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ABSTRACT 

 
Currently, for a variety of mechatronic systems and 
components, sufficient failure behaviour data are not 
available. Endurance tests at customer-specific 
operating conditions provide manufacturers with 
specific failure time data. However, they are time-
consuming and expensive. Findings gained through 
experiments are valid only for the applied test 
conditions and loads. On the other hand, developers 
require, as early as possible, meaningful key figures 
characterizing the applied components to determine 
the overall reliability. Often, modified components 
using the same technology basis are applied with 
other load profiles, so that available test data can not 
be used without further steps. Alternatively, one can 
try to derive sufficiently precise predictions for newly 
developed components or new application 
environments from a variety of existing data sets from 
endurance tests of similar components and other load 
cases. To this end, well-known regression models of 
survival analysis have been developed further. To 
illustrate the transferability to applications for 
reliability prediction, test data of DC motors from in-
house experiments and simulated data sets are adapted 
to a Cox proportional hazards model. 
 

Index Terms – Reliability prediction, Cox 
proportional hazards model, DC motors, mechatronic 
systems, regression 

1. INTRODUCTION 

Manufacturers of mechatronic drive systems 
investigate the reliability of their products performing 
endurance tests. The aim of these experiments is to 
gain findings about the failure behaviour and key 
figures characterizing it. Tests are expensive, which is 
the reason, why not all possible load profiles and 
combinations of impact parameters can be 
investigated. To provide significant statistical 
information, the sample parts have to be tested with 
respect to a specific test goal. Using the test results, 
the failure probability under the tested load and 
surrounding conditions can be estimated statistically, 
which is described in [3]. The statistical statement 
resulting from the experiment is valid only for the 
investigated load and test conditions, however.  
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Fig. 1. Vision of a reliability prediction 
 
Suppliers of mechatronic systems are careful when 

they provide reliability data about their products. If 
customers want to acquire meaningful information 
about the reliability of their products, they or the 
supplier himself need to perform tests for the specific 
application. In order to be able to estimate the 
reliability in early product development stages, there 
exists the alternative to calculate estimates from 
existing data of similar parts for other load cases and 
other part sizes. On this basis, a prediction of failure 
behaviour becomes possible. 

For this purpose, stochastic models based on well-
known regression models of survival analysis are 
developed further, adopted and tested for engineering 
applications. We investigate approaches to be able to 
analyze test data and apply it for prediction purposes. 
By a reliability prediction of this manner, it shall 
become possible to estimate the failure behaviour for 
untested load cases or new components.  

Fig. 1 illustrates the vision presented in this 
publication. A future aim is to provide a software tool 
for the prediction of reliability (Reliability Prediction 
Module) using the Cox model. 

2. SURVIVAL ANALYSIS 

Lifetimes of mechatronic systems cannot be predicted 
exactly, they usually depend on many uncontrollable 
(random) influencing factors. Therefore it is important 
to set up mathematical models of probability 
distributions of the lifetime. Suppose that the 
distribution of the lifetime T of an object is given by 
the probability distribution function )()( tTPtF ≤= , 
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the density dttdFtf /)()( =  and the failure (hazard) 

rate �, where the failure rate at time t is defined as   
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The failure rate, the density and the distribution 
function provide alternative but equivalent 
characterizations of the distribution of T. The 
probability distribution function may be calculated 
from the failure rate by the well known equation 
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Comparatively simple lifetime models are given by 
parametric families of distributions as the Weibull 
distribution or the lognormal distribution which 
depend on a finite number of parameters. In many 
applications the populations of systems are 
considerably more heterogeneous, such that more 
complex models should be considered. Models of the 
so called Survival Analysis are particularly useful. 

Survival analysis or failure time analysis means the 
statistical analysis of data, where the response of 
interest is the time from a well-defined time origin 
(birth, start of treatment, start of operating a machine) 
to the occurrence of a given event (death, relapse, 
failure). In biomedicine lifetimes or survival times are 
the key examples. In an obvious way these models 
can be transferred to engineering applications where 
lifetimes of technical systems are considered.  

These more complex models of survival analysis 
take the following two main features into account: 
� Censoring. The most common form of which is 

right-censoring: Here, the period of observation 
expires, or an object is removed from the study, 
before the event of interest (failure) occurs. For 
example, some of the technical systems under 
consideration can still be functioning at the end of a 
lifetime experiment. 
� Covariates. The objective may be to incorporate 

different types of technical systems and different 
(environmental) conditions during the lifetime 
experiment like load, temperature or air pressure. This 
leaves us with a statistical regression problem. 
Additional variables, so called covariates, are 
introduced, which characterize the objects under 
consideration in more detail. The link between these 
covariates and the lifetime distribution is given in 
regression models by the intensities of corresponding 
lifetime models. The intensity is closely related to the 
failure rate or hazard rate. Roughly, the intensity 
function is the probability that an object which is at 
risk now, will fail in the next small unit of time. 

