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Abstract

Network models pervade modern biology. From ecosystems down to molec-

ular interactions in cells, they provide abstraction and explanation for bi-

ological processes. Thus, the relation between structure and function of

networks is central to any comprehensive attempt for a theoretical under-

standing of life.

Just as any living system, biological networks are shaped by evolutionary

processes. In reverse, artificial evolution can be employed to reconstruct

networks and to study their evolution. To this end, I have implemented

an evolutionary algorithm specifically designed for the evolution of network

models. It couples genetic programming of the network topology with an

evolution strategy applied to the kinetic parameters. By this separation of

structural from parameter evolution, the kinetic parameters can adapt to

new topologies before these are evaluated. Using exemplary fitness func-

tions, it is shown that this approach smoothens the path in topology search

space, prevents premature convergence, and has superior performance com-

pared to alternative procedures.

With the developed evolutionary framework, a study of the evolution of

information-processing networks was performed. Applying the concept of

chemical organisation theory, it is shown that selection favours an organisa-

tional structure that is related to function, such that computations can be

visualised as transitions between organisations. Mutations of the network

topology subsequently change the organisational structure towards a lattice

representing the desired computations. This approach presents a novel and

useful analysis of the evolution of computation in networks.

Fluorescence imaging techniques such as fluorescence recovery after pho-

tobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) pro-
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vide quantitative and dynamic data about protein kinetics in the cell. In

this thesis, mathematical modelling is applied to extract knowledge about

reaction-kinetic constants from this data, and the model is presented and

discussed in detail. Using this approach, a detailed quantitative model of

exchange dynamics at PML nuclear bodies (NBs) is created, showing that

PML NB components exhibit highly individual exchange kinetics. For the

first time, PML NB assembly dynamics in cells lacking endogenous PML

are described.

The FRAP data for PML NBs is additionally used as a test-case for auto-

matic model inference using evolutionary methods. While there exists no

single best model to fit the data, a set of necessary and sufficient criteria

for a good model fit is revealed. A detailed investigation of the search space

shows large plateaus with identical fitness values, hampering the progress

of the evolutionary algorithm.

When analysing evolution, a comparison of different evolutionary stages can

often be facilitated by modelling. In the last part of this thesis, a stochastic

analysis of the genetic regulatory system of DEF-like and GLO-like class B

floral homeotic genes provides an explanation for their intricate regulatory

wiring. The different potential regulatory architectures are investigated us-

ing Monte Carlo simulation, a simplified master-equation model, and fixed-

point analysis. It is shown that a positive autoregulatory loop via obligate

heterodimerisation of transcription factor proteins reduces noise in cell-fate

organ identity decisions. Furthermore, the comparison of potential regula-

tory systems establishes an “evolutionary motif”, which might have more

general applications.
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Zusammenfassung

Netzwerkmodelle sind weit verbreitet in der modernen Biologie. In allen

Teilgebieten - von der Ökologie bis hin zur Molekularbiologie - bieten sie

die Möglichkeit, untersuchte Prozesse und Phänomene zu abstrahieren und

damit auf theoretischer Ebene zugänglich zu machen.

Wie alle lebenden Systeme resultieren auch biologische Netzwerke aus evo-

lutionären Abläufen. Im Umkehrschluss kann man künstliche Evolution

verwenden, um solche Netzwerke zu rekonstruieren und ihre Entstehung

zu untersuchen. Vor diesem Hintergrund wird hier ein evolutionärer Algo-

rithmus vorgestellt, der speziell für die Erzeugung von Netzwerkmodellen

angepasst ist. Dafür wurde eine Genetische Programmierung der Netz-

werkstruktur mit einer Evolutionsstrategie auf den kinetischen Parametern

verknüpft. Durch diese Trennung von Struktur- und Parameterevolution

können sich die Parameter einer neu erzeugten Netzwerkstruktur erst an-

passen, bevor diese bewertet wird. Dieser Ansatz glättet den evolutionären

Pfad durch den Suchraum und verhindert vorzeitige Konvergenz, wie durch

einen Vergleich mit alternativen Methoden gezeigt wird.

Mit dem neu entwickelten Evolutionären Algorithmus wurde dann eine

Studie zur Evolution von informationsverarbeitenden Netzwerken durch-

geführt. Mithilfe der Chemischen Organisationstheorie wird gezeigt, dass

die Selektion eine funktionale Organisationsstruktur erzeugt, in welcher

eine Berechnung als Transition zwischen Organisationen abgebildet wer-

den kann. Mutationen der Netzwerkstruktur erzeugen Änderungen in der

Organisationsstruktur des Netzes, so dass die evolvierende Berechnungska-

pazität visuell dargestellt werden kann. Dieser Ansatz bietet eine neue und

nützliche Analyse der Evolution von signalverarbeitenden Netzwerken.
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Bildgebende Verfahren mittels fluoreszierender Proteine - z.B. FRAP (flu-

orescence recovery after photobleaching) und FCS (fluorescence correlation

spectroscopy) - erzeugen quantitative und dynamische Daten über Proteink-

inetiken in der Zelle. In dieser Arbeit wird gezeigt, wie man mathematische

Modellierungsmethoden verwenden kann, um kinetische Reaktionskonstan-

ten aus diesen Daten zu gewinnen. Die verwendete Methode wird im Detail

vorgestellt und diskutiert. Auf diese Weise entstand ein detailliertes Mod-

ell des Proteinaustauschs an PML nuclear bodies (NBs), in welchem die

Komponenten der PML NBs sehr differenzierte Austauschverhalten zeigen.

Darüber hinaus wird - zum ersten Mal - die Dynamik von PML NB Kom-

ponenten in Zellen ohne endogene PML Proteine beschrieben.

Darüber hinaus werden die durch FRAP gewonnenen Daten genutzt, um die

automatische Evolution von Netzwerkmodellen in einer realistischen Fall-

studie zu testen. Auf diese Weise werden notwendige und hinreichende

Bedingungen aufgezeigt, welche die
”
passenden“Modelle erfüllen müssen.

Eine detailierte Erkundung des Suchraums ergibt Plateaus mit gleichen Fit-

nesswerten, welche den Evolutionären Algorithmus stark beeinflussen und

behindern.

Modellierung kann oftmals helfen, verschiedene Stufen in der Evolution

eines Systems zu vergleichen. In dieser Arbeit wird eine stochastische Ana-

lyse des Zusammenspiels derDEF- undGLO-Gene in der Blütenentwicklung

gezeigt, welche eine Erklärung für ihre überraschend komplexe Verschal-

tung liefert. Die verschiedenen möglichen Regulationsmechanismen werden

mithilfe von Monte-Carlo-Simulation, einem Master-Equation-Ansatz und

der Fixpunktanalyse verglichen. Es wird gezeigt, dass positive Autoreg-

ulation durch obligatorische Heterodimerisierung den Einfluss des Zufalls

auf die Organidentität reduziert. Dieser Vergleich regulatorischer Systeme

enthüllt ein
”
evolutionäres Motiv“, das auch über die Blütenentwicklung

hinaus Anwendung finden könnte.
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1
Introduction

Chapter summary. In modern biology, network models are all over the place, from

ecosystem scales down to cellular processes. Due to their non-linear nature, the relation

between structure and function of networks is - at the same time - difficult to study and

important to understand. This chapter provides a brief overview of structure, dynamics

and function of networks, and characterises motifs, modules and global organisation

of cell-biological networks. Furthermore, the evolutionary processes shaping biological

networks are sketched, and several in silico attempts to model and study the evolution

of networks are presented. In a complementary approach, in silico evolution is used to

automatically infer network models from data. As an important tool for all this work,

the field of Evolutionary Algorithms is presented, with special emphasis on Genetic

Programming of network models and CMA Evolution Strategies for parameter fitting.
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1.1. BIOLOGICAL NETWORKS AND MODELLING

1.1 Biological networks and modelling

The 20th century has brought a paradigm-shift to all biological sciences, from ecology

to molecular biology: away from a pure description of the living world, towards the

quantification and ultimately prediction of living phenomena. This new paradigm was

brought about by the combined ascent of more fine-grained, larger scale experimental

techniques and computing technologies that enable a comprehensive understanding of

complex data sets. Meanwhile, our understanding of biology has changed: where the

focus was traditionally centred on linear cause-effect relationships, it has now become

clear that things are much more complicated, that “everything is connected with every-

thing”, and that networks are the more appropriate way to describe relations between

entities in the biological sciences.

This finding is true on every scale: in ecosystems, networks (food-webs) start to

replace the traditional food-chains (Bascompte, 2007; Montoya et al., 2006; Pimm,

2003), while on the molecular level, the computer-guided analysis and integration of

data has created a whole new field: systems biology (Alon, 2006; Kitano, 2002; Klipp

et al., 2006; Ventura et al., 2006). The fact that networks are at the core of many of

the new aspects in biology has lead to an increasing interest by theoretical biologists

into their formal treatment and analysis (e.g. Barabási and Oltvai, 2004; Milo et al.,

2002; Strogatz, 2001).

The rapidly increasing importance of networks in (molecular) biology provides the

background for this thesis: I have looked, from different angles, at the relationship

between structure and function of biological networks. Even though the work was

focused on applications in molecular biology, most of the results can also be applied to

other kinds of networks describing dynamical systems.

3



1. INTRODUCTION

1.2 Structure and function in evolution

Colloquial and technical definition of evolution There are at least two

different meanings to the term “evolution” that need to be discussed here. In colloquial

language, it usually denotes the mechanism that shaped life on earth as we know it,

leaving palaeontological traces that help us to decipher it. In a more technical usage,

it can denote any process of changing a collection of entities over time, using random

changes (mutations) and selection on the mutated entities. In this thesis, I use the

second, more abstract definition, which includes the first one as a special case.

Evolution can act on any changeable (evolvable) entity. As the title suggests, this

thesis deals with the evolution of networks, specifically networks in systems biology.

Special care has to be taken in defining where the processes of mutation and selection

apply. In the evolution of life, mutation usually acts on genetic information encoded

in DNA, while selection happens at the level of the organism. The focus in this thesis

lies on evolution that directly acts on networks. Mutation and selection thus happen

on the level of individual networks.

1.2.1 Relation between structure and function in biological networks

Molecular networks can be described at different levels When looking at

molecular networks, we find at least three levels that are influenced by evolutionary

forces:

• network structure

• network behaviour

• network function

The structural level is the most basic one, composed of the network’s nodes (vertices)

and their connections (edges). Typically, the network nodes denote molecular species

such as genes, proteins, RNA segments, and so on. On the intermediate level, we find

the dynamic behaviour of the network, i.e. how the concentrations of its participating

proteins vary over time under different conditions. Therefore, the second level emerges

from the first one in a mechanistic fashion. The topmost level consists of the function

of the network, i.e. the action it performs in the cell. This level is usually created

4



1.2. STRUCTURE AND FUNCTION IN EVOLUTION

as an interpretation of the network behaviour by an (internal or external) observer.

As an example, consider a specific version of the Lac operon (see Prill et al., 2005).

The system consists of a positive feedback loop (structural description) that realises a

genetic switch (dynamic behaviour), which is used by the cell as a primitive memory

mechanism (function).

The need for network models Before going into details on the relation between

network structure and function, we need to ask one fundamental question: Why do

we need network models in biology? To see this, let us review that in recent years,

high-throughput experimental approaches have started to create large amounts of data

that cannot be intuitively understood any more. Network models offer a formalised

way of integrating this data into relationships between biological entities (Han, 2008).

To make this integrated knowledge available to the scientific community, the models

themselves can in turn be stored in databases (Le Novère et al., 2006), ideally together

with annotations linking them to biological descriptions (Le Novère et al., 2005).

The function of a network A second question, not less fundamental: What ac-

tually is the function of a biological network? Network function is generally understood

to be the “desired system characteristics” or “performance” (Carlson and Doyle, 2002).

For a more specific definition, the answer depends on context, mainly on the type of

network one is dealing with. For genetic networks, especially those in developmental

processes, it is the steady-state attractors and transitions between them that are of

consequence to the cell (Alvarez-Buylla et al., 2008; Huang et al., 2005). In metabolic

networks, the flux of metabolites through the system constitutes its function (Heinrich

and Schuster, 1996; Schilling et al., 2000; Schuster et al., 1999; Stelling et al., 2002),

whereas in signalling networks, the reliable short-time propagation and integration of

signals plays this role (Bhalla and Iyengar, 1999; Eungdamrong and Iyengar, 2004;

Kholodenko, 2006; Tyson et al., 2003).

More generally speaking, the concept of biological function is a key to the philosophy

of biology (see e.g. Diaz-Herrera, 2006, and references therein). The general notion

seems to be that biological function describes, in the context of natural selection, why

a certain biological system exists, i.e. it specifies the way the system contributes to

the fitness of the organism. This is in contrast to the mechanism, which describes how

the systems functions. Importantly, this definition of function is not a teleological one,
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Figure 1.1: Four examples of network motifs discussed in the text. Adapted from Milo

et al. (2002).

since it does not invoke the purpose of the system’s existence, but rather the fitness

advantage it provides to the organism.

The dynamic behaviour and function of network models is a complicated issue in

itself. Different temporal and spatial scales, feedback loops, and nonlinear kinetics lead

to complex dynamics that can have unforeseen consequences. Thus, there is a clear

need to establish closer links between network structure and function.

Structure - function is a many to many mapping The relation between

structure and function of biological networks is clearly not a simple mapping. In one

direction, a single network structure does not have a uniquely defined function, but can

show a range of behaviours (and thus functions) depending on its kinetic rate laws and

parameters. For example, Mangan and Alon (2003) show at least two fundamentally

different functions for the feed-forward loop, while Ingram et al. (2006) demonstrate five

types of computations that can be performed by the bi-fan motif (see Figure 1.1 for the

motif definitions). Wetlab experimental evidence for this phenomenon was described

by Guet et al. (2002). In the other direction, a defined function does not imply a unique

representation as a network structure. For example, Tsong et al. (2006) have shown how

different network topologies can lead to the same regulatory behaviour. Additionally,

in this thesis (Section 5), I show how of the 64 possible three-node network topologies

with only first-order reactions, at least 18 are able to equally well fit a time-series data

set from FRAP experiments of PML-bodies.

Network motifs link structure and function One approach of linking net-

work structure and function is by small characteristic subnetworks that are significantly

6
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overrepresented in the whole network, compared to randomised networks with the same

degree distribution. These subnetworks are called network motifs (Alon, 2006; Milo

et al., 2002). Due to the apparent simplicity they introduce into complex networks,

motifs have been at the heart of many theoretical (Mangan and Alon, 2003; Milo et al.,

2004) and experimental studies (reviewed by Alon, 2007) in recent years.

In a groundbreaking study, Milo et al. (2002) have analysed networks from biochem-

istry, neurobiology, ecology, and engineering for significantly overrepresented three-node

and four-node motifs. They found that only a few motifs characterise each network,

and the characterising motifs are similar in networks with similar function (Milo et al.,

2004). For example, information processing networks (gene regulatory networks, neural

networks, forward logic chips) typically contain the “feed-forward loop” and the “bi-

fan” motif (Figure 1.1). In contrast, networks of energy flow are dominated by “chain”

and “bi-parallel” motifs. Interestingly, metabolic networks contain feed-forward loops

as well as motifs with feedback (Zhu and Qin, 2005), indicating a larger capacity for

information processing than typically found in food webs.

Four families of network motifs exist in transcriptional networks Be-

cause they are easier to access and better described than other types of networks,

many subsequent studies that build on the work of Milo et al. (2002) have focused

on transcriptional networks (reviewed by Alon, 2007). They have identified - both in

theory and in experiments - four families of network motifs in transcriptional networks.

Grouped in the first family are motifs of simple regulation, such as direct regulation of a

gene by a transcription factor, positive and negative autoregulation (Figure 1.2(a)-(c)).

Negative autoregulation decreases the transcriptional response time, while positive au-

toregulation leads to larger response times and ultimately to self-sustaining expression

of a protein. The second family is composed of variants of the feed-forward loop, which

often function as delay elements, persistence detectors, pulse generators or response

accelerators (Figure 1.2(d)). “Single-input modules” define the third family, in which

one regulating factor acts simultaneously on a group of target genes (Figure 1.2(e)).

Finally, the fourth family is composed of “dense overlapping regulons”, in which a set

of regulators combinatorically controls a set of target genes (Figure 1.2(f)). These com-

plex gate-arrays, in which many inputs regulate many outputs, usually are responsible

for a significant biological function in the cell.
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Figure 1.2: The four motif families discussed in the text, adapted form Alon (2007).

(a)-(c) simple regulation: (a) direct regulation, (b) negative autoregulation, (c) positive

autoregulation. (d) feed-forward loop. (e) single-input motif. (f) dense overlapping reg-

ulon. In all figures except for (b) and (c), the arrows indicate either positive or negative

regulation.

Motifs often involve feedback, especially in networks that process information (Brand-

man and Meyer, 2008). Feedback is vital for modulation of cellular signals, for example

for decision making (bistable switching by positive feedback) or smoothing of irregular

signals (negative feedback). Due to its inherent nonlinearity, it typically complicates

the analysis of network behaviour and function. One feedback motif with special rel-

evance to developmental processes is the double-positive feedback loop (Alon, 2007),

whose function under the influence of noise is studied in Chapter 7.

Motifs give hints about network function, but the relation is not clear

Different environmental conditions require different cellular functions. If a link between

network function and motifs exists, it is to be expected that different motifs are favoured

by different conditions in the cell. Indeed, Luscombe et al. (2004) found that in yeast,

networks that regulate the internal processes of the cell (e.g. the cell cycle) contain more

feed-forward loops, which may stabilise these long-term processes by suppressing noise

and damping amplifications. In contrast, modules dealing with external signals (e.g.

DNA damage, stress response) favour single-input motifs, which can quickly generate

a cellular response to the stimulus (Luscombe et al., 2004).

It is, however, important to note that most motifs in molecular networks do not

represent a unique function isolated from the rest of the network, but are tightly in-

tegrated, as demonstrated in E. coli (Dobrin et al., 2004) and S. cerevisiae (Mazurie

et al., 2005). Therefore, it is not immediately obvious if the function they display in
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isolation is really their contribution to the network’s function. In addition to that,

Knabe et al. (2008) show an evolution study on artificial gene regulatory networks in

which networks evolved for different functions did not feature significantly different

motif distributions. Both points indicate that the link between network function and

motifs might not be as tight as suggested by studying the motifs alone, and caution is

advised when the overrepresentation of certain motifs is used to infer network function.

Functional robustness Many studies (reviewed by Stelling et al., 2004) have

highlighted the pivotal role of local network topology for functional robustness in the

cell. Here, “robustness” can be understood in (at least) two ways: either with regard to

external perturbations represented by changes to the kinetic parameters of a network,

or with regard to noise introduced by the low copy number of key regulatory molecules

in the cell. In this thesis, the first aspect comes up in the kinetic analysis of FRAP data

(Chapter 6), and the second one is the main topic of our investigation of the B-gene

regulatory circuit in flowering plants (Chapter 7).

Directly relating functional robustness to network motifs, Prill et al. (2005) demon-

strated that the abundance of motifs in several biological networks is remarkably well

correlated with the stability of their function to perturbations in the kinetic parame-

ters. Thus this type of stability may either be a by-product of the evolutionary process

or the chemical substrate, or it may be of evolutionary benefit to the organism. Given

a more robust function in the presence of noise and an enhanced evolvability (since the

parameters do not have to be fine-tuned), it seems likely that functional robustness is

indeed an evolutionary advantage, at least to some extend. In analogy, Klemm and

Bornholdt (2005) have found that when looking for motifs whose computations are

“reliable” in the presence of noise in the inputs, those two-node and three-node motifs

that actually appear in biological networks tend to be more reliable (in the sense of

staying close to their deterministic behaviour) than those that do not.

A popular example for functional robustness is bacterial chemotaxis: in the net-

work governing tumbling frequency, some key parameters can be changed by orders of

magnitude, and the tumbling frequency stays the same (Alon et al., 1999; Barkai and

Leibler, 1997), a principle called “robust adaptation” or “homeostasis”. Similar robust-

ness has been found in the development of segment polarity in Drosophila melanogaster

(von Dassow et al., 2000). Moreover, the chemotaxis network in E. coli seems to be
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the smallest network that is sufficiently robust in this sense, thus minimising the cost

of maintaining robust adaptation throughout evolution (Kollmann et al., 2005).

Modules - functional units in networks While motifs are relatively small,

local patterns in the topology of a network, modules constitute larger functional units

that may be composed of several motifs and that realise a certain sub-function of the

network (e.g., see Hartwell et al., 1999a; Kholodenko et al., 2002; Qi and Ge, 2006). It is

interesting to note that while the definition of a motif is entirely dependent on network

structure, modules are defined by their function, together with potential clustering of

module components. Not all modules that make up a network are always active at

the same time. Depending on time and location, only some modules of a network may

be activated in the cell (Han et al., 2004), for example by “just in time” assembly of

regulating protein complexes (de Lichtenberg et al., 2005).

Functional modules in protein networks can often be defined by protein complexes,

i.e. the proteins involved in one complex are part of one module. Of these complexes,

a significant proportion seems to have evolved by stepwise duplication of their com-

ponents (rather than whole genome duplications), followed by divergence of binding

characteristics (Pereira-Leal and Teichmann, 2005). For example, a large protein com-

plex with only partially characterised function, relevant to human disease, is the PML

body (Chapter 6).

Global organisation: many networks are scale-free On a global scale, the

understanding has emerged that many networks in the cell are scale-free, i.e. the degree

distribution of their nodes is well approximated by a power-law (Albert, 2005; Barabási

and Oltvai, 2004). This is most likely due to growth by preferential attachment, in

which new nodes are more likely to form connections with well-connected nodes. Di-

rect support for this hypothesis comes from the fact that in yeast, evolutionary older

proteins tend to have more connections than younger ones (Berg et al., 2004; Wagner,

2003). Growth by preferential attachment can be well explained by gene duplications

(Barabási and Oltvai, 2004). However, Babu et al. (2006) found that in transcriptional

networks, the main regulators (hubs) are often evolutionary unrelated, suggesting a

convergent evolution towards a scale-free architecture rather than hub duplication. In

the same line of reasoning, Teichmann and Babu (2004) found that key regulators in

one organism often have only few homologous target genes in other organisms. Con-

vergent evolution implies a functional advantage of the scale-free architecture, rather
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than being a mere by-product of the evolutionary process. One potential advantage

could be the topological robustness of scale-free networks to random failure of nodes,

since apart from the key hubs, failure of single nodes will not disrupt the function of

the whole network (Albert et al., 2000; Li et al., 2006).

Chemical organisation theory provides an algebraic link between net-

work structure and behaviour In our group, an approach to link the global net-

work structure to network behaviour has been developed, termed chemical organisation

theory (COT). In COT, the stoichiometry of a network is used to compute the organi-

sations of the network, i.e. sets of species that are closed and self-maintaining (Centler

et al., 2008; Dittrich and Speroni di Fenizio, 2007; Kaleta et al., 2008), and which repre-

sent species combinations that are potentially able to form an attractor. In Chapter 4,

I show how the concept of COT has been applied to investigate the structural evolution

of chemical computation networks (Lenser et al., 2008).

With Chemical Reaction Network Theory (CRNT), Feinberg (1987) presents an

alternative approach to the connection of reaction network structure and function.

CRNT focuses on a relatively simple classification of (mass-action governed) networks

called deficiency (Feinberg, 1987), which yields information about the potential be-

haviour of the network, especially with respect to multistationarity. Recently, Craciun

et al. (2006) have specialised CRNT to the understanding of bistability, detailing neces-

sary conditions for bistability in reaction networks. Due to computational limitations,

CRNT is confined to small systems. Conradi et al. (2007) have bypassed this limitation

by analysing subnetworks of larger networks, defined by elementary flux modes (Price

et al., 2004; Schuster et al., 1999, 2007). A more mathematical analysis of mass-action

systems with respect to stability and bifurcations is given by Gatermann et al. (2005).

1.2.2 Evolution of networks

Network evolution acts on different levels What does evolution act on,

structure or function? To answer this question, one needs to distinguish between the

different aspects of the evolutionary process. On the one hand, mutations act on DNA,

which in turn changes network structure. On the other hand, only the function of a

network confers a selective advantage to the organism. It is important to note that

there are two highly complicated processes involved: (1) The DNA determines network

structure, but this mapping in itself is highly non-linear. For example, most point
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mutations will not have an effect on network structure, but if a single point mutation

occurs in just the “right” place, destroying a key binding site, it can disrupt the whole

network. (2) Network structure, in turn, leads to network function. This process, as

discussed above, is again highly non-linear by itself. For the sake of focus, this thesis

is mainly concerned with the second mapping, from structure to function.

Evolution of local network structure

Molecular networks evolve primarily through gene duplication and re-

wiring of connections Even though evolutionary changes in network structure are

solely driven by mutation and recombination in the DNA, emergent higher-level mecha-

nisms that shape network structure can and have been observed. The current consensus

is that molecular networks evolve by two processes: the gain and loss of interactions

between species, and gene duplication leading to duplication of species and interactions

(Babu et al., 2006; Wagner, 2003). How fast are these processes? For protein inter-

action data in yeast, Wagner (2003) calculates an effective gene duplication rate (i.e.

without the duplications that are quickly lost again) of 10−3 per gene and per million

year, which scales up to about 5-6 duplicated genes for the yeast genome per million

years. Gain and loss of interactions each occur at approximately 5× 10−4 per protein

pair per million years, leading to more than 100 added interactions for yeast (Wagner,

2003). Thus, gain and loss of interactions happens at a much faster rate than gene

duplication.

For the evolution of transcriptional networks, Ward and Thornton (2007) offer evi-

dence from the phylogeny of yeast that the main evolutionary driving forces are rewiring

of connections by mutations in promoter regions, and duplication of transcription fac-

tors. A very illustrating experimental example from Saccharomyces cerevisiae and

Kluyveromyces lactis is presented by Hittinger and Carroll (2007). Babu et al. (2006)

show that transcription factors evolve faster than and independent of target genes,

and that local mutations in the regulatory interactions are the dominant mechanism of

transcription network evolution. Additionally, transcription factors with similar roles

seem to evolve independently in different organisms (Babu et al., 2006; Teichmann and

Babu, 2004). Significant features that are commonly detected in distinct networks (like

network motifs) are therefore likely to be the result of convergent evolution, hinting at

their functional relevance to the cell.
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An interesting side note: It has been observed that transcription factor evolution is

closely linked to the complexity of the organism. In general, more complex organisms

have a higher proportion of transcription factors in their regulatory networks (Levine

and Tjian, 2003). This is in contrast to the number of genes, which does not necessarily

increase with organism complexity.

Gene duplication can fulfil the need for new functionality From the per-

spective of population genetics, evolution of new genes by gene duplication presents a

problem: the newly copied gene has to be maintained for long enough, and actually to

spread far enough in the population, to acquire the advantageous mutation that will

ultimately lead to its establishment as a new gene with a new function. Bergthorsson

et al. (2007) propose a mechanism in which the parent gene acquires a secondary func-

tion before the duplication event. When environmental changes make this secondary

function more important, this lends a selective advantage to organisms with multiple

copies of the gene, thus favouring gene duplication. The multiple copies of the original

gene are now free to lose some of their original dual functionality, which leaves the

organism with two functionally different genes.

The role of non-adaptive processes While many of the arguments presented

so far invoke the functional - and thus selectional - relevance of either network parts or

mutation mechanisms, Lynch (2007a,b) makes an impassionate case for the role of non-

adaptive processes in the evolution of DNA organisation. He argues that phenomena

like the modular organisation of the eukaryotic genome, genome complexity in eukary-

otes and even multicellularity might be (at least in part) the result of mutation and

genetic drift, and do not have to be actively favoured by natural selection. A population

genetics backing for this argument can be described, mainly by invoking the relative

weakness of selection in small populations, as opposed to large populations that are

typical for prokaryotes (Lynch, 2007b). In line with this, Wang and Zhang (2007) argue

that the modular organisation of protein-protein interaction networks might be due to

experimental biases in determining these networks, or the growth process by gene du-

plication, or both. They present evidence from phylogenetic analysis that modules (in

the clustering sense) do not necessarily correspond to biological function (Wang and

Zhang, 2007). However, this “neutralist” claim does not reach to network function,

which is probably under constant selection pressure in all phyla. From all this, it can

be argued that network structure, being situated in-between DNA organisation and
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network function, might at least in part be shaped by non-adaptive forces (Wagner,

2003).

Evolution of higher-order network characteristics

Evolution of network motifs Considering the impact of the motif concept on

the study of network topologies (Section 1.2.1), it is interesting to turn to the mech-

anisms by which network motifs can evolve. Given our current knowledge, it seems

that the widespread appearance of such motifs is not the result of “motif duplication

and divergence”, which could have happened by partial or whole genome duplications

(Babu et al., 2006). Motifs are usually not copied, which can be seen by observing

that the interactions in motifs are not more conserved than those outside motifs, and

orthologous genes can be part of different motifs in different organisms (Babu et al.,

2006; Mazurie et al., 2005). Rather, it seems that network motifs evolved in a conver-

gent manner, from different evolutionary origins, to the same topologies (Alon, 2007;

Amoutzias et al., 2004; Conant and Wagner, 2003; Teichmann and Babu, 2004). Ad-

ditionally, even though the prevalence of some motifs is not the result of copies of one

particular successful motif, it seems to be the case that similar lifestyles of organisms

(e.g. generalists vs. specialists) lead to similar network motifs and local interactions

(Babu et al., 2006; Teichmann and Babu, 2004).

Some studies have indicated that selection actively favours network motifs. Wuchty

et al. (2003) have shown that in yeast, proteins that are organised in motifs are evolu-

tionary more conserved than other proteins. This finding indicates that via the strong

link of network motifs and network function, selection on function might be “passed

through” to selection on network structure.

Network motifs can arise from duplication and divergence alone How-

ever, there is also a different take to the evolution of network motifs. Banzhaf and Kuo

(2004) use artificial regulatory networks to show that many network motifs can arise

by a gene duplication and divergence process alone, without natural selection on the

function of the network. Thus the possibility cannot be ruled out that the significant

overrepresentation of motifs in cellular networks in comparison to random networks is

not (only) due to functional aspects of these motifs, but (at least in part) a natural

consequence of the process by which these network were created (Kuo et al., 2006b). In

subsequent work by Leier et al. (2007), the authors make inferences about the specific
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nature of mutation and preservation processes after duplications that could be at work

in genetic networks. Along the same line of reasoning, it has been shown that gain and

loss of interactions, together with gene duplication, is able to maintain the scale-free

topology of the yeast protein interaction network, without the need to invoke natural

selection (Wagner, 2003).

Protein domains - a mediator between DNA and network structure

Looking closer at the relation between DNA and network structure, one finds that

proteins are arranged of domains, functional units that define the interactions of pro-

teins with each other. Domains can be duplicated, deleted and reshuffled in domain

rearrangements (Bornberg-Bauer et al., 2005). Besides gene duplications, domain ar-

rangements form the second major driving force in the evolution of protein interac-

tion networks (Vogel et al., 2005), and specifically transcriptional networks (Amoutzias

et al., 2004). They lead to an efficient rewiring of the network, bypassing the time-

consuming co-evolution of protein (and/or DNA) sequences that would otherwise be

necessary to gain and rewire connections.

Whole genome duplications in plants In contrast to the findings described

so far, a study on the MADS-domain MIKC-type transcription factor proteins in plants

has shown that their evolution was in large parts driven by whole genome duplications

(Veron et al., 2007). These proteins have, in addition to the MADS domain (or MADS

box), three more interaction domains, termed I (intervening), K (keratin-like) and C

(C-terminal). These domains given the proteins an unusual ability to form heteromul-

timers (i.e. complexes composed of different proteins, all of MIKC-type), leading to the

establishment of a regulatory module that is most likely the reason for their dominant

role in flower development (Kaufmann et al., 2005). Veron et al. (2007) argue that

the sub- and neofunctionalisation of these higher-order complexes (one specific case is

presented by Winter et al., 2002b, and in Chapter 7) is the reason why the MIKC-type

proteins were largely retained after each round of whole-genome duplications.

Evolution of network function

Natural selection acts on function Evolutionary selection purely acts on the

fitness of the organism, which is in part defined by the function of its cellular networks.

Therefore, a top-down view of network evolution must start from selection on function

and derive consequences for the structure and dynamics of networks.
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Modular networks can more easily adapt to changing environments From

a functional perspective, networks can be decomposed into modules with separate func-

tions. There is evidence from bacterial genetic networks that modularity is higher in

the genetics of generalists, whose networks need to perform a larger array of functions

(Kreimer et al., 2008; Parter et al., 2007). This supports an interesting hypothesis

that varying environments lead to more modular genetic networks (Kashtan and Alon,

2005), although varying environments are not a necessary prerequisite for the evolution

of modular networks (Hintze and Adami, 2008; Solé and Valverde, 2008).

Modularly varying fitness functions speed up evolution An interesting

result for evolutionary biology as well as for evolutionary optimisation algorithms is

the suggestion that varying fitness functions speed up evolution, especially when the

fitness goal is varied in a modular way (Kashtan et al., 2007). A modular varying fitness

function is composed of different sub-functions, which can individually be altered when

the fitness function changes. This way, evolved solutions appear to take advantage of the

modular structure in the fitness landscape (see also Kashtan and Alon, 2005). However,

some speedup is also reported for non-modular changes in the fitness function, hinting

at a more general phenomenon in which fitness variation helps to prevent the population

from lingering in local optima. Additionally, a dynamic fitness landscape can lead to

networks that are “adapted for adaptation”, i.e. networks in which mutations in a few

key hubs can change the network behaviour in a consistent way, thus changing from one

function to another (Crombach and Hogeweg, 2008; Draghi and Wagner, 2009). Papa

et al. (2008) demonstrate this effect on the evolution of wing patterns in butterfly.
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Figure 1.3: Broad structuring of the field of Evolutionary Algorithms.

1.3 Evolutionary algorithms

EAs are popular heuristic optimisation algorithms In any technical and

scientific discipline, there are plenty of difficult optimisation problems for which glob-

ally optimal solutions can usually not be found. In these cases, the researcher and

practitioner is interested in finding an approximate solution, using as few resources

as possible. One particularly successful branch of these “heuristic” optimisation al-

gorithms are Evolutionary Algorithms (EAs), i.e. algorithms based on evolutionary

principles such as a population of candidate solutions, mutation, recombination, and

selection.

As a research area, the field of Evolutionary Algorithms is already decades old, and

a variety of different branches and flavours has been developed. To lay the foundation

for the artificial evolution of network models, this section compares different approaches

to optimisation by evolutionary algorithms. After a formal definition of optimisation

and specifically evolutionary algorithms, I give a short review on Genetic Algorithms,

Evolution Strategies and Genetic Programming - the main branches of EA research

(Figure 1.3) - loosely based on the book by Weicker (2002, in German).

1.3.1 Optimisation problems

Optimisation, loosely speaking, is concerned with finding the best solution, from a set

of possible solutions, to a defined problem. In practise, a rigorous and useful description

of the optimisation problem often poses a challenge, sometimes the hardest in the whole

process. From a mathematical standpoint, however, the general optimisation problem

is simple to describe. In the typical case, it deals with a function f : Ω −→ R that
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maps the search space Ω onto the real line R. Without loss of generality, we can say

that f is to be minimised.

Global and local optima A global optimum is now defined as a point x ∈ Ω

with

∀y ∈ Ω : f(x) ≤ f(y).

In many cases, we can define a metric d : Ω×Ω −→ R with

d(x, y) ≥ 0

d(x, y) = 0 ⇐⇒ x = y

d(x, y) = d(y, x)

d(x, z) ≤ d(x, y) + d(y, z)

with x, y, z ∈ Ω. In this case, a local optimum is a point x ∈ Ω with

∃ǫ > 0∀y, d(x, y) < ǫ : f(x) ≤ f(y).

We say that solution x is “better” than solution y if f(x) < f(y). Thus, optimisation

algorithms aim to find the best solution, either locally or globally. In cases where this

is impossible with the available computing resources, the “best possible” solution is

sought, often a local optimum in the vicinity of the starting solution.

Genotype-phenotype mapping In analogy to biological evolution, EAs are

often (but not always) concerned with two views on the solution candidates: a genotype

and a phenotype. The genotype is the representation of the solution in search space Ω =

G, and the phenotype is its “functional” representation determined by the genotype-

phenotype mapping G : G −→ P. The fitness F is then defined on the phenotype,

F : P −→ R. Of course, the previously given fitness definition is now defined by

composition: f : G −→ R, f = F ◦G.

EAs work with almost any fitness function In contrast to many other op-

timisation techniques, EAs do not impose any conditions on the fitness function (such

as linearity, differentiability, or smoothness). However, in order to work properly, they

(and any other optimisation algorithm) need at least some degree of strong causality

in the fitness function, as discussed in Section 2.2.1.

