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Abstract  Interlaboratory comparisons need a refer-

ence value of the measurand to be assigned. It is necessary 
to have some procedure that allows to determine the refer-
ence value at a maximum number of participating laborato-
ries results to be included into the determination and, at the 
same time, unreliable laboratory results must be disregarded. 
It is shown in the paper that this procedure can be imple-
mented using a preference aggregation approach. 
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1.  INTRODUCTION 
 

When organizing interlaboratory comparisons for 
proficiency testing (see, for example, [1]) the main 
task is usually determination of the reference value xref 
and its uncertainty range. Let the participating in com-
parisons laboratories be measuring nominally the 
same quantity Y, that is   

Y = Xi, i = 1, …, N ,                                          (1)    

where Xi is the quantity measured by the i-th laborato-
ry and N is a number of laboratories participating in a 
comparison. The aim of the comparisons is to deter-
mine an estimate y of Y and the associated uncertainty 
u(y) in terms of estimates xi of the Xi provided by the 
laboratories and their associated standard uncertainties 
u(xi). 

The estimate y is typically calculated as a weighted 
mean by formula 
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and corresponding uncertainty is 
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where N  is the number of laboratories, results of 
which deem to be reliable. 

It is follows from expressions (2) and (3) that a 
procedure of determination of the reference value 
must provide a highest possible consistency of the 
participating laboratories measurement results xi, that 

is to allow shaping a subset of maximal possible pow-
er N   of laboratories providing reliable results  (so 
called largest consistent subset, LCS). Therewith, this 
procedure must facilitate identifying unreliable results 
and subsequent elimination of corresponding laborato-
ries from the set of comparison participants. This 
decision takes place, if the following condition is 
valid: 
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Different ways of the problem solving are de-
scribed in many publications. For example, in [2] 
statistical criteria testing the consistency assumption 
are analyzed in conjunction with full enumeration 
when building the LCS(s). In paper [3] an algebraic 
approach has been proposed giving the procedure LCS 
determination of polynomial complexity. In [4], it was 
proposed to consider the uncertainty range u(xi) as the 
rectangular distribution and to deem that each partici-
pant gives one vote to each value within its uncertain-
ty range and no votes for values outside this range. 
This produces a robust algorithm that is insensitive to 
outliers, i.e. results with the uncertainty considerably 
lower than those of other participants. The algorithm 
successful application has been described in [5].  

This paper is devoted to the problem solving in 
terms of preference aggregation. 

 
2. PREFERENCE AGGREGATION APPROACH  

 
Designate the uncertainty range [ ( ), ( )]i iu x u x

obtained by i-th laboratory through Ii. Define the 
range of actual values of measured quantity as alge-
braic union of the uncertainty ranges obtained by each 
laboratory: 
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Let us partition this range into equal intervals in 
such a way that their number ensures enough accuracy 
of the measured quantity values representation. Then 
we have n values of the measured quantity {а1, а2, …, 
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аn} = A, corresponding to the interval bounds that will 
play part of alternatives  (candidates) in the consensus 
relation determination problem. The laboratories will 
play part of voters in the problem. 

Let us compose the preference profile  which 
will consist of rankings describing the uncertainty 
ranges of each laboratory. Each k-th rankings is the 
union of binary relations of strict order and equiva-
lence possessing the following properties: 

i) ai  aj, if ai  Ik and aj  Ik 
ii) ai ~ aj, if ai, aj  Ik or ai, aj  Ik, 

whence it follows that each ranking includes one pair 
of alternatives with the strict order relation and n – 2 
pairs with the equivalence relation. 

Our aim is to determine a single preference rela-
tion that would give an integrative characterization of 
the alternatives. On the basis of a Kemeny distance 
(see, for instance, [6]) between the rankings, we can 
define the distance ( , )D   from  to the profile  and 
then formulate a consensus relation determination 
problem as 

arg min ( , )D


    ,                         (6) 
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      is Kemeny distance; 

{1, ..., m} =   is the preference profile consisting of 
rankings shaped by the laboratories k;  is a set of all 
n! linear orders  on A;  is the consensus ranking 
(Kemeny median). Each linear order corresponds to 
one of permutations of first n natural numbers Nn.  

We will use the recursive branch and bound algo-
rithm for finding a solution of the problem (6) that 
was described in [7]. In the present version, the algo-
rithm is modified in such a way to be able to find not 
only one but all solutions of the problem (6). In this 
case, the multiple optimal solutions must be convolute 
into a single one. In each individual situation the prob-
lem can be resolved on the basis of some rational 
considerations. The situations are demonstrated below 
by particular examples. 

 
3.  EXAMPLES 

 
Consider how the proposed procedure works by 

the examples taken from [3-5].  
 
3.1. Example 1 
This example [4] represents some model data 

where results of a reference object length measure-
ments made by 9 laboratories are shown in Fig. 1. The 
range of actual length values of is reduced to Table 1.  