3. THE COX PROPORTIONAL-HAZARDS 
REGRESSION MODEL 

One of the most popular regression models is the Cox 
model (or proportional hazards model). For each 
object i, i = 1, …, n, there are, in addition to the 

possibly censored lifetime, k covariates 

kii YY ,1, ,..., observed, which describe the object and the 

environmental conditions in more detail. The 
conditional hazard of the lifetime T given the vector 
of covariates Y at time t is 
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Cox suggested that this so called intensity could be 

modeled as the product of an arbitrary unknown 
deterministic baseline hazard 0λ  and an exponential 

function with an argument linear in the covariates. 
This leads to the following model of the intensity for 
item i: 

( )kikiii YYtRtt ,1,10 ...exp)()()( ββλλ ++=  , 

 
where iR  is the risk indicator, equal to one as long as 

object i is observed (at risk). ( )k
T ββββ ...,,, 21=  is 

the vector of the unknown regression parameters. 
Based on the lifetime data of an experiment the 
baseline hazard function 0λ  and the regression 

parameters have to be estimated statistically. For each 
item the data consist of 
 
� the possibly censored failure time T;  
� an indicator equal to one if T is a true failure     
   time, zero if it is censored;  
� and the vector of explanatory variables Y.  
 
The Cox model itself makes three assumptions: 

first, that the ratio of the hazards of two objects is the 
same at all times; secondly, that the explanatory 
variables act multiplicatively on the hazard; and 
thirdly, that conditionally on the explanatory 
variables, the failure times of two individuals are 
independent. As with all regression models, one also 
assumes that the explanatory variables have been 
transformed so that they may be entered without 
further transformation and that all interactions have 
been included explicitly. 

The regression coefficients � are estimated by 
maximizing the so-called partial likelihood. Having 

computed 
∧

β , the estimated vector of regression 

coefficients, one can calculate the estimate of the 
cumulative baseline hazard  

 dsst
t

	=Λ
0

00 )()( λ   

explicitly. Estimation of the intensity function itself 
can be done by taking a smooth derivative of the 
cumulative hazard. The standard Cox model and the 
estimation methods are implemented in the most 
statistic software tools [4, 7]. 
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4. SURVIVAL ANALYSIS APPROACH TO 
RELIABILITY 
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Fig. 2. Steps to predict reliability by means of a Cox 
model 

 
In mechanical engineering models of survival analysis 
can be used if in lifetime experiments censoring 
effects arise. Concurrently, during the tests additional 
information is available, described by covariates, 
which characterize the objects under consideration in 
more detail. Such covariates can, for example, be 
different loads or a variety of construction forms. [2] 

At the beginning of a reliability analysis by means 
of a Cox model, one has to fix the explanatory 
variables (the covariates). It is quite challenging to 
find out a good choice of variables influencing the 
reliability. Indicator variables also can be used as 
covariates. They describe for an object of 
investigation whether a property is present (value = 1) 
or not (value = 0). During the test phase one observes 
for each object the failure time, the risk indicator and 
the covariates. From these data the vector of the 
regression parameters and the baseline hazard can be 
estimated. These estimates can be used for the 
deduction of reliability characteristics like the mean 
time to failure, quantiles or the whole distribution 
function. Since a regression model is used, one can 
predict such characteristics also for values of 
covariates, which were not actually measured. This 
means in particular, that one can interpolate (in some 
sense made precise below) the lifetime distributions 
between different lines of objects under 
considerations. To verify the fit of the model to the 
data, so called Goodness-of-fit tests can be applied. 

Fig. 2 summarizes the procedure to generate a 
failure probability prediction as we performed it. The 
model approach is chosen, and life time data 
including the covariates is recorded. Then, algorithms 
are used to calculate estimates for the model 
parameters. For arbitrary values of covariates, the 
result can be illustrated by a plot of the failure 
probability function. During development, these steps 
are part of an iteration loop to improve the prediction 
results. Especially the choice and the implementation 
of the covariates need to be modified. The fact that 

the performance of experiments is time-consuming 
and expensive must be taken into account at iteration. 
For the end-user, no iteration should be necessary. 

