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Flexible Inspection of Small Series Production Systems 
through the Use of Dynamic Sensor Fusion Principles 
 

ABSTRACT 

The world market competition currently boosts the innovation and customisation of 

various products. The increased product variety being offered and the flexibility of small 

series production complicate the automation and control of the manufacturing tasks, 

resulting in great challenges for the quality management systems. In the case of mass 

production, the inspection systems that assure the quality of the products/processes can 

be planned in advance, according to the fixed measurement requisites in which they are 

located. The inspection solution is then configured in a rigid automatic sensor/actuator 

chain. This rigid configuration is actually insufficient and error-prone for small series 

production, because the measuring strategy is totally dependent on the “fixed” features 

of the objects under inspection and the automated inspection chain has little knowledge 

about what is actually being performed. Flexible industrial metrology with a higher 

cognitive inspection level plays an indispensable role, in order to maintain the quality of 

products and processes and simultaneously attend the flexibility of the small series and 

individualised production. By flexible small production lines, the inspection system must 

be able to deal with many different product variants, greater amount of features must be 

extracted and also intelligent decisions (cognition) are required.  

This work presents a short introduction about the challenges faced by the inspection of 

small series production, which evidences the need for novel inspection strategies. In the 

sequence, based on the already existent sensor fusion principles, the Measurement on 

Demand (MEOND) concept is presented as a possible solution to build intelligent and 

dynamic inspection systems for the small series production. Aspects about cognition 

and self-optimisation are discussed in accordance to the MEOND concept. Possible 

application scenarios for this concept are discussed among the flexible inspection of 

automobile headlights and the self-optimised assembly of a solid state laser. 

 

Keywords: small series production, flexible metrology, sensor fusion, cognition, self-

optimisation, MEOND. 



INTRODUCTION 

The market competition originated from countries with low-cost work forces puts 

pressure on enterprises world wide and leads to a focus on innovation and product 

customisation. This fact is compelling industries to improve the efficiency of production 

processes, e.g. by increasing the automation level or improving management strategies 

for quality, innovation and information, so that an optimised value-added chain can be 

achieved while keeping the production costs reduced. 

Taking a look at industrial production today, two dilemmas that are closely related affect 

the efficiency of production systems [1]. The first dilemma is related to the “scale versus 

scope” problem. Either the production system is designed for a high scale output without 

variances in the product design (critical masses, mastered processes, high 

synchronisation and output), or it is designed for highly individual products down to a 

single item production (one-piece-flow, dynamic processes, limited synchronisation and 

output). The second dilemma is related to the “value-oriented versus planning-oriented” 

production. The value-orientation approach focuses on the value-adding process (less 

planning, preparation, handling, transport), while the planning-orientation approach 

focuses on extensive planning to optimise value-adding (modelling, simulation, 

information gathering). 

In order to reduce the first dilemma of scale versus scope, production systems must be 

provided with more flexibility (flexible automation, greater number of sensors/actuators, 

more information acquisition/storage/flow). Every automated system that restricts the 

work with a greater product variant or limits the capabilities of the production processes 

are directly constraining the customisation/individualisation of the production. Flexible 

automated systems require therefore the capability to adapt themselves to their 

surrounding conditions [2,3]. But while this added flexibility and adaption capabilities 

help reducing the first dilemma, at the same time it creates a greater gap between the 

planning- and value-oriented approaches. A greater amount of planning and organising 

tasks arise due to the increased complexity introduced when providing such flexible 

capabilities to the production processes. One idea of the “Aachen House of Integrative 

Production
*
” is to use cognition and self-optimisation strategies as key factors to reduce 

the increased dilemma between planning- and value-orientation and enable a flexible 

and adaptive automation of the production without needing to strongly invest on 

planning tasks (Figure 1). 

                                                 
*
 http://www.production-research.de/ 



 

Figure 1: Concepts for enabling tomorrow’s production strategies in high wage countries. 