Moreover, it is important to note that EAs are applicable to a broader class of

problems than outlined above, since they do not need an explicitly defined fitness
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function. For a subclass of EAs, it is enough to have a comparison measure between

solutions, i.e. to be able to determine which one of two solutions is the better one.

This already enables tournament selection, in which a subset of of the population is

compared in a tournament-like fashion and the best one is selected to reproduce.

1.3.2 The general structure of an EA

After this discussion on fitness, we can now turn to a brief sketch of the general evolu-

tionary algorithm. For more detail, consult the books by Bäck et al. (1997), Weicker

(2002, in German) or Eiben and Smith (2003).

Mutation, recombination and selection shape a population of solutions

Each EA utilises a population, which is a multiset P of elements of Ω (the same solution

can appear multiple times in the population). Mutation is defined as an operator

M : Ω −→ Ω,

turning one solution into a different one. Recombination, in a general definition, turns

a vector of n solutions into a new one, i.e.

R : Ωn −→ Ω.

Of course, this contains the special case of recombining two solutions into a new one.

The only operator influenced by fitness is selection, which takes a sample of the popu-

lation and determines a subset of that sample that survives or reproduces (by cloning,

mutation and/or recombination), depending on the specific algorithm:

S : Ωn −→ Ωm,m < n.

Basic terminology Let us denote the size of the population as µ, while the

number of offspring per generation is λ. In each generation, some (or potentially

all) members of the population are selected as parents for the λ offspring, either at

random or by a selection operator biased by fitness. From these, offspring are created

by copying, mutation and recombination. After a fitness evaluation of the offspring,

selection happens again to determine which solutions survive to the next generation.

Depending on the algorithm, the latter selection acts on either the old population and

offspring (µ + λ solutions) or only on the λ offspring.
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1.3.3 Genetic algorithms

The evolution of bitstrings The most widely known form of Evolutionary

Algorithms are Genetic Algorithms (GAs) (Goldberg, 1989), pioneered by Holland

(1973, 1975). Primarily conceived to deal with bitstring-coded solution candidates,

they can be distinguished from other EA approaches by their probabilistic (fitness-

proportional) selection of parents for the next generation. Heavy emphasis is placed on

recombination as the main evolutionary operator, while mutation is used at a low rate

to guarantee that all points in the search space are reachable. For bitstrings, mutation

can be implemented as the inversion of one bit, while a k-point crossover is created by

aligning the parent strings, breaking them at k points, choosing one from each pair and

recombining them into a new string.

Most theoretical work on GAs is based on the schema theorem (Holland, 1975),

which states that in bitstring-coded GAs, short substrings that are highly fit will quickly

spread through the population. Therefore, the optimisation does not have to search

through all possible bitstrings, but rather through combinations of schemes. However,

the consequences of this theorem as well as its application to problems with non-

bitstring solution candidates present a heavily debated topic (see Altenberg, 1995,

where also the Price Theorem is discussed as an alternative approach to GA theory.).

For example, Radcliffe (1992) shows how in specific problems, a non-linear mapping

between genotype and phenotype can prevent the application of the schema theorem.

1.3.4 Evolution strategies

Real-valued vectors and Gaussian mutation This flavour of Evolutionary

Algorithms (Rechenberg, 1973, 1994a; Schwefel, 1977) usually deals with real-valued

vectors x = (x1, ..., xk) as solution candidates, taken from some interval G = [lb1, ub1]×
... × [lbk, ubk] ⊂ Rk. Therefore, Evolution Strategies (ES) in their conventional form

are a special technique for numeric optimisation (see Beyer and Schwefel, 2002, for a

comprehensive introduction). The major difference to the procedure in GAs is that

ES use a deterministic selection called elitist, in which only the best individuals of a

population survive the selection step and are selected as parents for the next generation.

In (µ, λ, ρ)-ES, the new generation (of size µ) is selected solely from the λ offspring,

whereas in (µ+λ, ρ)-ES, the new generation is selected from both parents and offspring
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(ρ denotes the number of offspring generated via recombination, the rest is generated

using mutation).

Evolution Strategies employ mutation and recombination as evolutionary operators,

with the emphasis clearly on mutation. Since the solution candidates in ES consist of

real-valued vectors, mutation is realised by the addition of a random value ui to the

component xi, in the simplest form taken from a Gaussian distribution with density

function

φ(x) =
1√
2πσ

e−
1

2σ2
x2

.

The 1/5 success rule Theoretical work in the field of ES has led to various

adaptation strategies for the mutation strength σ for Gaussian mutations, the earliest

popular of which is the 1/5 success rule. This rule states that on average, 1/5 of all

mutations should have an advantageous effect on the fitness. If the success rate is

higher than 1/5, it is assumed that the population is still far from the optimal solution

and the mutation strength can be increased. When the success rate drops below 1/5,

the mutation strength is decreased to allow local search around the optimum (Beyer

and Schwefel, 2002; Rechenberg, 1973).

Adapting a k-dimensional Gaussian mutation: CMA evolution strategy

With the drastic rise in computer power over the last two decades, researchers have been

able to extend the framework of self-adaption in ES to its fullest and use a full covariance

matrix (12k(k+1) parameters) for the k-dimensional Gaussian mutation. This way, not

only can differently scaled problem parameters be handled (by adapting the parameters

on the diagonal of the covariance matrix), but the algorithm can even adapt to linear

dependencies between parameters (by adapting parameters off the diagonal, which

encode correlations between the mutations for the different parameters). A particularly

successful variant of this kind of ES is the “Covariance Matrix Adaption” (CMA)

evolution strategy (Hansen and Ostermeier, 2001). I will sketch the CMA-ES here,

since it is used in the EA framework described in Section 2, and also in the kinetic

analysis of FRAP data (Section 6). For full details, the reader is referred to (Hansen

and Ostermeier, 2001).

One global mutation distribution CMA-ES is based on one (global) muta-

tion distribution that is used for all members of the population. It uses a completely

derandomised update of the covariance matrix in such a way that previously successful
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Figure 1.4: Construction of the mutation distribution in CMA, in two dimensions. The

initial configuration (g = 0) consists of the two unit vectors e1 and e2. They produce

an isotropic mutation distribution (dashed). The vectors z
(1)
sel , z

(2)
sel and z

(3)
sel are added

successively at generations g = 1, 2, 3, while old vectors are reduced by a factor of q = 0.91.

Figure reproduced with permission from (Hansen and Ostermeier, 2001).

mutation steps are more likely to happen again in future. In addition, information from

a number of previous steps is accumulated to control the step-width.

In order to increase the probability of producing successful mutation steps again,

CMA implements a principle component analysis of the previously selection steps and

strengthens the direction of the most important components in the covariance matrix

(Figure 1.4, for the formulas see Hansen and Ostermeier, 2001). This way, the shape of

the mutation probability distribution adapts to the local fitness landscape, effectively

performing a linear transformation of the problem representation into (locally) equally

scaled, decoupled parameters.

The evolution path controls mutation step length CMA-ES uses an ele-

gant idea to control the length of mutation steps: the evolution path. The idea is the
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following: Looking at a couple of selected (i.e. successful) mutation steps from pre-

vious generations, these can be positively correlated (similar direction), uncorrelated

(random direction) or negatively correlated (opposite direction). The evolution path

is now defined as the sum of these steps. In case of positive (negative) correlation,

the evolution path is longer (shorter) than the one expected for no correlation. If the

path is longer, the steps could be replaced by larger steps, thus the stepwidth can be

increased. Accordingly, for an evolution path shorter than expected for uncorrelated

successful mutations, the stepwidth can be decreased. Actually, CMA-ES employs this

procedure both for the global step size (cumulative path length control) and for each

dimension independently (covariance matrix update). Again, the reader is referred to

Hansen and Ostermeier (2001) for a full description including the update formulas for

the covariance matrix.

1.3.5 Genetic programming

Evolution of computer programmes As the name implies, Genetic Program-

ming (GP) deals with the automated design of computer programs in an evolutionary

process. A popular introduction to GP is given by Koza et al. (2003), while the reader

is referred to Banzhaf et al. (1998), Koza (1992) and Langdon and Poli (2002) for a

detailed account of the technique. In contrast to GA and ES approaches, the size of

the solution candidates is not fixed in advance, but rather determined through mu-

tation and selection. In its most widely used form, the computer programs under

evolution are represented as syntax trees, in which leaves contain values and internal

nodes contain commands or mathematical functions. Besides these, a variety of differ-

ent program representations has been considered, from assembler languages to graph

representations (for graphs, see e.g. Teller and Veloso, 1996). The latter is especially

suited to biochemical networks, since these can be understood as graphs with two types

of nodes, molecular species and reactions (or as hypergraphs, in which multiple species

are connected via reactions).

Recombination is the standard variation operator on syntax trees In a

syntax tree based GP setup, the recombination operator can be easily implemented by

exchanging subtrees of two parents to obtain two offspring individuals. Mutation can

be achieved by two operations: the replacement of a subtree by a randomly generated

new tree, or the replacement of a single node by a new node. Recombination within one
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individual, i.e. the exchange of two subtrees, can be seen as another form of mutation.

Analog to subprograms and functions in manual software engineering, the technique of

automatically defined functions (ADF) evolves a set of separate trees simultaneously to

the main tree (Koza, 1994). These are represented by special nodes and can be plugged

into the main tree of the program.

Special care is required to cope with the brittle solution candidates In

contrast to the binary problems in GA and the numeric optimisations in ES, most

mutations and recombinations on programs in GP will have a deleterious effect. Even

when the representation (instruction set) and mutation operators are designed to allow

only valid solutions, mutations tend to have a drastic impact on fitness. To counter this,

a small part of the population is copied to the next generation without modification,

so that good solutions are not lost again. Additionally, the average population sizes

used in GP are much larger, which is also due to the belief that an initially diverse

population is needed for a successful GP run. Typical population sizes used in GP

are between 500 and 10000 individuals. The major selection mechanism used in GP

research is tournament selection, in which q individuals are randomly selected from the

population, and the winner is chosen for the next generation, following recombination

or mutation.
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1.4 Artificial evolution of cellular networks

Artificial evolution is a toy version of the real thing Over the approxi-

mately 4 billion years of evolution on Earth, the genetic, metabolic and signalling net-

works in living organisms have changed their constituents, connections and functions

over and over again. Thus, the networks encountered in today’s biological systems have

a long evolutionary history and many aspects about them cannot be understood with-

out taking this history into account. While it is certainly impossible to “replay” this

evolution in any larger scale, the dramatic rise in computing power over last decades

has put small-scale toy models of evolution into our reach.

The in silico evolution of cellular network models is studied (primarily) for two

reasons: (1) Network models are used to represent causal and mechanistical relation-

ships between biological entities gain from laboratory data, and thus the evolution of

models is one way of automatic inference (or learning) from this data (Section 1.4.1).

(2) Artificial evolution has also been used to study the actual process of cellular net-

work evolution, deriving hypothesis about structure and function of evolved networks

as well as the evolutionary process itself (Section 1.4.2).

1.4.1 Network reconstruction from data

When looking at approaches to reconstruct networks from experimental data, we can

distinguish two general types: pure post-processing approaches that take experimental

data and turn it into a network hypothesis, and iterative approaches that propose new

laboratory experiments while updating their hypothesis about the network. Below, I

give a brief review on the work devoted to both approaches.

Genetic regulation In the field of genetic regulatory networks, network recon-

struction is especially advanced and well established (de Jong, 2002; Hecker et al., 2009).

For example, Guthke et al. (2005) used clustering of 18432 gene expression profiles fol-

lowed by dynamic modelling using a linear ordinary differential equation framework to

derive a six-dimensional model of immune response to bacterial infection. To determine

the network structure of the model, they use a forward-strategy, i.e. adding new nodes

and connections to an initially small network. To prevent too large networks, new parts

are only added if they significantly increase fitting quality.
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In contrast to dynamical models using differential equations, Bayesian networks are

aimed at uncovering the chain of causality in regulatory processes. Geier et al. (2007)

argue that with the currently available data, Bayesian networks with linear Gaussian

dynamics are the optimal tool to capture the essence of gene expression time series,

outperforming the commonly used Boolean networks. To account for the effect of

hidden (i.e. missing from the data) upstream regulators, Nachman et al. (2004) avoid

modelling these directly by using dynamic Bayesian networks that include a time-

dependence of some regulatory processes, which can be learned from time-resolved

expression data.

A commonly encountered problem with structural optimisation is that often, many

structures can fit the same data (Section 1.2.1, 5). Thus, structural optimisation often

leads to models that are hard to relate to the already existing knowledge about the

system under study. Using the well-studied S-systems modelling formalism (Savageau,

1976), Spieth et al. (2005) try to overcome this problem by employing a multi-objective

evolutionary algorithm to fit a network model to microarray data while keeping the

evolved network “close” to pathways already described in databases. Thus, they aim

to compensate for errors and omissions in the databases, possibly discovering new com-

ponents and connections. Later, they extended their work to a full software framework

for gene regulatory network inference, mainly using evolutionary algorithms (Spieth

et al., 2006).

Signalling and metabolic systems Network inference has also been done for

systems other than genetic regulation. In one such study, Sachs et al. (2005) use

single-cell data on phosphorylated and non-phosphorylated proteins to infer Bayesian

network models of cellular signalling, which they verify again in wetlab experiments.

For metabolic networks, Wahl et al. (2006) describe a modelling framework based on

stimulus-response experiments and statistical analysis with model selection methods.

Kholodenko et al. (2002) use “sensitivity-” or “response-coefficients” to capture the

reaction of a system to external perturbations. From these, they derive connections

between modules or even individual components of the network.

Evolving networks with GP Because of its ability to evolve computer pro-

grams capable of specific tasks, the suggestive idea to tweak GP (Section 1.3.5) to infer

network models of biological systems has been taken up by several researchers. One

of the first approaches, coming from the core of the GP community, is presented by
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Koza et al. (2001a,b). Their approach develops a tree representation of biochemical

networks, and evolved this using standard GP methods to fit time-series data of a

metabolic network.

In a contrasting approach, Sakamoto and Iba (2001) directly evolve the ordinary

differential equation system that is used to fit the data. Additionally, they replace the

mutation of numeric constants with an optimisation of equation parameters for each

fitness evaluation, calculated by linearising the ODE system and solving the linear

optimisation problem. Later, they supplied results indicating a robustness of their

estimation to noise inherent in the GP process (Ando et al., 2002). In contrast to the

linearised fitting procedure used by Sakamoto and Iba (2001), Sugimoto et al. (2005)

use numeric mutations of the equation constants in GP to evolve the equation system

of metabolic reactions.

Comparison of methods In an exemplary comparison, van Someren et al.

(2001) rank different fitness functions and different structural optimisation methods

on the task of gene network inference. They find that for the fitness function, best re-

sults are achieved by the mean-squared error of models prediction compared to training

data. However, the other two investigated fitness functions (maximum squared error

and leave-one-out cross-validation) performed only slightly worse. They also find that

a structural optimisation method based on greedy addition of connections followed by

parameter fitting outperforms a genetic algorithm on finding the correct network topol-

ogy. As a note of caution, it has to be stated that van Someren et al. (2001) use a linear

model of the genetic network with discrete timesteps, making parameter fitting very

efficient. Thus, the results may be different when more complex models are used. In

this light, an interesting proposal has been made by Gennemark and Wedelin (2009),

who develop a set of benchmark problems, especially aimed at the automatic inference

of ordinary differential equation systems.

Iterative approaches In comparison to post-processing of experimental data,

less work has been done on iterative approaches, potentially due to the more time-

consuming nature of these investigations. For example, Ideker et al. (2000) employ a

cycle in which first all Boolean networks consistent with the current set of experimental

results are computed, and then the most promising new experiment is proposed by an

entropy-based measure. On a larger scale and again with a Boolean model, Barrett and

Palsson (2006) use the known transcriptional and metabolic network of E. coli together
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with information on all previously performed experiments to calculate the experiment

that has the highest potential to discover new knowledge about regulatory interactions.

In a manner analog to Ideker et al. (2000), Bongard and Lipson (2004) use a two-

stage evolutionary process (they use the term “coevolution”) to first evolve a (time-

discrete, concentration-continuous) model of the system based on data, and then evolve

the next experiment which is expected to bring the most new information about the

system. They apply their algorithm both for genetic network inference and for self-

diagnosis of a damaged robot. In a similar study but focusing only on parameter

fitting (with a pre-determined ODE model), Gadkar et al. (2005) use a criterion of

parameter-identifiability to propose new experiments.

In a follow-up to their previous work, Bongard and Lipson (2007) amend a simple

ODE-inference GP system using hill-climbing selection with a technique called “parti-

tioning”, which allows to fit equations for each variable separately. During evaluation

of the synthesised equation, values of the other variables are not computed, but approx-

imated from the given time-series dataset. This way, the effort for equation synthesis

scales only linearly with the number of variables, leading to increased scalability com-

pared to approaches which infer the whole ODE system at once.

1.4.2 Artificial evolution studies

In contrast to knowledge extraction from data, which is the central goal of network

reconstruction approaches, the studies of artificial evolution summarised in this section

are concerned with evolutionary mechanisms and how they influence the process of

network evolution.

Early work In probably one of the earliest studies in this direction, Kacser and

Beeby (1984) utilise evolutionary techniques to make inferences on the evolution of

enzymes. A decade later, Bray and Lay (1994) use an EA to fit the parameters of a

simple network consisting of a ligand, two receptors, a signal molecule and a target

molecule. They are able to evolve a large variety of responses to inputs represented by

waves of ligand concentration, thus demonstrating that evolution of function in network

models is possible.

In a study on the stoichiometry of ATP-producing networks, Stephani et al. (1999)

present an EA to design stoichiometry models of glycolysis coupled to an external

ATP-consuming reaction. They show that while a direct enumeration of all network
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variants is impossible beyond a certain network size, an EA is able to produce a variety

of networks with a common function, thus enabling the comparison of these networks

and extraction of common features.

Evolution of mathematical functions In analogy to Chapter 3, but histori-

cally earlier, Deckard and Sauro (2004) evolved biochemical network models capable of

performing arithmetic functions such as square root, cube root and natural logarithm.

They give a detailed account of the evolutionary procedure used and the difficulties en-

countered. In contrast to Chapter 3, the EA evolves network structure and parameters

together, with parameter mutations occurring more frequently than structural muta-

tions. While they were able to (easily) evolve networks for the square root task, and

analytically proved that these networks compute a square root function, the evolution

for cube root and logarithm functions was much more difficult, and the most successful

networks merely gave polynomial approximations to the desired solution.

Evolution of biologically relevant behaviour Besides the more abstract,

mathematical functions that were evolved in the work described above, artificial evo-

lution can be targeted towards more complex, biologically realistic functionality. One

popular example is chemotactic behaviour, usually simulated by controlling the tum-

bling frequency of an in silico bacteria. For rather generic models of signalling networks,

Soyer et al. (2006) evolve the connection strengths in fully connected networks of three,

four and five nodes. They show that a three-node network is already capable of control-

ling chemotaxis by acting as a derivative-sensor, but an increase in network size leads

to better performance. Using genetic programming of an artificial chemistry, Ziegler

and Banzhaf (2001) evolve a control metabolism for a robot and relate their findings

to motile bacteria.

Based on models of genetic networks, François and Hakim (2004) evolve and math-

ematically analyse bistable switches and oscillating networks. Building on the work of

Deckard and Sauro (2004), Paladugu et al. (2006) evolve networks capable of perform-

ing more advanced functions, such as a bistable switch, oscillators, homeostasis, and

frequency filtering. Their networks are based either on mass-action, Michaelis-Menten

or Hill kinetics.

Artificial evolution can be used to study the origin of network complexity

To investigate the evolution of complexity in cellular networks, Holland (2002) uses

the concept of classifier systems to evolve networks capable of responding to signals.
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Decraene et al. (2007) build on this work to develop a model in which computational

aspects of the evolution of cell signalling networks can be studied.

One intriguing question in the evolution of biochemical pathways is why almost

all networks found in molecular biology are more complex than they need to be, i.e.

more complex than the minimal network capable of performing the same function. In

an attempt to answer this question, Soyer and Bonhoeffer (2006) present an artificial

evolution model that displays an increase in network complexity driven by neutral drift

rather than selection, even though selection acts on the level of network function. The

intuitive explanation presented is that while destructive mutations tend to diminish

network function, mutations adding proteins to the network are less likely to do so.

Thus, selection for network function leads to a bias in the selected mutations that

increases network size (Soyer and Bonhoeffer, 2006). Of course, this conclusion does

not rule out a role for robustness and other characteristics in the evolution of network

complexity.

A word of caution In general, one has to be cautious when transferring results

from artificial evolution to real biological networks. Chu (2007) argues that when

reviewing artificial evolution experiments aimed at evolving oscillators, one cannot find

any “typical” network structure that is evolved. This makes it very hard to compare

the evolved networks to examples of oscillating networks found in cellular systems.

1.4.3 Other approaches

Novel algorithmic ideas inspired by biological networks An additional

research direction in the artificial evolution of networks is aimed at novel computational

procedures rather than biological insight. For example, Banzhaf and Lasarczyk (2005)

use genetic programming to construct algorithmic chemistries, i.e. sets of molecules

that each represent register machine instructions. At runtime, the instructions are

randomly drawn from the instruction multiset, and the specific mix of instructions in

this “program” ensures that the correct result is approximated. GP can act on these

instruction sets in a natural way: mutation and recombination can be implemented by

addition/removal of instructions and mixing of instruction sets.

A major field: The evolution of artificial neural networks In a parallel

effort to the artificial evolution of cellular networks, much work has been done on the

evolutionary construction of artificial neural networks (see e.g. Haykin, 1999). Here,
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we find striking parallels to the evolution of network models in systems biology: both

structure and parameters have to be determined (Yao, 1999). Quite often, evolution

and learning are combined in training ANNs, or an evolutionary structure optimisation

method is combined with a faster (but more local) gradient-based method for training

of the ANN.
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1.5 Concluding remarks

This chapter gave a very brief review of the literature on structure and function in

network biology, evolution of networks, evolutionary algorithms, and artificial evolution.

It is by no means designed to be complete, but to give a taste of the fields involved in

this thesis, and to name the most relevant developments and publications.

As with any interdisciplinary work, the background for this thesis is wide and di-

verse. Each of the topics mentioned above is important for the following chapters, but

each chapter has its own focus. Chapters 2 and 3 are based heavily around the applica-

tion of Evolutionary Algorithms to the artificial evolution of networks. Chapter 4 then

deals with the application of the created evolutionary framework to the evolution of

computing networks, analysed with the concept of Organisation Theory. Chapter 5 has

a more real-world focus, applying the evolutionary concept to data from FRAP exper-

iments, and thus highlighting interesting aspects in cellular network biology. Shifting

the focus from algorithmic issues to the biological application, Chapter 6 describes the

application of CMA-ES to ordinary differential equation models of PML nuclear body

kinetics and HP1 binding to chromatin. Chapter 7, the only one without any evolution-

ary algorithms in it, presents a model for an evolutionary transition in genetic network

architecture, and highlights how comparative stochastic modelling can be used to gain

new insights into this evolutionary motif.
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SBMLevolver: An Evolutionary Algorithm for

Network Models

Chapter summary. To gain a practical understanding of the artificial evolution of

cellular network models, this chapter describes the design of an evolutionary algorithm

for this task, and its underlying rationale. The central design idea is a separation of

structural evolution of the network from kinetic parameter evolution, aiming at stronger

causality on the structural level by smoothing fitness transitions between network struc-

tures. In this way, network parameters can adapt to a new topology before this topology

is evaluated. Results are presented which show that this two-level approach yields a pro-

nounced increase in the algorithm’s fitness performance. More specifically, our studies

show that this separation helps to prevent premature convergence when evolving net-

works performing arithmetic calculations.
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2.1. INTRODUCTION

2.1 Introduction

The artificial evolution of networks in silico is an important, highly timely topic in

bioinformatics research. It is used primarily in two forms (see Section 1.4): (1) for

the automated inference of network models from a variety of data sources, and (2) for

novel insights into the evolutionary process that shaped and shape dynamical networks.

However, recent investigations of this topic were either pioneering studies that opened

up a concept rather than investigated the evolutionary procedure in detail (Bray and

Lay, 1994; Koza et al., 2001a,b; Sakamoto and Iba, 2001), or have focused on the

evolved networks and their behaviour (Deckard and Sauro, 2004; François and Hakim,

2004; Paladugu et al., 2006; Soyer et al., 2006), not on the EA itself. Of course there are

exceptions, but many target specific network formalisms (Spieth et al., 2005; Sugimoto

et al., 2005) and may not be generally applicable.

Investigating the process of evolving dynamical networks requires a modular, trans-

parent framework in which different factors influencing the process can be clearly dis-

tinguished. To this end, the SBMLevolver software was developed. This chapter will

present the software, its design and implementation. Results on the effect of the design

decisions are given in Chapter 3.

In the introductory chapter, Section 1.3 gave a brief introduction into some of the

main categories of Evolutionary Algorithms. This list is by no means exhaustive, but

is meant to highlight the main ideas in the field. For a specific problem, the standard

methods outlined in Section 1.3 will be inferior to a tailor-made solution, which takes

the specific problem structure into account1. Therefore, a design for an EA specific for

the evolution of dynamical networks was conceived.

The SBMLevolver software, together with a description and usage instructions, is

publicly available on http://users.minet.uni-jena.de/~biosys/esignet/.

1In a more formal language, this statement is called the No free lunch theorem and can be

proven mathematically (Wolpert and Macready, 1997)
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2.2 Design of a two-level evolutionary algorithm

2.2.1 Causality

Strong causality is important for optimisation In this discussion, two vari-

ants of causality come into play: Firstly, weak causality (or just causality) denotes

that two identical actions lead to identical consequences. For our discussion of EAs,

this simply means that the fitness function is deterministic, always yielding the same

fitness for the same model. Thus, two identical mutations of one model will always have

identical effects. Secondly, strong causality means that small changes to the solution

lead to small changes in fitness. In other words, the neighbourhood structure of the

search space is carried over to the fitness space.

It is intuitive that some degree of strong causality is needed for any type of optimi-

sation algorithm to work. Without it, the fitness function would - from the optimisation

point of view - just be a random mapping, and the search would be equivalent to testing

of randomly generated solution candidates for their fitness.

A measure for strong causality In an interesting theoretical treatment, Send-

hoff et al. (1997) have defined strong causality based on the transfer of neighbourhood

structure from genotype to phenotype space. Directly applying their measure, any evo-

lutionary system with an identical genotype and phenotype would be strongly causal

(this is the reasoning used for numerical optimisation with ES). However, a strongly

causal genotype-phenotype mapping has no advantages to the search process if the

phenotype-fitness mapping is not strongly causal. To my mind, it seems much more

natural to apply the strong causality definition of Sendhoff et al. (1997) to the genotype-

fitness mapping, as this is what the EA ultimately acts on.

In analogy to Sendhoff et al. (1997), I now give a definition of strong causality for

the mutation operation in EAs. For this, a distance measure (metric) on genotype

space has to be defined. An intuitive distance between two network models m1 and m2

is given by the probability P (m1 → m2) of creating m2 from m1 by mutation. Taking

the logarithm of this value to make the measure additive rather than multiplicative, we

get:

d(m1,m2) = − logP (m1 → m2).
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Note that

d(m1,m2) < d(m1,m3) ⇐⇒ − log P (m1 → m2) < − logP (m1 → m3)

⇐⇒ P (m1,m2) > P (m1,m3).

For simplicity’s sake, the parametrisation of the mutation operator is neglected, but

it is straightforward to formulate this idea with a parametrised mutation (Sendhoff

et al., 1997). A genotype-fitness mapping f is termed “strongly causal” if it fulfils the

following condition:

∀m1,m2,m3 ∈ Ω :

‖f(m1)− f(m2)‖ < ‖f(m1)− f(m3)‖ ⇐⇒ P (m1 → m2) > P (m1 → m3)
�

�

�

�2.1

Usually, we do not require this condition for all triplets of models, but rather for triplets

taken from a local environment, thus enforcing “local” strong causality. In the case of

structure evolution of networks, this locality is defined by the number of mutation steps

allowed per generation.

In the same publication, Sendhoff et al. (1997) also introduce a quantitative variant

of Equation 2.1: If m1, m2 and m3 are taken as random variables (with the locality

condition in mind), then the inequalities in 2.1 become Boolean random variables:

A := ‖f(m1)− f(m2)‖ < ‖f(m1)− f(m3)‖

B := P (m1 → m2) > P (m1 → m3)

Now we can quantify strong causality as the conditional probability P (A|B) that the

model m2 is nearer to m1 than m3 is to m1, given that the fitness difference between

m2 and m1 is smaller than between m3 and m1.

While I did not use this exact formalism to investigate the evolutionary system,

preliminary results with fitness-distance correlation (Jones and Forrest, 1995; Tomassini

et al., 2005; Vanneschi et al., 2003) indicate that strong causality is present in the EA

system (Section 2.2.5).

Network evolution is not (always) strongly causal The relationship be-

tween a network model and its behaviour is certainly not strongly causal. To see this,

look at the smallest mutation possible, the slight change of one kinetic parameter. In

37



2. SBMLEVOLVER: AN EVOLUTIONARY ALGORITHM FOR NETWORK

MODELS

most cases, this change does not effect network behaviour very much. Thus, two iden-

tical networks with just one slight change in one kinetic parameter must lie closely

together in any intuitive representation of the search space. However, in rare but im-

portant cases, their behaviour might be totally different due to a bifurcation in the

network’s dynamics (see e.g. Bindschadler and Sneyd, 2001; Swat et al., 2004). Bifur-

cations are an inherent property of the dynamical systems describing network models,

and thus this difficulty cannot be overcome by choosing a different representation.

Network evolution is not random On the other hand, the evolution of a

network model with a specified behaviour is by far superior to a random search for

such behaviour (see Section 3.2), so that the model-behaviour relationship is certainly

far from random. It lies in the intermediate zone between a random mapping and a

strongly causal one, and the apparent difficulty of evolving networks with a non-trivial

function hints at a position closer to the random pole than many other optimisation

problems.

Strong causality is difficult to enforce Other approaches that deal with the

evolution of dynamical systems have similarly realised the need for strong causality in

the fitness function (Hirche et al., 2002; Santibán̄ez Koref et al., 2001). However, to my

knowledge, no general procedure to enforce strong causality has been proposed (Weise

et al., 2009), and it seems very likely that this is indeed impossible for the general task.

Weak causality is an inherent property of the problem representation and the attached

variation operators, and thus has to be tackled at this level.

Inferring the degree of strong causality from EA success If the assumption

is right that the degree of strong causality in an EA system to a large part determines

the EAs success in finding a good solution (Sendhoff et al., 1997), we can also use the

EA’s quality to draw conclusions about the degree of strong causality in the system.

An appropriate measure is the comparison of the best fitness found by the EA against

the best fitness found by a random search with the same resources, which corresponds

to a system with locally uncorrelated fitness values (weakly but not strongly causal).

2.2.2 Network evolution on different levels

Network evolution acts on three levels In the evolution of cellular network

models, three different levels have to be considered. The highest is the network topology,

containing the participating proteins and their interactions. On an intermediate level,
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Figure 2.1: Illustration of the dual-layer Evolutionary Algorithm. The outer loop op-

timises the network structure, while the inner loop (inside the fitness evaluation) fits the

network parameters to the desired behaviour.

the reaction kinetics contain information about the type of interaction, while the lowest

level consists of the exact numeric parameters (note that these levels are independent

of the structural, dynamical and functional level used in the description of networks).

For the SBMLevolver software, I have chosen to apply different strategies at each level,

in the hope of making maximal use of the advantages of the appropriate evolutionary

concepts.

Genetic Programming can evolve the structure and kinetics of networks

The presented approach understands the evolution of network topology (i.e. species and

their connections via reactions) as a form of Genetic Programming, since GP concepts

seem to be the most adequate to the evolution of graph structures. Different rate laws
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of reactions are represented as different interactions, which integrates the dynamic

formulation of reaction kinetics (second level) with network topology (first level). In

contrast to programs evolved in classical GP, network models cannot be represented

as trees, as feedback and cycles are integral components in many of them. Therefore,

the GP variant employed here has to be graph based, considering molecular species

as nodes (with their concentrations as values) and reactions as directed connections

between nodes. This immediately implies that we are dealing with hypergraphs, as a

reaction can have more than one source and destination, respectively.

Kinetic parameters are treated with Evolution Strategies Apart from its

topology, a network model description also involves a variety of kinetic parameters

(the third level), which have to be tuned to the given problem. This is essentially a

numeric optimisation problem in a highly nonlinear setting, for which CMA-ES (Hansen

and Ostermeier, 2001) constitutes a state-of-the-art heuristic optimisation algorithm.

Therefore, the SBMLevolver couples the CMA-ES algorithm with graph-based GP,

optimising the network parameters for each evolved topology. To this end, a two-level

evolutionary algorithm was implemented (Figure 2.1), where the upper level evolves the

model structure in analogy to GP, while the lower level takes care of the parameters

with a CMA-ES.

Nested Evolution Strategies are a known concept It has to be noted that

the idea of a two-level evolutionary algorithm is not new. In essence, it is equivalent

to the nested ES described by Rechenberg (1994b) (with different representations and

mutation operators on the two levels), and has been applied to structure evolution by

Lohmann (1993). In formal ES notation, we are dealing with a [µS+λS(µP , λP )] strat-

egy. However, to my knowledge, this is the first application to the evolution of cellular

network models.

2.2.3 Network representation and search space

SBML is the current standard representation language for biomolecu-

lar networks The SBMLevolver system was designed with the goal to enable a

comprehensive investigation of the artificial evolution of network models. For this rea-

son, it was decided not to use a specialised representation involving a genotype of

some sort that would be mapped to the phenotype (a dynamical system, usually a
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system of ODEs). Rather, I chose to use the current standard in the systems biol-

ogy community, the Systems Biology Markup Language (SBML, Hucka and Finney,

2005; Hucka et al., 2004, 2003), to represent network models directly. As of today,

more than 180 software packages are able to work with SBML model specifications

(http://sbml.org/SBML_Software_Guide).

From a preliminary review of the literature available at the start of this work, it

seemed that no other system was able to significantly reduce the causality problem

mentioned above, so there was no reason to go with a representation different from

the standard one. This choice of a direct representation also ensures that the results

generated with the SBMLevolver system do carry some weight beyond the specific

evolutionary system under study.

Search space limitation SBML allows a nearly unlimited freedom in the model

representation. Kinetic rates are specified by arbitrary mathematical expressions, and

reactions can have as many reactants, products or modifiers (enzymes, activators, in-

hibitors) as desired. The same freedom applies to the SBMLevolver software. To keep

things simple, however, the network models evolved here contain of reactions of second

order or less (Table 2.1), and use pure mass-action kinetics, unless stated otherwise.

In SBML, a model is represented by a list of species and a list of reactions, where

each reaction is associated with a number of reactants (species that are consumed by

the reaction), products (species produced), and modifiers (species which control the

reaction but are neither consumed or produced, such as enzymes). Additionally, each

reaction has its own kinetic law, determining the reaction rate.

Search space grows very fast and contains many similar regions To ap-

proximate the size of the search space, we can make a straightforward assessment. To

this end, we assume that all species and reactions are of generic type, i.e. only place-

holder species and no specific species names are used in both species and reactions. In

our typical case, the reaction involving the most species is of bi-bi type, and so in a

network of n species, essentially n4 different reactions are possible. More specifically,

with the reaction types of Table 2.1, n4+2n3+n2+2n different reactions are possible.

In a network with k reactions, each reaction can be drawn from this pool of possible

reactions, yielding (n4)k = n4k network topologies (using only the highest order term).

Usually, the EA deals with a search space describing networks that contain between

0 and N species and between 0 and R reactions. Thus, the total size of the search
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Table 2.1: Types of reactions typically used to evolve models in SBMLevolver runs,

together with the associated mass-action kinetics. Note that production, decay and con-

version reactions with a catalyst are special cases of these reactions where one educt and

one product are identical.

space is approximated by

SS(n, k) =
N
∑

n=0

K
∑

k=0

n4k.

Even though there exist formulas for the sum of the k-th power of the first n integers

(e.g. Faulhaber’s formula), applying them here does not make this approximation more

intuitive. Instead, I will give a few instances to supply the reader with a feeling for the

search space size:

SS(2, 2) = 257

SS(3, 10) ≈ 1019

SS(10, 10) ≈ 1040

SS(30, 30) ≈ 10177

Even if we take into account that many of these topologies are actually identical

due to permutations in the species and reactions, this does not reduce the size of the

search space for the EA. Thus, we are looking at a vast search space, in which many

regions are mirrored images of others with permuted dimensions.
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2.2.4 Design of mutation and recombination operators

Desired characteristics of variation operators In natural evolution, muta-

tions that change a cellular network actually happen on the DNA level, which constrains

the effect of these mutational operators. In contrast, network mutations in artificial

systems can take any form. Therefore, it is of interest to gather desirable characteristics

of mutational operators on networks, so that optimal operators can be designed.

