
 
 
 
 
 

Methods for optimization of a German TSO’s electricity 
market performance with special attention to wind power 
 
 
 
 

Dissertation 
 
 
 

zur Erlangung des akademischen Grades  
Doktoringenieur (Dr.-Ing.) 

 
 

 
 

vorgelegt der Fakultät für Elektrotechnik und  
Informationstechnik der Technischen Universität Ilmenau 

 
 

von M.Sc. Valeriia Algeier  
geboren am 03.10.1983 in Kiew (Ukraine) 

 
 
 
 

vorgelegt am: 31. März 2011 
 
 
Gutachter:  1. Prof. Dr.-Ing. Dirk Westermann 
   2. Doz. Dr.oec. Alla V. Osokina 
   3. Dr.-Ing. Peter Bretschneider 
  
 
Verteidigung am: 18. November 2011 
 
urn:nbn:de:gbv:ilm1-2011000417 



Erklärung ii 

 

Erklärung  

 
Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung 

anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen direkt oder 

indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.  

Andere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit nicht 

beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs- bzw. 

Beratungsdiensten (Promotionsberater oder anderer Personen) in Anspruch genommen. 

Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die 

im Zusammenhang mit dem Inhalte der vorgelegten Dissertation stehen.  

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer 

Prüfungsbehörde vorgelegt.  

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erklärung als 

Täuschungsversuch angesehen wird und den erfolglosen Abbruch des Promotionsverfahrens zu 

Folge hat. 

 

Ilmenau, 30.03.2011 
 
Valeriia Algeier



Abstract iii 

 

Abstract 

The topic of this thesis is devoted to the search of the methods to optimize a TSO’s (Transmission 
System Operator) market performance. The position of a TSO as a market player is a quite new 
one, since its traditional obligations consist in ensuring of network availability, congestion 
prevention and management, ensuring the system stability. It is emerged from the pursuit of 
German government of reducing the dependency of national energy system on energy imports 
and environmental and climate protection. In these circumstances a TSO was obliged to assume 
all the energy produced by renewable energy sources (RES) to bid it further on the energy market. 
Thereby it is faced with the special characteristics of this “market product”: due to the significant 
share of stochastic wind power in the assumed energy mix the reliability of its trading operations 
becomes risky. In order to bring the wind power feed-in a TSO receives in line with the regulations 
of German energy market (i.e. to bid them as an unlimited order1) it must have a trustworthy day-
ahead forecast. German TSOs use by their operation the weighted average of several wind power 
forecast tools developed in the recent years (i.e. by energy & meteo systems GmbH, EuroWind 
GmbH, IWES). The majority of them is based on numerical weather predictions models and 
provides the information how much wind power can be expected at each point of time. Thus they 
announce the variations in the electricity production of wind farms in advance and largely reduce 
the degree of randomness attributed to wind energy. However there are still deviations to be 
observed between the day-ahead forecast and wind power feed-in really occurring. These 
deviations result in significant costs (billions euro) both for TSOs (i.e. for provision and application 
of control energy) and end-customers (increased electricity tariffs due to additional costs of TSOs 
for equalisation of forecast errors). The reasonable measure to countervail these problems is the 
improvement of the day-ahead forecast a TSO receives as a service. Respectively the research 
community occupied with the search of the adequate solutions is rather meaningful. However, a 
TSO as a recipient of a day-ahead forecast does not have any possibility to influence the potential 
sources of forecast inaccuracy. It needs therefore a solution that could optimize its day-ahead 
market operation regarding the limited information resources it has: the weighted day-ahead 
wind power forecast it receives as a service and the real-time values of wind power feed-in that it 
is given in 24-hours-delay. This consideration turns the current research topic into the rather 
novel one. Two alternative methods to solve the mentioned problem are proposed: Q-Learning 
and Kalman filter. Their performance is tested within the simulated model of German equalisation 
scheme for RES and verified with the real-life data of wind energy feed-in. Achieved results are 
evaluated with the common accepted error measures. 

                                                           
1
 Hour contract without a specification of a price 
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Kurzfassung 

Diese Dissertation beschäftigt sich mit dem Thema der Optimierung des Marktverhaltens eines 
ÜNB (Übertragungsnetzbetreiber). Dabei ist die Position eines Marktteilnehmers relativ neu für 
den ÜNB. Traditionell sind die ÜNBs die Dienstleistungsunternehmen, welche die Infrastruktur der 
überregionalen Stromnetze zur elektrischen Energieübertragung operativ betreiben, für 
bedarfsgerechte Instandhaltung und Dimensionierung sorgen und Stromhändlern/-lieferanten 
diskriminierungsfrei Zugang zu diesen Netzen gewähren. Die neue Position des Marktteilnehmers 
entstand erst in den letzten Jahren infolge des Strebens der deutschen Regierung, die 
Abhängigkeit des nationalen Energiesystems von den Energieimporten zu reduzieren und dieses 
umweltfreundlicher zu gestalten. Dementsprechend wurde der ÜNB dazu verpflichtet, all die 
Einspeisungen von den Quellen der erneuerbaren Energie aufzunehmen und diese zu vermarkten. 
Dabei wurde der ÜNB mit den speziellen Charakteristika des neuen „Marktprodukts“ konfrontiert: 
durch den hohen Anteil der stochastischen Windenergie an dem aufgenommenen Energiemix, 
wird die Verlässlichkeit eines solchen Marktgeschäfts gefährdet. Damit die Windeinspeisungen, 
die der ÜNB aufnimmt, den Anforderungen des deutschen Energiemarkts entsprechen können 
(diese müssen z.B. als unlimitiertes Gebot platziert werden2), muss der ÜNB über eine 
zuverlässige day-ahead Prognose verfügen. Deutsche ÜNBs verwenden bei ihrer Arbeit eine 
Metaprognose, gewichtet von den mehreren Windenergieprognosen, die in den letzten Jahren 
entwickelt wurden (z.B. die von energy & meteo systems GmbH, EuroWind GmbH, IWES). Die 
Mehrheit dieser Prognosen basiert auf numerischen Wettervorhersagemodellen, welche die 
ÜNBs über die in jedem Zeitpunkt zu erwartende Windenergiemenge informieren. Damit 
reduziert sich weitgehend die der Windenergie zugeordnete Zufälligkeit. Nichtsdestotrotz sind die 
verbleibenden Abweichungen zwischen der day-ahead Prognose und den tatsächlich 
auftretenden Windeinspeisungen der Grund für den immensen zusätzlichen Kostenaufwand (im 
Stellenbereich von Milliarden Euro) wie für den ÜNB (z.B. für die Leistungsvorhaltung und das 
Einsetzen der Regelenergie) als auch für den Letztverbraucher (erhöhte Elektrizitätstarife infolge 
der Umwälzung der genannten Zusatzkosten). Eine sinnvolle Maßnahme um diesen 
Abweichungen entgegenzuwirken wäre, die Qualität der day-ahead Prognose, die der ÜNB als 
Service bekommt, zu verbessern. Dementsprechend groß ist die Forschungsgemeinschaft, die sich 
mit dieser Fragenstellung auseinandersetzt. Der ÜNB an sich hat allerdings keine Möglichkeit die 
potentiellen Fehlerquellen zu beeinflussen. Die begrenzten Informationen, die er zur Verfügung 
hat (die gewichtete day-ahead Prognose und die Information über die tatsächlich aufgetretenen 
Windeinspeisungen, die er bekommt mit der Verzögerung von 24 Stunden) zwingen den ÜNB 
dazu, solche Methoden für die Optimierung seines Marktverhaltens aufzusuchen, die mit diesen 
wenigen Angaben arbeiten können. Genau diese Tatsache macht die vorliegende Arbeit neuartig, 
da die präsentierten Methoden – Q-Learning und Kalman-Filter – diesen Anforderungen 
entsprechen. Ihre Leistung wird binnen des nachsimulierten EEG-Ausgleichsmechanismus getestet 
und anhand von realen Windeinspeisungsdaten verifiziert. Die erreichten Ergebnisse werden mit 
den üblichen statistischen Kennwerten bewertet. 

                                                           
2
 Das bedeutet einen Stundenkontrakt zu bieten ohne dabei einen Preis zu definieren 
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Glossary of terms 

In this thesis some specific terms are used that need separate explanation. These are: 

 

Horizontal equalisation  Part of the Nationwide Equalisation Scheme. The four Transmission 

System Operators (TSOs) carry out among one another a 

„horizontal equalisation of burdens“. This means that the 

electricity produced from RES plants is allocated to the four TSOs 

according to the shares which the electricity sales in the different 

control areas of TSOs have in total electricity sales in Germany 

(RES-Quota) 

Sublimation values (SVs) Energy amount that must be marketed by the TSOs, themselves or 

jointly, in a non-discriminatory and transparent manner, on the 

day-ahead spot market of an electricity exchange 

“Real-time” values Extrapolated actuals of wind power feed-in, received from online 

measurements of representative wind farms (online estimation). 

Used by the TSOs as a reference value for wind power feed-in 

really occurred. Becomes available with the time lag of 24 hours. 

  
  
  
 

 

 



Introduction 1 

 

Chapter 1                                    

Introduction 

1.1 Motivation 

The majority of electric utilities in Europe – and the most of the world – are structured around 

large, central power stations, connected to transmission systems which deliver electricity to end 

customers on distribution networks. The output from these power stations is controlled, so that 

the stations are “dispatched” (i.e. are able to produce) in the order of increasing cost (short-run 

marginal costs) as the demand rises. Such centralized and integrated power systems, with the 

power generated and delivered by monopoly operators, became the dominate pattern of 

electricity system development around the world. 

However, in the past twenty years, this pattern has begun to break down. Altering of demand, 

input costs, technology developments and environmental pressure have led to changes in 

regulatory structures allowing new entrants and new decision-makers acting on the electricity 

market. The whole context for decision-making concerning power systems is changing, in ways 

that have profound implications for renewable energy.  

Renewable energy sources (RES) are promoted as a prospective means of moderating the risks 

associated with high fossil fuel import dependence. The parallel development of environmental 

awareness and the emergence of environmental political parties in Europe provide an equally 

powerful rationale for government investment in RES. 

The renewable sources of “primary electricity” – those such as wind, solar, hydro, wave and tidal 

energy that produce electricity directly from mechanical or photoelectric conversion – differ from 

most conventional power sources in several important ways. Their output is “fluctuating”: it 
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follows the fluctuations of the natural cycles. They are usually available on much smaller scales; as 

such they can be installed in relatively short time and would usually connect to distribution 

networks rather than feed directly into the high-voltage transmission system (except of large on-

shore and especially off-shore wind parks). Finally, they are cheap to operate once constructed; 

the main cost lies in the construction.  