 
FLEXIBLE METROLOGY AND SENSOR FUSION 

The increased product variety being offered and the flexibility of small series production 

(scope) complicate the automation and control of the manufacturing tasks, resulting in 

great challenges for the quality management systems. In the case of mass production 

(scale), where the product variety is low, the inspection systems that assure the quality 

of the products/processes can be planned in advance, according to their fixed 

measurement requisites and the environmental conditions in which they are located. 

The inspection solution is then configured in a rigid automatic sensor/actuator chain, 

which accomplishes exactly the desired inspection tasks. This rigid configuration is 

actually insufficient and error-prone for small series production, because the measuring 

strategy is totally dependent on the “fixed” features of the objects under inspection and 

the automated inspection chain has little knowledge (lack of cognition) about what is 

actually being performed [2,4]. Flexible industrial metrology with a higher cognitive 

inspection level plays an indispensable role, in order to maintain the quality of products 

and processes and simultaneously attend the flexibility of the small series and 

individualised production [3]. 

By flexible small production lines, the inspection system must be able to deal with many 

different product variants, greater amount of features must be extracted and also 

intelligent decisions (cognition) are required. These decisions are important not only for 

adapting the inspection system to the currently product/process under test, but also for 

reaching reasonable and more robust evaluation criteria from the product/process 

quality level and the best way to optimise it [2]. Distinct measurement principles or 

configurations will be often needed for the inspection of objects with different shapes, 

properties and/or materials [4]. A multi-sensorial approach is thus needed to improve the 

inspection range and flexibility of a small series production line, so that the distinct 



features of different industrial parts can be inspected in an intelligent way, independently 

of their surface or even internal properties. Optical metrology and non-destructive testing 

(NDT) inspection methods provide a very good basis for implementing intelligent and 

dynamic multi-sensor systems for the inspection of macro- and micro-systems, because 

of the benefits of such measuring principles (fast and accurate measurement results, 

touchless, non-invasive) [4,5,6]. 

A flexible metrology strategy is currently under development, which is called 

Measurement on Demand (MEOND) [6]. The basic idea of MEOND is the creation of a 

modular sensor pool (or universal measuring configuration), responsible for handling the 

inspection tasks of a small series production facility. That means planning and arranging 

the correct sensors within the production line. The intelligence required for controlling 

the whole sensing system must also be foreseen, taking into consideration the product 

variety and information flow control, as well as the algorithms needed for taking 

cognitive decisions. The goal is to provide the minimal sensing configuration able to 

dynamically handle all the required inspection tasks correctly (or “on demand”), by 

understanding what is being inspected under the current variable conditions. 

An inspection system that fulfils these requisites will usually be based on dynamic 

sensor integration and fusion principles [7,8] and supported by cognitive capabilities 

(features localisation and recognition, classification, decision taking), which may usually 

be found among artificial intelligence methods [9,10,11], such as those based on 

probability principles, neural networks, genetic algorithms and fuzzy logic. 

Sensor integration means the synergetic application of multiple sensors for solving a 

detection, classification or identification problem. Sensor fusion corresponds to the 

combination of the sensors’ data for obtaining new or more precise knowledge on the 

involved features, events or situations. Dynamic sensor integration and fusion means 

that the control intelligence must decide, for each new inspection situation (change of 

environmental conditions, change of product or process features), which are the best 

sensor combinations and how their acquired data can be fused to achieve more robust 

decisions about the production process (Figure 2). The choice of the sensors and their 

configuration is based on the kind of measurement to be performed among the 

process/product (geometry, layer thickness, surface roughness, topography, 

temperature, internal features etc.) and on the environmental conditions (temperature, 

pressure, illumination, vibration etc.). A global knowledge database is useful for such 

purposes, as it assists the higher decision levels of the system to configure the different  



  

Figure 2. Illustration of the MEOND principle, depicting the sensor pool (left) and the dynamic decisions 

(right) taken by the control system. 

sensors, based on its successful previous experiences. 