To describe these desired characteristics, one needs to define a suitable metric on

the search space Ω. A metric is considered “suitable” if it creates a smooth fitness

landscape over the search space, i.e. candidate solutions that lie closely together in the

search space have similar fitness values. Such a metric corresponds to the concept of

strong causality (see Section 2.2.1) in an EA system. Obviously, a metric that violates

this criterion cannot be used in this context.

Along this line, Droste and Wiesmann (2000, 2003) propose a set of guidelines to

design mutation and recombination operators. To allow a smooth movement of the

population through the search space, they require three points from the operators:

• Every point in the search space should be reachable from any initial population

• “Small” mutations should have a larger probability than “large” ones

• The operators themselves should not have any preferred direction in search space

Mathematically exact formulations of these criteria, and specialised formulations for

mutation and recombination, are straightforward to derive (Droste and Wiesmann,

2000, 2003). In an interesting attempt to enforce these criteria, Wiesmann (2002)

applies these guidelines to design a semantical mutation operator for Evolutionary

Programming of deterministic finite automata, i.e. the mutation operator takes infor-

mation on the solution behaviour into account.

The first criterion given above is self-explanatory, an absolute must-have for any

optimisation algorithm. In the same way, the third criterion is quite obvious, as any

preferred direction in an ideal EA should come from selection according to the fitness

function, and not from any other fitness-blind operator. The most interesting criterion

is the second one. This requirement, together with the smooth metric, ensures that

small fitness changes occur more often than large ones, aiding the population on a

smooth path towards to optimum.
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In addition to the second criterion, many mutation operators in EAs are designed to

be scalable, such that the average effect of the operator can be increased or decreased

according to the search situation (Beyer and Schwefel, 2002). In exploratory phases of

the search, when not much is know about the location of the optimum, the stepsize can

be increased for faster exploration. When an optimum is located, the stepsize can be

decrease to allow a more fine-tuned approach to the final solution.

Essentially, the work on strong causality by Sendhoff et al. (1997) and the operator

design guidelines Droste and Wiesmann (2000, 2003) look at the same thing from differ-

ent perspectives: While Sendhoff et al. (1997) look at a combination of representation

and mutations to determine criteria for strong causality, Droste and Wiesmann (2000,

2003) use the notion of strong causality to create such combinations.

Applicability of design guidelines For the above design guidelines, the exis-

tence of a smooth metric, i.e. one that leads to neighbouring solutions having similar

fitness, is crucial. However, it can be argued that in any hard optimisation problem,

such a metric does not necessarily exist. Rather, one characteristic feature of hard

optimisation problems is the existence of ridges in the fitness landscape, prohibiting

the use of simple hill-climbing techniques.

The objection can be raised that such a metric is straightforward to construct: One

can simply define the distance of two network models by the absolute difference of their

fitness values. However, such a metric needs explicit knowledge about the fitness values

of every solution. Additionally, in order to gain insight into the design of variational

operators from this knowledge, one would need an understanding of the structure-

fitness mapping. To see this, imaging a scenario in which we know the fitness value of

every possible solution. However, the fitness function assigns fitness values purely at

random, i.e. the fitness value of a solution does not depend on any characteristic of the

solution. Now we can design the aforementioned metric, but this does not help us at

all in designing proper variational operators.

The structure-function mapping of dynamical systems is typically very complex,

poorly understood, and not very robust to changes in the structure of the system.

Therefore, we cannot expect to define mutation and recombination operators that

strictly follow the guidelines by Droste and Wiesmann (2000, 2003). In the follow-

ing, I discuss how in spite of this, it was tried to implement operators following the

guidelines as much as possible.
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Mutation operators The evolutionary algorithm acting on network structure

employs seven different mutations:

• Addition / deletion of a species. When a species is added to the network, it

is initially not connected to any reaction, but has to be connected via a later

mutation. When a species is deleted, all reactions are checked for occurrence of

that species, and it is replaced by a species picked at random from the remaining

ones.

• Addition / deletion of a reaction. When a new reaction is added, its reactants,

products and modifiers can either be placeholders or specific species IDs. If they

are placeholders, these are replaced by randomly picked species from the model.

In case of specific species (which have IDs that are already represented in the

model), these are kept.

• Replacement of a reaction with a different one. When replacing a reaction by a

new one, the participants are kept to the largest degree possible, and necessary

adjustments in the participating species numbers happen by random addition and

removal of species.

• Duplication of a species with all its reactions. This leaves the duplicated species

and reactions free to mutate further, while the original function is not perturbed.

• Cloning of a network without changing its structure

Note: In earlier versions of the SBMLevolver, the replacement of a reaction with

a different one was not implemented. Instead, single connections between a species

and a reaction could be added and deleted, accompanied by an appropriate change

in the kinetic law of the reaction. Later, it was felt that these mutations led to a

high proportion of invalid models, since often the addition or removal of a reaction

participant led to a reaction for which no kinetic law was available. The replacement

of a reaction is a slight generalisation of these mutations, and leads to a higher

percentage of valid mutations.
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Figure 2.2: Example solution and corresponding time series of input and output species

for the third root network, produced using the CellDesigner Funahashi et al. (2003) tool.

Crossover It is generally very difficult to perform a network crossover operation

that does not have a very high chance of destroying the network function (Deckard

and Sauro, 2004; François and Hakim, 2004; Paladugu et al., 2006). An “intelligent”

crossover operator would involve matching of one graph onto another one, in order to

identify common subgraphs. This matching is difficult since it suffers from the permu-

tation problem (Hancock, 1992; Yao, 1999), i.e. species not bound to a specific name

(“X1” rather than “ATP”) can be permuted in different networks, yielding effectively

different structures with the same function.

In spite of this, a simple crossover operator has been implemented that creates

an offspring from two parent models, by merging all species from both models and

copying each reaction with probability one-half. This is a very simple implementation

since it avoids the need to match parts of one parent to the other. However, it does not

guarantee that crossover of one parent with itself will reproduce that parent. In fact,

this is very unlikely.

Even though crossover of unrelated models probably has disastrous effects on their

behaviour, it may very well have interesting consequences later in the search. When

the models in the population are closely related, crossover may lead to “genetic repair”

effects, extracting advantageous features from individual members of the population

(Beyer, 1997).
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Initial solutions and model backbone At the beginning of the run, initial

solutions can be given as SBML model. In these, specific species and reactions that are

deemed necessary for the model can be marked as undeletable, which prevents their

deletion by any structural variation operator. This feature is useful if one wants to

incorporate knowledge about the system that should by built upon by the evolutionary

process.

2.2.5 Two-level approach

Parameter fitting after structural mutations amplifies strong causality

In the discussion above, it became clear that the degree of strong causality in the

evolutionary systems significantly determines the expected chance of success for the

artificial evolution of cellular network models. Following this reasoning, I now outline

an approach that tries to strengthen strong causality on the structural level.

Typically, a structural mutation - such as the deletion of a reaction - has a drastic

effect on the behaviour of the mutated network. Even in cases where the mutated

network is still potentially able to produce a behaviour similar to the parents, its

parameters will not be fine-tuned for this. Looking at this from a different angle, a

parameter adaptation after a structural mutations gives the network the possibility to

get the best possible fitness value. If the parent network already has a relatively good

fitness, this will increase the chances of the offspring behaving similarly (good) to the

parent, strengthening strong causality (Yao, 1997). In other words, parameter fitting

after structural mutations softens their effect, and can have a positive effect on the EAs

trajectory through the structural search space (Emmerich et al., 2001).

Preliminary results indicate some strong causality For a first glimpse at

the causality behaviour of the designed EA system, I computed the fitness correlation

between individual models and their offspring under mutation. Both direct offspring

and higher-order siblings (e.g. grandchildren) with up to ten generations distance were

considered. The results (Figure 2.3) clearly show that there is a positive fitness cor-

relation between a model and its direct offspring. For later generations, correlation

depends on the method of measuring it. While Pearson’s linear correlation coefficient

(Figure 2.3 left) indicates no further correlation after more than one generation, Spear-

man’s rank correlation coefficient suggests that correlation decreases in a linear way as

the generational distance increases (Figure 2.3 right).
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Figure 2.3: Estimates of fitness distance correlation for the evolution of networks comput-

ing a logarithm and a polynomial (blue and green, respectively), a network with oscillating

behaviour (red), and a network with a discrete switching threshold (magenta). Shown

are the number of generations between parent and offspring vs. the correlation in fitness

values. The left panel shows Pearsons’s linear correlation coefficient, the right one shows

Spearman’s rank correlation coefficient.

This difference can be explained by noting that Pearson’s method measures linear

correlation, which can be greatly disturbed by outliers. In our case, outliers are a com-

mon phenomenon, since the function of a network can easily be disrupted, causing a

drastic fitness change. The rank correlation coefficient is much less affected by outliers,

and can therefore detect correlation over more generations in the EA. These results

indicate that there is some clear positive fitness correlation between parents and off-

spring in the SBMLevolver system, which indicates strong causality and explains why

the EA clearly outperforms random search (Section 3.2).

What would Baldwin and Lamarck say? In the context of artificial neural

networks, Yao (1997) links the idea of a two-level evolution to the Baldwin effect. How-

ever, I feel that this analogy is flawed, because the two-level adaptation described is

different from Baldwin’s idea. Baldwin proposed that a learning capability can be of

evolutionary advantage, i.e. provides higher fitness. In contrast, the “learning” (param-

eter fitting) in the two-level EA happens only once, and subsequent parameter fitting

in offspring is done on top of that. Note, however, that the SBMLevolver approach

does favour network models that are suitable for parameter fitting, which can be re-

lated to the Baldwin effect. If one really wanted to relate this algorithmic approach

to a biological concept, the better analogy would be Lamarckian inheritance: Traits
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acquired during the lifetime of an individual (parameters learned in the fitting process)

are passed down to the offspring (see below). However, I feel that it is equally correct

to regard both structural and parameter changes in this approach as evolution and not

to speak of “learning” at all.

2.2.6 Parameter fitting

Cumulative round of CMA-ES As mentioned above, the parameter fitting

loop is realised using the CMA-ES algorithm, and more specifically using an adapted

version of the C implementation by Nikolas Hansen1. The technique of Exponentially

Scaled Search Steps (ESSS), presented in Section 2.4, was added to the code, as well

as handling of parameter boundaries via sticky boundary conditions. In contrast to

a standalone run of CMA-ES, limited computational resources restrict the population

size and number of generations used in the parameter fitting loop. As a partial compen-

sation for this effect, the parameter values of a network are inherited by its descendants

under topological mutations (to the possible extend), in the hope that they might pro-

vide more favourable initial solution for the next round of CMA-ES than a random

initial solution.

An alternative: extensive parameter fitting and a fitness database It

has to be noted that this procedure might introduce a bias: a network topology that

appears twice in the course of evolution is likely to get a better fitness values for the later

appearance, as the parameter values are potentially more adapted by that time. If one

wanted to evaluate fitness only once for each structure, several starts of the CMA-ES

algorithm would be needed in order to reduce the variation in the result of parameter

fitting. Since this type of fitness evaluation would be very costly, fitness values for

the evaluated structures should be stored in a graph-indexed database (Niehaus et al.,

2007) using a canonical graph representation to avoid isomorphism problems (McKay,

1981; Stagge and Igel, 2001). However, I still consider the computational resources for

this approach to be much larger, because the bad model structures would consume a

large amount of parameter fitting time, i.e. the approach is not dynamic in recognising

inapt model structures.

1downloaded from http://www.lri.fr/~hansen/cmaes_inmatlab.html.
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Figure 2.4: Improvement of the parameter fitter with CMA and ESSS compared to the

one with a basic ES using one strategy parameter per model parameter. The example

problem used here is parameter fitting for conditional learning (see Section 2.5). Each line

is the mean of 15 runs with the CMA-ES parameter fitter (red) and the simple one (green).

The error bars show standard deviation. Starting network is the handmade conditional

learning network by Fernando et al. (2009) (for initial parameters, see (Beck, 2008)). The

initial step size is 0.05 times the parameter range. Whole population (structural level)

µ = 10, λ = 10, no structural mutations are allowed; parameter fitter: (2+2)-ES, 10

generations. Only the best individual of every 10th generation is plotted.

Note: In earlier versions of the SBMLevolver, and especially in the version used

to conduct the experiments summarised in Figures 3.1, 3.2, 3.3, and 3.9, a simpler

version of ES - using one strategy parameter per model parameter - was implemented

for parameter fitting. It was replaced by CMA-ES with ESSS, because experiments

(Figure 2.4, 2.5) showed a significant performance gain of the latter method.

2.2.7 Fitness evaluation and selection

Fitness evaluation in the algorithm is done by integrating the ODE system result-

ing from an individual model using the SBML ODE Solver Library Machne et al.

50

sbmlevolver/figures/PF_compare_005.eps
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Figure 2.5: Improvement of the parameter fitter with CMA and ESSS compared to the

one with a the basic ES using one strategy parameter per model parameter and model.

The example problem used here is the simple addition of two numbers (note the log-scale

of the fitness values, nearly all runs were able to find a perfect solution). Each line is the

mean of 50 runs with the CMA-ES parameter fitter (red) and the simple one (green). The

error bars show standard error. Whole population (structural level) µ = 10, λ = 10, 50

generations, structural mutations are allowed; parameter fitter: (3,6)-ES, 6 generations.

(2006). The resulting multidimensional time series is then compared to a target, and

the weighted quadratic difference

f =
1

C

C
∑

c=1

1

S

S
∑

i=1

N
∑

j=1

(xc,i(tj)− yc,i(tj))
2

between the resulting time series x and the target time series y defines the fitness. Here,

i = 1, . . . , S runs over the set of evaluated species, c = 1, . . . , C runs over the fitness

cases, and j = 1, . . . , N runs over the evaluation timesteps, which do not have to start

from t = 0. Thus, fitness values are minimised, 0 being the absolute lower bound. If a

steady state value is regarded as the desired result of a network simulation, a constant

time series is the target and the first few timesteps are discarded.

Selection at the structural level is elitist, with a certain percentage of the population
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surviving to the next generation, which is filled by offspring of survivors, generated by

mutation and recombination.
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2.3 Optimal algorithmic parameter settings

Note: I include here the results from the Diploma thesis by Hendrik Rohn (2008),

which I supervised. All results in this section are his, not mine. Motivation, outline

and supervision are my contributions to this work.

2.3.1 Experimental setup

The SBMLevolver algorithm is controlled by 17 parameters, such as population size,

number of offspring, etc. To find optimal settings for these parameters, Sequential

Parameter Optimisation (Bartz-Beielstein et al., 2005) was employed. To asses the

effect of the parameters, we used a performance measure calculated from the best

fitness reached and the speed of evolution, which is estimated by averaging the best

fitness values of all generations. Problem settings were taken from different problem

domains:

1. steady-state computation of a a polynomial of degree seven (analog to the third-

root and logarithm computation above) (“Polynomial (SS)”)

2. a Boolean parity function with three inputs (“Parity”)

3. time-course approximation of a polynomial (“Polynomial”)

4. time-course approximations of the behaviour of a given biological network (“Leg-

ewie06”).

2.3.2 Results

The results show that with the given implementation and limited computation time,

only one population instead of parallel ones should be used. This might be an effect

of the limited run-time granted to the EA and might change for longer runs. For the

population parameters on the structural level, we find optimal values of µ ≈ 200 and

λ ≤ 50 for a (µ + λ) strategy with overlapping generations, and µ ≈ 200, λ ≥ 450 for

a (µ, λ) strategy with non-overlapping generations.

Against expectations, the simple crossover implemented in the SBMLevolver did

not diminish performance, but was rather able to improve it. However, both crossover

probability and the maximal number of mutations in one offspring creation only have
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Figure 2.6: Example results for parameters µ and λ, for a plus-strategy and the problem

“Legewie06”.

a very slight effect on performance. The investigation of the relative mutation proba-

bilities gave only very noisy and inconsistent results.

Optimal settings for the parameter fitting loop are more clear, and the influence of

these parameters on performance is quite large: population size should be five or less,

number of offspring should be between 5 and 50. The parameter fitter should be run

for 10-100 generations.

2.3.3 Discussion

Due to the large computational demand of a single run of the SBMLevolver, not many

repetitions could be carried out for each sample point evaluation in parameter space.

However, EAs are stochastic search algorithms, so measuring their performance is an

extremely noisy business. Additionally, it seems that most parameters only have small

effect on system performance, which is very hard to detect in such a noisy setting.

Therefore, all diagnosis except for the number of populations (use only one), population

size and number of offspring, are very uncertain and are not to be blindly trusted.
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Parameter Polynomial (SS) Parity Polynomial Legewie06

———— Plus - Strategy ————

Structural optimisation

Populations size µ 100-200 150-450 250-350 100-300

Number of offspring λ <50 <100 <50, >450 50-300

Crossover probability 0.2-0.6 0.4-0.6 0.8-0.99 0.9-0.99

Number of mutations 2-3 5 6-9 3-5

Mutation probabilities

Add species 0.99 0.01-0.3 0.99 0.01

Delete species 0.2-0.4 0.01-0.1 0.99 0.01

Add species to reaction 0.99 0.9-0.99 0.01 0.3-0.5

Delete species fr. reaction 0.7-0.99 0.9-0.99 0.7-0.8 0.7

Add reaction 0.99 0.01-0.25 0.9-0.99 0.3-0.99

Delete reaction 0.6-0.8 0.2-0.4 0.6-0.7 0.3-0.8

Species duplication 0.01 0.8-0.99 0.1-0.99 0.8-0.99

Parameter fitting

Population size µPF <10 5 15 <5

Number of offspring λPF <5, >45 20-25 >45 <5

Generations PF 80-100 <50 15 10 -100

———— Comma - Strategy ————

Structural optimisation

Population size µ 300-400 170-250 >30 200-250

Number of offspring λ <100 >450 >350 >450

Crossover probability 0.9-0.99 0.01-0.5 0.1-0.3 0.3-0.6

Number of mutations <5 5-6 2-3 3-6

Table 2.2: Overview of parameter values that led to good performance. Values were

quantified by visual inspection of the parameter-performance landscapes, see e.g. Figure 2.6

and and Figure 2.7.
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Figure 2.7: Example results for population parameters µPF and λPF of the CMA-ES

algorithm, for the problem “Polynomial (Steady State)”.

Hendrik Rohn proposed and tested five hypotheses to explain the insufficient quality

of some of the results:

1. Not enough repetitions per experiment.

2. Not enough computation time per run.

3. Presentation of measured performance values is difficult, since the parameter-

performance space is usually of dimension > 3. Thus, more than the two dis-

played parameters play a role in the performance of a sampling point, making the

sampled points in one picture effectively incomparable.

4. Interpolation by kringing method does not work sufficiently well, especially at the

borders of the sampled region.

5. Many parameters simply have very little influence on performance.

For a detailed presentation of the results and a discussion of their associated diffi-

culties, see the excellent thesis by Rohn (2008).
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2.4 Exponentially scaled search steps in parameter fitting

Note: The work reported on in this section arose from the Diploma thesis of Hendrik

Rohn, supervised by the author. It was published in Rohn et al. (2008).

2.4.1 Motivation

In a multidimensional parameter fitting problem, the optimal parameters (and thus the

parameter values at runtime) will differ by orders of magnitude (see for example Ibrahim

et al., 2009; Marwan, 2003; Tyson, 1991). While many modern numerical optimisation

algorithms utilise techniques to adapt the search steps for each dimension individually,

the question arises whether prior knowledge of the magnitude of parameters can be used

to improve their search behaviour. In the case of biochemical network models, different

parameters may play different roles (rate constants, saturation constants, etc.), each

with their own typical range of values.

Here, we introduce a technique called exponentially scaled search steps (ESSS),

which adapts the search steps automatically to the assumed parameter range. We

extensively investigate the influence of exponentially scaled search steps on the per-

formance of two evolutionary and one deterministic optimisation technique; namely

CMA-Evolution Strategy (CMA-ES, Hansen and Kern, 2004), Differential Evolution

(DE, Storn and Price, 1997), and the Hooke-Jeeves algorithm (HJ, Hooke and Jeeves,

1961), respectively. As test cases, we use 12 different models from the BioModels

database (Le Novère et al., 2006). For details on the experimental setup, see the

corresponding publication by Rohn et al. (2008). We find that in most test cases, ex-

ponential scaling of search steps significantly improves the search performance for all

three methods.

2.4.2 Description and implementation of ESSS

We compared the results of parameter optimisation on models with unscaled and scaled

parameters. By scaling the parameters, the search steps were automatically scaled as

well (see below). In the unscaled case, the optimisation algorithms allow parameter

values pi in the range between 10−5 to 105. In the scaled case, a hidden parameter p̃i

with values between 0 and 1 was used to compute the original parameter pi according
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to

pi = 10−5+10p̃i .

Optimisation was then carried out on the hidden parameters p̃i, resulting in search

steps that are larger for high values and smaller for low values of the original parameters

pi, independent of the optimisation procedure. This allows an investigation of small

parameter values with high resolution and large parameter values with low resolution

even without an additional adaptation mechanism for the search step-size.

2.4.3 Results and discussion

For each network, each optimisation algorithm was run 50 times, and the quality of

the solution together with the speed of reaching it was recorded. We define the quality

as the value of the objective function at the end of the run, while we take the average

value of the objective function over the whole run (except for the initial phase which

depends on the starting points) as a measure of speed. Figure 2.8 contains six example

runs, and Table 2.3 shows a compact overview of the results. (see Rohn et al. (2008)

for details including the measured values for quality and speed).

The experimental results (Table 2.3, Table 2 in Rohn et al. (2008)) clearly confirm

an advantage of using scaled search steps, in particular when the search interval for the

parameters is large. When the interval to be searched is not too large, our results show

that exponential scaling at least does not deteriorate performance in most cases. Some

test-cases show only a small difference (Fisher, Fung, Lenser) and a few give worse

results (Hornberg, Huang). All other test-cases show an improvement in speed and/or

solution quality for the optimisation procedure. The reason for the different effects of

scaled search steps still remains to be examined. One likely point is that the behaviour

of some networks might be quite sensitive to changes in the parameters with large

values, in which case the scaling may prevent adequate fine-tuning of these parameters.

However, it also has to be noted that in cases where performance is worse, this effect is

not too pronounced, giving more weight to the partially drastic performance increase

in most other cases.
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Hornberg Nielsen

Differential Evolution

CMA-Evolution Strategy

Hooke & Jeeves algorithm

Figure 2.8: Typical runs of six exemplary fitting cases of the networks by Hornberg and

Nielsen, optimised by all three algorithms; the dashed lines indicate the unscaled approach,

solid lines show the scaled one.
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—DE— —ES— —HJ—

Network better faster better faster better faster

Fisher et al. (2006) - - (-) (-) (+) +

Fung et al. (2005) - + (+) (+) + +

Hornberg et al. (2005) - - - - - -

Huang and Ferrell (1996) - - - - - -

Kofahl and Klipp (2004) + + + + + +

Kongas and van Beek (2001) (+) + + + + +

Martins and Boekel (2003) + + + + + (+)

Marwan (2003) + + + + + +

Nielsen et al. (1998) + + + + + +

Lenser et al. (2007) - (-) - (-) (-) (-)

Tyson (1991) + + + + - (+)

Yildirim and Mackey (2003) + + + + + +

Table 2.3: Advantage (plus) or disadvantage (minus) of the scaled approach in compar-

ison to the unscaled approach. Brackets indicate a non-significant result according to the

Mann-Whitney-Wilcoxon-Test Wilcoxon (1945)with P ≥ 10−3. Based on 50 independent

repetitions for each test-case. DE = Differential Evolution, ES = Evolution Strategy, HJ

= Hooke-Jeeves. Columns “better” indicate quality of the fit, “faster” indicate speed.

2.5 Application: a chemical network with learning capability

Note: This section gives a brief summary of the Diploma thesis by Christian Beck,

which I supervised. All results in this section are his work, not mine.

2.5.1 Introduction

This case study aims at evolving and testing a gene regulatory network that is capable

of classical conditioning, a basic form of learning. Here, the network learns the corre-

lation of different, simultaneously occurring external factors and adapts its behaviour

accordingly. Although conditioning is very common in multi-cellular organisms, there

is no evidence so far for evolution of any learning systems in prokaryotes. The endow-

ment of bacteria like E. coli with learning could open up new possibilities in several

scientific fields such as medicine, technology, and biology.

In 2003, Thomas Knight presented a simple way to equip living organisms with
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Figure 2.9: General structure of a gene with its promoter terminator. The picture also

shows the transcription into messenger RNA and the translation into a protein. These two

steps are greyed due to the fact that in this thesis all kinds of post-transcriptional regulation

and modification are ignored. The protein can act as a regulator for the expression of its

own or another gene by binding to the promoter region.

additional features by using standardised DNA sequences called BioBricks (Shetty et al.,

2008). In this case study, models of these BioBricks were used as building blocks for

the evolution of learning networks. Their mathematical representation is based on

Hill kinetics, where the production of a protein y is regulated by the concentration of

transcription factor (TF) x as follows:

dy

dt
= α ∗ xn

Kd + xn
.

While this is the formula for positive regulation by a single TF, negative regulation and

co-regulation by two TFs were also considered here. Notably, the evolutionary process

focuses on realistic networks by exclusively employing gene regulatory mechanisms that

can be found in nature.

2.5.2 Results and discussion

One of the most complicated parts of this work turned out to be the description of

the fitness function, which needed to be general enough to characterise the learning

phenomenon, but specific enough to provide the EA with the information to evolve the

network. In the end, a weighted combination of the desired response to different stimuli

was used. For details, the reader is referred to Beck (2008).
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Parameter fitting of a Hebbian learning network In a first step, the pa-

rameters of a hand-crafted reaction network were fine-tuned for the learning task. The

network itself was inspired as a synthetic implementation of the learning task using

specific biological modules. For details, see the publication by Fernando et al. (2009),

which contains this part of the results. Repeating the evolutionary procedure, we

learned that many qualitatively different parameter sets led to the same desired be-

haviour. Using a principle component analysis, we were able to show that the ensemble

of evolved (28-dimensional) “working” parameter sets were determined by eight under-

lying parameters, and how the major principal components related to the parameters

of the network.

Structural evolution of learning networks In a second step, the structure

and the parameters of a conditional learning network were to be evolved. For this,

the fitness function had to be adapted. Christian Beck (2008) was able to evolve both

simple conditional learning networks and Hebbian learning networks. Figure 2.10 shows

a network that can perform conditional learning, but not of the Hebbian type. It has

to be noted that the structural optimisation task was a lot more difficult than pure

parameter optimisation of a specialised structure, and most runs ended in local optima

not showing the desired behaviour. Beck (2008) also analyses the typical local optima

in the fitness landscape.

Outlook: a potential wetlab implementation One goal of this case study

was to evolve realistic networks that could in principle be transferred into biological cells

using the BioBricks approach. Figure 2.11 shows such an implementation of a Hebbian

learning network. It would be very interesting and informative to see this network

implemented in vivo, but this was not in the scope of this work. For the future, it

would be interesting to extend the SBMLevolver in such a way that the evolved gene

regulatory networks are completely built up of these standard biological parts. This

would make the software a reasonable tool for synthetic biologists to develop networks

with complex behaviour that can easily be transferred into living organisms.
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Figure 2.10: Structure of a conditional learning network. The species Sp6 is the output

species that represents the learning. It is activated by the unconditioned stimulus (Sig1)

through reaction R7. This reaction is so fine tuned that even the smallest amount of Sp4

is enough to produce Sp6. Reaction R9 on the other hand needs a higher concentration of

Sp4 to get activated. Thus before pairing, the concentration of Sp4 is too small to produce

Sp6 together with Sig2. The activation of both signal species produces a higher amount

of Sp4 and so R9 produces Sp6 while Sig2 is active. Sp4 can be seen as a species which

memorised the pairing of both stimuli. Although this network shows conditional learning,

this is no Hebbian learning. For details and behaviour of the network, see the thesis by

Beck (2008).

2.6 Concluding remarks

In this chapter, I introduced an evolutionary algorithm design and its implementation,

aimed at the artificial evolution of networks in molecular biology. The problem is hard

to tackle, since both the structural evolution of a network and the fitting of kinetic

parameters provide enough difficulties to require specialised algorithmic solutions. In

combining those solutions, an algorithm was created that is specifically tailored for the

problem at hand. Several rounds of parameter fitting after each structural mutation

are used to soften the effect of these structural mutations and to provide a smoother

path through the search space of network structures. To provide a quantitative backing
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Figure 2.11: The depicted network shows one theoretical possibility how an evolved

Hebbian learning network could be transferred into living cells using BioBricks. For easier

handling, ultra-violet light and the monosaccharide arabinose were used as signals. The

production of output species LuxR is directly regulated by signal one and also by LasR

- which is the weight species - and PAI. PAI and HSL are directly produced by signal

two. Signal two (via HSL) activates the production of LasR in the presence of LuxR. For

a slower decay, the weight species LasR is tagged with LVA. The regulatory regions are

labeled with their identification numbers in the BioBrick database. For details see Beck

(2008).

for the claim that a nested EA approach helps in evolving cellular networks, Chapter 3

provides extensive comparisons between the two-level setup and two one-level variants.

This chapter also presented a few ideas of how to formalise the strong causality

requirement of EAs, and how to measure the strength of causality in an EA system.

Because of time constraints, these ideas have not yet been consequently applied to

the SBMLevolver software system. Even though they have been used as guidelines in

the design of the two-level approach, a quantitative and detailed investigation of these

aspects is very likely to reveal further insights into the work of this evolutionary system.
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3
Evaluation of the SBMLevolver Approach

Chapter summary. Evaluating the approach to network evolution presented in the

last chapter, I show that a separation of model-structure evolution from parameter-

fitting helps to prevent premature structural convergence, presumably by strengthening

causality and thus smoothing the path of the population through the search space. This

justifies the two-level approach to network evolution implemented in the SBMLevolver

software. Comparisons with random search on the network level and with pure param-

eter fitting of fully connected networks reveal that the combination of structural and

parameter evolution is indeed advantageous. Further results indicate clearly that the

deletion of network parts is less likely to have a large effect on network behaviour than

the addition of new parts. The chapter is concluded by a case study on the evolutionary

improvement of a cell cycle spindle checkpoint model.
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Figure 3.1: Average best-fitness with standard error over 10 (blue) and 100 (red, green)

(see note) runs of the evolution of logarithm networks. Blue: two-level EA with structural

(25+25) loop for 29 generations and (3,10) parameter fitter loop for 99 generations; Red:

one-level EA with (25+25) loop for 29999 generations (note the different scale); Green:

one-level EA with (2500+2500) loop and 299 generations. Fitness evaluations are given in

thousands.

3.1 Evaluation of the two-level approach

3.1.1 Experimental setup

Arithmetic calculations as test functions In order to test the effect of the

separation between structural evolution and parameter fitting (see Chapter 2) on per-

formance, we evolved networks supposed to perform two tasks: calculating the third

root and logarithm of a positive real number. Here, “calculating” means that the input

is set as initial concentration of species input, while the output is read from the steady

state concentration of species output. Therefore, the target time series for the output

species is simply the desired output value, constant over a period of time, where the

first few timepoints are excluded from the fitness evaluation. An example solution for

a third root network is shown in Figure ??. While the third root has been observed to
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Figure 3.2: “Accidental” result: A slight change in the ratio between structural and

parameter mutations does not change the results qualitatively (see note). Blue line: Correct

two-level setting with 10 repetitions; Red line: Incorrect two-level setting (with (5,15)-ES

instead of (3,10) for the parameter fitting loop) and 100 repetitions. Left: logarithm task;

Right: third root task. Error bars denote standard error.

be solvable but substantially more difficult than a square root network (Deckard and

Sauro, 2004), no precise solution to the logarithmic problem is known yet. Therefore,

the best possible approximation to the logarithm is sought. In this work, the main

focus is not put on the evolved networks, but rather on the evolutionary process.

Two-level vs. one-level approaches To compare the effectiveness of the two-

level approach, we designed two one-level settings, where the structural and parameter

mutations were used together in one evolutionary loop. Thus, three different strategies

were used:

1. Two-level evolution using ES for local fitting (upper level: (25+25)-elitist selec-

tion, 29 generations, only structural mutations; lower level: (5,10)-ES, 99 gener-

ations, only parameter mutations)

2. One-level evolution running for more generations ((25+25)-elitist selection, 29999

generations, structural and parameter mutations)

3. One-level evolution employing a larger population ((2500+2500)-elitist selection,

299 generations, structural and parameter mutations)

The parameter settings were chosen such that the number of fitness evaluations and

the ratio of structural vs. parameter mutations are identical, enabling an objective
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Figure 3.3: Average best-fitness with standard error over 10 (left) and 100 (middle, right)

runs of the evolution of third root networks. Left: two-level EA with structural (25+25)

loop for 29 generations and (3,10) parameter fitter loop for 99 generations (note different

scale), middle: one-level EA with (25+25) loop for 29999 generations (note the different

scale), right: one-level EA with (2500+2500) loop and 299 generations.

comparison. The one-level strategies invested the saved fitness evaluations into more

generations (2) or more individuals (3). In the ES, adaptive stepsizes were disabled

to make the results comparable. Computations were carried out as single-processor

runs on a cluster of workstations equipped with two Dual Core AMD Opteron(tm) 270

processors running Rocks Linux.

Note: In the original experiments published in (Lenser et al., 2007), there was an

error in the experimental design of the two-level strategy, with a (5,15)-ES for local

parameter adaptation, instead of the (3,10)-ES correctly used. This resulted in a

larger number of fitness evaluations and a different ratio of structural vs. parameter

mutations. When the error was discovered, the computational resources needed for a

repetition of the experiment were not available any more. Therefore, it was repeated

with only 10 repetitions instead of 100. The results from the correct and incorrect

setting are compared in Figure 3.2: the difference is negligible, thus the exact settings

do not significantly influence the quality of the EA.
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3.1.2 Results

Two-level approach yields significant advantages Results of the evolution

of a logarithm-network (Figure 3.1) show that the two-level structure of the algorithm

improves fitness development drastically in comparison to a larger number of genera-

tions, while it prevents the premature convergence seen with a larger population. A

large population seems to enable the algorithm to guess a good initial network, but it is

unable to improve upon this. In contrast, the two-level approach improves the network

continuously, yielding significantly better results in the end.

Figure 3.3 shows the average fitness development for the third root task. Results

are similar to Figure 3.1, although not as pronounced. Again, the two-level strategy

drastically outperforms the setting with more generations, while its initial progress is

slower than for a large population. However, the large-population approach converges

too early, while the two-level setting continues to improve in a smooth fashion. In

this task, the networks were also required to be mass-conserving, i.e. it was demanded

that a feasible configuration of molecular masses for the different species exists. This

constraint might explain the slower rate of convergence in comparison to the logarithm-

trials.

More successful mutations produce larger networks Since a separation

of structural evolution from parameter fitting leaves newly created topologies time

to adapt their parameters before they are evaluated, the probability for a successful

structural mutation is higher. Moreover, the structural evolution starts from small

networks, so that in the two-level setting, larger network solutions are expected. Indeed,

this is the case: For the logarithm task, the networks resulting from the two-level

setting have 6.9± 0.03 species on average, whereas for the one-level settings, networks

with 3.0 ± 0.002 and 3.1 ± 0.0001 species on average evolve. The picture is similar

for the number of reactions: 7.5 vs. 3.0 and 3.1, respectively (the standard error is

always relatively small and thus omitted). For the third root task, the networks are

of comparable size. While this increase in network size for the two-level approach

helps to explain its success, it certainly comes with increased computation times for

this approach. Unfortunately, runtimes were not directly measured at the time the

experiments were carried out.
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3.2 Comparison with random search

A fair comparison must not sample the whole search space As a control

test, a random search (RS) with the same parameters was performed, replacing muta-

tions in the structural evolutionary algorithm with creation of new random individuals.

For this, it has to be considered that the search space is vastly larger than the space

actually explored by the EA (networks were allowed up to 100 species and reactions,

but all successful models had 4-9 species and 2-19 reactions). Thus, a random search

sampling the whole search space would not be a fair comparison to the EA trials. To

restrict the random search to the utilised search area, the size of random individu-

als was determined by probability distributions gained from the final populations of

the two-level EA, separately for both tasks. The slight advantage that sampling from

sizes of the final population lends to RS only strengthens the conclusion that the EA

outperforms RS.

Parameter inheritance in random search As discussed in the description

of the algorithm, the SBMLevolver approach uses inheritance of parameter settings

from a parental model structure to its offspring, in order to provide the best possible

starting values for the new round of parameter fitting associated with the creation of

a new structure. While it is impossible to apply this direct inheritance to the random

search algorithm (since the offspring bears no structural similarity to its parent), the

seemingly best possible approach was to randomly select the offspring’s parameters from

the parental parameter values. This at least allowed an adaptation of the magnitude

of the parameters, e.g. if a task requires parameters in the 10−2 range, the parameter

fitting loop did not have to tune to that range over and over again.

