve the open-
loop optimization problem, and often causes feasibility problems. For more details see
[56–58, 116, 124].

Terminal Cost Function

In this method, the terminal cost (Mayer term) is nontrivial value and the terminal equality
constraints (2.2d) do not exist. The idea of this method is that the Mayer term is defined
to force the states to behave such that the terminal cost is bounded. A typical terminal
cost is a quadratic terminal penalty. More details can be found [143].

Terminal Constraint Set

This method is similar to the terminal equality constraint method, but Rne is a subset of
R

nx . In this method the terminal constraint set will steer the states to specific terminals
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6.3 Schemes to Ensure the Stability of the NMPC

in a finite time. The terminal constraint set may have a stabilizing controller. Therefore,
this method of NPMC is referred to as dual-control mode [127, 168].

Terminal Cost and Terminal Constraint Set

In this method, a terminal constraint (set) does exist and a terminal cost (Mayer term)
is nontrivial value [47, 124]. The main advantage of this scheme is that the Mayer term
should be equivalent to the objective function value of the infinite horizon J∞. Thus

• the Lagrangian term in the case of finite horizon will be equivalent to the Lagrangian

term in the case of infinite horizon (
tf
∫

t0

L(.) ≡
∞
∫

t0

L(.)),

• an online optimization would be unnecessary and

• stability and robustness advantages of the infinite problems would be automatically
satisfied to the finite horizon problems.

It is difficult, however, to apply this scheme to the finite optimal control problem due to
nonlinearity of the states. But it is possible to choose a Mayer term such that it is exactly
or approximately equivalent to the infinite horizon value around the origin. On the other
hand, as stated before, choosing a terminal constraint set adds additional advantages to
the robustness and stability properties of the NMPC system.

Lyapunov-Based Model Predictive Control

A common approach to stability analysis in the literature is a Lyapunov stability theory.
It is indicated in, e.g., [2, 113, 117, 126, 153, 187] that an asymptotic stability can be
obtained by using a Lyapunov function if an infinite prediction horizon is defined. In this
section, we review the main concept of this approach. First, we consider the nonlinear
system model Eq. (6.4) by decoupling the state variables from the controls, i.e. the vector
γ(t) is defined instead of y(t) to address the differential and algebraic states (x and z) and
vector q(t) which combines the control vector u(t) and the parameter vector a, such as

γ̇(t) = f̂(γ(t), q(t), t), t ≥ tk,

γ(tk) = γk = [xT
k zTk ]

T ,

q = [uT aT ]T ,

(6.9)

where γ(t) ∈ R
nγ and q ∈ R

nq , nγ = nx + nz, nq = nu + na and the index k = 0, 1, ...,
denotes the index of the control horizon. Now we define a finite optimal control problem

min
q(t),γ(t)

J = E(γ(tf), tf) +

tk+TP
∫

tk

(

‖γ‖2Qγ
+ ‖q‖2Rq

)

dt. (6.10)

subject to the system Eq. (6.9) as well as some terminal and path constraints on the
system states and controls.
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6 Stability Analysis

By applying the control vector q(t) = q0tk ,tk+1
, t ∈ [tk, tk+1), where q

0
tk ,tk+1

is the optimal
vector in the first control horizon tk+1 − tk = TC , we can implicitly define a sampled state
feedback control law

q(t) = qf(t, γ(tk)) t ∈ [tk+1, tk) (6.11)

According, e.g., to [117] the terminal constraint set and the terminal cost function,
which are introduced in the optimal control problem, must be properly chosen in order to
guarantee the stability of the NMPC in the closed-loop system.

Theorem 6.2 (Lyapunov-Based Model Predictive Control [117]):
If there exist an auxiliary control law qf(t, γ(tk)), a terminal constraint set and a terminal
penalty function (E(.)) such that, letting γp(γ(tk), t) be a solution of the closed-loop system
γ̇(t) = f̂(γ(t), qf , t), t ≥ tk, from the initial time tk and the initial state γ(tk), in addition
the following conditions hold:

• R
ne ⊂ R

nγ , R
ne is closed and 0 ∈ R

ne.

• qf(γ(tk), t) ∈ R
nq , ∀γ ∈ R

nγ .

• R
ne is positively invariant for (6.10).

• The Mayer term E(.) : Rnγ → R such that ∀γ ∈ R
nγ

E(γp(γ(tk)), tk+1, tk)− E(γ(tk)) ≤

−

tk+1
∫

tk

(

‖γp(γ(tk), τ, tk)‖
2
Qγ

+ ‖qf(γ(tk), τ, tk)‖
2
Rq

)

dτ
(6.12)

then the origin is an asymptotically stable equilibrium point for a closed-loop system
formed by (6.9) and (6.11) with maximum output.

Proof. The proof of Theorem 6.2 can be found in [117].

It can be seen that Theorem 6.2 can be applied to a NMPC formulation with terminal
equality constraint and therefore leads to an asymptotical stable closed-loop system. Chen
and Allgwer [42, 43] considered nonlinear systems with infinite prediction horizon. They
first approximated the nonlinear system by a linear system at the stationary point and a
quadratic terminal cost is used to penalize the objective function. Here the satisfaction of
Theorem 6.2 can be easily checked and the asymptotica stability can then be ensured by
linear state feedback design [44, 74]. Rawlings and Muske [143] introduced a Lyapunov
stable MPC. They considered infinite and quasi-infinite NMPC and assumed constant
weights on control and state variables. On the other hand, Zheng [186] showed that
constrained NMPC can be stabilized by using time-varying weights. Santos and Biegler
[153, 154] developed a strategy to build stability bounds on model mismatch for a class of
NMPC algorithms.
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6.4 A New Approach to Ensure the NMPC Stability

Figure 6.3: Exponential decay of the state trajectory.

Contractive Approach to Ensure the MPC Stability

Kothare and Morari [100] proposed a contractive algorithm to stabilize the NMPC sys-
tem by introducing additional state constraints. This method is called contractive MPC
(CNTMPC) and is also a Lyapunov-based approach. The contractive constraints render
the system exponentially stable in the state feedback case and uniformly asymptotically
stable in the case of output feedback [99, 100]. CNTMPC, which should be parameterized
by the user, is based on the contraction property of the state feedback control system
[23, 118, 119, 184]. With CNTMPC, contractive state inequality constraints will be intro-
duced to impose system states at the end of each sample time to be contracted in norm
with respect to the states at the beginning of the sample time, i.e.

‖γk+1‖
2
Q̂γ

= ‖γk(tk+1)‖
2
Q̂γ
≤ α‖γk‖

2
Q̂γ

, α ∈ [0, 1). (6.13)

The inequality constraint (6.13) is called a contractive constraint which is steered mainly
by the contractive parameter α. This parameter is chosen such that the optimization
problem feasible. The employment of these constraints guarantees a global exponential
stability of the closed-loop system [100].

The behavior of the closed-loop system generated by CNTMPC by choosing a suitable α
to make the optimal control problem feasible is illustrated in Fig. 6.3. This figure displays
the exponential decay of the state trajectories with state contraction occurring at every
prediction horizon.

6.4 A New Approach to Ensure the NMPC Stability

In this section, we propose a new approach to ensure the stability of NMPC systems by
introducing auxiliary state variables and corresponding linear state equations. We enforce
the system states to be contracted with respect to the auxiliary state variables by adding
inequality constraints. Thus the stability properties of system states will conform to those
of the auxiliary states, i.e. the system states will be stable, if the auxiliary states are
stable. The eigenvalues of the linear state equations introduced will be determined such
that they stabilize the auxiliary state variables and at the same time make the optimal
control problem feasible. This is achieved by considering the eigenvalues as optimization
variables in the optimal control problem. Therefore, the solution of the optimal control
problem guarantees the feasibility, stability and optimality of the NMPC system.
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First we consider an open-loop optimal control problem of the form

min
x,u

J(x(t), u(t), t) = E(x(tf )) +

tf
∫

t0

L(x(t), u(t), t)dt, (6.14a)

subject to

x(t0) = x0. (6.14b)

ẋ(t) = f(x(t), u(t), t), ∀t ∈ [t0, tf ], (6.14c)

s(x(t), u(t), t) ≥ 0, ∀t ∈ [t0, tf ], (6.14d)

umin ≤ u(t) ≤ umax, ∀t ∈ [t0, tf ], (6.14e)

xmin ≤ x(t) ≤ xmax, ∀t ∈ [t0, tf ], (6.14f)

where x(t) ∈ R
nx , and u(t) ∈ R

nu are the differential algebraic state vector and the control
vector, respectively, f : R

nx × R
nu → R

nx and s : R
nx × R

nu → R
ns. The following

definitions and assumptions are needed for the derivation of the proposed approach.

Definition 6.9 (Feasibility of the Optimal Control Problem):
The optimal control problem (6.14) is feasible if there exist trajectory vectors x∗(t) ∈ R

nx

and u∗(t) ∈ R
nu such that [103]

x∗(t0) = x0.

ẋ∗(t) = f(x∗(t), u∗(t), t), ∀t ∈ [t0, tf ],

s(x∗(t), u∗(t), t) ≥ 0, ∀t ∈ [t0, tf ],

umin ≤ u∗(t) ≤ umax, ∀t ∈ [t0, tf ]

xmin ≤ x∗(t) ≤ xmax, ∀t ∈ [t0, tf ].

Definition 6.10 (Optimality of the Optimal Control Problem):
A trajectory vector u∗(t) ∈ R

nu is a local optimal control with a corresponding state
trajectory vector x∗(t) ∈ R

nx of the optimal control problem (6.14) if [103]

• the optimal control problem (6.14) is feasible on u∗(t) and x∗(t) and

• the trajectory vectors x∗(t) and u∗(t) satisfy J(x∗(t), u∗(t), t) ≤ J(x(t), u(t), t) for all
feasible neighborhoods of x∗ and u∗.

Definition 6.11 (Stabilizability):
The system Eq. (6.18c) is a stabilizable system if a bounded input vector yields a
bounded output [133].

Assumption 6.1:
The system Eq. (6.18c) has a shifted equilibrium point at η = (ηx, ηu) = (0, 0).

Assumption 6.2:
The bounds of the system state vector of Eq. (6.18c) are finite, i.e. xmin 6= −∞ and xmax 6=
∞.
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Assumption 6.3:
The linearization of the system dynamics (6.18c) around the origin is stabilizable (satisfies
Definition 6.11 for umin ≤ u(t) ≤ umax), i.e., {(∂f/∂x)(0, 0), (∂f/∂u)(0, 0)} is a stabilizable
pair.

Assumption 6.4:
There exists a time-varying vector z(t) ∈ R

nx , t ≥ t0, such that the following conditions
hold:

• z(t) ∈ [0, xmax] and −z(t) ∈ [xmin, 0],

• z(t) is an asymptotically decreasing function,

• lim
t→∞

z(t) = 0 and

• −z(t) ≤ x(t) ≤ z(t).

Assumption 6.5:
The optimal control problem (6.14) is feasible according to Definition 6.9 and at the same
time Assumption 6.4 holds .