5. MODELING OF DC-MOTORS AS AN 
EXAMPLE 

Mechatron. System
DC-Motor

Mechan. PowerEl. Power

P = U I P = M �
 

 
Fig. 3. Abstraction of a DC motor 

 
In the previous chapter, it was shown, how one can 
proceed to estimate the regression coefficients for a 
Cox model from a given data set of failure times, risk 
indicators and explaining covariates. First of all, one 
must decide which of the possible impact parameters 
can be used as covariates in the model. Regarding a 
complex mechatronic system, it might not be obvious, 
which influence parameters on the system reliability 
are useful. There are influence parameters which are 
difficult or impossible to monitor. Besides data gained 
performing endurance tests, further information might 
be available using existing data which had been 
generated for other purposes. If one uses such existing 
data, the choice of covariates is restricted to the 
monitored sets of parameters. 

In order to obtain reliability information, 
endurance tests are performed. For the investigations 
presented in this publication, failure data of 232 parts 
of three different DC-motor types (12V, 18V, 24V) 
were available. This data had been recorded until 
2006 in a DFG research project [5, 6]. Besides real 
endurance test data, simulated data were applied to 
verify the statistical methods. 

If one regards DC-Motors with brushes, significant 
impact parameters on lifetime are operating point, 
mode of operation and environmental influences. For 
this publication analysed experiments were run with 
constant load and rotation speed and at similar 
surrounding conditions (climate in endurance test 
room).  

The operating point for the considered DC-Motor 
means the electric current, the associated load torque 
and the resulting rotation speed [2]. In this example, 
the operating point is the central covariate that is to be 
used in the model. Fig. 3 shows a diagram of a DC-
motor.  

The speed-torque characteristic specifies the 
mechanical operating point: when a specific torque 
load is applied, the rotation speed reaches the 
corresponding speed value and applying the operating 
voltage, the system responds with the motor current 
corresponding with the mechanical operating point. If 
the motor heats up during service, its characteristic 
changes. The characteristic curve might change from 
a straight to a curved line.  
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In order to represent the operating point in the 
model, one of the parameters motor current, rotation 
speed or torque can be used as a covariate. Assuming 
a linear motor characteristic, one can calculate the 
corresponding parameters respectively. Difficulties 
occur especially when several motor types with 
different characteristics and hence different operating 
points are to be compared. For example, a motor type 
at a given load torque, experiences an operating point 
at M = 300 mNm, n = 3000 rpm, I = 200 mA, whereas 
at an other motor type, the same load torque of 
M = 300 mNm  might result in a rotation speed of 
n = 3000 rpm  and a current of I = 400 mA. 

For our experiments, a motor series was chosen, 
where different motor types posses a nearly identical 
speed-torque curve. So, the mechanical operating 
point of different motor types is nearly the same, 
when driven with corresponding nominal voltage for 
the motor type. However, the electrical operating 
point (voltage and current), as well as the current-
torque characteristic differs from motor type to motor 
type. When comparing different motor types of such a 
motor series, one can use the torque as a reference. 
When the three different motor types considered at 
their nominal voltage are driven with the same load 
torque, the motor types reach about the same rotation 
speed according to their speed-torque characteristic. 
But each motor type will be operated at a different 
voltage and current. To compare different motor 
types, the motor current is not suitable to be used as a 
covariate without further steps. Voltage and current 
are comparable only within one motor type. The 
current is usable only when comparing data related to 
just one motor type. 

6. EXPERIMENTAL CALCULATIONS  

For the investigations, Monte Carlo simulated data 
were generated. Assuming, that with increasing load, 
the DC-Motors fail earlier, loads and failure times 
were assigned to 5 different specimens consisting of 
16 parts each. It was set value on the fact that the 
empirical distribution functions of the 5 different 
specimens did not intersect and that these failure 
probabilities did not follow a parametric model like 
the Weibull or the exponential distribution. 

With the simulated failure data of the 80 test 
samples, the failure probabilities were calculated 
using the open source Statistics software R. Fig. 4 
shows simulated data for a motor type A. The dashed 
lines form the empirical failure probability of the 
individual load levels (2.5 mNm, 3.75 mNm, 5 mNm, 
6.25 mNm and 7.5 mNm) for the 5 specimen with 16 
parts. 

The loads and the failure times of all 80 parts build 
the data base for the calculation using a Cox model, 
which was set up with one covariate for the load 
torque. With the help of the Statistics software R, at 
first the regression parameters and the baseline hazard 
of  the  Cox  model  were  determined.  Secondly, any 

 
Fig. 4.  Example of simulated data sets and prediction 

curve 
 

desired load case can be calculated specifying the 
covariate torque. The bold solid line shows the 
prediction curve of the failure probability distribution 
function for the 5 mNm load level.  