Additionally renewable sources of electricity build the basis for substantial climate protection. 

Renewable energy and energy efficiency technologies are now of prime importance for creating a 

clean energy future for not only the nation, but the world. It increases diversity of energy supplies 

and its use can significantly reduce greenhouse gases and other pollutants. 

The deployment of renewable energy requires appropriate economic, market and regulatory 

instruments. The so-called “20-20-20” climate change proposal of the European Commission is 

one of numerous measures undertaken in Europe to promote renewable energy. In its second 

Strategic Energy Review the European Commission strives for sustainability, competitiveness and 

security of energy supply, by reducing greenhouse gas emissions by 20%, increasing the share of 

renewables in the energy consumption to 20% and improving energy efficiency by 20%, all of it by 

2020 [1]. 

Implementation of the EU ’s targets is primarily dependent upon on the formulation of framework 

conditions at national level. For Germany factors that favour the continued, concerted expansion 

of RES on its national level are as follows: 

 Reducing the dependency on energy imports (energy supply reliability); 

 Balanced mix of energy sources based on efficiency and climate-friendliness; 

 Conserving limited fossil resources; 

 Environmental and climate protection. 
 

Due to sustainable pursuing of these goals the advancement of renewable energies in Germany is 

often cited as a model success story. The German government launched a comprehensive series 

of promotions for renewable energy in the early 1990s, which has since been augmented with 

additional legislation and policy actions to increase renewable energy use. Most of these policies 

are embedded in a larger set of environmental, economic, and security policy considerations. 

These efforts led to the emergence of a new vital and powerful industry and adoption of 

legislative acts (the EnWG3 and the EEG4), which support the propagation of renewable energies 

in Germany and their rapid technological development.  

A special role within this special regulatory framework is assigned to Transmission System 

Operators (TSOs), which are responsible of coordination of feed-in from renewable energy 

sources within their control area. In contrast to the previously performed technical obligations of 

a TSO (ensuring of network availability, congestion prevention and management, ensuring the 

system stability), this new responsibility requires from TSOs to overtake the role, which is 

                                                           
3
 Energiewirtschaftsgesetz (Gesetz über die Elektrizitäts- und Gasversorgung, Energy Industry Act) 

4
 Erneuerbare-Energien-Gesetz (Gesetz für den Vorrang erneuerbarer Energien, The German Renewable 

Energy Sources Act) 
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sometimes similar to the tasks of a market trader. Within this role a TSO must fulfill following 

duties: 

 registration of different volumes and periods of generation of renewable energy in its 
balancing group (BG) (which is normally coincide with TSO’s control area5); 

 provisional equalisation of differences between RES feed-in and a share of a particular 
TSO on RES-consumption amongst the TSOs without undue delay (horizontal 
equalization (HE)); 

 marketing of all RES feed-in, available in the control area, on the energy market (on the 
European Energy Exchange (EEX6)) 

As already mentioned the output of RES power plants is of stochastic nature. This stochastic is 

mainly caused by the significant share of wind energy, which experiences a tremendous growth in 

Germany now. Whereas in the mid-1990s, the average installed capacity per wind turbine was still 

less than 200 kilowatts (kW), in the year 2008 the average installed capacity was already on 

average 1.2 MW per power plant; today a modern standard plant has 2 MW. In the meanwhile 

there are multi-megawatt plants with the plant capacity of up to 6 MW offered [21]. Existing wind 

power capacity in Germany in 2008 is totalled to 24 GW (second place in the world slightly 

overtaken by the United States (25 GW) after long-time wind power leadership [17], nearly 50% 

of all RES-feed-in in Germany).  

Due to this meaningful share of wind, it is of particular difficulty to sublimate the stochastic RES-

energy feed-in into a “standard market product” in order to market them as it is ordered by 

corresponding legislative acts. Among the most important obstacles for wind power sublimation 

following of its special characteristics are to be mentioned: 

 Intermittency. When there is no wind, no power is generated; the wind comes and goes, 
and does not always blow with the same intensity. Because of this intermittency, the 
supply of wind power will fluctuate more than that of traditional generating sources; 

 Non-dispatchability. Wind power enters an electrical grid whenever there is adequate 
wind, and therefore cannot be called upon to serve load; 

 Low marginal running costs resulting in a low market clearing price. Since the 
introduction of negative prices on the EEX on 28.04.2008, the outcome of an market 
auction can have good chances to result in minus values at calculation of market clearing 
price (as e.g. on 22.12.2008, hour 4-5, price on the EEX -101€/MWh [31]). It would mean 
that the TSO as supplier must pay for the buy-out of its wind power quantities. These 
costs become thereafter a part of electricity bills of final customers; 

                                                           
5 A control area is usually coincident with the territory of a company, a country or a geographical area, 

physically demarcated by the position of points for measurement of the interchanged power and energy to 
the remaining interconnected network, operated by a single TSO, with physical loads and controllable 
generation units connected within the control area [2]. 
6
 Since 2009 all short-term power commodities are traded on EPEX Spot SE (as a consequence of merge of 

EEX (Germany) and Powernext (France)). However, in this thesis the name “EEX” continues to be used for 
the purpose of convenience and common understanding. 
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 Forecasting difficulties. This lack of 100% predictability in power output makes wind 
power particularly difficult to trade in a competitive market due to the imbalance charges 
imposed for deviating from the contracted position or the necessity to apply the 
expensive regulating power. The occurring costs must then also be paid by end 
customers.  

Since a TSO must care about a fair pricing policy for its services (which would mean it must cover 

its costs but in the same time can not force up the electricity prices) the wind power 

characteristics listed above must be considered by a TSO for integrating the wind power feed-in 

into electricity market and elaborating its market performance.  

1.2 Objectives 

This thesis is concerned with investigation of methods that can support a TSO in its everyday 

business – marketing of received wind power feed-in. The special attention thereby is devoted to 

the special characteristic of wind energy – the lack of its 100% predictability.  

Wind power prediction systems which improve the technical and economical integration of wind 

energy into the electricity supply system and are widely used among TSOs are already available 

(see i.e. [36], [37], [41], [47] for detailed overview). The majority of them is based on numerical 

weather predictions models (NWP) and provides the information how much wind power can be 

expected at which point of time. Thus they announce the variations in the electricity production 

of wind farms in advance and largely reduce the degree of randomness attributed to wind energy. 

The day-ahead forecast of wind energy feed-in a TSO receives each day is the weighted 

combination of several of such wind power prediction systems (see [26], [46], [52], [53]). 

This day-ahead forecast of the available wind energy output in TSO’s control area builds the basis 

for conduction of market deals for energy delivery on the next day. However, the actual real-data 

of wind power feed-in differs significantly from the day-ahead forecast a TSO had.  

This imperfection in forecasting results in deviations between the day-ahead contracted volumes 

and the real energy quantities occurring. The equalisation of these deviations causes significant 

costs, e.g. through an input of an expensive additional energy source, available for network 

regulation in this certain moment. These additional expenses are further pushed down to the end 

customers and result in increased electricity tariffs. 

In order to avoid or at least to reduce this additional burden for end-users the market clearing 

price, a TSO receives for bidding of its wind power quantities, must therefore be accordingly high 

(in order to cover the additional costs). However, in accordance with the German RES regulatory 

framework, a TSO must accept every price that is settled for each hour contract (even the 



Introduction 5 

negative ones). Therefore the only possibility to avoid these high costs is to predict the “real-

time7” data of wind power feed-in on the day-ahead as exactly as possible. 

Correspondingly, the objectives of this thesis are to find the methods to optimize a TSO’s market 

performance at marketing of wind power feed-in and investigate their effectiveness. The 

effectiveness means in this case that these methods must improve the quality of day-ahead wind 

power forecast, a TSO receives, in such a way, that the deviations, occurring in the day of delivery 

could be hold as small as possible. The difficulty thereby is that the only information a TSO has on 

its disposal is the weighted day-ahead WPF it receives as a service and the “real-time” data that it 

is given in 24-hours-delay. This substantial boundary condition turns the investigated problem 

into a rather novel research topic. The methods used for optimization of TSO’s market 

participation are determined by the author as “post-processing” methods, since they forecast the 

“real-time” data regarding the already existent day-ahead forecast. Consequently, this thesis is 

not about wind forecasting methods as such, but rather about how to determine the level of 

contract energy to be sold on a short-term energy market such as EEX. 

Additionally there are some requirements that have to be fulfilled by these optimization methods: 

  rely on limited input data; the only data source the operator can use is these two time 
series described before: day-ahead WPF (weighted WPF from several providers) and ex-
post “real-time” values; 

 not claim much time for calculations. It must be rather a simple model, which is easy to 
use. A possibility to change the initial conditions must be ensured; 

 the calculations must consider the current RES legislation (include regulations of the HE); 

 the model must outperform the initial day-ahead forecast; 

 within this system it must be allowed to test different marketing strategies; 

 in case of implementation by a TSO a possibility to change the initial model conditions 
must be provided. 

1.3 Structure 

After this Introduction, Chapter 2 is devoted to general description of a problem a TSO is faced 

with. It is started in section 2.1 with an explanation of a traditional role of the TSO in power 

industry. Usually a TSO is responsible for operation of national energy grid, particularly with 

regard of guarantee the nominal grid frequency of 50 hertz, ensuring the system stability in its 

control area as well as other obligations. Faced now with unbundling regulations (described in 

section 2.2.1) and intense growth of RES in Germany (section 2.2.2) it assumes a new 

                                                           
7
 Here and further real-time data is written with quotation marks (“real-time” data), because the data used 

is in fact the extrapolated values of recently measurements from selected representative wind farms, used 
by TSOs as basis for compensation in the respective EEG balancing group. The actual generated energy can 
deviate from this “real-time” level 
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responsibility of coordination of a RES balancing group (EEG-Bilanzkreis) TSO within the German 

national equalisation scheme for renewable energies (section 2.2.3). Within this responsibility the 

TSO acts like a market trader.  

Section 2.3 explains accordingly the special obligation a TSO must fulfill within this new 

responsibility. Acting like a market trader means in particular to bid the received RES power feed-

in on the energy market. Almost the half of these volumes consists of stochastic wind power. It is 

therefore important to analyze how the special features of this variable energy source influence a 

TSO’s market participation. “Merit-Order”-Effect of wind power on the energy market as well as 

the legislative support of RES in Germany makes the relevance of accurate wind power forecast 

(WPF) of particular importance for the effective participation of a TSO on the power market.  