Assumption 6.6:
There exists a time-varying trajectory vector z(t) ∈ R

nx , t ≥ t0, which satisfies Assump-
tion 6.4 and z(t) is an exponentially decreasing function such that

ż(t) = Azz(t), z(t0) = Z0 ∈ R
nx, ∀t ∈ [t0, tf ], (6.15)

where a time-invariant matrix Az ∈ R
nx×nx is a diagonal matrix, Az = diag(az), where

az < 0.

Assumption 6.7:
The optimal control problem (6.14) is feasible according to Definition 6.9 and at the same
time Assumption 6.6 holds.

Theorem 6.3 (Constrained Asymptotical Stability):
Suppose that Assumptions 6.1-6.4 are satisfied then the state x(t) is asymptotically stable.

Proof. Since Assumption 6.4 is satisfied on the system dynamics (6.14c) we have a time-
varying trajectory vector z(t) such that

lim
t→∞

z(t) = 0.

and z(t) is asymptotically stable, i.e. there exists δz ≥ 0 (from Definition 6.4) and

‖z0‖ < δz,

then from the inequality −z(t) ≤ x(t) ≤ z(t) there exists x0 such that

‖x0‖ ≤ ‖z0‖ < δz,
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and also
lim
t→∞

x(t) = 0.

which means x(t) is asymptotically stable.

Theorem 6.4 (Constrained Exponential Stability):
Suppose that Assumptions 6.1-6.3 and 6.6 are satisfied then the state x(t) is exponentially
stable.

Proof. Since Assumption 6.6 is satisfied on the system dynamics (6.14c) we have a time-
varying trajectory vector z(t) such that

z(t) = eAztZ0,

i.e.there exist αz, βz and δz > 0 such that

‖z(t)‖ ≤ αz‖z0‖e
−βzt, ∀t ≥ t0, ∀|z0‖ < δz.

Since −z(t) ≤ x(t) ≤ z(t), there is ‖x0‖ such that

‖x0‖ ≤ ‖z0‖ < δz,

and
‖x(t)‖ ≤ ‖z(t)‖ ≤ αz‖z0‖e

−βzt,

Let αc =
‖z0‖
‖x0‖
≥ 1 ,then

‖x(t)‖ ≤ ‖z(t)‖ ≤ αc · αz‖x0‖e
−βzt,

and
αc · αz ≥ 0.

This means x(t) is exponentially stable.

6.4.1 A Stable NMPC System

Now we augment the number of state variables by introducing an auxiliary linear state
vector z(t) Eq. (6.15) and add it into the optimal control problem (6.14) with holding
Assumptions 6.1 to 6.2 and 6.6 on the model equations (6.14c). Thus the open-loop
optimal control problem will be

min
x,z,u

J(x(t), u(t), t) = E(x(tf )) +

tf
∫

t0

L(x(t), u(t), t)dt. (6.16a)

subject to

x(t0) = x0, (6.16b)

ẋ(t) = f(x(t), u(t), t), ∀t ∈ [t0, tf ], (6.16c)

s(x(t), u(t), t) ≥ 0, ∀t ∈ [t0, tf ], (6.16d)

ż(t) = Azz(t), z(t0) = Z0 ∈ R
nx , ∀t ∈ [t0, tf ], (6.16e)

umin ≤ u(t) ≤ umax, ∀t ∈ [t0, tf ], (6.16f)

− z(t) ≤ x(t) ≤ z(t), ∀t ∈ [t0, tf ]. (6.16g)
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It should be noted that the initial value of the auxiliary state should be defined. Since
−z(t) ≤ x(t) ≤ z(t), z(t) ∈ [0, xmax], −z(t) ∈ [xmin, 0], we define the constant vector
Z0 ∈ R

nx to represent the maximum and minimum values of the state vector x(t) such
that it is the maximum of the absolute values of the upper and lower state bounds in Eq.
(6.14f) as shown in Fig. 6.4.

Z0 = max{|xmax|, |xmin|} (6.17)
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Figure 6.4: State x(t) (blue-solid), auxiliary states ±z(t) (red-dashed), −0.2 ≤ x(t) ≤ 0.2 ⇒
−z(t) ≤ x(t) ≤ z(t), Z0 = xmax.

On the other hand, the negative eigenvector az, which characterizes the auxiliary state
vector z(t), should be also defined. The model state is bounded at t = t0 (i.e. x(t0) ∈
[−Z0, Z0]) and will be more restricted as t increases as shown in Fig. 6.4. By applying
Theorem 6.4, the system state vector will also be exponentially stable. If large negative
eigenvalues are defined, the time constants of the auxiliary state vector z(t) will be small
and the model states will be restricted fast, therefore the optimal control problem can
be infeasible. Furthermore, when Assumption 6.7 is satisfied by defining small negative
eigenvector az, then the time constants of auxiliary states are large, and the model states
will be slowly restricted by the auxiliary states, so the optimal control problem (6.16) can
be feasible. In this case, if the time horizon is ’short’, the effect of the state restriction
cannot be noticed. The effect of the auxiliary state can only be obtained if a long time
horizon is used. That means, the stability of model states and the auxiliary states can
be ensured if negative eigenvalues of matrix Az are defined such that: 1) large negative
eigenvalues should not be used to maintain the feasibility and 2) maintaining the stability
for optimal control problems with a ’short’ time horizon, small negative eigenvalues of
matrix Az should not be defined.

To address the dilemma of defining suitable negative eigenvalues of matrix Az in the
optimal control problem (6.16) we let these eigenvalues be optimized in the new optimal
control framework. Again, let Assumptions 6.1 to 6.3 be satisfied on the system model
(6.14c), Assumption 6.5 is satisfied on the optimal control problem and the states augmen-
tation is applied. Moreover, we consider the eigenvector az is an optimization variable in
the optimal control problem. Therefore, the new open-loop optimal control problem setup

75



6 Stability Analysis

can be defined by holding Assumption 6.6

min
x,z,u,az

J(x(t), z(t), u(t), az , t) = E(x(tf )) +

tf
∫

t0

(L(x(t), u(t), t) + ‖z(t)‖2
Q̂
)dt, (6.18a)

subject to

x(t0) = x0, (6.18b)

ẋ(t) = f(x(t), u(t), t), ∀t ∈ [t0, tf ], (6.18c)

s(x(t), u(t), t) ≥ 0, ∀t ∈ [t0, tf ], (6.18d)

umin ≤ u(t) ≤ umax, ∀t ∈ [t0, tf ], (6.18e)

ż(t) = Azz(t), z(t0) = Z0, Az = diag(az), ∀t ∈ [t0, tf ], (6.18f)

− z(t) ≤ x(t) ≤ z(t), ∀t ∈ [t0, tf ], (6.18g)

az < 0, (6.18h)

where x(t) ∈ R
nx, z(t) ∈ R

nx, u(t) ∈ R
nu and az ∈ R

nx .
Note that a quadratic penalty term with a weighting penalty matrix Q̂ is added to the

objective function to penalize the auxiliary state vector in the prediction horizon. The
positive definite and symmetric weighting matrix Q̂ can be selected or determined off-line.
Based on Theorem 6.4, the exponential stability of the auxiliary state can be obtained near
the operating point in the finite horizon. We solve this optimal control problem using the
approach presented in Chapter 5.

Assumption 6.8:
The open-loop optimal control problem (6.18) has a local optimal control vector u∗(t) with
a corresponding optimal state vector and auxiliary state vector x∗(t) and z∗(t), respectively,
that satisfy Definition 6.10. In addition, the state vector x∗(t) is bounded by an optimal
auxiliary state vector z∗(t) which is characterized only by the optimal eigenvector a∗z.

If the constraint (6.18g) is relaxed the optimal eigenvector a∗z will be large negative value,
since the penalty term of the objective should be minimized. On the other hand, if the
penalty term of the objective function (6.18a) is relaxed the auxiliary state will be less
restrictive and thus the optimal eigenvector a∗z will be small negative value.

Theorem 6.5 (Open-Loop Exponentially Convergence):
Suppose that the system model(6.18c) has an equilibrium point at the origin with bounded
and stabilizable states for u ∈ [umin, umax] and Assumption 6.8 is satisfied on the open-
loop optimal control problem (6.18) then the optimal state vector x∗(t) is exponentially
converges.

Proof. From Assumption 6.8, we have a point (x∗, z∗, u∗, a∗z) ∈ (Rnx × R
nx × R

nu × R
nx)

such that the optimal control problem (6.18) is feasible. Thus, it follows that

ż∗(t) = Azz
∗(t), z∗(t0) = Z0, Az = diag(a∗z), ∀t ∈ [t0, tf ].

− z∗(t) ≤ x∗(t) ≤ z∗(t) ∀t ∈ [t0, tf ].

a∗z < 0.
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Since the eigenvector a∗z is negative, then the trajectory vector z∗(t) is exponentially stable
and lim

t→∞
z(t) = 0. Therefore, from −z∗(t) ≤ x∗(t) ≤ z∗(t), the system state x(t) matches

Theorem 6.4 which results that x∗(t) is exponentially stable.

6.4.2 Nonlinear MPC Algorithm to Ensure the Stability

According to the optimal control formulation (6.18), we propose a new RHC algorithm to
guarantee the stabilization of nonlinear MPC systems.

Algorithm 8 A proposed RHC algorithm to ensure the stability

Inputs: Initial condition vector (x0), prediction horizon (TP ). control horizon (TC),
sampling time ∆ti, system model Eq. (6.18c), path constraints Eq. (6.18d), objective
function Eq. (6.18a), weighting matrix (Q̂), control bounds (vectors umin and umax),
state bounds (vector Z0 ≡ max{|xmin|, |xmax|}).
Outputs: Optimal state and control trajectories, optimal value of the performance
index and CPU time for each optimization cycle.
Step 0: Set k = 0.
Step 1: Solve the optimal control problem (6.18).

The result of this step is the control vector u∗(t), t ∈ [t0, t0 + TP ].
Step 2: Apply the control vector (u∗(t), t ∈ [t0, t0 + TC ]) to the system.
Step 3: Measure the states xk+1 at t = t0 + TC .
Step 4: Set x0 = xk+1

Step 5: Set k = k + 1, t0 = t0 + TC and tf = t0 + TP then go to Step 1.

