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Zusammenfassung

Viele physikalische Phänomene können durch partielle Differenzialgleichungen beschrieben
werden. Dies führt häufig auf Euler-Gleichungen für bestimmte Variationsprobleme der
folgenden Art: Gesucht ist das Extremum eines Funktionals der Form

∫

Ω

F

(
u,

∂u

∂xj
, xj

)
dΩ +

∫

Γ

Φ

(
u,

∂u

∂xj
, xj

)
dγ

in einer Klasse von Funktionen, wobei Γ der Rand des Gebiets Ω ⊂ R
n ist.

In den 1930er Jahren beschäftigte sich Sobolev mit dem Variationsproblem in einer
Klasse von Funktionenräumen W k

p , die nach ihm benannt wurden [37]. Die Elemente
von W k

p (Rn) sind Funktionen f ∈ Lp(R
n) mit der endlichen Norm

‖f |W k
p (Rn)‖ =

∑

|α|≤k

‖Dαf |Lp(R
n)‖,

wobei

Dαf =
∂|α|f

∂xα1

1 . . . ∂xαn

n

schwache Ableitungen von f der Ordnung |α| = α1 + . . .+αn sind und D0f = f gesetzt
wird. Der Sobolevsche Einbettungssatz besagt, dass alle Funktionen aus W k

p mit kp > n
stetig sind (nach Modifikation auf einer Menge vom Maß Null). Ist kp < n, dann
gehören die Funktionen aus W k

p zu Lq für bestimmte q > p.

Satz 0.1 (Sobolevscher Einbettungssatz). Es sei k ∈ N0 und 1 < p <∞.

(a) Wenn kp > n gilt, dann ist W k
p (Rn) →֒ C(Rn).

(b) Wenn kp = n gilt, dann ist W k
p (Rn) →֒ Lq(R

n) für p ≤ q <∞.

(c) Wenn kp < n gilt, dann ist W k
p (Rn) →֒ Lq(R

n) für p ≤ q ≤ np
n−kp

.

Die FunktionenräumeW k
p (Rn) bilden eine diskrete Familie in Bezug auf den Parameter

k, (k = 0, 1, 2 . . .). Die Verallgemeinerung von Sobolev Räumen sind Bessel-Potential-
Räume Hs

p(Rn), wobei der Glattheitsparameter s eine beliebige positive Zahl ist. Eine
Funktion f ist in Hs

p(Rn), s > 0, 1 ≤ p ≤ ∞, falls eine Funktion g ∈ Lp(R
n) existiert,

so dass f = Gs ∗ g f.ü. in R
n ist. Hierbei ist Gs der Besselkern in R

n und ∗ bezeichnet

iii



Zusammenfassung

die Faltung. Die Norm von f = Gs ∗ g ist durch ‖f |Hs
p(Rn)‖ = ‖g|Lp(R

n)‖ gegeben.
Die Räume Hs

p heißen ”Sobolevsche Räume gebrochener Ordnung”, wobei Hk
p (Rn) =

W k
p (Rn) für 1 < p <∞ und k ∈ N ist.
Wir können den Sobolevsche Einbettungssatz verallgemeinern, indem wir die Spur

von W k
p (Rn) auf Rm mit 1 ≤ m < n betrachten.

Satz 0.2 (Sobolevscher Einbettungssatz). Es sei k ∈ N0, 1 < p < ∞ und m ∈ N mit
n− kp < m ≤ n.

(a) Wenn kp = n gilt, dann ist W k
p (Rn) →֒ Lq(R

m) für p ≤ q <∞.

(b) Wenn kp < n gilt, dann ist W k
p (Rn) →֒ Lq(R

m) für p ≤ q ≤ mp
n−kp

.

Hierbei stimmt der Spurraum aus Satz 0.2 nicht mit dem gesamten Raum Lq(R
m)

überein. Um die Spurräume von W k
p (Rn) zu bestimmen, benötigt man neue Funktio-

nenräume, n > m. Hierzu wurden Besovräume Bs
pq(R

n) eingeführt. Eine Funktion f
gehört zu Bs

pq(R
n) mit 0 ≤ k < s ≤ k + 1, 1 ≤ p, q ≤ ∞, falls

‖f |Bs
pq(R

n)‖ =
∑

|α|≤k

‖Dαf |Lp(R
n)‖ +

∑

|j|=k

(∫

Rn

‖∆2
hD

jf |Lp(R
n)‖q

|h|n+(s−k)q
dh

)1/q

<∞.

Die Spursätze können nunmehr folgendermaßen formuliert werden.

Satz 0.3. Es sei t = s− n−m
p

> 0, 1 ≤ p, q ≤ ∞ und 1 ≤ m < n. Dann ist

Bs
pq(R

n)|Rm = Bt
pq(R

m). (1)

Die Interpretation der Gleichung (1) ist wie folgt: Ist f ∈ Bs
pq(R

n), dann existiert die
Spur von f auf Rm, bezeichnet als tr f oder f |Rm f.ü. auf Rm und sie gehört zu Bt

pq(R
m).

Der Spuroperator ist stetig und für f ∈ Bt
pq(R

m) gibt es eine Funktion ext f ∈ Bs
pq(R

n),
so dass ext f |Rm = f ist. Der Fortsetzungsoperator ist ein linearer, stetiger Operator.

Satz 0.4. Es sei t = s− n−m
p

> 0, 1 < p <∞ und 1 ≤ m < n. Dann ist

Hs
p(Rn)|Rm = Bt

pp(R
m). (2)

Da Hk
p (Rn) = W k

p (Rn) für k ∈ N0 und 1 < p < ∞ ist, erhalten wir als Folgerung von
Satz 0.4 die Antwort für die von Sobolev diskutierte Frage über die Spur von W k

p (Rn)
auf einer glatten m-dimensionalen Mannigfaltigkeit.

Folgerung 0.5. Es sei t = k − n−m
p

> 0, k ∈ N, 1 < p <∞ und 1 ≤ m < n. Dann ist

W k
p (Rn)|Rm = Bt

pp(R
m). (3)

iv



Zusammenfassung

Die Gleichungen (2) und (3) haben die gleiche Interpretation wie (1).
In der vorliegenden Arbeit sind wir an Spuren von Besovräumen auf so-genannten

d-Mengen interessiert. Unter einer d-Menge, 0 < d < n, verstehen wir eine kompakte
Menge Γ ⊂ R

n, so dass eine Radon Maß µ in R
n mit

suppµ = Γ and µ(B(γ, r)) ∼ rd, γ ∈ Γ, 0 < r ≤ 1

existiert, wobei B(γ, r) eine Kugel im R
n mit dem Mittelpunkt γ und dem Radius r

ist. Übliche Beispiele von fraktalen d-Mengen sind die Cantor-Menge, die Kochsche
Schneeflocke und das Sierpinski-Dreieck.

Der Besovraum Bs
pq(Γ, µ), s > 0, 1 < p <∞, 0 < q <∞ auf der d-Menge Γ lässt sich

als Spurraum von B
s+n−d

p
pq (Rn),

Bs
pq(Γ, µ) = trµB

s+n−d
p

pq (Rn),

definieren. Funktionen in Funktionenräumen sind normalerweise nur fast überall definiert.
Im Kapitel 3 erklären wir, was die Spur einer Funktion auf einer d-Menge bedeutet,
0 < d < n, wobei die Menge Γ das n-dimensionale Lebesgue-Mass Null hat. Wir erhalten
auch eine Charakterisierung von Bs

pq(Γ, µ) durch einen neuen Typ von (s, p, σ)-Atomen.
Einige Besovräume auf dem Einheitsintervall können mittels Faber-Schauder-Basen

beschrieben werden [48]. Im Kapitel 4 suchen wir nach ihrer Entsprechung für d-
Mengen Γ. Deshalb müssen wir eine Darstellung der Funktionen in Faber-Schauder-
Basen finden, die auf andere Mengen übertragen werden kann. Zu diesem Zweck be-
nutzen wir Dirichlet-Formen [23, 39]. Man kann harmonische Funktionen auf Γ mit
gegebenen Randwerten als eindeutig bestimmte Funktionen definieren, die E(f) min-
imieren. Analog können wir stückweise harmonische Funktionen definieren. Diese Funk-
tionen können als Analogon der Faber-Schauder-Basen aufgefasst werden. Sie erlauben
f ∈ Bs

pq(Γ, µ) in Bezug auf die Entwicklungskoeffizienten einer stückweisen harmonis-
chen Basis zu charakterisieren. Unser Beweis basiert auf der atomaren Zerlegung von
Besovräumen. Ein ähnliches Ergebnis wird auch in [32] präsentiert, wobei die durch

Strichartz eingeführte harmonische Darstellung von Lipschitz Räumen (Λp,q
α )(1) (Γ) be-

nutzt wird. Es wurde in [3] gezeigt, dass (Λp,q
α )(1) (Γ) mit Lip(α/α0, p, q,Γ) überein-

stimmt, falls Γ ein nested Fraktal ist. Auch auf diese Weise kann man die harmonische
Darstellung von Besovräumen beweisen.

Manche Fraktale, die wir später selbstähnliche Kurven nennen, sind homöomorph zum
Einheitsintervall I = [0, 1]. Das erlaubt Besov-Typ-Räume B

s
pq(K,µ) als

B
s
pq(K,µ) =

{
f ◦H−1 : f ∈ Bs

pq(I)
}

= Bs
pq(I) ◦H−1

zu definieren. Dabei ist
H : I → K

eine homöomorphe Abbildung. Im Kapitel 5 studieren wir folgende Probleme:

• Wie hängen die Funktionenräume B
s
pq(K,µ) und Bs

pq(K,µ) zusammen?

v



Zusammenfassung

• Wie kann man B
s
pq(K,µ) durch Wavelets charakterisieren?

• Welcher Isomorphismus wird durch die Wavelet Darstellung erzeugt?

Die Grundidee ist, die Abbildung H zu verwenden, um orthogonale Wavelet Basen von
R

n auf K zu übertragen. In unserer Argumentation ist die Koch-Kurve ein grundlegen-
des Beispiel, obwohl alle unsere Schlussfolgerungen für jede selbstähnliche Kurve richtig
bleiben.

Kapitel 6 bezieht sich auf Besovräume auf der geschlossenen Schneeflocke. Die Haupteigen-
schaft dieser Menge ist, dass sie nicht selbstähnlich ist, aber aus drei selbstähnlichen
Koch-Kurven zusammengesetzt werden kann.

Es gibt d-Mengen, die zum Einheitswürfel [0, 1]n homöomorph sind, und die man als
ein kartesisches Produkt von bizarren fraktalen Kurven erhalten kann. In Kapitel 7
beschreiben wir die Verbindung zwischen isotropen Besovräumen auf solchen Mengen
und anisotropen Besovräumen auf [0, 1]n.

vi



Introduction

Many physical phenomena can be described by partial differential equations. These
equations often appear as the Euler equations for certain variational problems. Then
the boundary value problem can be reduced to the problem of finding the extremum in
some class of functions of a functional of the form

∫

Ω

F

(
u,

∂u

∂xj
, xj

)
dΩ +

∫

Γ

Φ

(
u,

∂u

∂xj
, xj

)
dγ,

where Γ is the boundary of the domain Ω ⊂ R
n.

In 1930s Sobolev considered the variational problem on the class of functions W k
p ,

which is named after him, see [37]. The elements of W k
p (Rn) are functions f ∈ Lp(R

n)
with the finite norm

‖f |W k
p (Rn)‖ =

∑

|α|≤k

‖Dαf |Lp(R
n)‖,

where

Dαf =
∂|α|f

∂xα1

1 . . . ∂xαn

n

are distributional derivatives of f of order |α| = α1 + . . .+ αn, and D0f = f . Sobolev’s
embedding theorem states that if kp > n, then W k

p consists of continuous functions
(after modification on a set of measure zero), and if kp < n, then the functions in W k

p

belong to Lq for a certain q > p.

Theorem 0.1 (Sobolev’s embedding theorem). Let k ∈ N0 and 1 < p <∞.

(a) If kp > n, then W k
p (Rn) →֒ C(Rn).

(b) If kp = n, then W k
p (Rn) →֒ Lq(R

n), for p ≤ q <∞.

(c) If kp < n, then W k
p (Rn) →֒ Lq(R

n), for p ≤ q ≤ np
n−kp

.

Function spaces W k
p (Rn) form the discrete family with respect to parameter k, (k =

0, 1, 2 . . .). The generalization of Sobolev spaces are Bessel potential spaces Hs
p(Rn),

where the smoothness parameter s is any positive real number. A function f ∈ Hs
p(Rn),

s > 0, 1 ≤ p ≤ ∞, if there is a function g ∈ Lp(R
n) such that f = Gs ∗ g a.e. in R

n,
where Gs stands for the Bessel kernel in R

n and ∗ denotes convolution. The norm of

vii



Introduction

f = Gs ∗ g is given by ‖f |Hs
p(Rn)‖ = ‖g|Lp(R

n)‖. Hs
p are called ”fractional Sobolev

spaces”, since Hk
p (Rn) = W k

p (Rn) for 1 < p <∞ and k ∈ N.
We may generalize the Sobolev’s embedding theorem by considering the trace of

W k
p (Rn) to R

m with 1 ≤ m < n.

Theorem 0.2 (Sobolev’s embedding theorem, cont.). Let k ∈ N0, 1 < p < ∞ and
m ∈ N satisfying n− kp < m ≤ n.

(a) If kp = n, then W k
p (Rn) →֒ Lq(R

m), for p ≤ q <∞.

(b) If kp < n, then W k
p (Rn) →֒ Lq(R

m), for p ≤ q ≤ mp
n−kp

.

We do not get the whole spaces Lq(R
m) as the trace space in Theorem 0.2. This reveals

the need of new function spaces which are the trace spaces to R
m of W k

p (Rn), n > m.
This resulted in the definition of the Besov spaces Bs

pq(R
n). A function f ∈ Bs

pq(R
n)

with 0 ≤ k < s ≤ k + 1, 1 ≤ p, q ≤ ∞, if

‖f |Bs
pq(R

n)‖ =
∑

|α|≤k

‖Dαf |Lp(R
n)‖ +

∑

|j|=k

(∫

Rn

‖∆2
hD

jf |Lp(R
n)‖q

|h|n+(s−k)q
dh

)1/q

<∞.

Then the trace theorems can be stated in the following way.

Theorem 0.3. Let t = s− n−m
p

> 0, 1 ≤ p, q ≤ ∞ and 1 ≤ m < n. Then

Bs
pq(R

n)|Rm = Bt
pq(R

m). (4)

The interpretation of the equality (4) is as follows: if f ∈ Bs
pq(R

n), then the restriction
of f to R

m, denoted by tr f or f |Rm , exists a.e. on R
m and belongs to Bt

pq(R
m) and

the restriction operator is continuous, and if f ∈ Bt
pq(R

m), then there is a function
ext f ∈ Bs

pq(R
n) such that ext f |Rm = f , and the extension is given by a linear and

continuous operator. We will discuss later how to define the restriction of f .

Theorem 0.4. Let t = s− n−m
p

> 0, 1 < p <∞ and 1 ≤ m < n. Then

Hs
p(Rn)|Rm = Bt

pp(R
m). (5)

Since Hk
p (Rn) = W k

p (Rn) for k ∈ N0 and 1 < p < ∞, as the corollary of Theorem 0.4
we get the answer to the question raised by Sobolev about the trace of W k

p (Rn) on a
smooth m-dimensional manifold.

Corollary 0.5. Let t = k − n−m
p

> 0, k ∈ N, 1 < p <∞ and 1 ≤ m < n. Then

W k
p (Rn)|Rm = Bt

pp(R
m). (6)
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The equalities (5) and (6) have the same interpretation as (4).
In the present work we are interested in the traces of Besov spaces on the so-called

d-sets. By a d-set, 0 < d < n, we mean a compact set Γ ⊂ R
n such that there is a Radon

measure µ in R
n with

suppµ = Γ and µ(B(γ, r)) ∼ rd, γ ∈ Γ, 0 < r ≤ 1,

where B(γ, r) is a ball in R
n centered at γ and of radius r. Standard examples of fractal

d-sets are Cantor set, the von Koch’s snowflake and the Sierpinski gasket.
Besov spaces Bs

pq(Γ, µ), s > 0, 1 < p < ∞, 0 < q < ∞ on the d-set Γ can be defined

as the trace of the Besov space B
s+n−d

p
pq (Rn):

Bs
pq(Γ, µ) = trµB

s+n−d
p

pq (Rn).

Functions in function spaces are usually defined only almost everywhere. In Chapter 3
we explain what is meant with a restriction of a function to a d-set, 0 < d < n, that
has an n-dimensional Lebesgue measure zero. We also provide the characterization of
Bs

pq(Γ, µ) by new type of (s, p, σ)-atoms.
Some Besov spaces on the most trivial example of a d-set, the unit interval, can be

described by means of Faber-Schauder basis, see [48]. In Chapter 4 we are looking for
its counterpart for the d-set Γ. So we need to find the description of functions in Faber-
Schauder basis in such a way that it can be transferred to other sets. Our approach
is to start with a Dirichlet form (E,D), see e.g. [23, 39]. Then the harmonic function
on Γ with given boundary values can be defined as the unique function that minimizes
E(f). Similarly we can define piecewise harmonic functions. These functions may serve
as the counterpart of Faber-Schauder basis and they allow to characterize f ∈ Bs

pq(Γ, µ)
in terms of the coefficients of its expansion in a piecewise harmonic basis. Our proof is
based on the atomic characterization of Besov spaces. A similar result is also presented
in the paper [32], where the harmonic representation of Lipschitz spaces (Λp,q

α )(1) (Γ)

introduced by Strichartz is stated. It was shown in [3] that (Λp,q
α )(1) (Γ) coincide with

Lip(α/α0, p, q,Γ), when Γ is a nested fractal. Thus the harmonic representation of Besov
spaces might be also proved by using the discrete characterizations of Besov spaces.

Certain fractals, which we call later on self-similar curves, are homeomorphic to the
unit interval I = [0, 1]. This allows to define Besov-type spaces B

s
pq(K,µ) by

B
s
pq(K,µ) =

{
f ◦H−1 : f ∈ Bs

pq(I)
}

= Bs
pq(I) ◦H−1,

where
H : I → K

is a homeomorphic map. In Chapter 5 we study the following problems:

• How the function spaces B
s
pq(K,µ) and Bs

pq(K,µ) are interrelated.

• How B
s
pq(K,µ) can be characterized by wavelets.
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• What kind of isomorphisms are induced by wavelet representation.

The basic idea is to use transform H to transfer orthogonal wavelet bases from R
n to K.

In our reasoning the Koch curve serves as a basic example, though all our conclusions
remain true for any self-similar curve.

Chapter 6 deals with Besov spaces on the closed snowflake. The main feature of this
set is that it is not self-similar but consists of three self-similar Koch curves clipped
together.

There are d-sets homeomorphic to the unit cube [0, 1]n, which are obtained as a carte-
sian product of bizarre fractal curves. In Chapter 7 we follow the connection between
isotropic Besov spaces on such sets and anisotropic Besov spaces on [0, 1]n.

x



CHAPTER 1

Preliminaries

1.1 Function spaces

1.1.1 Basic notation and classical Besov spaces

Let N be the collection of all natural numbers and N0 = N ∪ {0}. Z is the set of all
integers, C is the complex plane. We denote by R

n the Euclidean n-space, where n ∈ N.
Let |· − ·|n denote the Euclidean distance in R

n. Put R = R
1. The scalar product of

x, y ∈ R
n is given by xy =

n∑
i=1

xiyi. Z
n denotes the lattice of all points in R

n with

integer-valued components. Let x = (x1, x2, . . . , xn) ∈ R
n and β = (β1, β2, . . . , βn) ∈ N

n
0

be a multi-index. Then |β| = β1 + β2 + . . .+ βn,

xβ = xβ1

1 x
β2

2 · · · xβn

n

and

Dβf =
∂|β|f

∂xβ1

1 ∂x
β2

2 . . . ∂xβn
n

.

We will write a ∼ b to denote that there are constants c, c′ > 0 such that

c′a ≤ b ≤ ca

for all admited a, b.
S(Rn) stands for the Schwartz space of all complex-valued, rapidly decreasing, in-

finitely differentiable functions on R
n. By S ′(Rn) we denote its topological dual, the

space of all tempered distributions on R
n. Lp(R

n) with 0 < p ≤ ∞, is the standard
quasi-Banach space with respect to Lebesgue measure, quasi-normed by

‖f |Lp(R
n)‖ =



∫

Rn

|f(x)|p dx




1
p

, 0 < p <∞,

‖f |L∞(Rn)‖ = ess-sup
x∈Rn

|f(x)| .