Continuing the theme of significance of accurate WPF in section 2.4, section 2.4.1 gives a general 

overview of existing WPF tools. Different prediction horizons as well as the potential users of 

WPFs are presented. Two approaches to transform the given numerical weather data into the 

power output of a wind turbine (statistical and physical) are explained in detail. Finally the wind 

power prediction tools that are in use by German TSOs are introduced. Section 2.4.2 emphasizes 

the considerable consequences of forecast errors and their particular meaning for a TSO’s as 

market player. It is shown that especially the deviations between the day-ahead WPF and its 

“real-time” data is the reason for significant cost expenditures of a TSO, e.g. for control energy.  

In conclusion section 2.5 summarizes all the circumstances a TSO must work with. Legislative, 

market and that on the part of wind power restrictions for TSO’s market participation are 

demonstrated. It is obviously now that a TSO has only limited abilities to optimize its market 

behaviour and reduce the costs connected with marketing of wind power. In fact only one 

possibility to influence the quality of TSO’s market participation is to decrease the forecast error 

embedded in an initial day-ahead WPF a TSO receives every day, i.e. the quality of existing day-

ahead WPF that are currently in use by German TSOs must be improved. 

Chapter 3 is subsequently devoted to the optimization methods which application by German 

TSOs can influence the quality of the initial day-ahead forecast. Being a receiver of WPFs as of 

service a TSO has no leverages to influence on the modelling assumptions and techniques used 

within these forecasts. It means it has no control over errors contained in the NWPs, SCADA, 

prediction models and must accept them as they are. The only opportunity to discover whether 

its marketing decisions were right is given on the next day, when the “real-time” values (online 

estimation data) are available. That is why the proposed methods are defined by the author as 

“post-processing” methods, since their accuracy can be improved only after they were produced. 

Subsequently the obtained prediction data must be assumed as an isolated time series with 

implied inaccuracy nature. Two methods are presented: the Q-Learning and the Kalman filter. 

Motivation for this selection (section 3.1) is followed by the description of their mathematical 

background (section 3.2) and the particular application for the optimization task (section 3.3). 

In Chapter 4 the conducted case studies are presented. Besides testing their performance 

influence of internal modelling parameter on the prediction results was tested. Important 

achievement in the case of the Q-Learning algorithm was the definition of optimal 

learning/prediction intervals for each of four TSOs.  
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All the results were evaluated with the help of commonly used error measures, whose description 

is to find on the beginning of the Chapter (section 4.1). It is shown that both methods bring 

significant improvement of prediction data in comparison with the initial day-ahead forecast.  

Chapter 5 is devoted to the validation of the algorithm performance. Whereas the performance of 

the Kalman filter always brings clearly defined results regardless the variants of testing data, the 

self-learning characteristics of the Q-Learning algorithm are tested on their optimization potential 

using optimal learning/prediction intervals, elaborated within the corresponding case studies. In 

this way application peculiarities of this method are analyzed. 

Finally, Chapter 6 contains an overall summary with conclusions and outlook.  
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Chapter 2                           
_________________________________
Role of a German TSO in the unbundled 
environment 

Role of a German TSO in the unbundled environment 

 

The power transmission system is complex, costly and critical to the national economy. This 

system developed from the earliest distribution system surrounded Thomas Edison’s 1882 Pearl 

Street Station in lower Manhattan into a sophisticated network involving interconnected power 

plants and power lines that operate at many different voltages (Figure 2-1). 

 

Figure 2-1: Basic structure of the electric system 

The fast transformation of the power industry from a local to an interstate one occurred for four 

main reasons: reliability, flexibility, economics, and competition. Broadly, a strong transmission 

system 1) improves the reliability of the electric power system, 2) gives electricity customers 

flexibility to diversify the mix of fuels that produces their electricity by giving them access to 

power plants, 3) improves the cost structure of the entire industry by giving low-cost power 
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plants access to high-cost power markets, and 4) enables competition among power plants by 

giving more plants access to more markets [3]. 

Transmission system operator (TSO) facilitates the power system by making it available for 

interested parties by planning, constructing and operating it in accordance with both political and 

physical laws. It is also responsible for keeping the power system in balance, and thus it is 

responsible for the overall physical management and control of the power system. Technically 

this means that the frequency is maintained at nominal frequency. 

At the same time a TSO is responsible for ensuring that the power transmission system is 

constructed in accordance with the market's needs and that socioeconomic criteria are used for 

the solutions that are selected. The TSOs may weigh different solutions such as agreements to 

disconnect consumption and the construction of new power lines up against each other and 

choose the most profitable on the basis of an overall socioeconomic assessment. 

TSOs are the organizational backbone of the electrical power grid, and link power generators with 

distribution companies according to transparent rules. They are financed by charging a network 

fee proportional to the annual peak load they carry. Consequently, in their essential nature TSOs 

are not-profit organizations; their action is based on non discrimination of market players and 

continuous good performance of their power system. They are neutral bodies, whose 

independence is established by the Internal electricity market (IEM) Directive8 of the European 

Parliament and the Council [4]. TSOs are the ones that ensure that any changes in the regulations 

can be effectively implemented on a day-to-day practical basis, without jeopardising the secure 

operation of the interconnected power systems. 

 In order to understand the nature of TSO’s operation fields Section 2.1 presents a short overview 

of its main tasks.  

2.1 Basic responsibilities of a TSO  

According to Article 9 of the IEM Directive each transmission system operator shall be responsible 

for [4]: 

 “ensuring the long-term ability of the system to meet reasonable demands for the 
transmission of electricity; 

 contributing to security of supply through adequate transmission capacity and system 
reliability; 

 managing energy flows on the system, taking into account exchanges with other 
interconnected systems. To that end, the transmission system operator shall be 

                                                           
8
 Internal Market in Electricity Directive is the Directive 2003/54/EC of the European Parliament and the 

Council of 26 June 2003 concerning common rules for the internal market in electricity and repealing 
Directive 96/92/EC is based in the Treaty establishing the European Community, and in particular Article 
47(2), Article 55 and Article 95 thereof. Note: The Directive 2003/54/EC has been replaced by the Directive 
2009/72/EC. 
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responsible for ensuring a secure, reliable and efficient electricity system and, in that 
context, for ensuring the availability of all necessary ancillary services insofar as this 
availability is independent from any other transmission system with which its system is 
interconnected; 

 providing to the operator of any other system with which its system is interconnected 
sufficient information to ensure the secure and efficient operation, coordinated 
development and interoperability of the interconnected system; 

 ensuring non-discrimination as between system users or classes of system users, 
particularly in favour of its related undertakings; 

 providing system users with the information they need for efficient access to the 
system”. 

National German regulatory framework for TSO operation supports the European regulations by 

means of the EnWG, [5] and the Transmission Code 2007 [6]. In particular in accordance with §12 

of EnWG TSO are obligated to ensure the sustainable functioning of the high voltage grid, 

satisfaction of demand on transmission of electricity and, substantially contribute to security of 

supply through adequate transmission capacity and reliability of the network. §7 of Section 1.1 in 

the Transmission Code 2007 claims in its turn for the orientation of the technical requirements of 

TSO operation on a trouble-free operation of the transmission network and control of 

disturbances. On this basis, the cross-border exchange of power between the synchronously-

operated transmission networks, and non-discriminatory data provision must be handled. 

In general, standard traditional responsibilities of a TSO can be gathered into the following several 

fields: 

Ensuring of network availability  

Network availability can be defined as the provision of ability of the electric system to supply the 

electrical demand and energy requirements of customers at all times, taking into account 

scheduled and unscheduled outages of power lines and power plants. The transmission system 

gives power users the ability to draw from a diverse set of power plants in different locations and 

with different operating characteristics. If the transmission system is robust, with a certain 

amount of redundancy built in, it can withstand the failure of its most critical lines or other 

components. This is referred to as single contingency analysis, or N-1 criterion [3].  

In order to ensure this network provision in accordance with the regulatory requirements the 

transmission system must be regularly maintained. Typical range of maintenance tasks usually 

involves regular network checking, troubleshooting and resolving of problems on the network, 

troubleshooting of related hardware attached to the network, setup and changes to security 

police.  

Congestion prevention and management 

The adequate transmission capacity is ensured if the scheduled power flows are executed as it 

was planned. If it is not the case and the safety or reliability of the electricity system in the control 

area is threatened or disrupted, that means that a certain kind of congestion exists. 
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Congestion is according to Art. 2 Abs. 2 lit. c of Regulation (EC) 1228/2003 on Cross-Border 

Exchanges in Electricity (StromHVO, [7]) “a situation in which an interconnection linking national 

transmission networks, cannot accommodate all physical flows resulting from international trade 

requested by market participants, because of a lack of capacity of the interconnectors and/or the 

national transmission systems concerned”. Such situations mean a danger to safe and reliable 

power supply, and in that cases TSOs are entitled and obliged to eliminate the hazard or failure in 

accordance with §13 EnWG and §15 of the Regulation on the access to electricity supply grids 

(StromNZV, [8]) by means of 

 network related measures, in particular through network circuit reconfiguration, and  

 market related measures, such as the use of balancing energy, contractual agreed 
switchable loads, information about bottlenecks and congestion management and 
mobilization of additional reserves. 

 
Both of these kinds of measures, which a TSO can engage for eliminating of congestion threat, are 

explained in Annex of Transmission Code 2007. They are presented in Table 2-1 and Table 2-2 for 

the sake of completeness. 

Table 2-1: Network related measures to be applied in accordance with §13 Abs.1 EnWG [6] 

Measures Explanation 

Topology 
measures 

Consist of providing (if necessary, in coordination with 
neighboring operators) of switching operations in the own 
network area of a TSO, including the interconnecting lines, in 
order to influence the load flow in the network 

Exploitation of 
operationally 
allowable 
tolerance bands 
(current and 
voltage) 

Short-term overloading of operational equipment (within the 
technical possibilities, without violating of the technical rules) 

 

Regulation (EC) 1228/2003 also contains rules to ensure the security of the networks in the 

context of congestion management. According to them TSOs must put in place coordination and 

information exchange mechanisms. The information published shall include a general scheme for 

the calculation of the total transfer capacity and the transmission reliability margin based upon 

the electrical and physical features of the network (Art. 5 Abs.2 StromHVO). 

If the emergence of congestion cannot be prevented with the help of above mentioned measures, 

TSOs are required to manage the available power network capacity according to market-oriented, 

transparent and non-discriminatory procedures (§15 Abs.2 StromNZV, Art.6 Abs.2 StromHVO). 