The fused information can be raw data provided by the multiple sensors as well as a 

mathematical interpretation of these data (object/environment properties). It is expected 

that this combination of data can increase the system capabilities and performance 

(especially reliability and robustness), which must be superior to the results achieved 

with the individual sensors alone. 

The process of obtaining conclusions about the measuring results of a multi-sensor 

system usually combines redundant or complementary information [7]. The instability of 

the sensors’ signals can be diminished through redundancy, as well as the signal-to-

noise ratio and measurement robustness can be improved. Complementary information 

may also be obtained from heterogeneous sensors and then combined for taking 

important decisions about the system, which could not previously be analysed with the 

application of individual sensors. These both integration concepts help eliminating 

ambiguity in the interpretation of individual information sources. 

The fusion of data can also be classified according the abstraction level of the used data 

among three main groups [7,8]: signal (sensor data) level, features (information) level 

and symbols (cognition) level. In the signal level the raw data provided by the individual 

sensors are directly combined. As a pre-condition, the signals must be compared, 

registered and synchronised. In the features level only the extracted features or 

descriptors of the signals are combined. This is usually the case for signals that can not 

be directly combined. In the symbols level, only high-level interpretations of the signals 

(for example, classification results) are combined together to achieve final decisions 

usually based on probability levels. Both in the features and symbols level, great part of 



the information of the individual signals are lost. 

Sensor integration and data fusion are thus the key factors for conceiving flexible 

automation systems, which can be applied within production environments and enable 

the dynamical inspection of small series production. But the fusion of sensors may even 

complicate the production tasks if no cognitive methods for interpreting the greater 

sensing capabilities of the system are provided. The following section discusses briefly 

about cognition aspects and how it may support the creation of self-optimised systems. 

 
COGNITION AND SELF-OPTIMISATION ASPECTS 

The trends for miniaturisation and individualisation of the production require a great 

effort in designing flexible technical systems, which must be able to work with and add 

value to products as efficiently as the current mass production systems already do, but 

dealing with variable productive conditions. Cognitive capabilities such as perception, 

reasoning, learning and planning turn technical systems into systems that know what 

they are doing [12]. To better comprehend these key cognitive concepts, it is useful to 

analyse such technical systems inside a so called cognitive-based perception-action 

closed loop, which is depicted in Figure 3. It illustrates the architecture of a cognitive 

system with multi-sensor perception, cognition (learning, knowledge, action planning), 

and action. These key concepts can be understood as follows [12]: 

 

Figure 3. The cognitive system architecture: The perception-action closed loop (left) and the inter-

relationship of the cognitive capabilities (right). Source [12]. 

• Perception is the acquisition of information about the environment and the 

current object under study. Part of this information is processed and new relevant 

features and information can be generated through e.g. recognising, classifying 

and locating objects, observing relevant events/situations and retrieving context 

information about it. 



• Action is the process of generating behaviour to change the surrounding 

environment and complete the tasks that were designated to the system, 

according to the decisions that were taken about the environment perception. 

• Knowledge can be seen as consisting both of a declarative and a procedural 

instance. Declarative knowledge means recognising and understanding the real 

information known about objects, ideas and events in the environment and their 

inter-relationships. Procedural knowledge handles actually the information 

regarding how to execute a sequence of operations. 

• Learning is the process of acquiring information and reorganising such 

information in order to derive new knowledge. The learned knowledge can relate 

to skills, experience, or being taught. Learning causes a change of behaviour that 

is persistent, measurable and specified. It is a process that depends on 

experience and leads to long-term changes in behaviour. 

• Reasoning is a cognitive process by which an individual or system may infer a 

conclusion from an assortment of evidence, or from statement of principles. 

