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ABSTRACT 
 
In this paper we report on experimental investigations of spring-steel wire. Spring steel-wire 
is a high quality product of the wire industry with outstanding mechanical properties which 
should ensure that components such as compression springs with smallest mass produce high 
spring forces. The experimental set-up is a three-point bending test rig. Aim of the 
experiments was (1) to find the limit of extreme elastic bending of wires - the spring bending 
limit, and (2) to determine the elasticity modulus of spring-steel via bending, thereby using 
also test objects having a pre-curvature. A mathematical framework necessary for quantitative 
interpretation of the experiments is presented, and numerical results are given in a universally 
utilizable form. What is new is the full numerical solution of the exact differential equation of 
the elastic line by a Maple program. 
 
 Index Terms – spring-steel wire, extreme bending of elastic rods, nonlinear bending 
theory, MAPLE-application, three-point bending test rig,  modulus of elasticity, wire with 
pre-curvature 
 

0. INTRODUCTION 
 
For more than four decades research has been carried at the Ilmenau University of 
Technology on springs and spring materials. One current topic regards “function- and 
production-relevant parameters for spring steel wire and steel strips” [1]. Initial results are 
presented on this topic below. 
In this paper we report on experimental investigations of spring-steel wire. Spring steel-wire 
is a high quality product of the wire industry with outstanding mechanical properties which 
should ensure that components such as compression springs with smallest mass guarantee 
high spring forces. The experimental set-up is a three-point bending test rig. Aim of the 
experiments was (1) to find the limit of extreme elastic bending of wires - the spring bending 
limit, and (2) to determine the elasticity module of spring-steel via bending, thereby using 
also test objects having a pre-curvature. A mathematical framework necessary for quantitative 
interpretation of the experiments is presented, and numerical results are given in a universally 
utilizable form. What is new is the full numerical solution of the exact differential equation of 
the elastic line by a Maple program. 
 
For the experiments we used the following three materials:  
Oil-tempered spring-steel wire: VDSiCr - Oteva 70 SC RD40 S: diameters: 3 mm and 6 mm; 
Patented drawn spring-steel wire: SH, diameter: 3 mm; 
Stainless spring-steel wire:  1.4310, diameter: 6 mm. 
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In order to calculate the expected bending deformations, it is first necessary to determine the 
elasticity modulus of the three materials. The test principle is always the same: a three-point 
bending test rig is used to measure force-displacement curves for small elastic deformations. 
The slope of these curves is proportional to the elasticity modulus. Since bending springs are 
exposed to large deformations in practice, it is necessary to be able to calculate the expected 
large elastic deformations for a specific load. This requires the integration of the exact 
differential equation for bending.  
In order to remain within the load carrying limits, the allowable maximum outer fiber stress 
must both be known as well as able to be checked. The experiments to determine the spring 
bending limit provide the necessary material parameters and the theoretical results allow the 
exact outer fiber stresses to be calculated. 
Therefore the following tasks needed to be completed: 

1. Development of a theory to determine the elasticity modulus, the gradient of the 
bending line, the curve of the bending stress and the spring bending limit based on 
experimental data 

2. Construction of a three-point bending test rig and carrying out of corresponding 
measurements 

3. Evaluation of measurement results using the theory. 
 

0.1 Experimental Set-up 
 
To determine the mechanical properties in bending, a three-point bending test rig is required 
[5]. Fig. 1 shows the newly developed experimental set-up. The sample under test is a 
stainless spring-steel wire with a wire diameter of about 6 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Three-point bending test rig 
 
Details of the force measuring system: KAP-E-D, measuring system 200 N, class 0.1, 
manufacturer: AST 
Details of the positioning system: Mechanical basement: manufacturer: ZWICK, type 1446, 
10 kN 

force measuring system  

positioning system 
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Control system: Manufacturer: DOLI, type ETC 100 
 
The physical model for the three-point bending test shows Fig. 2. 
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Fig. 2: Three-point bending test rig: physical model 
 
Bearing types are shown in Fig. 3 
 
 
 
 
 
 
 
 
Fig. 3: Two ball-bearings with various diameters and one knife-edge-bearing 
 
A real experiment shows the important influence of friction. In Fig. 4 we see the results of 
two force-displacement characteristics – the first one with knife-edge-bearings, the second 
with ball-bearings, both experiments with load F increasing/decreasing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Friction influence: knife-edge-bearings vs. ball-bearings. 
  