The estimated curve (bold solid line) does not meet 
the dash-dotted curve (empirical failure probability 
curve for the 5 mNm load) entirely. This is no 
contradiction, as the data of all 80 parts were used for 
the calculation of the bold solid prediction curve by a 
regression model. In this case, the Cox model has the 
advantage of the availability of estimated failure 
probabilities for non-measured values of covariates 
(here: loads).  

Now, let us look at real test data. Through 
experiments observed failure times of five load levels 
(2.5 mNm, 3.75 mNm, 5 mNm, 6.25 mNm and 
7.5 mNm) of different motor types were available as 
data base. 

 
Fig. 5. Real test data for one motor type at different 

load levels 
 
Fig. 5 shows the failure times of the motor type 

12V. For 5 load levels, the empirical failure 
distribution is displayed (fine dashed lines). Here, a 
Cox model  with  the  covariate load was applied. The  
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Fig. 6. Two load levels for 12V-motors and associated 

95%-confidence intervals 
 

prediction curve for the load case 2 mNm (bold solid 
line) based on the Cox model is situated 
approximately in the expected area. At the real test 
data (Fig. 5) the emerging pattern of failure 
probability curves becomes complicated because of 
existing deviations of measurement values and partly 
unknown influences. 

The existing uncertainty can be illustrated by 
confidence intervals. Fig. 6 shows 95% point-wise 
confidence intervals of the empirical failure 
probabilities for the load levels 2.5 mNm and 
7.5 mNm. A reason for the wide range of these 
intervals is the small number of measurements. If one 
increases the number of parts, we expect that the 
fluctuations decrease. Hence one achieves better 
predictions.  

In Fig. 7, the failure probabilities of five load 
levels are displayed as an example for the 24V-motor 
type using fine dashed lines. These load level lines do 
not follow a monotonous load order.  The bold lines 
represent two different prediction curves for a load 
case of 7.5 mNm.  

For the bold dash-dotted (blue) line, all five load 
levels for the 24V-motor were entered as data base 
(2.5 mNm, 3.75 mNm, 5 mNm, 6.25 mNm and 
7.5 mNm). The data base for the bold solid (green) 
line consists only of four load cases for the 24V-
motor (2.5 mNm, 3.75 mNm, 5 mNm and 
6.25 mNm). The load level of 7.5 mNm was 
suppressed. For both bold lines, the solid and also the 
dash-dotted prediction, a Cox model with the load 
torque as covariate was used. 

As different basis data are used, between the two 
prediction lines shown in Fig. 7 considerable 
deviations emerge. In the used Cox model, strict 
monotony of the hazard rate with respect to the load is 
assumed. In the real experiment, this was not true for 
the load case of 7.5 mNm, however. The fine gray 
dashed line in Fig. 7 for the 7.5 mNm load level lays 
considerably   to  the   right  of  the  empirical   failure  

 
Fig. 7. Different prediction curves for real test data in 

comparison 
 

probability curve for the 6.25 mNm and also for the 
5 mNm load level. 

This contradicts the natural imagination that, with 
increasing load, the parts fail earlier. The solid (green) 
prediction curve lays to a large extend left of the 
empirical curve for the load level of 6.25 mNm, as 
expected because of the monotony assumption in the 
model. The bold dash-dotted (blue) prediction line on 
basis of all five load levels of the 24V-motor type is 
also fitted with respect to the monotony assumption in 
the model. The dash-dotted (blue) prediction curve 
predicts the load level of 7.5 mNm too far left, to fit 
the data with least possible deviations to the real data 
sets, and still meeting the monotony assumption. 
When we assume the data to precisely project reality, 
then the model needs to be modified. In this case, we 
should admit non-linear influences of the load as 
argument in an exponential function at modeling the 
hazard rate, for example quadratic or piecewise linear 
approaches. The routines need to be investigated and 
modified in further research. 