• Planning is a process of generating representations of future behaviour, prior to 

the use of such plans, to constrain or control current behaviour. It comprises 

reasoning about the future in order to generate, revise or optimise the intended 

course of action. 

These key concepts are studied by some interdisciplinary but close related research 

fields, as e.g. natural cognitive sciences, control theory and artificial intelligence. 

Through the use of some tools and principles from control theory (feedback, robust and 

adaptive control rules, modelling through differential equations and automata etc.) and 

artificial intelligence (probabilistic estimations, decision trees, support vector machines, 

neural networks, reinforcement learning etc.), cognition aspects can already be provided 

within technical systems. But in order to achieve a real autonomous and intelligent 

automation level for the production, cognition must be applied and connected along all 

the production layers, from the low technical levels to the high planning levels. 

Through the use of higher cognitive connection within the production environment it is 

even possible to conceive self-optimised systems [13,14]. These are intelligent systems 

that present the capability to react autonomously and flexibly against their surrounding 

environmental conditions, the interference of the external users/systems, or also their 

own dynamical behaviour, modifying their goals and adapting their parameters/structure 

in response to these dynamic factors. These systems are usually able to learn with their 



own experiences and remember from past events, which may help predicting new 

events and optimising their behaviour in future situations [13]. 

By definition, self-optimisation is characterised by the simultaneous and dynamic 

interaction of three factors [13,14]: 

1) Analysis of the current system situation; 

2) Determination of the system objectives; 

3) Adaptation of the system behaviour to the new surrounding conditions. 

The first factor means perceiving the system actual state and all the significant 

modifications in its surrounding environment, which may be caused by different 

interference sources. The second factor allows the system to define autonomously its 

next goals by selecting the most adequate among a pre-defined list, adapting the 

current existent goals to the current situation, or even generating new ones. The third 

factor is achieved by changing the system's parameters, structure and behaviour, in 

order to follow the new set of defined goals and close the control loop. The optimisation 

concept is usually introduced among the second or third factors. 

The optimisation methods can be divided into three classes [13]: model-based, 

behaviour-based and hybrid optimisation. The model-based optimisation method occurs 

by linking the interpretation of the system and environment status with their 

mathematical description (model), allowing their algorithmic comparison, in order to 

adapt its goals and perform optimisation. The behaviour-based optimisation method 

uses a knowledge basis and the system past experiences together with cognitive 

techniques to choose an adequate behaviour for the system among some pre-defined 

behaviour forms. The hybrid optimisation occurs when both methods are combined. 

In the sequence, two different application scenarios for the use of the MEOND 

technology and their respective cognitive and self-optimisation aspects are commented 

in more details. 

 
APPLICATION SCENARIOS FOR THE MEOND TECHNOLOGY 

Applying MEOND to the macro-/micro-system world consists in defining an adequate 

modular set of macro-/micro-metrology techniques (sensor pool), and implementing the 

control intelligence that will guide them during each new measurement request coming 

from the small series production line. Two examples will be next provided: a possible 

scenario for the flexible inspection of automobile headlights and the self-optimised 

assembly of a solid state laser. 

 



Flexible Inspection of Automobile Headlights 

The automotive industry features many distinct examples of mass and small series 

production of automobile components simultaneously. New automobiles are constantly 

being conceived with novel technologies and design details that must attend at the 

same time a different number of market niches and maintain high quality and customer 

satisfaction levels. Some companies prefer to concentrate their efforts to introduce 

advances and optimise the production value-added chain by simply improving the 

current existent manufacturing processes and keeping a low product variety. Other 

companies intend to offer the clients a greater diversity of product models and therefore 

concentrate more efforts on planning the different details and the production flexibility 

needed to attend the requirements that arise with smaller production batches. 