Rankings corresponding to uncertainty ranges of 
the nine laboratories produce the preference profile as 
follows: 

1: a8~a9a1~a2~a3~a4~a5~a6~a7~a10~a11~a12 

2: a3~a4~a5~a6~a7~a8~a9~a10~a11a1~a2~a12 

3: a8~a9a1~a2~a3~a4~a5~a6~a7~a10~a11~a12 

4: a6~a7~a8a1~a2~a3~a4~a5~a9~a10~a11~a12 

5: a2~a3~a4~a5~a6~a7~a8~a9~a10a1~a11~a12 

6: a4~a5~a6~a7~a8~a9~a10~a11a1~a2~a3~a12 

7: a8~a9a1~a2~a3~a4~a5~a6~a7~a10~a11~a12 

8: a6~a7~a8~a9~a10a1~a2~a3~a4~a5~a11~a12 

9: a3~a4~a5~a6~a7~a8~a9~a10a1~a2~a11~a12. 

For the given profile, the branch and bound algo-
rithm found the following eight optimal solutions of 
equal worth: 

a8 a9  a6  a7  a10  a4  a5  a3  a11  a2  a1  a12 

a8  a9  a6  a7  a10  a4  a5  a3  a11  a2  a12  a1 

a8  a9  a6  a7  a10  a5  a4  a3  a11  a2  a1  a12 

a8  a9  a6  a7  a10  a5  a4  a3  a11  a2  a12  a1 

a8  a9  a7  a6  a10  a4  a5  a3  a11  a2  a1  a12 

a8  a9  a7  a6  a10  a4  a5  a3  a11  a2  a12  a1 

a8  a9  a7  a6  a10  a5  a4  a3  a11  a2  a1  a12 

As, in the obtained solutions, the relations a4  a5 

and a5  a4 occur the same number of times we con-
clude that a5 ~ a4. Similar considerations give a6 ~ a7 
and a1 ~ a12. Then the final consensus relation is 

     ={a8 a9a6 ~a7 a10 a4~a5  a3  a11 a2a1~a12}.   

The winner is the alternative a8 which corresponds 
to the value 1.77395 inches (red line in Fig. 1). It is 
selected as the reference value. It is clear from Fig. 1 
that this value provides maximal consistency of the 
laboratory results. This result coincides with the out-
come of Nielsen's analysis in [4] implemented by him 
using so called "Value Voted Most Likely To Be Cor-
rect" algorithm. 

 
3.2. Example 2 
Second example is based on the data of microwave 

power measurement exercise with aim to find if there 
are laboratories needing a revision of their measure-
ment techniques and methods [5]. The twelve labora-
tories presented their results of the calibration factor 
measurements collected for a standard power sensor at 
the frequency 1 GHz as shown in Fig. 2. 

Table 1 
Twelve alternatives of the actual length values range, inches 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 
1.77430 1.77425 1.77420 1.77415 1.77410 1.77405 1.77400 1.77395 1.77390 1.77385 1.77380 1.77375 
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Рис. 1. Measurement results of 9 laboratories for proficiency testing 
 Rankings corresponding to uncertainty ranges of 

the 12 laboratories for the calibration factor of the 
travelling standard produce the preference profile as 
follows: 

1: a5 ~ a6 ~ a7  a1 ~ a2 ~ a3 ~ a4 ~ a8 ~ a9 ~ a10 

2: a5 ~ a6  a1 ~ a2 ~ a3 ~ a4 ~ a7 ~ a8~ a9 ~ a10 

3: a5 ~ a6 ~ a7  a1 ~ a2 ~ a3 ~ a4 ~ a8 ~ a9 ~ a10 

4: a3 ~ a4 ~ a5 ~ a6 ~ a7 ~ a8 ~ a9  a1 ~ a2 ~ a10 

5: a5 ~ a6 ~ a7  a1 ~ a2 ~ a3 ~ a4 ~ a8 ~ a9 ~ a10 

6: a4 ~ a5 ~ a6 ~ a7 ~ a8 ~ a9  a1 ~ a2 ~ a3 ~ a10 

7: a5 ~ a6 ~ a7 ~ a8  a1 ~ a2 ~ a3 ~ a4 ~ a9 ~ a10 

8: a4 ~ a5 ~ a6 ~ a7  a1 ~ a2 ~ a3 ~ a8 ~ a9 ~ a10 

9: a6 ~ a7  a1 ~ a2 ~ a3 ~ a4 ~ a5 ~ a8 ~ a9 ~ a10 

10: a4 ~ a5 ~ a6 ~ a7  a1 ~ a2 ~ a3 ~ a8 ~ a9 ~ a10 

11: a2 ~ a3 ~ a4  a1 ~ a5 ~ a6 ~ a7 ~ a8 ~ a9 ~ a10 

12: a4 ~ a5~ a6 ~ a7  a1 ~ a2 ~ a3~ a8 ~ a9 ~ a10. 