In Algorithm 6.4 the optimization cycle k denotes solving the optimal control problem
(6.18) in the prediction horizon [tk, tk + TP ]. Each optimization cycle k = 0, 1, ... in the
implementation of Algorithm 8, produces an optimal eigenvector azk which steers the
auxiliary state vector zk(t) that makes the optimal control problem feasible. That also
means, the inequality (6.18g) must be satisfied in the time interval [tk, tk + TP ], namely

− eAzk
tZ0 ≤ xk(t) ≤ eAzk

tZ0, ∀t ∈ [tk, tk + TP ]. (6.19)

From inequality (6.19) we note that the maximum and minimum state bounds in the
first optimization cycle k = 0 will be Z0 and −Z0, respectively. In addition, in the
following optimization cycles k, k = 1, 2, ..., the initial point of the auxiliary state vector
zk(tk) will be optimized, and according to the optimization the solution will be eAzk

tkZ0.
Each optimization cycle produces the optimal eigenvector azk which can be unequal to
the optimal eigenvector azk+1

in the next cycle. That means the maximum values of the
auxiliary state vector of each optimization cycle zk(tk), k = 0, 1, ...,

z0(t0) = eAz0t0Z0 = Z0,

z1(t1) = eAz1(t0+TC)Z0 = eAz1TCZ0,

...

zk(tk) = eAzk
(t0+kTC)Z0 = eAzk

kTCZ0,
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in this way there can be a∗zk 6= a∗zk+1
. It means that the auxiliary state profiles can be

discontinues at the sampling points. To explain that more precisely, let the optimal control
problem (6.18) be used to implement Algorithm 6.4.2 from the initial time point t0 = 0.
In the first optimization cycle the inequality (6.18g) will be set to

−eAz0 tZ0 ≤ x0(t) ≤ eAz0 tZ0, ∀t ∈ [0, TP ],

which implies that the initial condition of the auxiliary state is Z0. If the solution of
the optimal control problem converged we will obtain an optimized vector a∗z0 such that
the optimal control problem is feasible and stable around its equilibrium point. Now we
increase k by 1 and solve the optimal control problem in the new horizon [TC , TP + TC ].
Then the inequality (6.18g) will be set to

−eAz1 tZ0 ≤ x1(t) ≤ eAz1 tZ0, ∀t ∈ [TC , TP + TC ],

with a new initial condition of the auxiliary state eAz1TCZ0. Then the vector az1 will be
optimized again in the new moving horizon satisfying the feasibility and stability properties.
Fig. 6.5 shows an example of auxiliary states in the optimization cycles k = 0, 1, 2 which
are 5.0 × 10−2e−1.6t, 5.0 × 10−2e−2.0t and 5.0 × 10−2e−2.4t, respectively. Thus the initial
values of the auxiliary states in each cycle are z0(t0) = 5.00×10−2, z1(t1) = 5.00×10−2e−1

and z3(t3) = 5.00× 10−2e−2.4, where TC = 0.5.
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Figure 6.5: Auxiliary state in each optimization cycle.

In our formulation, although the number of the state variables in the setup of the optimal
control problem is doubled, the size of the NLP problem produced from this problem will
not significantly increase. This is because the auxiliary states introduced are linear, and
therefore the additional size of the NLP problem comes only from the size of the eigenvector
az. For example, if the proposed approach in Chapter 5 is used to solve the optimal control
problem (6.18), the size of the NLP problem will be nw = (N + 1)(nx + nu) + nx

1. On
the other hand, in the setup of (6.18) we do not need to introduce additional terminal
constraints for stability purposes, since the introduced auxiliary constraints will steer the
model states to the equilibrium point. However, the new optimal control problem setup
may cause an additional computational expense due to the restriction of the model states,
see Eq. (6.19).

1Note that the size of the original NLP problem is nw = (N + 1)(nx + nu).
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6.4.3 Stability Analysis of the Proposed Algorithm

In this Section, we prove that using the proposed NMPC algorithm an asymptotical sta-
bility of the closed-loop system can be guaranteed. We analyze the stability of the NMPC
system when closed-loop system measurements are applied using Algorithm 8. If there are
no disturbances, the feedback at every sampling time is not necessary since the prediction
is exact [100]. When disturbances are considered, we assume that the plant is described
by the following differential equations (instead of Eq. (6.18c)):

ẋp(t) = f(xp(t), u(t), t) + dk(t), xp(tk) = xp
k, t ∈ [tk, tk + TP ]. (6.20)

where xp
k is the measured state vector at t = tk + TC , k = 0, 1, ..., and the disturbance

dk(t) is bounded and asymptotically decaying with |dk(t)| ≤ |D| and |D| ≤ |Z0|. We first
analyze the effect of this disturbance in the open-loop case. Eq. (6.20) can be rewritten
as:

ẋp
1(t) = f(xp

1(t), u(t), t), t ∈ [tk, tk + TP ]. (6.21a)

ẋ2 = dk(t), (6.21b)

xp(t) = xp
1(t) + x2(t). (6.21c)

where x2(t) =
t
∫

0

dk(t)dt. If lim
t→∞

x2(t) = 0 that means the disturbance that enters the

system is equal to the disturbance that goes out from the system and the equilibrium
point will not be changed. Otherwise, if lim

t→∞
x2(t) 6= 0, i.e. the disturbance will case an

additional amount added to the states and thus the equilibrium point will be changed. In
this situation, a closed-loop control is needed to compensate the disturbance, so that the
desired equilibrium point will be kept.
Applying Algorithm 8 to solve the NMPC system, the inequality constraints (6.18h)

must be satisfied in each optimization cycle k for an optimal azk , then the state vectors
satisfy

− eAzk
tZ0 ≤ xk(t) ≤ eAzk

tZ0, (6.22)

− eAzk+1
tZ0 ≤ xk+1(t) ≤ eAzk+1

tZ0, (6.23)

and t ∈ [tk, tk + TP ]

where xk(t) and xk+1(t) are the solutions of Eqs. (6.24) and (6.25), respectively,

ẋ(t) = f(x(t), u(t), t), x(tk) = xp
k, (6.24)

ẋ(t) = f(x(t), u(t), t), x(tk+1) = xp
k+1, (6.25)

k = 0, 1, ..., and t ∈ [tk, tk + TP ].

Theorem 6.6 (Closed-Loop Asymptotical Convergence):
Suppose that Assumptions 6.1 to 6.3 are satisfied on the system model (6.18c). If Algorithm
8 is applied to control the system dynamics then the closed-loop asymptotical stability will
be yielded.

Proof. Algorithm 8 implies that each optimization cycle we have an optimal point
(xk(t), zk(t), uk(t), azk) where t ∈ [tk, tk+1]. Thus, it follows that ∀t ∈ [tk, tk+1], x(t) is
exponentially decaying, since
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żk(t) = Azkzk(t), zk(tk) = eAzk
tkZ0, Azk = diag(azk), ∀t ∈ [tk, tk+1],

− zk(t) ≤ xk(t) ≤ zk(t) ∀t ∈ [tk, tk+1],

azk < 0.

and xk(t) matches Theorem 6.4 ∀t ∈ [tk, tk+1].

The difference between dynamics of the plant and the model used in Algorithm 8 for
t ∈ [tk, tk+1] is given by

ẋp
k(t)− ẋk(t) = f(xp

k(t), uk(t), t)− f(xk(t), uk(t), t) + dk(t) (6.26)

Since the states of this model are updated at every tk, we can integrate Eq. (6.26) for
t ∈ [tk, tk+1] and obtain

xp
k(t)− xk(t) =

t
∫

tk

(f(xp
k(τ), uk(τ), τ)− f(xk(τ), uk(τ), τ)) dτ +

t
∫

tk

dk(τ)dτ. (6.27)

Since f is a Lipschitz continuous function (see Definition 4.2) then

‖f(xp
k(t), uk(t), t)− f(xk(t), uk(t), t)‖ ≤ L‖xp

k − xk‖, (6.28)

where L > 0 is a Lipschitz constant. Therefore, using Eq. (6.27) and Eq. (6.28), we have

‖xp
k(t)− xk(t)‖ ≤ L

t
∫

tk

‖xp
k(τ)− xk(τ)‖dτ +

t
∫

tk

‖dk(τ)‖dτ. (6.29)

Since ‖d‖ ≤ D, we yield

‖xp
k(t)− xk(t)‖ ≤ L

t
∫

tk

‖xp
k(τ)− xk(τ)‖dτ +D(t− tk). (6.30)

To solve the inequality (6.30) we use a Bellman-Gronwall (BG) [59] lemma.

Lemma 6.1 (Bellman-Gronwall Lemma[59]):
Let r : R+ → R locally integrable on R+ and r ≥ 0; if

s(t) ≤ c+

t
∫

tk

r(τ)s(τ)dτ ∀t ≥ tk,

then

s(t) ≤ c · e

(

t
∫

tk

r(τ)dτ

)

∀t ≥ tk.
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Using Lemma 6.1, Eq. (6.30) can be rewritten for k + 1 as

‖xp
k+1(t)− xk+1(t)‖ ≤ (t− tk)De((t−tk+1)L). (6.31)

But ‖xk+1(t)‖ ≤ ‖zk+1(t)‖. Thus, by applying triangular inequality, Eq. (6.31) will be

‖xp
k+1(t)‖ ≤ ‖zk+1(t)‖+ (t− tk)De((t−tk)L), ∀t ∈ [tk+1, tk+2],

or

‖xp
k+1(t)‖ ≤ ‖e

Azk+1
tZ0‖+ (t− tk)De((t−tk)L), ∀t ∈ [tk+1, tk+2]. (6.32)

Thus, by taking the limit k →∞

lim
k→∞
‖xp

k+1(t)‖ ≤ lim
k→∞
‖eAzk+1

tZ0‖+ lim
k→∞

(t− tk)De((t−tk)L), ∀t ∈ [tk+1, tk+2]. (6.33)

Since lim
k→∞

D = 0 and lim
k→∞
‖eAzk+1

tZ0‖ = 0, then

lim
k→∞
‖xp

k+1(t)‖ = 0, (6.34)

that means the closed-loop system is asymptotically stable.

Fig. 6.6 shows an example that illustrates the behavior of the closed-loop generated
by the proposed NMPC for an asymptotically stable system. We note that the auxiliary
state (red-dashed) enforces the system state (blue-solid) to decay exponentially in the first
optimization cycle since the auxiliary state in the first optimization cycle satisfy eAzk

tZ0.
Although the initial conditions of the auxiliary state in two successive optimization cycles
are equal, e.g. first and second (k = 0, 1), the time constants of the auxiliary states are
not equal −a−1

z0
6= −az

−1
1 , and the system state is also enforced to be enveloped by the

auxiliary state. When many optimization cycles are done, say (k > 100) in this exam-
ple, the time constants of the auxiliary state in two successive optimization cycles satisfy
−az

−1
k
∼= −az

−1
k+1. That means, when the MPC algorithm begins, the state decaying will

be heavy, but when many optimization cycles are done the system decaying will decrease
as k increases.
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Figure 6.6: Asymptotical stability of a state trajectory.