1



1 Preliminaries

If ϕ ∈ S(Rn), then

ϕ̂(ξ) = Fϕ(ξ) = (2π)−
n
2

∫

Rn

ϕ(x)e−ixξ dx, ξ ∈ R
n,

denotes the Fourier transform of ϕ. The inverse Fourier transform is given by

ϕ∨(x) = F
−1ϕ(x) = (2π)−

n
2

∫

Rn

ϕ(ξ)eixξ dξ, x ∈ R
n.

We extend F and F−1 in the usual way from S to S ′. For f ∈ S ′(Rn),

Ff(ϕ) = f(Fϕ), ϕ ∈ S(Rn).

We define ϕ0 ∈ S(Rn) by

ϕ0(x) = 1, |x| ≤ 1 and ϕ0(x) = 0, |x| ≥ 3

2
, (1.1)

and let
ϕk(x) = ϕ0(2

−kx) − ϕ0(2
−k+1x), x ∈ R

n, k ∈ N. (1.2)

Then, since

1 =
∞∑

j=0

ϕj(x) for all x ∈ R
n, (1.3)

the {ϕj} form a dyadic resolution of unity in R
n. According to the Paley-Wiener-

Schwartz theorem
(
ϕkf̂

)∨
is an entire analytic function on R

n for any f ∈ S ′(Rn). In

particular,
(
ϕkf̂

)∨
(x) makes sense pointwise.

Definition 1.1. Let ϕ = {ϕj}∞j=0 be the dyadic resolution of unity according to (1.1)-
(1.3), s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞ and

‖f |Bs
pq(R

n)‖ =

( ∞∑

j=0

2jsq‖
(
ϕkf̂

)∨
|Lp(R

n)‖q
) 1

q

(with the usual modification if q = ∞). Then the Besov space Bs
pq(R

n) consists of all
f ∈ S ′(Rn) such that ‖f |Bs

pq(R
n)‖ <∞.

1.1.2 Characterization of Bs
pq(R

n) by local means and atoms

Local means

Let k and k0 be C∞ functions with

supp k, supp k0 ⊂ {x ∈ R
n : |x| ≤ 1}.

2



1 Preliminaries

We assume k∨0 (0) 6= 0 and for given s ∈ R

k∨(ξ) 6= 0, 0 < |ξ| ≤ ε for some ε > 0,
(Dαk∨) (0) = 0, |α| ≤ s.

Define

k(t, f)(x) =

∫

Rn

k(y)f(x+ ty) dy = t−n

∫

Rn

k

(
y − x

t

)
f(y) dy.

Theorem 1.2. Let s ∈ R, 0 < p ≤ ∞ and 0 < q ≤ ∞. Then Bs
pq(R

n) is the collection
of f ∈ S ′(Rn) such that

‖f |Bs
pq(R

n)‖k0,k = ‖k0(1, f)|Lp(R
n)‖ +

( ∞∑

j=1

2jsq‖k(2−j, f)|Lp(R
n)‖q

) 1
q

<∞.

We refer to [46, Section 1.4].

Smooth atoms

Let Qνm denote the closed cube in R
n with sides parallel to the coordinate axes, centered

at 2−νm and with side length 2−ν+1, where m ∈ Z
n, ν ∈ N0. The notation cQ stands

for the cube concentric with Q and with side length c times the side length of Q.

Definition 1.3.

(i) Let K ∈ N0 and c ≥ 1. A continuous function a : Rn → C for which there exist all
derivatives Dαa if |α| ≤ K is called a 1K-atom if

supp a ⊂ cQ0m for some m ∈ Z
n,

|Dαa(x)| ≤ 1 for |α| ≤ K.

(ii) Let s ∈ R, 0 < p ≤ ∞, K ∈ N0, L ≥ 0 and c ≥ 1. A continuous function
a : R

n → C for which there exist all derivatives Dαa if |α| ≤ K is called an
(s, p)K,L-atom if

supp a ⊂ cQνm for some ν ∈ N, m ∈ Z
n,

|Dαa(x)| ≤ 2−ν(s−n
p )+|α|ν for |α| ≤ K,∫

Rn

xβa(x) dx = 0 for |β| < L.

Definition 1.4. Let 0 < p ≤ ∞, 0 < q ≤ ∞. Then bpq is the collection of sequences
λ = {λνm ∈ C : ν ∈ N0,m ∈ Z

n} such that

‖λ|bpq‖ =




∞∑

ν=0

(
∑

m∈Zn

|λνm|p
) q

p




1
q

<∞.

3



1 Preliminaries

We put

σp = max

{
n

(
1

p
− 1

)
, 0

}
.

We write aνm instead of a in Definition 1.3 to indicate the location and size of an atom.

Theorem 1.5. Let s ∈ R, 0 < p ≤ ∞ and 0 < q ≤ ∞. Let K ∈ N0, L ≥ 0, c ≥ 1 with

K > s and L > σp − s.

Then f ∈ S ′(Rn) belongs to Bs
pq(R

n) if and only if it can be represented as

f =
∞∑

ν=0

∑

m∈Zn

λνmaνm, (1.4)

unconditional convergence in S ′(Rn), where aνm are 1K-atoms for ν = 0, (s, p)K,L-atoms
for ν ∈ N, and λ ∈ bpq. Furthermore,

‖f |Bs
pq(R

n)‖ ∼ inf ‖λ|bpq‖
are equivalent quasi-norms, where the infimum is taken over all admissible representa-
tions (1.4).

For the history of atomic representation in function spaces we refer to Section 1.9 in
[42]. The decomposition of functions in Besov spaces into atoms goes back to [7, 8].

1.1.3 Weighted Besov spaces

We denote by Lp(R
n, 〈x〉α), where

〈x〉α =
(
1 + |x|2

)α
2 ,

the weighted Lp-space quasi-normed by

‖f |Lp(R
n, 〈x〉α)‖ = ‖〈·〉αf |Lp(R

n)‖.
Definition 1.6. Let ϕ = {ϕj}∞j=0 be the dyadic resolution of unity according to (1.1)-
(1.3), s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞. Then the weighted Besov space Bs

pq(R
n, 〈x〉α) is a

collection of all f ∈ S ′(Rn) such that

‖f |Bs
pq(R

n, 〈x〉α)‖ =

( ∞∑

j=0

2jsq‖
(
ϕkf̂

)∨
|Lp(R

n, 〈x〉α)‖q
) 1

q

(with the usual modification if q = ∞) is finite.

Remark 1.7. If α = 0 then we have the space Bs
pq(R

n) as introduced in Definition
1.1. It is also known from [5, Ch. 4.2.2] that the operator f 7→ 〈x〉αf is an isomorphic
mapping from Bs

pq(R
n, 〈x〉α) onto Bs

pq(R
n). In particular,

‖〈·〉αf |Bs
pq(R

n)‖ ∼ ‖f |Bs
pq(R

n, 〈x〉α)‖.
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1 Preliminaries

1.1.4 Anisotropic Besov spaces

Anisotropic function spaces in R
n characterize the smoothness properties of functions

depending on the direction of the j-th coordinate.
Let 1 < p <∞, 1 ≤ q ≤ ∞ and

s̄ = (s1, . . . , sn), 0 < sj < Mj ∈ N, j = 1, . . . , n.

Let
(∆hf)(x) = f(x+ h) − f(x),

where x ∈ R
n and h ∈ R

n. The iterated differences are defined by

(∆m+1
h f)(x) = ∆h(∆m

h f)(x).

Then the iterated differences in the direction of the j-th coordinate can be written as

(∆m
t,jf)(x) = (∆m

h f)(x), with h = tej, t ∈ R,

where ej = (0, . . . , 0, 1, 0, . . . , 0) is the unit vector with 1 at place j. A function f ∈
Lp(R

n) belongs to the classical anisotropic Besov space B s̄
pq(R

n) if

‖f |B s̄
pq(R

n)‖ = ‖f |Lp(R
n)‖ +

n∑

j=1




1∫

0

t−sjp‖∆
Mj

t,j f |Lp(R
n)‖q dt

t




1/q

<∞.

If
s1 = s2 = . . . = sn = s > 0,

then B s̄
pq(R

n) = Bs
pq(R

n).
When the smoothness parameter s̄ is small, namely 0 < sj < 1, and p = q, B s̄

pp(R
n)

can be equivalently normed by

‖f |B s̄
pp(R

n)‖∗ = ‖f |Lp(R
n)‖ +




∫

Rn

∫

Rn

|f(x) − f(y)|p
(

n∑
k=1

|xk − yk|sk/s
)n+sp dx dy




1/p

, (1.5)

where s with
1

s
=

1

n

(
1

s1
+ · · · +

1

sn

)

stands for the mean smoothness.
It will be convenient for us to use slightly different notation. We rely on formula (1.5)

for the expression of the norm in the anisotropic Besov space.

5
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Definition 1.8. The n-tuple

α = (α1, . . . , αn) with 0 < α1 ≤ . . . αn <∞,

n∑

j=1

αj = n

is called an anisotropy in R
n.

We define an anisotropic distance in R
n by

̺α,n(x, y) = |x− y|α , where |x|α = max
k=1,...,n

|xk|
1
αk . (1.6)

Definition 1.9. Let α be an anisotropy according to Definition 1.8. Let 1 < p < ∞
and 0 < s < α1. Then the anisotropic Besov space Bs,α

pp (Rn) is the collection of all
f ∈ Lp(R

n) such that the norm

‖f |Bs,α
pp (Rn)‖ = ‖f |Lp(R

n)‖ +



∫

Rn

∫

Rn

|f(x) − f(y)|p
̺α,n(x, y)n+sp

dx dy




1/p

(1.7)

is finite.

Remark 1.10. The parameter s̄ in (1.5) and s, α in Definition 1.9 are related by

1

s
=

1

n

n∑

k=1

1

sk
and αk =

s

sk
, k = 1, . . . , n.

Let Q = (0, 1)n be the open unit cube equipped with the Lebesgue measure. Then
Bs,α

pp (Q) is the restriction of Bs,α
pp (Rn) to Q, equipped in the usual way with the norm

‖f |Bs,α
pp (Q)‖ = inf{‖g|Bs,α

pp (Rn)‖ : g ∈ Bs,α
pp (Rn), f(x) = g(x) a.e.}.

An equivalent norm in Bs,α
pp (Q) can be obtained by replacing R

n in (1.7) by Q, [27]. We
will use the following definition of Bs,α

pp (Q).

Definition 1.11. Let α be an anisotropy according to Definition 1.8. Let 1 < p < ∞
and 0 < s < α1. Then the anisotropic Besov space Bs,α

pp (Q) is the collection of all
f ∈ Lp(Q) such that the norm

‖f |Bs,α
pp (Q)‖ = ‖f |Lp(Q)‖ +



∫

Q

∫

Q

|f(x) − f(y)|p
̺α,n(x, y)n+sp

dx dy




1/p

(1.8)

is finite.
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1.1.5 Periodic Besov spaces on T
n

Let
T

n = {x = (x1, . . . , xn) ∈ R
n : 0 ≤ xi ≤ 1, i = 1, . . . , n}

be the n-dimensional torus. x ∈ T
n and y ∈ T

n are identified if and only if x − y = k,
k = (k1, . . . , kn) ∈ Z

n.
By D(Tn) we denote the collection of all complex-valued infinitely differentiable func-

tions on T
n. The topology in D(Tn) is generated by the family of semi-norms

‖ϕ‖α = sup
x∈Tn

|Dαϕ(x)| ,

where α = (α1, . . . , αn) is an arbitrary multi-index. D′(Tn) is the class of all continuous
linear functionals on D(Tn). The continuity of a linear functional f on D(Tn) means
that there exist N ∈ N and cN > 0 such that

|f(ϕ)| ≤ cN
∑

|α|≤N

‖ϕ‖α,

for all ϕ ∈ D(Tn).
Let 0 < p ≤ ∞. Lp(T

n) is the standard quasi-Banach space with respect to Lebesgue
measure, quasi-normed by

‖f |Lp(T
n)‖ =



∫

Tn

|f(x)|p dx




1
p

,

with the usual modification if p = ∞. If 1 ≤ p ≤ ∞ then f ∈ Lp(T
n) can be interpreted

in a unique way as an element of D′(Tn) by

f(ϕ) =

∫

Tn

f(x)ϕ(x) dx, ϕ ∈ D(Tn). (1.9)

Consequently, for 1 ≤ p ≤ ∞ we have

D(Tn) ⊂ Lp(T
n) ⊂ D′(Tn), (1.10)

where ” ⊂ ” here and further on means the topological embedding.
Let f ∈ D′(Tn). Then the numbers

f̂(k) = f(e−2πikx), k ∈ Z
n,

are said to be the Fourier coefficients of f . If f ∈ Lp(T
n), 1 ≤ p ≤ ∞, then (1.9), (1.10)

imply that

f̂(k) =

∫

Tn

f(x)e−2πikx, k ∈ Z
n.

7
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It is well-known that any f ∈ D′(Tn) can be represented as

f =
∑

k∈Zn

ake
2πikx, x ∈ T

n, (convergence in D′(Tn)) (1.11)

where the Fourier coefficients {ak} ⊂ C are of at most polynomial growth,

|ak| ≤ c (1 + |k|)κ , for some c > 0, κ > 0 and all k ∈ Z
n.

Definition 1.12. Let ϕ = {ϕj}∞j=0 be a dyadic resolution of unity in R
n according to

(1.1)-(1.3), s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞ and

‖f |Bs
pq(T

n)‖ =

( ∞∑

j=0

2jsq‖
∑

k∈Zn

ϕj(2πk)ake
2πikx|Lp(T

n)‖q
) 1

q

(with the usual modification if q = ∞). Then the Besov space Bs
pq(T

n) consists of all
f ∈ D′(Tn) such that ‖f |Bs

pq(T
n)‖ <∞, [34, Chapter 3].

1.1.6 Wavelets on R and T

First we recall some basic definitions. Let F be a separable complex Banach space.

Definition 1.13.

(i) A sequence {ei}∞i=1 is called a basis in F , if every f ∈ F can be uniquely represented
by

f =
∞∑

i=1

aiei, ai ∈ C, (1.12)

with convergence in F .

(ii) A basis {ei}∞i=1 is called an unconditional basis, if for any rearrangement σ of N
the new sequence {eσ(i)}∞i=1 is again a basis and

f =
∞∑

i=1

aσ(i)eσ(i) (convergence in F )

for any f ∈ F with (1.12).

Wavelet decomposition has proved to be a useful tool in studying function spaces. For
the general theory concerning wavelet bases we refer to [4, 30, 49].

Let Cu(R), u ∈ N denote the collection of all complex-valued continuous functions on
R having continuous bounded derivatives up to order u inclusively. Let ψF ∈ Cu(R) and
ψM ∈ Cu(R) be a father and a mother Daubechies wavelet on R respectively. We recall
that ψF and ψM are real and have compact support. Moreover,

∫

R

ψF (x) dx = 1,

8
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∫

R

xlψM(x) dx = 0, for l = 0, . . . , u− 1.

Define ψk
j by

ψk
j (x) =

{
ψF (x− k), j = 0, k ∈ Z,

2
j−1

2 ψM(2j−1x− k), j ∈ N, k ∈ Z.
(1.13)

Then {ψk
j }j∈N0,k∈Z is an orthonormal basis in L2(R). We transform the wavelet basis of

L2(R) into a wavelet basis of L2(T) by periodizing each member of the basis. But first
we need to mofify it a little.

Let L ∈ N. One can replace ψF and ψM by

ψL
F (·) = ψF (2L·), ψL

M(·) = ψM(2L·),

ψk
j by

ψL,k
j (·) = 2

L
2 ψk

j (2L·). (1.14)

We choose and fix L such that

suppψL
F ⊂

{
x : |x| < 1

2

}
, suppψL

M ⊂
{
x : |x| < 1

2

}
. (1.15)

Let
P0 =

{
k ∈ Z : 0 ≤ k ≤ 2L − 1

}

Pj =
{
k ∈ Z : 0 ≤ k ≤ 2j+L−1 − 1

}
, j ∈ N.

(1.16)

Given the functions ψL,k
j on the real line we can construct their 1-periodic counterparts

by the procedure

ψL,k
j,per(x) =

∞∑

l=−∞
ψL,k
j (x+ l). (1.17)

Define ψL,k,per
j on the 1-torus T by

ψL,k,per
j (x) = ψL,k

j,per(x), x ∈ T.

Then according to the Proposition 1.34 in [47]

{
ψL,k,per
j , j ∈ N0, k ∈ Pj

}

is an orthornomal basis in L2 (T). We simplify the notation and omit L in ψL,k,per
j and

ψL,k
j,per.
Before we give the description of function spaces in terms of wavelets, we introduce

some sequence spaces.

9
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Definition 1.14. Let 0 < p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Then bs,perpq is the collection of
all sequences

µ =
{
µk
j ∈ C : j ∈ N0, k ∈ Pj

}

such that

‖µ|bs,perpq ‖ =




∞∑

j=0

2j(s− 1
p)q


∑

k∈Pj

∣∣µk
j

∣∣p



q
p




1
q

<∞.

We use the following notation. Let

σp = n

(
1

p
− 1

)

+

,

where b+ = max (b, 0) if b ∈ R. The scalar product on the torus is defined by

(f, ψk,per
j )T =

∫

T

f(x)ψk,per
j (x) dx.

Theorem 1.15. Let {ψk,per
j } be the orthonormal basis in L2(T). Let 0 < p ≤ ∞,

0 < q ≤ ∞, s ∈ R and
u > max (s, σp − s) .

Let f ∈ D′(T). Then f ∈ Bs
pq(T) if, and only if, it can be represented as

f =
∞∑

j=0

∑

k∈Pj

µk
j2− j+L

2 ψk,per
j , µ ∈ bs,perpq ,

unconditional convergence being in D′(T) and in any space Bσ
pq(T) with σ < s. Further-

more, this representation is unique,

µk
j = 2

j+L
2 (f, ψk,per

j )T,

and
I : f →

{
µk
j , j ∈ N0, k ∈ Pj

}

is an isomorphic map of Bs
pq(T) onto the sequence space bs,perpq . If, in addition, p < ∞,

q <∞, then {ψk,per
j } is an unconditional basis in Bs

pq(T), [47, Theorem 1.37].

Later on we will have the following restriction on the parameteres

s > 0, 1 < p <∞, 0 < q <∞. (1.18)

Since
Bs

pq(T) →֒ Lp(T)

with s, p and q satisfying (1.18), we reformulate Theorem 1.15.

10



1 Preliminaries

Theorem 1.16. Let {ψk,per
j } be the orthonormal basis in L2(T). Let 1 < p < ∞,

0 < q <∞, s > 0 and u > s. Let f ∈ Lp(T). Then f ∈ Bs
pq(T) if, and only if, it can be

represented as

f =
∞∑

j=0

∑

k∈Pj

µk
j2− j+L

2 ψk,per
j , µ ∈ bs,perpq ,

unconditional convergence being in Lp(T). Furthermore this representation is unique,

µk
j = 2

j+L
2 (f, ψk,per

j )T,

and
I : f →

{
µk
j , j ∈ N0, k ∈ Pj

}

is an isomorphic map of Bs
pq(T) onto the sequence space bs,perpq .

1.1.7 Haar and Faber-Schauder bases on the unit interval

The Haar system {
h0, hjm : j ∈ N0,m = 0, . . . , 2j − 1

}
(1.19)

is defined as follows. Let h0 be the characteristic function of the unit interval I and

hjm(x) =





1, 2−jm ≤ x < 2−jm+ 2−j−1,
−1, 2−jm+ 2−j−1 ≤ x ≤ 2−j(m+ 1),
0, otherwise.

Note that the support of function hjm is the interval [2−jm, 2−j(m+ 1)].

Theorem 1.17. (i) The Haar system is an orthogonal basis in L2(I).

(ii) The Haar system is an unconditional basis in Lp(I) with 1 < p <∞.

(iii) The Haar system is a conditional basis in L1(I).

(iv) Let f ∈ L1(I) and

fn(x) =

∫

I

f(y) dy +
n∑

j=0

2j−1∑

m=0

2j



∫

I

f(y)hjm(y) dy


hjm(x), x ∈ I, n ∈ N0.