For the given profile, we have again eight optimal 
solutions: 

a6  a5  a7  a4  a8  a3  a9  a2  a1  a10 

a6  a5  a7  a4  a8  a3  a9  a2  a10  a1 

a6  a5  a7  a4  a8  a9  a3  a2  a1  a10 

a6  a5  a7  a4  a8  a9  a3  a2  a10  a1 

a6  a7  a5  a4  a8  a3  a9  a2  a1  a10 

a6  a7  a5  a4  a8  a3  a9  a2  a10  a1 
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Рис. 2. Measurement results of 12 laboratories for the calibration factor of the travelling standard 
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a6  a7  a5  a4  a8  a9  a3  a2  a1  a10 

a6  a7  a5  a4  a8  a9  a3  a2  a10  a1. 

Applying an analysis similar to that in section 3.1, 
we have the final consensus relation: 

 = {a6  a5  ~ a7  a4  a8  a3 ~ a9  a1 ~ a10}. 

The reference value is equal to a6 = 0.985. It is 
evident from Fig. 2 that the only laboratory 11 will be 
not included into the LCS as its uncertainty range is 
not compatible with other results.  

Reference [5] authors used Nielsen's algorithm for 
determination of the LCS and obtained the same out-
come.  
 

3.3. Example 3 
Finally, let us consider a third example taken from 

[3] where, among others, a length key comparison 
involving eleven National Metrological Institutes 
(NMIs) has been considered. The measurement results 
of a tungsten carbide gauge block of nominal length 1 
mm using interferometry are shown in Fig. 3. 

Rankings corresponding to uncertainty ranges of 
the 11 laboratories give the following preference pro-
file: 

1: a4 ~ a5  a1 ~ a2 ~ a3 ~ a6 ~ a7 ~ a8 

2: a3 ~ a4 ~ a5  a1 ~ a2 ~ a6~ a7 ~ a8 

3: a2 ~ a3 ~ a4  a1 ~ a5 ~ a6 ~ a7 ~ a8 

4: a3 ~ a4 ~ a5  a1 ~ a2 ~ a6 ~ a7 ~ a8 

5: a3 ~ a4  a1 ~ a2 ~ a5 ~ a6 ~ a7 ~ a8 

6: a7  a1 ~ a2 ~ a3 ~ a4 ~ a5 ~ a6 ~ a8 

7: a7  a1 ~ a2 ~ a3 ~ a4 ~ a5 ~ a6 ~ a8 

8: a2 ~ a3  a1 ~ a4 ~ a5 ~ a6 ~ a7 ~ a8 

9: a4 ~ a5  a1 ~ a2 ~ a3 ~ a6~ a7 ~ a8 

10: a5 ~a6  a1 ~ a2 ~ a3 ~ a4 ~ a7 ~ a8 

11: а4  a1 ~ a2 ~ a3 ~ a5 ~ a6 ~ a7 ~ a8. 

For the given profile, eight optimal solutions are as 
follows: 

a4  a3  a5  a2  a7  a6  a8  a1 

a4  a3  a5  a2  a7  a8  a6  a1 

a4  a3  a5  a7  a2  a6  a8  a1 

a4  a3  a5  a7  a2  a8  a6  a1 

a4  a5  a3  a2  a7  a6  a8  a1 

a4  a5  a3  a2  a7  a8  a6  a1 

a4  a5  a3  a7  a2  a6  a8  a1 

a4  a5  a3  a7  a2  a8  a6  a1 

After apllication of the convolution procedure we 
have the final consensus relation: 

 = {a4  a3 ~ a5  a2 ~ a7  a6 ~ a8   a1}. 
 One can see that a4 = 20 nm is the winner and 
should be assigned to be the reference value. Mea-
surement results of NMIs 6 and 7 should be ex-
cluded due to condition (4). This outcome is similar to 
that obtained by M. Cox in [3]. 

 
4.  CONCLUSION 

 
In the paper a procedure of the largest consistent 

subset determination for interlaboratory comparisons 
has been proposed on the basis of preference aggrega-
tion approach. Experimental verification of the algo-
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Рис. 3. Measurement results of 11 NMIs for the deviation from nominal length of a gauge block 
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rithm on comparison data given in various publica-
tions [3-5] confirms its correctness. In contrast to 
other approaches, it provides additional information 
about interrelations of values in the actual values 
range. For instance, from the solution in Example 1 
(section 3.1) one can conclude that values a6 and a7 are 
equivalent to each other from the view point of their 
contribution into the final reference value and, at the 
same time, they both are less important for the refer-
ence value than the value a8. This information, some-
how or other, can be taken into account when analyz-
ing the comparison results. The paper outcomes dem-
onstrate the possibility of useful application of prefe-
rence aggregation methods in metrological practice. 
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