If the system model, however, has an equilibrium point at η = (ηx, ηu) 6= (0, 0), the
auxiliary states will steer the system states to the shifted equilibrium point η. Thus, the
optimal control problem (6.18) can be rewritten as

min
x,z,u,az

J(x(t), z(t), u(t), az, t) = E(x(tf)) +

tf
∫

t0

(L(x(t), u(t), t) + ‖(Z0 − ηx)e
Azt‖2

Q̂
)dt,

(6.35a)
subject to

x(t0) = x0, (6.35b)

ẋ(t) = f(x(t), u(t), t), ∀t ∈ [t0, tf ], (6.35c)

s(x(t), u(t), t) ≥ 0, ∀t ∈ [t0, tf ], (6.35d)

umin ≤ u(t) ≤ umax, ∀t ∈ [t0, tf ], (6.35e)

ż(t) = Azz(t), z(t0) = Z0 − ηx, Az = diag(az), ∀t ∈ [t0, tf ], (6.35f)

ηx − eAzt(Z0 − ηx) ≤ x(t) ≤ ηx + eAzt(Z0 − ηx), ∀t ∈ [t0, tf ], (6.35g)

az < 0. (6.35h)

6.5 Quasi-Infinite Horizon Method

I this Section, we use a quasi-infinite horizon method to determine the weighting matrix
Q̂ [40, 42]. First, let us select a sub-class of the open-loop optimal control problem with a
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quadratic performance index and the setup of problem (6.18):

min
x,z,u,az

J(x(t), z(t), u(t), az, t) =

tf
∫

t0

(‖x(t)‖2Q + ‖u(t)‖2R + ‖z(t)‖2
Q̂
)dt. (6.36a)

subject to

x(t0) = x0, (6.36b)

ẋ(t) = f(x(t), u(t), t), ∀t ∈ [t0, tf ], (6.36c)

s(x(t), u(t), t) ≥ 0, ∀t ∈ [t0, tf ], (6.36d)

umin ≤ u(t) ≤ umax, ∀t ∈ [t0, tf ], (6.36e)

ż(t) = Azz(t), z(t0) = Z0, Az = diag(az), ∀t ∈ [t0, tf ], (6.36f)

− z(t) ≤ x(t) ≤ z(t), ∀t ∈ [t0, tf ], (6.36g)

az < 0, (6.36h)

where Q ∈ R
nx×nx and R ∈ R

nu×nu are positive definite, symmetric matrices and design
parameters of the problem (6.36) that can be chosen freely to determine the desired control
performance.
To investigate the basic idea behind the quasi-infinite horizon method, we consider the

following performance index

J∞(x, z, u, az, t) =

∞
∫

t0

(‖x(t)‖2Q + ‖u(t)‖2R + ‖z(t)‖2
Q̂
)dt. (6.37)

This performance index can be split up into two parts:

J∞(x, z, u, az, t) =

tf
∫

t0

(‖x(t)‖2Q+‖u(t)‖
2
R + ‖z(t)‖2

Q̂
)dt +

∞
∫

tf

(‖x(t)‖2Q + ‖u(t)‖2R + ‖z(t)‖2
Q̂
)dt = J1 + J2

(6.38)

Now we assume that the prediction horizon, TP , is chosen such that the system states
and auxiliary states can reach a neighborhood of the equilibrium point (ηx, ηy) = (0, 0).
Since the system states are always enveloped by the auxiliary states, both, system and
auxiliary states, must exist in the neighborhood of the origin.
Rewriting the second part of the performance index (6.38) we yield

J2 =

∞
∫

tf

(‖x(t)‖2Q + ‖u(t)‖2R))dt+

∞
∫

tf

‖z(t)‖2
Q̂
dt. (6.39)

Our goal is to select a sufficient positive definite, possibly symmetric, weighting matrix
Q̂ such that the open-loop optimal control problem (6.36) is feasible.
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Now, substitute u = −Kx in the linearized system (6.36c) around the origin

ẋ = Axx+Buu (6.40)

we get
ẋ = (Ax −BuK)x = AKx (6.41)

with a linear state feedback law u = −Kx, that asymptotically stabilizes the linearized
system in the terminal region. A linear-quadratic (LQ) state-feedback regulator for the
state-space system (6.40), can be set-up, where K is given by

K = R−1BTP

and P is found by solving an algebraic Riccati equation.

AT
xP + PAx − PBuR

−1BT
u P +Q = 0

and Jacobian matrices Ax = ∂f

∂x

∣

∣

∣

(0,0)
and Bu = ∂f

∂u

∣

∣

∣

(0,0)
.

Accordingly, Eq. (6.39) will be

J2 =

∞
∫

tf

(xTQx+ (−Kx)TR(−Kx))dt +

∞
∫

tf

zT Q̂zdt

=

∞
∫

tf

xT (Q+KTRK)xdt +

∞
∫

tf

zT Q̂zdt

=

∞
∫

tf

xT (QK)xdt +

∞
∫

tf

zT Q̂zdt

Since the inequality
−z(t) ≤ x(t) ≤ z(t)

holds, Q̂ and QK are positive-definite, then

∞
∫

tf

‖x(t)‖2QK
dt ≤

∞
∫

tf

‖z(t)‖2
Q̂
dt (6.42)

which implies that the energy carried by vector z must be more than or equal the energy
carried by vector x. Here we use the Lyapunov matrix equation to find a sufficient solution
for Q̂.

Theorem 6.7 (Lyapunov Matrix Equation [176]):
If there exist QK > 0 and Q̂ > 0 satisfy

AT
KQK +QKAK + Q̂ = 0 (6.43)

then the linear system ẋ = AKx is globally asymptotically stable. The quadratic function
V (x) = xT Q̂x is a Lyapunov function that can be used to verify stability.
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Proof. The proof of Theorem 6.7 can be found in [176].

Note that this solution is sufficient solution but not necessary unique to hold the feasi-
bility assumption of problem (6.36) since we use the linearization of the system around the
equilibrium point. In this case, the energy carried by the auxiliary state should be more
than or equal to the energy carried by the system states.
However, we use the following steps to determine the weighting matrix Q̂

• Linearize the system model (6.36c) around the origin using Eq. (6.40).

• Find the linear state feedback regulator K

K = R−1BTP

where P is found by solving the following algebraic Riccati equation:

AT
xP + PAx − PBuR

−1BT
u P +Q = 0

• Find AK using Eq. (6.40).

• Find QK = Q +KTRK.

• Solve the Lyapunov equation for Q̂, namely

AT
KQK +QKAK + Q̂ = 0.

Note that the weighting matrix Q̂ can be non-diagonal matrix. However, for simplic-
ity, we consider a diagonal weighting matrix by the following two steps:

– Find the eigenvector of Q̂.

– Find Q̂ = diag(λQ̂).

6.6 Features at the Equilibrium Point

To analyze the features of the proposed NMPC at the equilibrium point, we assume that
the linearized system model (6.36c) around the origin

ẋ = Axx+Buu,

where Ax = (∂f/∂x)|(0,0) and Bu = (∂f/∂u)|(0,0), and dynamics Ax has negative eigenvalues,
that means, all the poles of the linearized system are stable, then it can be concluded
that the system is stable at the equilibrium point, too. However, if Ax has some positive
eigenvalues, that means the system has some poles on the right-hand side of the s−plane.
The system states are augmented with an auxiliary state z(t) and the open-loop optimal
control problem (6.18) is solved. In addition, the prediction horizon is chosen such that
the system and auxiliary states can reach a neighborhood of the equilibrium point. Then
the optimal eigenvector az and the optimal auxiliary state z will replace the instable poles
of the linearized system model and act as a compensator.
To prove this issue, let us analyze the system states at the terminal point, the solution

of the open-loop optimal control problem (6.36) implies the feasibility for all t ∈ [t0, tf ]
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and tf is chosen such that the system states and auxiliary states reach a neighborhood
of the equilibrium point. Then the infinite optimal control problem can be defined in the
neighborhood of the equilibrium point with respect to the linearized system model

min
x,z,u

J(x(t), z(t), u(t), t) =

∞
∫

tf

(‖x(t)‖2Q + ‖u(t)‖2R + ‖z(t)‖2
Q̂
)dt. (6.44a)

subject to

x(tf ) = xf . (6.44b)

ẋ(t) = Axx(t) + Buu(t), ∀t ≥ tf . (6.44c)

ż(t) = Azz(t), z(tf ) = Zf , Az = diag(az), ∀t ≥ tf . (6.44d)

where a diagonal matrix Az solves the finite-open-loop optimal control problem (6.44)
that contains only negative eigenvalues, xf and Zf are terminal values of the system and
auxiliary state, respectively, that lie in the terminal region of the neighborhood of the
origin which can be defined according to the following definition.

Definition 6.12 (Terminal Region):
A terminal region Ω is a region in terminal time such that the system and auxiliary state
reach a neighborhood of the equilibrium point, that means:

[

xT (t) zT (t)
]T
∈ Ω t ≥ tf

[

xT (t) zT (t)
]T
≈
[

ηTx ηTz
]T

=
[

0 0
]T

Since the inequality constraint (6.18g) must be satisfied in the terminal region Ω, one of
the following properties must be also satisfied, as shown in Fig. 6.4,

x(t) = z(t)− δ = z−(t) t ≥ tf or (6.45a)

x(t) = −z(t) + δ = −z+(t) t ≥ tf . (6.45b)

where δ is a small value that represents the deference between the system x and auxiliary
state z in the terminal region which tends to zero.

Let us now rewrite the optimal control problem (6.44) satisfying property (6.45a), i.e.
x(t) = z(t), t ≥ tf , then the optimal control problem

min
x,z,u

J(x(t), z(t), u(t), t) =

∞
∫

tf

(‖[xT (t) zT (t)]T ‖2Qnew
+ ‖u(t)‖2R)dt. (6.46a)

subject to

[xT (tf ) zT (tf )]
T = [xT

f ZT
f ]

T . (6.46b)
[

ẋ(t)
ż(t)

]

= Anew

[

x(t)
z(t)

]

+Bnewu(t), ∀t ≥ tf . (6.46c)

86



6.6 Features at the Equilibrium Point

where Anew =

[

0 Ax

0 Az

]

, Bnew =

[

Bu

0

]

and Qnew =

[

Q 0

0 Q̂

]

.

The solution of the open-loop optimal control problem (6.46) is equivalent to the problem
solution by finding a linear feedback Knew such that

u = −Knew[x
T (t) zT (t)]T = [−Kx −Kz][x

T (t) zT (t)]T , (6.47)

where Knew ∈ R
nu×2nx and Kx, Kz ∈ R

nu×nx are designed to obtain the closed-loop
asymptotical stability of system (6.44c) such that

Knew = R−1BTPnew,

where Pnew is a unique positive-definite solution and found by solving the following alge-
braic Riccati equation.

AT
newPnew + PnewAnew − PnewBnewR

−1BT
newPnew +Qnew = 0.

Combining Eq. (6.47) with Eq. (6.46c), we yield
[

ẋ(t)
ż(t)

]

=

[

−BuKx Ax − BuKz

0 Az

] [

x(t)
z(t)

]

. (6.48)

On the other hand, if the property Eq. (6.45b) is satisfied, i.e. x(t) = −z(t), t ≥ tf , then
the solution of the open-loop optimal control problem is also equivalent to the closed-loop
optimal control problem by finding a linear control law u = [−Kx −Kz ][x

T (t) zT (t)]T , t ≥
tf and Eq. (6.48) will then be

[

ẋ(t)
ż(t)

]

=

[

−BuKx −Ax − BuKz

0 Az

] [

x(t)
z(t)

]

. (6.49)

The eigenvalues of the closed-loop system (6.48) and (6.49) are given by those of the
state feedback regulator dynamics −BuKx together with those of auxiliary state system
dynamics Az. In case both matrices are asymptotically stable, then so is the closed-loop
(6.48) and (6.49).