RS cannot narrow its search While the development of the best fitness is

similar for the SBMLevolver EA and structural RS in the initial phase of the run, the

EA drastically outperforms RS in finding a precise solution, resulting in fitness values

one order smaller after 750000 fitness evaluations (Figure 3.4). The random search

approach clearly lacks the ability to narrow its search and fine-tune the network for the

desired calculation. However, it is not totally clear how much of this advantage is due

to the structural similarity between parent and offspring, and how much is caused by

the parameter inheritance, which leads to a better adaptation of the kinetic parameters

for the EA.

71



3. EVALUATION OF THE SBMLEVOLVER APPROACH

3.3 Comparison with pure parameter fitting

3.3.1 Motivation

SBMLevolver as a CMA-ES with macromutations In comparison to ran-

dom search on the network level, pure parameter fitting of a fully connected network

model lies at the other end of the spectrum of possible model fitting approaches. In

the SBMLevolver approach, topological mutations and the CMA-ES parameter fit-

ting algorithm are heavily interwoven. In effect, one could argue that the SBMLevolver

represents a variant of CMA-ES, augmented with macro-mutations on the system struc-

ture.

From an a-priori point of view, such a variation of the CMA-ES idea has potential

benefits and drawbacks. On the positive side, the SBMLevolver does not need to fit a

full system containing all possible reactions, but can limit itself to smaller sub-systems.

This leads to drastically decreased computation times (see below). On the negative

side, the idea of macro-mutations is opposed to the design of Evolution Strategies,

since they can violate strong causality (Section 2.2.1) and cannot be arbitrarily scaled to

accommodate the search situation. These different effects of macro-mutations motivate

a more thorough investigation of the SBMLevolver in comparison to pure CMA-ES on a

fully connected model, by looking at a gradual transition between the two approaches.
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Figure 3.4: Comparison of two-level EA (blue) with random search in structures with ap-

propriate size (red). Average best-fitness with standard error over 10 runs for the logarithm

(left) and third root (right) task. Structural EA (25+25) for 29 generations, parameter

fitter (3,10) for 99 generations.
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3.3.2 Experimental setup

Ratio of structural vs. parameter mutations determines influence of

macromutations To this end, an experimental setup was designed in which the ratio

of structural mutations vs. parameter mutations could be varied, and the resulting

algorithmic behaviour could be investigated. First of all, all parameters except the

number of generations spend in the structural EA and in the parameter fitting CMA-ES

were kept fixed: Structural evolution was done in a (30+30) setup, while the parameter

fitter used a (3,6) strategy. On the structural level, the number of species was fixed to

three (to facilitate comparison with a fully connected network model), and the number

of reactions was allowed to vary between 0 and 100. All reactions from Table 2.1 were

allowed.

Premature convergence of parameter fitting leads to differing numbers

of fitness evaluations To vary the ratio of structural vs. parameter mutations, the

number NS of structural EA generations and the number NP of parameter fitting gen-

erations were varied in such a way that the overall number of fitness evaluations stayed

constant. It has to be noted that this setup does not guarantee a constant number of

fitness evaluations, since the parameter fitting loop for every network of the structural

loop can terminate prematurely if the numerical integration fails repeatedly or the

CMA-ES reaches a fitness plateau. Indeed, the average number of fitness evaluations

varies significantly between the experimental setups (see Results section).

Details on the experimental setup The following combinations of NS and NP

were used for the experiments, sorted by a decreasing amount of structural mutations:

(NS = 100,NP = 5), (NS = 50,NP = 10), (NS = 25,NP = 20), (NS = 10,NP = 50),

(NS = 100,NP = 5), (NS = 1,NP = 500), and (NS = 0,NP = 15000). The last two

settings present a special case: no structural mutations were carried out, and only

parameter fitting was performed. For this, two alternatives were explored: In the first

one (termed (NS = 1,NP = 500)), the population of the structural EA consisted of the

fully connected model plus 29 randomly generated models, in the same way as the initial

population of all other runs. In the second alternative (termed (NS = 0,NP = 15000)),

only one fully connected model was fitted, which means that instead of the usual

µ = λ = 30, the population of the structural EA only consisted of the one fully
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Figure 3.5: Exemplary results for the influence of the ratio between structural and pa-

rameter mutations on the evolutionary success for the logarithm task. For a given number

of generations (see text, (0,15000)A and B denote the (0,15000) setting run for the whole

15000 parameter mutations (A) or for 1150 parameter mutations (B)), the best fitness

reached (left) and the utilised computation time of all settings except (0,15000) do not

differ significantly for the different combinations of structural EA generations (NS) and

parameter fitter generations (NP ). The (0,15000) setting, when run to the end (A), leads

to a drastically increased computation time (right). When the computation time is limited

(B), fitness results are inferior to the other settings (left). Since the experiments were car-

ried on a number of differing hardware configurations, computation times were normalised

by the performance of the respective machine on a given task (‘normalised time’).

connected model, which underwent 30 × 500 = 15000 generations in the parameter

fitting loop.

3.3.3 Results and discussion

Ratio of structural and parameter mutations is not significant to evo-

lutionary success Unfortunately, the results show that the influence of chance on

the evolutionary success is a lot higher than that of parameters. For a given number

of total fitness evaluations, the exact parameter configuration does not significantly

influence either the best fitness reached or the utilised computation time, except for

the special case of pure parameter fitting of a fully connected network, which is treated

below (Figure 3.5 shows the results for the logarithm task, the corresponding results for

the third root task are qualitatively similar). For the trails shown, only 30 repetitions

were carried out, so that it may be possible to reach significant differences in the mean

values for a larger number of repetitions. However, the standard deviations indicate
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that any such difference in the mean value would not be of consequence to individual

runs, which are mainly determined by chance, not by the parameter choice.

Putting all fitness evaluations into a fully connected model is not fair

Initially, the fully connected model was put into the parameter fitting procedure for

the full 15000 generations (setting (0,15000)A in Figure 3.5). While this leads to a fair

comparison in terms of fitness evaluations, it is highly unfair in terms of computation

time, since the effort for numerical simulation of the fully connected model is about 15

times higher compared to the sparse models that typically appear in the other setups

(Figure 3.5 right). For a practitioner, results should be available as fast as possible,

so that computation time seems to be a more important criterion than the number of

fitness evaluations. For this reason, the number of generations for fitting the full model

was reduced by a factor of 15, leading to computation times that are comparable to

the other optimisation setups (setting (0,15000)B in Figure 3.5). It should be noted

that the fully connected model here has only three species. When larger models are

considered, the above effect will increase exponentially.

With comparable computation time, fitting a full model is not compet-

itive When the computation times are made comparable, the fitting algorithm for

the fully connected model can only use around 6900 fitness evaluations, in contrast

to the approximately 90000 that are used in runs with sparse models. This leads to

a drastic decrease in fitness performance (Figure 3.5 left). These results clearly show

that with the given time limitation, the performance of parameter fitting on a fully

connected model is significantly worse compared to structural evolution with a free

model structure.

75



3. EVALUATION OF THE SBMLEVOLVER APPROACH

0 20 40 60 80 100 120
10

−100

10
0

10
100

10
200

10
300

Number of species

A
ve

ra
ge

 b
eh

av
io

ur
al

 d
iff

er
en

ce

0 50 100 150 200 250 300 350 400
10

−100

10
0

10
100

10
200

10
300

Number of reactions
A

ve
ra

ge
 b

eh
av

io
ur

al
 d

iff
er

en
ce

Figure 3.6: The influence of the number of species (left) and reactions (right) on the

mean behavioural difference over all mutations and repetitions. The correlation is not very

strong (significance values around p=0.1) but clearly visible. Note the log-scale on the

y-axis.

3.4 Measuring the effect of mutation operators

3.4.1 Experimental setup

Mutation operators change network behaviour, but how much? When

considering the network mutation operators designed in Section 2.2.4, an important

question to ask is: “What is the expected (or average) effect of this operator when

applied to a biochemical network model?” In a slightly more formal phrasing, we want

to know how much the behaviour (i.e. the simulated time course) of a network changes

when the operator is applied to it. To this end, I have applied the mutational operators

to models taken from the BioModels database (Le Novère et al., 2006), and recorded

the difference in the simulated time courses before and after the mutation.

Sampling models of different sizes and purposes At the time the experi-

ment was conducted, the BioModels database (release 11) contained 184 curated model,

which were downloaded in SBML format. The models were not modified, keeping their

kinetic rate constants and initial concentrations. The models contained between 0 and

120 species and between 0 and 352 reactions, with an average of 13.3 species and 25.4

reactions.

Behavioural difference is measured as the average difference per species

To compute the difference in model behaviour induced by the mutation, the time-

76

sbmlevolver/figures/species_vs_behav_diff.eps
sbmlevolver/figures/reactions_vs_behav_diff.eps


3.4. MEASURING THE EFFECT OF MUTATION OPERATORS

2 6 10 14 18 22 26 30 34 38
10

0

10
1

10
2

10
3

Behavioural difference

R
el

at
iv

e 
pr

op
or

tio
n 

of
 o

cc
ur

en
ce

25 75 125 175 225 275 325 375 425 475
10

0

10
1

10
2

10
3

Behavioural difference

R
el

at
iv

e 
pr

op
or

tio
n 

of
 o

cc
ur

en
ce

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

x 10
9

10
0

10
1

10
2

10
3

10
4

R
el

at
iv

e 
pr

op
or

tio
n 

of
 o

cc
ur

en
ce

Behavioural difference

Figure 3.7: Effects of the different mutation operators on network behaviour, displayed

at three different scales. Mutations are species deletion (dark blue), addition (light blue),

deletion (green) and replacement (orange) of reactions, and species duplication (brown).

The different scales are created by summarising all values greater than the histogram range

in the rightmost bin. The rightmost bins roughly correspond to the 40%, 60% and 95%

quantiles of the behavioural difference distributions.

courses before and after the mutation were computed, and the average sum-of-squares

difference between corresponding species (neglecting added or deleted species) was

taken as the summarising difference measure. To this end, the model was simulated

once before the mutation, then the mutation was applied by the SBMLevolver software,

and the mutated model was simulated again. In a large proportion of cases (∼50% for

deletion of a species, ∼30% for the other mutations), the numerical integration of the

mutated model failed, and the result from these runs was discarded. By design, the

addition of a species does not cause a change in network behaviour (as the species is

initially not connected by a reaction), and thus the experiment was only carried out for

the deletion of a species, addition, deletion, and replacement of a reaction, and species

duplication.

3.4.2 Results and discussion

Mutation effects vary immensely and decrease with network size The

first aspect to notice about the mutation-induced behavioural differences is that they

vary greatly, between difference values of 0 and 10299 (Figure 3.7). The very large

values are caused by mutations that lead to infinitely increasing concentration values

in the network, making the behavioural difference infinitely large. In many cases, the

numerical integration of such models fails, but if it does succeed, large difference values

are recorded. On the other hand, most mutations only induce small differences in net-

work behaviour, with median values of 280, 18, 50, 176 and 12 for the five investigated
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mutations (Figure 3.7).

Comparing the size of networks (measured in number of species and reactions,

respectively) with the average effect of a mutation, a very weak negative correlation can

be discovered (Figure 3.6). The intuitive assumption that a mutation of a large network

will lead to a relatively smaller effect seems to be correct. However, this correlation

is much weaker for smaller networks, which constitute the majority of models in the

investigated BioModels release.

The model, not mutation, determines behavioural difference Looking at

the whole collection of behavioural difference measurements, the very large values ob-

scure any trends that might be visible in the data, even in log-scale. Therefore, the

dataset was visualised at different scales, by limiting it to maximum values approxi-

mately at the 40%, 60% and 95% quantiles (Figure 3.7). On all three scales, the effects

of the different mutations seem pretty similar. Closer investigation of the data (not

shown) revealed that it is mainly the mutated model that determines the mutation

effect, not the type of applied mutation.

On first examination, the histogram plots in Figure 3.7 look like a scale-free graph.

However, when plotted in a log-log plot, the slop changes at the different scales, so the

graph is not purely scale-free.

Addition and replacement of reactions have the strongest influence on

network behaviour To reveal differences in the effect of the mutation operators,

the strong effect of the mutated network had to be removed from the behavioural

difference graphs. To this end, I normalised the effect of the mutations on each model

to the accumulated effect of all five mutations on that model (Figure 3.8). These relative

mutation effects clearly classify the mutation operators in two groups. While deletion

of a species, deletion of a reaction, and species duplication most often has a relatively

weak effect, the addition and replacement of reactions tend to have a relatively strong

effect. Species duplication is especially designed for this (see below). For the rest, the

removal of model parts is less likely to have a strong effect on network behaviour than

the addition of new parts (replacement is deletion plus addition).

Species duplication is a soft mutation operator A major problem with

evolving biochemical networks seems to be the often deleterious effect of structural

mutations on network behaviour. As seen above, the addition of new parts usually

changes the resulting time series drastically, especially for smaller networks. Therefore,
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Figure 3.8: Histogram of the effects of the mutation operators, relative to their combined

effect on each model. Out of the 184 models, 132 are represented here, for the rest the

numerical integration of the mutated model failed. Strong effects are mainly caused by the

addition and replacement of a reaction, while the other three mutations primarily cause

weak effects.

we are looking for a “softer” mutation operator. Inspired by biology, one such operator

is the duplication of a species and all the reactions it participates in. When the rate

constants of all reactions producing the species are halved, this operator does not affect

the concentrations of non-mutated species. Later on, deletions and rate mutations can

exploit the additional freedom gained by duplication.

The relative mutation effect (Figure 3.8) reveals species duplication to be the softest

mutation operator in the repertoire of the SBMLevolver. Going further, I examined

the influence of this operator on the evolutionary performance for a logarithm network

fitness function (see Section 3.1.1). The results (Figure 3.9) show that even though

species duplication alone is inferior to addition of new species with random reactions,

combining both operators does not yield an inferior result. However, it is still open

under which conditions the combined approach improves the random addition of new

species.
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Figure 3.9: Average fitness development with standard error for logarithm networks,

results from 100 independent runs. Left: species addition and duplication together, middle:

only addition, right: only duplication. Also shown are the best 5 runs per setting (Grey).

Global selection is (50+100)-elitist, local fitting is a (1+10)-ES, and 50 generations were

calculated.

3.5 Case study: the human cell cycle spindle checkpoint

Note: This case study resulted from a collaboration with Bashar Ibrahim, who

provided the spindle checkpoint model and guided the fitness function design.

Segregation of newly duplicated sister chromatids into daughter cells during anaphase is

a critical event in each cell division cycle. Any mishap in this process gives rise to ane-

uploidy that is common in human cancers and some forms of genetic disorders (Chung

and Chen, 2002). Eukaryotic cells have evolved a surveillance mechanism for this chal-

lenging process known as the spindle checkpoint. The spindle checkpoint monitors the

attachment of kinetochores to the mitotic spindle and the tension exerted on kineto-

chores by microtubules and delays the onset of anaphase until all the chromosomes are

aligned at the metaphase plate (Fang, 2002).

To demonstrate the usefulness of our approach in systems biology, we applied com-

bined structural- and parameter-optimisation to a recent model by Ibrahim et al. (2008)

of the mitotic spindle checkpoint. This model, which is originally crafted by hand ac-

cording to literature and laboratory data, describes in details the concentration dy-

namics of 17 species, namely Mad2, Mad1, BubR1, Bub3, Mad2∗, Mad1∗, BubR1∗,

BubR1:Bub3, APC, Cdc20, MCC, MCC:APC, Cdc20:Mad2, and APC:Cdc20, CENPE,

Mps1 together with Bub1, and the kinetochore as a pseudospecies. Different kineto-
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Figure 3.10: Schematic network model of mitotic spindle checkpoint. Figure taken from

Ibrahim et al. (2008).

chores are represented by three compartments coupled by diffusion, each with the same

11 reaction rules. The last four species represent input signals to the model, reflected

in the rate constants of certain reactions. The model corresponds to biological ex-

perimental results, which characterise the main components of the mitotic checkpoint.

As an optimisation target, the concentration of the central species APC:Cdc20 is

supposed to be low as long as not all kinetochores are attached, but to rise to a higher

value when they all are. In the paper by Ibrahim et al. (2008), this target has been

combined with behaviour from knockout-experiments (which we do not consider here)

to fit the rate constants. Here, we test which results can be achieved when the algorithm

is allowed to add additional reactions. Any reaction given in the original model cannot

be deleted. In future, it will be interesting to loosen this, which could lead to an

evolutionary model reducer isolating only the important parts of a given model.

Our results, summarised in Table 3.1, show that performance of the model has im-

proved compared to the optimisation of rate constants alone. In principle, this could

also help to uncover additional structure in the data and to propose additional features

of the system which can then be verified experimentally. To achieve biological plausi-

bility, these additional features have to be constrained, which has not been observed in

this proof of concept. The best model evolved contains only two additional reactions
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Level 1 Level 2 Level 3 Level 4 Fitness

Desired value 0 0 0 0.3 0

Without optimisation 0.086154 0.0865285 0.0869323 0.0872706 27.0122

Parameter optimised 0.010924 0.011051 0.011359 0.298768 0.470562

Structure optimised 0.000106 0.000051 0.000037 0.29972 0.000077

Table 3.1: Steady-state concentrations of APC:Cdc20 for four settings of the cell: All

kinetochores unattached (1), one attached (2), two attached (3), all three attached (4).

The unoptimised model has all parameters set to 0.1, the parameter optimised one has the

values from Ibrahim et al. (2008), and the structurally optimised model is the result of the

procedure described here. Note that the fitness function used is different to the one used

by Ibrahim et al. (2008).

compared to the original,

BubR1Z → Mad1∗X + BubR1∗Y

BubR1∗X +Cdc20Y → Mad2X +Cdc20Y ,

but these require species from different compartments to interact, which is not intended

in the model. After these experiments were performed, the SBMLevolver software was

extended to allow for a compartmental structure of the evolved models. Conversion

reactions are now only allowed to take place between species inside the same com-

partment, and designated transfer reaction take care of material transport between

compartment. Unfortunately, due to time constraints, no results can be reported yet.
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3.6 Conclusion

After a thorough presentation of the proposed two-level approach to the evolution of

network models in Chapter 2, results from the systematic investigation of this approach

and comparison to other algorithms are presented in this chapter. The main findings

indicate that the SBMLevolver algorithm is superior to different one-level approaches,

to random search on networks, and to pure parameter fitting of a fully connected

network. When using the two-level approach, the exact composition of structural and

parameter mutation is not too important, as the very strong influence of chance on the

evolutionary outcome blurs any distinction.

A significant and valid criticism of the results in this chapter is the small range of

evolutionary targets that were used to assess the algorithm. The main reason for this

is the experienced difficulty in the evolution of networks with more complicated fitness

functions. When the EA was presented with more difficult fitness functions, like the

evolution of oscillatory behaviour, most runs did not even come close to a solution.

For example, when evolving an oscillating network, the usual outcome would be a

network that approaches the mean value of the desired oscillation at steady state. This

is clearly a very suboptimal local minimum, since a manual construction of oscillating

networks is possible. However, I clearly have to admit that I did not put enough effort

in these problems to rule a possibility of solving them within the presented framework.

Therefore, more work in this direction is encouraged and will certainly lead to an

increased insight into the artificial evolution of network models.

In the literature, the evolution of network models has usually been treated from an

outcome-oriented perspective. In this chapter, the focus is on the algorithm itself, and

interesting results on its working are derived. However, this field is still largely open,

and improvements are to be expected (and hoped for!) from variants of the two-level

approach as well as from more unconventional approaches.
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4
Evolution of Organisations in Chemical

Computing Networks

Chapter summary. How do chemical reaction networks that process information

evolve? This is not only a fundamental question in the study of the origin of life, but

also in diverse fields like molecular computing, synthetic biology, and systems biology.

Here, we study the evolution of chemical flip-flops by means of chemical organisation

theory. Additionally, we compare evolved circuits with manually constructed ones. We

found that evolution selects for an organisational structure that is related to function.

That is, the resulting computation can be explained as a transition between organisa-

tions. Furthermore, an evolutionary process can be tracked as a change of the organ-

isational structure, which provides a fundamentally different view than looking at the

structural changes of the reaction networks. In our experiments, 90% of evolutionary

improvements coincide with a change in the organisational structure. We conclude that

our approach provides a novel and useful perspective to study evolution of chemical

information processing systems.

Note: The work presented in this section was done in collaboration with Naoki

Matsumaru, and resulted in a publication at the ALife 2008 conference (Lenser et al.,

2008). Naoki contributed the hand-designed network and its dynamic simulation, the

rest of the chapter is my work.
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4.1. INTRODUCTION

4.1 Introduction

While a bottom-up approach to design chemical computing networks has been pur-

sued (Guido et al., 2006), top-down approaches, specifically evolutionary algorithms,

have gained growing interests recently in order to design or program reaction systems.

Efforts have been undertaken to evolve simple computational units (Deckard and Sauro,

2004), small biological networks (François and Hakim, 2004; Koza et al., 2001a; Soyer

et al., 2006), genetic regulatory networks (Kuo et al., 2006a) or components thereof

(Paladugu et al., 2006). Most of this work, however, has been focused on the final

product, that is, the networks evolved to reproduce a certain specified behaviour. Here,

we rather concentrate on the process of evolution. For that purpose, new methods are

required that can deal with constructive systems (Fontana and Buss, 1994), that is,

systems where new components (molecular species) or new interactions between exist-

ing components appear so that the network topology changes dynamically. Matsumaru

et al. (2006) used chemical organisation theory (Dittrich and Speroni di Fenizio, 2007)

in order to study the evolutionary dynamics of (artificial) chemical systems. In this

paper, we analyse the trajectory of evolving chemical reaction networks that compute.

In particular, we focus on networks that function as flip-flops.
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4.2 Methods

4.2.1 Reaction networks and chemical organisations

Here, we utilised the notation of a chemical organisation developed by Dittrich and

Speroni di Fenizio (2007) to analyse reaction networks. Following Fontana and Buss

(1994), an organisation is defined as a set of molecular species that is closed and self-

maintaining. The hierarchy of all organisations of a reaction network represents its

organisational structure, which can be used to describe the dynamical (qualitative)

behaviour of a reaction system as a movement between organisations (Speroni di Fenizio

et al., 2001). Choosing a proper coding scheme, the organisational structure can be

interpreted as a repertoire of behaviour patterns of the reaction system. For example,

Dittrich and Speroni di Fenizio (2007) have shown that only species that form an

organisation can make up a stationary state.

Algebraic description of a chemical reaction network The basic concepts

needed here are now described more formally: A reaction network 〈M,R〉 consists

of a set of (molecular) species M and a set of reaction rules R. A reaction rule ρ ∈ R

can be written according to the chemical notation:

la1,ρ a1 + la2,ρ a2 + · · · → ra1,ρ a1 + ra2,ρ a2 + . . .

The stoichiometric coefficients la,ρ and ra,ρ describe the amount of molecular species

a ∈ M in reaction ρ ∈ R on the lefthand and righthand side, respectively. Together,

the stoichiometric coefficients define the stoichiometric matrix

S = (sa,ρ) = (ra,ρ − la,ρ).

An entry sa,ρ of the stoichiometric matrix denotes the net amount of molecules of type

a produced in reaction ρ. We also define mappings LHS(ρ) ≡ {a ∈ M : la,ρ > 0} and

RHS(ρ) ≡ {a ∈ M : ra,ρ > 0}, returning the species with a positive coefficient on the

lefthand and righthand side, respectively. Reaction ρ can take place in A ⊆ M only

when LHS(ρ) ⊆ A.

Organisational structure Given a reaction network 〈M,R〉 with m = |M|
species and r = |R| reactions, the organisational structure is derived with respect

to the following two criteria: closure and self-maintenance. A set of species A ⊆ M
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Figure 4.1: Circuit diagram and operation mode of flip-flop.

is closed, if for all reactions ρ with LHS(ρ) ⊆ A, the products are also contained in

A, that is, RHS(ρ) ⊆ A. This closure property ensures that there exists no reaction

in A producing new species not yet present in the organisation using only species of

that organisation. The other property is a theoretical capability of an organisation to

maintain all of its members. Since the maintenance possibly involves complex reac-

tion pathways, the stoichiometry of the whole reaction network must be considered in

general. A set of molecules C ⊆ M is self-maintaining, if there exists a flux vector

v ∈ Rr such that the following three conditions apply: (1) for all reactions ρ that can

take place in C (i.e., LHS(ρ) ⊆ C) the flux vρ > 0; (2) for all remaining reactions ρ

(i.e., LHS(ρ) * C), the flux vρ = 0; and (3) for all molecules a ∈ C, the production

rate (Sv)a ≥ 0. vρ denotes the element of v describing the flux (i.e. rate) of reaction

ρ. (Sv)a is the production rate of molecule a given flux vector v.

We visualise the set of all organisations with a Hasse diagram, in which organisations

are arranged vertically according to their size in terms of the number of their members

(cf. Figure 4.6). Two organisations are connected by a line if the upper organisation

contains all species of the lower organisation and there is no other organisation between

them. The Hasse diagram represents the hierarchical organisational structure of the

reaction network under study.

4.2.2 Evolving flip-flop networks

Evolutionary process We employ an evolutionary algorithm that instantiates

a natural selection process on chemical reaction networks (Fernando and Rowe, 2007).

The algorithm can mutate the reaction rules R of a reaction network with a fixed

predefined set of molecular species M = {a0, a1, b0, b1, c0, c1, d0, d1}. As mutational

operators, the algorithm can add or delete a reaction, or replace a reaction with a

different one, keeping as many of the previous participants as possible. To keep things

simple, we employ a (1+1)-EA. That is, one parent generates one offspring, while the

better of the two survives.
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To enable neutral mutations and thus search space exploration, the offspring is

kept if both have the same fitness. No parameter fitting is done, so that a change in

parameters can only be realised through a replacement of a reaction with the same

reaction, which has a different (randomly chosen) reaction constant. Only mass-action

kinetics of first and second order are used in the evolution.

Flip-flop implementation When speaking of a flip-flop logic gate in this work,

we specifically mean an RS (Reset and Set) flip-flop, with a behaviour according to the

truth table in Figure 4.1. To represent the four binary variables a, b, c and d making up

this flip-flop in a chemical format, we employ two opposing species x0 and x1 for each

binary variable x, where the presence of x0 denotes the value x = 0, and x1 denotes

x = 1 (cf. Matsumaru et al., 2007). To help maintain a valid state inside the system,

we fix four destructive reactions x0 + x1 → ∅ for all four species pairs xi = ai, bi, ci, di.

These reactions cannot be changed or deleted by the evolutionary algorithm.

The ideal flip-flop that is the target of the artificial evolution works in the following

way: The set operation (S̄, R̄) = (0, 1) changes the state Q to 1, while the reset

(S̄, Q̄) = (1, 0) changes Q to 0. To hold the previous state, both inputs are set to

1. The forbidden input (S̄, Q̄) = (0, 0) is not considered in the fitness function. In

chemical form, the input (S̄, R̄) = (0, 1) is represented by defining an inflow for a0 and

b1, that is, {∅ → a0, ∅ → b1} ⊆ R; and the other two cases are treated similarly. The

initial concentrations of ci and di are set according to the previous state Qt. Taking

this together, we get six different test cases, coming from three different operations

with two initial conditions each.

Fitness evaluation For each case, we specify either the presence or the absence

of each species as desired, measured in steady state after simulating the reaction sys-

tem for 1000 seconds. Numerical integration is done using the SBML ODE Solver

Library (Machne et al., 2006). The classification as present or absent is decided by a

concentration threshold of 10−9 (arbitrary units). For example, in the reset case, the

following steady state concentrations are considered as correct: a1 = 1, a0 = 0, b1 =

0, b0 = 1, c1 = 0, c0 = 1, d1 = 1, d0 = 0. The fitness value is then calculated by counting

the number of wrong presence / absence measurements, with 0 being the best possible

fitness value. Once a fitness of 0 is reached, the evolution stops.
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4.3 Results

To analyse the evolution of reaction networks acting as flip-flops, we performed 30

independent runs in order to evaluate properties of a “typical” run. Additionally, we

also looked at one run in more detail.

Since the distinction between the three different input settings is realised by enabling

or disabling inflow reactions for a1, a0, b1 and b0, we need to compute three lattices of

organisations for each analysed candidate solution, one for each input setting.

4.3.1 Statistical analysis of many runs

Fitness development over normalised evolutionary time The average fit-

ness development (Figure 4.2) shows a stronger gain in fitness at the beginning, while

the convergence towards zero is slower later on. Eventually, all runs reached a fitness

of zero, i.e. the networks behaved as specified in the fitness function. Since a run

stops exactly when the fitness of the current individual is 0, the number of generations

usually differs between runs. In order to be able to average over these runs, we had to

resample the data on fitness and number of organisations, such that a common number

of measurements for each run is achieved. To this end, we constructed a timescale of

“normalised evolutionary progress”, defined by its endpoints 0.0 at the beginning of

the evolution and 1.0 at the end when the final solution is found. The MATLAB func-

tion resample, which applies an anti-aliasing low-pass FIR filter during the resampling

process, was used to create new data points at 1001 equally space points between 0.0

and 1.0.

Evolution of the number of organisations Looking at the number of organi-

sations for the three different input cases, we can see from Figure 4.3 that starting from

around four to five organisations on average, the numbers diverge between the set/reset

operations and the hold operation. While the number of organisations for the set/reset

organisation converges between two and three, the hold operation yields around seven

organisations on average.

Relation of fitness improvements and organisational changes By compar-

ing the organisational structures between successive candidate solutions, we calculated

that 90% of all fitness improvements are accompanied by a change in the organisational

structure for at least one input case. In contrast, only 18% of organisational changes
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Figure 4.2: Average fitness value from beginning to end of evolutionary runs, from 30

independent repetitions. The x-axis denotes the normalised evolutionary progress from the

random initial solution (x = 0) to finding a solution with fitness 0 (x = 1). For this, the

different runs were resampled to 1000 samples, as described in the text. Error bars indicate

standard deviation.

also come with a fitness improvement. When looking at the lineage of networks that

led to the final solution, disregarding unsuccessful candidates, we find that 35% of all

mutations changed the organisational structure for at least one input.

4.3.2 Detailed analysis of one run

For an in-depth analysis, we pick the first evolutionary run that we performed for this

problem. We will describe how the fitness improvements correlate with changes in

the organisational structure, and give details on one specific mutational event and its

consequences for the organisational structure of the network.

Analysed run is a typical representative Comparing the average fitness de-

velopment shown in Figure 4.2 with the single run analysed here (Figure 4.4 upper

part), we can conclude that the fitness of the individual run progressed in a fairly

standard way. This is especially true given that the behaviour of the 30 runs is quite

diverse, as indicated by the large standard deviations. Also the length of this run (162

generations) is in the usual region, with an average run taking 221 generations with a

standard deviation of 119. Also the number of organisations (Figure 4.4 lower part) is

in agreement with the average number (Figure 4.3), even if the number of organisations
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Figure 4.3: Average number of organisations from 30 independent runs of the evolution.

Colours denote the (a0, b1) input (blue), the (a1, b0) input (red), and the (a1, b1) input

(green). Error bars indicate the standard error. Unit of x-axis as in Figure 4.2.

for the set/reset operations are at the outer limits of the typical range (five and one,

respectively).

Fitness jumps come with organisational changes, but not vice versa

Looking at the fitness increases in the course of the evolution (Figure 4.4 upper part)

and the organisational structures of all networks that appear during the run (not

shown), it can be observed that all but one of the eight fitness jumps are accompa-

nied by changes in the organisational structure for at least one of the three input cases.

However, taking the number of organisations at any point in the evolution into ac-

count, one can also see that not every change in organisational structure leads to a

fitness change, in fact, most do not.

An example mutation We now relate the fitness change in one successful mu-

tation to the change in organisational structure incurred by that mutation. As an

example, we pick the fitness jump from generation 112 to 113, which improved the

fitness from seven to four wrong presence/absence values. Looking at the reaction net-

works before and after the mutation (Figure 4.5), we see that the mutation added one

reaction, which converts b0 into d1.

This additional reaction does not change the organisational structure for input cases

(a0, b1) and (a1, b1) (set and hold, not shown), but reduces the lattice of organisations

93

evolutionresults/figures/numOrgsAll.eps


4. EVOLUTION OF ORGANISATIONS IN CHEMICAL COMPUTING

NETWORKS

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

generation

fit
ne

ss

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

generation
nu

m
be

r 
of

 o
rg

an
is

at
io

ns

Figure 4.4: One exemplary run. Given are fitness (upper plot) and number of organi-

sations for all three input cases (lower plot). In the lower plot, the three input cases are

shown in blue ((a0, b1) input), red ((a1, b0) input), and green ((a1, b1)). Each mark (square,

cross or circle) denotes a new network structure in the evolutionary trajectory.

for input case (a1, b0) (reset) from five organisations to two (Figure 4.6). Looking at

the behaviour of both networks for all input cases and initial configurations (i.e. all six

test-cases), one can observe that the change occurs only in input case (a1, b0) with an

initial configuration in which c1 and d0 are present (data not shown). For this case, the

steady-state before the mutation has a1, b0, and c1 present, and d0 is still present after

1000 seconds even though its concentration is still decreasing at that time. This yields

four wrong presence/absence values, since c0 and d1 should be present and c1 and d0

should be absent, but the total opposite is the case. After the mutation, d1 is present

and c1 and d0 are absent, but also c0 is absent, so there is one wrong value left.

On the organisational level, the mutation removes three organisations (Figure 4.6),

among which is also the organisation (a1, b0, c1) responsible for the wrong behaviour of

the network. After the mutation, the dynamics take the steady-state into organisation

(a1, b0, d1), resulting in a better behaviour. However, it is interesting to note that both

organisational structures also contain organisation (a1, b0, c0, d1), which is the “correct”

one that is also used in the final solution. Even though this organisation is present, the

dynamics of both reaction systems are such that the steady-state does not lie inside it.

We had to wait for another 49 generations for this to happen.
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Figure 4.5: The reaction network of the candidate solution analysed in the text, after

the mutation adding reaction R11. The added reaction is shown in red.

Figure 4.6: Organisational structure of the networks from Figure 4.5 for input (a1, b0),

before (whole structure) and after addition of reaction R11 (only red part).

4.3.3 An evolved chemical flip-flop

An outcome of the evolutionary process described above is analysed. The reaction

network considered here has a fitness value of 0, i.e. it solves the given task. The

network structure is shown in Figure 4.7.

There are seven reactions, labelled as rea1 to rea7 in the figure, in addition to four

reactions of cooperative decay (not shown in the figure), a1 + a0 → ∅, b1 + b0 → ∅,
c1 + c0 → ∅, d1 + d0 → ∅. This base reaction network is extended to include inflow

reactions, representing the inputs to the flip-flop circuit, depending on the operations.

Organisational structures of the reaction system for each operational mode are shown

in Figure 4.8.
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Figure 4.7: Chemical reaction network implementing flip-flop circuits, designed through

an evolutionary process. Cooperative decay reactions (a1+a0 → ∅, b1+b0 → ∅, c1+c0 → ∅,
d1 + d0 → ∅) are omitted.

Organisational analysis Analysing the organisational structure of the reaction

network, it becomes evident that the reaction system based on this reaction network

is surely usable for the flip-flop computation. Including the two inflows ∅ → a1 and

∅ → b0 in the reaction network, as shown in Figure 4.8 A, only one set of species

{a1, b0, c0, d1} satisfies the conditions to be the organisation. It implies that only this

species combination can be found in the dynamical reaction system in equilibrium

states. Therefore, the reset operation can be realised in the evolved reaction system.

The network with the inflows of ∅ → a0 and ∅ → b1 contains five organisations as shown

in Figure 4.8 B, and one of those {a0, b1, c1, d0} corresponds to the set operation.

Changing inflow reactions to ∅ → a1 and ∅ → b1 achieves the hold operation. In

terms of the organisations, as shown in Figure 4.8 C, the two organisations orgHR=

{a1, b1, c0, d1} and orgHS= {a1, b1, c1, d0} in the reaction network with those inflows

reflect the bistability of the flip-flop circuit. Depending on the state at the previous

time step, the hold operation results in a different state, namely the previous one.
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Figure 4.8: Organisational structure in the reaction network shown in Figure 4.7.

When the reaction system has been in the state after the set operation, (i.e., orgS ),

the hold operation brings the system to the state of orgHS, keeping the output species

unchanged as c1 and d0. Holding the information that the system has been reset can

be achieved by moving the system state from orgR to orgHR.