Then
fn(x) → f(x) a.e. if n→ ∞.

If f ∈ C(I) then

fn(x) ⇒ f(x), n→ ∞ (uniform convergence).

11
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Remark 1.18. System (1.19) was first introduced by Haar in [10] and now is named
after him. Part (iv) of the above theorem is essentially covered by him as well. The fact
that the Haar system is a basis in all spaces Lp(I), 1 ≤ p <∞, was proved by Schauder
in [33].

We wish to extend the assertions for Haar system from Lp(I) to suitable spaces Bs
pq(I).

Recall that Bs
pq(I), 1 < p <∞, 1 ≤ q <∞, s > 0 is defined by restriction of Bs

pq(R
n) to

I:
Bs

pq(I) =
{
f ∈ Lp(I) : f = g|I for some g ∈ Bs

pq(R
n)
}
,

‖f |Bs
pq(I)‖ = inf

{
‖g|Bs

pq(R
n)‖ : g|I = f

}
.

The following assertions are covered by [48, Section 2.2.4]. Since we have the additional
restrictions on parameteres we present the simpler version of theorems given there. First
we define sequence spaces.

Definition 1.19. Let 1 < p <∞, 1 ≤ q <∞ and 0 < s < 1. Let bspq(I) be the set of all
sequences

µ =
{
µ0, µjm : j ∈ N0,m = 0, . . . , 2j − 1

}
⊂ C

such that

‖µ|bspq(I)‖ = |µ0| +




∞∑

j=0

2jsq




2j−1∑

m=0

|µjm|p



q
p




1
q

<∞.

Theorem 1.20. Let

1 < p <∞, 1 ≤ q <∞ and 0 < s <
1

p
.

Let f ∈ Lp(I). Then f ∈ Bs
pq(I) if, and only if, it can be represented as

f = µ0h0 +
∞∑

j=0

2j−1∑

m=0

µjmhjm, (1.20)

unconditional convergence being in Bs
pq(I). The representation (1.20) is unique with

µ0 =

∫

I

f(y) dy, µjm = 2j

∫

I

f(y)hjm(y) dy, j ∈ N0, m = 0, . . . , 2j − 1,

and
J : f 7→

{
µ0, 2

− j
pµjm : j ∈ N0,m = 0, . . . , 2j − 1

}

is an isomorphic map of Bs
pq(I) onto b

s
pq(I). In addition, (1.19) is an unconditional basis

in Bs
pq(I).

12



1 Preliminaries

The Faber-Schauder system

{
v0, v1, vjm : j ∈ N0,m = 0, . . . , 2j − 1

}
(1.21)

is the collection of functions

v0(x) = 1 − x, v1(x) = x, x ∈ I,

and

vjm(x) =





2j+1(x− m
2j

), m
2j

≤ x < m
2j

+ 1
2j+1 ,

2j+1(m+1
2j

− x), m
2j

+ 1
2j+1 ≤ x < m+1

2j
,

0, otherwise.

Define the first and higher order differences by

∆1
hf(x) = f(x+ h) − f(x), ∆M

h f = ∆1
h

(
∆M−1

h f
)
.

In particular,

∆2
2−j−1f

(m
2j

)
= f

(
m+ 1

2j

)
− 2f

(
m

2j
+

1

2j+1

)
+ f

(m
2j

)
.

Theorem 1.21. The Faber-Schauder system (1.21) is a conditional basis in C(I) and

f(x) = f(0)v0(x) + f(1)v1(x) − 1

2

∞∑

j=0

2j−1∑

m=0

∆2
2−j−1f

(m
2j

)
vjm(x), x ∈ I,

for any f ∈ C(I).

To characterize Besov spaces Bs
pq(I) by Faber-Schauder system we adapt sequence

spaces bspq(I).

Definition 1.22. Let 1 < p < ∞, 1 ≤ q < ∞ and 1
p
< s < 1 + 1

p
. Let b̄spq(I) be the set

of all sequences

µ =
{
µ0, µ1, µjm : j ∈ N0,m = 0, . . . , 2j − 1

}
⊂ C

such that

‖µ|b̄spq(I)‖ = |µ0| + |µ1| +




∞∑

j=0

2jsq




2j−1∑

m=0

|µjm|p



q
p




1
q

<∞.

13



1 Preliminaries

Theorem 1.23. Let

1 < p <∞, 1 ≤ q <∞ and
1

p
< s < 1 +

1

p
.

Let f ∈ Lp(I). Then f ∈ Bs
pq(I) if, and only if, it can be represented as

f = µ0v0 + µ1v1 +
∞∑

j=0

2j−1∑

m=0

µjmvjm, (1.22)

unconditional convergence being in Bs
pq(I) and in C(I). The representation (1.22) is

unique with

µ0 = f(0), µ1 = f(1), µjm = −1

2
∆2

2−j−1f
(m

2j

)
, j ∈ N0, m = 0, . . . , 2j − 1,

and
J : f 7→

{
µ0, µ1, 2

− j
pµjm : j ∈ N0,m = 0, . . . , 2j − 1

}

is an isomorphic map of Bs
pq(I) onto b̄

s
pq(I). In addition, (1.21) is an unconditional basis

in Bs
pq(I).

Remark 1.24. The above theorem but in more general version is given in [48, Section
3.1.2].

1.2 d-sets

1.2.1 Basic definitions

Definition 1.25. A measure µ in R
n is called Radon if all Borel sets are µ-measurable

and

• µ(K) <∞ for compact sets K ⊂ R
n,

• µ(V ) = sup {µ(K) : K ⊂ V is compact} for open sets V ⊂ R
n,

• µ(A) = inf {µ(V ) : A ⊂ V, V is open} for A ⊂ R
n.

The Radon measure µ with µ(Rn) <∞ is called finite. It is called σ-finite if Rn is the
countable union of sets of finite measure.

Let µ be a positive Radon measure in R
n. Let Tµ,

Tµ : ϕ 7→
∫

Rn

ϕ(x)µ(dx), ϕ ∈ S(Rn),

be the linear functional generated by µ.

14



1 Preliminaries

Definition 1.26. A positive Radon measure µ is said to be tempered if Tµ ∈ S ′(Rn).

Proposition 1.27. Let µ1 and µ2 be two tempered Radon measures. Then

Tµ1 = Tµ2 in S ′(Rn) if, and only if, µ1 = µ2.

Proof. The Proposition is valid by the arguments in [46, p. 80].

This justifies the identification of µ and correspondent tempered disribution Tµ and
we may write µ ∈ S ′(Rn).

Definition 1.28. f ∈ S ′(Rn) is called a positive distribution if

f(ϕ) ≥ 0 for any ϕ ∈ S(Rn) with ϕ ≥ 0.

If f ∈ Lloc
1 (Rn) then f ≥ 0 means f(x) ≥ 0 almost everywhere.

Remark 1.29. If f is a positive distribution, then f ∈ C0(R
n)′ and it follows from the

Radon–Riesz theorem that there is a tempered Radon measure µ such that

f(ϕ) =

∫

Rn

ϕ(x)µ(dx)

[28, p. 61/62, 71, 75].

Definition 1.30. A compact set Γ in R
n is called a d-set with 0 < d < n if there is a

Radon measure µ in R
n with support Γ such that for some positive constants c1 and c2,

holds
c1r

d ≤ µ(B(γ, r)) ≤ c2r
d, γ ∈ Γ, 0 < r < 1, 0 < d < n. (1.23)

where B(x, r) is a ball in R
n centred at x ∈ R

n and of radius r > 0.

If Γ is a d-set, then the restriction to Γ of the d-dimensional Hausdorff measure Hd

satisfies (1.23) and any measure µ satisfying (1.23) is equivalent to Hd|Γ. A consequence
of this is that the Hausdorff dimension of Γ is d. Hd|Γ serves as a ”canonical measure”
on the d-set in the same way as the Lebesgue measure on R

n.

1.2.2 Construction of self-similar sets

Typical examples of d-sets are self-similar sets with invariant measure µ. Broadly speak-
ing, a self-similar set is a set that is made up of parts which are in some way similar to
the whole. The mathematical definition was given by Hutchinson, [13].

Definition 1.31. A mapping F : Rn → R
n is called a similarity (similitude), if there is

a constant 0 < ρ < 1 such that for all x, y ∈ R
n holds

|F (x) − F (y)| = ρ |x− y| .

The constant ρ is called the contraction ratio of F and is denoted by Lip(F ).

15
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Theorem 1.32. Let {Fi}Ni=1 be similarities in R
n. Then there exists a unique non-empty

compact set Γ ⊂ R
n that satisfies

Γ =
N⋃

i=1

Fi(Γ). (1.24)

Γ is called a self-similar set with respect to {Fi}Ni=1.

The idea of the proof is to show that the mapping F defined by

F (A) =
N⋃

i=1

Fi(A), A non-empty compact set in R
n,

is a contraction in the complete metric space of all non-empty compact sets in R
n

equipped with the Hausdorff metric. Then by Schauder’s fixed point theorem Γ is the
unique fixed point of F , see for details [6, 13, 23].

Example 1.33. The unit interval I = [0, 1] is a self-similar set with respect to the
similarities Fi : R → R, i = 1, 2,

F1(x) =
1

2
x, F2(x) =

1

2
x+

1

2
.

Example 1.34. The Koch curve K is a self-similar set with respect to the similarities
Fi : R2 → R

2, i = 1, 2,

F1(x, y) =

(
1

2
x+

1

2
√

3
y,

1

2
√

3
x− 1

2
y

)
,

F2(x, y) =

(
1

2
x− 1

2
√

3
y +

1

2
,− 1

2
√

3
x− 1

2
y +

1

2
√

3

)
,

see [23], where mappings F1, F2 are given in a complex form.

Figure 1.1: The Koch curve
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Figure 1.2: The modified Koch curve. The Hausdorff dimension is given by 7
(
1
5

)d
= 1 and

is equal to log 7
log 5 .

Figure 1.3: A self-similar curve and its generator. The Hausdorff dimension is given by

8
(
1
4

)d
= 1 and is equal to 3

2 .

Example 1.35. A certain class of self-similar sets, in particular self-similar curves, can
be described by indicating an initial curve and a generator. The generator specifies the
rule used to build new curve from the old one. We start with the unit interval. The
generator consists of N straight line segments of equal length r. With each line segment
we associate the similarity that maps the initial unit interval onto the given line segment.
A self-similar curve is a set obtained by iterating the process of replacement each line
segment by the generator. Some examples are shown on the Figures 1.2, 1.3.

1.2.3 Shift space

A very efficient way of representing a self-similar set Γ in (1.24) is by giving the ”address”
of each point in terms of iterations of the mappings Fi, i = 1, . . . , N .

17
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A set Γw with w = (w1, w2, . . . , wj), wi ∈ {1, . . . , N} defined by

Γw = Fw(Γ) = Fw1
◦ Fw2

◦ . . . ◦ Fwj
(Γ),

is called j-simplex. We call w a word of length j = |w| and denote the collection of all
words of length j by Wj. Then holds

Γ =
⋃

w∈Wj

Fw(Γ). (1.25)

Let Σ be a set of all infinite sequences

Σ = {(ω1, ω2, . . .) : ωi ∈ {1, 2, . . . , N}}.

In literature Σ is called sometimes a code space or generalized Cantor set. For any
ω = (ω1, ω2, . . .) ∈ Σ define a continuous surjective map π : Σ → Γ by

π(ω) =
∞⋂

m=1

Γω1ω2...ωm
.

Let
C =

⋃

i 6=j

(Γi ∩ Γj) ,

C = π−1(C) and P =
⋃

n≥1

σn(C),

where σ : Σ → Σ is the shift map defined by

σ(ω1, ω2, . . .) = (ω2, ω3, . . .),

see Figure 1.4. If P is finite, then Γ is referred to as post-critically finite self-similar set.

bξ1 b ξ2

b

ξ3

Γ1

Γ2

Γ3

C = {ξ1, ξ2, ξ3}
ξ1 = π(12̇) = π(21̇)

ξ2 = π(23̇) = π(32̇)

ξ3 = π(13̇) = π(31̇)

P =
{

1̇, 2̇, 3̇
}

Figure 1.4: The post-critical set

Let

V0 = π(P) and Vj =
N⋃

i=1

Fi(Vj−1),

18
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b

b

b

V0
b

b

b

b b

b

V1
b

b

b

b b

b

V2

b b

b

b b

b

b b

b

Figure 1.5: Sets Vj

or equivalently

Vj =
⋃

w∈Wj

Fw(V0),

see Figure 1.5. Then Vj describes the set of boundary points of simplexes of fixed level
j. It is clear that

Vj ⊂ Vj+1.

Let V∗ =
∞⋃
j=0

Vj, then Γ = V∗ in the Euclidean topology. We followed [23, Sections

1.2-1.3]. We form a graph Gj with vertices Vj and edge relation ξ ∼j η holding if and
only if there exists a j-simplex containing both ξ and η as boundary points.

The shift space Σ supports various measures.

Theorem 1.36. Let {p1, p2, . . . , pN} be numbers such that

0 < pi < 1 for all i = 1, . . . , N and
N∑

i=1

pi = 1.

Then there exists a unique Radon measure ν on Σ that satisfies

ν(Σw) = pw1
pw2

. . . pwm
, for any w = (w1, w2, . . . , wm) ∈

∞⋃

j=0

Wj.

This measure ν is called the Bernoulli measure on Σ with weight (p1, p2, . . . , pN).

1.2.4 The snowflaked transform

An interesting fact about self-similar curves discussed in the Section 1.2.2 is that they
are homeomorphic to the unit interval. If we treat the unit interval I as a self-similar
curve that consists of N segments, each of length 1

N
, and denote a mapping π that

corresponds to I by πI and the one that corresponds to the self-similar curve K by πK ,
i.e.

πI(ω) =
∞⋂

m=1

Iω1ω2...ωm
, πK(ω) =

∞⋂

m=1

Kω1ω2...ωm
,
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then
H = πK ◦ π−1

I (1.26)

is a homeomorphic map, which we call the snowflaked transform, see Figure 1.6. We
refer to [23, Example 1.2.7], some information can be also find in [46, Section 8.2.2].

b b

b

K111

b b

K112

b

b

K121

b

b

K122

b b

K211

b

b

K212

b

b

K221

b b

K222

11 3
24 4

1
8 8

3
8
5

8
70 1

H

I I I I I I I I111 112 121 122 211 212 221 222

Figure 1.6: The snowflaked transform

1.2.5 Nested fractals

In the present work we consider sets Γ which are self-similar with respect to the simi-
larities with the same contraction ratio 0 < ρ < 1, that is

|Fi(x) − Fi(y)| = ρ |x− y| . (1.27)

There is a special kind of sets that are self-similar with respect to similarities (1.27), sat-
isfying some additional properties, known as nested fractals. They were first introduced
by Lindstrøm [26], and afterwards were studied by many authors, e.g. [25, 31]. Nested
fractals should satisfy following conditions:

C0. #V0 ≥ 2.

C1. Open set condition

The family of similarities {Fi}Ni=1 satisfies the open set condition if there exists an
open, bounded, nonempty set O ⊂ R

n such that

Fi(O) ∩ Fj(O) = ∅ for i 6= j
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b
x

b

y

Hxy

b
x

b

y

Hxy

Figure 1.7: Symmetry of nested fractals

and
N⋃

i=1

Fi(O) ⊂ O.

When the open set condition is satisfied, the Hausdorff dimension d of Γ is

d =
logN

log 1
ρ

,

we refer to [6, 13].

C2. Nesting

If j ≥ 1 and w = (w1, w2, . . . , wj) and w′ = (w′
1, w

′
2, . . . , w

′
j) are distinct elements

of Wj, then
Γw ∩ Γw′ = Fw(V0) ∩ Fw′(V0).

C3. Connectivity

The graph (V1, G1) is connected.

C4. Symmetry

For any x, y ∈ R
n with x 6= y, let Hxy denote the hyperplane given by

Hxy = {z ∈ R
n : |z − x| = |z − y|}

and let Rxy denote the reflection with respect to Hxy. Then for any x, y ∈ V0 with
x 6= y, Rxy maps j-cells to j-cells, and maps any j-cell which contains elements in
both sides of Hxy to itself for each j ≥ 0, see Figure 1.7.

The simplest example of the nested fractal is the Sierpinski gasket SG, see the left
part of Figure 1.7, which is generated by three similarities in the plane Fi : R2 → R

2,
i = 1, 2, 3, defined by

Fi(x) =
1

2
(x− ξi) + ξi, (1.28)
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where ξi are the vertices of an equilateral triangle, see [39, Section 1.1].
Further on in this chapter we assume that the diameter of Γ is 1. Then the diameter

of each j-simplex Γw1...wj
is ρj, where ρ is from (1.27). In case of I and SG we get ρ = 1

2
,

in case of K we have ρ = 1√
3
.

1.2.6 Measures on the self-similar set

Let Γ be a self-similar with respect to the similarities with the same contraction ratio
0 < ρ < 1, that is

|Fi(x) − Fi(y)| = ρ |x− y| .
Γ can be a unit interval I, a self-similar curve K or a nested fractal. Then the Hausdorff
dimension of Γ is equal to

d =
logN

log 1
ρ

.

See for details [6, 13, 29] and references given there.
According to [13] there exists a unique normalized Radon measure µ with the support

Γ such that

µ(A) =
N∑

i=1

ρdµ(F−1
i (A)) =

1

N

N∑

i=1

µ(F−1
i (A)), (1.29)

for all Borel sets A ⊂ Γ. In particular,

µ(Γw1w2...wm
) = (ρm)d =

(
1

N

)m

. (1.30)

In [13] it was also shown that µ is a multiple of Hd|Γ and it is clear that Γ with µ defined
by (1.30) is a d-set.

Remark 1.37. In fact, µ is the image of the Bernoulli measure ν on Σ with the weight
( 1
N
, . . . , 1

N
) under the transform π, i.e.

µ(A) = ν(π−1(A)),

for any Borel set A ⊂ Γ, [13].

Taking into account the Remark 1.37 and the homeomorphism H in (1.26), we get

µ(A) = ν(π−1
K (A)) = ν

[
π−1
I (H−1(A))

]
= µL(H−1(A)), (1.31)

for any Borel set A ⊂ K. This means that µ is the image of the Lebesgue measure µL

under the mapping H and for a function f̃ defined on K we get

∫

K

f̃(γ)µ(dγ) =

1∫

0

(f̃ ◦H)(x) ν(dx) =

1∫

0

(f̃ ◦H)(x) dx, (1.32)
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[29, Theorem 1.19].
Since K with measure µ is a d-set, then for γ = H(x), δ = H(y) ∈ Γ, x, y ∈ I, from

(1.23) together with (1.31) follows

|H(x) −H(y)|2 = |γ − δ|2 ∼ µ (B(γ, |γ − δ|2))
1
d =

= µL (B(x, |x− y|1))
1
d ∼ |x− y|

1
d

1 . (1.33)

Recall that |· − ·|n denotes the Euclidian distance in R
n.

1.2.7 Dirichlet forms and piecewise harmonic functions

Suppose a real-valued function u is given on the vertices Vj. Then there is a natural
Dirichlet form

Ej(u) =
∑

ξ∼jη

(u(ξ) − u(η))2 .

We need to multiply Ej by the renormalization factor αj in order to have the following
consistency property:

Lemma 1.38. For every function u on Vj there exists a unique extension ũ to Vj+1

minimizing Ej+1, i.e.

Ej+1(ũ) = min
{
Ej+1(u

′) : u′|Vj
= u

}
,

and
αjEj(u) = αj+1Ej+1(ũ). (1.34)

For I and K the renormalization factor α is equal to 2, for SG we have α = 5
3
, [39,

Section 1.3]. The number dw = logNα

log 1
ρ

is called the walk dimension of Γ. The renormalized

graph energies are defined by
Ej(u) = αjEj(u).

Then (1.34) can be reformulated as

Ej(u) = Ej+1(ũ).

The function ũ is called a harmonic extension of u.

Definition 1.39. A continuous function h : V∗ → R is called harmonic if it minimizes
Ej at all levels for given boundary values on V0:

Ej(h) = min {Ej(u) : u|V0
= ρ} .

According to Theorem 3.2.4 in [23] for any harmonic function u there exists a unique
extension ũ ∈ C(Γ) such that

ũ|V∗
= u|V∗

.