  4 

0.2 Theory, Generals 
 
The experiments which are in the center of this paper need a corresponding theory for to 
guarantee a complete evaluation. In part of the experiments an extreme bending takes place. 
So, to gain a clear mathematical comprehension of the processes and their observation, a 
nonlinear theory of bending of elastic rods is required. With respect to the present context 
such a theory has to focus on rods supported by two knife-edge-bearings or by two ball-
bearings of finite diameter. The rods under investigation might originally be straight ones or 
they may show an original (stress-free) configuration with non-zero curvature. This latter 
property is important in particular for the task of determining the elasticity modulus and must 
be captured by the theory. 
In the sequel, we sketch a corresponding theory by introducing, first, a general mathematical 
model which then is confined in order to match the current problems. Thereby, some care 
seems to be reasonable in order to make clear the basic hypotheses of all descriptions. 
 
Let us consider rods of circular cross-section whose axis deforms (under load) within an (x,y)-
plane and forms a smooth (i. e., continuously differentiable) curve. Parameterizing this curve 
by its arc-length s, it is given as a function   . It satisfies the natural 
equations of the curve 
 

 
(1) 

 
where  is the inclination angle of the tangent at  with respect to the -axis, and  is 
the curvature at .  
Supposing an invariant arc-length, let 
 

 
(2) 

 
describe the reference configuration (in practice, load-free), which yields a straight line if and 
only if   . 
If the curve under consideration is schlicht with respect to the -axis, i. e., it allows a unique 
representation  , then the natural equation can be given the form 
 

 
(3) 

 
So far for the geometric framework. 
As to the mechanics of the rod, we suppose the validity of the Euler-Bernoulli bending 
theory: 

� the rod’s axis deforms as a smooth curve of invariant arc-length (no longitudinal 
strain) 

� under deformation, cross-sections remain flat, do not twist, and remain orthogonal 
with respect to the axis, 
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� the local strain  (due to the mutual slope of neighbored cross-sections) implies stress 
 following Hooke’s law (  : physical linearity). 

 
The outcome of these hypotheses is a linear distribution of the stress over the cross-sections 
with zero resultant force and a resultant moment  governed by the well known 
material law (rheological equation) 
 

 (4) 
 

 denotes the elasticity modulus of the material,  denotes the equatorial moment of inertia 
of the cross-section,  is the bending stiffness (assumed constant). 
 
Now the procedure to solve equilibrium problems is mainly based on (1) and (4), and 
therefore essentially always the same. Assume bending stiffness, external load, kind of 
support, and the load-free configuration  to be given. In a general configuration, 
determine  through appropriate dissection of the rod from local equilibrium equations. 
Thereby  appears as a function of  and certain statical parameters (given loads: known, 
reactions to supports: in general unknown). Then, (4) yields  as an analogous function, and 
(1) represents a system of ordinary differential equations which, together with well-defined 
boundary conditions (supports!), determine the functions  and  (configuration under load) 
and the unknown parameters as well.  
It is this procedure, that is worked through in slight specifications for the problems concerning 
the experiments. 
 
The physical model of a three-point bending test rig is shown in Fig. 2. 
 
We shall give mathematical descriptions for such tests using different designs of the supports. 
Of course, any model should not only be valid just for one particular implementation with 
concrete data of the investigation object and the experimental set-up. To this end we use an 
appropriate standardization, that means, for every relevant geometrical and physical quantity 
we introduce units of measurement which fit the current problem data. This is done as 
follows. 
Denote the geometric / physical quantities by upper-case letters, the corresponding 
(dimensionless) variables by the respective lower-case letters. System data used for 
composing the units are . 
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quantity unit example  
 

length, displacement L    
 

slope, angle 1    
 

curvature      
 

force      
 

moment 
     (5) 

 
Naturally,  is chosen as the distance of the vertical center lines of the bearings (most 
important parameter of the experimental set-up). This has the pleasant effect that the 
horizontal coordinate  runs from  to  in most cases. In contrast,  and  are individual 
parameters of the test object, which then, above all, take part in fixing the unit of force. 
Following this line of choosing units of measurement every formula generated in the sequel 
matches experiments of the considered type done by a set-up of dimensions howsoever. 
 