The last operation of setting both inputs to be zero (a = b = 0) is forbidden for

the flip-flop circuit. If adding two inflows of ∅ → a0 and ∅ → b0 to the base reaction

network, only one organisation arises: {a1, a0, b0, c1, c0, d1, d0}.
If no inflow reaction is present, there are 42 organisations in the base reaction

network. The smallest organisation is the empty set ∅. The sets containing four species

form the largest organisations, and there are four organisations of that size. The

organisations with the size of four in Figure 4.8 are also found to be the organisation

without inflows, except the organisation labelled as orgR. In fact, all organisations in

Figure 4.8 except orgR are also organisations without inflows.

4.3.4 Dynamical behaviour

Mathematical description of network dynamics To validate the organisa-

tional analysis of the reaction network, a dynamical reaction system is constructed and

simulated with Copasi (Hoops et al., 2006), a biochemical reaction system simulator.

Agreeing to the fitness calculation of the evolutionary design process, mass action ki-
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netics is assumed for every reaction, if applicable. The ordinary differential equations

(ODEs) for the input species read:

d[a1]/dt = k1[a
0][c0] + k4[c

1][c0] + k6[c
1][d1]− da[a

1][a0] + Ia1(1− [a1])

d[a0]/dt = −k5[a
0][c0] + k6[c

1][d1]− da[a
1][a0] + Ia0(1− [a0])

d[b1]/dt = −db[b
1][b0] + Ib1(1− [b1])

d[b0]/dt = −k2[b
0]− k7[b

0]− db[b
1][b0] + Ib0(1− [b0])

where a kinetic parameter for a reaction rea id is denoted as krea id. Kinetic parameters

for the cooperative decay reactions are represented by d, and the subscript specifies the

pair. For example, the decay rate of the cooperative decay reaction a0 + a1 → ∅ is

denoted as da.

Inflow reactions representing the operation of reset, set, and hold are controlled

by the four parameters: Ia1 , Ia0 , Ib1 , and Ib0 . These parameters are binary variables,

accepting only 0 or 1. For example, when the chemical flip-flop is set, Ia0 and Ib1 are

set to one and the other pair of parameters Ia1 and Ib0 are set to zero. Inflows are

assumed to be constant fluxes. Furthermore, the inflows are coupled to decay reactions

such as a1 → ∅ in order to avoid endless increase of the input species concentration.

The resulting term of the ODE is Ia1(1− [a1]), for example.

The ODEs for the output species read:

d[c1]/dt = k3[d
1][d0]− k6[d

1][c1]− dc[c
1][c0]− Ib0 [c

1]

d[c0]/dt = −k1[a
0][c0] + k7[b

0]− dc[c
1][c0]− Ib0 [c

0]

d[d1]/dt = k2[b
0]− k3[d

1][d0]− k6[d
1][c1] + k7[b

0]− dd[d
1][d0]− Ib0 [d

1]

d[d0]/dt = −k3[d
1][d0] + k5[a

0][c0]− dd[d
1][d0]− Ib0 [d

0]

Modifications for repeatable computations Kinetic parameter values are

also provided as the outcome of the evolutionary design, but we manually adjusted the

values so that the operations can be continuously repeated. When the fitness of the

reaction system was calculated during the evolution process, three of the operations

were evaluated separately and the reaction system was reinitialised for each case. This

re-initialisation step between operations is prevented here, so that the end state of the

previous operation becomes the initial state of the next operation. For that purpose,

the outflows of the input species are added as described above in order to restrict the
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increase of the concentration. For the output species, the outflows are also added as

shown above, activated only when the inflow of b0 is present. This modification is also

to restrict the increase of the concentrations of the output species, specially, when the

system is reset. These modifications are purely restricted to the dynamical simulation

of this one model and do not influence the organisational analysis above.

The last modification is the kinetic parameter of the reaction rea1, k1, from 4.44231

to 0.5. The rational of this adjustment is: under the input condition “set”, the system is

observed to converge to the organisation of {a0, b1, d1}, instead of orgS. This behaviour

results from the fast extinction of species c0 so that the generation of d0 by rea5 is

insufficient. Slowing down the reaction speed of rea1, species c0 stays in the system

longer and produces d0 enough to neutralise d1.

With these modifications, the network is able to continuously act as a flip-flop,

which is more than the original fitness function demanded. The reason for the simpler

fitness function is straightforward: Determining whether a system can continuously

work as a flip-flop requires long-time monitoring, which makes fitness evaluations very

costly.
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Figure 4.9: Dynamical simulation of chemical flip-flop designed by evolution. Parameters

are set as follows: da = db = 0.1, k4 = 2.33941, k6 = 2.83745, k1 = 4.44231, k5 = 3.62963,

k7 = 4.82838, k3 = 1.0, k2 = 0.1, dc = 0.001, dd = 1.0. Additionally, for each operation of

reset, set, and hold, inflow reactions are activated. For the set operation, the parameters

are set such that Ia0 = Ib1 = 0 and Ia1 = Ib0 = 1 to activate inflows of a1 and b0 species

and to deactivate the others. The reset operation is initiated by setting Ia0 = Ib1 = 1 and

Ia1 = Ib0 = 0. The hold operation is achieved with the parameter settings of Ia1 = Ib1 = 1

and Ia0 = Ib0 = 0.

4.4 Conclusion

Organisation theory helps to understand network evolution, but it is

not enough We found that most fitness improvements come together with change

in organisational structure (90%), showing that organisation analysis indeed yields

insight into the evolutionary process. On the other hand, most organisational changes

are fitness-neutral (82%), indicating that a lot of the information given in the lattice

of organisations does not directly relate to the measured function of the networks. We

have also seen mutations where the replacement of a reaction with the same type of

reaction led to a fitness increase caused purely by the changing of a kinetic parameter,
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as well as changes of network structure not reflected in the organisations (but improving

fitness). All this implies that while organisational analysis can give us many indications

regarding the function of a reaction network, sometimes it does not tell the whole story

of the network’s dynamics.

Evolved networks contain more organisations than hand-constructed ones

We have also seen that the number of organisations for the set and reset states is

substantially smaller than the number for the hold state, in analogy to the hand-

constructed flip-flop by Matsumaru et al. (2007). In comparison to their solution, the

evolved networks show a larger number of organisations for each input case. To realise

the flip-flop behaviour in the reaction system, the minimum number of organisations in

the reaction network is one for the set and reset operation and three for the hold oper-

ation. The hand-designed flip-flop implementation shown by Matsumaru et al. (2007)

has two organisations for set and reset, respectively, and three for hold. In comparison,

the evolved networks have more organisations, on average between two and three each

for set and reset, and seven for hold. This implies that even though the function of the

flip-flop networks is reflected in their organisational structure, this structure contains

more information than only the operational modes specified in the fitness function, and

additionally potential “junk” in the form of unused organisations.

Extensions: organisation-oriented evolution, differential effects of muta-

tion operators As an interesting extension to this work, one could use organisational

analysis to direct the evolution of reaction networks. By first designing the perfect or-

ganisational structure and then evolving networks with this structure, it would be

possible to study whether these networks have the desired functionality. A key step

in this direction is certainly the design of an appropriate fitness function based on a

network’s lattice of organisations.

In an additional investigation on top of the results shown here, one should look at

the effect of different mutational operators on the organisational structure of a network.

This will lead to helpful insights on how the mutations affect the lattice of organisations,

and also on how specific organisational changes are related to changes in the fitness

function.

Organisational structure of evolved networks favours flip-flop operation

In our opinion, the most important lesson to be learned from this work is that the evo-

lutionary process investigated here produces reaction networks with an organisational

101



4. EVOLUTION OF ORGANISATIONS IN CHEMICAL COMPUTING

NETWORKS

structure that reflects their flip-flop functionality. Even though our choice of represen-

tation format of the binary information in chemical form may favour this, we believe

that this phenomenon is mainly caused by the structure of the fitness function, i.e. by

the task that is required of the networks.
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5
Network Reconstruction From FRAP Data

Chapter summary. Network models of biological systems often contain “white spots”,

where the available knowledge about components and their connections is not complete.

In these cases, automatic network inference from data is often used to fill these gaps.

Evolutionary algorithms, such as the one described in Chapter 2, provide a popular

method for automatic inference of networks. In this chapter, we rigorously investigate

the inference of dynamic models for binding and unbinding of PML I, DAXX and Sp100

to PML nuclear bodies (cf. Chapter 6). We show that while no single best model exists,

the EA reveals a set of necessary and sufficient criteria that successful models need

to fulfil. Additionally, an enumeration of all possible models for PML I shows that

the search space consists of three large plateaus, preventing an effective application of

heuristic optimisation techniques on the network level.
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5.1 Introduction

Automatic generation of alternative models through evolution In Chap-

ter 6, a mathematical model is developed that captures the diffusion and binding be-

haviour of a number of molecular components of the promyelocytic leukaemia nuclear

bodies (PML NBs). The topological design of this model was guided by biological

insight, and free parameters were subsequently fitted to the FRAP data. However, a

natural question to pose is whether this is the only reasonable model able to explain

the data, or whether other explanations (models) exist. In this chapter, we employ the

SBMLevolver software (detailed in Chapter 2) to create multiple alternative models

for a subset of the data used in Chapter 6, namely the FRAP time curves for PML

I, DAXX and Sp100. The collection of resulting model topologies is then statistically

analysed in order to assess the uncertainty in explaining the data with a specific kinetic

model.

Artificial network evolution is relatively unexplored Beyond the specific

biological study, this chapter deals with the feasibility of automatic network reconstruc-

tion in general, especially in the non-linear case, using evolutionary algorithms (EAs).

While EAs have been used extensively to fit kinetic parameters of a given network to

time-series data (e.g., see Dräger et al., 2007; Moles et al., 2003), its role in the evolu-

tion of the whole network structure ab initio is relatively unexplored (but see Deckard

and Sauro, 2004; Koza et al., 2001a; Paladugu et al., 2006). Here, an EA approach is

applied to a real-world time-series dataset, and its feasibility is evaluated.

An application of the SBMLevolver This work also provides an important

use case for the SBMLevolver, by showing how it can be employed to automatically

construct models from time series data, and highlights some of the problems in this

process. This leads to valuable insight for a possible further development of this tool

and for its practical use.
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Figure 5.1: Basic framework from which the evolved models start. One freely moving

species Xf diffuses inside and out of the region of interest (ROI) with diffusion constant D,

where D incorporates both the measured diffusion constant as well as the circumference of

the ROI.

5.2 Experimental setup

5.2.1 Search space

Evolved models need a connection to biological reality Preliminary ex-

periments (not shown) gave the impression that if the topology search space is large

enough, the evolution of network models that fit the desired FRAP time courses is

easy. However, these models were generic networks, with no connection between the

components of the model and of the corresponding biological system (In the AI com-

munity, this is referred to as the “grounding problem”). For example, if the resulting

model consists of ten species with mixed kinetic reactions between them, it is very hard

to decide which species in the evolved model corresponds to which biological entity in

the cell. Therefore, a certain degree of grounding - i.e. pre-specified external knowl-

edge built into the model - is needed in order to make the automatically evolved part

interpretable.

The initial model consists only of the inflow reaction For this reason, the

decision was taken to include a priori a diffusion-reaction of one species into the region

of interest (ROI), and make this reaction untouchable by the evolutionary algorithm.

Species duplication was disabled in the EA and no diffusion reaction could be added,

so this is the only species with a diffusive inflow throughout the evolutionary run.

Apart from that, the initial model contains no more reactions and only this one species

(Figure 5.1).

105

evolutionresults/figures/pml-model-base.eps


5. NETWORK RECONSTRUCTION FROM FRAP DATA

Allowed species and reactions The number of species in the models is allowed

to vary between one (the initial) species and three species, while the number of reactions

can vary between zero and ten. As we are only interested in binding and unbinding

processes, the only allowed type of reaction is a uni-uni reaction with mass-action

kinetics and a rate constant between 0.0 and 5.0.

5.2.2 Artificial evolution

EA setup In all evolutionary runs, a (30+30) strategy was pursued on the net-

work topology level, and 100 replications were computed for each dataset. All muta-

tional operators of the SBMLevolver except for species duplication (see Chapter 2) were

enabled and operated with equal probability. For the parameter fitting loop, a (1,5)

CMA-ES was employed with maximally ten generations per evaluation of one network

structure, always starting from the parameters values of the ancestor structure (which

may in fact have been the same structure, since one of the structural operators is the

copy operator).

Fitness function In analogy to Chapter 6, the evolved models deal with con-

centrations inside the ROI, considering only species fused to a fluorescent molecular

tag (usually GFP). Therefore, the fluorescence measurement in the ROI is defined as

the sum over all species concentration curves obtained from numerical integration of

the respective model, and the fitness function is given by the quadratic distance of this

summary curve to the FRAP measurements for PML I, DAXX or Sp100. All mea-

surements and simulations are quantified in relative fluorescence intensity (RFI), with

0 representing no fluorescence and 1 the steady state value before the photobleach.

As in the sequential binding model in Chapter 6, called the null model from here

on, the initial concentrations of the three species were determined by starting the

integration from a concentration of zero for all species, then integrating until the sum

of all concentrations reached the first FRAP measurement. This approach assumes that

the bleach pulse is 100% effective, even though the first measurement already yields a

non-zero RFI, due to the time delay of the fluorescence measurement (see discussion in

Chapter 6).

Collection of evolved models To relate all alternative evolved models to the

null model of PML NB assembly, all evolved model structures that were better or not

more than 10% worse than the null model were collected. For the PML I and DAXX
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PML I DAXX Sp100

considered models 138 105 107

selected by fitness 138 105 44

mean fitness of selected 0.095 0.080 0.047

fitness variance of selected 10−6 4.1 ∗ 10−5 10−4

mean fitness of non-selected - - 0.097

null model fitness 0.127 0.134 0.061

Table 5.1: Overview of the ensemble of models evolved for the FRAP data. Listed are

all evolution experiments performed, i.e. for PML I, DAXX, and Sp100. Shown are the

number of considered models (the best models from each run, sometimes one run produced

more than one best model), from these the number of models that were not more than 10%

worse than the null model, the mean fitness of these, the variance between the fitnesses,

the mean fitness of the non-selected models, and the fitness of the null model for each

experiment.

datasets, this procedure selected all models, while for the Sp100 dataset, only 44 out of

107 models were good enough to be included in the analysis (Table 5.1). It is not clear

why not all network topologies for Sp100 pass the fitness criterion, while all solutions

for PML I and DAXX pass it. It seems that the time-course for Sp100 favours network

topologies which can quickly be tuned to a mediocre fit, but which do not allow a

perfect fit and cannot easily be escaped by structural mutations.

Network processing and matching The reactions in these models were filtered

from the SBML files, neglecting trivial ones (of type X −→ X). Note that in contrast

to the null model, the parameter kon in the evolved models is not determined by specific

values for the other three parameters, since an asymptotic return of the RFI to 1 is not

automatically enforced (cf. Chapter 6). This additional constraint in the null model

probably explains why its fitness is worse than the average fitness of all selected models

in all three datasets.

To assess the difference between the null model and each evolved model, each species

in an evolved model has to be matched to a species in the null model. As the freely

diffusing species with inflow (Xf ) is fixed in all evolved models, only two possibilities

for assigning the other two species exist. For each evolved model, the assignment with

less differing reactions was selected for further consideration.
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Determination of operator bias The evolutionary operators used in the search

as well as the permutation of species lead to a bias in the ensemble of evolved models.

E.g., the reaction Xf −→ X1 occurs more frequently than Xf −→ X0, simply because

the former reaction actually appears in the null model, and thus X1 and X0 are usually

permuted in such a way that Xf −→ X1 is included in the evolved model as well.

To compensate for that effect, another 100 control runs of the EA were conducted

under neutral fitness, i.e. all models appearing in the course of evolution were assigned

a fitness of 1.0, independent of their structure or parameters. For the resulting set

of models (from the final generation), the same analysis as described above was per-

formed. Now, the effect of selection can be distinguished from the bias introduced by

the mutational operators, by comparing the models evolved under selection with those

evolved without selection. The three models that occurred more than four times in the

evolution under neutral fitness are shown in Figure 5.3. Comparing these to the net-

works that were evolved for the three datasets, it is obvious that the search operators

clearly introduce a bias towards the Xf −→ X1 and X1 −→ Xf reactions, but do not

introduce any other effect in the results.
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5.3 Results

5.3.1 Criteria for successful model fits

The procedure outlined above was performed for the PML I, DAXX and Sp100 FRAP

datasets. For all three datasets, a variety of network topologies (up to eleven for PML I)

leads to near-perfect fits of the data. However, these topologies share a number of

common traits that can be found in all three runs. Basically, these traits allow us to

precisely specify the conditions under which a model can provide a satisfactory fit of

the data.

Two-way reaction between Xf and X1 is necessary The most striking trait

is that all successful models feature a two-way reaction between Xf and X1 (again, the

reason that this reaction always usesX1 instead of X0 is that the X1-reaction also exists

in the null model). This reaction is the main controller of the fluorescence recovery, as

it directly regulates the concentration of Xf in the ROI, which in turn determines the

inflow of fluorescent material into the ROI. The feedback of X1 on Xf is used to shut

off the inflow once enough fluorescent material is in the ROI. Without this feedback,

the RFI would increase linearly without end.

All successful models employ two binding mechanisms However, the two-

way reaction between Xf and X1 is clearly not enough to fit the data, as no successful

model topology contains only this reaction. On its own, this reaction together with

the diffusive inflow would create a negative-exponential FRAP curve of the form A(1−
e−kt), which apparently cannot fit any of the three datasets accurately. Therefore, a

second characteristic trait of all successful topologies is that there is always a reaction

producing X0, either from Xf or from X1. In biological terms, this implies that the

observed behaviour cannot be explained by a single fraction of bound molecules, but

that a second fraction (or binding mechanism) must be involved.

Feedback from X0 is only needed for DAXX and Sp100 In all evolved

models for DAXX and Sp100, X0 feeds back into either of the other two species, while

for PML I, 112 of the 138 topologies do not contain a feedback from X0. Apparently,

this feedback reaction in not needed for an optimal fit of the PML I data, in contrast

to DAXX and Sp100. Hence, a third criterion (the first one not met by all solutions)

to characterise the topologies is the presence of reactions going from X0 to either Xf

109



5. NETWORK RECONSTRUCTION FROM FRAP DATA

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

no
rm

al
iz

ed
 fl

uo
re

sc
en

ce

PML−I FRAP Accumulation

 

 

FRAP measurements
Reaction−diffusion model

0 20 40 60 80 100 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec)

no
rm

al
iz

ed
 fl

uo
re

sc
en

ce

DAXX FRAP Accumulation

 

 

FRAP measurements
Reaction−diffusion model

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

time (sec)

no
rm

al
iz

ed
 fl

uo
re

sc
en

ce

Sp100 FRAP Accumulation

 

 

FRAP measurements
Reaction−diffusion model

Figure 5.2: Time series data and original fits from Chapter 6 for the PML I (left), DAXX

(middle) and Sp100 (right) datasets.

DAXX Sp100

X0 −→ Xf X0 −→ X1 X0 −→ Xf X0 −→ X1

Xf −→ X0 45 (p=0.408) 55 (p=0.043) 22 (p=0.216) 24 (p=0.074)

X1 −→ X0 32 (p=0.065) 41 (p=0.792) 9 (p=0.040) 15 (p=0.679)

Table 5.2: Correlation of reactions in successful models for DAXX and Sp100. The

count of common appearances of each pair of reactions involving X0 show that there is

no significant preference for any of the four topologies. Note that many evolved solutions

contain more than one pair of X0-reactions, e.g. a fully connected network contains all

four pairs and is counted four times in this table. Details on the p-values are given in the

text.

or X1. This criterion seems to suggest that the PML I data is “easier” to explain, i.e.

requires a less complex model to fit the data.

5.3.2 Building blocks and search space enumeration

Successful models are composed of four topologies The first criterion out-

lined above is fulfilled by all evolved solutions for all three datasets. However, the other

two criteria outline four basic model topologies, which make up the building blocks of

all solutions to the DAXX and Sp100 data. Besides the two-way reaction between Xf

and X1, these topologies consist of two additional reactions each, one producing X0

either from Xf or X1, and one consuming X0 to produce either Xf or X1. Many of

the evolved solutions are actually superpositions of these building blocks, but the data

shows that these topologies alone can explain the FRAP measurements.

No model topology is clearly preferred When counting the number of ap-

pearances of the four building blocks, it becomes clear that none of them is significantly
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Figure 5.3: The four dominating network topologies result from 100 runs with neutral

fitness. All other topologies appeared less than five times.

Figure 5.4: The network topologies resulting from 100 runs for the PML I dataset.

overrepresented (Table 5.2). For statistical testing, we employed the null hypothesis

that all four pairs of reactions have equal probability, and calculated the probability

for an observation that is equally or further away from the expected value than the

observed values (the p-value). Interestingly, the patterns for DAXX and Sp100 are

similar. While the pairings (Xf −→ X0, X0 −→ Xf ) and (X1 −→ X0, X0 −→ X1)

are certainly neither over- nor underrepresented, the pairing (Xf −→ X0, X0 −→ X1)

may be slightly overrepresented and the last pairing, (X1 −→ X0, X0 −→ Xf ), might

be underrepresented. However, in no case does the statistical data allow a waterproof

conclusion. Moreover, for both datasets, there seems to exist a preference for the re-

action Xf −→ X0 over X1 −→ X0, and for X0 −→ X1 over X0 −→ Xf . Again, the

statistic allows no certain conclusions. Summarising, there is no single preferred model

topology that matches the data best.

Network enumeration divides search space into three fitness plateaus

Restricting our search to networks with at most three species, we are in the fortu-

nate situation to be able to enumerate the whole search space, which has been done
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Figure 5.5: The network topologies resulting from 100 runs for the DAXX dataset.

Figure 5.6: The network topologies resulting from 44 runs for the Sp100 dataset that

passed the fitness criterion.

exemplary for PML I (Figure 5.8). Looking at the best possible fitness values (after

parameter fitting) for all networks, the search space can apparently be divided into

three classes: models with a very bad fitness (99.42) that do not contain a reaction

converting Xf into either X0 or X1, and which thus simulate only the diffusional inflow

into the ROI; models of mediocre fitness (5.69) which do contain reactions starting

from Xf , but do not contain a feedback reaction into Xf that shuts off the inflow after

a fast transient phase; and very good models (≤ 0.15) that always contain a (direct or

indirect) feedback on Xf . In the last class, the models containing only a two-way reac-

tion from Xf to either X0 or X1 provide a slightly worse fit than the models involving

all three species and a feedback on Xf , in accordance to the result of the evolution-
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Figure 5.7: The network topologies resulting from 63 runs for the Sp100 dataset that did

not pass the fitness criterion.

ary runs. Since no clear distinction in fitness can be made between the models of one

(sub-)class, these classes form fitness plateaus in the search space that are difficult to

traverse for an EA.
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5.4 Discussion

Network design is paramount in modelling Modelling a biological system

involves a number of design choices, mostly concerning the type of modelling strategy

as well as the right model setup. Of course, the optimal modelling strategy depends

on the available knowledge about the system. For systems in which time-course data is

available, differential equations are a popular choice to describe the average dynamics -

both in a stochastic and in a spatial sense - of the system. Once the modelling strategy is

chosen, the specific model has to be created, based on both data and expert knowledge.

Most of the time, the species to be included in the model and the reactions between

them are determined by the available knowledge in the specific application area. The

task of the modeller is then to represent this knowledge in the chosen framework.

Incomplete knowledge can be bridged by assumptions or inference How-

ever, nearly no system in molecular and cell biology is so thoroughly investigated that

all involved species and reactions are known. On the contrary, a popular application

of modelling is to explore “what-if” scenarios in the face of uncertain and incomplete

knowledge. Therefore, the idea of automatic inference of a (minimal and realistic)

model of a system carries a lot of appeal to modellers and has been explored in a vari-

ety of ways (Alves and Sorribas, 2007; Barrett and Palsson, 2006; Gadkar et al., 2005;

Guthke et al., 2005; Koza et al., 2001a; Nachman et al., 2004; Steffen et al., 2002).

Goodness-of-fit is often insufficient to discriminate model topologies For

the FRAP data of PML-related molecules that are the topic of Chapter 6, our initial

investigation involved models with two populations of bound molecules, one tightly

bound fraction and one loosely bound (top-right in Figure 5.5). However, after some

discussion, this approach was replaced by a model in which the already bound molecules

could move further inside the PML body, thus becoming more tightly bound (top-left in

Figure 5.5). This choice was made for reasons of biological plausibility, not because one

model provided a better fit than the other one. The investigations in this chapter reveal

that both model topologies, together with several others, are equally suitable to fit the

data. Since both models are also equally parsimonious, our results show conclusively

that a goodness-of-fit criterion alone cannot decide between the two models, and that

expert knowledge has to be included in deciding how to model the system.

114



5.4. DISCUSSION

Automatic inference can reveal necessary building blocks and alterna-

tives Even if automatic inference of model topologies is often not able to provide the

one best solution, it can provide hints about necessary components of the model which

are required to fit the data. For the three datasets investigated in this chapter, the

artificial evolution process revealed a two-way reaction that is absolutely necessary for

a good fit, as well as four reaction pairs of which one has to be included in the model.

Such knowledge, coming from the data only, can then be combined with additional

biological aspects to create the most likely, parsimonious model that fits the data.

Fitness plateaus prevent effective structural evolution An exhaustive ex-

ploration of the whole search space for PML I (Figure 5.8) has shown two aspects: that

the fitness landscape in the space of all possible networks consists basically of three

levels, very bad, mediocre, and very good models, and that no distinction in terms

of fitness is possible inside these classes. Of course, this is a bad prerequisite for an

optimisation algorithm acting on the networks, since it cannot do much better than

probing the search space randomly for models from a better level than the current one,

and then sticking with the randomly found one. Keeping in mind that the search space

in this chapter consisted of only three species, care has to be taken when transferring

this result to higher-dimensional search spaces. More species - and thus, many more

reactions between them - might break up the plateaus into smaller parts.

A network cannot be uniquely identified from its function Due to the

potentially large classes of networks with similar function, identifying a network from

its function without further knowledge is usually not possible. However, there are ways

to overcome this problem. First of all, biological knowledge about the system under

study can be converted to constraints on the search space, which would also limit

the number networks with correct function. Additionally, networks can be evolved

around a “core” network that is experimentally validated and assumed to be present

a priori (see Section 3.5). After biological constraints and a priori knowledge have

been incorporated, the goal must be to evolve as many different networks as possible

with the required functionality, presenting the wetlab biologist with a set of alternative

explanations for his or her data that can lead to further experiments and thus more

data, which can in turn be used to reduce the number of appropriate network models.
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5.5 Conclusion

In conclusion, it has to be stated that goodness-of-fit to time-series data is not a

sufficient criterion to discriminate different model topologies, at least for the FRAP

data used here. Since this data is already quite well-resolved in comparison to many

other data sources, this conclusion carries some weight beyond the specific case under

study. However, this does not prevent the use of structural optimisation techniques to

find a set of suitable models, which can then be further investigated in the light of expert

knowledge. Additionally, the search space of all possible networks was very restricted

in this study, since we only allowed three species. It is not clear from our investigations

how these results scale to larger search spaces. Even thought the plateau-like nature of

the fitness landscape is probably preserved, plateaus might be comparatively smaller

and the combined application of structure- and parameter-evolution could additionally

help to prevent the EA from stalling in these regions.
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Figure 5.8: All possible network topologies with three species. The parameters of each

network have been fit to the PML I data using a (30,30) CMA-ES, and the average fitness

of ten runs is given under each network (together with the minimal fitness if it is different

from the average).
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6
Kinetic Analysis of Fluorescence Recovery

Experiments

Chapter summary. Fluorescence imaging methods provide a very powerful and at-

tractive way of observing processes inside the nucleus of living cells. In this work, we

have used fluorescence recovery after photobleaching (FRAP) and fluorescence correla-

tion spectroscopy (FCS) to get a better understanding of the kinetics processes involved

in PML nuclear body (NB) formation. We show that all six nuclear PML isoforms ex-

hibit individual exchange rates at NBs and identify PML V as a scaffold subunit. More-

over, we detail the specific exchange kinetics of SP100, PML-RARα, HIPK2, DAXX

and BLM at PML NBs. For the first time, dynamics of PML NB formation are mea-

sured in cells lacking endogenous PML, and we show that all six PML isoforms are able

to form nuclear bodies under such conditions. Additionally, we show how the developed

analysis framework can be extended to FRAP data of heterochromatin protein 1 (HP1)

binding processes. The underlying mathematical model plays a crucial role in deter-

mining kinetic parameters. We present the specific model used in this contribution, and

discuss possible shortcomings and extensions.

Note: The work presented in this chapter results from a collaboration between the

author and PD Dr. Peter Hemmerich at the FLI Jena, and has been described in

two publications (Brand et al., 2010; Weidtkamp-Peters et al., 2008). A third one is

in preparation (Klement et al., 2010). The author’s contribution to this work is the

mathematical analysis and interpretation of the data. All cell-biological experiments

were performed at the FLI and not by the author.
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6.1 Introduction

Aim of this study In modern cellular biology, the understanding has emerged

that many cellular processes cannot be understood in isolation, but must be viewed

in their natural surrounding, the living cell. One popular way for such in vivo obser-

vations is fluorescence microscopy, in which fluorescent marker proteins such as green

fluorescent protein (GFP) are excited with a laser beam and their photon emissions

are recorded to yield an image of the protein distribution in the cell. Mathematical

models of the underlying biological processes can then be used to assess their different

quantities and characteristics, such as molecular concentrations, diffusion coefficients,

and kinetic parameters. Such an analysis of fluorescence microscopy data forms the

general aim of the work presented in this chapter.

6.1.1 Protein dynamics in the cell nucleus

The mammalian cell nucleus The nucleus is a dynamic, crowded environment

that hosts the main cellular processes, such as cell fate decision, cell division, and apop-

tosis. Its spatial structure is highly ordered, containing the chromosomal territories

and other internal domains such as nucleoli, speckles, Cajal bodies and promyelocytic

leukaemia nuclear bodies (PML NBs) (Figure 6.1; Lamond and Earnshaw, 1998). This

spatial organisation can change over time, depending on cell cycle state and additional

external stimuli. Most of its functionality is understood to regulate biochemical activ-

ities on chromatin (Lanctôt et al., 2007).

PML bodies PML NBs are large protein assemblies that are found in the nucleus

of mammalian cells. Typically, they have a sphere-like shape (Ascoli and Maul, 1991;

Maul et al., 1995), their size ranges from 0.3-1.0 µm in diameter (Maul et al., 2000),

and average copy numbers range between 10 and 20 depending on cell cycle status

and cell type (Ascoli and Maul, 1991; Maul et al., 1995). In contrast to other macro-

molecules in the nucleus, the exact biochemical function of PML NBs is still unclear

today (Bernardi and Pandolfi, 2007; Hemmerich and Diekmann, 2005), but they are

implicated in apoptosis, cellular senescence, angiogenesis, and DNA damage response

pathways (Dellaire and Bazett-Jones, 2004).

The name PML nuclear body is derived from the promyelocytic leukaemia gene

product PML (Daniel et al., 1993), the protein characterising and distinguishing PML
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Figure 6.1: Structure and function in the mammalian cell nucleus. The centre image

shows a schematic depiction of a typical mammalian cell nucleus. Focal sites of biochemical

activity in the nucleus, such as mRNA transcription, DNA replication and DNA repair can

be identified and visualised by immunofluoresence and confocal imaging (images on the

right). In case of RNA transcription sites, the nuclear DNA was simultaneously stained

with a DNA-binding dye (blue). A similar approach also reveals subnuclear domains, as

shown in the bottom panels. Here, the confocal immunofluorescence signal was merged with

the corresponding differential interference contrast (DIC) which detects cellular entities.

The structures were visualised using specific antibodies against a nuclear pore protein

(nuclear envelop), histones (chromatin), promyelocytic leukemia protein (PML bodies),

splicing factor SC-35 (speckles), fibrillarin (nucleolus), and p80 coilin (Cajal bodies). Image

courtesy of Peter Hemmerich, FLI Jena.
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Figure 6.2: Schematic depiction of the domain structure of PML isoforms (data taken

from Jensen et al. (2001)). All PML isoforms share a common N terminus but differ in

their C termini, attributable to the alternative splicing of exons 7 to 9. Protein domains of

all PML isoforms include the RING finger (R), the B1 and B2 boxes, the coiled-coil motif

(CC), a nuclear localisation signal (NLS) and three SUMOylation sites (S). PML VI does

not contain the SUMO interacting motif (SIM) within exon 7a.

NBs. Several isoforms exist (Figure 6.2), generated by alternative splicing, that are

treated separately in this work (PML I-VI, Jensen et al., 2001). In acute promyelocytic

leukaemia (APL), the name-giving disease, the PML gene is fused to the retinoic acid

receptor α (RARα). Expression of PML-RARα induces leukaemia and disrupts PML

NBs (reviewed in Melnick and Licht, 1999). Medical intervention with retinoic acid

counters this effect, leading to PML reformation and recovery of APL patients (Koken

et al., 1994).

Several proteins, such as SP100, DAXX, and BLM, are associated with PML NBs at

endogenous expression levels (Negorev and Maul, 2001). Therefore, these proteins are

included in this study, on top of the PML I-VI isoforms. Additionally, PML proteins

contain three SUMOylation sites, which are essential for the self-assembly of PML

NBs (Ishov et al., 1999; Zhong et al., 2000), and thus PML proteins with mutated

SUMOylation sites were included as well. The current model proposes that specific nu-

clear proteins are titrated and/or posttranslationally modified at PML nuclear bodies,

thereby modulating key nuclear biochemical activities (Bernardi and Pandolfi, 2007).

It is therefore essential to acquire the biophysical properties of protein exchange at

these nuclear subdomains.
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Chromatin organisation and HP1 One of the earliest notions about the or-

ganisation of the nucleus was that there are two types of regions with different chro-

matin density in some cell cycle phases. During interphase, gene-rich euchromatin is

de-condensed, whereas gene-poor heterochromatin stays condensed throughout the cell

cycle. A prominent marker of the latter regions is an enrichment in heterochromatin

protein 1 (HP1) (James and Elgin, 1986; Maison and Almouzni, 2004). This is a small

and highly conserved protein that has homologues in a large range of organisms, from

fission yeast to mammals (Singh et al., 1991). In mammals, three isoforms (HP1α,

HP1β, HP1γ) are known. HP1 proteins consist of three domains: the chromodomain

which binds H3K9 (histone 3 methylated at lysine 9, Lachner et al., 2001) and thus chro-

matin; a hinge region interacting (at least in vitro) with RNA, DNA, and chromatin;

and a chromoshadow domain for dimerisation and interaction with other proteins.

This modular structure of HP1 has led to the hypothesis that HP1 is a structural

modulator, able to modify chromatin structure and facilitate the assembly of larger

macromolecular chromatin structures. Via its interaction partners, HP1 has been im-

plicated in transcriptional regulation, telomere maintenance, DNA replication and re-

pair, and nuclear organisation (Vermaak and Malik, 2009). Dimers of HP1 molecules

can bind to two neighbouring histones in chromatin, thus strengthening and modify-

ing the structural organisation of chromatin. However, HP1 is not stably bound, but

subject to constant exchange with freely diffusing HP1 molecules (Cheutin et al., 2003;

Festenstein et al., 2003; Schmiedeberg et al., 2004). By binding chromatin and many

different nuclear proteins, some of which have also been implied in nuclear organisation,

HP1 provides a means of self-organisation in the nucleus, in which the stable nuclear

domains emerge from the transient binding interactions of their constituent proteins

(Misteli, 2001).

6.1.2 Exploring the nucleus using fluorescence imaging techniques

Fluorescence recovery after photobleaching A widely used technique in

modern molecular biology is the tagging of proteins of a specific type with fluores-

cent markers such as green fluorescent protein (GFP), mostly by fusing the GFP gene

to the protein’s cDNA in a vector construct. In a laser-scanning microscope, a laser-

beam is then applied to excite the fluorescent material, thus providing a visual image

of the cellular distribution of the tagged protein.
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When subjected to repeated cycles of excitation and emission, fluorescent molecules

eventually lose their ability to emit fluorescence, enabling the creation of photobleached

spots by repeated application of a strong laser beam. Since nearly all proteins in the

nucleus are highly mobile, fluorescence eventually returns to these dark areas. Mea-

suring the flux of fluorescence into this region then yields the FRAP recovery curve,

which can be analysed using mathematical models to yield kinetic parameters of the

proteins under study (Carrero et al., 2003). FRAP itself has been established for more

than three decades (Peters et al., 1974). However, only recently has the availability of

cotranslational fluorescent marker proteins lead to a drastic increase in the use of this

technique to measure protein dynamics in vivo.

In the first mathematical analysis of FRAP, Axelrod et al. (1976) developed an

effective-diffusion model (without binding and unbinding processes) based on a 2D

photobleach with a Gaussian intensity profile. For this case, they are able to provide

an explicit solution for the FRAP curve, which can be fitted to the measurement in

order to get the effective diffusion constant Deff . Using this approach, Phair and Misteli

(2000) measured effective diffusion coefficients for several molecules involved in the cell

nucleus. Today, many FRAP models of processes in the cell nucleus assume that the

proteins undergo diffusion as well as binding / unbinding events, both contributing to

their spatial dynamics (Sprague and McNally, 2005).