Thus, we identify u with its extension ũ and think of a harmonic function as a continuous
function on Γ. The maximum and the minimum of the harmonic function are attained
at the boundary V0. This assertion is known as the maximum principle [23].
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Definition 1.40. A continuous function ψ : V∗ → R is called piecewise harmonic of
level j if ψ ◦ Fw is harmonic for all |w| = j.

We denote the set of piecewise harmonic functions of level j by Hj. These functions
minimize Em at all levels m ≥ j for given boundary values on Vj. Note that Hj−1 ⊂ Hj.

For u : V∗ → R define

E(u) = lim
j→∞

Ej(u),

D̃ = {u : V∗ → R,E(u) <∞} .

If u ∈ D̃, then it is uniformly continuous on V∗, hence it has a unique continuous
extension to Γ. Let

D = {u ∈ C(Γ) : E(u) <∞} .
Then (E,D) is regular Dirichlet form on L2(Γ, µ).

By effective resistance metric on the set Γ we mean a function R : Γ × Γ → [0,∞]
defined by R(x, x) = 0 for x ∈ Γ and

R(x, y)−1 = inf {E(u) : u(x) = 0, u(y) = 1} .

Let ψj
ξ , ξ ∈ Vj, be a piecewise harmonic function of level j which equals 1 at ξ and 0

at any other vertex of Vj:

ψj
ξ(x) = δξx =

{
1, x = ξ
0, x ∈ Vj \ {ξ}.

Note that
suppψj

ξ ⊂ B(ξ, ρj).

In the case of the unit interval I piecewise harmonic functions are just piecewise linear
functions. In fact, for x = m

2j−1 + 1
2j

∈ Vj \ Vj−1

ψj
x(t) =





2j(t− m
2j−1 ), m

2j−1 ≤ t < m
2j−1 + 1

2j
,

2j(m+1
2j−1 − t), m

2j−1 + 1
2j

≤ t < m+1
2j−1 ,

0, otherwise,

and it holds ∣∣ψj
x(t) − ψj

x(s)
∣∣ ≤ c |t− s| for all t, s ∈ I . (1.35)

We have mentioned in Section 1.2.4 that the unit interval I can be regarded as a self-
similar set with respect to N contractions with contraction ratio 1

N
. Piecewise harmonic

functions on I in this case are piecewise linear functions as well and it holds

∣∣ψj
x(t) − ψj

x(s)
∣∣ ≤ c |t− s| for all t, s ∈ I . (1.36)
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In general, it was shown in [24] that harmonic functions on Γ are uniformly Lipschitz
continuous with respect to the resistance metric R(x, y). From [12] follows that for a
certain class of nested fractals there exist constants c, c′ > 0 such that for all x, y ∈ Γ

c′ |x− y|
log 1

α
log ρ ≤ R(x, y) ≤ c |x− y|

log 1
α

log ρ ,

note that
log 1

α

log ρ
= dw − d. Thus piecewise harmonic functions on certain nested fractals

satisfy ∣∣ψj
ξ(x) − ψj

ξ(y)
∣∣ ≤ c |x− y|σ , (1.37)

with σ = dw − d. In particular, piecewise harmonic functions on the Sierpinski gasket
satisfy ∣∣ψj

ξ(x) − ψj
ξ(y)

∣∣ ≤ c |x− y|β , for all x, y ∈ SG,

where β = ln(5/3)
ln 2

.
Thus the family of piecewise harmonic functions may be regarded as the counterpart

of Faber-Schauder basis.
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CHAPTER 2

Tempered Radon measures

A substantial part of fractal geometry and fractal analysis deals with Radon measures in
R

n (also called fractal measures) with compact support. One may consult [46] and the
references given there. In the present chapter we clarify the relation between arbitrary
σ-finite Radon measure in R

n, tempered distributions and weighted Besov spaces. It
comes out that a σ-finite Radon measure µ in R

n can be identified with a tempered
distribution µ ∈ S ′(Rn) if and only if there is a real number β such that

µβ(Rn) <∞, where µβ =
(
1 + |x|2

)β
2 µ.

Finite Radon measures can be identified with the positive cone
+

B0
1∞(Rn) of the distin-

guished Besov space B0
1∞(Rn) and

‖µ|B0
1∞(Rn)‖ ∼ µ(Rn)

(equivalent norms).

2.1 Properties of weighted Besov spaces

Proposition 2.1. For fixed 0 < p, q ≤ ∞

S(Rn) =
⋂

α,s∈R
Bs

pq(R
n, 〈x〉α) (2.1)

and
S ′(Rn) =

⋃

α,s∈R
Bs

pq(R
n, 〈x〉α).

Proof. Step 1. The inclusion

S(Rn) ⊂
⋂

α,s∈R
Bs

pq(R
n, 〈x〉α)
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2 Tempered Radon measures

is clear.
To prove that any f ∈ ⋂

α,s∈R
Bs

pq(R
n, 〈x〉α) belongs to S(Rn), it is sufficient to show

that for any fixed N ∈ N there are α(N) ∈ R and s(N) ∈ R such that

sup
|β|≤N

sup
x∈Rn

〈x〉2N
∣∣Dβf(x)

∣∣ ≤ c‖f |Bs
pq(R

n, 〈x〉α)‖.

For any multiindex β there are polynomials P β
γ , degP β

γ ≤ 2N such that

〈x〉2NDβf(x) =
∑

γ≤β

Dγ
[
(P β

γ f)(x)
]
.

Hence

sup
|β|≤N

sup
x∈Rn

〈x〉2N
∣∣Dβf(x)

∣∣ = sup
|β|≤N

sup
x∈Rn

∣∣∣∣∣
∑

γ≤β

Dγ
[
(P β

γ f)(x)
]
∣∣∣∣∣ ≤

≤ sup
|β|≤N

∑

|γ|≤N

sup
x∈Rn

∣∣Dγ
[
(P β

γ f)(x)
]∣∣ ≤ sup

|β|≤N

∑

|γ|≤N

‖P β
γ f |CN(Rn)‖. (2.2)

Due to the embedding theorems [41, Ch. 2.7.1]

‖P β
γ f |CN(Rn)‖ ≤ c‖P β

γ f |B
N+n

p
+ε

pq (Rn)‖ = c‖ P β
γ

〈x〉2N 〈x〉2Nf |BN+n
p
+ε

pq (Rn)‖ (2.3)

for any ε > 0.
Pβ
γ

〈x〉2N is a pointwise multiplier for B
N+n

p
+ε

pq (Rn), [41, Ch. 2.8.2], therefore

‖ P β
γ

〈x〉2N 〈x〉2Nf |BN+n
p
+ε

pq (Rn)‖ ≤

≤ c‖ P β
γ

〈x〉2N |CN+n
p
+ε(Rn)‖ · ‖〈x〉2Nf |BN+n

p
+ε

pq (Rn)‖. (2.4)

According to Remark 1.7

‖〈x〉2Nf |BN+n
p
+ε

pq (Rn)‖ ∼ ‖f |BN+n
p
+ε

pq (Rn, 〈x〉2N)‖. (2.5)

Combining (2.2), (2.3), (2.4), (2.5), one gets

sup
|β|≤N

sup
x∈Rn

〈x〉2N
∣∣Dβf(x)

∣∣ ≤ c
∑

|γ|≤N

‖〈x〉2Nf |BN+n
p
+ε

pq (Rn)‖ ≤

≤ c‖f |BN+n
p
+ε

pq (Rn, 〈x〉2N)‖ (2.6)

and it follows (2.1).
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2 Tempered Radon measures

Step 2. Let 1 < p ≤ ∞, 1 < q ≤ ∞ and let p′ and q′ be defined in the standard way
by

1

p
+

1

p′
= 1,

1

q
+

1

q′
= 1.

The inclusion ⋃

α,s∈R
Bs

pq (Rn, 〈x〉α) ⊂ S ′(Rn)

is evident.
As far as the opposite inclusion is concerned, we recall that f ∈ S ′(Rn) if and only if

there are l ∈ N and m ∈ N such that

|f(ϕ)| ≤ c sup
|α|≤m

sup
x∈Rn

〈x〉l |Dαϕ(x)| ,

for all ϕ ∈ S(Rn). By (2.6)

sup
|α|≤m

sup
x∈Rn

〈x〉l |Dαϕ(x)| ≤ c‖ϕ|Bm+n
p
+ε

p′q′

(
R

n, 〈x〉l
)
‖.

According to our choice of p and q, it follows that 1 ≤ p′ < ∞ and 1 ≤ q′ < ∞. Thus
by [41, Ch. 2.11.2]

f ∈
(
B

m+n
p
+ε

p′q′

(
R

n, 〈x〉l
))′

= B
−(m+n

p
+ε)

pq

(
R

n, 〈x〉−l
)
.

This means
S ′(Rn) ⊂

⋃

α,s∈R
Bs

pq(R
n, 〈x〉α).

Step 3. Let 0 < p ≤ 1, 1 < q ≤ ∞. By the arguments above, for f ∈ S ′(Rn) there are
α ∈ R and s ∈ R such that

f ∈ Bs
∞q(R

n, 〈x〉α).

We want to show that
f ∈ Bs

pq(R
n, 〈x〉α−γ), γ >

n

p
.

Indeed,

‖f |Bs
pq(R

n, 〈x〉α−γ)‖ =

( ∞∑

j=0

2jsq‖〈x〉α−γ
(
ϕj f̂

)∨
|Lp(R

n)‖q
) 1

q

≤

≤




∞∑

j=0

2jsq sup
x∈Rn

[
〈x〉α

∣∣∣∣
(
ϕj f̂

)∨
(x)

∣∣∣∣
]q


∫

Rn

〈x〉−γp dx




q
p




1
q

≤

≤ c‖f |Bs
∞q(R

n, 〈x〉α)‖.
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2 Tempered Radon measures

Step 4. When 0 < q ≤ 1, first we may find α ∈ R and s ∈ R such that

f ∈ Bs
pq∗(Rn, 〈x〉α),

q∗ > 1, and then use the fact that

Bs
pq∗(R

n, 〈x〉α) ⊂ Bs−ε
pq (Rn, 〈x〉α), ε > 0.

2.2 Main assertions

Our next result refers to tempered measures.

Theorem 2.2. (i) A Radon measure µ in R
n is tempered if, and only if, there is a

real number β such that 〈x〉βµ is finite.

(ii) Let µ be a tempered Radon measure in R
n. Let j ∈ N,

Aj =
{
x : 2j−1 ≤ |x| ≤ 2j+1

}
, A0 = {x : |x| ≤ 2} .

Then for some c > 0, α ≥ 0,

µ(Ak) ≤ c2kα for all k ∈ N0.

Proof. Step 1. First we prove part (ii). Suppose that the assertion does not hold. Then
for c = 1 and l ∈ N there is kl ∈ N0 such that

µ (Akl) > 2kll. (2.7)

As soon as it is found one kl with (2.7), it follows that there are infinitely many kml ,
m ∈ N that satisfy (2.7).

With j ∈ N,

A∗
j =

{
x : 2j−2 ≤ |x| ≤ 2j+2

}
, A∗

0 = {x : |x| ≤ 4} .

For l = 1 take any of km1 , let it be k1. For l = 2 choose k2 ≫ k1 in such a way that
A∗

k1
and A∗

k2
have an empty intersection. For arbitrary l ∈ N take

kl ≫ kl−1 and A∗
kl−1

∩ A∗
kl

= ∅.

Let ϕ0 be a C∞ function on R
n with

ϕ0(x) = 1, |x| ≤ 2 and ϕ0(x) = 0, |x| ≥ 4.

Let k ∈ N and
ϕk(x) = ϕ0(2

−kx) − ϕ0(2
−k+3x), x ∈ R

n.
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2 Tempered Radon measures

Then we have
suppϕk ⊂ A∗

k

and
ϕk(x) = 1, x ∈ Ak.

Let

ϕ(x) =
∞∑

l=1

2−lklϕkl(x).

For any fixed N ∈ N0

sup
|α|≤N

sup
x∈Rn

(
1 + |x|2

)N |Dαϕ(x)| =

= sup
|α|≤N

sup
x∈Rn

(
1 + |x|2

)N
∣∣∣∣∣D

α

( ∞∑

l=1

2−lklϕkl(x)

)∣∣∣∣∣ ≤

≤ sup
l∈N

sup
|α|≤N

sup
x∈Rn

2−lkl2−|α|kl2|α| (1 + |x|2
)N ∣∣(Dαϕ1) (2−kl+1x)

∣∣ .

The last inequality holds, since the functions ϕkl have disjoint supports. With the change
of variables

x′ = 2−kl+1x

one gets

sup
|α|≤N

sup
x∈Rn

(
1 + |x|2

)N |Dαϕ(x)| ≤

≤ sup
l∈N

sup
|α|≤N

2−lkl2−|α|kl2|α|22(kl−1)N sup
x∈Rn

(
1 + |x|2

)N |Dαϕ1(x)| ≤

≤ c sup
l∈N

sup
|α|≤N

2−kl(l+|α|−2N) ≤ c sup
l∈N

2−kl(l−2N).

Since N is fixed and l is tending to infinity, 2−kl(l−2N) is bounded. Thus ϕ ∈ S(Rn).
According to the definition of tempered Radon measures

∫

Rn

ψ(x)µ(dx) < +∞

for any ψ ∈ S(Rn), but

∫

Rn

ϕ(x)µ(dx) ≥
∞∑

l=1

∫

Akl

ϕ(x)µ(dx) ≥
∞∑

l=1

2−lkl2lkl = +∞.

This means that our assertion (2.7) is false.
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2 Tempered Radon measures

Step 2. We prove part (i). Since 〈x〉βµ is finite it tempered. Then µ is also tempered.
To prove the other direction we take β = −(α + 1). Then we get

〈·〉βµ(Rn) =

∫

Rn

〈x〉−(α+1) µ(dx) ≤
∞∑

k=0

∫

Ak

〈x〉−(α+1) µ(dx) ≤

≤ c

∞∑

k=0

2−k(α+1)

∫

Ak

µ(dx) ≤ c

∞∑

k=0

2−k(α+1)2kα <∞.

In order to characterize finite Radon measures we define the positive cone
+

Bs
pq (Rn)

as the collection of all positive f ∈ Bs
pq(R

n).

Theorem 2.3. Let M(Rn) be the collection of all finite Radon measures. Then

M(Rn) =
+

B
0
1∞(Rn)

and
µ(Rn) ∼ ‖µ|B0

1∞(Rn)‖, µ ∈M(Rn). (2.8)

Proof. By the proof in [46, p.82/83], Proposition 1.127,

‖µ|B0
1∞(Rn)‖ ≤ µ(Rn) if µ ∈M(Rn).

In order to prove the converse inequality, one use the characterisation of Besov spaces
via local means. Let k0 be a C∞ non-negative function with

supp k0 ⊂ {x : |x| ≤ 1} and k∨0 (0) 6= 0.

If f ∈
+

B 0
1∞(Rn), then f = µ is a tempered measure. By Theorem 1.2

‖µ|B0
1∞(Rn)‖ ≥ c‖k0(1, µ)|L1(R

n)‖ = c

∫

Rn

∫

Rn

k0(x− y) dµ(y) dx.

Applying Fubini’s theorem, one gets

‖µ|B0
1∞(Rn)‖ ≥ cµ(Rn).

Corollary 2.4. Let f ∈ L1(R
n) and f(x) ≥ 0 almost everywhere. Then

‖f |L1(R
n)‖ ∼ ‖f |B0

1∞(Rn)‖.
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2 Tempered Radon measures

Proof. Let µ = fµL, where µL is the Lebesgue measure. Then

µ(Rn) =

∫

Rn

f(x)µL(dx) = ‖f |L1(R
n)‖

and
‖µ|B0

1∞(Rn)‖ = ‖f |B0
1∞(Rn)‖.

From (2.8) follows the statement in the Corollary.

The question arises whether Corollary 2.4 can be extended to all f ∈ L1(R
n). We

have
L1(R

n) →֒ B0
1∞(Rn), hence ‖f |B0

1∞(Rn)‖ ≤ c‖f |L1(R
n)‖

for all f ∈ L1(R
n). But the converse is not true even for functions f ∈ L1(R

n) with
compact support in the unit ball.

Proposition 2.5. There are functions fj ∈ L1(R
n) with

supp fj ⊂ {y : |y| ≤ 1} , j ∈ N,

such that {fj} is a bounded set in B0
1∞(Rn), but

‖fj|L1(R
n)‖ → ∞ if j → ∞.

Proof. We may assume n = 1.
Let a ∈ C1(R) be an odd function with

supp a ⊂ {x : |x| ≤ 2}, a(x) ≥ 0, x ≥ 0

and
max

−2≤x≤2
|a(x)| = |a(−1)| = a(1) = 1.

If c = max
−2≤x≤2

|a′(x)|, then c ≥ 1. Define a0 ∈ C1(R) by

a0(x) = c−1a(x).

Then one has for any x ∈ R,

|a0(x)| ≤ c−1 ≤ 1, |a′0(x)| ≤ 1 and

∫

R

a0(x) dx = 0.

Define a function aν , ν ∈ N, by

aν(x) = 2νa0(2
νx).

Then
supp aν ⊂

[
−2−ν+1, 2−ν+1

]
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2 Tempered Radon measures

and

|aν(x)| ≤ c−12ν , |a′ν(x)| ≤ 22ν ,

∫

R

aν(x) dx = 0.

According to Definition 1.3, a0 is 11-atom and aν are (0, 1)1,1-atoms. It follows from

Theorem 1.5 that
∞∑
ν=1

aν(x) converges in S ′(Rn) and represents an element of B0
1∞(Rn).

Let f
S′

=
∞∑
ν=1

aν .

Let

fj(x) =

j∑

ν=1

aν(x).

Then supp fj ⊂ [−1, 1],

‖fj|L1(R
n)‖ ≥

+∞∫

0

fj(x) dx =

+∞∫

0

j∑

ν=1

aν(x) dx =

= j

+∞∫

0

a0(x) dx→ ∞, j → ∞.

On the other hand one has by the above atomic argument

‖fj|B0
1∞(R)‖ ≤ 1 for j ∈ N.

Corollary 2.6. Not any characteristic function of a measurable subset of Rn is a point-
wise multiplier in B0

1∞(Rn).

Proof. Let f ∈ L1(R
n) real. Let M+ be a set of points x such that f(x) ≥ 0 and

M− = {x : f(x) < 0}. Then

‖f |L1(R
n)‖ = ‖χM+

f |L1(R
n)‖ + ‖χM−

f |L1(R
n)‖,

where χM+
, χM−

are characteristic functions of sets M+ and M− respectively. One may
apply Corollary 2.4 to the functions χM+

f and χM−
f and get

‖f |L1(R
n)‖ ≤ c‖χM+

f |B0
1∞(Rn)‖ + c‖χM−

f |B0
1∞(Rn)‖.

If any characteristic function of a set in R
n would be a pointwise multiplier in B0

1∞(Rn),
then

‖χM+
f |B0

1∞(Rn)‖ ≤ c‖f |B0
1∞(Rn)‖, ‖χM−

f |B0
1∞(Rn)‖ ≤ c‖f |B0

1∞(Rn)‖,

hence
‖f |L1(R

n)‖ ≤ c‖f |B0
1∞(Rn)‖.
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2 Tempered Radon measures

Since for any function f ∈ L1(R
n) holds

‖f |B0
1∞(Rn)‖ ≤ c‖f |L1(R

n)‖,

one gets
‖f |L1(R

n)‖ ∼ ‖f |B0
1∞(Rn)‖, for real f ∈ L1(R

n).

This can be also extended to complex functions f ∈ L1(R
n). But acoording to the

Proposition 2.5 this is not true.
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CHAPTER 3

Trace spaces

Functions in function spaces are usually defined only almost everywhere. Then we need
to explain what is meant with a restriction of a function to a d-set, 0 < d < n, that has
an n-dimensional Lebesgue measure zero.

3.1 Basic definitions

Let Γ ⊂ R
n be a d-set. If the function f is continuous in R

n or has a continuous
representative, then the restriction or trace of f to Γ is defined pointwise. In other cases
we have two approaches to define the trace of functions. One is by Triebel, by using
inequalities, approximation and completion. Another one is due to Jonsson and Wallin,
by applying strictly defined functions.