Limited feed-in and transmission capacity can be allocated through different congestion 

management methods, such as explicit/implicit auctions, market coupling (including open market 

coupling) and hybrid or special forms of them. 
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Table 2-2: Market related measures to be applied in accordance with §13 Abs.1 EnWG [6] 

Measures Explanation 

Utilization of 
balancing energy 

Application of contractual agreed balancing energy. The 
scheduling is carried out accordingly to the requirements of 
network control 

Contractual 
agreed 
switchable loads 

Due to connection and disconnection of loads, the power 
balance in the control area can be controlled. For this purpose 
the corresponding contracts about the switchable loads must be 
agreed. The scheduling is carried out in accordance with to the 
respective requirements and contractual agreements 

Preventive 
congestion 
management 

Taking such measures as pro-rata reductions and auctions as 
well as non-acceptance of intra-day schedules in due time 

Mobilization of 
additional 
reserves by the 
TSO 

If the applied balancing energy is not sufficient to compensate 
the power balance in a control area, additional reserves must be 
mobilized. This can be previously unused power from power 
plants; starting-up of unutilized units, as well as temporary help 
by neighbouring TSOs (delivery of free tertiary control reserves) 

Countertrading Preventive or curative counter deal (induced by TSO)  

Redispatch Preventive or curative influence on power generation by TSO 

 

In any of these cases, the use of congested interconnections and/or the transmission networks to 

their maximum capacity, complying with safety standards of secure network operation must be 

ensured. Therefore TSOs shall, as far as technically possible, net the capacity requirements of any 

power flows in opposite direction over the congested interconnection line. Having full regard to 

network security, transactions that relieve the congestion shall never be denied (Art.6 Abs.5 

StromHVO). 

System stability 

It is commonly known, that electricity cannot be stored efficiently. Apart from indirectly storing it 

in fuel stockpiles or in water held above hydroelectric dams9, there is no way of creating a 

substantial stockpile of electricity. Therefore production has to cover demand on an 

instantaneous basis. That is what is called guarantee the system stability. Accordingly, power 

supply is guaranteed in such a way that the electricity demanded in the withdrawal points must 

be always added in the same amount in the different delivery, in order to ensure the current 

supply of all participants. 

According to [9] power system stability may be broadly defined as the property of a power system 

that enables it to remain in a state of operating equilibrium under normal operating conditions 

and to regain an acceptable state of equilibrium after being subjected to a disturbance.  

                                                           
9
 Besides of potential energy that can be stored by pumping water up hill, kinetic energy can also be stored 

in rotating generators, but all of these stores of energy must be converted to electrical energy by the 
process of generation before they can be delivered 
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Continuous development of power system technologies, national and international energy policy 

makes complex reliable operation the power grid more demanding and, consequently, forces 

TSOs to undertake new obligations. So, for example, the unbundling provisions of the EnWG 

caused by an international trend to liberalization in energy policy resulted in Germany in a 

number of concrete commitments to separation of the network activities of TSOs (a so-called 

"natural monopoly") from the market areas. The aim of the legislation is the supply of 

transparency and creation of non-discriminatory design for management of network operations. 

In addition governmental support of renewable energies, in particular of wind energy led to 

change of traditional tasks of the German TSOs, followed by acquiring of the new roles by them. 

Respective influences of current regulatory framework on the TSO’s tasks are discussed in the 

next sections. 

2.2 New regulations and TSO’s changing role 

For almost ten decades power industry all over the world was organized as a vertical integrated 

monopoly organized, often in state control. Since the beginning of the 90s of the 20th century, 

however, there is a worldwide trend, starting from the highly industrialized countries, to break 

the vertical integration and privatize state property in order to make the essential parts of the 

industry more competitive. This trend led to the current situation in the German power industry, 

where TSO are acting as independent authorities. Their responsibilities e.g. for ensuring of non-

discriminatory grid access for third party, transparent grid management, were partly described in 

previous sections. The goal of this part is to give an overview of the background reasons for an 

actual development of power policy and its consequences for TSOs regarding the involvement of 

them into the new terrain – that of power market. 

 2.2.1 Unbundling 

As it is outlined in [10], liberalization of the energy sector in Europe and the formation of internal 

European markets in electricity and gas have been conceived with the idea of benefiting European 

industry and consumers. Achievement of the benefit necessitates creating efficient and 

competitive markets and offering higher quality and more varied services to energy users at lower 

prices. However, for liquid markets to evolve and function effectively, it is crucial that new market 

entry is made possible and that there are a sufficient number of participants able to compete with 

each other. This can only be achieved through providing retail and wholesale market entrants 

with solid guarantees that they will have unimpeded access to the grid and to customers on a 

non-discriminatory basis. The independence of transmission system operators ranks high among 

the guarantees required from a new market participant’s perspective.  

To ensure independence of a network operator it is important to prevent situations where it may 

face a conflict of interests and incentives. Separation of activities proves to be the most efficient 

way of solving the problem of entanglement of production and supply (as activities susceptible to 

competition) on the one hand, with transmission and distribution functions (which tend to be 

natural monopolies) on the other, within vertically integrated energy entities (Figure 2-2). 

Unbundling is the term normally used to refer to such structural solution [10]. 
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Figure 2-2: Unbundling scheme  

Unbundling of activities within a former vertically integrated company minimises distortions in a 

single European electricity market, by ensuring transparent and non-discriminatory terms of 

transmission access for third parties and curtailing the risks of cross-subsidisation of the 

generation and supply activities of incumbents. In Germany unbundling is regulated by Part 2 §§6-

10 of the EnWG.  

Unbundling can be implemented in form of legal unbundling, functional unbundling, unbundling 

of accounts and ownership unbundling. The ownership unbundling is the most severe form of 

unbundling and supposes the strongest interference in the business freedom in the context of 

Article 2, 12 and 14 of the German Consitution10 [11]. The other forms of unbundling are less 

intensive in their intervention. In §§ 6 et seq. EnWG these forms are applied in combination. 

Legal unbundling (§7 EnWG) 

The special ownership unbundling (legal unbundling) is a fairly extensive intervention in the 

entrepreneurial freedom of action, as the complete separation of the grid operation from the 

other energy activities is required from the parent company11 (§ 7 Abs. 1 EnWG). It is intended 

through the separation of activities into different entities to increase the transparency of the 

mutual relationships between the various divisions of an integrated supply company. Another 

goal is to contribute to a diversification of business interests [11].  

Legal unbundling does not imply a change of ownership of assets and nothing prevents similar or 

identical employment conditions applying throughout the whole of the vertically integrated 

undertakings. However, a non-discriminatory decision-making process should be ensured through 

organisational measures regarding the independence of the decision-makers responsible (Art.8 

IEM Directive). 

                                                           
10

 (Germ.) Grundgesetz, GG 
11

 (germ.) Mutterkonzern 
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Functional unbundling (§8 EnWG) 

Operational or functional unbundling means, according to § 8 Abs. 1 EnWG, ensuring of the 

independence of the network operator from the parent company in the integrated utility in terms 

of organization, decision making and the operation of the network. § 8 Abs. 1 EnWG thus 

represents material requirements for the organization of cooperation within the integrated 

supply company additionally to the formal requirement of legal unbundling [11]. 

§ 8 Abs 2 EnWG contains the prohibition of double responsibility for individuals with final decision-

making authorities in fields of grid operation and competition areas (e.g. generation, trading). The 

aim of the scheme is to avoid conflicts of interest. In the same time § 8 Abs. 2 No. 1 EnWG clarifies 

that the individuals without the aforementioned management positions have the right to work in 

these two separate fields. Thereby the individuals are obliged to perform their professional 

activity solely within one of the fields, while organizationally or disciplinary they can belong to the 

other). Consequently, § 8 Abs. 2 EnWG allows the organization of an integrated supply company 

with the so-called "shared services", e.g. with joint legal department, human resources 

department or IT service. In the structuring, however, there are rules concerning the 

informational unbundling (see below) that must be considered [11]. 

The purpose of § 8 Abs. 4 EnWG is to ensure the decision independence of the network operator 

from the parent company in the integrated supply company. In order to implement this regulation 

a detailed competency rule is established. In accordance to this rule the parent company receives 

only an overall responsibility. This includes the competence of abstract general rules such as 

financial plans, indebtedness ceilings or other target settings. In other respects the network 

operators are free in the performance of daily business [11].  

§ 8 Abs. 5 EnWG regulates the duty of the integrated company to initiate a so-called compliance 

program12 for non-discriminatory exertion of network activities. An employee or a department 

responsible for this compliance program is obliged to inform the regulative authorities about the 

implemented measures annually [11]. 

Informational unbundling (§9 EnWG) 

Informational unbundling means that all operationally relevant information from the vertically 

integrated companies and their unbundled network operators must be kept apart. The goal is to 

prevent informational advantages of the integrated firms against non-integrated competitors in 

the upstream or downstream markets. Commercially valuable information can thereby be 

withheld. Such information include e.g. load profiles of network users, network customers data, 

such as address, meter readings, etc., supplier information and project information about new 

power plant capacities. To prevent the exchange of information the organizational measures, such 

as the establishment of so-called "Chinese Walls13" are needed [11]. 

                                                           
12

 (Germ.) Gleichbehandlungsprogram 
13 A term used to describe procedures that separate the firm's departments to restrict access to non-public, 

material information, in order to avoid the illegal use of inside information. 
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§ 9 Abs. 1 EnWG obliges to confidentiality regarding all information that was obtained at the 

implementing of network activity.  

In the case that information about the own work as the network operator should be disclosed, it 

must be conducted in a non-discriminatory manner (§ 9 Abs. 2 EnWG). Disclosure means a non-

discriminatory treatment of network users in respect of information, information availability and 

information rapidness. This should be implemented e.g. in the form of a business report, but not 

for disclosure to any arbitrary organization [11]. 

Unbundling of accounts (§10 EnWG) 

Unbundling of accounts means, according to § 10 Abs. 3 EnWG that the various divisions of an 

integrated utility company keep separate accounts. The purpose is to achieve more transparency 

of cost allocation. This in turn will lead to the possibility to compare the tariffs with the costs that 

were occurred. Moreover, the independent parts of the parent company regardless of their legal 

status must prepare annual reports that will be then reviewed by appropriate authorities [11]. 

Ownership unbundling 

Ownership unbundling means the complete separation of network segments from the production 

and distribution segments in the integrated power supply company. The goal is to have one or 

more independent companies that can own the networks and operate them. For this purpose the 

energy corporate groups must be forced to sale their networks [11].  