Fluorescence correlation spectroscopy When the proteins of interest are

tagged with a fluorescent marker, their concentration in the confocal volume of the

microscope system can be tracked over time by illuminating this small volume with a

laser and recording the fluorescence emission. Since the temporal resolution of these

measurements is high, their temporal autocorrelation function can be computed:

G(τ) =
〈∆I(t+ τ)∆I(t)〉

〈I(t)〉2 =
〈I(t+ τ)I(t)〉

〈I(t)〉2 − 1

where I(t) is the fluorescence intensity recorded at time t, 〈I(t)〉 is its average value with
respect to time t, and ∆I(t) = I(t) − 〈I(t)〉 is the deviation from the average value.

With this normalisation, the number of particles in the confocal volume is inversely

related to the intercept value G(0).

For obvious reasons, the analysis of correlation in confocal volume fluorescence is

termed fluorescence correlation spectroscopy (FCS) (Elson and Magde, 1974; Magde

et al., 1972). Using appropriate models, FCS can be used to extract kinetic information
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such as diffusion coefficients, not only in the case of standard diffusion, but also for

anomalous diffusion or diffusion consisting of different particle fractions with different

diffusion coefficients (Elson, 2004). Additionally, FCS can be used to extract binding

parameters (Elson, 1985).

Raster image correlation spectroscopy The images taken by fluorescence

microscopy are not snapshots taken at one precise moment (as in a CCD camera),

but rather result from a laser beam linearly scanning the whole image area, typically

line-by-line. Raster image correlation spectroscopy (RICS) exploits the fact that the

time the beam spends at individual pixels, the movement time between pixels, and the

movement time between lines are known.

Using these times, a comparison of adjacent pixels in a horizontal line yields corre-

lation information on the microsecond time scale, while adjacent pixels on the vertical

axis or the comparison of whole scan lines lead to a millisecond time scale (Brown

et al., 2008; Digman et al., 2005). Moreover, a correlation analysis of subsequent im-

ages (temporal image correlation spectroscopy or t-ICS, Wiseman et al., 2000) operates

on a timescale of seconds or more. From these correlations, the RICS procedure esti-

mates protein concentrations and diffusion coefficients, but it can also be queried for

information about binding / unbinding dynamics (Digman and Gratton, 2009). Special

treatment is applied to deal with immobile supermolecular structures that dominate

the correlation functions, as well as with slow cellular movement.

6.1.3 Mathematical modelling and analysis

“The eukaryotic nucleus and the control of chromatin function pose greater challenges

for a systems biology modelling approach than many (of the) other cellular networks...”

(Visser and Fell, 2007). “The ultimate goal of a systems biology view of the cell nucleus

is to understand genome function within the architectural framework of the nucleus.

[...] Simulation is becoming indispensable for the analysis of the kinetics of nuclear

processes.” (Gorski and Misteli, 2005). These two quotes exemplify the emerging

consensus in the community that a further understanding of nuclear processes in the

cell is only possible through a combination of in vivo experimental techniques and

computer modelling.

A kinetic model is essentially a mathematical description of the hypothesised biolog-

ical processes. The model is characterised by biophysical parameters, such as binding
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and release constants, residence times and diffusion coefficients. Using dynamic fluo-

rescence microscopy data, the set of parameters is determined that results in the best

model fit to the data, which serves as a test of the model as well as quantitative in-

formation about the parameters under study (Phair and Misteli, 2001). This approach

has been successfully employed for example to set up a kinetic framework model for

the RNA polymerase I transcription machinery in the nucleolus (Dundr et al., 2002)

or the ordered recruitment of DNA repair factors (Politi et al., 2005).

Well-developed mathematical techniques are available to extract kinetic information

from FRAP data (Beaudouin et al., 2006; Carrero et al., 2004; Lele and Ingber, 2006;

Phair and Misteli, 2001; Sprague et al., 2004, Section 6.2). Given a kinetic model with

experimentally derived parameter settings, questions can be asked about functions and

interactions of different parts of the cellular machinery included in the model (e.g.

Klingauf et al., 2006).
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6.2 Methods: A mathematical model for FRAP experiments

Note: The biochemical methods that were used and described in the original pub-

lication (Weidtkamp-Peters et al., 2008) are left out here, since none of them were

applied by the author of this thesis.

6.2.1 Fluorescence correlation spectroscopy measurements

Fluorescence correlation spectroscopy (FCS) measurements were performed at 37◦C on

a LSM 510Meta/ConfoCor2 combi system using a C-Apochromat infinity-corrected 1.2

NA 40× water objective (Carl Zeiss, Jena, Germany) as described in detail elsewhere

(Schmiedeberg et al., 2004; Weidtkamp-Peters et al., 2009). Briefly, GFP-tagged pro-

teins were spot-illuminated with the 488 nm line of a 20 mW Argon laser at 5.5 A

tube current attenuated by an acousto-optical tunable filter (AOTF) to 0.1%. The

detection pinhole had a diameter of 70 µm and emission was recorded through a 505-

nm long-path filter. For the measurements, 10×30 time series of 10 seconds each were

recorded with a time resolution of 1 µsecond and then superimposed for fitting to an

anomalous diffusion model in three dimensions with triplet function (Saxton, 2001)

using Origin Software (OriginLab, Northhampton, MA). The D values and anomaly

parameters were extracted from fit curves as previously described (Hemmerich et al.,

2008).

6.2.2 Fluorescence recovery after photobleaching

Fluorescence recovery after photobleaching (FRAP) experiments were carried out on

a Zeiss LSM 510Meta confocal microscope (Carl Zeiss, Jena, Germany) essentially as

described before (Hemmerich et al., 2008). Five to ten images were taken before the

bleach pulse and 50-200 images after the bleaching of regions of interest (ROIs) that

contained one nuclear body (NB) each at 0.05% laser transmission to minimise scan

bleaching. Image-acquisition frequency was adapted to the recovery rate of the respec-

tive GFP fusion protein. The pinhole was adjusted to 1 airy unit. Quantification of

relative fluorescence intensities was done according to Schmiedeberg et al. (2004) us-

ing Excel (Microsoft, Redmond, WA) and Origin software (OriginLab, Northhampton,

MA).
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6.2.3 Initial conditions for the mathematical model

Post-bleach fluorescence distribution For the initial conditions of the model,

we assume that at some time t = 0, the fluorescence intensity inside the ROI is pho-

tobleached to 0. Due to inevitable diffusion during the bleach process, the actual

fluorescence in the ROI certainly does not reach 0. However, the raw data from the

microscope has been normalised by subtracting background fluorescence, leaving an ini-

tial value of 0 as our best guess. When FRAP was applied on fixed cells, fluorescence

within the ROI was indeed 0 (P. Hemmerich, unpublished observations), indicating

that values above 0 originate from diffusion in the short time window after the end of

the bleach pulse and the acquisition of the first image.

Starting from this assumption, we numerically solve the model equations until the

sum of fluorescence from freely diffusing, loosely bound and tightly bound molecules

in the ROI reaches the value of the first FRAP measurement. Due to a temporary

“blinding” of the detector by the photobleach, the first FRAP measurement is always

taken some time after the bleach and thus always truly positive. For this first point,

we now have an approximation of the fluorescence distribution between the three frac-

tions of molecules included in the model. Standard numeric integration (Section 6.2.5)

continues from here to yield the rest of the estimated FRAP recovery curve.

Recently, the criticism has been applied that the initial fluorescence distribution

is Gaussian in shape, not constant (Mueller et al., 2008). Even though this might

principally enhance our results, we do not have enough data on this at the moment in

order to get a more accurate post-bleach estimation. Thus, we apply the commonly

used argument that when the bleached area is small enough, the Gaussian profile is

approximated by a constant (Carrero et al., 2003; McGrath et al., 1998; Tardy et al.,

1995). Braeckmans et al. (2003) call this the uniform-disc model, which can be applied

in cases where the bleached disc is large in comparison to the laser-beam’s point-

spread-resolution, but not too large so that diffusion during bleaching does not play a

significant role.

No significant diffusion during bleach phase In order to avoid errors in

the parameter estimation, no significant recovery should occur during the bleach. In

general, bleach time should be at least 15 times shorter than the characteristic recovery

time (Braga et al., 2004; Meyvis et al., 1999). This is the case for the measurements
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treated here, as the binding / unbinding processes yield a very slow effective diffusion

constant and thus a high characteristic recovery time. Therefore, we can safely assume

that bleaching is instantaneous and no significant diffusion takes place during the bleach

process.

The rapid, diffusion-dominated phase is independent of FRAP in our

model In contrast to other approaches reported in the literature, we do not use

FRAP data to estimate the diffusion coefficient D, but rather utilise FCS to measure

D and subsequently include this measurement into our FRAP model. Since the first

phase of the recovery curve is diffusion-dominated, this protocol reduces the sensitivity

to the initial FRAP measurements. These may be more imprecise than the later ones

due to interference effects of the bleach beam, diffusion during the bleach process, and

the approximation of the initial fluorescence distribution.

6.2.4 Relation of local diffusion coefficient to net flux into ROI

In this section, we show how the diffusion coefficient D in Fick’s Law (measured by

FCS here) is related to the the net flux (exchange rate) between compartments, which

is needed to quantify the inflow of fluorescent material into the region of interest (ROI)

of the FRAP model. The solution of the diffusion equation on a disk is adapted from

the MathWorld website 1.

Problem statement We assume a circular compartment with radius r0 in 2D (a

disk), which is embedded in an infinite space with constant concentration (or relative

fluorescence intensity, RFI) of c0. We will solve the diffusion equation (more commonly

called heat equation or Fick’s second law)

∂C(x, y, t)

∂t
= D∆C(x, y, t).

Since we are interested in the solution on a disk with radial symmetry, we formulate

the problem in terms of polar coordinates r and θ with

x = r cos(θ),

y = r sin(θ).

1Weisstein, Eric W. Heat Conduction Equation–Disk. From MathWorld–A Wolfram Web

Resource. http://mathworld.wolfram.com/HeatConductionEquationDisk.html, last ac-

cessed 26.11.08
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Separable solution We will search for a separable solution using

C(r, θ, t) = R(r)Θ(θ)T (t).

The Laplacian operator can be written in polar coordinates

∆ =
d2R

dr2
+

1

r

dR

dr
+

1

r2
d2Θ

dθ2
,

so that the diffusion equation has the form

RΘ

D

dT

dt
=

d2R

dr2
ΘT +

1

r

dR

dr
ΘT +

1

r2
d2Θ

dθ2
RT.

We assume that the bleach pulse annihilates all fluorescence in the ROI, so the

initial condition inside the disk is

C(r, θ, 0) = 0, r < r0.

Since the surrounding area has constant RFI c0, we additionally have

C(r0, θ, t) = c0.

Following the derivation at the Mathworld website, we arrive at the solution

C(r, θ, t) = C(r, t) = c0 − 2c0

∞
∑

n=1

J0(
αnr
r0

)

αnJ1(αn)
e−α2

nDt/r2
0 ,

�

�

�

�6.1

where J0 and J1 are Bessel functions of the first kind and αn is the nth positive root

of J0(x) (Bowman, 1958, pp. 37-39).

Net flux into compartment Our aim now is to get an expression for the net

flux of concentration at the whole compartment boundary in terms of the average con-

centration inside and outside the compartment. To allow for an analytical treatment,

in the following we assume that no other reaction takes place inside the compartment,

and thus C(r, t) accurately describes the concentration at time t and distance r from

the centre of the disk. We first derive an expression for the average concentration inside

the compartment by integration in polar coordinates.

C̄(t) =
1

πr20

∫ 2π

0

∫ r0

0
(c0 − 2c0

∞
∑

n=1

J0(
αnr
r0

)

αnJ1(αn)
e−α2

n
Dt/r2

0)rdrdθ
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Note that the additional factor r in the above equation comes from the transformation

from Cartesian to polar coordinates. The integrand is independent of θ, so we arrive

at

C̄(t) =
2

r20

∫ r0

0
(c0 − 2c0

∞
∑

n=1

J0(
αnr
r0

)

αnJ1(αn)
e−α2

n
Dt/r2

0)rdr

=
2

r20

∫ r0

0
c0rdr −

4c0
r20

∫ r0

0

∞
∑

n=1

rJ0(
αnr
r0

)

αnJ1(αn)
e−α2

nDt/r2
0dr

= c0 −
4c0
r20

∞
∑

n=1

e−α2
n
Dt/r2

0

αnJ1(αn)

∫ r0

0
rJ0(

αnr

r0
)dr

Using the integral identity
∫ u
0 u′J0(u

′)du′ = uJ1(u), and substituting u′ = αnr/r0, we

get
∫ r0

0
rJ0(

αnr

r0
)dr =

r20
αn

J1(αn).

Thus, we have

C̄(t) = c0 −
4c0
r20

∞
∑

n=1

e−α2
nDt/r2

0

αnJ1(αn)

r20
αn

J1(αn)

= c0 − 4c0

∞
∑

n=1

e−α2
n
Dt/r2

0

α2
n

.

Since we have a solution for C(r, t), we can also calculate the first derivative at the

boundary of the disk.

∂C(r, t)

∂r
= −2c0

∞
∑

n=1

e−α2
n
Dt/r2

0

αnJ1(αn)

d

dr
J0(

αnr

r0
)

Using the derivative identity for Bessel functions d
dx [x

mJm(x)] = xmJm−1(x) as well as

J−m(x) = (−1)mJm(x) and substituting αnr/r0 for x, we get

d

dr
J0(

αnr

r0
) = −αn

r0
J1(

αnr

r0
),

and thus
∂C(r, t)

∂r
= 2c0

∞
∑

n=1

e−α2
n
Dt/r2

0

r0J1(αn)
J1(

αnr

r0
).

At the boundary r = r0, we thus have

∂C

∂r
(r0, t) =

2c0
r0

∞
∑

n=1

e−α2
n
Dt/r2

0 .
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Figure 6.3: Cumulative contribution of the first n summands in the sums S1 (left) and

S2 (right), for different points in time. After t = 0.2, the contribution of any summands

beyond the first one is negligible.

Since we want to relate ∂C/∂r(r0, t) with C̄(t), we need to compare the infinite

sums in both terms. We define

S1 =
∞
∑

n=1

e−α2
nDt/r2

0

and

S2 =
∞
∑

n=1

e−α2
nDt/r2

0

α2
n

.

The summands in S1 and S2 differ, so a closed form solution of their ratio S1/S2

cannot be expected. Luckily, for values of t such that Dt/r20 > 0.2, the only significant

contribution to the sums comes from their first summand, respectively (Fig. 6.3).

When only the first summand of each respective sum is considered, we arrive at an

approximate ratio of

S1/S2 ≈ α2
1.

Now we can write

C̄(t) = c0 − 4c0S2(t) ≈ c0 − 4c0S1/α
2
1

and thus

S1 ≈
α2
1

4c0
(c0 − C̄(t)),

∂C

∂r
(r0, t) =

2c0
r0

S1 ≈
α2
1

2r0
(c0 − C̄(t)).
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Figure 6.4: The ratio of sums S1/S2, approximated using the first 100 summands. Note

the logarithmic x-axis. After 0.2 seconds, the ratio is constant with a value of α2
1.

It is important to remember that the approximation is almost exact for Dt/r20 > 0.2,

but is increasingly incorrect for t → 0. This is expected, since for small t, the derivative

naturally tends to infinity, while the average concentration converges to zero.

Using Green’s theorem, we can now derive an approximate expression for the net

flux into the disk:

1

πr20

∫∫

D∆C(x, y, t)dxdy =
1

πr20

∫ 2πr0

0
D

d

dr
C(r0, t)ds

≈ Dα2
1

r20
(c0 − C̄(t))

�

�

�

�6.2

Error estimation Now we will estimate the error we make with this approxi-

mation. From Figure 6.4, we see that S1/S2 > α2
1. From this, it is straightforward to

derive
∂C

∂r
(r0, t) =

2c0
r0

S1 >
α2
1

2r0
(c0 − C̄(t),

an thus our approximation for the derivative in normal direction is a systematic under-

estimation of the actual derivative value. From a comparison of the analytical solution
�

�

�

�6.1 for C̄ with the integral of the approximate net flux
�

�

�

�6.2 (Figure 6.5), it again

is obvious that the approximation underestimates the diffusive inflow of fluorescent

material.

When we use the actual concentration inside the compartment c(t) in the expression

for the net flux approximation, and integrate this expression with respect to time, we
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get the solution

c(t) = c0 − c0e
−α2

1
D/r2

0
t

for the concentration resulting from pure diffusive inflow. Now we can calculate the

error E(t) between the approximated concentration c(t) and the exact solution of the

diffusion equation C̄(t):

E(t) = C̄(t)− c(t)

= c0 − 4c0

∞
∑

n=1

e−α2
nDt/r2

0

α2
n

− c0 + c0e
−α2

1
D/r2

0
t

= c0e
−α2

1
D/r2

0
t − 4c0

∞
∑

n=1

e−α2
n
Dt/r2

0

α2
n

Now we can derive the total error up to time T :

∫ T

0
E(t)dt =

c0r
2
0

Dα2
1

(1− e−α2
1
DT/r2

0)− 4c0r
2
0

D

∞
∑

n=1

1

α4
n

(1− exp−α2
n
DT/r2

0)

With T → ∞, we get

Ẽ =

∫

∞

0
E(t)dt =

c0r
2
0

D
(
1

α2
1

− 4

∞
∑

n=1

1

α4
n

)

showing that the error increases linearly with c0 and quadratically with r0, but decreases

inversely proportional to D.

Introducing a correction factor Finally, we will modify the diffusion constant

D in the net flux gradient to D′ = mD, such that the accumulated error Ẽ = 0.

Replacing D with mD in the terms for c(t) above, we derive an expression for the error

Ẽ =
c0r

2
0

D
(

1

mα2
1

− 4

∞
∑

n=1

1

α4
n

).

For Ẽ = 0, we thus determine

m = (4α2
1

∞
∑

n=1

1

α4
n

)−1 ≈ 1.3856

It is interesting to note that this correction factor is independent of c0, r0 and D,

although it is only valid to disk-shaped compartments.
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Figure 6.5: Comparison of the analytical solution for the RFI inside the compartment

(blue) with the integral of the approximate net flux Dα2
1/r

2
0(c0 − C̄(t)) (red) and the

modified approximation with minimum error (green). Parameter values are as for PML I:

D = 1.85, r0 = 1.25, c0 = 1.0.

To test the validity of our mathematical derivation, we have compared the analytical

solution
�

�

�

�6.1 to a partial differential equation (PDE) simulation of the spherical diffu-

sion problem using MatlabTM(2008a, The MathWorks, Natick, MA). The results show

that the analytical solution using the first 1000 terms of the sum of Bessel functions

accurately describes the behaviour of the PDE system (Figure 6.6).

The diffusion term in the FRAP model In this section, we have given a

rigorous derivation of the linear diffusion term in the compartmental FRAP model,

and detailed its relation to the actual solution of the diffusion equation on a sphere.

Of course, with modern computing power it would be possible to use a much more

accurate approximation in the compartmental model, involving more than just the first

components of the sums of Bessel functions. However, there are two reasons not to do

so.

Firstly, when fitting data to an ODE model rather than simulating it once, com-

putational constraints do play a role indeed. When hundreds or thousands of fitness

evaluations - and thus model simulations - are needed, every possible speed-up is wel-

come. Secondly, a FRAP model involves reaction processes inside the ROI, in addition

to diffusion. With these processes, the analytical solution derived above becomes invalid

and has to be replaced by a differential equation description. The linear formulation is
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Figure 6.6: Comparison of the analytical solution for the RFI inside the compartment

(red crosses) with result of a PDE simulation using Matlab (red line) and the approximate

solution (blue). Parameter values are as for PML I: D = 1.85, r0 = 1.25, c0 = 1.0.

both obviously straightforward and - following the reasoning above - mathematically

justified.

When comparing the approximate solution
�

�

�

�6.2 to the analytical one
�

�

�

�6.1 , it is

important to recognise that the actual error might be smaller than discussed above.

Rather than bleaching the ROI 100% and not changing the directly adjacent area, the

bleach profile of a laser pulse is better approximated by the exponential of a Gaussian

function (Blonk et al., 1993; Braeckmans et al., 2003; Braga et al., 2004; Mazza et al.,

2007), and thus does not have a sharp transition between zero and one at the boundary

of the ROI. Therefore, the instantaneous diffusional inflow after the bleach pulse is in

reality not as sharp as the analytical solution
�

�

�

�6.1 .

Finally, it is interesting to speculate about the behaviour of the diffusion equa-

tion on non-spherical domains. It can be expected that - whenever mathematically

tractable - first-order approximations to analytical solutions will also be of the linear

form kD(xoutside−xinside(t)), but the constant k is most likely a different one. A simula-

tion study of the dependence of this constant on the shape and size of the compartment

would be very informative here, but does not fit in the scope of this chapter.
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Figure 6.7: The three models used to analyse the FRAP data. (A) one-step binding /

unbinding process. (B) two-step process with sequential steps. (C) two-step process with

parallel, independent steps.

6.2.5 Numerical reaction-diffusion models for FRAP analysis

To analyse the FRAP recovery curves and to relate them to kinetic parameters of

the proteins under study, mathematical models of the hypothesised binding behaviour

have been been fitted to the FRAP curves. For these purposes, we used three model

structures: a simple one-step binding / unbinding process, a two-step process with

sequential binding steps, and a two-step process with parallel, independent binding

steps (Figure 6.7).

Different simplifications for FRAP models, such as reaction-dominant and diffusion-

dominant models, are discussed in the literature (Sprague et al., 2004). However, the

vast array of different proteins under study here leads to the expectation that only the

full model can adequately describe their dynamics, and thus no reduced model variant

is used. Erroneously neglecting diffusion can lead to parameter estimation errors of

several orders of magnitude (Sprague et al., 2006).

Observable fluorescence and diffusion from outside the ROI The exper-

imental set-up provided that bleached ROI and FRAP ROI are similar and, so, are

assumed to be the same for modelling purposes. Diffusion inside and out of the ROI

was modelled as a linear two-way process with a modified diffusion constant D′ (ac-

cording to Section 6.2.4) based on the diffusion constant D measured by FCS. This

constant yields the effective exchange rate through the boundary of a circular area.

The model system describes three variables representing the different fractions of

fluorescent protein: free diffusion (xf), bound in the first binding state (xb1), and

bound in the second binding state (xb2). The one-step model only contains xf and xb1.

Since these different fractions cannot be distinguished directly in FRAP, the observable
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amount of fluorescence is given by

xobs(t) = xf(t) + xb1(t)

or

xobs(t) = xf(t) + xb1(t) + xb2(t),

respectively.

The ratio between background fluorescence and fluorescence inside the PML-body

(p) was determined individually for each type of molecule by using confocal microscopy

and pixel intensity evaluation with MetaMorph software (Molecular Devices, Sunnyvale,

CA). Since the FRAP values inside the ROI are normalised to 1.0 in steady state, the

p values can be used to compute the relative concentration of free protein outside the

ROI, namely xoutsidef = 1/p.

Binding / unbinding processes The binding / unbinding processes are rep-

resented with mass-action kinetics, which leads to the following ODE representations:

For the one-step model (Figure 6.7A)

dxf
dt

= koff1xb1 − kon1xf +D′(xSSf − xf)

dxb1
dt

= kon1xf − koff1xb1

For the sequential two-step model (Figure 6.7B)

dxf
dt

= koff1xb1 − kon1xf +D′(xSSf − xf)

dxb1
dt

= kon1xf − koff1xb1 + koff2xb2 − kon2xb1

dxb2
dt

= kon2xb1 − koff2xb2.

And for the parallel two-step model (Figure 6.7C)

dxf
dt

= koff1xb1 − kon1xf + koff2xb2 − kon2xf +D′(xSSf − xf)

dxb1
dt

= kon1xf − koff1xb1

dxb2
dt

= kon2xf − koff2xb2.

In steady state, i.e. with xf + xb1 + xb2 = 1 and dxf/dt = dxb1/dt = dxb2/dt = 0,

it is straightforward to solve for the relative proportions of the three binding states

(Table 6.1).
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one-step two-step parallel two-step sequential

xSSf = koff1
kon1+koff1

(

1 + kon1
koff1

+ kon2
koff2

)

−1 (

1 + kon1
koff1

+ kon1
koff1

kon2
koff2

)

−1

xSSb1 = kon1
kon1+koff1

(

1 + koff1
kon1

+ koff1kon2
kon1koff2

)

−1 (

1 + koff1
kon1

+ kon2
koff2

)

−1

xSSb2 =
(

1 + koff2
kon2

+ kon1koff2
koff1kon2

)

−1 (

1 + koff2
kon2

+ koff1
kon1

koff2
kon2

)

−1

Table 6.1: Equilibrium distribution of the proteins into the three binding states, sum-

marised for all three models.

Residence time An important quantity to describe the binding behaviour in

the FRAP models is the residence time, i.e. the average time until a newly bound

molecule returns to the state of free diffusion. For the one-step and the parallel model,

the residence time is

Rt = 1/koff1

and

Rt =
kon1

kon1 + kon2

1

koff1
+

kon2
kon1 + kon2

1

koff2
,

respectively. For the sequential model, this is not straightforward to calculate, since

a bound molecule can switch back and forth between the weakly bound and strongly

bound state before going back to free diffusion.

To calculate the residence time Rt for the sequential model, a three-state Markov

chain was considered, consisting of states f (free diffusion), w (weakly bound) and s

(strongly bound). For a single, newly bound molecules (automatically in state w), the

binding/unbinding rates lead to the following transition probabilities:

P (w → f) =
koff1

koff1 + kon2

P (w → s) =
kon2

koff1 + kon2

A molecule in state w can move into state f directly, or it can visit state s before

returning to state w. The time until the first transition occurs follows an Exponential

distribution with rate parameter koff1 + kon2 (Gillespie 1977), thus the mean time until

any of the two transitions occur is given by 1/(koff1 + kon2). For a molecule in state s,

the mean time until the (only possible) transition back to w is given by 1/koff2. Thus,

the residence time Rt is recursively defined by

Rt =
koff1

koff1 + kon2

1

koff1 + kon2
+

kon2
koff1 + kon2

(

1

koff1 + kon2
+

1

koff2
+Rt

)

.
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Eliminating the recursion, we find

Rt =
1

koff1

(

1 +
kon2
koff2

)

.

It agrees with common sense that if kon2 is zero, the formula collapses to the residence

time for a single binding/unbinding reaction, while in the case that either koff1 or koff2

approaches zero, the residence time becomes infinitely large.

Numerical integration, initial conditions, parameter fitting The math-

ematical model is numerically solved using the ode45 method in MATLAB (2008a,

The MathWorks, Natick, MA), which uses an explicit Runge-Kutta (4,5) formula, the

Dormand-Prince pair (Dormand and Prince, 1980). Assuming an ideal bleach, all three

variables are initially set to zero. The timelines of the recorded data and the model

predictions are then synchronised by aligning the time at which the sum of all three

variables in the model prediction reaches the first measured fluorescence value.

Parameter fitting is done by minimising the sum (over time) of squared deviations

between the fluorescence measurements and the predictions provided by the model,

i.e. the sum of all three variables. Even though the model is not too large, parameter

fitting is difficult due to potential local optima and the non-linear relation between

parameters and model predictions. Therefore, an evolution strategy with covariance

matrix adaptation (CMA-ES) was employed (Hansen and Ostermeier, 2001), using the

MATLAB implementation by Nikolaus Hansen1 with default parameters.

Note: In our original paper (Weidtkamp-Peters et al., 2008), we used a slightly

different model description. There, the protein concentrations in the model were

normalised by the fluorescence outside of the ROI, which is not the case here. How-

ever, this difference in representation does not lead to different results. Additionally,

after we published the PML results (Weidtkamp-Peters et al., 2008), we introduced

a new method to compute the diffusive influx into the ROI (Section 6.2.4). This

new method is used here, leading to slightly altered results compared to the original

paper.

Model specialisation for PML FRAP data For the mathematical model of

PML NB kinetics, the structural complexity of a PML NB has been approximated

1Downloaded from http://www.lri.fr/~hansen/cmaes_inmatlab.html

141

http://www.lri.fr/~hansen/cmaes_inmatlab.html


6. KINETIC ANALYSIS OF FLUORESCENCE RECOVERY EXPERIMENTS

Figure 6.8: Exchange of PML isoforms at

NBs. (A) FRAP experiments were performed

on U-2 OS cells that express the indicated

GFP-tagged PML isoforms by bleaching cir-

cled areas that contain a NB (pre, before

bleach pulse; post, immediately after the

bleach pulse) and monitoring fluorescence re-

covery for 20 minutes. Scale bars, 5 µm. (B)

Quantification of FRAP experiments for each

isoform. The graphs show mean values (±
s.d. from at least 20 FRAP experiments each)

as relative fluorescence intensity (RFI) after

normalisation to prebleach levels.

assuming that molecules that undergo binding and unbinding to and from the body

do so at the surface, and molecules situated more towards the inside of the body

cannot unbind before moving to the surface. There is thus a reservoir of tightly bound

“inner” molecules and one of loosely bound “outer” ones. Exchange between these

reservoirs is modelled by linear kinetics, i.e. the more molecules there are, the more

will move inside or out. These considerations lead to the sequential two-step model

described above, which has been used in the kinetic analysis of the FRAP data for

PML and related molecules. In accordance to the meaning of the variables, the kinetic

parameters kon1, koff1, kon2, and koff2 get assigned more explicit names: kon, koff , kin,

and kout (Figure 6.10C).

To quantify the concentration of free proteins outside the ROI, the following p values

were obtained for the GFP fusion proteins: all PML isoforms, p = 20; PML-RARα,
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Figure 6.9: Diffusional behaviour of PML

protein isoforms outside NBs. (A) U-2

OS cell expressing GFP-PML-IV (green)

merged with the respective DIC image be-

fore FCS measurement. The inset shows

only the GFP signals within the nucleus (in-

dicated by dotted line) of this cell. +, po-

sition of the FCS laser beam. Scale bar,

5 µm. (B) Mean autocorrelation data ob-

tained from FCS count-rate traces for GFP-

PML-IV-expressing cells (solid black line).

Data were fitted using an anomalous dif-

fusion model (dashed red line). The inset

graph displays a residual plot from the fit.

(C) Kinetics modelling of PML NB assem-

bly according to a diffusion-binding model.

Molecules with the potential to accumulate

at PML NBs move by diffusion (D) in the

nucleoplasm outside NBs. Upon stochastic

encounter, molecules associate and dissoci-

ate from the periphery of the NB (kon and

koff , respectively) and penetrate into and

out of the core of the NB (kin and kout, re-

spectively). Dashed circle, ROI for bleach-

ing and recovery measurements employed in

FRAP experiments.

p = 10; all SP100 constructs, p = 20; DAXX, p = 3; HIPK2, p = 2; HIPK2(K221A),

p = 2; PML-SUMO-2K, p = 1.5; PML-SUMO-3K, p = 100, BLM, p = 5.

For the PML data, we decided to remove one degree of freedom from the model by

assuming that the fluorescence xobs(t) will always asymptotically return to 1.0 for large

values of t, i.e. xSSf + xSSb1 + xSSb2 = 1. This assumption effectively denies the existence

of an “immobile fraction”. Using this assumption, the relation

kon =
koff (p− 1)

1 + kin/kout

can be derived and was built into the model for PML FRAP data.

Model specialisation for HP1 FRAP data From preliminary experiments

(not shown), it is clear that the kinetic analysis of the FRAP data for HP1 variants

143

pml-bodies-frap/figures/figure3.eps


6. KINETIC ANALYSIS OF FLUORESCENCE RECOVERY EXPERIMENTS

in eu- and heterochromatin (see introduction) requires at least two binding steps, as a

model with only one binding step cannot adequately explain the data (Cheutin et al.,

2004; Schmiedeberg et al., 2004). In contrast to the PML case, however, the literature

suggests different binding modes that could lead to the sequential or the parallel model

(Figure 6.7), or a combination of both.

The two scenarios are: (1) Freely diffusing HP1 (xf) transiently attaches to chro-

matin. Once attached (xb1), it can interact with other proteins that are already bound,

and thus form a stronger bound (xb2). This is the sequential binding model. (2) Al-

ternatively, diffusing HP1 (xf) can exist as a monomer or as a dimer/oligomer. These

different states have different binding kinetics, and are modelled as different binding

populations (xb1 and xb2, respectively), where the higher-order complexes can attain

stronger binding to chromatin. This is the parallel binding model. Of course, it is quite

likely that in reality, both binding processes exist. However, this cannot be decided by

FRAP data alone, as both models yield nearly-perfect fits to the data.

Again, diffusion is modelled as a two-way transport process according to Sec-

tion 6.2.4. The ROI radius is 2.5µm for euchromatin measurements and 1.5µm for

heterochromatin, and a basal diffusion constant of D = 12µm2/s is assumed for HP1.
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Figure 6.10: Fitting of PML FRAP data with the diffusion-binding model. The mean

values of FRAP curves for the indicated GFP-tagged proteins (blue dots) were fitted using

the diffusion-binding model depicted in Figure 6.9C. Fit curves are shown as solid red lines.

Note, that these fits also consider the individual D values derived from FCS measurements.
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6. KINETIC ANALYSIS OF FLUORESCENCE RECOVERY EXPERIMENTS

6.3 Results

GFP-tagged PML isoforms are functional In order to enable visual detec-

tion of PML proteins, the genetic sequence encoding the six PML isoforms was fused to

the sequence coding for green fluorescent protein (GFP), and the whole construct was

transiently transfected into U-2 OS, HEp-2 or HeLa cells (for details, see Weidtkamp-

Peters et al., 2008). Here, the construct is not inserted into the cells’ genome, but is

moved into the cells as additional DNA units using plasmid vectors. This way, the con-

structed DNA is transcribed inside the nucleus, but it is not copied in reproduction,

hence the qualification as “transient” transfection. Using a variety of cell-biological

means, it was shown that the GFP-PML constructs are functional, i.e. the addition of

GFP to PML did not impair its function or significantly alter its biophysical parameters

(Weidtkamp-Peters et al., 2008).

Individual isoforms are able to form NBs In addition to the analysis of

PML NB in human cell lines, we performed biophysical analyses in living mouse cells,

using PML-GFP fusion proteins both in PML knock-out (3T3-PML−/−) and in control

cells (3T3-PML+/+) (Brand et al., 2010). This allowed us to study the nuclear body

formation abilities of individual PML isoforms in a live cell setting. Individual diffusion

constants of the isoforms were taken to be the same as in the human cell lines, deter-

mined by FCS as described above. For the kinetic analysis, the same reaction-diffusion

model was used (Figure 6.9C).

In 3T3-PML−/− cells lacking endogenous PML, each individual PML isoform was

able to form nuclear bodies (Figure 6.11). This confirms that the NB formation capacity

of PML depends on the common part of all three isoforms, not on the C-terminal

extension. In analogy to human cells, all PML isoforms display individual exchange

kinetics, both in knock-out and control cells (Figure 6.12, Table 6.2). In the absence

of endogenous PML, the isoforms PML I to IV form stable aggregates that allow only

very little exchange (Table 6.2). However, for PML II and IV we observed a minor

population of cells showing protein exchange, indicating a cell cycle dependence of

these processes. The dynamics of PML V and PML VI were nearly identical between

PML positive and negative cells.
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6.3. RESULTS

Protein Cells kon koff kin kout Rt Fout Fin

PML I PML+/+ 0.0633 0.0051 0.0002 0.0004 300 0.65 0.35

PML I PML−/− 0.0015 0.0015 <0.0001 0.0049 648 1.00 0.00

PML II PML+/+ 0.0856 0.0069 <0.0001 <0.0001 222 0.65 0.35

PML IIimmob PML−/− 0.0000 n.d. n.d. n.d. n.d. n.d. n.d.

PML IImobile PML−/− 0.0288 0.0031 <0.0001 <0.0001 659 0.49 0.51

PML III PML+/+ 0.0692 0.0055 <0.0001 0.0007 274 0.67 0.33

PML III PML−/− 0.0023 0.0013 <0.0001 0.5592 744 1.00 0.00

PML IV PML+/+ 0.0565 0.0034 <0.0001 <0.0001 337 0.87 0.13

PML IVimmob PML−/− 0.0040 0.0005 <0.0001 <0.0001 4777 0.38 0.62

PML IVmobile PML−/− 0.0571 0.0037 <0.0001 <0.0001 333 0.81 0.19

PML V PML+/+ 0.0199 0.0024 <0.0001 <0.0001 957 0.43 0.57

PML V PML−/− 0.0188 0.0016 <0.0001 <0.0001 1010 0.61 0.39

PML VI PML+/+ 0.0351 0.0021 <0.0001 <0.0001 541 0.90 0.10

PML VI PML−/− 0.0385 0.0036 0.0008 0.0010 493 0.56 0.44

Table 6.2: The diffusion-binding model was used to extract kinetic data from the FRAP

and FCS experiments for all PML isoforms in PML positive and PML negative Mouse

cells. kon: association rate at the surface of the nuclear body; koff : dissociation rate at the

surface of the nuclear body; kin: penetration rate into the nuclear body; kout: penetration

rate out of the core of the nuclear body; Rt: mean residence time at nuclear bodies; Fout:

fraction of molecules residing at the surface of the nuclear body; Fin: fraction of molecules

residing in the core of the nuclear body.