Approach by Triebel

Definition 3.1. Let Γ be a d-set and

s > 0, 1 < p <∞, 0 < q <∞. (3.1)

Let for some c > 0,
∫

Γ

|ϕ(γ)| µ(dγ) ≤ c‖ϕ|Bs
pq(R

n)‖, for all ϕ ∈ S(Rn).

Then the trace operator

trµ : Bs
pq(R

n) →֒ L1(Γ, µ),

is the completion of the pointwise trace (trµ ϕ)(γ) = ϕ(γ) with ϕ ∈ S(Rn). g ∈
trµB

s
pq(R

n) ⊂ L1(Γ, µ) is quasi-normed by

‖g| trµBs
pq(R

n)‖ = inf
{
‖f |Bs

pq(R
n)‖ : trµ f = g

}
.
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3 Trace spaces

The definition above is justified since S(Rn) is dense in Bs
pq(R

n) with the restric-
tions on the parameters (3.1).

Proposition 3.2. Let 1 < p <∞ and 0 < q ≤ 1. Then

trµB
n−d
p

pq (Rn) = Lp(Γ, µ).

Remark 3.3. For the proof we refer to Theorem 18.6 in [43]. From the proposition
above follows that for any ϕ ∈ S(Rn)

(∫

Γ

|ϕ(γ)|p µ(dγ)

)1/p

≤ c‖ϕ|B
n−d
p

pq (Rn)‖. (3.2)

For d-sets the trace operator exists whenever s > n−d
p

. Then we may formulate
the following definition.

Definition 3.4. Let 1 < p <∞, 0 < q <∞ and s > 0. Then

Bs
pq(Γ, µ) = trµB

s+n−d
p

pq (Rn)

and

B0
p1(Γ, µ) = trµB

n−d
p

p1 (Rn) = Lp(Γ, µ).

This definition is in good agreement with the well-known trace theorems from R
n

onto m-dimensional hyper-planes,

trB
s+n−m

p
pq (Rn) = Bs

pq(R
m), 1 ≤ m < n.

Now let us consider the case when q = ∞. Let f ∈ Bs
p∞(Rn), s > n−d

p
. From the

properties of Besov spaces follows Bs
p∞(Rn) →֒ Bs+ε

pv (Rn) for ε > 0 and 0 < v <∞.
Then we can consider f as an element of Bs+ε

pv (Rn) and define its trace on Γ.

When we write that f ∈ Bs
pq(Γ, µ), this means that there is a function g ∈

B
s+n−d

p
pq (Rn) such that trµ g = f and in general we can not recover g by f . The

situation essentially improves, when the smoothness parameter is small.

Theorem 3.5. Let

0 < s < 1, 1 < p <∞, 1 ≤ q ≤ ∞, t = s+ (n− d)/p.

Then there is a linear and bounded extension operator extµ with

extµ : Bs
pq(Γ, µ) →֒ Bt

pq(R
n) (3.3)

and
trµ ◦ extµ = id (identity in Bs

pq(Γ, µ)). (3.4)
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3 Trace spaces

Approach by Jonsson and Wallin

For f ∈ Lloc
1 (Rn) and x ∈ R

n, define

f̄(x) = lim
r→0

1

|B(x, r)|

∫

B(x,r)

f(y) dy (3.5)

if the limit exists (here |B(x, r)| stands for Lebesgue measure of a ball B(x, r)).
Those points, where the limit in (3.5) exists, are called Lebesgue points. Lebesgue’s
differentiation theorem implies that f = f̄ a.e. in R

n. Then by restriction of f to
Γ we mean the pointwise restriction of f̄ to Γ and we denote it by f |Γ.

Definition 3.6. Let Γ be a d-set. Let 0 < s < 1 and 1 < p <∞. Then Bs
pp(Γ, µ)

is the collection of all f ∈ Lp(Γ, µ) such that

‖f |Bs
pp(Γ, µ)‖ = ‖f |Lp(Γ, µ)‖ +



∫

Γ

∫

Γ

|f(γ) − f(δ)|p

|γ − δ|d+sp
µ(dδ)µ(dγ)




1
p

. (3.6)

The integration in the inner integral can be reduced to the ball B(γ, 1), since



∫

Γ

∫

Γ\B(γ,1)

|f(γ) − f(δ)|p

|γ − δ|d+sp
µ(dδ)µ(dγ)




1
p

≤ c‖f |Lp(Γ, µ)‖.

Theorem 3.7. Let Γ be a d-set and 0 < s < 1. Then

Bs
pp(Γ, µ) = B

s+n−d
p

pp (Rn)|Γ.

Theorem 3.7 consists of two parts. First, it states that for every function f ∈
B

s+n−d
p

pp (Rn) its trace defined by f |Γ belongs to Bs
pp(Γ, µ). Second, there is a linear

and bounded operator

ext : Bs
pp(Γ, µ) →֒ B

s+n−d
p

pp (Rn)

such that
(ext f)|Γ = f

for every f ∈ Bs
pp(Γ, µ).

Comparison

Let 0 < s < 1 and 1 < p < ∞. We want to show that in this case Besov spaces
defined by both approaches coincide.

The comparison between these approaches relies on the notion of capacity. But
before we recall some properties of fractional Sobolev spaces.

As it was mentioned in the Introduction the generalization of classical Sobolev
spaces are so called Bessel potential spaces Hs

p(Rn).
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3 Trace spaces

Definition 3.8. Let s > 0 and 1 < p <∞. A function f ∈ Hs
p(Rn) if

‖f |Hs
p(Rn)‖ = ‖

((
1 + |ξ|2

)s/2
f̂
)∨

|Lp(R
n)‖ <∞.

It is known that
Hs

p(Rn) = F s
p2(R

n), s > 0, 1 < p <∞, (3.7)

where F s
p2(R

n) are Triebel-Lizorkin spaces, [41, Section 2.3.5]. The relation be-
tween Besov spaces and Triebel-Lizorkin spaces is given by the following embed-
ding

Bs
pmin(p,q)(R

n) →֒ F s
pq(R

n) →֒ Bs
pmax(p,q)(R

n). (3.8)

In particular,
Bs

pp(R
n) = F s

pp(R
n) (equivalent norms). (3.9)

Then combining (3.2), (3.7) and (3.8), we get

‖ϕ|Lp(Γ, µ)‖ ≤ c‖ϕ|H
n−d
p

+ε
p (Rn)‖, ε > 0, for all ϕ ∈ S(Rn).

Let K be a compact set in R
n. Let 1 < p <∞ and α > 0. Then

Cα,p(K) = inf
{
‖ϕ|Hα

p (Rn)‖p : ϕ ∈ S(Rn), ϕ ≥ 1 on K
}

is called the (α, p)-capacity ofK. A property is said to hold (α, p)-quasi-everywhere,
if it is true for all x ∈ R

n except the set of Cα,p- capacity zero.

Let Γ be a d-set. Then for α = s+ n−d
p

, 1 < p < ∞, 0 < s < 1 and all ϕ ∈ S(Rn)
we have (∫

Γ

|ϕ(γ)|p µ(dγ)

)1/p

≤ c‖ϕ|Hα
p (Rn)‖. (3.10)

Take any compact K ⊂ R
n. Let ϕ be real and ϕ ≥ 1 on K. Then from (3.10)

follows

µ(K) ≤
∫

Γ

|ϕ(γ)|p µ(dγ) ≤ c‖ϕ|Hα
p (Rn)‖p,

that implies
µ(K) ≤ cCα,p(K). (3.11)

The relation (3.9) implies that

Bs
pp(Γ, µ) = trµ F

s+n−d
p

pp (Rn).

According to Theorem 9.21 in [45] the trace of Triebel-Lizorkin spaces is indepen-
dent of parameter q. Hence

Bs
pp(Γ, µ) = trµH

s+n−d
p

p (Rn).
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Moreover, it was shown in [18, Chapter VII] that the trace of the Sobolev space

H
s+n−d

p
p (Rn) is the Besov space Bs

pp(Γ, µ)

Bs
pp(Γ, µ) = H

s+n−d
p

p (Rn)|Γ.

Let f ∈ Hα
p (Rn). We may assume that f has a compact support in R

n. As before
define

f̄(x) = lim
r→0

1

|B(x, r)|

∫

B(x,r)

f(y) dy,

if the limit exists. Then according to [1]

f = f̄ (α, p) − q.e. in R
n.

Define Sobolev mollifiers for f̄ by

fh(x) = h−n

∫

Rn

ω

(
x− y

h

)
f(y) dy, 0 < h < 1,

where 0 ≤ ω ∈ D(Rn) and ∫

Rn

ω(x) dx = 1.

Recall that
fh → f in Hα

p (Rn) if h→ 0.

Moreover, from Theorem 1.25 in [38] follows

lim
h→0

fh(x) = f(x)

for every Lebesgue point x. This means

fh(x) → f(x) pointwise (α, p) − q.e.

and together with (3.11) it implies

fh(x) → f(x) pointwise µ− a.e.

Set ϕj = f2−j and take {ϕj} as an approximating sequence for f . Then

Bs
pp(Γ, µ) ∋ trµ f = lim

j→∞
ϕj|Γ = f |Γ ∈ Bs

pp(Γ, µ) µ− a.e.

Remark 3.9. The comparison is based on the proof of Proposition 3.1. in [44].
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Thus we no longer distinguish between Bs
pp(Γ, µ) and Bs

pp(Γ, µ) and write Bs
p(Γ) for

short. Besov spaces Bs
p(Γ), 1 < p <∞, 0 < s < 1, are normed by

‖f |Bs
pp(Γ, µ)‖ = ‖f |Lp(Γ, µ)‖ +



∫

Γ

∫

Γ

|f(γ) − f(δ)|p

|γ − δ|d+sp
µ(dδ)µ(dγ)




1
p

(3.12)

or equivalently

‖f |Bs
pp(Γ, µ)‖ = ‖f |Lp(Γ, µ)‖ +



∫

Γ

∫

B(γ,1)

|f(γ) − f(δ)|p

|γ − δ|d+sp
µ(dδ)µ(dγ)




1
p

. (3.13)

Most of our results will be first stated for the spaces Bs
p(Γ) and then they will be extended

to Bs
pq(Γ, µ) by real interpolation.

3.2 Real interpolation for the spaces Bs
pq(Γ, µ)

Theorem 3.10. Let Γ be a d-set in R
n. Let 0 < θ < 1, 1 < p < ∞, 1 ≤ q < ∞,

0 < s0 < 1, 0 < s1 < 1, s0 6= s1 and s = (1 − θ)s0 + θs1. Then

(
Bs0

pq0
(Γ, µ), Bs1

pq1
(Γ, µ)

)
θ,q

= Bs
pq(Γ, µ). (3.14)

Proof. We put

P = extµ ◦ trµ : B
s+n−d

p
pq (Rn) →֒ B

s+n−d
p

pq (Rn).

Then P is a linear and bounded map. From (3.4) it follows that

P 2 = extµ ◦ trµ ◦ extµ ◦ trµ = P.

Hence P is a projection of B
s+n−d

p
pq (Rn) onto PB

s+n−d
p

pq (Rn). By P ◦ extµ = extµ, one gets

that extµ maps Bs
pq(Γ, µ) into PB

s+n−d
p

pq (Rn). On the other hand, if f ∈ PB
s+n−d

p
pq (Rn),

then f = extµ (trµ(f)), trµ f ∈ Bs
pq(Γ). Hence extµ maps Bs

pq(Γ, µ) onto PB
s+n−d

p
pq (Rn).

Since trµ and extµ are linear bounded operators, one has

‖f |Bs
pq(Γ, µ)‖ ∼ ‖ extµ f |B

s+n−d
p

pq (Rn)‖ (3.15)

and it follows that

extµ : Bs
pq(Γ, µ) ⇔ PB

s+n−d
p

pq (Rn)

is an isomorphic map.
Let (

Bs0
pq0

(Γ, µ), Bs1
pq1

(Γ, µ)
)
θ,q

= Bθ(Γ).
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3 Trace spaces

It is known that
(
B

s0+
n−d
p

pq0 (Rn), B
s1+

n−d
p

pq1 (Rn)

)

θ,q

= B
s+n−d

p
pq (Rn). (3.16)

We denote the right-hand side of (3.16) by Bθ(R
n).

By the interpolation property for the spaces on R
n and Γ

‖f |Bθ(Γ)‖ = ‖ trµ ◦ extµ f |Bθ(Γ)‖ ≤ c‖ extµ f |Bθ(R
n)‖ ≤ c′‖f |Bθ(Γ)‖. (3.17)

Hence

‖f |Bθ(Γ)‖ ∼ ‖ extµ f |B
s+n−d

p
pq (Rn)‖. (3.18)

Together with (3.15) this leads to

‖f |Bθ(Γ)‖ ∼ ‖f |Bs
pq(Γ, µ)‖.

This completes the proof.

Remark 3.11. The proof essentially uses the way of reasoning in [46, Ch. 1.11.8].

3.3 Intrinsic atomic characterization of Bs
p(Γ)

Besov spaces Bs
p(Γ) with 0 < s < 1 and 1 < p < ∞ can be characterized in terms of

intrinsic building blocks, namely atoms.
Let for δ > 0

Γδ =
⋃

γ∈Γ
B(γ, δ),

where
B(γ, δ) = {x ∈ R

n : |x− γ| < δ} , (3.19)

be a δ-neighbourhood of Γ. Let 0 < r < 1 be fixed. Let for j ∈ N0,

{γj,m}Mj

m=1 ⊂ Γ (3.20)

be the lattice of points with the following properties:

• For some c1 > 0

|γj,m1
− γj,m2

| ≥ c1r
j, j ∈ N0, m1 6= m2. (3.21)

• For some some c2 > 0

Γc2rj ⊂
Mj⋃

m=1

B(γj,m, r
j), j ∈ N0, (3.22)

where B(γj,m, r
j) are given by (3.19).
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Let
BΓ

j,m = {γ ∈ Γ : |γ − γj,m| < rj}, j ∈ N0, m = 1, . . . ,Mj , (3.23)

be the intersection of balls B(γj,m, r
j) with Γ.

Definition 3.12. Let Γ be a d-set in R
n. Let 1 < p < ∞ and 0 < s < 1. Then a

continuous function ajm on Γ is called an (s, p)∗-atom, if for j ∈ N0 and m = 1, . . . ,Mj ,

supp ajm ⊂ BΓ
j,m, (3.24)

|ajm(γ)| ≤ Hd
(
BΓ

j,m

) s
d
− 1

p , γ ∈ Γ, (3.25)

and
|ajm(γ) − ajm(δ)| ≤ Hd

(
BΓ

j,m

) s−1
d

− 1
p |γ − δ| (3.26)

with γ, δ ∈ Γ, [46, Section 8.1.3].

Since Γ is a d-set, we can reformulate (3.25) and (3.26) as

|ajm(γ)| ≤ crj(s−
d
p),

|ajm(γ) − ajm(δ)| ≤ crj(s−1− d
p) |γ − δ| .

For our further purposes we need the following assertion which is covered by the Propo-
sition 8.10 in [46].

Lemma 3.13. Let Γ be a d-set. Let r ≥ 0 and

BΓ(r) = {γ ∈ Γ : |γ − γ0| < r} for some γ0 ∈ Γ,

and
B(2r) = {x ∈ R

n : |x− γ0| < 2r} .
Let

f ∈ Bs
p(Γ) with supp f ⊂ BΓ(r).

Then
‖f |Bs

p(Γ)‖ = inf ‖g|Bt
p(R

n)‖, t = s+ (n− d)/p,

where the infimum is taken over all

g ∈ Bt
p(R

n), g|Γ = f, supp g ⊂ B(2r).

Now we can formulate an intrinsic atomic decomposition of the trace spaces Bs
p(Γ).

Theorem 3.14. Let 1 < p < ∞ and 0 < s < 1. Then Bs
p(Γ) is the collection of all

f ∈ L1(Γ, µ) which can be represented as

f(γ) =
∞∑

j=0

Mj∑

m=1

λjmajm(γ), γ ∈ Γ, (3.27)
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where

‖λ‖ =




∞∑

j=0

Mj∑

m=1

∣∣λjm
∣∣p



1
p

<∞,

ajm are (s, p)∗-atoms according to Definition 3.12 and (3.27) converges absolutely in
L1(Γ, µ). Furthermore,

‖f |Bs
p(Γ)‖ ∼ inf ‖λ‖ (3.28)

where infimum is taken over all admissible representations (3.27), [46, Chapter 8.1.3].

We introduce new type of atoms, that we call (s, p, σ)-atoms.

Definition 3.15. Let 1 < p < ∞, 0 < σ < 1 and 0 < s < σ. Then a continuous
function ajm on Γ is called an (s, p, σ)-atom, if for j ∈ N0 and m = 1, . . . ,Mj ,

supp ajm ⊂ BΓ
j,m, (3.29)

|ajm(γ)| ≤ crj(s−
d
p), γ ∈ Γ, (3.30)

and
|ajm(γ) − ajm(δ)| ≤ crj(s−σ− d

p) |γ − δ|σ (3.31)

with γ, δ ∈ Γ.

Let ajm be an (s, p)∗-atom and 0 < s < σ. Then

|ajm(γ) − ajm(δ)| ≤ crj(s−1− d
p) |γ − δ|

= crj(s−1− d
p) |γ − δ|1−σ |γ − δ|σ ≤ crj(s−1− d

p)rj(1−σ) |γ − δ|σ

= crj(s−σ− d
p) |γ − δ|σ ,

which shows that any (s, p)∗-atom is an (s, p, σ)-atom.

Theorem 3.16. Let 1 < p <∞, 0 < σ < 1 and 0 < s < σ. Then Bs
p(Γ) is the collection

of all f ∈ L1(Γ, µ) which can be represented as

f(γ) =
∞∑

j=0

Mj∑

m=1

λjmajm(γ), γ ∈ Γ, (3.32)

where

‖λ‖ =




∞∑

j=0

Mj∑

m=1

∣∣λjm
∣∣p



1
p

<∞,

ajm are (s, p, σ)-atoms according to Definition 3.15 and (3.32) converges absolutely in
L1(Γ, µ). Furthermore,

‖f |Bs
p(Γ)‖ ∼ inf ‖λ‖

where infimum is taken over all admissible representations (3.32).
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Proof. The proof is the adaption of reasoning in [46, Section 8.1.3]. The representation
(3.27) with (s, p)∗-atoms is a special case of the representation (3.32) and it holds (3.28).
Hence it remains to show that from the representation (3.32) follows that

f ∈ Bs
p(Γ) and ‖f |Bs

p(Γ)‖ ≤ c‖λ‖.

First we estimate the norm of (s, p, σ)-atoms in Bs
p(Γ). Let L be a number such that

diam Γ ≤ 2L. Then

∫

Γ

∫

Γ

|ajm(γ) − ajm(δ)|p

|γ − δ|d+sp
µ(dδ)µ(dγ) ≤ c

∫

Γ

∫

Γ

1

|γ − δ|d+(s−σ)p
µ(dδ)µ(dγ)

= c

∫

Γ

L∑

i=−∞

∫

B(γ,2i)\B(γ,2i−1)

1

|γ − δ|d+(s−σ)p
µ(dδ)µ(dγ)

≤ c

∫

Γ

L∑

i=−∞

∫

B(γ,2i)\B(γ,2i−1)

1

2i(d+(s−σ)p)
µ(dδ)µ(dγ)

≤ cµ(Γ)
L∑

i=−∞

2id

2i(d+(s−σ)p)
= cµ(Γ)

2L(s−σ)p

1 − 2(s−σ)p
≤ C.

Moreover, ∫

Γ

|ajm(γ)|p µ(dγ) ≤
∫

Bjm

µ(Bjm)
sp
d
−1µ(dγ) ≤ µ(Γ)

sp
d = C.

This means that there is a constant C > 0 such that

‖ajm|Bs
p(Γ)‖ ≤ C

for all (s, p, σ)-atoms. Furthermore, for 0 < s ≤ s̄ < σ we can write

ajm(γ) = rj(s−s̄)bjm(γ),

where
bjm(γ) = rj(s̄−s)ajm(γ).

For each j ∈ N0 and m = 1, . . . ,Mj we have

supp bjm = supp ajm ⊂ BΓ
jm,

|bjm(γ)| ≤ crj(s̄−
d
p)

and
|bjm(γ) − bjm(δ)| ≤ crj(s̄−σ− d

p) |γ − δ|σ .
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This shows that bjm are (s̄, p, σ)- atoms and

‖bjm|B s̄
p(Γ)‖ ≤ C.