0.3 Preceding Papers 
 
We mention critically two preceding papers concerning the present subject. 
In [2], the author starts with the usual nonlinear bending equation though in a somewhat queer 
form by introducing  as an unknown parameter to the bending moment. The differential 
equation is of a type contained in Kamke's "atlas" [4], and the author tells the reader to follow 
the way of treatment towards elliptic integrals given there. Unfortunately, truncated series 
representations are used later without giving a hint to their genesis. 
In [3], the author uses a trick to reduce the extreme bending problem to a linear problem. 
First, he approximates the unknown elastic line by an equally long circular one (constant 
bending moment!) lying on the same bearings. Considering the displacements from the circle 
to the real elastic line as small, he can describe this further deformation by a linear differential 
equation. (Of course, the ultimate approximating circle is for geometric reasons with radius .5 
only, this limits the application of this way of linearization.) 
The results in both papers are close to ours. 
 

1. EXTREME BENDING 
 
1.1 Aim of Investigations 
 
Since in practice bending springs are exposed to large deformations, it is necessary to 
calculate the size of the expected elastic deformations at a specific load. This requires the 
integration of the exact bending differential equation. In addition the bending stress in the 
outer fiber must be calculated so that new designs do not exceed the elastic deformation limit. 
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1.2 Theory 
 
Every analysis of the bending experiments relies on the  
 
Assumption: The bearings are ideal in the sense that the wire contacts the ball or knife-edge 
in one point, and during bending it can slide without friction. 
 
This implies that the reaction force of the support is always orthogonal to the rod’s axis at the 
contact point. 
Clearly, the deformed rod axis is expected to be schlicht with respect to the horizontal line. 
Therefore, a formalism based on (3) seems to be suitable.  
 
1.2.1 Knife-edge bearings 
 
According to the symmetrical set-up the global equilibrium implies for the reaction forces 
 . The symmetry allows to confine our considerations to the left part 

of the system,  , where the deformed rod is described by . 
Here, we suppose the rod to be without a pre-curvature, then  , where  is the 
displacement out of the load-free straight configuration. During bending let  
(initial slope,  in Fig. 5), then we have additionally  . 
 
 
 
 
 
 
 
 
Fig. 5: Calculating the bending moment 
 
The bending moment at  follows from the equilibrium of the cut-off part  as 
 

 
(6) 

 
Now let us introduce 
 

 (7) 
 
as a parameter which, in a certain degree, characterizes the configuration and let us switch to 
the dimensionless variables in all that follows. Then we obtain from (3) and (4) a differential 
equation of  the 2nd order for : 
 

F

A

φ0<0 V(x)<0

x

A
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(8) 

 
Mind that the right-hand side of the differential equation depends on the parameters  and , 
the first a known one (if the load is prescribed), the second one unknown (as is also the 
configuration). The differential equation has to be supplemented by the boundary conditions 
 

 
(9) 

 
the latter condition is a requirement of the symmetry. 
This boundary value problem is to yield the equilibrium configuration of the elastic rod under 
any given load . It is inevitable to have a quantitative presentation of the elastic line if we 
finally want to get knowledge about the feasible stresses. We do not wish to tackle this 
nonlinear problem by trying to find solutions via elliptic integrals nor do we look for 
approximate solutions, e.g., along series expansions. Instead, we shall rely on numerical 
computation, using some up-to-date software (we preferred MAPLE).  
Doing so, it seems reasonable to run the following way: start with a small positive  and a 
zeroth guess ; take the corresponding differential equation and the first two boundary 
conditions and solve this initial problem by a suitable (MAPLE: dsolve) routine; the boundary 
condition at  will in general not be fulfilled, so give  a small negative increment 

, solve again, and iteratively repeat this process until  is a fitting 
pair of parameters; then choose an  and start the next step with ; and 
so on. In each step the load  is given and the corresponding configuration is to be found. 
Unfortunately, this way comes to an early end because, as one learns later, there is a 
bifurcation, the correspondence load � configuration is globally not one-to-one. 
We have to run another sequence of steps, namely, 
 

� for  prescribe  and  and find the fitting  by iteration 
starting with   

 
Following this way of computations it is suitable to use a modified boundary value problem 
that is related to (3) but is free of . The function , describing the elastic line, is 
computed separately – from the differential equation (8) and the initial conditions at  in 
(9) – after the fitting pair  has been determined. 
We treat the following boundary value problem with parameters  and  for the unknown 
functions  and  of . 
 