Re

Im

axaz
0

s- Plane

Figure 6.7: Root locus of one dimensional system dynamics.
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6 Stability Analysis

Moreover, if the linearized system dynamics Ax has positive real parts of the eigenvalues,
i.e. the system has some poles in the right-hand side of the s−plane, the feedback gain Kx

will compensate the state dynamics to a closed-loop system with negative eigenvalues and
brings the instable poles, in the open-loop case, to a stable poles as shown in Fig. 6.7.
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7 Case Studies

As application examples of the proposed algorithm and the proposed stabilization approach
we consider several NMPC problems in this Chapter. The following case studies are im-
plemented using the framework of the numerical algorithm group (NAG) library Mark 8
[88] and the interior point optimizer (IPOPT) [178] and in C/C++ for the rest of the
computation. In addition, all computations are done using a PC with an intel processor
”Pentium 4, 3 GHz and 1G Byte RAM”. In the implantation of the main Algorithm 6,
we use three collocation points to discretize the ODE model equation and compute the
constraints, Jacobian and performance index and their gradients. In addition, we define
the end time point of a subinterval to be the beginning point of the next one.

Each case study in the following is solved, firstly, with an open-loop case to show the
performance of the proposed algorithm. Then we apply each optimal control problem in
the setup of NMPC. In addition, we examine the proposed stability approach within the
NMPC system.

7.1 A Simple Instable System

To demonstrate the stability proposals in Chapter 6 we consider the following optimal
control problem

min
x,u

J =

5
∫

0

(

‖x(t)‖2q + ‖u(t)‖
2
r

)

dt. (7.1a)

subject to

ẋ(t) = x(t) + u(t). (7.1b)

where x(0) = 1, umin = −1.5, umax = 1.5, q = 1 and r = 1.

It is clear that exciting the system model Eq.(7.1b) with unit step control makes the
state x(t) instable, since the plant has an instable pole at s = 1. Therefore, the solution
of the optimal control problem (7.1) leads to instable behavior of the state x(t). Solving
the problem using the setup of the optimal control problem (6.18) by adding an auxiliary
state ż(t) = Azz(t), z(0) = 2, an inequality constraint Eq. (7.3) and adding a new term,

(
∫ 5

0
‖z(t)‖2

Q̂
dt), to the objective functional with Q̂ = 1. The solution leads to the optimized

value az = −0.6127, restricted and stabilized model state in the first prediction horizon as
shown in Fig. 7.1.
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Figure 7.1: Solution of optimal control problem (7.1) with stable state behavior; state x(t)
and control u(t).

Applying the features analysis in Section 6.6 to the solution of the optimal control
problem with the auxiliary state z(t), the closed loop augmented system (6.48) around the
terminal point is

[

ẋ(t)
ż(t)

]

=

[

−1 −1.6201
0 −0.6127

] [

x(t)
z(t)

]

. (7.2)

which means that the instable pole is compensated and the positive eigenvalue is shifted
to make the dynamic asymptotically stable.

Now, we assume that an asymptotically decaying disturbance d(t) = 0.2e−tsin(2.5t) is
added to the system model at each feedback measurement .

Repeating the optimization using MPC Algorithm 7 with control horizon TC = 2 leads
to the stabilized state as shown in Fig. 7.2. The optimal control problem solutions in
the moving horizons after the first prediction horizon lead to the optimized values az=
-0.61271, -1.46796, -7.41171, -500, -500..., respectively. In other words, the time constant
of the auxiliary state is decreased as the time horizon is moved. Thus, the stabilization
inequality constraint Eq.(7.3) is then more and more restrictive. Accordingly, the state
asymptotical stability is guaranteed, namely

− 2eazt ≤ x(t) ≤ 2eazt. (7.3)
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7.2 Batch Reactor
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Figure 7.2: State x(t) and control u(t) of Section 7.1.

7.2 Batch Reactor

We consider a chemical reactor taken from [66] to maximize the yield of x2(t) after one
hour operation by manipulating the reaction temperature u(t), with the following problem
formulation:

max
u,x1,x2

x2(tf) (7.4a)

subject to

ẋ1(t) = −(u(t) + (u2(t))/2)x1(t) t ∈ [0, 1], (7.4b)

ẋ2(t) = u(t)x1(t), t ∈ [0, 1], (7.4c)

x1(0) = 1, x2(0) = 0, (7.4d)

0 ≤ x1(t), x2(t) ≤ 1, (7.4e)

0 ≤ u(t) ≤ 5. (7.4f)

We solve the open-loop control problem by dividing the prediction horizon into 20 subin-
tervals. The solution took 250 ms and gave the of the performance index value with
x2(tf) = 0.57329. Fig. 7.3(a) shows the optimal control trajectory and Fig. 7.3(b) the cor-
responding state profiles x1and x2 with the maximum error 1.269×10−5 and 1.1722×10−5,
respectively. These profiles (x1 and x2) and the optimal control trajectory are identical to
the results by using both MSCOD II and the algorithm proposed. The CPU time for one
subinterval simulation was 24 µseconds using CFE. Using the RK method with the same
accuracy the CPU time was 42µseconds.
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Figure 7.3: The optimal state and control trajectories x1(t), x2(t) and u(t) of batch reactor.

If we solve this problem with different number of subintervals, e.g. 5, 10, 20, 40, 80
and 160 subintervals, we can note, as shown in Table 7.1, that the number of optimization
variables nw and the number of constrains nB will be increased when the number of subin-
tervals increases. The CPU time will increase exponentially. In addition, if we compare the
CPU time taken by MUSCOD II with that of the proposed algorithm, it can be seen for a
large number of subintervals (i.e. a high dimension of the NMPC) the proposed algorithm
will be more efficient.

Table 7.1: Results of using different number of subintervals.

N nw nB MUSCOD II Algorithm 6
CPU-Time (ms) J CPU-Time (ms) J

5 18 12 27 0.573117 188 0.568171
10 33 22 40 0.573080 290 0.572162
20 63 42 90 0.573527 350 0.573290
40 123 82 564 0.573544 480 0.573478
80 243 162 2177 0.573545 547 0.573528
160 483 322 12968 0.573545 735 0.573541
N : number of subintervals; nw: total number of variables; nB: total number of constraints;
J : value of objective function.
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7.3 Optimal Control of a Continuous Stirred Tank Reactor (CSTR)

7.3 Optimal Control of a Continuous Stirred Tank

Reactor (CSTR)

We consider a CSTR as shown in Fig. 7.4. An exothermic, irreversible, first order reaction
A→ B occurs in the liquid phase and the temperature is regulated with external cooling.
This example is taken from [90] or [136] with assumption that the level liquid is not
constant.

The problem is formulated as follows:

min
x,u

tf
∫

0

(

(x1 − xs
1)

2 + 100(x2 − xs
2)

2 + 0.1(u1 − us
1)

2 + 0.1(u2 − us
2)

2
)

dt (7.5a)

subject to

ẋ1 =
F0 − u1

πr2
(7.5b)

ẋ2 =
F0c0 − x2

πr2x1
− k0x2 exp(

−E

Rx3
) (7.5c)

ẋ3 =
F0(T0 − x3)

πr2x1

+
−∆H

ρCp

k0x2 exp(
−E

Rx3

) +
2U

rρCp

(u2 − x3) (7.5d)

x1(0) = 0.659, x2(0) = 0.877 and x3(0) = 324.5 (7.5e)

0.5 ≤ x1 ≤ 2.5, 0.8 ≤ x2 ≤ 1.0 (7.5f)

85 ≤ u1 ≤ 115, 299 ≤ u2 ≤ 301 (7.5g)

where x1 is the level of the tank, x2 is the product concentration and x3 is the reactor
temperature. u1 and u2 are the outlet flow rate and coolant liquid temperature, respec-
tively. In addition the inlet flow rate F0 or the inlet concentration c0 is considered as a
disturbance to the CSTR. The desired steady-state operating points: xs

1, xs
2, us

1 and us
2

are 0.569m, 0.884mol/L, 100L/min and 299.5K, respectively. The model parameters
in nominal conditions are given in Table 7.2. It is assumed that, at the tenth minute a
disturbance enters the plant at a level of 0.05mol/L on the inlet molar concentration c0
where tf = 50min.

Table 7.2: Parameters of the CSTR reactor.

F0 100 L/min E/R 8750 K
T0 305 K U 915.6 Wm−2K−1

c0 1.0 mol/L ρ 1 kg/L
r 0.219 m Cp 0.239 Jg−1K−1

k0 7.2× 1010 min−1 ∆H −5 × 104 J/mol
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Figure 7.4: CSTR setup.
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Figure 7.5: The optimal level of the tank x1(t), product concentration x2(t) and outlet tem-
perature x3(t) of CSTR and the optimal control profiles, outlet flow rate u1(t) and coolant
temperature u2(t) of CSTR.

To solve problem (7.5) using the proposed algorithm we divide the time horizon into 50
subintervals. The resulted NLP includes 306 variables with 204 constraints. We used the
IPOPT 3.4.0 to solve the NLP and NAG mark 8 to solve the discretized model equations
and compute the sensitivities. The CPU time for one subinterval simulation using CFE
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7.3 Optimal Control of a Continuous Stirred Tank Reactor (CSTR)

and RK was 42 µseconds and 168 µseconds with a same accuracy, respectively. Fig. 7.5
shows the optimal control profiles of the states x1(t), x2(t), x3(t), and the optimal control
profiles u1(t) and u2(t). The objective function value at the optimal solution is 0.9015886.
Moreover, the solution converged in 35 iterations and took 984 mseconds. On the other
hand, this problem was solved by [91] using a quasi-sequential approach to large scale
dynamic optimization problem and it was converged in 16 iterations and 5.56 s of CPU
time of SUN Ultra 10 Station with identical solutions.