6.3.1 Quantification of protein dynamics

Exchange dynamics are specific to each protein To investigate the turnover

of individual PML isoforms at NBs we employed FRAP. A spherical region containing

one PML NB was bleached to background levels and fluorescence recovery was moni-

tored for 20 minutes (Figure 6.8). FRAP at bleached NBs was substantially different

between the isoforms. Whereas, for example, a considerable amount of GFP-PML-I

fluorescence had already recovered after 5 minutes, there was only little recovery in

GFP-PML-V-expressing cells after that time (Figure 6.8A). FRAP curves confirmed

that all PML proteins exhibited individual exchange dynamics at NBs (Figure 6.8B).

Most strikingly, GFP-PML-V showed an almost linear increase of fluorescence, and

recovery reached only 32% after 20 minutes (Figure 6.8E). Thus, PML V is the most
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6. KINETIC ANALYSIS OF FLUORESCENCE RECOVERY EXPERIMENTS

Figure 6.11: Mouse 3T3 cells

with (3T3-PML+/+) or without (3T3-

PML−/−) endogenous PML expression

were transfected with expression vec-

tors encoding human PML isoforms I

to VI as GFP fusion proteins. Cells on

coverslips were fixed and processed for

immunofluorescence staining to detect

endogenous mouse PML protein (red)

and the exogenous GFP-tagged human

PML isoforms (green). Images show

mid-nuclear confocal sections. Note

that the anti-mouse-PML antibody

does not cross-react with human PML.

Bar, 5 µm.

stable isoform, suggesting that it serves as a scaffold component of PML NBs.

Diffusion rates of NB components in nucleoplasm To assess the mobility of

PML isoforms and the other NB components under study we applied FCS (Weidtkamp-

Peters et al., 2009). Using this technique we were able to directly assess the diffusion

coefficient (D) of the nucleoplasmic pools of GFP-tagged PML protein isoforms and all

other NB components analysed in this study (Figure 6.9A,B; Table 6.3). The D value

of GFP alone in the nucleus was 9.5±1.5 µm2sec−1, which is in perfect agreement with

independent measurements (Wachsmuth et al., 2000). This D value is well below the

one of GFP measured by FCS or FRAP in solution (D ≈90 µm2sec−1) (Hink et al.,

2000; Swaminathan et al., 1997), hence reflecting anomalous diffusion of untagged GFP

in the crowded nuclear environment. The D values of PML isoforms, however, were

significantly smaller than for GFP alone. They ranged from 1.02 ± 0.11 µm2sec−1for

PML II to 2.79 ± 0.11 µm2sec−1for PML V (Table 6.3). These D values are too low

to account only for diffusion barriers based on the size of the fusion proteins compared

with GFP. Evaluation of the FCS data also delivered the anomaly parameter (α),

which describes the degree of obstruction for diffusing particles by the medium (Saxton,

2001). Under conditions of free diffusion, i.e. in buffer solutions, α equals 1, but

decreases continuously to a limit value of α=0.75 for GFP with increasing crowding

conditions and obstacle concentration (Banks and Fradlin, 2005). Compatible with this
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Figure 6.12: Fitting of the measured FRAP curves (blue dotted line) in mouse cells with

(PML+/+) and without (PML−/−) endogenous PML. The binding-diffusion model shown

in Figure 6.9C results in good fits (red lines).
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6. KINETIC ANALYSIS OF FLUORESCENCE RECOVERY EXPERIMENTS

Protein D α kon koff kin kout Rt Fout Fin

PML I 1.85 0.47 0.0717 0.0056 0.0022 0.0046 265.07 0.68 0.32

PML II 1.03 0.44 0.0451 0.0041 0.0010 0.0014 421.0 0.59 0.41

PML III 1.63 0.53 0.0397 0.0024 <0.0001 <0.0001 478.3 0.87 0.13

PML IV 1.04 0.50 0.0377 0.0028 0.0004 0.0010 503.5 0.72 0.28

PML V 2.79 0.57 0.0051 0.0015 0.1571 0.0338 3695.2 0.18 0.82

PML VI 1.49 0.51 0.0343 0.0026 <0.0001 <0.0001 554.4 0.71 0.29

PML-IV-2K 1.19 0.55 0.0125 0.0256 <0.0001 0.0001 39.9 0.98 0.02

PML-IV-3K 2.23 0.61 0.0111 0.0055 0.2027 0.0042 8954.2 0.02 0.97

PML-RARα 0.93 0.45 0.0032 0.0069 0.1307 0.0071 2829.7 0.05 0.94

Sp100 1.23 0.62 0.5968 0.0702 0.0065 0.0053 31.8 0.45 0.55

Sp100K297R 0.84 0.58 1.5180 0.1276 0.0002 0.0003 12.5 0.63 0.37

HIPK2 2.60 0.66 0.0344 0.0115 0.0 0.0051* 87.2 1.0 0.0

HIPK2mut 0.66 0.50 0.2240 0.3905 0.0608 0.0819 4.5 0.57 0.43

DAXX 0.95 0.60 0.6597 0.3994 0.0022 0.0105 3.0 0.83 0.17

BLM 3.10 0.61 0.8563 0.2439 0.0007 0.0049 4.7 0.88 0.12

nls-GFP 9.50 0.73 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Table 6.3: Summary of the kinetic parameter results for the PML analysis. Diffusion

coefficient D [µm2sec−1], anomality parameter α, rate of binding / unbinding to PML

body kon/ koff , rate of incorporation into PML body core and exit from core kin/ kout,

average residence time at PML NB Rt [s], fraction of molecules bound to outer / inner

part of PML NB Fout/Fin. The fits for PML V, PML-IV-2K and PML-IV-3K are not fully

satisfactory (see Figure 6.10) and their kinetic parameter thus need to be treated with

extra caution. *the kout value of HIPK2 is of no importance, since kin = 0.

assumption we found α=0.73 for nls-GFP alone, but substantially lower values for PML

isoforms and all other PML NB components (Table 6.3). The lowD values and anomaly

parameters, therefore, strongly indicate transient binding events of PML components

with chromatin or protein-based complexes throughout the nuclear volume, not only

at PML NBs.

A binding-diffusion model to describe component exchange at PML NBs

On the basis of the FRAP and FCS results we developed a binding-diffusion model

for the quantitative description of protein exchange at these structures (Sprague and

McNally, 2005) (Figure 6.9C). Diffusion inside and out of bleached regions was modelled

as a linear two-way process using the measured D values from the FCS experiments.

150



6.3. RESULTS

Figure 6.13: Exchange of PML protein variants at NBs. (A) Schematic depiction of

PML-fusion proteins used for FRAP experiments. The domain structure is as described

in Figure 6.2. SUMO-modifiable lysine residues at positions 65, 160 and 490 in PML are

also shown. (B-F) U-2 OS cells transfected with the indicated GFP-tagged PML protein

constructs were used in FRAP analyses of areas that contain NBs and fluorescence recovery

was monitored for various times as indicated. Scale bars, 5 µm. In C and F, cells were

co-transfected with PML IV tagged to mRFP in order to analyse the impact of wild-

type PML on the exchange dynamics of PML-IV-SUMO-2K (C) and PML-RARα (F).

(G-I) Graphs show mean values (± s.d.) from at least 20 FRAP experiments each, of the

indicated proteins or protein combinations as relative fluorescence intensity (RFI) after

normalisation to pre-bleach levels.

Table 6.3 contains for each of the PML NB components the D values and anomaly

parameters α, the binding and unbinding rates kon and koff , and the rates of movement

to the inner core and to the outer surface of the body kin and kout, respectively. From

these, we computed the residence time (Rt), i.e. the mean time a molecule spends

bound to the NB, and the fraction of molecules bound in the inner and outer region

of the body, Fin and Fout, respectively. Conceptually, this model can also be applied

to proteins with short Rt values, since these may split into two populations, one which

immediately dissociates after surface contact with rate constants kon and koff , and a

second which encounters additional binding partners at or in the nuclear body with rate
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6. KINETIC ANALYSIS OF FLUORESCENCE RECOVERY EXPERIMENTS

constants kin and kout. We therefore applied this binding-diffusion model to all PML

NB components analysed in this study. This model provided good fits to the measured

FRAP curves of all PML components (Figure 6.10). The one-step model, assuming that

all molecules exchange with the same rate, did not result in good fits (data not shown,

c.f. Weidtkamp-Peters et al., 2008). Moreover, FRAP curves could never be fitted well

with one-component exponential functions (T.L. and P.H., unpublished results). These

observations confirmed the existence of at least two differently mobile populations of

molecules at NBs.

6.3.2 Consequences for biological function

Note: The measured kinetic parameters imply a large number of results about the

biological function of specific NB components investigated in this study. A detailed

account of these results is not in the focus of this thesis, and the reader is referred

to the original publication (Weidtkamp-Peters et al., 2008) for details. For the sake

of completeness, a short summary is given below.

SUMOylation affects kinetic exchange rates Small Ubiquitin-like Modifier

proteins (SUMO) can attach to PML isoforms at three different sites. To test whether

SUMOylation changes the exchange rates, we applied FRAP to PML mutations lacking

two or three of these sites (Figure 6.13A,B). When two SUMOylation sites were mu-

tated, the recovery kinetics were much faster (Table 6.3, Figure 6.13B,G). In contrast,

proteins in which all three sites were mutated showed very stable binding behaviour,

with an increased fraction of proteins bound in the inner region of the PML NB (Fig-

ure 6.13D,H).

The PML-RARα oncoprotein shows hyperstable binding In our FRAP

experiments, the PML-RARα oncoprotein localised in a microspeckled pattern contain-

ing PML and SP100 (as expected, see Dong et al., 2004). FRAP revealed only very

slow recovery of GFP-PML-RARα when observed over a period of 20 minutes (Fig.

6.13E,I). In comparison to the most similar PML isoform, PML VI, retention time

of PML-RARα is increased fourfold and the stably bound fraction is doubled. GFP-

PML-RARα also reduced the exchange kinetics of other GFP-tagged isoforms upon

coexpression (data not shown). These observations demonstrate that the PML-RARα

oncoprotein has a dominant NB-retention effect on wild-type PML proteins.

152



6.3. RESULTS

Figure 6.14: Exchange dynamics of Sp100 and Sp100 mutant constructs at NBs. (A)

Schematic depiction of Sp100 protein and mutants used for FRAP analyses. The oligomeri-

sation and PML NB targeting resides within a region spanning amino acids 29-152 of Sp100

(Negorev and Maul, 2001). Sp100 has a SUMOylation site at Lys297 (S) within the HP1-

binding motif and a nuclear localisation signal at the C-terminus (NLS). Note, that Sp100

variants that lack the endogenous NLS were engineered to contain one at their N-termini

(Negorev and Maul, 2001). (B) FRAP experiments were performed in U-2 OS cells that

express GFP-tagged Sp100 wildtype (aa 1-480) and the indicated variants, by bleaching

areas that contain NBs and by monitoring fluorescence recovery for various intervals as

indicated. Scale bars, 5 µm. (C,D) Quantification of FRAP experiments as shown in B.

Graphs show mean values (± s.d.) from at least 20 FRAP experiments. For comparison,

the FRAP curve of GFP-PML-IV at NBs was included in C.
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Sp100 turns over rapidly at PML NBs and requires SUMOylation for

tight binding SP100 is a PML NB constituent with potential functions in tran-

scriptional regulation at promoters of specific genes (Sternsdorf et al., 2005). Exchange

rates of these proteins were analysed by FRAP analysis (Figure 6.13 and 6.14), and

showed that SP100 exchanged at NBs more than five times faster than the fastest

PML isoform and fluorescence recovered completely after ∼10 minutes (vs >20 min-

utes in the case of PML I). Additionally, mutation of the SUMOylation sites in Sp100

indicates two distinct populations of molecules: whereas the kon and koff values were

similar to wild-type SP100, kin and kout were reduced ∼30 and ∼20 times, respectively

(Table 6.3), indicating that SUMOylation does not influence the binding of SP100 to

NBs but it affects its incorporation into the core.

HIPK2 binding requires kinase activity and is modulated by PML IV

HIPK2 is a kinase involved in cell proliferation and apoptosis by phosphorylation-

induced stabilisation of the tumour suppressor p53 (D’Orazi et al., 2002; Hofmann

et al., 2002). Modelling of the FRAP data revealed an Rt value of 11 seconds for GFP-

HIPK2 at PML NBs indicating a fast turnover (Figure 6.15A,F; Table 6.3). Consistent

with previous observations (Hofmann et al., 2002), we observed a strong NB retention of

HIPK2 when PML IV was expressed at elevated levels (Figure 6.15B,F). The recovery

halftime of HIPK2 was ∼60 seconds in the absence and ∼240 seconds in the presence

of excess PML IV. These observations clearly indicate that PML IV recruits HIPK2

by increasing its Rt at NBs. Then, GFP-tagged HIPK2(K221A) was analysed, which

lacks the kinase activity. This construct showed only little accumulation at PML NBs

(Figure 6.15C), demonstrating that a functional kinase domain on HIPK2 is required

to retain this enzyme at PML NBs.

Rapid turnover of DAXX and BLM at PML NBs We also analysed ex-

change kinetics of DAXX and BLM at PML NBs. DAXX and BLM showed rapid

FRAP at NBs with Rt values of 2.6 seconds and 4.1 seconds, respectively, and the

complete pool of NB-bound molecules turned over within less than one minute (Fig.

6.15H,I). We like to point out that FRAP curves of these proteins could neither be fit-

ted with a binding-diffusion model assuming a single exchanging population, nor with

one-component exponential functions (Weidtkamp-Peters et al., 2008, and unpublished

observations). Therefore, kinetics modelling using the two-component binding-diffusion

model reveals at least two differently mobile populations of DAXX and BLM at PML
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Figure 6.15: Exchange dynamics of HIPK2, DAXX and BLM at PML NBs. FRAP

experiments were performed in U-2 OS cells that express (A) GFP-tagged wild-type HIPK2,

(B) GFP-HIPK2 in combination with mRFP-PML-IV (red), (C) the kinase-defective GFP-

HIPK2(K221A) mutant in combination with mRFP-PML-IV (red), GFP-DAXX (D), and

GFP-BLM (E). Areas containing HIPK2 accumulations were bleached and fluorescence

recovery was recorded for various times as indicated. Scale bars, 5 µm. (F-I) Quantification

of FRAP experiments as shown in A-E. Graphs show mean values (± s.d.) from at least

20 FRAP experiments each.
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NBs, a fast one that rapidly binds and unbinds at the surface, and a slower one that

is retained at NBs for seconds. The majority (>80%) of GFP-tagged DAXX or BLM

molecules was identified in the more loosely bound fraction by kinetics modelling (Table

6.3).

6.3.3 Further work: Analysis of HP1 binding to chromatin

In addition to the presented results on PML nuclear bodies, we also applied the de-

scribed modelling framework to FRAP data of heterochromatin protein 1 (HP1). HP1

binds to chromatin, more specifically to H3K9, i.e. the histone H3 methylated on lysine

9 (see introduction). We found that in analogy to the PML data, a binding model with

only one bound state cannot adequately explain the data. Thus, two different binding

modi have to exist. However, it is not clear whether the appropriate description is given

by the sequential or parallel binding model, or a combination of both (Section 6.2.5).

Both models fit the FRAP time courses for all three HP1 variants equally well, so that

a distinction based on this data is not possible.

Further insights into this issue are expected from FRAP experiments with HP1

mutants, in which one or two of the three domains (chromodomain, hinge-region,

chromoshadow-domain) are deleted. At the time of writing, this data has not been

analysed thoroughly, and it seems inappropriate to present it in depth before this anal-

ysis has been carried out. Therefore, the interested reader is referred to the manuscript

in preparation for further details.
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Figure 6.16: The residence times of the indicated PML nuclear body components as

deduced from our kinetic modelling approach is shown on a logarithmic seconds scale.

6.4 Discussion

6.4.1 Lessons for PML NB assembly

Understanding PML NB assembly and function requires detailed knowledge of its or-

ganisation in space and time. Using live-cell microscopy and kinetics modelling we have

determined the intranuclear dynamics of eleven components of PML NBs. These data

reveal a wide range of assembly plasticity of PML NBs (Figure 6.16).

PML traffic at NBs Previously, only PML IV had been analysed in FRAP

experiments, (Boisvert et al., 2001; Everett and Murray, 2005; Wiesmeijer et al., 2002).

In this study, we have analysed all six nuclear PML isoforms, all of them showing

protein-specific exchange dynamics at NBs. Comparing the exchange rates of the PML

isoforms to each other, it becomes apparent that the SUMO-interacting motif (SIM,

lacking in PML VI) is not the main determinant for exchange dynamics, even though it

is required for NB formation (Shen et al., 2006). Rather, it seems that diverse functional

domains at the C-terminus of PML isoforms determine their kinetics.

Different PML isoforms show different binding behaviour with certain proteins (Fo-

gal et al., 2000). It thus seems suggestive that freely diffusing, highly mobile PML

molecules “scan” the nucleoplasm for interaction partners and subsequently transport

those to NBs. There, the proteins brought together by PML can then interact in a

strictly confined space.
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PML V as a scaffold subunit of NBs? It came as a surprise that PML V is

a very stable isoform at NBs. The reaction-diffusion model revealed an Rt value of 48

minutes (Table 6.3), whereas typical Rt values of proteins within speckles, Cajal bodies

and nucleoli range between seconds to a few minutes (Chen and Huang, 2001; Dundr

et al., 2004; Handwerger et al., 2003; Kruhlak et al., 2000; Phair and Misteli, 2000).

This high Rt value very likely indicates a structural role of this isoform within PML

NBs, acting as a long-lasting but not static scaffold subunit. Such a metastable PML

scaffold has the advantage to be able to rapidly respond to external stimuli, while at

the same time serving as a stable platform for the assembly of functional complexes

built from faster-exchanging molecules, such as DAXX, BLM, HIPK2 and CBP, with

Rt values of several seconds (Table 6.3) (Boisvert et al., 2001; Everett and Murray,

2005).

Targeting and release mechanisms at PML NBs Combining the results of

this chapter (for details, see Weidtkamp-Peters et al., 2008), the time a component stays

at PML NBs might be modulated by (1) its own SUMOylation status, (2) the presence

of a SUMO-interaction motif, (3) the PML isoform it binds to, (4) the SUMOylation

pattern of this isoform, and (5) the relative abundance of other isoforms in the same NB.

Different SUMO paralogs, polymeric SUMO chains and phosphorylation could provide

additional layers. PML-RARα is suggested to interfere with normal myeloid differenti-

ation by inhibiting wild-type RARα transcriptional activity (Melnick and Licht, 1999).

On the basis of FRAP analyses it has recently been proposed that PML-RARα expres-

sion interferes with normal RARα functions by reducing the intranuclear mobility of

RARα and its co-regulator SMRT, suggesting a crucial role for the reduced intranu-

clear mobility of PML-RARα in the pathogenesis of APL (Dong et al., 2004; Huang

et al., 2007). Here, we demonstrated that the PML-RARα oncogene can efficiently

immobilise wild-type PML proteins, thus drastically reducing the amount of available

wild-type PML in the nucleoplasm.

PML NBs: active or passive nuclear sites? Several functions have been

postulated for PML NBs, such as (1) nuclear storage sites for the accumulation or

sequestration of proteins, (2) catalytic surfaces where proteins accumulate to be post-

translationally modified, or (3) active sites for specific nuclear functions such as tran-

scriptional and chromatin regulation (reviewed in Bernardi and Pandolfi, 2007). During

a stress response, HIPK2-mediated phosphorylation of p53 and acetylation by CBP is
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believed to occur at PML NBs (D’Orazi et al., 2002; Fogal et al., 2000; Guo et al.,

2000; Hofmann et al., 2002). Here, we have shown that, even in the presence of excess

PML IV, HIPK2 binding to NBs was almost absent when its kinase is inactive. Fur-

thermore, quantitative expression of PML IV increased the Rt of wild-type HIPK2 at

NBs several fold. These observations strengthen the catalytic-platform theory for PML

NBs, which suggests that specific processes (phosphorylation, acetylation, SUMOyla-

tion), occur on the surface of the body (Kentsis and Borden, 2004). BLM and DAXX

turned over at NBs rapidly and completely. Since these proteins function directly at

DNA-synthesis sites or at specific promoters, respectively (Lin et al., 2007; Wu, 2007),

their low Rt values are likely to reflect the function of PML NBs to titrate the concen-

tration of these factors in the nucleus. SP100 is also a transcriptional co-regulator at

promoters but showed dissociation kinetics that were one order of magnitude slower at

PML NBs than those of BLM or DAXX. Although this does not rule out a titration

effect by NBs, the Rt value for SP100 also suggests a scaffold function for the regulated

retention of SP100-interacting proteins at NBs, such as NBS1 and HP1 (Naka et al.,

2002; Seeler et al., 1998).

All in all, our kinetics data do not favour a particular model for PML NB function

but, instead, provide evidence for all of them. We therefore suggest that PML NBs

are integrated into many nuclear pathways as both biophysical and biochemical hubs,

which provide at the same time structural stability at specific chromatin loci, titration

sites for specific factors, and catalytic surfaces for post-translational modifications or

complex assembly.

6.4.2 Lessons for the mathematical modelling of FRAP

FRAP modelling seems simple, but it is not! At the onset, the mathemat-

ical modelling of FRAP experiments seems straightforward: the models involved are

relatively low-dimensional and simple, and the relation between data and model seems

clear. Digging deeper, it becomes obvious that things may not be as clear as they first

seem to be. For example, the range of models that can be considered is actually quite

wide: from the simple exponential function, via a compartmental model with multi-

ple binding states (as in this work), to spatially explicit models containing a detailed

representation of the nuclear architecture (Beaudouin et al., 2006). From a different
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perspective, many potential problems with the data are unearthed: How is the fluores-

cence decay caused by laser scanning taken into account? Is there a “blinding” effect

of the photobleach pulse on the first image acquisitions? How much noise is there in

the data? And how much variation between repeated measurements?

Taking together the uncertainties about model and data, one is forced to conclude

that the mathematical analysis of FRAP experiments is limited to rough estimations

of the kinetic parameters (Mueller et al., 2008). Specifically, there is at the moment no

possibility to arbitrarily increase the resolution and reliability of these estimations, no

matter how much time and money is invested. Fundamental advances in the method-

ology, both in vivo and is silico, are needed for this.

Two potential errors In a recent publication, Mueller et al. (2008) describe two

principal sources of systematic error found in many approaches to FRAP analysis: a

neglect of the role of diffusion, and an incorrect approximation of the initial fluorescence

distribution after the photobleach. They show that when applying different FRAP

approaches that do not correct for these errors, the choice of the FRAP analysis method

determines the kinetic parameters, not the type of protein under study (cf. Hinow et al.,

2006; Phair et al., 2004; Sprague et al., 2004).

The study presented here was designed from the onset to take diffusion into account.

Diffusion is measured separately (by FCS) and then included into the FRAP model,

which is used to estimate the binding coefficients. Moreover, the problem of the initial

photobleach distribution does not seem too severe here (Section 6.2), even though

improvements in this matter are likely to add more precision to the results.

No gold standard There cannot be enough emphasis on the argument that in

the current state, FRAP analysis by mathematical modelling can only yield predictions

of the magnitude of kinetic parameters, not precise values (Mueller et al., 2008; Sprague

and McNally, 2005). The main reason for this is that there is no “gold standard”

for FRAP experiments, i.e. no experimental setup where the “correct” values are

precisely known. Such a standard could be used to calibrate and test FRAP analysis

procedures. Without it, systematic errors that underlie the different methods can

easily go undetected, and the only possible safeguard is the comparison of results from

different methodologies (Mueller et al., 2008).
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The best possible approach Wetlab biology is a messy business, and so is its

mathematical analysis. In contrast to dead matter under study in physics or chemistry,

living entities always come with a high degree of noise, variability and sensitivity to

laboratory conditions. Thus, there is always a certain level of uncertainty implied

in biological measurements. In analogy, mathematical models of biological systems

always have to be more abstract than the real thing, and thus simplifications and

approximations are unavoidable.

In spite of all this, the strongest argument for the kind of scientific work presented

in this section is that it is simply the best we have. When systems are inherently

noisy and variable, measuring them can never be done without uncertainty. When

systems are complex, modelling has to simplify and approximate. Therefore, I believe

that with the methodologies currently available, the approach presented here is well

worth the effort. The kinetic quantification of FRAP measurements, in this detail only

possible through mathematical modelling, has led to significant insights that would be

unavailable by pure inspection of the FRAP curves.
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7
Investigating an Evolutionary Motif:

Developmental Robustness by Obligate

Interaction of Floral Homeotic Genes

Chapter summary. DEF-like and GLO-like class B floral homeotic genes encode

closely related MADS-domain transcription factors that act as developmental switches

involved in specifying the identity of petals and stamens during flower development.

Class B gene function requires transcriptional upregulation by an autoregulatory loop

that depends on obligate heterodimerisation of DEF-like and GLO-like proteins. Since

switch-like behaviour of gene expression can be displayed by single genes already, the

functional relevance of this complex circuitry has remained enigmatic. Based on a

stochastic in silico model of class B gene and protein interactions we suggest that ob-

ligate heterodimerisation of class B floral homeotic proteins is not simply the result

of neutral drift, but enhanced the robustness of cell-fate organ identity decisions in the

presence of stochastic noise. This finding strongly corroborates the view that the appear-

ance of this regulatory mechanism during angiosperm phylogeny led to a canalisation of

flower development and evolution. The transition from positive autoregulatory feedback

of one gene to obligate heterodimerisation can suggestively be termed an “evolutionary

motif”. We discuss the generality of our approach, especially in the light of potential

applications to other such motifs.

Note: The work described in this chapter has been carried out in collaboration with

Günter Theißen at the Department of Genetics, FSU Jena, and has been published

in PLoS Computational Biology (Lenser et al., 2009).
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7.1. INTRODUCTION

7.1 Introduction

Self-regulating genes can act as genetic switches The development of or-

gans, their position and boundaries in multicellular organisms is defined by genes that

can sustain their own activation over long periods of time, termed genetic switches. A

good case in point is provided by the genetic machinery controlling the development

of flowers in higher plants. Depending on the nature of the interactions of their con-

stituents, gene regulatory circuits can display a variety of dynamical behaviours ranging

from simple steady states, to switching and multistability, to oscillations. Temporal

or spatial patterning during development requires activation of genes at a particular

time or position, respectively, and the inhibition in the remaining time or part (Lewis,

2008).

Regulatory genes involved in such processes often show a switch-like temporal or

spatial dynamics, which requires a direct or indirect positive non-linear feedback of the

genes on their own expression, e.g. via dimers of their own product (Pigolotti et al.,

2007). Switch-like behaviour can be displayed by a single gene (Ferrell, 2002; Wolf

and Arkin, 2003), but many gene regulatory switches have a more complex structure.

Due to the small number of molecules involved, these switches are inherently stochastic

and their behaviour under noisy conditions can strongly depend on their genetic ar-

chitecture (Elowitz et al., 2002; Kaern et al., 2005; McAdams and Arkin, 1997; Raser

and O’Shea, 2005). In some cases the complex regulatory interactions have been quite

well documented, but the functional implications of the corresponding regulatory cir-

cuitry have remained enigmatic. A good example is provided by some floral homeotic

(or organ identity) genes from model plants such as Arabidopsis thaliana (thale cress;

henceforth termed Arabidopsis) and Antirrhinum majus (snapdragon; henceforth called

Antirrhinum).

Floral homeotic genes determine organ identity in flower development

Floral homeotic genes act as developmental switches involved in specifying organ iden-

tity during flower development. According to the ‘ABC model’, three classes of floral

organ identity (or homeotic) genes act in a combinatorial way to specify the identity of

four types of floral organs, with class A genes specifying sepals in the first floral whorl,

A+B petals in the second whorl, B+C stamens (male reproductive organs) in the

third whorl, and C alone carpels (female organs) in the fourth floral whorl (Coen and
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Meyerowitz, 1991). The combinatorial genetic interaction of floral homeotic genes may

involve the formation of multimeric transcription factor complexes that also include

class E (or SEPALLATA) proteins, as outlined by the ‘floral quartet’ model (Theißen

and Saedler, 2001).

The enigma of obligate heterodimerisation in class B genes In Arabidop-

sis thaliana and other plants, a particular class of these genes - DEF-like and GLO-like

floral homeotic genes - regulates the development of petals and stamens. These genes

are self-activating via a heterodimer of their protein products, making the activity of

each one of them fully bound to the activity of the other one. The reason for their total

functional interdependence has long remained unclear, as the expression of both genes

is jointly controlled by shared transcription factors in addition to the heterodimer. In

principle, one gene alone could provide their switching functionality.

In Antirrhinum, there are two different class B genes termed DEFICIENS (DEF )

and GLOBOSA (GLO). In Arabidopsis these genes are represented by APETALA3

(AP3 ), the putative orthologue of DEF, and PISTILLATA (PI ), the putative GLO

orthologue. For simplicity, we will refer to DEF -like and GLO -like genes from here on.

DEF -like and GLO -like genes represent paralogous gene clades that originated by the

duplication of a class B gene precursor 200 – 300 million years ago (Kim et al., 2004;

Winter et al., 2002a). All class B genes identified so far, like most other floral homeotic

genes, belong to the family of MADS-box genes, encoding MADS-domain transcription

factors (Kaufmann et al., 2005; Theißen et al., 2000).

Class B genes determine petal and stamen identity Mutant phenotypes

reveal that DEF -like and GLO -like genes are essential for the development of petals

and stamens, since def and glo loss-of-function mutants all produce flowers with petals

converted into sepals and stamens transformed into carpels (Goto and Meyerowitz,

1994; Jack et al., 1992; Sommer et al., 1990; Tröbner et al., 1992; Zahn et al., 2005).

When co-expressed in the context of a flower, DEF and GLO are not only required,

but even sufficient for specifying petal and stamen identity, as revealed by transgenic

studies (e.g. Krizek and Meyerowitz, 1996).

Obligate heterodimerisation provides positive autoregulation to class B

genes Induction and stable maintenance of switch-gene expression are typically two

independent processes, depending on a transient external signal and autoregulation,

respectively (Schwarz-Sommer et al., 1992). Whenever a transient activating signal is
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Figure 7.1: The three types of regulatory mecha-

nisms that are investigated. “DEF” and “GLO” de-

note DEF -like and GLO -like genes. Large boxes rep-

resent the coding regions of genes (neglecting intron-

exon structure), small boxes symbolise cis-regulatory

elements (CArG-boxes). (A) Ancestral state. A sin-

gle gene X is positively regulated by a dimer of its

gene product. (B) Intermediate state. After gene du-

plication, three types of protein dimers can be formed,

since both homo- and heterodimerisation are possible.

All three dimers regulate both genes. (C) Final state.

After having lost the homodimerisation ability, the re-

maining heterodimer regulates both genes.

above a threshold, the gene activity switches from the OFF- to the ON-state. The

signal is required only for initiation, but not for maintenance of gene activity. Due

to the autoregulation, the gene’s response becomes in a wide range independent of

the exact strength of the input signal. During later stages of flower development (in

Arabidopsis from stage 5 on), mRNA of DEF - and GLO -like genes is detected only

in whorls 2 and 3 (Goto and Meyerowitz, 1994; Jack et al., 1992). This is so because

upregulation and maintenance of class B gene expression in Arabidopsis and Antir-

rhinum during later stages of flower development depends on both DEF and GLO, due

to an autoregulatory loop involving these proteins (Figure 7.1, bottom). The proteins

encoded by class B genes of Arabidopsis and Antirrhinum are stable and functional

in the cell only as heterodimers, i.e. DEF-GLO complexes, because both nuclear lo-
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Figure 7.2: Statistical analysis of 10,000 independent runs for each given number of

regulatory input molecules. Probability of reaching ON-state (left) and uncertainty of ON-

OFF decision (right) for one autoregulatory gene (blue), the two-gene circuit immediately

after duplication (red) and with obligate heterodimerisation (green). Shown are estimated

values and 99% confidence intervals. Parameters are as in Table 7.2.

calisation and sequence-specific DNA-binding depend on obligate heterodimerisation

(McGonigle et al., 1996; Schwarz-Sommer et al., 1992). Class B protein heterodimers

bind to specific cis-regulatory DNA sequence elements termed ‘CArG-boxes’ (consensus

5’-CC(A/T)6GG-3’). Except PI, the promoter regions of all class B genes of Arabidop-

sis and Antirrhinum contain CArG-boxes that are involved in positively regulating

class B gene expression (Chen et al., 2000; Hill et al., 1998; Tilly et al., 1998). These

data, together with the total functional interdependence of the two class B gene par-

alogues, strongly corroborate the hypothesis that positive autoregulatory control of

class B genes involves heterodimers of class B proteins that bind to CArG-boxes in

the promoters of class B genes (Figure 7.1, bottom) (Tröbner et al., 1992). Since PI

lacks CArG-boxes in a minimal promoter region, the autoregulatory feedback may work

indirectly in this case (Chen et al., 2000; Honma and Goto, 2000).

Evolution of obligate heterodimerisation Obligate heterodimerisation of their

encoded products involved in positive autoregulation explains why DEF -like and GLO -

like genes are functionally non-redundant and totally interdependent. This raises the

question as to how and why such a regulatory system originated in evolution. Studies

on the interaction of class B protein orthologues from diverse gymnosperms and an-

giosperms suggested that, following a gene duplication within the class B gene clade,

obligate heterodimerisation evolved in two steps from homodimerisation via facultative
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Figure 7.3: Switching behaviour of the two-gene circuits simulating two independent in-

puts, under facultative heterodimerisation (left) and obligate heterodimerisation (right).

X- and Y-axis denote the number of available input molecules for DEF and GLO, respec-

tively. The probability of ending in the ON state is indicated by colour: blue is low, red is

high. Parameters are as in Table 7.2.

heterodimerisation (Winter et al., 2002b). Meanwhile obligate heterodimerisation of

DEF-like with GLO-like proteins has also been observed outside of the eudicots Ara-

bidopsis and Antirrhinum in diverse groups of monocots, suggesting that it originated

quite early or several times independently during angiosperm evolution (Whipple and

Schmidt, 2006).

So why then did obligate heterodimerisation evolve? In principle, it could repre-

sent a neutral change in protein-protein interactions that occurred by random genetic

drift (Winter et al., 2002b). This cannot be excluded at the moment, but for several

reasons, it appears not very likely. Even though obligate heterodimerisation originated

early or several times independently within class B proteins, it did not occur in any

other class of floral homeotic proteins, suggesting some kind of functional specificity.

Moreover, it occurs within evolutionary especially ‘successful’ (e.g., species-rich) groups

of angiosperms, suggesting that it might provide some selective advantage.

Obligate heterodimerisation canalises flower development Winter et al.

(2002b) suggested that obligate heterodimerisation in combination with autoregulation

may have provided a selective advantage because of the fixation of class B gene expres-

sion patterns and thus the spatial domain of the floral homeotic B-function within the

flower during evolution. Mutational changes in the promoter region of only one class B
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gene that expand the gene’s expression domain may leave the late and functionally es-

pecially relevant expression domain of the class B genes unchanged, because expression

of the other partner would be missing in the ectopic expression domain. Only parallel

changes in both types of class B genes, which are much less likely than changes in single

genes, could lead to ectopic expression of the B-function under the assumption of ob-

ligate heterodimerisation and strong autoregulation. Thus obligate heterodimerisation

may have evolved in parallel, or even as a prerequisite, of the canalisation of floral

development and thus standardisation of floral structure in some groups of flowering

plants (Winter et al., 2002b).

Obligate heterodimerisation provides robustness against developmental

noise Amending this ‘evolutionary’ explanation of obligate heterodimerisation, this

contribution tests the hypothesis that obligate heterodimerisation also provides ad-

vantages during development by providing robustness against wrong cell-fate decisions

caused by stochastic noise. To this end, we put forward and examine a set of stochastic

in silico models of class B gene and protein interactions as shown in Figure 7.1. The

models enabled us to study the influence of noise in isolation from other factors, and

allowed the comparison of three major stages in the envisioned path of evolutionary

transitions (Figure 7.1): (A) One ancestral gene positively regulates its transcription

via a homodimer of its own gene product; (B) Two genes positively regulate their

transcription via homo- and heterodimers of both types of products; this very likely

represents the situation directly after duplication of the ancestral gene; (C) Obligate

heterodimerisation of the two products for regulation, i.e. the situation in extant Ara-

bidopsis and Antirrhinum. Since only a small number of individual transcription factors

is actually in the nucleus at any time (Honma and Goto, 2000; Winter et al., 2002b),

stochastic fluctuations play a large role in the behaviour of gene regulatory circuits,

and may have an influence on their evolutionary dynamics (Kaneko, 2007; Raser and

O’Shea, 2005).