So far such ownership unbundling has been neither dictated by any European law nor considered 

in the EnWG, however, this topic dominates like no other in the current discussions regarding 

power economy and policy. Especially because of the significant constitutional concerns various 

alternative proposals to the classic expropriation are now discussed, in particular the solution 

through a creation of a so-called "Independent System Operator (ISO)” or a so-called "stock 

split14” [12]. 

For the TSO’s operation unbundling means first of all that a TSO acts as an independent 

authority, executing its responsibilities on operating, ensuring the maintenance of and, if 

necessary, developing the transmission system in a given area. It is not allowed to own and 

operate any generation utilities as well as it must not be part of any energy trading company. It 

must ensure a non-discriminatory access of all interested participants of power industry to the 

network area and make sure that the long term ability of the system to meet reasonable demands 

for the transmission of electricity is warranted. Besides of these obligations all the costs induced 

by the TSO’s performance and turned into electricity tariffs are subject to be controlled by a 

regulatory authority. In Germany this authority is called Federal Grid Agency15. 

Further the German TSO has commitments, considering the current development of renewable 

energies in Germany. Motivation of the government support of RES in Germany as well as the 

corresponding consequences for the German TSO is discussed in the following section. 

                                                           
14

 (Germ.) Aktiensplit  
15

 (Germ.) Bundesnetzagentur, BNetzA 
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2.2.2 Development of renewable energies in Germany 

The renewable sources of “primary electricity” – those such as wind, solar, hydro, wave and tidal 

energy that produce electricity directly from mechanical or photoelectric conversion – differ from 

most conventional power sources in several important ways. Their output is “fluctuating”: it 

follows the fluctuations of the natural cycles. They are usually available on much smaller scales; as 

such they can be installed in relatively short time and would be usually connected to distribution 

networks rather than feed directly into the high-voltage transmission system (except of large on-

shore and especially off-shore wind parks). Finally, they are cheap to operate once constructed; 

the main cost lies in the construction (fixed cost character).  

Additionally renewable sources of electricity build the basis for substantial climate protection. 

Renewable energy and energy efficiency technologies are now of prime importance for creating a 

clean energy future for not only the nation, but the world. It increases diversity of energy supplies 

and its use can significantly reduce greenhouse gases and other pollutants. 

The deployment of renewable energy requires appropriate economic, market and regulatory 

instruments. The so-called “20-20-20” climate change proposal of the European Commission (EC) 

is one of numerous measures undertaken in Europe to promote renewable energy. In its second 

Strategic Energy Review [1] the EC strives for sustainability, competitiveness and security of 

energy supply, by reducing greenhouse gas emissions by 20%, increasing the share of renewables 

in the energy consumption to 20% and improving energy efficiency by 20%, all of it by 2020. 

National economics following the European instructions go even further in their ambition to 

reduce the dependence on imported primary energy carriers. In particular, in Germany, motivated 

by goals of climate and environment protection, the German government’s Integrated Energy and 

Climate Programme was adopted [13], that aims to increase the share of RES in electricity sector 

to 25-30% by 2020. 

Implementation of these targets is primarily dependent upon the formulation of framework 

conditions at national level. In Germany the factors favouring the continued, concerted expansion 

of RES are as follows: 

 Reducing the dependency on energy imports (energy supply reliability); 

 Balanced mix of energy sources based on efficiency and climate-friendliness; 

 Conserving limited fossil resources; 

 Environmental and climate protection; 

 Creation of new jobs. 
 

The German government launched a comprehensive series of promotions for renewable energy in 

the early 1990s, which has since been augmented with additional legislation and policy actions to 

increase renewable energy use [15]. Most of these policies were embedded in a larger set of 

environmental, economic, and security policy considerations. 

Two issues in particular highlight the importance of environmental politics in Germany and their 

close relationship with developments in energy policy.  
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The first issue is the phase-out of nuclear power. An early energy policy action of the Red-Green 

government16 was an initiative for the complete phase out of nuclear power in Germany by 2020. 

After years of negotiation in Parliament, legislation mandating the phase-out was adopted in April 

2002. Germany now faces the challenge of replacing one-third of its electricity supply from other 

sources. Even though Germany’s aging nuclear plants have been granted successive license 

extensions, these facilities are all slated for decommissioning by 2020. A combination of options 

including the construction of new renewable energy plants, combined cycle gas turbines, 

conservation, and power imports are likely to be used to offset nuclear power [15].  

The second issue is greenhouse gas control. The future challenges incumbent in nuclear phase-out 

are compounded by the ambitious greenhouse gas emissions reductions targets adopted by the 

German government. Germany has agreed to a 21% reduction from 1990 levels by 2012 as part of 

the European Union’s Kyoto Protocol commitment. Under a new EU-sponsored proposal for 

greenhouse gas emissions reduction in the post-2012 period, Germany may be asked to adopt a 

40% reduction target (from 1990 levels) by 2020 [15].  

This sustainable energy policy leveraged Germany to attain a leading position in many aspects of 

renewable energy use. For example:  

 World leadership in installed PV capacity – approximately 3811 MWp in 2007 [14] (46% 
of the global market [16]);  

 Among world leaders of installed wind capacity second – 23900 MW as of the end of 
2008, or approximately 20% global capacity [17];  

 European leadership in biodiesel consumption – 3.3 Mio tones in 2007;  

 A substantial green electricity share – green electricity, including hydropower, 
represents approximately 14,8% of electricity generating capacity. 

The most important influence on this successful development was exerted by Renewable Energy 

Sources Act17 (in following EEG), which was adopted to improve, fundamentally revise and expand 

the previous Federal Electricity Feed Law18, adopted in 1991. In EEG200019 the fixed rate basis for 

purchase of renewably-generated power from wind, solar, hydro, biomass and landfill gas 

sources, by public utilities was linked to the market price. This led to partially strong fluctuations, 

which reduced the investment security. Secondly, the implementation of fix remuneration rates 

was thought to be more differentiated. This differentiation had not to be oriented on the avoided 

fuel costs, but on the actual state of development of RES power plants. Furthermore, in order to 

provide an equitable distribution of renewable energy feed-in among all TSOs, a new nationwide 

balancing mechanism was introduced. In accordance with this scheme grid operators were 

obligated to purchase power from local producers. Additionally, with the liberalization of the 

                                                           
16

 A red-green coalition of the Social Democratic Party and The Greens led by Chancellor Gerhard Schröder 
governed the country from 1998 to 2005. 
17

 (Germ.) Erneuerbare-Energien-Gesetz, EEG 
18

 (Germ.) Stromeinspeisungsgesetz, StrEG 
19

 The first EEG was passed on 1 April 2000; afterwards several new (revised) versions of EEG followed. In 
order to distinguish between individual law adaptations, the year, in which they were passed, are 
respectively indicated. 
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power market new roles for power market participants were defined, concerning the 

responsibility for receipt of RES feed-in, as well as for the remuneration payment [18].  

After the passed EEG2000 an unprecedented boom started in various sectors of renewable energy 

industry. A particularly strong growth of 40-60% annually in the installed capacity has been made 

in PV, since its remuneration conditions had drastically improved. Also in the field of bioenergy 

the strong growth was continued, especially at biogas plants, which were additionally promoted 

by the market incentive program20. Although these two markets had the largest dynamic of 

growing, their contribution to the electricity generation was still of only small percentages: the PV 

amounted nearly 0,6% of the total renewable electricity in 2003, electricity generated from 

biomass (without waste) had the share of 14,3% [13], [18]. The quantitatively most important 

growth experienced the wind industry, which grew till 2004 in average by more than 2000 MW of 

installed capacity annually (Figure 2-3). The resulting amount of generated electricity in 2004 

exceeded for the first time the share of hydropower.  

 

Figure 2-3:  Development of electricity generation from wind in Germany 1990-2008 [21] 

The new version of EEG was passed on 1 August 2004. The number of paragraphs increased from 

13 to 21. New regulation for special treatment of electricity-intensive industry and greater 

differentiation of reimbursement rates in accordance with performance range were the 

innovations of the EEG2004.  

The great dynamic in the development of electricity generation from RES required an intensive 

monitoring of the according promotion. For this reason the Federal Ministry for the Environment, 
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Nature Conservation and Nuclear Safety21 (in following BMU) arranged a series of research 

projects in order to prepare a report on the performance of the EEG2004. These reports built the 

main basis for the RES Experience Report22 of the BMU [19], which was adopted by the Federal 

Cabinet and published in November 2007. On that basis, the renewed EEG2009 was adopted by 

the German Bundestag in June 2008 and became effective on 1 January 2009. 

By the EEG2009 [20] the option of direct marketing of generated electricity by RES power plants’ 

operators was introduced. Provided that the operator ensures the legally required notification of 

network operator, it can temporarily abandon - for at least a month - the EEG-compensation 

system (the reimbursement rate is not paid for this period), and sell the generated electricity (on 

its full amount or at shares) on the free market. It remains, however, in the regime of the EEG and 

may return to the system of EEG remuneration at any time, while respecting the pre-specified 

periods of the direct marketing [21]. 

A key innovation of the EEG2009 was the possibility to issue statutory instruments (§ 64 

EEG2009), which allows the government to provide a whole series of adjustments and provisions 

additionally to the existing regulations. In consequence of this allowance a new regulatory policy 

was introduced by the Federal Cabinet on 27 May 2009 in form of adoption of the Regulation of 

the further development of the nationwide compensation mechanism23 (in following 

AusglMechV) [28]. Motivated through the transparency enhancement, simplification and further 

development of the nationwide equalisation scheme it changes certain TSO’s obligations within 

the previous framework. In order to understand the previous and novel responsibilities of TSO 

within the RES system the next subchapter is introduced. 

2.2.3 German RES-balancing scheme and responsibilities of a TSO within this 
scheme 

In view of rapid development of RES there are clearly defined rules, described in the EEG2009, 

which all participants that are involved in RES process are obliged to fulfill. The EEG 2009 

regulates: 

 “priority connections to the grid systems for general electricity supply of plants 
generating electricity from RES and from mine gas within the territory of the Federal 
Republic of Germany  

 the priority purchase and transmission of, and payment for, such electricity by the grid 
system operators and 

 the nationwide equalisation scheme for the quantity of electricity purchased and paid 
for” 

As already mentioned the key innovation of the EEG2009 was the right of legislative and 

regulatory authorities to provide a whole series of adjustments and additional provisions to the 

existing RES-system. Such innovation concerning the nationwide equalisation scheme became 
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 (Germ.) Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, BMU 
22

 (Germ.) EEG-Erfahrungsbericht 
23

 (Germ.) Verordnung zur Weiterentwicklung des bundesweiten Ausgleichsmechanismus (AusglMechV) 



Role of a German TSO in the unbundled environment 21 

 

effective on 01.01.2010. In order to understand the basis of the RES-system as well as the reasons 

of the introduced changes both schemes are presented below.  