 

 
 

(10) 

 
Note: The condition  reflects the premise ‘bending of an originally straight rod’: 

 for the overall original wire, and after deformation its  is continuous at .  
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If  is a fitting pair that has been determined by means of (10) through a sequence of 
iteration steps sketched above, then the corresponding configuration is numerically computed 
by integrating the initial value problem 
 

 

 
 

(11) 

 
yielding the left half of the elastic line, the right half is then obtained by symmetric 
continuation. 
 
Remark 1 If the test object was a wire of pre-curvature , then the 2nd differential 

equation in (10) would change to  with the 2nd boundary condition 
now  The boundary value problem (11) would take the form 

  
 
And here are some results. 
 
Fig. 6 sketches the fitting pairs (f, p) in the form f vs. , where . It gives a first 
impression of the non-uniqueness  mentioned above. In particular we 
get 
 

 

 
 

Fig. 6:  
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Fig. 7: Elastic lines for various ; fat lines: , red: ,  

green: maximal bending moment 
 
For a suitably chosen sequence of fitting pairs we obtain from (11) the corresponding 
elastic lines shown in Fig. 7. Therefrom the interesting correspondence  

, shown in Fig. 6 (right), follows, which exhibits 

 

 
For the sake of comparison Fig. 7 contains a dashed line which represents the elastic line at 

 given by the linear bending theory. 
By (8) it is clear that the bending moment takes its maximum at . In Fig. 8 the graph of 

the correspondence  is given. The bending moment at and the extreme 
stresses σ in the cross-section at x are proportional by the factor Wb. Now it is the maximum 
of |σ| which is an interesting object during the bending experiment. Therefore it would be nice 

to have a simple formula for to evaluate  from the measurement of . A good 
leastsquare approximation is the polynomial 

 
(12) 

 
the graph of which is shown together with the exact curve in the Fig. 8. 
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Fig. 8: Maximal bending moment vs.   (black: exact, red: polynomial approximation) 
 
Together with the foregoing results we obtain 

 

 
Remark 2  We observe that this globally maximal bending moment occurs at a displacement 

 which is far below of the displacement at maximal force f. Since the bending moment is 
proportional to the curvature of the elastic line, we see from Fig. 8 and with a keen glance 
also in Fig. 7 that the curvature (in the minimum point) takes its maximum at the 
displacement -0.45983 and afterwards decreases again, i.e., the elastic line gets more and 
more oblate. This maximal curvature occurs within those configurations which are unstable: 
wire slipping down from the supports if the actually acting force f exceeds the theoretical 

 , e.g., by means of an additionally acting weight. (The stability problem is not 
investigated here; anyway, it is seemingly an interesting question how  or the 
corresponding p might be distinguished beyond their property to characterize the bifurcation 
point.) 
  



  12 

1.2.2 Finite ball-bearings 
 
If we want to take ball-bearings into considerations, some simple geometric corrections of the 
model are required. These are shown in Fig. 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Wire on ball-bearing of radius ρ 
 
The figure shows a wire of originally non-straight form (deviation from horizontal line , 
curvature . This aims at preparing the investigation of pre-curved wires in section 2.2. 
Take  for what follows here. 
Now the wire does not slide along the tip of the support anymore, rather the contact point 
moves along the periphery of a circle (in an experimental set-up comme il faut this happens 
through rolling, thereby avoiding a disturbing friction). The contact coordinates are 

 
which then have to be used instead of  in the boundary conditions. ρ is the radius of the 
ball-bearing; if we want to take care of the finite thickness of the wire, ρ has to be increased 
by the wire radius. The mobility of the support point entails that the total vertical 
displacement of an axis point (with respect to its original position) is  whereas that part 
of the displacement which contributes to the bending moment changes a bit, the initial value 
problem for the elastic line (with fitting ) is  
 

 

 
 

(13) 

 
In contrast, the boundary value problem for to determine fitting pairs (  comes along with 
an unchanged differential equation ( it contains only ): 

α

ρφ0

x

h(x)<0

v(x)<0
ϰ 

x
x=0,5

ϰ ^

ϰ ^
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(14) 

 
In the sequel we give some choice results.  