Hence
‖ajm|B s̄

p(Γ)‖ ≤ Crj(s−s̄).

We apply Lemma 3.13 to ajm. Then it follows that there are functions

Ajm ∈ B t̄
pp(R

n), where t̄ = s̄+
n− d

p
,

such that
trµAjm = ajm, suppAjm ⊂

{
x ∈ R

n : |x− γjm| ≤ c1r
j
}

and

‖Ajm|B t̄
pp(R

n)‖ ≤ c2r
j(t−t̄), t = s+

n− d

p
.

Then according to Definition 2.7 in [46] Ajm are non-smooth atoms for Bt
pp(R

n) and
from Theorem 2.3 in [46] follows that

F =
∞∑

j=0

Mj∑

m=1

λjmAjm with ‖λ‖ <∞

belongs to Bt
pp(R

n) and
‖F |Bt

pp(R
n)‖ ≤ c‖λ‖.

Taking into account that f = trµ F , we may conclude

‖f |Bs
p(Γ)‖ ≤ c‖λ‖.
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CHAPTER 4

Besov spaces on nested fractals

In this chapter we assume that Γ ⊂ R
n is a nested fractal such that

R(x, y) ∼ |x− y|dw−d , (4.1)

where R(x, y) stands for the effective resistance metric and |x− y| is the Euclidean
distance in R

n, for details we refer to Section 1.2.7. In particular, Γ can be the Sierpinski
gasket or pentakun. Then relation (4.1) implies that piecewise harmonic functions belong
to the Hölder class with exponent σ = dw − d, i.e.

∣∣ψj
ξ(x) − ψj

ξ(y)
∣∣ ≤ c |x− y|σ .

This enables us to treat piecewise harmonic functions as (s, p, σ)-atoms. Thus functions
from Bs

pq(Γ, µ) can be characterized in terms of the coefficients of its expansion in a
piecewise harmonic basis.

4.1 Representation of a function by piecewise harmonic

basis

We start with the following observation. Let h be the function which equals identically
1 on Γ. Then h is harmonic and h|V0

= 1. On the other hand, function

g =
∑

ξ∈V0

ψ0
ξ

is also harmonic and g|V0
= 1. Due to the uniqueness of the harmonic function with

given boundary values we get that h ≡ g or equivalently
∑

ξ∈V0

ψ0
ξ ≡ 1 on Γ.

This statement has following counterpart for (j−1)-harmonic functions. Let ξ ∈ Vj\Vj−1,
j ≥ 1 be fixed. There is an ω ∈ Σ such that

ξ = π(ω). (4.2)
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4 Besov spaces on nested fractals

We define ∆(ξ) by
∆(ξ) =

{
η ∈ Vj−1 : η ∈ Fω1ω2...ωj−1

(Γ)
}
,

where ω is chosen according to (4.2). ∆(ξ) consists of vertices of (j − 1)-simplex that ξ
belongs to. It is the same as the one defined in [16, Section 4.1]. Note that

ψj−1
ζ (ξ) = 0, Vj−1 ∋ ζ /∈ ∆(ξ) (4.3)

and ∑

η∈∆(ξ)

ψj−1
η (ξ) = 1. (4.4)

Let f ∈ C(Γ). There exists the unique harmonic function P0f that interpolates f at
all points of V0

P0f |V0
= f |V0

,

P0f − harmonic.

It is clear that
P0f =

∑

ξ∈V0

f(ξ)ψ0
ξ .

Let Pnf , n ≥ 1, be the unique piecewise harmonic function in Hn which interpolates f
at all points in Vn

Pnf =
∑

ξ∈Vn

f(ξ)ψn
ξ .

Let us take the approximation of f by 1-harmonic functions

P1f =
∑

ξ∈V1

f(ξ)ψ1
ξ =

∑

ξ∈V0

f(ξ)ψ1
ξ +

∑

ξ∈V1\V0

f(ξ)ψ1
ξ = F +G. (4.5)

Function F is a 1-harmonic function that coincides with f on V0 and is 0 at all points
of V1 \ V0

F |V0
= f,

F |V1\V0
= 0.

Since every harmonic function is also 1-harmonic and there is unique 1-harmonic function
for given boundary values, we may conclude

F = P0f −
∑

ξ∈V1\V0

(P0f)(ξ)ψ1
ξ . (4.6)

Replacing F in (4.5) by (4.6) we get

P1f = P0f +
∑

ξ∈V1\V0

[f(ξ) − P0f(ξ)]ψ1
ξ . (4.7)

For ξ ∈ Vj \ Vj−1, j ≥ 1, define

cξ(f) = Pjf(ξ) − Pj−1f(ξ) = f(ξ) − Pj−1f(ξ), (4.8)
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4 Besov spaces on nested fractals

complemented by
cξ(f) = f(ξ), ξ ∈ V0.

Then (4.7) can be written in the following way

P1f = P0f +
∑

ξ∈V1\V0

cξ(f)ψ1
ξ .

By method of mathematical induction we may prove that

Pnf =
∑

ξ∈V0

f(ξ)ψ0
ξ +

n∑

j=1

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ , n ≥ 1.

Indeed,

Pnf =
∑

ξ∈Vn

f(ξ)ψn
ξ =

∑

ξ∈Vn\Vn−1

f(ξ)ψn
ξ +

∑

ξ∈Vn−1

f(ξ)ψn
ξ

=
∑

ξ∈Vn\Vn−1

f(ξ)ψn
ξ + Pn−1f −

∑

ξ∈Vn\Vn−1

Pn−1f(ξ)ψn
ξ

= P0f +
n−1∑

j=1

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ +

∑

ξ∈Vn\Vn−1

cξ(f)ψj
ξ .

Let V−1 = ∅. Then

Pnf =
n∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ . (4.9)

For the coefficients cξ(f), ξ ∈ Vj \ Vj−1, j ≥ 1, we may write

cξ(f) = f(ξ) −
∑

η∈Vj−1

f(η)ψj−1
η (ξ).

Taking into account (4.3) and (4.4), we get

cξ(f) = f(ξ) −
∑

η∈∆(ξ)

αξηf(η) (4.10)

with ∑

η∈∆(ξ)

αξη = 1, (4.11)

where αξη = ψj−1
η (ξ).

Lemma 4.1. Let f ∈ C(Γ) and Pnf be given by (4.9). Then Pnf tends to f uniformly
on Γ as n→ ∞.
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4 Besov spaces on nested fractals

Proof. Let ε > 0. Then there is δ > 0 such that

|f(x) − f(y)| < ε, if |x− y| < δ.

Choose N ∈ N in such a way that for n ≥ N

|x− y| < δ if x, y ∈ Fw(Γ), w ∈ Wn.

Take any x ∈ Γ. From the maximum principle for harmonic functions follows

|f(x) − Pnf(x)| ≤ |f(x) − f(xn)| ,

where xn is one of the vertices of the simplex Fw(Γ), w ∈ Wn, that x belongs to. Since
|x− xn| < δ, we get |f(x) − Pnf(x)| < ε.

Proposition 1.3.2 in [35] implies that {ψj
ξ , ξ ∈ Vj \ Vj−1, j ≥ 0} is an interpolating

basis. This means that f ∈ C(Γ) has the unique representation

f =
∞∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ .

4.2 Characterization of Bs
pq(Γ, µ) by piecewise harmonic

basis

The question arises whether Besov spaces with a certain range of parameters can be
characterized by coefficients cξ(f). We give an affirmative answer in the following theo-
rem.

Theorem 4.2. Let Γ be the above d-set with ρ as in (1.27) and σ as in (1.37). Let

1 < p <∞ and
d

p
< s < min{1, σ}. (4.12)

Then f ∈ C(Γ) belongs to Bs
p(Γ) if and only if it can be represented as

f =
∞∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ , (4.13)

where

Cs
p(f) =




∞∑

j=0

ρj(
d
p
−s)p

∑

ξ∈Vj\Vj−1

|cξ(f)|p



1
p

<∞,

unconditional convergence being in C(Γ). Furthermore,

‖f |Bs
p(Γ)‖ ∼ Cs

p(f).
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4 Besov spaces on nested fractals

Proof. The idea of the proof is the same as in [16, Theorem 5.1]. Let

ajξ(x) = ρj(s−
d
p)ψj

ξ(x), j ∈ N0, ξ ∈ Vj \ Vj−1.

Then ajξ satisfy (3.29)-(3.31). Taking into account that C(Γ) ⊂ L1(Γ) we get that (4.13)
is an atomic representation of f and from Theorem 3.16 it follows that

‖f |Bs
p(Γ)‖ ≤ c Cs

p(f).

To prove the converse, let f ∈ Bs
p(Γ) and let

f =
∞∑

j=0

Mj∑

m=1

λjmajm

be an atomic decomposition of f into (s, p, σ)-atoms with r = ρ in (3.23), (3.30) and
(3.31) such that

‖λ‖ ≤ c‖f |Bs
p(Γ)‖. (4.14)

Then taking into account (3.30) and that s > d
p

we get

∣∣∣∣∣∣

Mj∑

m=1

λjmajm

∣∣∣∣∣∣
≤ sup

m

∣∣λjm
∣∣

Mj∑

m=1

ρj(s−
d
p) ≤ cρ(s− d

p) sup
m

∣∣λjm
∣∣

≤ cρ(s− d
p)




Mj∑

m=1

∣∣λjm
∣∣p



1
p

.

The Weierstrass test together with the estimate (4.14) imply that the series
∞∑
j=0

Mj∑
m=1

λjmajm

converges uniformly and it follows

cξ(f) =
∞∑

j=0

Mj∑

m=1

λjmcξ(ajm).

From the formula (4.10) together with (4.11) and the property (3.30) of (s, p, σ)-atoms
follows

|cξ(ajm)| ≤ 2ρj(s−
d
p). (4.15)

Moreover, for i > 0 the property (3.31) implies

|cξ(ajm)| =

∣∣∣∣∣∣
ajm(ξ) −

∑

η∈∆(ξ)

αξηajm(η)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

η∈∆(ξ)

αξη(ajm(ξ) − ajm(η))

∣∣∣∣∣∣

≤ ρiσρj(s−σ− d
p), ξ ∈ Vi \ Vi−1. (4.16)
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4 Besov spaces on nested fractals

Let us split cξ(f) into two parts

cξ(f) =
i∑

j=0

Mj∑

m=1

λjmcξ(ajm) +
∞∑

j=i+1

Mj∑

m=1

λjmcξ(ajm) = xξ(f) + yξ(f).

Taking into account the support condition for atoms (3.29), we get that for all ξ and
j the number of atoms such that cξ(ajm) 6= 0 is finite.

First we deal with

Xi,p =


 ∑

ξ∈Vi\Vi−1

|xξ(f)|p



1/p

.

Note that
{ξ ∈ Vi \ Vi−1 : cξ(ajm) 6= 0} ⊂

{
ξ ∈ Vi ∩BΓ(γjm, ρ

j)
}
.

The balls BΓ(ξ, ρ
i

2
) corresponding to different ξ ∈ Vi ∩ BΓ(γjm, ρ

j) are disjoint and for
j < i they are contained in BΓ(γjm, 2ρ

j). Thus

∑

ξ∈Vi∩BΓ(γjm,ρj)

µ
(
BΓ
(
ξ, ρi/2

))
≤ µ

(
BΓ
(
γj,m, 2ρ

j
))
.

Since µ is a d-measure this implies that
{
ξ ∈ Vi ∩ BΓ(γjm, ρ

j)
}

can have at most c
(

ρj

ρi

)d

elements. Hence

# {ξ ∈ Vi \ Vi−1 : cξ(ajm) 6= 0} ≤ cρ(j−i)d, j < i.

By Minskowski’s and Hölder’s inequalities together with (4.16) follows

Xi,p =


 ∑

ξ∈Vi\Vi−1

|xξ(f)|p



1/p

≤
i∑

j=0


 ∑

ξ∈Vi\Vi−1




Mj∑

m=1

∣∣λjm
∣∣ |cξ(ajm)|




p


1/p

≤
i∑

j=0

Mj∑

m=1


 ∑

ξ∈Vi\Vi−1

∣∣λjm
∣∣p |cξ(ajm)|p




1/p

≤
i∑

j=0

Mj∑

m=1

∣∣λjm
∣∣ ρiσρj(s−σ− d

p)ρ(j−i) d
p

≤ cρi(σ−
d
p)

i∑

j=0

ρj(s−σ)




Mj∑

m=1

∣∣λjm
∣∣p



1/p

and it follows

Xi,p,s = ρi(
d
p
−s)Xi,p ≤ cρi(σ−s)

i∑

j=0

ρj(s−σ)




Mj∑

m=1

∣∣λjm
∣∣p



1/p

.
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4 Besov spaces on nested fractals

Jensen’s inequality implies

Xp
i,p,s ≤ cρi(σ−s)pρi(s−σ)(p−1)

i∑

j=0

ρj(s−σ)

Mj∑

m=1

∣∣λjm
∣∣p

= cρi(σ−s)

i∑

j=0

ρj(s−σ)

Mj∑

m=1

∣∣λjm
∣∣p .

Then ( ∞∑

i=0

Xp
i,p,s

)1/p

≤ c




∞∑

i=0

ρi(σ−s)

i∑

j=0

ρj(s−σ)

Mj∑

m=1

∣∣λjm
∣∣p



1/p

= c




∞∑

j=0

( ∞∑

i=j

ρi(σ−s)

)
ρj(s−σ)

Mj∑

m=1

∣∣λjm
∣∣p



1/p

≤ c




∞∑

j=0

Mj∑

m=1

∣∣λjm
∣∣p



1/p

= c‖λ‖.

To estimate

Yi,p =


 ∑

ξ∈Vi\Vi−1

|yξ(f)|p



1/p

we use Minkowski’s and Hölder’s inequalities together with the property (4.15). Then
we get

Yi,p ≤
∞∑

j=i


 ∑

ξ∈Vi\Vi−1




Mj∑

m=1

∣∣λjm
∣∣ |cξ(ajm)|




p


1/p

≤
∞∑

j=i

Mj∑

m=1


 ∑

ξ∈Vi\Vi−1

∣∣λjm
∣∣p |cξ(ajm)|p




1/p

≤ c
∞∑

j=i

Mj∑

m=1

∣∣λjm
∣∣ ρj(s− d

p)

≤ c

∞∑

j=i

ρj(s−
d
p)




Mj∑

m=1

∣∣λjm
∣∣p



1/p

.

Hence we have

Yi,p,s = ρi(
d
p
−s)Yi,p ≤ cρi(

d
p
−s)

∞∑

j=i

ρj(s−
d
p)




Mj∑

m=1

∣∣λjm
∣∣p



1/p

.

Applying Jensen’s inequality we get

Y p
i,p,s ≤ cρi(

d
p
−s)pρi(

d
p
−s)(p−1)

∞∑

j=i

ρj(s−
d
p)

Mj∑

m=1

∣∣λjm
∣∣p
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4 Besov spaces on nested fractals

≤ cρi(
d
p
−s)

∞∑

j=i

ρj(s−
d
p)

Mj∑

m=1

∣∣λjm
∣∣p .

Then ( ∞∑

i=0

Y p
i,p,s

)1/p

≤ c




∞∑

i=0

∞∑

j=i

ρi(
d
p
−s)ρj(s−

d
p)

Mj∑

m=1

∣∣λjm
∣∣p



1/p

≤ c




∞∑

j=0

(
j∑

i=0

ρi(
d
p
−s)

)
ρj(s−

d
p)

Mj∑

m=1

∣∣λjm
∣∣p



1/p

≤ c




∞∑

j=0

Mj∑

m=1

∣∣λjm
∣∣p



1/p

= c‖λ‖.

Thus

Cs
p(f) =




∞∑

i=0

ρi(
d
p
−s)p

∑

ξ∈Vi\Vi−1

|cξ(f)|p



1
p

≤
( ∞∑

i=0

Xp
i,p,s

) 1
p

+

( ∞∑

i=0

Y p
i,p,s

) 1
p

≤ c‖λ‖ ≤ c‖f |Bs
p(Γ)‖.

Corollary 4.3. Let

1 < p <∞ and
d

p
< s < min{1, σ}.

The system of functions {ψj
ξ , j ∈ N0, ξ ∈ Vj \ Vj−1} is an unconditional basis in Bs

p(Γ).

Proof. Let f ∈ Bs
p(Γ). Then f has the unique representation

f =
∞∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ (4.17)

with the convergence first being in C(Γ). It is left to show that (4.17) converges in
Bs

p(Γ).
Let us show that the sequence of partial sums

Sn =
n∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ

is a Cauchy sequence in Bs
p(Γ). For n > m

‖Sn − Sm|Bs
p(Γ)‖ = ‖

n∑

j=m+1

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ |Bs

p(Γ)‖
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4 Besov spaces on nested fractals

∼




n∑

j=m+1

ρj(
d
p
−s)p

∑

ξ∈Vj\Vj−1

|cξ(f)|p



1
p

→ 0, n,m→ ∞.

Since Bs
p(Γ) is complete, the series (4.17) converges to f in Bs

p(Γ).

Theorem 4.2 establishes isomorphism between function spaces Bs
p(Γ) and certain se-

quence spaces.

Definition 4.4. Let 0 < s < 1, 1 < p < ∞ and 1 ≤ q < ∞. Let b∗spq be the space of all
sequences a = {ajm, j ∈ N0,m = 1, . . . ,Mj} such that

‖a|b∗spq‖ =




∞∑

j=0

ρ−jsq




Mj∑

m=1

|ajm|p



q
p




1
q

<∞.

We can reformulate the above result in the following manner.

Theorem 4.5. Let Γ be a d-set with ρ as in (1.27) and σ as in (1.37). Let

1 < p <∞ and
d

p
< s < σ.

Then f ∈ C(Γ) belongs to Bs
p(Γ) if and only if it can be represented as

f =
∞∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ ,

unconditional convergence being in C(Γ). Furthermore this representation is unique and

I : f →
{
ρ

jd
p cξ(f), j ∈ N0, ξ ∈ Vj \ Vj−1

}
(4.18)

is an isomorphic map of Bs
p(Γ) onto the sequence space b∗spp.

To extend Theorem 4.5 to spaces Bs
pq(Γ, µ) we apply real interpolation.

Let 0 < θ < 1, 1 < p <∞, 1 ≤ q <∞, 0 < s0, s1 < 1, s0 6= s1 and s = (1− θ)s0 + θs1.
Theorem 3.10 implies (

Bs0
p (Γ), Bs1

p (Γ)
)
θ,q

= Bs
pq(Γ, µ). (4.19)

As for the interpolation of the sequence spaces b∗spq, we have the following statement.

Theorem 4.6. Let 0 < θ < 1, 1 < p < ∞, 1 ≤ q < ∞, 0 < s0, s1 < 1, s0 6= s1 and
s = (1 − θ)s0 + θs1. Then (

b∗s0pp , b
∗s1
pp

)
θ,q

= b∗spq. (4.20)

The proof follows the same lines of Theorem in [40, Chapter 1.18.2].
Combining (4.19), (4.20) and (4.18) we deduce following corollary.
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4 Besov spaces on nested fractals

Corollary 4.7. Let
d

p
< s < σ, 1 < p <∞ 1 ≤ q <∞.

Then f ∈ C(Γ) belongs to Bs
pq(Γ, µ) if and only if it can be represented as

f =
∞∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ ,

unconditional convergence being in C(Γ). Furthermore this representation is unique and

I : f →
{
ρ

jd
p cξ(f), j ∈ N0, ξ ∈ Vj \ Vj−1

}

is an isomorphic map of Bs
pq(Γ, µ) onto the sequence space b∗spq.

55



CHAPTER 5

Besov spaces on the Koch curve

As we discussed before, any self-similar set, in particular any self-similar curve K from
Section 1.2.2, is a d-set, with d being the Hausdorff dimension of the set. One of the
ways to define Besov spaces Bs

pq(K,µ) on K is by traces, see Chapter 3. The second
way is to use the snowflaked transform H, defined by (1.26), to introduce Besov spaces
B

s
pq(K,µ). The question arises how the function spaces Bs

pq(K,µ) and B
s
pq(K,µ) are

interrelated. In particular, we shift the characterization in terms of Daubechies wavelets
from (T, ρ = |x− y|1/d , µL), [46, p. 360], to K.

In our further reasoning the Koch curve serves as an example, though all our conclu-
sions remain true for any self-similar curve from Section 1.2.2. From now on we also
identify the unit interval I and the 1-torus T.