The inspection of high quality automobile headlight glasses demands flexible and 

specialised sensing techniques, in order to perform a 100% quality inspection from a 

great diversity of product models. The current automobile headlight glasses feature a 

great diversity of design details (lines, curvatures, markings) with distinct geometries and 

possibly also magnification transfer functions, for focusing the spot lights in a precise 

specified distance. Not only these design and geometric details must be inspected to 

match the product specifications, but also the presence of possible manufacturing 

failures, such as material defects, scratches, cracks and dirt. 

The automatic inspection of automobile headlights through specialised optical sensing 

systems is already performed in industrial environments by the use of modular and 

enclosed machine vision stations, in which the headlight glasses mounted on adequate 

pallets are fed and displaced within an automated inspection system through conveyor 

belt systems (Figure 4). 

 

Figure 4. Automated system for the inspection of automobile headlight glasses (left). Headlight glasses 

mounted on pallets fed by conveyor belts (middle). Internal modular machine vision stations (right). 

The basic automated inspection system consists of two machine vision stations using 

line-cameras and especial backlight and darkfield illumination strategies to enhance 



exactly the needed features of the headlight glasses. By a normal operation of the 

system, the different features of the headlight glasses are extracted correctly from two 

different images delivered by each machine vision station respectively. Even the 

presence of small dirty points can be detected by the system. 

Although the synchronisation of the system and the image quality from the machine 

vision stations allow a perfect analysis and inspection of all the relevant features of the 

headlight glass, a considerable quantity of pseudo-rejections is still delivered. The 

reasons for that are the extreme rigid configuration of the machine vision stations and 

the lack of intelligence of the automated system to correctly identify the localisation, 

geometry and displacement of the relevant headlight features. To avoid considering a 

specific design detail of the headlight glass as a possible scratch or crack, the 

inspection for failures is restricted to rigid regions of interest (ROI) in the acquired image 

(Figure 5). A small false displacement from the headlight pallets, causing the headlights 

to be falsely positioned in front of the cameras, is enough to disturb the correct 

inspection of the product features. With such an inspection strategy it is also impossible 

to set different kinds of headlight models to be inspected simultaneously, as no 

recognition of the product and from its features is performed during the operation of the 

automated inspection system. 

 

Figure 5. Measurement results from the machine vision stations with darkfield (left) and backlight 

(right) illumination strategies. ROIs are used to avoid inspecting design details as failures. 

In the scope of the “Brazilian – German Collaborative Research Initiative on 

Manufacturing Technology” – BRAGECRIM, this automated inspection system is being 

implemented in the Laboratory of Machine Tools and Production Engineering WZL at 

the RWTH Aachen. A new inspection approach with enhanced sensing capabilities, 

higher flexibility and cognitive level is needed to avoid the pseudo-rejection errors and to 

allow the simultaneous inspection of different product variants. Following the MEOND 



principle a sensor pool consisting on the following measuring techniques was planned 

(Figure 6): a new machine vision station with megapixel camera, zoom lenses and 

flexible illumination strategy, responsible for identifying the product model and also its 

main features; a thermographic station with a megapixel camera, for identifying some 

special features of the product (especially contours); and a 3D measuring system (e.g. 

fringe projection or stereoscopy) for obtaining the height profile and generating a 

complete 3D model of the product. The previous existent machine vision stations are 

also kept in order to perform the fine inspection of the product features. 

 

Figure 6. Illustration of the MEOND principle applied to the flexible inspection of automobile headlights. 

The first part of the project concentrates on the implementation of the new flexible 

machine vision station and the cooperative integration and fusion of its data with the 

other two already existent machine vision stations. By loading new headlight glasses 

into the machine, the current state of the whole inspection system is monitored, so that 

the inspection goals can be dynamically defined. The type of the headlight is firstly 

recognised by the new machine vision station, as well as its localisation and orientation, 

through the use of image processing and artificial intelligence techniques. With this prior 

information about the product, the next machine vision stations may be correctly 

configured to perform the fine inspection of the product features taking into 

consideration the type of the headlight (car model), its side (left or right headlight), and 