170



7.2. METHODS

7.2 Methods

7.2.1 Model description and analysis

Model description Each model consists of a set of reactions for transcription

factor binding, transcription, dimerisation, and decay (Table 7.1), where translation

is modelled in one step together with dimerisation for efficiency. Transcription factor

binding and unbinding are simple reaction processes, where we assume that exactly one

functional copy of both DEF and GLO genes are available. For simplicity, we assume

that only DNA activated by transcription factor binding is transcribed; however, ex-

periments with basal transcription rates have led to qualitatively similar results. The

decision to model translation and dimerisation in one step was taken to simplify the

model while keeping the focus on transcriptional rather than translational regulation.

This entails that we only model DEF and GLO mRNA and the dimerised proteins,

but not the single DEF and GLO proteins. The slight loss of accuracy here has been

unavoidable, as we needed to keep the model computationally tractable for the large

numbers of replicated experiments. Each reaction is associated with a propensity func-

tion (Tables 7.2 and 7.3), which yields the probability of an occurrence of that reaction

in a time step. A list of all modelled reactions is given in Table 7.1, and the full model

is shown in Figure 7.5. All constituents of the model decay with a linear rate.

Corresponding ODE system contains two stable fixed points Linear sta-

bility analysis of the corresponding differential equation system reveals that both the

active and the inactive state constitute stable fixed points in all three systems, with an

unstable fixed point in between. The ODE system describing a deterministic approxi-

mation of the obligate heterodimerisation system can be described as follows, where x

and y given the fraction (probability) of inactive def and glo genes, D and G given the

concentration of DEF and GLO transcription factor proteins, and H is the concentra-
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tion of DEF-GLO heterodimers:

dx

dt
= koff(1− x)− konxH

�

�

�

�7.1

dy

dt
= koff(1− y)− konyH

�

�

�

�7.2

dD

dt
= β(1− x)− dDD

�

�

�

�7.3

dG

dt
= β(1− y)− dGG

�

�

�

�7.4

dH

dt
= 1/2k12DG− dHH − kon(x+ y)H + koff(2− x− y)

�

�

�

�7.5

The basal transcription rate β0 is set to 0. The rate k12 determining the conversion of

DEF and GLO proteins into heterodimers has to be halved, since it is now a determin-

istic rate constant. Similar ODE systems can be set up for the case of one gene and

facultative heterodimerisation.

With the parameter values provided in Table 7.2 and 7.3, the ODE system above has

three fixed points: (x, y,D,G,H) = (1, 1, 0, 0, 0), (0.8, 0.8, 10, 10, 2.5), (0.2, 0.2, 40, 40, 40).

The first one corresponds to the OFF-state: the probability that the genes are inactive

is 1, and the concentration of all proteins is zero. The last case corresponds to the

ON-state, both genes are activated 80% of the time, and 40 copies of each protein and

the heterodimer are in the system. Note the agreement with Figure 7.4. The second

fixed point corresponds to the threshold between OFF- and ON-state.

By the looks of it, we expect the first and third fixed point (OFF- and ON-state)

to be stable, and the second one (threshold) to be unstable. Linear stability analysis

shows that this is indeed the case. We can determine the Jacobian matrix J of the

ODE system:

J =













−koff − konH 0 0 0 −konx
0 −koff − konH 0 0 −kony
−β 0 −dD 0 0
0 −β 0 −dG 0

−koff − konH −koff − konH k12GLO k12DEF −dH − kon(x+ y)













The eigenvalues of this matrix, determined at the fixed points, are all negative for the

first and third fixed point, thus characterising them as asymptotically stable. The Jaco-

bian for the second fixed point (the threshold) contains a positive entry, characterising

it as a saddle point and thus as unstable. Equivalent results hold for the one-gene

system and for the system with facultative heterodimerisation.
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7.2.2 Simulation and evaluation

Stochastic simulation The model is simulated using the Gillespie algorithm

(Gillespie, 1977), implemented as a C++ function linked to MATLAB (The Math-

Works, Inc. 2008). This method, which simulates an exact instance of the stochas-

tic master equation, explicitly accounts for each reaction event and thus represents

stochastic effects in full detail. Using the Gillespie algorithm, the exact order and tim-

ing of reactions is then stochastically determined, based on the propensities. To model

transient activation of the circuits, we simulate an inflow of activating molecules (sum-

marising all different activating transcription factors other than DEF/GLO that act

on the respective genes) over 50 minutes of simulated time. After this time, the inflow

is switched off and the system equilibriates, i.e. reaches a state in which no change

occurs except for stochastic fluctuations (always reached after 72 hours of simulated

time). If at this point gene product dimers are still present, the circuit is considered

as active (full expression), otherwise it is inactive (no expression of class B genes). We

conducted 10,000 experiments for each parameter combination.

Simulating different modes of regulation The different types of regulation

are achieved by enabling or disabling the binding and activation of one type of gene

by either a transcription factor homodimer produced by itself, a heterodimer of the

products of both genes, or a homodimer of the proteins encoded by the other gene (see

Table 7.3).

Transient initial activation of transcription The class B floral homeotic

genes are regulated by a number of (possibly interacting) transcription factors, some of

which are still unknown. Since the aim of this contribution is to investigate the effect of

autoregulation on gene activity, we summarise the effects of all upstream transcription

factors in two specific input factors, IDEF and IGLO, and a common input factor, IC .

As developmental switches, the B-genes are transiently activated by their inputs,

which are switched off after activation. Depending on the level of gene activity reached

by that time, this activity either stays high or decays to a low value again, corresponding

to on- and off-states of the genes. To model the transient activation, an inflow of (on

average) N activatory molecules (of type IDEF , IGLO or IC , respectively) over a period

of T minutes was simulated using a Poisson process. After time T , the inflow is switched
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Figure 7.4: Single runs from all three modes of regulation. Left: one single gene; middle:

two genes directly after duplication; right: obligate heterodimerisation of the transcription

factors. Lines in yellow and black show the inputs transcription factors, which are switched

off after 200 sec. Blue and green lines show the DEF and GLO transcripts, and red, purple

and cyan denote the DEF-DEF, GLO-GLO and DEF-GLO dimers, respectively. The

seemingly solid line at the bottom shows the activity level of the genes, which changes very

rapidly and cannot be distinguished at this resolution.

off and the system is left alone, reaching steady state. Figure 7.4 shows example time

courses for all three modes of regulation considered here.

Binary entropy as a measure of decision uncertainty All three systems

investigated in this work represent autoactivatory circuits, which are used by the plant

to establish the expression (ON-state) or non-expression (OFF-state) of homeotic genes

in certain floral whorls. Therefore, a decision has to be made, depending on the number

of activatory input molecules initially coming into the system. For low numbers of input

molecules, the decision should be ‘OFF’, for higher numbers it should be ‘ON’.

To measure the uncertainty of this decision, we use the binary entropy function. Let

X be a random variable that takes value 1 with probability p, value 0 with probability

1− p, i.e. a Bernoulli trial. The entropy of X is defined as

H(X) = −p ∗ log(p) − (1− p) ∗ log(1 − p).

In our case, X taking value 1 means that the system reaches ON-state, value 0 means

OFF-state. For each specific number N of activatory input molecules IC , we repeated

the simulation 10,000 times and determined the probability p (Figure 7.2, left). Us-

ing the formula above, this translates to the binary entropy, or decision uncertainty

(Figure 7.2, right).

Calculating all probabilities: the stochastic master equation To get a

better understanding of the system behaviour, and to support the conclusions drawn

from its simulated realisations, we developed a master equation approximation of the
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Figure 7.5: The full model showing all regulatory parameters. The three different model

instances are generated by setting the rate constants according to Table 7.3

system under all three types of regulation. This enabled us to complement the statistical

results from a large number of individual simulations with an analytical description of

the probability distribution for different numbers of activatory transcription factors.

Specifically, the master equation approach provides a system of ordinary differential

equations, in which each equation describes the rate of change in the probability of

one specific system state. We constructed a system with up to 150 molecules of both

DEF and GLO-like type, leading to 22.500 variables which are sparsely coupled. To

be able to solve this system numerically, two approximations had to be made. On

the one hand, transcription factor binding is assumed to be fast in comparison to the

transcription/translation process, so that the binding/unbinding process which was

explicitly incorporated in the full model could be replaced by a probability for each

gene to be bound to a transcription factor. On the other hand, we also assumed the

dimerisation to be fast (i.e. in equilibrium), such that the number of dimers available

for regulation is a function of the current number of monomers in the system. We

are aware that the latter approximation is quite crude, and the results gained from

this should be treated with care. With these two assumptions, we could reduce the
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dynamics of the full system to a system containing only the numbers of the two gene

products as variables, which was tractable by numerical solvers in MATLAB.

7.2.3 Details on kinetic parameters

Stochastic and deterministic rate constants differ for higher-order reac-

tions It is important to note that since we are using a stochastic framework, the

rate parameters given in Table 7.2 and 7.3 are stochastic rate constants rather than

deterministic ones. As already shown by Gillespie (Gillespie, 1977), a consequence of

this is that the rate constants for first-order reactions (transcription, decay) are given

in “1/min on average”, but are otherwise equivalent to deterministic rates, whereas the

rate constants for dimerisation (second-order) are given in “1/(min * l) on average”,

since the volume in which the reaction takes place (given in l) plays a role. All except

the interaction parameters describe stochastic rates, i.e. they characterise the average

rate of the corresponding reactions. In other words, if reaction R : M1+M2 −→ 2∗M1

has rate constant c, then c × dt is the probability that a specific pair of molecules of

types M1 and M2 will react in the short time-step dt.

Dimerisation parameters summaries a complex process of transport,

translation and dimerisation Parameters kij summarise the processes of trans-

port out of the nucleus, translation, dimerisation, and transport back into the nucleus

into one number, which yields a process occurring in the time-scale of one hour, in

accordance with estimations for plant cells (Günter Theißen, personal correspondence)

(with given parameters, it takes ∼ 69 min to transcribe 50% of a given amount of

mRNA in the nucleus to gene products, dimerise outside of the nucleus, and move back

in).

Ratio between kon and koff characterises activation threshold Most impor-

tant for the behaviour of the model are the transcription factor binding and unbinding

rates kon and koff . Their ratioKD = koff/kon, often called the “dissociation constant”,

characterises the approximate threshold between ON-state and OFF-state of the whole

system. This can be seen by noting that in a bimolecular binding reaction

A+B ↔ AB,
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the dissociation constant KD denotes the equilibrium ratio between the concentra-

tions of unbound A and B and the dimer AB:

KD =
[A]× [B]

[AB]

(where [X] denotes the equilibrium concentration of chemical X). In our case, A

is the gene (of which only one copy exists), B is the transcription factor, and AB the

activated form of the gene. Since we are dealing with discrete particle numbers, [AB]

denotes the probability that the gene is activated by the transcription factor. Also note

that [A] + [AB] = 1 holds. Combining all this yields

KD =
(1− [AB])× [B]

[AB]

and thus

[AB] =
[B]

KD + [B]
.

Since [AB] is the activation probability of the gene, we conclude that KD is exactly

the concentration of the transcription factor that is needed to activate the gene with

probability 0.5, and therefore the threshold for activation.

Interaction parameters define specific model topology In contrast to the

chemical parameters above, the interaction parameters aij and bij are purely phe-

nomenological. They describe the proportion of dimers that are involved in the regu-

lation of the two transcription sites, according to the full model shown in Figure 7.5.

In this work, they are limited to the states “dimer can/cannot regulate site”, i.e., they

are set to either one or zero. Parameter a11 represents the influence of the DEF-DEF

homodimer, a12 the influence of the DEF-GLO heterodimer, and a22 the one of the

GLO-GLO homodimer, all on the DEF -like gene. In an analogous fashion, bijs denote

the influences on the GLO -like gene. For example, if a12 = 1, the DEF-GLO het-

erodimer can bind and activate the DEF -like gene, while this binding and activation

is disabled for a12 = 0.
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Process Reaction Propensity

TF-binding DEF + TFDEF → DEF* kon[TFDEF]

GLO + TFGLO → GLO* kon[TFGLO]

TF-unbinding DEF* → DEF + TFDEF koff

GLO* → GLO + TFGLO koff

Translation def + def → def + def + DEF-DEF k11[def]([def]-1)/2

+ Dimerisation glo + glo → glo + glo + GLO-GLO k22[glo]([glo]-1)/2

def + glo → def + glo + DEF-GLO k12[def][glo]

Decay def → ∅ d[def]

glo → ∅ d[glo]

DEF-DEF → ∅ d[DEF-DEF]

GLO-GLO → ∅ d[GLO-GLO]

DEF-GLO → ∅ d[DEF-GLO]

Table 7.1: A summary of all reactions in the model. Given are the reaction equations and

their associated propensity functions. In the one gene model, only gene DEF is considered,

standing as a surrogate for the ancestral gene of both DEF and GLO. [X] denotes the

number of particles of chemical X in the system. Genes are specified in italics, mRNA in

small letters, and proteins in capitals. TFDEF and TFGLO summarise the transcription

factors acting on the genes in the specific model, e.g. in the obligatory heterodimerisation

model, TFDEF = TFGLO = DEF-GLO, while in the system after duplication TFDEF =

{DEF-DEF, GLO-GLO, DEF-GLO}.

Parameters are biologically plausible Even though the model gives a quan-

titative description of the reaction processes, the results can only be taken qualitatively

since the exact kinetic parameters have not yet been measured in plants. The param-

eters used in this study have been chosen in accordance with experimental evidence

from other systems (Alon, 2006; Kaern et al., 2005; Smolen et al., 1998; Tian and Bur-

rage, 2006), especially the overview table 2.1 from (Alon, 2006). Our parameter choices

ensure that the model replicates the time-scales involved in homeotic gene regulation,

i.e. the main processes involved happen on a timescale of hours. We also varied the

parameters in a range of 10% up or down and did not observe a significant change in

the model behaviour.

Note: The fact that the dimerisation constant k12 is only half the value of k11 and

k22 is not due to biological plausibility, but due to an implementation error that
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Parameter Units Value

β molecules/min 10.0

β0 molecules/min 0.0

kon 1/min 0.8

koff molecules/min 8.0

d 1/min 0.2

Table 7.2: Parameters that are kept constant in all experiments. β is the production

propensity for gene products for both genes when they are activated, while β0 is their

base-level production rate. kon and koff give the binding and unbinding propensities of

regulatory dimers to both genes, while d is the decay rate uniformly used for mRNA, dimers

and initial activatory molecules

was only discovered while writing up this thesis. Since all parameter values in this

chapter are only used as plausible approximations, I deemed it unnecessary to repeat

the computations with the corrected formula, but rather adapted the rate constant.
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Parameter (Unit) One gene After Obligatory

duplication heterodimerisation

a11 (proportion) 1.0 1.0 0

a12 (proportion) 0 1.0 1.0

a22 (proportion) 0 1.0 0

b11 (proportion) 0 1.0 0

b12 (proportion) 0 1.0 1.0

b22 (proportion) 0 1.0 0

k11 (1/(min*l)) 0.01 0.01 0

k12 (1/(min*l)) 0 0.005 0.005

k22 (1/(min*l)) 0 0.01 0

Table 7.3: Parameters that are varied between the three experiments. aij and bij are

binary parameters that determine which types of dimers regulate which gene, while kijs

describe the stochastic rate constants in the dimerisation propensities for all combinations

of monomers.

7.3 Results

The activation of the DEF and GLO genes depends on a temporally limited concerted

action of many more genes and proteins besides the class B genes themselves, which

have been described from an evo-devo perspective (Kaufmann et al., 2005) and by

mathematical modelling (Alvarez-Buylla et al., 2007). To keep the focus on the self-

regulation of the genetic switch, we summarise these in one common or two distinct

activators for both genes, respectively. In the first experiment we used a common

regulator to temporally activate both genes, and investigated the switching behaviour

of the three circuits with regard to the number of available activatory input molecules.

Network topology determines switching threshold Looking at the prob-

ability of reaching full expression (Figure 7.2, left), the most probable state in the

one-gene circuit switches from no steady-state expression (resulting in a non-class B

cell identity) to full expression (class B, i.e. petal or stamen cell) at approximately

10 input molecules. Gene duplication without further mutational changes leads to a

3 times lower switching threshold (Figure 7.2, left), which may entail a drastically in-

creased zone of class B gene expression in the flower. Mutations leading to obligate

heterodimerisation again increase the activation threshold to the previous level, thus
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Figure 7.6: Numerical solutions to the master equations for one autoregulatory gene

(top left), two genes after duplication (top right), and the two gene circuit with obligate

heterodimerisation (bottom). All three graphs show the time-evolution of the probability

to have n transcripts from which the activatory dimers are made

restoring the class B gene expression region (Figure 7.2, left). Therefore, in contrast

to the facultative heterodimerisation circuit, obligate heterodimerisation results in the

same switching threshold and thus the same domain of expression as just one autoreg-

ulatory gene. This result is in contradiction to an intuitive expectation that two genes

can produce twice as many dimers as a single gene. With obligate heterodimerisa-

tion, however, the heterodimers assemble from translated products of one DEF and

one GLO mRNA intermediate, while the homodimer in the one- gene system is pro-

duced from two translated proteins of the same type. Because mRNA is not used up

in translation, this leads to equal production rates for the heterodimer in the obligate

heterodimerisation system and the homodimer in the one-gene system.

To solidify and support the individual stochastic experiments, we numerically de-

termined the probabilities for different numbers of molecules in the nucleus over time,

i.e. we solved the stochastic master equation for simplified versions of the three models.
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Figure 7.6 illustrates the result for a starting configuration with 10 activatory molecules,

i.e. near the switching threshold of the regulatory circuits with one gene or obligate

heterodimerisation. For these two systems, one can see how after a transient phase,

the probability is high for around 80 activatory molecules (full expression) and zero

molecules (no expression). For facultative heterodimerisation, probability is concen-

trated at the state of full expression. These results are in accordance to the simulated

specific realisations and thus support the conclusions from a different perspective.

Obligate heterodimerisation provides robustness to incorrect cell-fate

identity decisions To look at the robustness of the switching decision against

stochastic noise, we calculated the decision uncertainty (binary entropy), thus more

uncertainty implies less robustness. Focusing on the two circuits with identical expres-

sion domains, this uncertainty is nearly equal in the first and third circuit for small

numbers of activatory input molecules, until the peak of uncertainty is reached. In con-

trast, the probability for a decision against class B gene mediated cell identity despite

large numbers of activatory input molecules is significantly higher in the one-gene cir-

cuit than in the circuit with obligate heterodimerisation. With 60 activatory molecules,

the probability for such a ‘false negative’ in the former circuit is still 10%, while the

latter one achieves nearly 100% correct decisions under our conditions (Figure 7.2,

right).

Hence, comparing one autoregulatory class B gene with the circuit after duplication

and reduction to obligate heterodimerisation, our model suggests that an important dif-

ference lies in the response to larger numbers of activatory molecules, where the latter

system exhibits a clearly reduced tendency to switch off by mistake. This is explained

by the fact that although the circuit needs both DEF-like and GLO-like proteins to sus-

tain activation, its two pools of gene products provide a buffer to temporary stochastic

failure of one of the two genes. This is especially important during the initial phase of

activation, where circuits that are supposed to lock themselves into permanent expres-

sion are susceptible to a run of ‘bad luck’, i.e. the supposedly-active genes are inactive

over a longer period of time. Obligate heterodimerisation of gene products therefore

provides a way to gain robustness against wrong cell identity decisions while retaining

the original expression domain of one autoregulatory gene.
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Obligate heterodimerisation avoids self-sensitivity We can phrase this idea

of “buffering” in a more formal way: From the Jacobian matrix of the ODE system,

information can be derived on the sensitivity of the concentration levels of each protein

to changes in the concentration of other proteins (the sensitivity coefficients). Looking

at those sensitivities, we can see that in the obligate heterodimerisation system, the

sensitivity of [DEF-GLO ] to changes in [DEF ] is k12GLO, and vice versa (where [ ]

denotes concentration levels). In contrast, the concentration of a homodimer DEF-

DEF has sensitivity k11DEF with respect to [DEF ]. This means that for the obligate

heterodimerisation system, the sensitivity of the heterodimer to one TF does not depend

of that TF’s concentration level, while for the homodimer there is a linear dependence

(with respect to its own constituents). Now image a run of “bad luck”, i.e. one of the

genes is inactive for some time, and thus the concentration level of its TF drops. With

some delay, the dimer concentration also drops. When the gene is activated again, the

one-gene system has a hard time to recover, because the sensitivity of its homodimer

concentration is linearly depended on the TF concentration, which is low. Even if some

TF is produced, the dimer concentration takes a long time to respond. In contrast, a

heterodimer production is not sensitive to the low population of that one TF (as long

as the other TF is still at high levels). This explains why this increased robustness is

found in both systems containing heterodimers, but not in the one-gene system.

Loss of homodimerisation ability switches from OR to AND logic Even

though the mechanisms of the initial activation of DEF -like and GLO -like genes appear

to be quite similar, they are very likely not identical (Chen et al., 2000), since the initial

expression patterns of DEF - and GLO -like genes are slightly different. In Arabidopsis

flowers at an early developmental stage 3, AP3 (DEF -like) is expressed in the organ

primordia of whorls 2 and 3, but also in parts of whorl 1, while PI (GLO -like) is

expressed in whorls 2-4 at the same stage [15,16]. In contrast, the AP3 orthologue DEF

is expressed weakly in the organ primordia of whorl 4 (carpels) and very weakly in those

of whorl 1 (sepals), while the PI orthologue GLO is expressed in sepal but not carpel

primordia of early stages during Antirrhinum flower development (Schwarz-Sommer

et al., 1992; Tröbner et al., 1992). To investigate the consequences of independent input

into both genes, we explored a model setting in which the DEF -like and the GLO -like

gene are activated independently by two input signals. Our experiments showed that

immediately after gene duplication, the mode of integration represents a logical ‘OR’,
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meaning that both inputs can independently switch on the circuit (Figure 7.3, left). In

this case, each input has the role of the one input present before duplication. After the

transition to obligate heterodimerisation, a logic ‘AND’ function is achieved (Figure 7.3,

right), thus both inputs are needed for activation.
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7.4 Discussion

We are providing here, to the best of our knowledge, the first rationale, developmental

genetic explanation for the intricate design of a genetic switch controlling class B floral

homeotic gene expression in core eudicots, involving obligate heterodimerisation and

positive autoregulatory feedback of two duplicate genes or their protein products, re-

spectively. The increased robustness against unwanted deactivation by chance found in

case of obligate heterodimerisation strongly suggests that this mechanism has a distinct

advantage when the number of available regulatory molecules is small, leading to less

cells of wrong identity in a floral organ and therefore to sharper organ identity tran-

sitions. It should be noted that since the mathematical model applies to any system

with obligate heterodimerisation and positive feedback, the conclusions drawn here also

transfer to any such system.

Obligate heterodimerisation with positive feedback is not common How-

ever, to the best of our knowledge, the phenomenon of obligate heterodimerisation to-

gether with positive feedback seems quite rare in genetic regulation outside of flower

development, potentially due to the high cost of maintaining this system together with

a strong dependence of the predicted fitness gain on external factors that might be

specific for the situation depicted here.

Obligate heterodimerisation may satisfy the need for sharp expression

domains and stringent control In the standard ABC model, class A and C genes

are mutually antagonistic (Coen and Meyerowitz, 1991; Krizek and Fletcher, 2005),

while class B genes have no floral homeotic ‘repressor’, possibly explaining the class-

specific need for sharpened expression domains and thus obligate heterodimerisation,

which is not found in the other two gene classes. However, Zhao et al. (2007) recently

reported that the antagonistic expression of class A and class C genes is involved in

defining the expression domain of class B genes in Arabidopsis, suggesting that our

observation may not be sufficient to explain the obligate heterodimerisation of class B

proteins. Taking a different perspective, the evolution of a regulatory ‘AND’ function

out of an ‘OR’ function may have provided the plant with a more stringent control of

the class B floral homeotic genes depending on different induction signals. The fact

that there must be different inputs into DEF - and GLO -like genes is obvious from

gene expression studies (see above), but its functional importance may have escaped
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the attention of previous investigations because of the coordinate upregulation and

functional importance of DEF - and GLO -like genes in the second and third floral whorl.

Our results suggest that identifying these different induction pathways, and clarifying

their molecular mechanisms (e.g., trans-acting factors and cis-regulatory DNA motifs in

DEF -like and GLO -like genes being involved) would enable an important step forward

in understanding class B floral homeotic gene function in flowering plants.

Differential timing in the feedback loops might provide further advan-

tages An interesting speculation about further advantages of positive feedback via

obligate heterodimerisation arises if the feedback in the two loops acts on different

timescales. Brandman et al. (2005); Brandman and Meyer (2008) show that for dual-

positive feedback loop with OR logic, in which the stimulus acts as a catalyst (and is

thus always required for the ON state), a fast feedback loop provides quick activation

of the circuit in response to the stimulus, while the slow feedback prevents premature

deactivation due to stochastic fluctuations in the stimulus level. Transferring this idea

to the B-gene system is not straightforward, since the wiring of the circuit is drastically

different. However, this idea opens up a new direction in the study of genetic networks,

and will certainly be further explored in subsequent studies.

Proposal for transgenic studies with altered promoter logic The func-

tional implication of these different input signals, and hence also of our hypothesis,

could be tested by transgenic experiments. For example, Arabidopsis class B gene mu-

tants in which both the AP3 and the PI gene have been brought under the control

of the AP3 or the PI promoter rather than every gene under its own promoter (as in

the wild-type) should affect the spatial or temporal development of petals or stamens,

or both. Transgenic plants mutated at the pi locus (pi-1 ) in which wild-type PI is ex-

pressed under control of the AP3 promoter (5D3 ) have already been reported (Lamb

and Irish, 2003). These plants were used only as control for other experiments and

have therefore not been described in much detail concerning the traits of interest here.

However, it is clear that the 5D3::PI pi-1/pi-1 plants do not just show petals in the

second floral whorl and stamens in the third floral whorl, as wild-type plants do; rather,

they frequently develop sepal/petal mosaics in the second whorl, and mosaic organs or

even carpels in the third whorl. These observations support our hypothesis concerning

the functional importance of different induction pathways controlling the expression of

DEF - and GLO -like genes for a proper development of organ identity in whorls two
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and three. More detailed analyses should be done to better understand how exactly the

transgenic plants deviate from wild-type plants, and why. In addition, complementary

transgenic studies in which AP3 is expressed under control of the PI gene promoter

(pPI ) should be performed in order to determine whether the pPI::AP3 ap3/ap3 plants

have also developmental defects. The construction of a transgenic plant with switched

promoters (i.e. pAP3::PI pPI::AP3 ap3/ap3 pi/pi) would also be of great interest.

Due to the apparently symmetric roles of AP3 and PI, one might speculate that this

phenotype shows less deviation from the wild type than the transgenic plants with both

genes under the control of a single promoter.

Positive selection acts on DEF-GLO heterodimerisation domain If the

origin of obligate heterodimerisation of class B proteins during evolution provided some

plants with selective advantages, one may expect that this had an impact on the molec-

ular evolution of these proteins, which indeed seems to be the case. Class B floral

homeotic proteins are MIKC-type MADS-domain proteins characterised by a defined

domain structure, including a MADS (M), Intervening (I), Keratin-like (K) and a C-

terminal (C) domain (Kaufmann et al., 2005; Theißen et al., 2000). The K-domain

mediates heterodimerisation of GLO- and DEF-like proteins and has been postulated

to fold into three amphipatic α-helices termed K1, K2 and K3 (Yang et al., 2003).

In accordance with the expectations mentioned above, phylogenetic data indicate that

after the duplication leading to DEF -like and GLO -like gene lineages, positive selec-

tion acted on the sections of these genes encoding the K-domain (Hernández-Hernández

et al., 2007). Intriguingly, one site under positive selection (Hernández-Hernández et al.,

2007) is in a subdomain of K1 (“position 97-102” according to Yang et al., 2003) pro-

posed to be critical for heterodimerisation specificity of DEF- and GLO-like proteins,

as revealed by yeast two-hybrid analyses (Yang et al., 2003).

Given that the duplicates resulting from one homodimerising protein would be ca-

pable of homo- as well as heterodimerisation, our results suggest that positive selection

should have enforced the loss of the homodimerisation ability, since our model with

duplicated class B genes and obligatory heterodimerisation implies an expression do-

main of class B genes that is closer to the previous, functional domain (with one gene)

than the one with facultative heterodimerisation. It has been proposed that within the

subdomain of K1 mentioned above, the interaction of Glu-97 in PI and Arg-102 in AP3

facilitates specific heterodimerisation between AP3 and PI and prevents formation of
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homodimers (Yang et al., 2003). For these sites, however, positive selection has not

been detected (Hernández-Hernández et al., 2007). Clearly, the relationships between

the molecular evolution and biophysical interactions of DEF- and GLO-like proteins

deserve more detailed studies in the future.

An evolutionary motif The evolutionary process which might have created

the obligatory heterodimerisation system is quite simple: A transcription factor that

activates itself via a homodimer of its own product undergoes gene duplication, and

the two copies subsequently lose their homodimerisation ability. The atomar and clear

nature of this process has invited us to term it an “evolutionary motif”, i.e. a process

that might have happened repeatedly in evolution. This process would take genetic

circuits of a certain type (in our case developmental genetic circuits which use positive

feedback via a homodimer) and improve it in a predictable way (by duplication of

the TF and subsequent loss of the homodimerisation ability). Even though we cannot

present any similar circuit at the moment, the idea seems suggestive enough to spark

new investigations in this direction.
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7.5 Conclusion

All in all, our findings strongly support the view that the unexpected complexity of

the floral homeotic gene switch considered here was not simply produced by random

genetic drift but evolved because it provided the plant with a clear selective advantage.

This might have led to the establishment of this regulatory motif in a whole range of

plant species. Theoretical support for this hypothesis stems from the idea that the

requirement for robustness is the main driver for the evolution of cellular complexity

(Hartwell et al., 1999b; Lauffenburger, 2000; Stelling et al., 2004).

It is intriguing that at least some basal angiosperms (which lack the obligate het-

erodimerisation system described here) do not have sharp, but ‘fading borders’ of ex-

pression of orthologues of DEF -like and GLO -like genes as well as gradual transitions in

organ identity (Soltis et al., 2007). This underlines the hypothesis (Winter et al., 2002b)

that the mechanism described here improves developmental robustness and thus helped

to canalise the development and hence also the evolution of flowers within angiosperm

evolution.

In summarising and evaluating this study, I believe that it is not only the insight

about the specific obligate heterodimerisation system that is of value, but that the

generality of the method needs to be pointed out as well. The application of stochastic

modelling and simulation techniques to genetic circuits is not new and well-established,

but in this case it is the comparative nature of the simulations which yields the result.

Each of the three models investigated above, taken in isolation, behaves in the expected

manner. However, by comparing them, we can take a detailed look at the behavioural

differences, and this difference is much less obvious and predictable. Ultimately, it is

this difference that natural selection acts upon, and so it requires as much attention as

the common, predictable switch-type mode of operation of all three models.

In a recent study, Çağatay et al. (2009) have implemented the same approach in vivo

to differentiate between a gene regulatory circuit in Bacillus subtilis and an artificially

engineered alternative. In the same manner as here, they show that evolution has

selected for a circuit design that is favourable in terms of noise handling. Their results

show that the presented in silico approach can, in principle, be verified in vivo.
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Evolution of function in biological networks In this thesis, I have looked

at different perspectives on the structure-function mapping of biological network mod-

els: (1) Artificial evolution provides a way to synthesise network models automatically,

with a given function or behaviour. A specific evolutionary algorithm was designed for

this task and implemented in the SBMLevolver software (Chapter 2 and 3). (2) When

such an evolutionary framework exists, it can be used to generate instances of network

evolution, which can be analysed to shed light on general principles of network evolu-

tion. In Chapter 4, I detailed how the evolution of a network and of its organisational

structure are related, based on the evolutionary trajectory of a chemical computing net-

work. (3) For small network search spaces, topology enumeration and fitness screening

have shown that the search space consists of large plateaus of networks with identical

function, hindering the search on a evolutionary level (Chapter 5). (4) In the more

biological parts of this thesis, evolutionary principles were used to fit kinetic parame-

ters in dynamic network models for fluorescence microscopy data (Chapter 6). (5) In

an opposite direction of research, stochastic network analysis was used to understand

the evolutionary rationale (i.e. fitness advantage) of a certain gene-regulatory network

structure (Chapter 7), proposing a specific evolutionary mechanism as an “evolutionary

motif”.

I present this very compressed compilation of the utilised methods in order to make

one point: that the evolution of function in biological networks is a multi-faceted,

complex process. It cannot be adequately described by a single equation, model, opin-

ion, publication, or doctoral thesis. Rather, understanding functional evolution is a

stepwise, iterative venture, which will continue in the future and will probably never

be completed. Given the large neutral plateaus in network evolution (Banzhaf and
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Leier, 2006; Gavrilets, 2004; Schuster et al., 1994; Wagner, 2008, Chapter 5), the role

of chance events and genetic drift must not be underestimated. However, it is my belief

that many discoveries in this field are yet to come, and that techniques such as the

ones outlines in this thesis will play a role here.

Network evolution suffers from a lack of strong causality In any form

of evolutionary process, strong causality is required for fitness improvements that go

beyond random search. However, there is a large variety in the degree to which an

evolutionary system is strongly causal. In the case of network evolution as implemented

in the SBMLevolver approach (Chapter 2), strong causality is present, as proven by

the comparison to random search on network topologies (Section 3.2). However, the

enumeration of a complete search space for a simple problem (Chapter 5) has shown

that topology search spaces contain large neutral plateaus, where the search for an

improvement on the topological level is near to random search. Moreover, the structure-

function mapping in networks is complex and depends on both structure and parameters

(Section 1.2.1), further hindering (but not preventing!) the progress of an EA on

network models.

Dynamic network models can give significant insights and quantifications

that cannot be achieved otherwise In the last decade, fluorescence microscopy

has opened a way to study kinetic properties of proteins in living cells. Using a com-

bination of mathematical modelling and adequate parameter fitting algorithms, the

kinetic parameters underlying this data can be revealed (Chapter 6). FRAP data has

the advantage that instead of network function, it describes network behaviour (i.e.

protein concentrations over time), which is closer to the level of the desired kinetic

parameters. By comparing the fits of different model topologies to a dataset, one can

decide which topology describes the data in a more adequate way. In the example of

PML body formation, this method gave formal support to the biological hypothesis

that PML proteins and most interaction partners bind to PML bodies in two different

binding modes, as opposed to a single binding mode.

Stochastic dynamics reveal additional functionality The research described

in Chapter 7 arose from a simple question: Why are there two class B floral homeotic

genes in Arabidopsis thaliana and many other flowering plants? These genes are self-

activatory via obligate heterodimerisation of their protein products, so that a single

self-activatory gene could in principle fulfil the exact same regulatory logic. Using
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stochastic simulation, a comparison of the transition characteristics in these genetic

switches was performed, revealing that the obligate heterodimerisation system features

a significantly reduced error rate in the face of low protein copy numbers. This error re-

duction provides a potential fitness advantage and thus an explanation for the existence

of this “overly-complicated” genetic wiring. In addition to presenting this particular

hypothesis, the same method can be extended to other network comparisons, and even

be implemented in vivo.

Network function in different stages of modelling Network function plays

a large role in every part of the modelling process. In this thesis, the relation of

network function to the different stages of modelling has been exemplified. Let us

see: The evolutionary algorithm implemented in the SBMLevolver clearly is a tool for

model creation, based on function. Model calibration (parameter fitting) is performed

extensively for the PML body formation model, again under the guidelines of network

function, given by FRAP data time courses. Last but not least, the analysis and

comparison of models is illustrated with a stochastic simulation of the class B gene

system in flower development. While these demonstrations of the “functional notion”

of networks are by no means complete or exhaustive, I believe they provide insights

into and valuable additions to their field of application.
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Seeler, J., Marchio, A., Sitterlin, D., Transy, C.,

and Dejean, A. (1998). Interaction of SP100 with

HP1 proteins: a link between the promyelocytic

leukemia-associated nuclear bodies and the chro-

matin compartment. Proceedings of the National

Academy of Sciences USA, 95:7316–7321. 159

Sendhoff, B., Kreutz, M., and von Seelen, W. (1997).

A condition for the genotype phenotype mapping:
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