5.1 Besov spaces B
s
pq(K,µ)

Let K be the Koch curve in R
2, discussed in the Example 1.34. It is a d-set with d = log 4

log 3
.

We endow K with measure µ defined by (1.29), which is a multiple of the Hausdorff
measure.

Let
B

s
pq(K,µ) =

{
f ◦H−1 : f ∈ Bs

pq(T)
}

= Bs
pq(T) ◦H−1

with
‖f ◦H−1|Bs

pq(K,µ)‖ = ‖f |Bs
pq(T)‖.

We are interested in wavelet expansions for the spaces B
s
pq(K,µ). Define ψ̃k

j by

ψ̃k
j (γ) = ψk,per

j ◦H−1(γ).

From (1.32) follows that the system
{
ψ̃k
j , j ∈ N0, k ∈ Pj

}
is orthonormal in L2(K,µ).

The counterpart of Theorem 1.16 for the spaces B
s
pq(K,µ) reads as follows.
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5 Besov spaces on the Koch curve

Theorem 5.1. Let 1 < p < ∞, 0 < q < ∞ and s > 0. Let f̃ ∈ Lp(K,µ). Then

f̃ ∈ B
s
pq(K,µ) if, and only if, it can be represented as

f̃ =
∞∑

j=0

∑

k∈Pj

µk
j2− j+L

2 ψ̃k
j , (5.1)

unconditional convergence being in Lp(K,µ). Furthermore this representation is unique,

µk
j = 2

j+L
2 (f̃ , ψ̃k

j )K = 2
j+L
2

∫

K

f̃(γ)ψ̃k
j (γ)µ(dγ),

and
I : f̃ →

{
µk
j , j ∈ N0, k ∈ Pj

}
(5.2)

is an isomorphic map of Bs
pq(K,µ) onto the sequence space bs,perpq .

5.2 Comparison of Bs
pq(K,µ) and B

s
pq(K,µ)

We first deal with the case 1 < p = q <∞, 0 < s < 1.
We recall that the spaces Bs

pp(T) can be normed by

‖f |Bs
pp(T)‖∗ =




1∫

0

|f(x)|p dx




1
p

+




1∫

0

1∫

0

|f(x) − f(y)|p

|x− y|1+sp dx dy




1
p

. (5.3)

According to (1.33), (5.3) is equivalent to



∫

K

∣∣∣f̃(γ)
∣∣∣
p

µ(dγ)




1
p

+



∫

K

∫

K

∣∣∣f̃(γ) − f̃(δ)
∣∣∣
p

|γ − δ|d+sdp
µ(dγ)µ(dδ)




1
p

,

where f̃ = f ◦H−1. We endow the spaces B
s
pp(K,µ) with the equivalent norm

‖f̃ |Bs
pp(K,µ)‖∗ = ‖f |Lp(K,µ)‖ +



∫

K

∫

K

∣∣∣f̃(γ) − f̃(δ)
∣∣∣
p

|γ − δ|d+sdp
µ(dγ)µ(dδ)




1
p

. (5.4)

Together with (3.12) this leads to

Bs
pp(K,µ) = B

s
d
pp(K,µ). (5.5)

The analogue of Theorem 5.1 for the spaces Bs
pp(K,µ) reads as follows.

57



5 Besov spaces on the Koch curve

Theorem 5.2. Let 1 < p < ∞ and 0 < s < 1. Let f̃ ∈ Lp(K,µ). Then f̃ ∈ Bs
pp(K,µ)

if, and only if, it can be represented as

f̃ =
∞∑

j=0

∑

k∈Pj

µk
j2− j+L

2 ψ̃k
j ,

unconditional convergence being in Lp(K,µ). Furthermore this representation is unique,

µk
j = 2

j+L
2 (f̃ , ψ̃k

j )K ,

and
I : f̃ →

{
µk
j , j ∈ N0, k ∈ Pj

}

is an isomorphic map of Bs
pp(K,µ) onto the sequence space b

s
d
,per

pp .

Proof. This follows from the observation (5.5).

To compare Bs
pq(K,µ) and B

s
pq(K,µ) with 1 < p < ∞, 0 < q < ∞ and 0 < s < 1 we

use the real interpolation.
Let 0 < θ < 1, 1 < p < ∞, 0 < q < ∞, 0 < s0 < 1, 0 < s1 < 1, s0 6= s1 and

s = (1 − θ)s0 + θs1. Then from Theorem 1 in [34, Ch. 3.6.1] follows
(
Bs0

pp(T), Bs1
pp(T)

)
θ,q

= Bs
pq(T).

Since spaces Bs
pq(T) are isomorphic to sequence spaces bs,perpq , it follows that

(
bs0,perpp , bs1,perpp

)
θ,q

= bs,perpq .

Using the isomorphic map in (5.1) one gets
(
B

s0
pp(K,µ),Bs1

pp(K,µ)
)
θ,q

= B
s
pq(K,µ). (5.6)

Using (5.5), (5.6) and (3.14) one gets that for 0 < s < 1, 1 < p <∞, 1 ≤ q <∞

Bs
pq(K,µ) = B

s
d
pq(K,µ).

Thus we may conclude that the following theorem holds.

Theorem 5.3. Let 1 < p < ∞, 1 ≤ q < ∞ and 0 < s < 1. Let f̃ ∈ Lp(K,µ). Then

f̃ ∈ Bs
pq(K,µ) if, and only if, it can be represented as

f̃ =
∞∑

j=0

∑

k∈Pj

µk
j2− j+L

2 ψ̃k
j ,

unconditional convergence being in Lp(K,µ). Furthermore this representation is unique,

µk
j = 2

j+L
2 (f̃ , ψ̃k

j )K ,

and
I : f̃ →

{
µk
j , j ∈ N0, k ∈ Pj

}

is an isomorphic map of Bs
pq(K,µ) onto the sequence space b

s
d
,per

pq .
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5 Besov spaces on the Koch curve

5.3 Faber-Schauder basis on the Koch curve

In Section 1.2.7 we defined piecewise harmonic functions on a self-similar set, which are
regarded as analogue of Faber-Schauder functions.

For the Koch curve K and any other self-similar curve from Example 1.35 a piecewise
harmonic function ψj

ξ with ξ = H(x), is the composition of ψj
x with the transform H−1

from (1.26),
ψj
ξ = ψj

x ◦H−1.

Taking into account (1.35), (1.36) and (1.33) we get

∣∣ψj
ξ(γ) − ψj

ξ(δ)
∣∣ ≤ c |γ − δ|d , (5.7)

where d is the Hausdorff dimension of the curve.
Similarly to the reasoning in Chapter 4 we may expand a function f ∈ C(K) in a

piecewise harmonic basis. Define

cξ(f) =

{
f(ξ), ξ ∈ V0,
f(ξ) − ∑

η∼jξ

αξηf(η), ξ ∈ Vj \ Vj−1, j ≥ 1.

Recall that αξη = ψj−1
η (ξ). Hence for the Koch curve K

αξη =
1

2
, ξ ∈ Vj \ Vj−1, η ∼j ξ, j ≥ 1,

and

cξ(f) = f(ξ) − 1

2

∑

η∼jξ

f(η)

is the counterpart of the second difference. Define

Pnf =
n∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ .

Then Pnf tends to f uniformly on K as n → ∞ and f ∈ C(K) has the unique repre-
sentation

f =
∞∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ .

We can say whether f ∈ Bs
pq(K,µ) judging by the coefficients in the expansion to the

piecewise harmonic basis.

Theorem 5.4. Let K be the Koch curve. Let

d

p
< s < 1, 1 < p <∞ and 1 ≤ q <∞.
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5 Besov spaces on the Koch curve

Then f ∈ C(K) belongs to Bs
pq(K,µ) if and only if it can be represented as

f =
∞∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ , (5.8)

where

Cs
pq(f) =




∞∑

j=0

√
3
jsq


 1

2j

∑

ξ∈Vj\Vj−1

|cξ(f)|p



q
p




1
q

<∞,

unconditional convergence being in C(K). Furthermore,

‖f |Bs
pq(K,µ)‖ ∼ Cs

pq(f).

The proof for the case p = q is the same as for Theorem 4.2. To extend the result to
p 6= q we apply real interpolation.

5.4 Haar wavelets on the Koch curve

The characterization of Besov spaces Bs
pq(K,µ) by Faber-Schauder basis involves point-

wise evaluation of f ∈ Bs
pq(K,µ). This means that we consider only those spaces

Bs
pq(K,µ) where s > d

p
. In order to consider function spaces with 0 < s < d

p
we in-

troduce Haar wavelets.
Wavelets of Haar type on self-similar fractals were introduced in [14, 15]. These

functions differ from ordinary Haar wavelets even on the unit interval, since they are
piecewise polynomials instead of piecewise constants.

Our approach to defining Haar wavelets on the self-similar curves is the same as
in Section 5.1. We apply mapping H from (1.26) to transfer ordinary Haar wavelets
{h0, hjm : j ∈ N0,m = 0, . . . , 2j − 1} from I to K. Let

h̃0(γ) = h0 ◦H−1(γ), h̃jm(γ) = hjm ◦H−1(γ). (5.9)

Observe that the support of h̃jm, m = 0, . . . , 2j − 1, are sets

supp h̃jm = Kw1w2...wj
, (w1, w2, . . . , wj) ∈ Wj.

Then (1.32) implies that the system
{
h̃0, h̃jm : j ∈ N0,m = 0, . . . , 2j − 1

}
is orthonormal

in L2(K,µ).
Taking into acount considerations in Section 1.1.7, Section 5.1 and Section 5.2 we get

the followong theorem.
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5 Besov spaces on the Koch curve

Theorem 5.5. Let 1 < p < ∞, 1 ≤ q < ∞ and 0 < s < d
p
. Let f̃ ∈ Lp(K,µ). Then

f̃ ∈ Bs
pq(K,µ) if, and only if, it can be represented as

f̃ =
∞∑

j=0

∑

k∈Pj

µk
j2− j+L

2 ψ̃k
j ,

unconditional convergence being in Lp(K,µ). Furthermore this representation is unique,

µk
j = 2

j+L
2 (f̃ , ψ̃k

j )K ,

and
I : f̃ →

{
µk
j , j ∈ N0, k ∈ Pj

}

is an isomorphic map of Bs
pq(K,µ) onto the sequence space b

s
d
,per

pq .

Theorem 5.6. Let

1 < p <∞, 1 ≤ q <∞ and 0 < s <
d

p
.

Let f̃ ∈ Lp(K,µ). Then f̃ ∈ Bs
pq(K,µ) if, and only if, it can be represented as

f̃ = µ0h̃0 +
∞∑

j=0

2j−1∑

m=0

µjmh̃jm, (5.10)

unconditional convergence being in Bσ
pq(K,µ), σ < s. The representation (5.10) is unique

with

µ0 =

∫

K

f̃(γ)µ(dγ), µjm = 2j

∫

K

f̃(γ)h̃jm(γ)µ(dγ), j ∈ N0, m = 0, . . . , 2j − 1,

and
J : f̃ 7→

{
µ0, 2

− j
pµjm : j ∈ N0,m = 0, . . . , 2j − 1

}

is an isomorphic map of Bs
pq(K,µ) onto b

s
d
pq(I). In addition, (5.9) is an unconditional

basis in Bs
pq(K,µ).
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CHAPTER 6

Besov spaces on the snowflake

Three Koch curves clipped together form the snowflake curve SF, see Figure 6.1. Due
to the isomorphism between [0, 1] and the Koch curve K we may establish isomorphism

H̃ between [0, 3] and SF. The snowflake is not a self-similar set, but it is a d-set with
d = log 4

log 3
being its Hausdorff dimension and a measure µ being equivalent to the Hausdorff

measure Hd|SF. Let µ be chosen in such a way that it is the image of the Lebesgue

measure under H̃.

Figure 6.1: The snowflake

6.1 New periodic wavelets on T and R

In Section 1.1.5 we have considered the theory of periodic Besov spaces. We slightly
modify the definitions and theorems given there to consider 3-periodic functions.

Let
T = {x ∈ R : 0 ≤ x ≤ 1},
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6 Besov spaces on the snowflake

where the points 0 and 1 are identified. Let

3T = {x ∈ R : 0 ≤ x ≤ 3}

with the points 0 and 3 being identified. We can interpret 3T as a circle of radius 3
2π

with
the centre at the origin. We define the distance ρ(x, y) between two points x, y ∈ 3T as
the length of the shortest arc on the circle connecting them, i.e.

ρ(x, y) = min{|x− y| , 3 − |x− y|}. (6.1)

By D(3T) we denote the collection of all complex-valued infinitely differentiable func-
tions on 3T. The topology in D(3T) is generated by the family of semi-norms

‖ϕ‖α = sup
x∈3T

|Dαϕ(x)| , α ∈ N0.

D′(3T) is the class of all continuous linear functionals on D(3T). The continuity of a
linear functional f on D(3T) means that there exist N ∈ N and cN > 0 such that

|f(ϕ)| ≤ cN
∑

α≤N

‖ϕ‖α,

for all ϕ ∈ D(3T).
Let 0 < p ≤ ∞. Lp(3T) is the standard quasi-Banach space with respect to Lebesgue

measure, quasi-normed by

‖f |Lp(3T)‖ =




3∫

0

|f(x)|p dx




1
p

,

with the usual modification if p = ∞. If 1 ≤ p ≤ ∞ then f ∈ Lp(3T) can be interpreted
in a unique way as an element of D′(3T) by

f(ϕ) =

3∫

0

f(x)ϕ(x) dx, ϕ ∈ D(3T). (6.2)

Consequently, for 1 ≤ p ≤ ∞ we have

D(3T) ⊂ Lp(3T) ⊂ D′(3T), (6.3)

where ” ⊂ ” here and further on means the topological embedding.
Let f ∈ D′(3T). Then the numbers

f̂(k) =
1

3
f(e−

2π
3
ikx), k ∈ Z,
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6 Besov spaces on the snowflake

are said to be the Fourier coefficients of f . If f ∈ Lp(3T), 1 ≤ p ≤ ∞, then (6.2), (6.3)
imply that

f̂(k) =
1

3

3∫

0

f(x)e−
2π
3
ikx dx, k ∈ Z.

Any f ∈ D′(3T) can be represented as

f =
∑

k∈Z
ake

2π
3
ikx, x ∈ 3T, (convergence in D′(3T)) (6.4)

where the Fourier coefficients {ak} ⊂ C are of at most polynomial growth,

|ak| ≤ c (1 + |k|)κ , for some c > 0, κ > 0 and all k ∈ Z.

Definition 6.1. Let ϕ = {ϕj}∞j=0 be a dyadic resolution of unity in R according to
(1.1)-(1.3), s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞ and

‖f |Bs
pq(3T)‖ =

( ∞∑

j=0

2jsq‖
∑

k∈Z
ϕj

(
2πk

3

)
ake

2π
3
ikx|Lp(3T)‖q

) 1
q

(with the usual modification if q = ∞). Then the Besov space Bs
pq(3T) consists of all

f ∈ D′(3T) such that ‖f |Bs
pq(3T)‖ <∞, [34, Chapter 3].

Our approach to defining Besov spaces on the snowflake is the same as in Section 5.1.
We start with the same restrictions on the parameters

0 < s < 1, 1 < p = q <∞

and then extend our result to the case when p 6= q. Since 0 < s < 1 it is enough to con-
sider ψF ∈ C1(R) and ψM ∈ C1(R) in (1.13). Now we slightly modify the construction
of periodic wavelets on R in order to introduce wavelets on the closed snowflake.

Let
N = sup

x∈R
|ψ′

F (x)| , M = sup
x∈R

|ψ′
M(x)| .

ψF and ψM are Lipschitz-continuous functions. For the functions ψL,k
j defined by (1.13)

and (1.14) holds
∣∣∣ψL,k

0 (x) − ψL,k
0 (y)

∣∣∣ ≤ 2
3L
2 N |x− y| , x, y ∈ R,

∣∣∣ψL,k
j (x) − ψL,k

j (y)
∣∣∣ ≤ 2

3
2
(j+L−1)M |x− y| , j ∈ N, x, y ∈ R.

We construct 3-periodic counterparts of ψL,k
j by the procedure

ψL,k
j,3per(x) =

∞∑

l=−∞
ψL,k
j (x+ 3l). (6.5)

64



6 Besov spaces on the snowflake

Define ψL,k,3per
j on 3T by

ψL,k,3per
j (x) = ψL,k

j,3per(x), x ∈ 3T.

Let
P
3
0 =

{
k ∈ Z : 0 ≤ k ≤ 3 · 2L − 1

}

P
3
j =

{
k ∈ Z : 0 ≤ k ≤ 3 · 2j+L−1 − 1

}
, j ∈ N.

Then for j ∈ N0 there exists the set of points {xj,k}k∈P3
j
⊂ 3T such that

suppψL,k,3per
0 ⊂ {x ∈ 3T : ρ(x, x0,k) <

1

2
} = B3T

0,k,

suppψL,k,3per
j ⊂ {x ∈ 3T : ρ(x, xj,k) < 2−j} = B3T

j,k.

Recall that ρ(·, ·) is the metric on 3T given by (6.1). For the points x, y ∈ B3T
j,k, j ∈ N0,

k ∈ P
3
j holds ∣∣∣H̃(x) − H̃(y)

∣∣∣ ∼ |x− y| 1d .

We recall that H̃ is the adaption of mapping H from (1.26) with property (1.33).
Similarly to the Proposition 1.34 in [47] one gets that

{
ψL,k,3per
j , j ∈ N0, k ∈ P

3
j

}

is an orthornomal basis in L2(3T). We simplify the notation and omit L in ψL,k,3per
j .

To characterize periodic Besov spaces in terms of wavelets we first introduce the
corresponding sequence spaces.

Definition 6.2. Let 0 < p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Then bs,3perpq is the collection of
all sequences

µ =
{
µk
j ∈ C : j ∈ N0, k ∈ P

3
j

}

such that

‖µ|bs,3perpq ‖ =




∞∑

j=0

2j(s− 1
p)q


∑

k∈P3
j

∣∣µk
j

∣∣p



q
p




1
q

<∞.

Theorem 6.3. Let {ψk,3per
j } be the orthonormal basis in L2(3T). Let 0 < p ≤ ∞,

0 < q ≤ ∞ and 0 < s < 1. Let f ∈ D′(3T). Then f ∈ Bs
pq(3T) if, and only if, it can be

represented as

f =
∞∑

j=0

∑

k∈P3
j

µk
j2− j+L

2 ψk,3per
j , µ ∈ bs,3perpq ,

unconditional convergence being in D′(3T) and in any space Bσ
pq(3T) with σ < s. Fur-

thermore, this representation is unique,

µk
j = 2

j+L
2

3∫

0

f(x)ψk,3per
j (x) dx,
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6 Besov spaces on the snowflake

and
I : f →

{
µk
j , j ∈ N0, k ∈ P

3
j

}

is an isomorphic map of Bs
pq(3T) onto the sequence space bs,3perpq . If, in addition, p <∞,

q <∞, then {ψk,per
j } is an unconditional basis in Bs

pq(3T).

Remark 6.4. This assertion is the counterpart of Theorem 1.37 in [47] for Bs
pq(3T).

Since
Bs

pq(3T) →֒ Lp(3T)

with s > 0, 1 < p < ∞, 0 < q < ∞, (see [34, Chapter 3.5.1]), we reformulate Theorem
6.3 with additional restrictions on the parameteres.

Theorem 6.5. Let {ψk,3per
j } be the above orthonormal basis in L2(3T). Let 1 < p <∞,

0 < q < ∞ and 0 < s < 1. Let f ∈ Lp(3T). Then f ∈ Bs
pq(3T) if, and only if, it can be

represented as

f =
∞∑

j=0

∑

k∈P3
j

µk
j2− j+L

2 ψk,3per
j , µ ∈ bs,3perpq ,

unconditional convergence being in Lp(3T). Furthermore this representation is unique,

µk
j = 2

j+L
2

3∫

0

f(x)ψk,3per
j (x) dx,

and
I : f →

{
µk
j , j ∈ N0, k ∈ P

3
j

}

is an isomorphic map of Bs
pq(3T) onto the sequence space bs,3perpq .