Nationwide equalisation scheme (valid till 01.01.2010) 

In order to ensure the feasibility of adopted regulations as well as to consider the rights and 

obligations of involved participants there is a certain mechanism emerged, called the German 

nationwide EEG equalisation scheme (Figure 2-424).  
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DSO*
DSO*
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plant operator

GSO*
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Utility 

companies
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grid system operator

TSO*  - responsible for regulation 

transmission system operator

Exceptional 

regulation

 

Figure 2-4:  The German nationwide equalisation scheme 
 

The EEG and other legislative acts prescribe this process as follows. According to Art. 8 of the EEG 

the grid system operators (GSO) are obliged to prior purchasing, transferring and distribution of 

the whole electricity from RES power plants. These RES-electricity feed-in, purchased by the 

appropriate GSO, must be then instantly transmitted to the preceding TSO. There are four TSOs in 

Germany: transpower stromübertragungs GmbH (tps25), 50Hertz Transmission GmbH (50Hertz), 

Amprion GmbH (Amprion) and EnBW Transportnetze AG (EnBW).  

Basis for the determination of the transmitted RES electricity quantities is the data acquisition by 

the GSO. In each network each feed-in is measured separately. The GSO provides to the TSOs 

classified by feed-in-tariff types and classes monthly forecasts of: 

 purchased quantities of electricity that ought to be transmitted to the preceding 
TSO; 

 the associated total compensation (payment), 

 final energy consumption (FEC26) [22]. 
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 Own outline, based on [22] 
25

 After the acquisition of transpower by the Dutch grid operator TenneT, is TenneT the new name of 
transpower. However, in this thesis the former name “tps” continues to be used for the purpose of 
convenience and common understanding. 
26

 (Germ.) Letztverbraucherabsatz, LVA 
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The four German TSOs receive this data, consolidate it for the respective control area and then 

report this information to Federal Association of Energy and Water27 (in following BDEW).  

TSOs are responsible for regulation and coordination of RES-feed-in on their control area. In 

accordance with Art. 36(1) of the EEG2004, they must register, “the different volumes of and 

periods of generation of energy…, and “provisionally equalize such differences amongst 

themselves without undue delay”. This process is called horizontal equalisation (HE) between 

TSOs. The volumes of energy that are equalized between TSOs correspond to the relation of the 

FEC in the control area of the individual TSO to the total amount of FEC in Germany, which is 

agreed to begin of the equalisation process in accordance with the data received from the GSOs. 

Consequently every TSO must only consider the amount of electricity generated from RES in its 

balancing group, which corresponds to its share in the whole final energy consumption in 

Germany. Thus the expenses of system integration of renewables are “equally” distributed among 

all TSOs (Figure 2-5). 
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Figure 2-5: Horizontal equalisation scheme 

By calculation of energy amounts, which should be horizontally equalized, the exceptional 

regulation of manufacturing enterprises or rail operators with high consumption of electricity is 
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 (Germ.) Bundesverband für Energie- und Wasserwirtschaft, BDEW 
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undertaken. In order to reduce the costs arising for such enterprises from delivering the electricity 

quantities, individual rates of purchasing the electricity generated from renewables were 

elaborated for them. These are referred to special final consumption28. The amounts of RES-

energy that are not consumed by such enterprises are turned over to all other final customers29. 

This “turn over” is considered by calculation of horizontal equalized amounts through a factor 

called “deemed” special final consumption30: 

                                           
                            

                

                                                   

  (2.1) 

 

The HE procedure initially provides the mutual exchange of the wind power forecast on the day 

prior to actual feed-in. It ensures the better scheduling of reserve power. The actual exchange of 

power quantities is then based on 1/4h-values consisting of projections from an online 

extrapolation model that are regularly transferred between the respective control systems of 

TSOs [23]. Within the HE process there is a difference between RES-quantities of wind power 

plants and other RES-facilities. Since the non-wind quantities are not subject to the stochastic 

fluctuations in power output, their feed-in can be planned in the long-term. Accordingly, the 

corresponding forecasted quantities are delivered from one control area into another in from of a 

month block. The quantities derived from wind power plants, however, are balanced between the 

four control areas simultaneously, based on the projections from an online extrapolation [24]. 

Thus within the HE a permanent exchange of power output from each TSO (source) to each other 

TSO (sink) is performed. The amount of electricity exchanged between the source and sink zone 

corresponds to the multiplication of the current RES feed-in at the "source" control area with the 

share of the total FEC in the "sink" control area. Since all RES feed-in are “equally” distributed 

between all TSOs, the overall sum of HE power flows Germany-wide amounts to 0 GWh. 

At the end of the year an annual account is drawn up. Within this statement the actual FEC for all 

control areas is determined. Accordingly the actual RES-quantities, which are meant for the 

respective control area, are ascertained. The differences between the annual account and the 

commitments in the course of the year are balanced between TSOs till September next year.  

After being equalized among individual control areas electricity must then be transferred to utility 

companies, which deliver it to final customers. This process is called vertical equalisation 31. The 

utility companies have to purchase and pay for that share of electricity, which corresponds to an 

approximated profile of actually quantity of electricity, purchased by final consumers of utility 

companies. The interim profile (RES-Quota and consequently a delivery commitment of a TSO) is 

evaluated from monthly forecasted data of feed-in from RES and the electricity purchased by final 

customers by the BDEW. Conformably, the evaluation is performed monthly.  
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 (Germ.) privilegierter Letztverbrauch 
29

 These include private households, public facilities, agriculture, commerce and trade enterprises as well as 
all others industrial end-users that are not covered by §12 EEG 2009 
30

 (Germ.) fiktiver privilegierter Letztverbrauch 
31

 This part of equalization scheme is abolished in the new EEG2009. However, this process is described 
here since the optimization calculations in this thesis are based on the previous EEG release. 
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The differences between the forecasted and actual RES-feeds of the last month are determined by 

the BDEW. These build the basis for the correction process. The correction amounts are divided 

between the remaining months of the year in equal parts. They are considered at the 

determination of the RES-Quota.  

Figure 2-6 illustrates this principle of calculation of RES-Quota by BDEW [25]. 

RES-Quota (x-1) RES-Quota (x+1) ...
Month (x-1) Month (x) Month (x+1) t

10th calendar day of 

the month

TSO:

Identification of deviation between 

forecast and online extrapolation of 

the month (x-1), allocation between 

the remaining months of the year 

(x+1 till December)

BDEW:

Calculation of RES-Quota (x+1) =  

(Prognose of RES-infeeds (x+1) + 

allocated correction amouts) / 

Prognose of FEC (x+1)

 

BDEW:

Announcement of the calculated  

RES-Quota (x+1) 

Quota

 
Figure 2-6:  Calculation of RES-Quota by BDEW  
 
The RES-Quota, calculated in this way, determines the TSO’s delivery commitment towards utility 

companies. The differences occurring between the RES-Quota and the received RES feed-in must 

be purchased or sold on the power market. This process is called RES-sublimation32. In order to 

participate on the power market a TSO gathers information about the RES feed-in, expected on 

the certain month. As already mentioned the appropriate forecasts (excluding wind power) are 

available in the long-term and therefore can be considered within delivery commitments as 

continuous supply blocks. However, at the present time around two thirds of RES-electricity 

received by individual TSOs consists of wind energy (Figure 2-7).  
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Figure 2-7:  Composition of RES-quantities for the vertical equalisation  
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The volatility of wind power feed-in makes it particularly difficult to forecast the expected level of 

renewable energy in each control area. Correspondingly the main costs of RES-sublimation fall on 

the proper prediction of wind power feed-in.  

New nationwide equalisation scheme (valid from 01.01.2010) 

With the innovation, becoming effective on 01.01.2010 the nationwide equalisation is partly 

changed. The changes are motivated through the transparency enhancement, simplification and 

further development the nationwide equalisation scheme. Additionally adopted AusglMechV 

prescribes that after the entry into force on 1 January 2010 the TSOs are no longer required to 

deliver RES-electricity to electric utility companies in form of a continuous supply. Instead of this 

all the RES-electricity purchased by the TSO before will be sold on a power market. Accordingly 

the nationwide equalisation scheme presented on Figure 2-4 changes as it is shown in Figure 2-8. 

 

Figure 2-8:  The German nationwide equalisation scheme (valid from 01.01.2010) 

The innovation eliminates the vertical equalisation, and thus the costs of equalizing the 

differences between the predicted RES-quantities and delivery commitments of the TSO (costs for 

RES-sublimation). Instead of this all the RES-power received by TSOs within the nationwide 

balancing mechanism must be realized on the power market (in Germany, European Energy 

Exchange (EEX33)). In this way the new regulation contributes to increasing of trading volume of 

RES-electricity, making the part of stochastic power sources in German energy mix higher. Since 

the HE is still required with the EEG2009, it became even more important for TSO to know as 

exactly as possible the volumes of wind power it has in its control area. Primarily the “sink” 

                                                           
33

 Since 2009 all short-term power commodities are traded on EPEX Spot SE (as a consequence of merge of 
EEX (Germany) and Powernext (France)). However, in this thesis the name “EEX” continues to be used for 
the purpose of convenience and common understanding. 
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control areas (that of Amprion and EnBW) are interested in high quality of wind predictions since 

they must market amounts of wind energy that exceeds their “own34” wind power generation in 

several times.  

It is evident for now, that the changes in power policy together with corresponding electricity 

legislation altered the traditional role of a TSO as of provider of system services. As unbundled 

unit within the RES-equalisation scheme a TSO becomes a market player. The next section 

describes in more details the peculiarities of TSO’s market participation and identifies further 

boundary conditions of the optimization of its market behaviour.  

2.3 TSO as a market player 

As mentioned jut now it is important to differentiate between two roles of a TSO. On the one 

hand a TSO is a provider of system services within its responsibilities regarding network stability. 