We solve this optimal control problem by deviding the prediction horizon [0, 40] into
80 subintervals. The optimal controls are shown in Fig. 7.6 where the optimal state
profiles are shown in Figs. 7.8 to 7.10. Now we assume that an asymptotically decaying
disturbance d(t) = 0.1e−1.5t sin (5t) is added to the tank x1(t). Then the state profiles
will change according to this disturbance as shown in the Figs. 7.8 to 7.10. We solve the
optimal control problem (7.5) using the formulation of Eq. (6.18) by defining Q̂=diag([1
1 1]), the equilibrium point ηx = [0.536 0.848 330]T and without adding any disturbance.
In this case the NMPC formulation leads to the optimal controls that are shown in Fig.
7.7 that eigenvector az = [−0.3138 − 0.1503 − 7.2844]T . In addition, the system states
are forced to approach the equilibrium point ηx as shown in the Figs 7.8 to 7.10. Now we
implement these controls with assuming that the disturbance d(t) is entered to the tank.
Therefore the systems states will not reach to the defined equilibrium point, since the
disturbance term will cause an additional amount of the tank level, product concentration
and outlet temperature, respectively. That means the equilibrium point will be changed

due the disturbance, since lim
t→∞

t
∫

0

d(t)dt 6= 0. See Figs. 7.8 to 7.10.
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Figure 7.6: The open-loop optimal control profiles u1(t) and u2(t) of CSTR without adding
the auxiliary constraints.
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Figure 7.7: The optimal control profiles u1(t) and u2(t) of CSTR by adding the auxiliary
constraints.
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Figure 7.8: Optimal tank level in the open-loop case: 1)Without disturbance and with auxil-
iary constraints, 2)With disturbance and with constraints, 3)Without disturbance and without
constraints and 4)With disturbance and with auxiliary constraints
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Figure 7.9: Optimal product concentration in the open-loop case: 1)Without disturbance and
with auxiliary constraints, 2)With disturbance and with constraints, 3)Without disturbance and
without constraints and 4)With disturbance and with auxiliary constraints
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Figure 7.10: Optimal optimal outlet temperature in the open-loop case: 1)Without distur-
bance and with auxiliary constraints, 2)With disturbance and with constraints, 3)Without dis-
turbance and without constraints and 4)With disturbance and with auxiliary constraints

To apply NMPC Algorithm 8 we choose the sampling time 0.5 min, TC = 0.5 min
and the prediction horizon TP = 40 min, In addition the disturbance d(t) enters to the
tank. We solve this NMPC problem using a typical NMPC algorithm (i.e. without adding
the auxiliary states) and using the proposed NMPC (i.e. by adding the auxiliary states
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7 Case Studies

and constraints). The optimal control profiles for both cases, without and with auxiliary
constraints, are shown in the Figs. 7.11 and 7.12, respectively, while the state profiles are
shown in the Figs. 7.13 to 7.15. It can be seen that the auxiliary states and constraints
force the system states to approach the operating point. In addition, with typical NMPC,
the system states will approach the equilibrium point much more slowly than if the NMPC
Algorithm 8 is used.
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Figure 7.11: Closed-loop optimal control profiles without adding the auxiliary constraints.
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Figure 7.12: Closed-loop optimal control profiles by adding auxiliary constraints.
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Figure 7.13: Optimal tank level in the closed-loop case: 1)Without adding the auxiliary con-
straints and 2)With adding the auxiliary constraints, auxiliary states ±z1(t) (red-dashed).
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Figure 7.14: Optimal product concentration in the closed-loop case: 1)Without adding the
auxiliary constraints and 2)With adding the auxiliary constraints, auxiliary states ±z2(t) (red-
dashed).

7.4 Satellite Control Problem

We consider a nonlinear optimal control problem of a rigid satellite initially undergoing a
tumbling motion. The aim of the optimal control is to determine the torques that bring
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Figure 7.15: Optimal outlet temperature in the closed-loop: 1)Without adding the auxiliary
constraints and 2)With adding the auxiliary constraints, auxiliary states ±z3(t) (red-dashed).

the satellite to rest in the specified time tf = 100 sec., while minimizing the following
performance index [70, 147]:

min
u,x

(x1(100)− 0.70106)2 + (x2(100)− 0.0923)2 + (x3(100)− 0.56098)2

+ (x4(100)− 0.43047)2 + x2
5(100) + x2

6(100) + x2
7(100)

+
1

2

100
∫

0

(u2
1 + u2

2 + u2
3)dt

(7.6a)

subject to

ẋ1 =
1

2
(x5x4 − x6x3 + x7x2) (7.6b)

ẋ2 =
1

2
(x5x3 + x6x4 − x7x1) (7.6c)

ẋ3 =
1

2
(−x5x2 + x6x1 + x7x4) (7.6d)

ẋ4 = −
1

2
(x5x1 + x6x2 + x7x3) (7.6e)

ẋ5 = ((I2 − I3)x6x7 +
T1S

I1
u1) (7.6f)

ẋ6 = ((I3 − I1)x7x5 +
T2S

I2
u2) (7.6g)

ẋ7 = ((I1 − I2)x5x6 +
T3S

I3
u3) (7.6h)
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7.4 Satellite Control Problem

where

I1 = 1.0× 106, I2 = 833333, I3 = 916667.

T1S = 550, T2S = 50, T3S = 550.

x1(0) = x2(0) = x3(0) = 0.

x4(0) = 1, x5(0) = 0.01, x6(0) = 0.005, x7(0) = 0.001.

Here u1, u2 and u3 are the torques acting for the respective body-principle axes. The
model equations (7.6b) to (7.6e) are called the kinematical equations associated with the
orientation of the satellite. Model equations (7.6f) to (7.6h) are the dynamical equations
associated with motion of the satellite. x1 to x4 are the Euler parameters, x5 to x7 are the
angular rates of the satellite its principle axes and I1, I2 and I3 are the principle moment
of inertia, respectively.

We divide the time horizon into 50 subintervals, which leads to a NLP with 561 variables
and 408 constraints. The computation took 531 m-seconds with the objective function
value of 0.468287. For each subinterval it took 41 µseconds to simulate the system by CFE
and 311 µseconds by RK. Figs. 7.16 and 7.17 show the state trajectories (from x1 to x7),
and Fig. 7.18 shows the control profiles u1, u2 and u3, respectively.
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Figure 7.16: Satellite, state trajectories x1, x2, x3 and x4.

101



7 Case Studies

0 10 20 30 40 50 60 70 80 90 100
0.01

0.0102

0.0104

x 5(t
)

Time (sec.)

0 10 20 30 40 50 60 70 80 90 100
4.7

4.8

4.9

5
x 10

−3

x 6(t
)

Time (sec.)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

x 7(t
)

Time (sec.)

Figure 7.17: Satellite, state trajectories x5, x6 and x7.
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Figure 7.18: Satellite, control trajectories u1, u2, and u3.

7.5 Nonholonomic System

This system is a car without a tail. The control of this model is a challenging problem, since
the system is not controllable on the manifold of its equilibrium points [100]. Moreover,
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7.5 Nonholonomic System

this model violates the Brockett’s necessary condition for smooth or even continuous sta-
bilization [31]. The system dynamics can be represented by the following set of equations:

ẋ1 = u1 cos(x3). (7.7a)

ẋ2 = u1 sin(x3). (7.7b)

ẋ3 = u2. (7.7c)

where x1(t) and x2(t) denote the Cartesian position of the center of the car, x3 ∈ (−π, π]
represents the orientation of the car with respect of the x1 axis. And u1 and u2 are the
control inputs denoting linear and angular velocities, respectively. The coordinate system
for the car is illustrated in Fig. 7.19.
The objective of the optimal control is to drive the system from any given initial condition

to the origin with a satisfactory level of performance. The stable optimal control problem
can be defined as

min
x,z,u,az

J =
1

2

tf
∫

t0

(

‖x(t)‖2Q + ‖u(t)‖2R + ‖z(t)‖2
Q̂

)

dt. (7.8)

subject to Eqs. (7.7a) to (7.7c) with initial condition x(0) = [−0.3 0.8 1.2] and:

żi = Azz, A=diag(az). (7.9)

z(0) = [1 1 π]T . (7.10)

− z(t) ≤ x(t) ≤ z(t). (7.11)

where Q = diag([2 2 0]), Q̂ = diag([0.2 0.2 0.2]), R = diag([0 0]), t0 = 0, tf = 10 sec
and sampling time=0.5 sec. Figs. 7.20 to 7.22 show the open-loop control and control
trajectories, respectively, according to the optimal solution using the proposed algorithm.
The state trajectories approach the origin fast since the auxiliary state trajectories ±z1(t),
±z2(t) and ±z3(t) approach the origin with time constants 1.521, 0.582 and 1.358 sec,
respectively.

Figure 7.19: Coordinate system for the car.
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Figure 7.20: Open-loop optimal control solution of nanholonomic system.
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Figure 7.21: Open-loop optimal state profiles of nanholonomic system (blue-solid), auxiliary
states ±zi(t), i = 1, 2, 3 (red-dashed).
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7.6 Loading Bridge

For comparison purposes with result in [100], we apply the NMPC Algorithm 8 (closed
system) to this system with x(0) = [−0.5945 0.3299 0.8262]T , umin = [−0.2 − 1]T ,
umax = [0.2 1]T , Q=diag([2 16 0.2]), Q̂=diag([0.2 1.8 0.02]), R=diag([0.02 0.02]), t0 =
0, tf = 2 sec, sampling time=0.1 sec, and TC = 0.6 sec. The comparison to the CNTMPC
[99, 100] shows that the controllers using both approaches with same bounds can stabilize
the system states before 5 sec as shown in Figs. 7.22 to 7.23. In [100] the system states
are stabilized by introducing a contractive inequality constraint in the optimal control
problem. This inequality constraint imposes the system states at each sampling time to be
contracted with respect to the states at the beginning of the predicted sample. With this
strategy, an additional controller parameter is the so-called contractive parameter which
must be carefully determined to make the optimal control problem feasible. However, in
the proposed formulation, the auxiliary states in each sampling time will be optimized to
satisfy the feasibility problem, i.e. a tuning is not required.In addition, using Theorem 6.6,
the system states are asymptotically stable.

0 5 10 15 20 25 30
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (sec.)

u 1(t
)

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Time (sec.)

u 2(t
)

Figure 7.22: Closed-loop optimal control solution of nanholonomic system

7.6 Loading Bridge

7.6.1 Mechanical Setup

The mechanical setup of the loading bridge considered is shown in Fig. 7.24. It consists of
a cart which can be moved along a metal guiding bar by means of a transmission belt. A
winch drive is mounted on top of the cart to change the length of a rope. The transmission
belt as well as the winch are driven by a current-controlled DC motor supplying a torque
proportional to a control signal to accelerate the cart as well as the winch drive.
The position of the cart, the length of the rope as well as the angle of the rope are
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Figure 7.23: Closed-loop optimal state profiles of nanholonomic system (blue-solid), auxiliary
states ±zi(t). i = 1, 2, 3 (red-dashed).

measured by means of incremental encoders. The rope itself together with the load will
be denoted as a pendulum as shown in Fig. 7.24.

