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ABSTRACT 

This paper describes the concept of a low-profile user 
terminal antenna intended for mobile bi-directional Ka-
band satellite communications. The concept addresses a 
hybrid electronic and mechanical tracking method. The 
antenna consists of several two-dimensional leaky-wave 
antenna panels. Each panel is excited by a slotted wave-
guide feed, composed of a linear array of circularly 
polarised slots. This structure offers a reconfigurable 
radiation pattern. As a proof-of-principle, a rectangular 
antenna panel for the downlink at 20 GHz was manufac-
tured and measured. The paper describes the design of 
the panel in detail and presents the results of numerical 
simulation and measurement. 
 
1. INTRODUCTION 

As a consequence of natural disasters or deliberate at-
tacks, local terrestrial communication infrastructure 
could be destroyed or de-energised. In such a case, the 
communication systems of authorities and rescue forces 
would no longer be operational. Since base transceiver 
stations and switching equipment depend on public 
power supply and telecommunication networks, the 
public infrastructure could also affect parts of the terres-
trial trunked radio (TETRA, [1]) network. Even if re-
maining infrastructure was still operational, the remain-
ing terrestrial network infrastructure would be heavily 
overstrained. The communication of rescue forces 
through the public network would be extremely limited 
or even impossible. Under such disastrous circumstanc-
es, strategic information and current situation reports are 
very important for the rescue forces. At least voice 
communication and the transmission of positioning data 
and images must be guaranteed, in mobile operation.  
If terrestrial emergency communication is unavailable, 
alternative communication links can be established via 
satellite. With this approach, vehicles can be connected 
by nomadic or mobile satellite terminals operating, e.g., 
at Ka-band frequencies. Thus, a connection of local task 
forces to a distant coordinating office is feasible without 
the dependence on public infrastructure or communica-
tion networks. The use of Ka-band satellite services is 
on the rise. The high operation frequencies (downlink: 

20 GHz, uplink: 30 GHz) favour the use of a satellite 
spot-beam architecture, which affords the benefit of 
smaller terminal apertures and lower power levels com-
pared to existing VSAT solutions. 
Our work contributes to the public R&D project MoSa-
Ka (Mobile Satellite Communications in the Ka-band 
[2]), which deals with the communication scenarios 
described above. General project objectives are the 
development, realisation, and demonstration of a bi-
directional satellite transmission at Ka-band frequen-
cies, especially for both mobile and nomadic applica-
tions, with a backhauling of local terrestrial networks 
like TETRA, GSM, WLAN, etc. Obviously, this project 
would foster applications enabled by the German Hein-
rich Hertz mission which will likeley provide Ka-band 
facilities [3]. Accordingly, the development of our 
ground segment hardware also accounts for the envis-
aged payload of the Heinrich Hertz satellite. 
In addition to a nomadic terminal that uses a high-gain 
reflector antenna and supports high-data rate communi-
cations [4], the focus of MoSaKa is also on another 
terminal employing a low-profile antenna and enabling 
truly mobile operation. The low height of this antenna 
and a compact outdoor unit (ODU) are very important 
for such applications. In contrast to the high-gain reflec-
tor antenna, the low-profile antenna is intended for the 
transmission of low and moderate data rates with high 
reliability and mobility. A challenging consequence of a 
high reliability under mobile operation is the fast and 
easy tracking, which can be enabled by a broadened 
radiation pattern and the use of sub-apertures. The mod-
erate directivity together with a low structural height 
restricts the available gain and, for a given link budget, 
the data rate [2]. Conceivable applications of the low-
profile antenna are voice communication, transmission 
of positioning data, and text message services over 
point-to-point links via satellite (single hop). Further-
more, a hub-station based architecture (double hop) or 
broadcast communications are also feasible. 
The MoSaKa project aims at the demonstration of the 
immanent aspects of the low-profile antenna in a testbed 
for system validation and real-time measurements. This 
testbed consists of an antenna mast with satellite pay-
load, a land-mobile channel simulator for different 
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The tracking of the azimuth will be performed mechani-
cally, supported by the tracking information given by 
inertial sensors attached on the azimuth positioner. The 
necessary open-loop tracking information has to be 
derived from the knowledge of the current location and 
movement. 
 
3. DESIGN OF A 20 GHZ ANTENNA PANEL 

The radiating element selected for the panel is a two-
dimensional leaky-wave antenna. In general, a leaky-
wave antenna is a waveguide-based structure that is able 
to radiate a significant amount of the available power 
along its length. A leaky waveguide has a complex 
wave number, consisting of a phase constant β and a 
leakage constant α. A leaky-wave antenna radiates in 
the fast-wave range, thus, the phase constant is smaller 
than the free-space wave number k0 [6,7]: 
 

0k  (1) 

 
A two-dimensional leaky-wave antenna can be realised 
by a partially reflective surface (PRS) on a grounded 
dielectric substrate; the dielectric medium could even be 
air. A PRS can be considered a metal screen built of a 
two-dimensional periodic array of specific elements, 
e.g., patches or slots [8,9]. Due to the partial transparen-
cy of such a screen over a ground plane, the power fed 
into this parallel-plate waveguide structure can leak into 
space. Inside the dielectric substrate is a primary source 
like a dipole, a patch antenna, or a radiating slot. Even 
open-ended waveguides are conceivable, as these are 
capable of exciting the leaky parallel-plate waveguide 
structure. The leaky wave propagates outward radially 
along the periodic surface and leads to an effective 
antenna aperture determined by the leakage constant α. 
The value of α can be adjusted through the design of the 
PRS. If the physical aperture of the antenna is large 
enough and α sufficiently low, the resulting radiation 
pattern approaches a pencil beam. For a vertical phase 
variation corresponding to one half-wavelength inside 
the parallel-plate waveguide structure, the thickness h of 
the dielectric substrate is given by [6]: 
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where λ0 is the free-space wavelength, ε1 the permittivi-
ty of the dielectric substrate, and θ0 the co-elevation 
angle of the main-beam direction. 
As a first step towards the implementation of a low-
profile antenna and a proof-of-principle, a two-dimen-
sional leaky-wave antenna for the Ka-band downlink 
frequency range at 20 GHz was designed, manufac-
tured, and measured. As depicted in Fig. 4, a 52 mm by 
101 mm rectangular PRS composed of a periodic array 