its correct displacement within the pallet. Together, the combined sensor data are used 

for delivering a global decision about the quality level of the product and avoid 

generating pseudo-rejections. The need for human assistance is yet discarded for 

configuring the system when a different headlight model is loaded into it, as the system 

already knows what it is inspecting. Due to the characteristics of the headlight glasses, 



which absorb great part of infrared radiation that is emitted in their direction, a 

thermographic camera could be successfully applied for inspecting the headlight 

contours and some design details, which can be extremely difficult to segment with 

traditional illumination strategies. This thermographic measuring station is currently 

under study and is planned to be integrated to the system during the next project 

phases, as well as the 3D measuring station, for the profiling and 3D-model generation 

of the product. 

 
Self-optimised Assembly of a Solid State Laser 

The assembly of manufactured components and testing functionality of products are 

generally the last activities performed in a production line, which are usually expensive 

tasks. In some cases, like the assembly of optical components (achromates, microscope 

objectives and lasers), the assembly process makes up to 80% of the total cost of the 

product, what leads to a great demand for automating their assembly process. The 

quality of optical devices directly depends on the manufacturing quality of their 

components and on their precise assembly, which is still manually performed. The 

assembly automation of a micro-laser device is currently being worked within the scope 

of a major project – the “Aachen House of Integrative Production”. The goal is the self-

optimised and automated assembly of a micro-laser [15,16], which is developed by the 

Fraunhofer ILT. It consists on a diode-pumped solid-state (DPSS) laser arranged with a 

planar configuration that facilitates the automated assembly (Figure 7). All its optical 

components can be positioned and assembled from above. They are mounted (soldered 

or bonded) on a coated ceramic carrier plate without the possibility of readjustment after 

the assembly process. 

 

Figure 7. Demonstrator of the laser device designed for the automated assembly. Source: ILT. 



The older model of the micro-laser was assembled completely manually in a non-

systematic and empiric way, demanding thus, very high expertise for positioning the 

components and attending the minimal quality specifications. The automation approach 

is based on a flexible assembly module, which makes use of robots for the positioning 

and assembly of the laser components. The whole system must be continuously 

updated with information (from multiple sensors) about the assembly process, so that it 

may learn from its past experiences and improve itself constantly. 

Following the MEOND principle a sensor pool consisting on the following measuring 

techniques was planned (Figure 8): a CCD-camera-based laser beam inspection system 

for monitoring the laser quality; machine vision for monitoring the fine positioning of the 

optical components; thermography for monitoring the components joining process 

(soldering/bonding); and a laser light section sensor for obtaining the height profile of 

the assembled components and generating a complete 3D model of the assembled 

micro-laser (allowing CAD comparison). 

 

Figure 8. Illustration of the MEOND principle applied to the automated assembly of the DPSS laser. 

The first part of the project concentrates in the cooperative sensor integration and fusion 

of the laser beam inspection system and the optical components positioning monitoring, 

which must assist the robots in the components manipulation process. A first lens is 

roughly positioned by a manipulation robot on the laser plate, in front of the laser diode. 

This rough initial position for the lens is obtained from a system model or from previous 

assembly experiences. The precise adjusting of the lens position is performed then by a 

micro-manipulator, which is coupled at the same robot. This adjusting process is guided 

through the analysis of the laser beam parameters, where an optimal beam behaviour is 

searched during the fine positioning of the lens. Next, the machine vision system 



monitors and determines through image processing techniques the accurate absolute 

position of the lens, because the manipulation robot can only retrieve relative positions. 

Together, the combined sensor data reflect the current complete state of the system 

and enable it to learn the fastest way to find the ideal laser beam and to optimise itself in 

the next assembly iterations (Figure 9). The introduction of new lenses in the assembly 

process increases the complexity of finding an optimal configuration for the whole set, 

because after a lens has already been correctly positioned, the insertion of a new 

component disturbs the behaviour of the laser beam, depending on the algorithm being 

used for the systematic assembly. In this case, the measurement and manipulation 

tasks should also be assisted by a mathematical model and simulation, which can 

estimate best initial points for the positioning of each optical component. Based on the 

model and on the simulation results, the system can find and converge quicker to the 

optimal configuration of the whole set. 