7.6.2 Mathematical Model of a Loading Bridge

The complete system as shown in Fig. 7.24 is divided into the partial systems cart, winch,
weight and center. The non-linear state space description of the of the loading bridge is
given by [3]

ẋ1 = x2, (7.12a)

ẋ3 = x4, (7.12b)

ẋ5 = x6, (7.12c)

ẋ2 =
(u1 − Frx2)(m2 +

θ
R2

T

) + gm2
θ
R2

T

sin(x3) cos(x3)

(m1 +m2 sin
2(x3))(m2 +

θ
R2

T

)−m2
2 sin

2(x3)

−
(u2 − FTrx6)m2 sin(x3) + x2

4x5m2
θ

R2
T

sin(x3)

(m1 +m2 sin
2(x3))(m2 +

θ
R2

T

)−m2
2 sin

2(x3)
, (7.12d)

ẋ4 =
(u2 − FTrx6)m2 sin(x3) cos(x3)

x5[(m1 +m2 sin
2(x3))(m2 +

θ
R2

T

)−m2
2 sin

2(x3)]

−
g sin(x3)[m1(m2 +

θ
R2

T

) +m2
θ
R2

T

]

x5[(m1 +m2 sin
2(x3))(m2 +

θ
R2

T

)−m2
2 sin

2(x3)]
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Figure 7.24: Schematics of the loading bridge.
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θ
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, (7.12e)

ẋ6 =
(u2 − FTrx6)(m1 +m2 sin

2(x3))

(m1 +m2 sin
2(x3))(m2 + θ

R2
T

)−m2 sin
2(x3)

+
gm1m2 cos(x3) + x2

4x5m1m2

(m1 +m2 sin
2(x3))(m2 + θ

R2
T

)−m2 sin
2(x3)

−
(u1 − Frx2)m2 sin(x3)

(m2 +
θ

R2
T

)−m2
2 sin

2(x3)
, (7.12f)

where the states x1, x2, x3, x4, x5, and x6 are the position of the cart , the velocity of the
cart, the angle of the rope, the angular velocity of the rope, the length of the rope in m and
the differentiation of the length of the rope, respectively. The controls u1 and u2 are the
driving force of the cart and the winch, respectively. For more details on loading bridge
and the model derivation see [3]. The parameters of the loading bridge model Eq. (7.12)
are shown in Table 7.3.

7.6.3 Optimal Control Problem Formulation

The control task is to move the cart by means of the transmission belt to defined point at
the metal guiding bar. In addition the movement should be carried out with a minimum
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Table 7.3: Parameters of the loading bridge model.

P. Description Value

m1 Cart mass 5.5 kg
m2 Winch mass 0.2 kg
Fr Friction constant on the cart 13 N
Ftr Friction constant on the winch 2 N
θ Moment of inertia of the winch 2.25×10−4 kg.m2

g Gravitational acceleration 9.81 m/s2

RT Winch radius 3 cm

effort. Then the optimal control problem is formulated as

min
x,u

J =
1

2

5
∫

0

(

‖x(t)‖2Q + ‖u(t)‖2R
)

dt. (7.13a)

subject to the loading bridge dynamics (7.12) and

x(0) = [0.5 0 0 0.6 0]T . (7.13b)

umax = [22.5 3.75]T , umin = [−22.5 − 3.75]T . (7.13c)

x1(tf ) = 0.4, x5(tf) = 1 (7.13d)

where x(0) is the initial state vector, umin and umax are the minimum and maximum control
bounds, respectively, and x1(tf ) and x5(tf ) are the terminal positions for the cart and the
pendulum, respectively.
We solve the finite optimal control problem (7.13) by defining Q=diag([200 0.5 0.5 0.5

1 1]), R=diag([0.05 0.05 ]) and sampling time 0.25 sec. The optimal control problem will
be converted into NLP problem which has 189 variables and 149 constraints. By solving
this NLP problem the objective function value will be 1.5251. Fig. 7.25 shows the optimal
controls with the corresponding state trajectories.
For comparison we solve the problem using the formulation setup of the optimal control

problem (6.18) by adding an auxiliary state żi = Azi, Az=diag(az) i = 1, 2..., 6, Z0 =
[0.6 1 0.5 1 1 1]T , Q̂=dig([200 150 100 50 50 50]), the operating point ηx=[0.4 0 0 0 1 0 ]T .
Now the optimal control problem is formulated as

min
x,z,u,az

J =
1

2

5
∫

0

(

‖x(t)‖2Q + ‖u(t)‖2R + ‖z(t)‖2
Q̂

)

dt. (7.14a)

subject to the loading bridge system model (7.12), Eqs. (7.13b) to (7.13c) and

ż = Azz, Az=diag(az). (7.14b)

z(0) = [0.6 1 0.5 1 1 1]T . (7.14c)

ηx − z(t) ≤ x(t) ≤ ηx + z(t). (7.14d)

where z(t) ∈ R
6 are the auxiliary states, Az ∈ R

6×6 is a time-invariant diagonal matrix
and ηx ∈ R

6 is the operating point around which the system should be reached.
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Figure 7.25: Corresponding optimal states of the loading bridge, xi(t), i = 1, ..., 6, optimal
controls u1(t) and u2(t).

The optimal control solution leads to the objective function value of the main part (i.e.
without the additional term) 1.8168. Fig. 7.26 shows that the system states are forced
to approach the operating point ηx. If the solutions in this case are compared with the
result shown in Fig. 7.27, the objective function value will be increased from 1.5251 to
1.8168. But the states x3(t), x4(t) and x6(t) do not approach the operating point in the
defined time horizon without the stabilization constraints. This means the difference of
the objective value 0.2918 is paid to guarantee the stability.

7.6.4 NMPC Formulation

We apply the NMPC Algorithm 8 to the loading bridge by choosing TC = 2 sec. The
NMPC is to solve optimal control problem (7.14) with the initial condition Eq. (7.13b)
using the moving horizon technique. We assume that a disturbance d is added to system
states at the beginning of each repeated optimization process. The NMPC solution leads
to state and control trajectories as shown in Fig.7.28.

We apply the optimal control setup (7.14) to the NMPC system. Fig.7.29 shows the
state and control trajectories in this case. It can be seen that the auxiliary states and
constraints force the system states to approach the operating point in the first control
horizon. Therefore, the asymptotical stability of system states around the operating point
is obtained.
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Figure 7.26: Optimal control problem solution (states and controls) of loading bridge,
xi(t), i = 1, ..., 6 and u1(t) and u2(t) (blue-solid), auxiliary states ±zi(t), i = 1, ..., 6 (red-
dashed).

7.6.5 NMPC Realization

We realize the NMPC system of the loading bridge presented in Section 7.6.4 to the
loading bridge laboratory unit [3]. We use the Matlab-Simulink environment to implement
the optimal controls. The Simulink block diagram Fig. 7.30 shows the graphical user
interface (GUI) that is built to control the loading bridge. Lookup-tables are used for the
control of the cart and the pendulum. These controls are generated from a C-code which is
prepared to solve the formulated optimal control problem. The control vector u is limited
by a saturation block, for safety reasons, and applied to an analogue transducer which
represents the motors of the cart and the pendulum. A digital encoder is used to measure
the cart and pendulum positions and the necessary signals are used for the control.
We apply the open-loop optimal controls u1 and u2 as shown in Fig.7.31 using the pro-

posed approach with the following weight matrices R =diag[0.45 0.001] and Q =diag[361
5 0.3 0.2 254 20]. In addition, it is desired the the cart and the pendulum move from
(0.2, 0.8) to (0.8, 0.5), respectively. The results of cart and pendulum movements are
shown in Fig. 7.31. Fig. 7.32 shows the weight movement on the cartesian plane. We
apply the open-loop optimal controls u1 and u2 by solving the optimal control problem
using the optimal control strategy (6.18). Fig. 7.33 shows cart and pendulum movements
wile Fig. 7.34 shows the weight movement on the plan.
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Figure 7.27: Optimal control problem solutions (states and controls) of loading bridge with
and without adding auxiliary states, xi(t), i = 1, ..., 6. With auxiliary state (blue-solid), without
auxiliary state (red-dashed).
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Figure 7.28: MPC solution (states and controls) of the loading bridge, states: xi(t), i =
1, ..., 6, and controls: u1(t) and u2(t).
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Figure 7.29: MPC solution (states and controls) of loading bridge, states: xi(t), i = 1, ..., 6,
and controls: u1(t) and u2(t) (blue-solid), auxiliary states ±zi(t), i = 1, ..., 6 (red-dashed).
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Figure 7.30: NMPC realization using Simulink interface.
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Figure 7.31: Open-loop control of the loading bridge.
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Figure 7.32: Open-loop control of the loading bridge (the cart and pendulum movements).
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Figure 7.33: Open-loop control of the loading bridge using auxiliary constraints.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

x
1

x 5

Figure 7.34: Open-loop control of the loading bridge (the cart and pendulum movements)
using auxiliary constraints.
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8 Conclusions and Future Work

8.1 Conclusions

In this dissertation, we proposed a novel algorithm for the solution of optimal control
problems as they apear in NMPC. This NMPC algorithm is based on solving the nonlinear
optimal control problem using a combination of the multiple shooting method, in which
the NLP problem will be handled, with the collocation method, in which the function
values and gradients required in the NLP will be computed.

We consider a general formulation of the constrained optimal control problem of contin-
uous systems. An efficient discretization method is used to discertize the optimal control
problem. A piecewise constant representation is used to parameterize the control variables
on each subinterval and a pointwise parametrization is used for initial conditions of the
state variables in each subinterval. Then all of the discretized and parameterized variables
as well as system model equations are used to construct a NLP problem. To compute
state variables in each subinterval and the sensitivities of these variables with respect to
parameterized controls and initial conditions we use collocation on finite elements.

Using collocation on finite elements to calculate state values and its derivatives instead
of using an DAE solver adds more accuracy to the DAE approximation, i.e. the accuracy
of the optimal control solution will be enhanced. The truncation error of the state variable
will be significantly reduced if the roots of Lagender polynomials are used to locate the
positions of the collocation points in each element. while more truncation error will be
yielded in the state variables if a typical DAE solver is used.

In addition, as shown in collocation on finite element method is often less expensive
than typical DAE solvers. Since the collocation on finite elements method approximates
each state variable by an interpolating function in each time interval with a number of
collocation points. This system of nonlinear equations is solved using an efficient root-
finding technique, e.g. Newton-Raphson, to compute the collocation points. Furthermore,
the collocation on finite elements method needs only to solve a system of linear equations,
which is obtained by taking the first order Taylor expansion of the system of nonlinear
equations, to compute the necessary sensitivities for the NLP problem, and thus a fast
and well-suited LU factorization method can be used for this solution. On the other
hand, typical DAE solvers use the integration of multisteps to compute the state variables
in each time interval. This integration normally costs additional time if the number of
steps is increased. In addition, the variable sensitivities will be also computed using a
multisteps method if the typical DAE solver is used. This method uses the derivatives of
the integrated steps and the chain-rule to these derivatives, which also increase the time
expense. Accordingly, more efficiency can be added to the multiple shooting method. On
the other hand, in comparison to the collocation method, by using multiple shooting in the
proposed approach the size of the resulted NLP problem is much smaller. This is because
the size of the NLP problem in multiple shooting is only composed of the parameterized
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states and controls at the time nodes, while if the collocation method is used the state and
control variables at the collocation points in each finite elements are also considered as the
variables of the NLP problem.
Since in multiple shooting the computation of each shoot is independent, this makes

a parallel computation possible. Therefore, the increase of the number of shoots (i.e.
finite elements) will not lead to more computation expense if a parallel computation is
implemented.
For NMPC analysis, we proposed a new approach to ensure the stabilization of finite