Fig. 10 shows the graph of  for some ρ, a slight increase of  with ρ can be 
recognized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10: Graph of  for ρ = 0.0, 0.0033, 0.013, 0.02, 0.04, 0.067 
 

Analogously, the maximal bending moment  as a function of  shows a dependence 
on ρ. On a region of about ρ = 0..0.4, v = -0.3..0 a good polynomial least-squares 
approximation is 
 

 (15) 
 
The elastic lines for ρ = 0.067 are sketched in Fig. 11. 
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Fig. 11: Elastic lines for ball-bearings with ρ = 0.04 (right: zoom). 
 
 
 

2. EXPERIMENTAL RESULTS 
 
2.1 Extreme Bending 
 
The solutions generated in MAPLE were checked through experiments. 
Fig. 12 shows an oil-tempered wire being bent significantly. The displacement was 150 mm, 
meaning the deformation in the wire was plastic, which is demonstrated by the force-
displacement curve in Fig. 13 (hysteresis loop!). 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: Oil-tempered spring-steel wire, d=3mm, displacement=150mm 
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Fig. 13: Force-displacement graph, extreme bending of an oil-tempered wire 
 
These test results, when normalized following (5), show significant agreement with the Maple 
results, as is shown graphically in the photomontage (see Figs. 14 and 15). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14: Extreme bending: numerical (black) vs. experimental (red) results 
  



  16 

 
 
 
 
 
 
 
 
 
 
 
Fig. 15: Extreme bending: photo from the experiment vs. numerical results 
 
Conclusion: The mathematical theory for calculating the deformation during extreme 
bending can be considered fully verified. It has been qualified as a tool to interpret 
experimental results! 
 
 
2.2 Measuring the Elasticity Modulus 
 
In the following we sketch both experiments and theory for the determination of the E-
modulus via bending. Practically, the wires used as test objects had been coiled up and show a 
stress-free configuration of  non-zero curvature. Since the latter enters the bending differential 
equations, this pre-curvature has to be determined in advance, so that finally its falsification 
of the test results can be eliminated by analysis. The same holds for the influence of ball-
bearings. To guarantee the test to take place in the domain of non-plastic deformations, both 
test and its mathematical model are restricted to small deformations which, moreover, ensure 
a Hooke material behavior.  This can be taken for granted from Fig.14 (regarding experiments 
and theory) and  Fig. 10 (regarding ball-bearings).  With regard to pre-curvature analogous 
results can be achieved. 
  We start with the 
Assumption: In the stress-free configuration of the wire its axis is a circle or a straight line. 

 
 
Fig. 16: Stress-free configurations 
 
We exploit Fig. 9. The wire is lying on ball-bearings of radius ρ, its unknown curvature is 

 , the center of curvature is at (  , η ). The lower circle line is described by 
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and   can be measured. From the figure we take  

 

and obtain 

 

Furthermore we have 

 

 
This completes all we need to apply our differential equations as we did in the foregoing 
sections. The further progress is as follows. 

� Integrating the differential equations we get the displacement in the form  
 with ρ and u as parameters. Then we have 

 

� ρ and u must be measured. 
 

� During the experiments we observe the displacement-force pairs  which, 
following Hooke’s law, are on a straight line, i.e.,   with slope S to be 
measured.   

� Then (5) entails   and finally 
 

 

 
This final formula is made up by three factors: 
- the first one comes from the standardization used, 
- the second is a result of measurement,  
- and the last one takes care of the kind of support and the pre-curvature of the wire under test. 
 
A series of calculations with various ρ and u yields this central factor  It can be 
represented as a family of curves , shown Fig. 17. 
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Fig. 17:  vs. u for  (top to bottom) 
 

  can be given in a least-squares approximation as a polynomial in ρ and u : 
 
                   
                                     
 
From linear bending theory we know   for the straight rod on knife-
edge bearings. 
We sketch some experimental results. 
 
A force-displacement curve was measured for a straight rod of the material VDSiCr - Oteva 
70 (see Fig. 18). 

 
 
Its slope of  yields an elasticity modulus of: 

 

 
 
 
 
Fig. 18: Oil-tempered spring-steel wire: force-
displacement graph  
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The following is an example of the modulus measurement of a pre-curved wire. 
Material: patented-drawn spring steel wire, type SH. 
 
Figure 19 shows the to-be-measured object. 
 