6.2 Besov spaces B
s
pq(SF, µ)

Let
B

s
pq(SF, µ) =

{
f ◦ H̃−1 : f ∈ Bs

pq(3T)
}

= Bs
pq(3T) ◦ H̃−1

with
‖f ◦ H̃−1|Bs

pq(SF, µ)‖ = ‖f |Bs
pq(3T)‖.

Define ψ̃jk by

ψ̃jk(γ) = ψk,3per
j ◦ H̃−1(γ).

From the corresponding properties of functions ψk,3per
j and transform H̃ follow the prop-

erties of ψ̃jk, namely:

• The system
{
ψ̃jk, j ∈ N0, k ∈ P

3
j

}
is an orthonormal basis in L2(SF, µ).
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6 Besov spaces on the snowflake

• For j ∈ N0 there is the set of points {γj,k}k∈P3
j
⊂ SF such that

supp ψ̃0k ⊂ {γ ∈ SF : |γ − γ0,k| ≤ c2− 1
d} = BSF

0,k, k ∈ P
3
0,

supp ψ̃jk ⊂ {γ ∈ SF : |γ − γj,k| ≤ c2− j
d} = BSF

j,k , k ∈ P
3
j .

• For γ, δ ∈ supp ψ̃jk holds
∣∣∣ψ̃jk(γ) − ψ̃jk(δ)

∣∣∣ ≤ c2
3j
2 |γ − δ|d =

= c2
3j
2 |γ − δ|d−1 |γ − δ| ≤ c2−j(− 1

d
− 1

2) |γ − δ| .

The last inequality is due to the fact that for γ, δ ∈ BSF
j,k

|γ − δ| ≤ |γ − γj,k| + |γj,k − δ| ≤ c2− j
d .

Define ãjk by

ãjk =

{
2−L

2 ψ̃jk, j = 0, k ∈ P
3
j ,

2−j(s− 1
p
)2− j+L−1

2 ψ̃jk, j ∈ N, k ∈ P
3
j .

Then
supp ãjk ⊂ BSF

j,k ,

|ãjk(γ)| ≤ c2−j(s− 1
p
) ≤ cHd

(
BSF

j,k

)s− 1
p , for any γ ∈ SF,

and for any γ, δ ∈ supp ãjk

|ãjk(γ) − ãjk(δ)| ≤ c2−j(s− 1
d
− 1

p
) |γ − δ| ≤ cHd

(
BSF

j,k

)s− 1
d
− 1

p |γ − δ| .

According to Definition 3.12 ãjk are (sd, p)-atoms.

Theorem 6.6. Let 1 < p < ∞, 0 < q < ∞ and 0 < s < 1. Let f̃ ∈ Lp(SF, µ). Then

f̃ ∈ B
s
pq(SF, µ) if, and only if, it can be represented as

f̃ =
∞∑

j=0

∑

k∈P3
j

µk
j2− j+L

2 ψ̃jk, (6.6)

unconditional convergence being in Lp(SF, µ). Furthermore this representation is unique,

µk
j = 2

j+L
2 (f̃ , ψ̃jk)SF = 2

j+L
2

∫

SF

f̃(γ)ψ̃jk(γ)µ(dγ),

and
I : f̃ →

{
µk
j , j ∈ N0, k ∈ P

3
j

}
(6.7)

is an isomorphic map of Bs
pq(SF, µ) onto the sequence space bs,3perpq .
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6 Besov spaces on the snowflake

6.3 Comparison of Bspq(SF, µ) and Bs
pq(SF, µ)

We have
B

s
d
pp(SF, µ) = Bs

pp(SF, µ). (6.8)

The inclusion from left to the right follows from Theorem 3.14 and Theorem 6.6. To get
the opposite one, we need the characterization of periodic Besov spaces in terms of first
differences, we refer to [34, Section 3.5]. The idea is the same as in Chapter 5.

To compare B
s
pq(SF, µ) and Bs

pq(SF, µ) with 0 < s < 1 and p 6= q we use the real
interpolation.

Let 0 < θ < 1, 1 < p < ∞, 0 < q < ∞, 0 < s0 < 1, 0 < s1 < 1, s0 6= s1 and
s = (1 − θ)s0 + θs1. Then from Theorem 1 in [34, Ch. 3.6.1] follows

(
Bs0

pp(3T), Bs1
pp(3T)

)
θ,q

= Bs
pq(3T).

Since spaces Bs
pq(3T) are isomorphic to sequence spaces bs,3perpq , it follows that

(
bs0,3perpp , bs1,3perpp

)
θ,q

= bs,3perpq .

Using the isomorphic map in (6.7) one gets

(
B

s0
pp(SF, µ),Bs1

pp(SF, µ)
)
θ,q

= B
s
pq(SF, µ). (6.9)

Using (6.8), (6.9) and (3.14) one gets that for 0 < s < 1, 1 < p <∞, 1 ≤ q <∞

Bs
pq(SF, µ) = B

s
d
pq(SF, µ).

Thus we may conclude that the following theorem holds.

Theorem 6.7. Let 1 < p < ∞, 1 ≤ q < ∞ and 0 < s < 1. Let f̃ ∈ Lp(SF, µ). Then

f̃ ∈ Bs
pq(SF, µ) if, and only if, it can be represented as

f̃ =
∞∑

j=0

∑

k∈Pj

µk
j2− j+L

2 ψ̃k
j ,

unconditional convergence being in Lp(SF, µ). Furthermore this representation is unique,

µk
j = 2

j+L
2 (f̃ , ψ̃k

j )SF,

and
I : f̃ →

{
µk
j , j ∈ N0, k ∈ Pj

}
(6.10)

is an isomorphic map of Bs
pq(SF, µ) onto the sequence space b

s
d
,3per

pq .
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6 Besov spaces on the snowflake

6.4 Faber-Schauder basis on the snowflake

There are two different decompositions of the Koch snowflake into three Koch curves

SF =
3⋃

i=1

Ki =
6⋃

i=4

Ki,

see Fig. 6.2.

K1

K2

K3

K4

K5

K6

Figure 6.2: Decomposition of the snowflake

In [9] it was shown that the energy on the snowflake SF can be obtained as the sum of
energies correspondent to three Koch curves comprising SF. Moreover, it is independent
of the decomposition.

The procedure is as follows. Let {V (i)
j } be the sequence of finite sets of points approx-

imating Ki according to the way described in Section 1.2.3, i.e.

Ki =
∞⋃

j=0

V
(i)
j .

We denote by G
(i)
j the graphs with vertices V

(i)
j and edge relation ξ ∼j η defined in

Section 1.2.3. Let

Vj =
3⋃

i=1

V
(i)
j =

6⋃

i=4

V
(i)
j , j ≥ 1,

V∗ =
∞⋃

j=1

Vj.

Then
SF = V∗.

We form a graph Gj with vertices Vj, j ≥ 1, and edge relation ξ ∼j η holding if and
only if there exists i ∈ {1, 2, . . . , 6} such that

ξ ∼j η in G
(i)
j .
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6 Besov spaces on the snowflake

There are two possibilities for the graph G0. Either it can consist of vertices

V
′

0 =
3⋃

i=1

V
(i)
0 = {x1, x3, x5}

or

V
′′

0 =
6⋃

i=4

V
(i)
0 = {x2, x4, x6}.

The edge relation is defined in the same way as for the graphs Gj, j ≥ 1.
The energy forms associated with the sets Ki are denoted by E

(i). For any function
u : V∗ → R define graph energies Ej, j ≥ 1, by

Ej(u) = 2j
∑

ξ∼jη

(u(ξ) − u(η))2 .

Let
E(u) = lim

j→∞
Ej(u),

D = {u ∈ C(SF) : E(u) <∞} .
Theorem 4.6. in [9] implies that for u ∈ C(SF)

E(u) = E
(1)(u|K1

) + E
(2)(u|K2

) + E
(3)(u|K3

)

= E
(4)(u|K4

) + E
(5)(u|K5

) + E
(6)(u|K6

).

Since E is independent of chosen decomposition of SF, further on we assume

SF =
3⋃

i=1

Ki

and V0 = V
′

0 = {x1, x3, x5}.

Definition 6.8.

(i) A continuous function h : V∗ → R is called harmonic if it minimizes Ej at all levels
for given boundary values on V0:

Ej(h) = min {Ej(u) : u|V0
= ρ} .

(ii) A continuous function ψ : V∗ → R is called piecewise harmonic of level j if it
minimizes Em at all levels m ≥ j for given boundary values on Vj.

The restriction of a harmonic function on SF to Ki is a harmonic function on Ki.
Let ψj

ξ , ξ ∈ Vj, be a piecewise harmonic function of level j which equals 1 at ξ and 0
at any other vertex of Vj:

ψj
ξ(x) = δξx =

{
1, x = ξ
0, x ∈ Vj \ {ξ}.
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6 Besov spaces on the snowflake

From the correspondent properties of harmonic functions on the Koch curve follows that

suppψj
ξ ⊂ B(ξ, ρj),

where ρ = 1√
3
, and ∣∣ψj

ξ(γ) − ψj
ξ(δ)

∣∣ ≤ c |γ − δ|d ,
where d = ln 4

ln 3
is the Hausdorff dimension of SF.

The system {ψj
ξ : ξ ∈ Vj \ Vj−1, j ≥ 0} is the counterpart of Faber-Schauder basis on

the snowflake. Any function f ∈ C(SF) may be represented as

f =
∞∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ ,

where

cξ(f) =

{
f(ξ), ξ ∈ V0,
f(ξ) − 1

2

∑
η∼jξ

f(η), ξ ∈ Vj \ Vj−1, j ≥ 1.

The isomorphism between function spaces Bs
pq(SF, µ) and sequence spaces is given by

the following theorem.

Theorem 6.9. Let SF be the Koch snowflake. Let

d

p
< s < 1, 1 < p <∞ and 1 ≤ q <∞.

Then f ∈ C(SF) belongs to Bs
pq(SF, µ) if and only if it can be represented as

f =
∞∑

j=0

∑

ξ∈Vj\Vj−1

cξ(f)ψj
ξ , (6.11)

where

Cs
pq(f) =




∞∑

j=0

√
3
jsq


 1

2j

∑

ξ∈Vj\Vj−1

|cξ(f)|p



q
p




1
q

<∞,

unconditional convergence being in C(SF). Furthermore,

‖f |Bs
pq(K,µ)‖ ∼ Cs

pq(f).

The proof follows the same lines of Theorem 4.2.
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CHAPTER 7

Besov spaces on the Cartesian product of some self-similar sets

Let Q = (0, 1)n be the unit cube in R
n. Anisotropic Besov spaces Bs,α

pp (Q) measure
smoothness of functions depending on the direction of the j-th coordinate. Recall that
the norm is given by

‖f |Bs,α
pp (Q)‖ = ‖f |Lp(Q)‖ +



∫

Q

∫

Q

|f(x) − f(y)|p
̺α,n(x, y)n+sp

dx dy




1/p

, (7.1)

where ̺α,n(x, y) is the anisotropic distance on Q defined by (1.6). This means that
to describe the anisotropic Besov spaces we modify the way how we measure the dis-
tance between points. The anisotropic distance ̺α,n(x, y) is a quasimetric. According
to the Assouad’s embedding theorem the snowflaked version of (Q, ̺α,n(x, y)), that is
(Q, ̺α,n(x, y)t), 0 < t < t0 < 1, can be mapped with the help of some bi-Lipschitz
transform to a d-set Γ in some R

N . There are two ways of defining Besov spaces on
Γ. We get spaces Bs

pp(Γ, µ) by traces or we can define Besov spaces B
s,α
pp (Γ, µ) on Γ to

be the image of anisotropic Besov spaces on Q. The question is how these spaces are
interrelated.

7.1 Quasimetric spaces

Definition 7.1. A quasimetric on a set X is a function q : X×X → [0,∞) that satisfies

1. q(x, y) = q(y, x),

2. q(x, y) = 0, if and only if x = y,

3. for some K ≥ 1 and all x, y, z ∈ X holds

q(x, y) ≤ K(q(x, z) + q(z, y)). (7.2)

A quasimetric space is a set X together with a quasimetric q.
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7 Besov spaces on the Cartesian product of some self-similar sets

When K = 1 in formula (7.2), one gets a metric space.
Balls in the quasimetric space (X, q(x, y)) can be defined as usually: for x ∈ X and

r > 0 a ball centred at x with radius r is a set

B(x, r) = {y ∈ X : q(x, y) < r}.

A useful fact about quasimetric spaces is given by the following theorem.

Theorem 7.2. Let q be a quasimetric on a set X. Then there is ε0 > 0, depending only
on the constant K in (7.2), such that qε(x, y) = q(x, y)ε is bi-Lipschitz equivalent to a
metric for each 0 < ε ≤ ε0. That is, for each 0 < ε ≤ ε0 there is a metric dε on X and
constants c, c′ > 0 such that

c′qε(x, y) ≤ dε(x, y) ≤ cqε(x, y)

for all x, y ∈ X.

For the proof we refer to the Chapter 14 of [11].

Definition 7.3. Let (M,d(x, y)) be a metric space. M is called doubling if there is a
constant k such that every ball B in M can be covered by at most k balls of half the
radius of B.

Theorem 7.4 (Assouad). Let (M,d(x, y)) be a metric space which is doubling. For each
0 < t < 1 there is N ∈ N and a mapping

H : M → R
N

such that H is bi-Lipschitz as a mapping from (M,d(x, y)t) into R
N . This means, that

there are constants c, c′ > 0 such that

c′d(x, y)t ≤ |H(x) −H(y)| ≤ cd(x, y)t

for all x, y ∈M .

The dimension N can be chosen to depend only on t and on the doubling constant k
in Definition 7.3. The standard reference to the theorem above is [2], some discussion
can be found in [11], [36].

In analysis it is often natural to have not just a metric but also a measure.

Definition 7.5. Given a metric space (M,d(x, y)), a Borel measure µ on M is said to
be doubling if there is a constant c such that

µ(B(x, 2r)) ≤ cµ(B(x, r)), for all x ∈M, r > 0.

The existence of a nonzero doubling measure onM implies that (M,d(x, y)) is doubling
as a metric space.
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Definition 7.6. Let (M,d(x, y)) be a metric space and d > 0. Then (M,d, µ) is called
a d-space if M is complete as a metric space, and if there is a regular Borel measure µ
on M such that

µ(B(x, r)) ∼ rd (7.3)

for all x ∈M and 0 < r < diamM .

Distinguished examples of d-spaces are d-sets, which are subsets of R
n and satisfy

(7.3).
The connection between d-spaces and the Hausdorff measure is given by the following

theorem.

Theorem 7.7. Let (M,d(x, y), µ) be a d-space.

1. Then the Hausdorff dimension of M equals d,

dimHM = d,

and the restriction Hd on M satisfies (7.3).

2. If µ1 and µ2 satisfy (7.3), then µ1 ∼ µ2.

The proof may be found in [17].

If (M,d(x, y),Hd) is a d-space and 0 < t < 1, then (M,d(x, y)t,H
d
t ) is a d

t
-space.

If (M,d, µ) is a d-space, then µ is doubling and (M,d) is a doubling metric space.

Example 7.8. Let Q = [0, 1]n be the closed unit cube in R
n, the n-tuple

α = (α1, . . . , αn) with 0 < α1 ≤ . . . αn <∞,

n∑

j=1

αj = n (7.4)

be an anisotropy in R
n and

̺α,n(x, y) = |x− y|α , where |x|α = max
k=1,...,n

|xk|
1
αk ,

be an anisotropic distance. If not all αk are the same, then from (7.4) follows that there
are k such that αk < 1. For these k

̺k1(xk, yk) = |xk − yk|
1
αk , xk, yk ∈ R,

is only a quasimetric on R. Hence ̺α,n is also only a quasimetric. Nevertheless if µL is
the Lebesgue measure, then

µL(B(x, r)) ∼ rn

for any ball B(x, r) ⊂ Q.
According to Theorem 7.2 there is ε0 > 0, such that ̺ε0α,n is bi-Lipschitz equivalent to a

metric. In this particular case ε0 is very easy to calculate, it equals α1. (Q, ̺α,n(x, y)α1)
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is a metric space. Taking into account the remarks given after Theorem 7.7 and the
fact that the Lebesgue measure is equivalent to the n-dimensional Hausdorff measure,
we may conclude that (Q, ̺α,n(x, y)α1 ,H

n
α1 ) is an n

α1
-space.

(Q, ̺α,n(x, y)α1 ,Hn/α1) is doubling as a metric space, thus from Theorem 7.4 it follows
that for each 0 < t < 1 there is N ∈ N and a mapping

H : Q→ R
N

such that
c′̺α,n(x, y)α1t ≤ |H(x) −H(y)| ≤ c̺α,n(x, y)α1t, c, c′ > 0,

for all x, y ∈ Q.
Let Γ = HQ. Then since

H
n

α1t (Q) ∼ H
n

α1t (Γ)

we get that (Γ, |γ − δ| ,H
n

α1t ) is an n
α1t

-set, 0 < t < 1.

Example 7.9. Let X = [0, 1]2 be the unit square and

α = (α1, α2) with 0 < α1 < α2 <∞, α1 + α2 = 2,
α1

α2

=
log 3

log 4

be an anisotropy. An anisotropic distance on X is defined by

̺α,2(x, y) = max
{
|x1 − y1|

1
α1 , |x2 − y2|

1
α2

}
.

Then
(
X,max

{
|x1 − y1| , |x2 − y2|

α1
α2

})
= ([0, 1], |x1 − y1|) ⊗

(
[0, 1], |x2 − y2|

α1
α2

)

is a metric space and
(
X,max

{
|x1 − y1| , |x2 − y2|

α1
α2

}
,H

2
α1

)
is a 2

α1
-set. Define the

transform H = (H1, H2) by
H1 : [0, 1] → [0, 1],

H2 : [0, 1] → Γ1,

where H1 is the identity map and H2 is the homeomorphism between [0, 1] and the Koch
curve K form (1.26). Put Γ = [0, 1] ⊗ Γ1. Then

H :
(
X,max

{
|x1 − y1| , |x2 − y2|

α1
α2

})
→ (Γ, |γ − δ|)

is bi-Lipschitz.
Properties of Hausdorff measure imply that

H
2
α1 (X) ∼ H

2
α1 (Γ)

and it follows that
(

Γ, |γ − δ| ,H
2
α1

)
is a 2

α1
-set.

This example shows that Assouad’s embedding theorem applied to the anisotropic
Besov spaces is valid also for t = 1.
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Figure 7.1: The anisotropic cube and the Cartesian product of the unit interval and the Koch

curve

7.2 Anisotropic spaces as isotropic spaces on fractals

According to the previous Section for every fixed 0 < t ≤ 1 there is a mapping H : Q→ Γ
from the closed unit cube Q to an n

α1t
-set Γ such that

|H(x) −H(y)| ∼ ̺α,n(x, y)α1t

and for any A ⊂ Γ
H

n
α1t (A) ∼ µL(H−1(A)). (7.5)

This means that H
n

α1t is equivalent to the image of the Lebesgue measure µL under the
transform H. According to Theorem 1.19 in [29] for any Borel function f̃ on Γ holds

∫

Γ

|f̃ | dH
n

α1t ∼
∫

Q

|f̃ ◦H| dµL

or equivalently ∫

Γ

|f ◦H−1| dH
n

α1t ∼
∫

Q

|f | dµL

for any Borel function f on Q.
We simplify the notation and instead of H

n
α1t we use µ.

We can introduce the following function spaces on Γ. Let

B
s,α
pp (Γ, µ) =

{
f ◦H−1 : f ∈ Bs,α

pp (Q)
}

= Bs,α
pp (Q) ◦H−1.

with
‖f ◦H−1|Bs,α

pp (Γ, µ)‖ = ‖f |Bs,α
pp (Q)‖.

Due to our previous remarks we may conclude that the space B
s,α
pp (Γ) is the set of all

f̃ ∈ Lp(Γ, µ) such that

‖f̃ |Bs,α
pp (Γ, µ)‖∗ = ‖f̃ |Lp(Γ, µ)‖ +



∫

Γ

∫

Γ

∣∣∣f̃(x) − f̃(y)
∣∣∣
p

|γ − δ|
n

α1t
+ s

α1t
p
µ(dγ)µ(dδ)




1/p

. (7.6)
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The formula (7.6) represents the norm in the Besov space B
s

α1t

pp (Γ, µ) on n
α1t

-set Γ defined
by trace. Thus

Bs,α
pp (Q) ◦H−1 = B

s
α1t

pp (Γ, µ).
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