NMPC systems. This approach is proposed by reformulating the optimal control problem
within which the optimal control problem is extended. We introduced auxiliary linear
states to the optimal control problem, which enforce the system states to be constructed
by adding inequality constraints. Thus the stability properties of system states will conform
to those of the auxiliary states, i.e. the system states will be stable, if the auxiliary states
are stable. The eigenvalues of the linear state equations introduced will be determined
to stabilize the auxiliary state variables and at the same time make the optimal control
problem feasible. This is achieved by considering the eigenvalues as optimization variables
in the optimal control problem. Therefore, the solution of the optimal control problem
guarantees the feasibility, stability and optimality of the NMPC system. To penalize the
auxiliary state, we introduced an additive integral and quadratic term which is added to
the performance index of the optimal control problem. We suggested procedures to select
a sufficient solution for this penalty term. The optimal eigenvalues lead to the exponential
stability of the linear states which restrict and thus stabilize the system states exponentially
in the open-loop case.
Moreover, using this formulation, although the number of the state variables in the setup

of the optimal control problem is doubled, the size of the NLP problem produced from this
problem will not significantly increase. This is because the auxiliary states introduced are
linear, and therefore the additional size of the NLP problem comes only from the size of the
eigenvector. In addition, we do not need to introduce additional terminal constraints for
stability purposes, since the introduced auxiliary constraints will steer the model states to
the equilibrium point. However, the new optimal control problem formulation may cause
additional computational expense due to the restriction of the system states.
The features of the system dynamics are analyzed at the stationary point when the new

optimal control formulation is used. It is concluded that the stable poles of the auxiliary
linear states stabilize the system poles of the linearized system at the stationary point.
According to this formulation, we propose a new RHC algorithm to guarantee the sta-

bilization of the NMPC systems. We analyze the stability of the NMPC system when
closed-loop system measurements are applied using this Algorithm. If there are no distur-
bances, the feedback at every sampling time is not necessary since the prediction is exact.
When disturbances are considered and the disturbance enters the system is equal to the
disturbance out of the system then the equilibrium point will not be changed. Otherwise,
if the disturbance causes an additional amount added to the states then the equilibrium
point will be changed. In this situation, to keep the desired equilibrium point, we pro-
posed closed-loop NMPC algorithm to compensate the disturbance. We prove that using
the proposed RHC algorithm an asymptotical stability of the closed-loop system can be
guaranteed within which the system states will approach the equilibrium point much more
quickly than if the typical RHC algorithms are used.
All of the proposed algorithms have been realized in the framework of the numerical
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algorithm group (NAG) and the interior point optimizer (IPOPT) in C/C++ environ-
ment. Several case studies as application examples using optimal control problems with
challenging and highly nonlinear dynamics are presented to show the high performance
and reliability of the proposed approach and to prove usefulness of the proposed optimal
control formulation for the stability insurance.
Several case studies are compared with some of existing NMPC algorithm, such as

multiple shooting code (MUSCOD II) and quasi-sequential algorithm, in terms of the
computational expense, integration accuracy and optimization efforts and values. From
these results it can be seen that the proposed algorithm is more efficient when a large-scale
NMPC problem is needed to be solved. In addition the proposed method for the stability
insurance has also shown the effectiveness of the new NMPC formulation.
The proposed algorithm is successfully applied to a challenging optimal control problem

with highly nonlinear system dynamics, namely the nonlinear model predictive control of
a loading bridge at the Institut für Automatisierungs- und Systemtechnik laboratory at
Ilmeau of Technical University.

8.2 Outlook

This dissertation can be extended in several ways

• Numerical analysis can be drawn if the nonlinear optimal control problem is dis-
cretized into unequal subintervals or even using different number of collocation points
in different subintervals. This way of discretization can be decided according to the
stiffness of the state variables as well as the accuracy of the optimal solutions.

• Since the implementation of the parallel computation is possible, an extending result
can be obtained with lower computational expenses.

• The proposed algorithms which were realized by NAG and IPOPT under C/C++
environment can be reformulated to be more compatible and easily insertable in a
general form of the optimal control problem.
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[74] R. Findeisen and F. Allgöwer. Nonlinear model predictive control for index-one.
volume 26, pages 145–161. Birkhauser, 2000.
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[76] R. Findeisen, L. Imsland, F. Allgöwer, and B. A. Foss. State and output feedback
nonlinear model predictive control: An overview. Eur. J. Control, 9(2-3):190–206,
2003.

[77] B. A. Finlayson. The method of weighted residuals and variational principles.
Acadimic Press, 5th edition, 1972.

[78] B. A. Finlayson. Nonlinear analysis in chemical engineering. McGraw-Hill, New
York, 1980.

[79] R. Fletcher. A new approach to variable metric algorithms. Computer Journal,
13:317–322, 1970.

[80] R. Frank. The method of iterated defect correction and its application to two-point
boundary value problems, Part I. Numerische Mathematik, 25:409–419, 1976.

[81] H. Genceli and N. Nikolaou. Robust stability snalysis of constrained: 1-norm model
predictive control. AIChE Journal, 39(12):1954–1965, 1993.

[82] P. E. Gill, E. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM J. Optim., 12(1):979–1006, 2002.

[83] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-
scale constrained optimization. SIAM Rev., 47:99–131, 2005.

[84] P. E. Gill, W. Murray, and M. A. Saunders. User guide for SQOPT version 7: Soft-
ware for large-scale linear and quadratic programming. Technical report, Department
of Mathematics, University of California, San Diego, La Jolla, CA, 2006.

[85] D. Goldfarb. A family of variable-metric methods derived by variational means.
Mathematics of Computation, 24:23–26, 1970.

[86] G. H. Golub and C. F. Van-Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, 3rd edition, 1996.

[87] N. Goto and H. Kawable. Direct optimization methods applied to a nonlinear optimal
control problem. Mathematics and Computers in Simulation, 51(6):557 – 577, 2000.

[88] Numerical Algorithms Group. NAG C library manual mark 8, 2005.

123



Bibliography

[89] L. Gruene, D. Nesic, and J. Pannek. Assessment and future directions of nonlinear
model predictive control. volume 358 of Lecture notes in control and information
sciences, pages 105–113. Springer Berlin-Heidelberg, 2007.

[90] M. A. Henson and D. E. Seborg. Nonlinear Process Control. Prentice Hall, Upper
Saddle River. NJ, 1997.

[91] W. R. Hong, S. Q. Wang, G. Li, P.and Wozny, and L. T. Biegler. A quasi-sequential
approach to large-scale dynamic optimization problems. AIChE Journal, 52(1):255–
268, 2006.

[92] E. Isaacson and H. B. Keller. Analysis of numerical methods. Dover Publications,
1996.

[93] H. M. Jaddu. Numerical methods for solving optimal control problems using chebyshev
polynomials. PhD thesis, Japan Advanced Institute of Science and Technolgy, 1999.

[94] D. Karft. Algorithm 733: TOMP-Fortran modules for optimal control caluclations.
ACM Transactions on Mathematical Software, 20(3):262–281, 1994.

[95] S. S. Keerthi and E. G. Gilbert. Optimal infinite-horizon feedback laws for a genral
class of constrainted discrete-time systems: Satability and moving-horizon approxi-
mations. Journal of Optimization Theory and Apllication, 57(2):265–293, 1988.

[96] H. K. Khalil. Nonlinear Systems. Macmillan, 1992.

[97] D. E. Kirk. Optimal Control Thoery. Prentice Hall Inc, Englewood Cliffs, 1970.

[98] O. Koch and E. Weinmüller. Iterated defect correction for the solution of singular
initial value problems. SIAM Journal on Numerical Analysis, 38:1784–1799, 2001.

[99] S. L. Kothare. Model predictive control (MPC) for constrained nonlinear systems.
PhD thesis, California Institute of Technology, Pasadena, CA, Mar 1996.

[100] S. L. Kothare and M. Morari. Contractive model predictive control for constraind
nonlinear systems. IEEE Transaction on Automatic Control, 45(6):1053–1071, 2000.

[101] D. Kraft. Computational mathematical programming. In K. Schittkowski, editor, On
converting optimal control problems into nonlinear programming problems, volume
F15, pages 261–280. Springer, 1985.

[102] E. B. Lee and L. Markus. Foundations of optimal control theory. John Wiley, USA,
1967.

[103] D. B. Leineweber. Analyse und Restrukturierung eines Verfahrens zur direkten
Lösung von Optimal-Steuerungsproblem, The Theory of MUSCOD II in a Nutshell.
Master’s thesis, University of Heidelberg, 1995.

[104] D. B. Leineweber, I. B., H. G. Bock, and J. P. Schlöder. An efficient multiple
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Thesis Statements

1. We propose a new approach to the solution of dynamic optimization problems as
they appear in the nonlinear model predictive control (NMPC) problems. The ap-
proach is based on the principle of direct methods to solve the nonlinear optimal
control problem by using a combination of multiple shooting with collocation on
finite elements.

2. We use the multiple shooting approach to convert the nonlinear optimal control
problem into the nonlinear programming (NLP) problem.

3. Within multiple shooting, the finite time horizon are discertized into subintervals
and then the controls in each subinterval are parameterized. At the same time the
initial values of the states at the beginning of each subinterval will be parameterized
as well.

4. We use collocation on finite elements for the integration of the model equations and
the computation of the gradients required. Due this combinations, the proposed con-
trol strategy possesses a higher computation efficiency; it requires a smaller amount
of computation expense compared with the existing NMPC optimization algorithms.

5. The contributions of the proposed approach to existing multiple shooting approaches
can be summarized as:

a) The main contribution is the employment of collocation on finite elements to
calculate state values and its derivatives instead of using a typical ODE solver.

b) In comparison to the collocation method, by using multiple shooting the size of
the resulted NLP problem is much smaller.

c) Since in multiple shooting the computation of each shoot is independent, this
makes a parallel computation possible. Therefore, the increase of the number
of shoots (i.e. finite elements) will not lead to more computation expense if a
parallel computation is implemented.

6. We propose a new approach to ensure the stability of NMPC systems by introducing
auxiliary state variables and corresponding linear state equations. The features of
the proposed approach can be summarized as:

a) System states are enforced to be contracted in a similar way as the auxiliary
state variables by adding inequality constraints. Thus the stability properties
of system states conform to those of the auxiliary states.

b) It leads to a new formulation of NMPC problems, in which a new term is added
to the performance index to penalize these auxiliary states.

c) The system states are stable, if the auxiliary states are stable and the problem
is feasible.
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d) The eigenvalues of the linear state equations introduced are determined to stabi-
lize the auxiliary state variables and at the same time make the optimal control
problem feasible. This is achieved by considering the eigenvalues as optimiza-
tion variables in the optimal control problem. Therefore, the solution of the
optimal control problem guarantees the feasibility, stability and optimality of
the NMPC system.

7. We analyze the features of this new formulation of NMPC inside the terminal region
of the equilibrium point.

8. We prove that if the prediction horizon is chosen such that the system and auxiliary
states reach a neighborhood of the equilibrium point, the optimal eigenvector and
auxiliary states can shift instable poles of the linearized system to a stable region.

9. The efficiency of the proposed approach is demonstrated through several case studies.
The computation time taken to solve these control problems is in the order milisec-
ond. Therefore the NMPC algorithm can be applied to fast systems. In addition
it is successfully implemented to control a laboratory loading bridge. Satisfactory
control performance of a moving cart with a single pendulum between two points
with highly nonlinear dynamics is achieved.
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