On the other hand, being a core participant of RES equalisation system, it is obliged to sell all the 

RES-power obtained on the power market. These two roles are technically and economically 

unbundled in accordance with §§6-10 of the EnWG. Figure 2-9 illustrates this principle. 
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Figure 2-9:  Differentiation of TSO’s role as RES balancing group coordinator 
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 Reminder: TSOs do not own any generation units, the term „own“ is used to characterize the wind power 
generation in the respective control area 
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Within the responsibility of the coordinator of a RES balancing group (RES-BG35) a TSO must 

overtake the role, which is similar to the tasks of a market trader having a wind power as a trading 

object. Since wind power does not belong to conventional power market products it is important 

to understand how its special features can influence a TSO’s energy market participation.  

Wind power has high investment costs and fairly low variable costs. Because part of the variable 

costs consists of annual fixes expenses, such as insurance and regular maintenance, the marginal 

running costs are seen to be even lower.  

Therefore wind power is expected to influence prices in the power market in two ways. First, 

wind power enters the power market close to the bottom of the supply curve (due to mentioned 

low marginal costs). This, in turn, shifts the supply curve to the right, resulting in a lower market 

clearing price (depending on the price elasticity of the power demand). If there is no congestion in 

the transmission of power, the system price of power is expected to be lower during periods with 

high winds compared with periods with low winds [29]. Figure 2-10 shows an example with this so 

called “merit-order effect” of wind power trading for the case of one hour with inelastic power 

demand.  
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Figure 2-10:  “Merit-Order effect” of wind power trading 

 

                                                           
35 (Germ.) EEG-Bilanzkreis. In general a BG consists of any number of feeding and/or withdrawal points 

(nodes) within a TSO control area. In the balancing group the equilibrium between the feed-in from the 
assigned feeding points and deliveries from other balancing groups on the one hand (procurement) and the 
withdrawals of the assigned nodes together with deliveries to other balancing groups on the other hand 
(delivery) must be secured at any time [8]. In the RES-BG exclusively acquisitions and deliveries of 
renewable energy are summarized. That distinguishes RES-BG from the general definition. 
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Second, there may be congestion in power transmission (e.g. between TSOs’ control areas), 

especially during periods with high wind power generation. Thus, if the available transmission 

capacity cannot cope with the required power export, the supply area (control area) is separated 

from the rest of the power market and constitutes its own pricing area [32]. With an excess 

supply of power in this area, conventional power plants have to reduce their production, because 

wind power normally will not be able to limit its power production. In most cases, this will lead to 

a lower price in this subarea [29]. 

In Western Denmark, characterized by a high share of wind power production, there have been 

several production hours during the night with a day-ahead power market price of zero. This 

reflects the fact that the relatively low load existing in these hours plus the scheduled interchange 

could be entirely supplied by wind power generation, and production from conventional plants 

which cannot be reduced due to system stability constraints and the need for heat production 

from combined heat and power plants [30].  

Since the introduction of negative prices on the EEX (28.04.2008), the outcome of an auction can 

have good chances to result in minus values at calculation of market clearing price (as on 

22.12.2008, 4-5h, price on the EEX -101€/MWh [31]). It would mean that the German TSO as 

supplier must pay for the buy-out of its wind power quantities. 

It is obvious for now that a German TSO acts as a price taker on the power market and had no 

opportunity to drive up the prices with its wind power quantities. Due to its privileged status in 

Germany all the RES-energy a TSO receives must be accepted by the market and since wind 

energy has quite low marginal costs it will be certainly among the bidders admitted for dispatch. 

The advantaged dispatch right of RES feed-in is additionally supported by German legislation. In 

accordance with Part 3.1.1., No. (20) of “Benchmarks on the opening of the market segment REA 

processing [34]), a TSO must bid the obtained RES-amounts as an unlimited order, i.e. it bids the 

power quantity without a specification of the price.  

As market trader within the nationwide equalisation scheme a German TSO is obliged to further 

legislative regulations, which limit its trading autonomy in a significant manner. Thus, i.e. it has no 

possibility to sell the wind power it has in its control area on the so-called over-the-counter (OTC) 

electricity market. Instead of this, the trading form of energy exchange, as a transparent one, is 

prescribed to be used for RES (wind) power trading. According to §2 Abs.2 of the AusglMechV the 

TSO is allowed to market the purchased RES-energy only on a day-ahead and intraday spot 

markets of the EEX. 

Further, in contrast to conventional market participants (i.e. generation companies, electric 

utilities, traders) that can choose any of market products, the EEX provides for its users (see 

Figure 2-1136), German TSOs are only permitted to dispose the available wind power quantities in 

form of hour contracts (§2, §11 of AusglMechV; Part 3.1.1., No. (18) of “Benchmarks on the 

opening of the market segment REA processing37” [34]. These unlimited hour contracts must be 

submitted till 12 a.m. of the current day for the day ahead. Consequently a TSO has only a short 

time horizon to make a decision concerning the trading volume.  
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 Own scheme, based on [33] 
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 (Germ.) Eckpunkte der Ausgestaltung der Öffnung des Marktsegmentes EEG-Veredelung 
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Figure 2-11: Electricity products on the EEX 

In order to place a bid on the power market a TSO must have a clear view of availability of its 

power volumes. Since it has no power plants in its ownership (due to unbundling restrictions), the 

only information resource it can use for power scheduling is wind power forecast. Figure 2-12 

presents the general decision situation for a TSO’s operator. 

The first wind power forecast a TSO receives is available at 8 a.m. on the day before the actual 

delivery. In the previous regulatory framework (EEG2004) a TSO had to compare the forecasted 

values with the RES-Quota in order to sublimate the differences between these two rates. 

If the forecast was higher than the TSO’s delivery commitment in a particular hour, then the 

difference for that hour on the following day was sold. If the forecasted value was below the 

value of the RES delivery to the utilities, then the difference was bought [27]. 
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Figure 2-12: General scheme of TSO’s market performance 

This process is illustrated by an example of the wind energy feed-in and the delivery commitment 

on 12.07.200738 in the control area of tps (Figure 2-13). 
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 This particular day was chosen not because of its special characteristics but to illustrate the principle of 
TSO’s market operation  
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Figure 2-13:  Day-ahead sublimation (regulation till 01.01.2010) 

According to these scheme a TSO stood either on behalf of supplier (during periods of selling the 

additional quantities) or on the demand side (during periods of purchase) of the power market.  

With the elimination of the vertical equalisation through the new regulation (EEG2009), the 

necessity of RES-sublimation is abolished and a TSO acts now only on the one side of the power 

market - it joins the ranks of power market supplier (Figure 2-14).  

 
Figure 2-14:  Day-ahead marketing of wind power 

It is obvious that with this change in REA legislation the volumes of wind power that are marketed 

on a German power market are escalated from several hundreds of MW to several thousands. 
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Under these circumstances it is even more important to poses reliable information about 

quantities of wind power a TSO has on its disposal. Therefore a key factor for the successful 

market performance of a TSO is the accuracy of the wind power forecast.  

The next Subchapter analyses the current forecasting tools used by German TSOs and describes 

the natural limits in wind power prediction. 

2.4 Wind power trading. Need of forecast 

Before analyzing wind power prediction it is important to understand the nature of wind power 

generation. Being a direct function of wind speed, wind generation is, in contrast to conventional 

generation systems, not easily dispatchable. Fluctuations of wind generation thus receive a great 

amount of attention. Variability of wind generation can be regarded at various time scales. First, 

wind power production is subject to seasonal variations, i.e. it may be higher in winter in 

Northern Europe due to low-pressure meteorological systems or it may be higher in summer in 

the Mediterranean regions owing to strong summer breezes. There are also diurnal cycles, which 

may be substantial or not, mainly due to thermal effects. Finally, fluctuations are observed at the 

very short-term scale (at the minute or intra-minute scale). The variations are not of the same 

order for these three different timescales. Managing the variability of wind generation is the key 

aspect associated to the optimal integration of that renewable energy into electricity grids. 

Since wind power depends largely on meteorological conditions (especially on the magnitude of 

wind speed), it is of particular difficulty technically as well as economically to integrate these 

quantities into power market. The lack of exact predictability leads to overestimation/under-

estimation of wind power quantity on the day-ahead market. Assuming periods of high wind that 

not occur results in non-commitment of some generations or imports and scheduling of more 

expensive generation in real-time. Another case of an under forecast of wind generation could 

lead to over-commitment of generations or imports and undesirable availability of cheaper 

resources in real-time. 

This following section is dedicated to the analysis of existing forecasting methods and the sources 

for their inaccuracy.  

2.4.1 General overview of existing wind power forecasts 

While considering the modelling of wind behaviour it is very important to distinguish between the 

time horizons to forecast. There are several types of application of forecasting tools dependent on 

different prediction horizons: 

 Very short-term. This type of wind power forecast (WPF) can be used for optimization of 

the scheduling of the conventional power plants (i.e. economic dispatch). The time 

horizon range is a few hours, but there is no unanimity for the number of hours (some 

authors propose the time horizon 0-6 hours [36], other – 3-10 hours [37]). The 
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applications of this type remain marginal since only few on-line models of them are met 

today in island or isolated systems (i.e. [38]). 

 Short-term. The time horizon ranges from the very-short–term limit up to 48 or 72 hours. 

This time horizon is mainly interesting for trading in the day-ahead market, but can also 

be used for unit commitment, economic dispatch, dynamic security assessment [39], etc. 

Depending on various regulations on power markets there are several time horizons that 

could be interesting to predict. For example, in the Iberian Electricity Market (daily 

market), the electric energy sale bids for the next day must be presented before 10:00, 

and, therefore, a 38-hour time horizon covers the entire following day. In other countries, 

the period for presenting offers is different (e.g., in the United States, it ranges from 5:00 

to 12:00), so the number of hours in the time horizon can also diverge [40]. This thesis is 

concerned with the last time scale given by the day-ahead electricity market, from 0-24 

hours, where time step is one hour. 

 Medium term. The time horizon ranges from the short-term limit to a limit of 7 days. 

These longer time scales would be interesting for the maintenance planning of large 

power plant components, wind turbines or transmission lines. However, the accuracy of 

weather predictions decreases strongly looking at 5-7 days in advance, and such systems 

are only just now starting to appear [43].  

Table 2-3 provides an overview of the time horizon classifications and the potential application of 

each forecast class in operation and planning of power systems, as well as the usefulness for 

possible users. 

Modern wind power prediction system providing forecasts for a time horizon of up to four or five 

days in advance typically use numerical weather predictions (NWP). Whether it is worth 

(regarding the effort and expense of getting hold of it) to include a NWP model is worth, depends 

on the horizon one is trying to predict. 