 

Figure 9. Combining different measurement information to enable learning and optimisation. 

When the fine positioning of the lenses has achieved its optimum, they must be 

definitively joined to the laser board. The process involves heating of solder or glue 

elements under the optical components. To guarantee that the components will remain 

fixed enough after the joining process, the temperature curves underneath the optical 

components have to be monitored, so that a better distribution of the joining material is 

achieved between the laser board and the components’ bottom surface. This process is 

currently under study with thermographic cameras. The other foreseen measuring task 

(laser light section) is planned to be integrated to the system in the next project phases. 

 

 



CONCLUSIONS 

The current requirements for a cost-effective industrial production in high wage countries 

demand a higher degree on innovation towards the conception of intelligent production 

systems, which must be able to deal with an increased product variety and handle with 

the flexibility of small series production. Automated systems that restrict working with a 

greater product variant or limit the capabilities of the production processes directly 

constrain the customisation/individualisation of the production. Flexible automated 

systems require therefore the capability to adapt themselves to their surrounding 

conditions, which means that they must be supported by novel and intelligent sensing 

strategies, able to enhance the perception capabilities of the production system.  

All these requirements complicate considerably the automation and control of the 

manufacturing tasks, offering great challenges for the quality management systems. 

Cognition and self-optimisation strategies are seen as key factors to conceive more 

flexible systems, reducing the increased dilemma between planning- and value-

orientation and enabling an adaptive automation of the production without needing to 

invest strongly on planning tasks. 

Flexible industrial metrology with a higher cognitive inspection level plays an 

indispensable role, in order to maintain the quality of products and processes and 

simultaneously attend the flexibility of the small series and individualised production.  No 

single measuring technique has been found until today, which is able to perform multiple 

inspections of many different features of a manufactured object. It is clear that each 

measuring technique is better suited for inspecting specific kinds of features or can be 

better adapted to certain kinds of applications and that is why sensor fusion principles 

have become ultimately a great trend for the metrological field. New metrological 

systems providing such sensor fusion features go already towards this trend direction, 

focusing the creation of universal measuring systems. Anyway, they neither provide an 

easy way to correlate the measuring data acquired with the different sensors, nor 

provide an intelligent way to choose the correct sensors for the desired measuring tasks. 

The MEOND principle was then introduced as a possible solution to build intelligent and 

dynamic inspection systems for the small series production, following flexible and 

dynamic sensor fusion principles. Possible application scenarios for this concept were 

discussed among the flexible inspection of automobile headlights and the self-optimised 

assembly of a solid state laser. 

 



AKNOWLEDGMENTS 

The authors would like to thank the Deutsche Forschungsgemeinschaft DFG (German 

Research Foundation) for the support of the depicted researches within the Cluster of 

Excellence “Integrative Production Technology for High-Wage Countries” and within the 

“Brazilian – German Collaborative Research Initiative on Manufacturing Technology” – 

BRAGECRIM. 

 
References: 
[1] G. Schuh, F. Klocke, C. Brecher, R. Schmitt: Excellence in Production, 1st edition, Aachen: Apprimus-Verlag, 2007. 

[2] F. Possel-Dölken, C. Brecher, W. Herfs, T. Kempf: Kognitive Automatisierung – Szenarien und Ansätze für die 
selbstoptimierende Steuerung von Abläufen. Automatisierungstechnische Praxis, Oldenbourg Verlag, December 2007. 