In another simulation experiment, data of four 
different motor types was artificially generated (Fig. 
8). Type 1 was set up in a similar way as described 
before. This means that to 80 parts, failure times were 
assigned, consisting of specimens to 16 parts for each 
of the five different load levels (2.5 mNm, 3.75 mNm, 
5 mNm, 6.25 mNm and 7.5 mNm). The data was 
adjusted so that the specimen sets for each motor 
type, show the same failure pattern, but the failure 
time is shifted 4000 h for each type.  
The idea of this approach is that from system type to 
type, similar failure patterns exist, when the types are 
of similar technology basis. For example, failure 
mechanisms should be approximately similar, when 
geometries are just scaled in different sizes. So, it is 
assumed at this approach, that there is an interrelation 
between different types of similar technology 
(stretching or shifting of patterns in the failure 
probability functions at different load levels). 
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Type 1 Type 2 Type 3 Type 4

2.1 mNm
7.5 mNm

 
Fig. 8. Predictions for two different load cases on 

basis of different system types with simulated data as 
an example 

 
In Fig. 8, failure probability functions for four 

different system types of similar technology are 
displayed. The 16 fine solid lines represent the failure 
times and associated empirical probabilities of the 
specimens with 16 parts each. The failure times of all 
256 data points and associated load levels build the 
data base for a Cox model with 5 covariates. One 
covariate is the load torque, the others are indicator 
variables describing the motor type (1 to 4). For 
example, we want to indicate a part of type 2. In this 
case, the value of the covariate for type 2 is 1 and the 
value of the other types is zero.  

The two bold lines are predictions of the failure 
probabilities for a system of type 3 with load level 
2.1 mNm (dash-dotted) and with load level 7.5 mNm 
(solid).  

Although one load level for type 3 is known only, 
the prediction curves are situated with slight 
deviations in the expected area, when we assume 
type 3 to have a shifted failure probability function 
pattern similar to the other three types. This shows, 
that the data of the other system types 1, 2 and 4 
provide additional input information over the degree 
of spreading of the curves when the load is increased.  

7. RESULTS 

The Cox model can be employed as regression 
model for the reliability prediction. As can be 
expected from a regression model, it is possible to 
predict reliability characteristics for loads between 
and beyond the given boundary areas of the load 
levels used as data base.  

However, one must be careful at modelling. The 
choice of covariates is of particular importance. 
Covariates, that are valid only for one type, should not 
be used without type-specific indicators in order to 
compare different system types. If data of different 

motor types are investigated, the implementation of 
indicator variables is useful. 

Investigations at simulated data show, that, using a 
Cox model, the regression of existing data can be 
turned into praxis. Real data sometimes does not 
follow strict monotony of the hazard rate with respect 
to some covariates as is assumed in the standard Cox 
model used in the calculation experiments. Using the 
Cox model at this kind of data, prediction curves can 
be derived as well, but modifications might become 
necessary. To illustrate the prediction results in this 
publication, the Cox model was compared to the 
empirical failure probability estimates. The estimated 
failure probability distributions by a Cox model meet 
the empirical with certain deviations.  

In future, the Cox model shall also be investigated 
with other test data, for example of mechatronic 
gears [1], concerning the applicability for reliability 
prediction.  

In this publication, the goal was to illustrate the 
general procedure along simple examples. The 
statistical analysis has much potential for the future of 
reliability prediction. 

8. REFERENCES 

[1] Beier, M., Lebensdaueruntersuchungen an 
feinwerktechnischen Planetenradgetrieben mit 
Kunststoffverzahnung, Universität Stuttgart, IKFF, 
Institutsbericht Nr. 32, 2010, Dissertation in German. 
 
[2] Bertsche, B.; P. Göhner, U. Jensen, W. 
Schinköthe, H.-J. Wunderlich, Zuverlässigkeit 
mechatronischer Systeme - Grundlagen und 
Bewertung in frühen Entwicklungsphasen, Springer, 
Berlin, Heidelberg, 2009. 
 
[3] Bertsche, B., Reliability in Automotive and 
Mechanical Engineering, Springer, Berlin, 
Heidelberg, 2008. 

 
[4] D.R. Cox, “Regression Models and Life Tables,”. 
Journal of the Royal Statististical Society, pp. 187–
220, Series. B 34 (1972). 
 
[5] Köder, T., Zuverlässigkeit von mechatronischen 
Systemen am Beispiel feinwerktechnischer Antriebe. 
Dissertation, Universität Stuttgart, IKFF, 
Institutsbericht Nr. 25, 2006, Dissertation in German. 
 
[6] C. Lütkebohmert, U. Jensen, M. Beier, W. 
Schinköthe, “Wie lange lebt mein Kleinmotor?” F&M 
Mechatronik, pp. 40-43, 115(2007)9. 
 
[7] Martinussen, T; T.H. Scheike, Dynamic 
Regression Models for Survival Data, Springer, New 
York, 2006. 