 
 
Fig. 19 Spring-steel wire with pre-curvature 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 20: Wire with pre-curvature: force-displacement graph, u = 27,04 mm 
 
With this material four measurements were done. 
Here are the results: 
 
ρ u W E [N/mm²] 
5,67*10-3 88,713*10-3 48,628*10-3 198000 
5,67*10-3 89,4*10-3 48,75*10-3 196000 
5,67*10-3 87,98*10-3 48,5*10-3 195000 
18,32*10-3 100,48*10-3 49,42*10-3 193000 
  mean-value: 195500  ± 1,3% 
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2.3 Proposal for Measuring the Spring Bending Limit 
 
Industrial applications of flexible springs must ensure that the applied load of the material 
does not cause plastic deformation. The outer fiber stress, which indicates the limit of 
permissible elastic deformation, is called the spring bending limit. 
To experimentally determine the spring bending limit, the standard shown in source [5] (DIN 
EN 12384) must be kept in mind. The procedure described there is based on a series of 

bendings with continuously increasing displacement . When the plastic 

deformation  (remaining displacement s after unloading) of the material attains a limit 
of 50 microns (depends on the accuracy of the positioning system) for the first time, the 
spring bending limit is considered to have been reached. Therefore the most important 
requirement for the test equipment is the accurate measurement of the test object’s plastic 
deformation  after a defined load. The constructed three-point bending test rig is very 
well suited to fulfill this requirement. In a prototype test the method of successive 
approximation to determine the allowable bending displacement was applied – in contrast to 
[5]. The process begins with a displacement a – which produces only elastic deformation 

 whereas the displacement 2·a causes plastic deformation. Thus, the desired 
displacement limit sfb is between these values (see Fig. 21). This method ensured that a 
measurement result is always available after no more than eight (accuracy = a*2-8) or ten 
(accuracy = a*2-10) bendings. 
 

a

2a
sFB

 
Fig. 21: The limit displacement sfb 
 
The process of successive approximation is illustrated in Fig. 22. 
 
Now we sketch the measuring of the spring bending limit of an oil-tempered wire. 
 
The Figures 23 and 24 show two typical bending results, the first one without plastic 
deformation the second one with plastic deformation  
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start

s = a
i = 1

displacement = s

splastic > 50 µm ?

s = s + a / 2i

i = i +1

i > 8 ?

new wire

s = s – a/2i

i = i + 1
s = s + a / 2i

end
result=s

no

yes yes

no

 
 
Fig. 22: Algorithm successive approximation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 23: Force-displacement curve without plastic deformation (sfb = 47,5 mm) 
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Fig. 24: Force-displacement curve (truncated) with plastic deformation 
 
The result of the series of bendings is the limit displacement  
 
This limit displacement is inserted into (15) in accordance with the stated theory. 
From (15) and (5) we obtain the corresponding moment Mz and finally, with   , 

we get the spring bending limit for this material 

 

 
Remark 3 
The knowledge of the spring bending limit now yields the smallest diameter D of a coil 
which does not lead to a plastic deformation when winding the spring wire. 
With  

 

we get 

 

 – minimal coil-radius 
E - elasticity modulus 
d - wire diameter 
 
Example: 
Oil-tempered spring-steel wire Oteva 70 

splastic 
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d=3 mm 
E=206000 N/mm2 

  
  

 
Therefore the necessary coil diameter   is at least 334 mm. 
Thus the quotient  .  
 
Conclusion: The well known formula  is correct.  
With this coil diameter D no plastic deformation of the spring-steel diameter will take 
place. 
 

3. SUMMARY 
 
The paper is a report on recent experimental investigations of spring-steel wires. Spring-steel 
is a high quality product of the wire industry with outstanding mechanical properties which 
should ensure that components such as compression springs with smallest mass produce high 
spring forces. The experimental set-up is a three-point bending test rig. Aim of the 
experiments was (1) to find the limit of extreme elastic bending of wires – the spring bending 
limit, and (2) to determine the elasticity modulus of spring-steel via bending thereby using test 
objects having a pre-curvature.  
For a quantitative interpretation of the experimental results a suitable mathematical 
framework is inevitable. To this end an non-linear theory for bending elastic rods is presented. 
It goes a bit beyond the common mathematical description since different kinds of bearings 
are considered, and the rods used for the determination of the E-modulus are allowed to be 
pre-curved. The quantitative mathematical results are gained numerically and afterwards 
partly presented by handy approximate formulas. Generally, the theoretical considerations are 
given in a universally utilizable form (use of normalized dimensionless quantities). 
The experimental set-up and the run of experiments are explained and examples of relevant 
measuring results are presented. 
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