[3] H. Willrett: So macht Ihr’s morgen – Fertigungstechnik: Systeme werden immer intelligenter. Industrieanzeiger, vol. 51/52, p. 
20-28, 2007. 
[4] A. Ubaldo, T. Pfeifer:  Optical metrology aimed for process quality-control-loops (QCL) in production-modules for micro-
technology. IEEE International Conference on Systems, Man and Cybernetics, vol. 6, p. 5417- 5422, October 2004. 

[5] A. Albertazzi, A. Sousa, C. Pezzota: Controle Geométrico por meio da Metrologia Óptica. Revista Metrologia e Instrumentação 
- Seção Medição, p. 38-42, October 2003. 
[6] R. Schmitt, A. Pavim: Fusion of micro-metrology techniques for the flexible inspection of MEMS/MOEMS assembly, SPIE 
Europe - Photonics Europe, Palais de la Musique et des Congrès, Strasbourg, France, April 2008. 
[7] H. Russer, F. P. León: Informationsfusion – Eine Übersicht. Technisches Messen, vol. 74(3), p. 93-102, 2007. 

[8] J. Esteban, A. Starr, R. Willets, P. Hannah, P. Bryanston-Cross: A Review of data fusion models and architectures: towards 
engineering guidelines, Neural Computing & Applications, Springer-Verlag London, Vol. 14, No. 4, p. 273-281, December 2005. 

[9] S. Russel, P. Norvig: Artificial Intelligence – A Modern Approach, 2nd Edition, Prentice Hall, 2003. 

[10] N. Chater, J. B. Tenenbaum, A. Yuille: Probabilistic models of cognition: Conceptual foudations, Trends in Cognitive 
Sciences, Vol. 10, No. 7, p. 287-291, July 2006. 
[11] M. Beetz, M. Buss, D. Wollherr: Cognitive Technical Systems — What Is the Role of Artificial Intelligence? KI 2007: 
Advances in Artificial Intelligence, Springer Berlin / Heidelberg, vol. 4667, p. 19-42, August 2007.  
[12] M. Buss, M. Beetz, D. Wollherr: CoTeSys – Cognition for Technical Systems, International Journal of Assistive Robotics and 
Mechatronics, Vol. 8, No. 4, p. 25-36, 2007. 
[13] J. Gausemeier, U. Frank, H. Giese, F. Klein, O. Oberschelp, A. Schmidt, B. Schulz, H. Vöcking, K. Witting: Selbstoptimierende 
Systeme des Maschinenbaus: Definition und Konzepte, HNI-Verlagsschriftenreihe, 2004. 

[14] J. Gausemeier, U. Frank, A. Schmidt, D. Steffen, H. Giese, F. Klein, M. Tichy: A Design Methodology for Self-Optimizing 
Systems, AAET 2005 - Automation, Assistance and Embedded Real Time Platforms for Transportation, 6th Braunschweig 
Conference, Technical University of Braunschweig, February 2005. 
[15] R. Schmitt, B. Damm, M. Harding, A. Pavim: Sensor fusion techniques for the self-optimised assembly of a micro-laser, 7th 
International Heinz Nixdorf Symposium, Paderborn, vol. 223, p. 331-343, February 2008. 
[16] R. Schmitt, B. Damm, A. Pavim: Regelung der automatisierten Montage eines Mikrolasers durch Sensordatenfusion, 
ROBOTIK 2008 – Leistungsstand - Anwendungen - Visionen - Trends, München, VDI-Berichte 2012, p. 7-10, Juni 2008. 

 
Authors: 
Prof. Dr.-Ing. Robert Schmitt, M. Eng. Alberto Xavier Pavim

†
 

Laboratory for Machine Tools and Production Engineering WZL at RWTH Aachen University 
Steinbachstrasse 19, 52074 Aachen, Germany 
Phone: +49 241 80-24782     Fax: +49 241 80-22193 
E-mail: A.Pavim@wzl.rwth-aachen.de 

                                                 
† Scholarship holder of the Brazilian CNPq, corresponding author. 