of metal strips respectively square-patch slots was de-
signed. The width of one metal strip is 3.0 mm and the 
periodicity is 7.0 mm. Due to the required structural 
precision, the PRS layer should be realised as a printed 
circuit board (PCB) employing a standard etching pro-
cess on a Rogers 4003C substrate (thickness 0.5 mm). 
To enable circularly polarised radiation excited by a 
circularly polarised source, it is important to design the 
PRS with equal periodicities respectively leakage con-
stants along both Cartesian coordinates. 

 

 
Figure 4. Design of the PRS over a ground plane with 

integrated slotted waveguide source 
 
The PRS screen on the Rogers substrate is located over 
the ground plane of height hair which is related to the 
thickness of the dielectric substrate defined by Eq. (2). 
There is also a weak influence of the permittivity of the 
Rogers substrate which, due to the small thickness of 
0.5 mm, remains marginal. Based on electromagnetic 
field simulations, the operating frequency was adjusted 
to 20 GHz, implying a height hair of 6.5 mm.  
As depicted in Fig. 4 and further illustrated by Fig. 5, 
the excitation of the leaky parallel-plate waveguide is 
realised by a slotted waveguide integrated into the 
ground plane. The waveguide contains circularly polar-
ised crossed slot radiators [10,11]. A linear five-element 
array of such slots with a mutual distance of 18.2 mm is 
arranged on the top of a standard rectangular waveguide 
(WR42). The element separation depends on the guided 
wavelength in the waveguide and has to ensure the 
coherent radiation of all five slots. 
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Figure 8. Directivity pattern of the leaky-wave antenna 

panel across the elevation plane. 
 
 

 
Figure 9. Directivity pattern of the leaky-wave antenna 

panel across the azimuth plane. 
 
Because of the rectangular geometry of the antenna 
aperture, in accordance with expectation, the radiation 
pattern displays a broad lobe with a 3-dB beamwidth of 
26 degrees in elevation and a narrower lobe of 8 degrees 
in azimuth. The main-beam directivity at broadside 
amounts to 20.8 dBi, simulated at 19.8 GHz, respective-
ly 20.4 dBi, measured at 20.1 GHz. The radiation pat-
tern is slightly deformed in the elevation plane (Fig. 8) 
due to a small misalignment of the PRS with respect to 
the slotted waveguide. In the azimuth plane, relevant 
sidelobes occur at 50 degrees and -60 degrees. General-
ly, sidelobes in the azimuth plane occur due to the re-
quired slot distance of one guided wavelength, needed 
for coherent excitation [10]. We have identified ways to 
minimise the sidelobe level in future antenna designs. 
Furthermore, the realised gain of the antenna panel was 
measured, in order to evaluate the radiation efficiency 
and resistive losses, in the frequency range from 18 
GHz to 22 GHz.  
 

 
Figure 10. Measured realised gain at broadside for both 

principle polarisations.  
 
As depicted in Fig. 10, a maximum RHCP gain of 19.6 
dBi was obtained at 20.1 GHz. Considering the meas-
ured value of the directivity at this frequency (20.4 dBi), 
the total efficiency of the antenna panel amounts 83 %. 
The realised gain corresponding to the left-handed cir-
cular polarisation was also measured. The plot exhibits 
a cross polarisation discrimination (XPD) exceeding 16 
dB around 20 GHz. 
 
5. SUMMARY AND DISCUSSION 

A suitable antenna concept for a low-profile mobile 
satellite terminal antenna was identified and systemati-
cally investigated. The concept of this low-profile user 
terminal antenna can be extended in a modular way, as 
the number and alignment of the tilted antenna panels 
can be easily modified. The low-profile antenna assem-
bly offers a reconfigurable radiation pattern that enables 
maximum ratio combining and an electronic closed-loop 
tracking in the elevation plane. The leaky-wave antenna 
panel is excited by a slotted rectangular waveguide 
structure, composed of a linear array of circularly polar-
ised crossed slots. This feeding structure can be de-
signed equally well for both, downlink and uplink fre-
quencies. The further development will cope with the 
design challenge of a dual-band structure, given the 
widely separated up- and downlink frequencies. 
As a proof-of-principle, a rectangular leaky-wave an-
tenna panel excited at 20 GHz and applying RHCP was 
manufactured and measured. The simulation and meas-
urement results were found in good agreement. The 
main-beam directivity amounted to more than 20 dBi. 
The total efficiency of the antenna amounted to 83 %. 
At broadside, a XPD exceeding 16 dB could be verified 
at the operational frequency. 
The possibility to switch between RHCP and LHCP at a 
given frequency will be investigated in the future. Such 
a feature would offer an easy mobile handover between 
adjacent satellite spot beams. As another further devel-
opment step, the entire low-profile antenna assembly 
should be tested in a testbed for satellite communica-
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tions, to prove its suitability for the envisaged applica-
tions.  
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