Table 2-3: Wind power forecasting time horizons 

Time horizons 
GENCOs, TSOs as coordinator of 

RES BG, IPP, other market 
participants 

TSOs as provider of system 
services 

Very-short-term   
(up to 9 hours) 

Intraday market Ancillary services management 

Real-time market Congestion management 

Short-term       
(up to 48 (72) hours) 

Day-ahead market 
Maintenance planning of network 
lines 

Maintenance planning of wind farms Congestion management 

Wind farm and storage device 
coordination 

Day-ahead reserve setting 

Medium-term       
(up to 7 days) Maintenance planning of wind farms 

Maintenance planning of network 
lines 

Maintenance planning of 
conventional generation 
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Typically, prediction models using NWP forecasts outperform time series approaches after ca 3-6 

hours look-ahead time [37]. Therefore, all models employed by utilities use this approach. Hence, 

all the information about the future, in particular the expected evolution of the wind field, is 

provided by the NWP. The national weather services but also private weather data providers offer 

a broad range of different NWP data which is suitable for wind power predictions. The 

meteorological data typically consists of wind speed and direction and sometimes temperature, 

pressure and humidity data from sensors on one or more “met towers39” within the wind power 

plant’s boundaries. However, in order to achieve a higher level of forecast skill it is necessary to 

utilize data from beyond the plant’s boundaries. Meteorological data from in situ sensors 

deployed and operated by government agencies have been a traditional source of data for WPF. 

These include sensors on surface-based met towers deployed mostly at airports and sensors 

carried aloft by weather balloons to provide information about the vertical profile of 

temperature, humidity, winds and pressure. The main problem with this data is that the spacing 

between measurements is too large (because of economic constraints) to adequately represent 

the small or even sometimes medium scale atmospheric features that are responsible for short-

term variations in wind energy output. However, these in situ sensor networks map quite well 

most of the features that are responsible for most of the variability over 1 to 2 day-ahead time 

scales. Unfortunately, there are large areas (such as the oceans) where very little in situ data is 

gathered because of the cost of maintaining such systems in those environments. This means that 

data coverage is far from uniform and that some regions have a lot less data upstream than 

others. This often results in poorer forecast performance in some areas [36]. 

The key issue in WPF is to transform the given numerical weather data into the power output of a 

wind turbine. For this purpose two fundamentally different approaches, the statistical approach 

on the one hand and the physical approach on the other hand, have been developed in recent 

years. Both of them led to prediction systems which are scientifically as well as commercially 

successful. A recent overview can be found e.g. in [37], [40], [48]. To take a short overview of the 

latest publications on this field it is recommended by author to read [42].  

 Statistical approach: the idea is to derive a relation between meteorological predictions, 
historical measurements, and generation output through statistical models whose 
parameters have to be estimated from data, without taking any physical phenomena 
into account. 

 Physical approach: consists of several submodels, which together deliver the translation 
from the NWP forecast at a certain grid point and model level, to power forecast at the 
considered site and at turbine hub height. Every submodel contains the mathematical 
description of the physical processes relevant to the translation. 

Statistical models use a set of empirical equations from a sample of predictor and predictand (the 

quantity to be predicted) data called a “training sample”. The form of the equations is dependent 

on the type of model that is used. Typically, the equations have numerical coefficients that must 

be determined. A modelling procedure uses an optimization scheme to select the coefficient 

values that yield the best relationship between the predictors and the predictand. The meaning of 

                                                           
39

 “Met towers” – meteorological towers, are the most common means for measuring the wind speed and 
direction at a site. Generally a met tower will have anemometers, wind direction vanes, temperature and 
pressure sensors, and other measurement devices attached to it at various levels above the ground. 
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“best” in this context depends upon what optimization criterion is employed. An example of 

optimization criteria is the lowest mean absolute error or the lowest mean squared error. Once 

the coefficients are determined from the training sample, the resulting equations can be used to 

produce a forecast by inserting the current values of the predictors and calculating the value of 

the predictand [36]. Statistical models combine then the input variables from NWP and measured 

data (SCADA) in a so-called “black-boxes” (see Figure 2-15), which typically include most of the 

artificial-intelligence-based models, such as Neural Networks (NNs) and Support Vector Machines 

(SVMs). Other types of models are the “grey-box” models, which learn from experience (from a 

dataset) and for which prior knowledge (such as diurnal variations) can be injected [40]. 
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(for a single power plant)
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Statistical model 
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Figure 2-15: Main steps in the statistical approach 
 

There are an enormous number of statistical models available for this type of an application. The 

most popular ones for atmospheric science applications are multiple linear regression (one very 

famous example is the system WPPT (Wind Power Prediction Tool) developed by the Danish 

Technical University [44], [45] and artificial neural networks (ANN, i.e. deployed by IWES 40 [46], a 

system which provides forecasts for a number of German TSOs [47]. 

If only one wind farm is to be predicted, then the model chain stops here (maybe adding the 

power for the different turbines of a wind farm while taking the wake losses into account). Since 

usually, users of WPF want a prediction for the certain area or region (since they service that), the 

upscaling from the single results to the area total is the last step. If all wind farms in an area 

would be predicted, this would involve a simple summation. However, since practical reasons41 

forbid the prediction for hundreds of wind farms, some representative farms are chosen to serve 

as input data for an upscaling algorithm. Helpful in this respect is that the error of distributed 

farms is reduced compared to the error of a single farm [37]. 

                                                           
40

 http://www.iwes.fraunhofer.de/ 
41 Forecasting the output of each single wind farm in a region/country can be very expensive and even 

prohibitive, as far as data management and computer effort (particularly for the statistical approach) are 
concerned [41]. 
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In the case of physical approach the basic problem to be solved is the transformation of the wind 

speed given by the weather service on a coarse numerical grid to the on-site conditions at the 

location of the wind farm. This involves two important steps: the horizontal interpolation 

(downscaling) from the grid points to the coordinate of the turbine and the transformation of the 

wind speed from the height provided by the NWP, e.g. 10 m or 100 m, to the hub height as 

illustrated in Figure 2-16.  

geostrophic wind
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Figure 2-16: Transformation (scaling) of wind speed and direction to the hub height (adapted 
from [47]) 

For this purpose methods from boundary layer meteorology are applied to calculate the vertical 

wind profile for individual forecast situations. In the second step the corrected wind speed is 

plugged into the corresponding power curve to determine the power output [47]. Depending on 

forecast horizon and availability, measured power data can be used as additional input. In most 

cases, actual data is beneficial for improving the residual errors using Model Output Statistics 

(MOS) [48], see Figure 2-17. 

There are some WPF systems that combine the two approaches in order to join the advantages of 

both and thus improve the forecasts. The fundamental concept is that if the errors in the 

forecasts produced by the different methods are unbiased and have a low degree of correlation 

with one another, the random errors from the individual forecasts will tend to offset each other, 

with the result that a composite of the forecasts will have a lower error than any individual 

forecast. If all of the input forecasts are highly correlated the impact of ensembling will be 

minimal. This means that the underlying forecast methods must be quite different in how they 

construct the relationships between the raw observational data and their forecasts or the type or 

amount of input data going into the methods must be significantly different [36]. 
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Figure 2-17: Main steps in the physical approach 

There is no public information about what forecast models are used by particular TSOs exactly. 

However, according to the references of some providers of WPFs their products are in use by 

German TSOs and GSOs. A WPF, that a particular TSO finally applies, is then a meta-prognosis 

made of several WPFs. The weighting of individual forecasts is continuously checked and updated. 

On the next day the ex-post measurement data is available and therefore it is possible for a TSO 

to compare the forecasted and “real-time” values. 

Table 2-4 provides an overview of these providers as well as of their products (adapted from [42]). 

A WPF, that a particular TSO finally applies, is then a meta-prognosis made of several WPFs. The 

weighting of individual forecasts is continuously checked and updated. On the next day the ex-

post measurement data42 is available and therefore it is possible for a TSO to compare the 

forecasted and “real-time43” values.  

 

 

                                                           
42

 Online estimation 
43

 “Real-time” values are referred as the extrapolated actuals of wind power feed-in, received from online 
measurements of representative wind farms (online estimation) 
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Table 2-4: Overview of Operational and Commercial WPF Systems available for German TSOs 

Model Developer Key Feature 

WPMS 
[26],[46]  

IWES 

It calculates the current power for all wind farms by using 
the measurements of reference wind farms (on-line 
monitoring); provides day-ahead and short-term wind 
power forecasts for single wind farms, control areas, and 
subregions; and functions as a multi-NWP that combines 
the forecasts of three different NWP models from different 
providers or a multi-scheme ensemble weather forecast 
system (MSEPS) that uses the forecasts of different 
members of the ensemble. 

WEPROG 
[52] 

WEPROG44 

There are two main models: a weather prediction system 
running every 6 hours and a power prediction system that 
uses on- and off-line supervisory control and data 
acquisition (SCADA) measurements. In the first model, a 
multi-scheme ensemble prediction limited-area NWP 
model produces 75 different forecasts (ensembles), which 
forecast uncertainty and improve forecast accuracy. 

SOWIE Eurowind GmbH45 

This model uses high-resolution, three-dimensional wind 
and temperature forecasts as inputs, together with a 
database of all German wind energy turbines; it provides 
uncertainty estimation and regional forecasting. 

Previento 
[53] 

University 
Oldenburg/EMSYS46 

 This model provides local refinement of the NWP 
forecasts; it generates wind power curve modelling, 
including wake effects; it provides regional forecasting and 
uncertainty estimation. 

 

2.4.2 Forecast error and its consequences  

However, there are clearly natural limits in the quality of a WPF. That is because of high sensitivity 

to initial conditions, which a WPF is prone to.  

In the early 1960's using a simple system of equations to model convection in the atmosphere, 

Edward Lorenz, an MIT meteorologist, ran headlong into "sensitivity to initial conditions". In the 

process he sketched the outlines of one of the first recognized chaotic attractors. In Lorenz's 

meteorological computer modelling, he discovered the underlying mechanism of deterministic 

chaos: simply-formulated systems with only a few variables can display highly complicated 

behaviour that is unpredictable. Using his digital computer, he saw that slight differences in one 

variable had profound effects on the outcome of the whole system. This was one of the first clear 

demonstrations of sensitive dependence on initial conditions. He also appreciated that in real 

weather situations, this sensitivity could mean the development of a front or pressure-system 

where there never would have been one in previous models. In his famous 1963 paper Lorenz 
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 http://www.weprog.com 
45

 http://www.eurowind-gmbh.de 
46

 http://energymeteo.de 
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picturesquely explains that a butterfly flapping its wings in Beijing could affect the weather 

thousands of miles away some days later. This sensitivity is now called the "butterfly effect" [49]. 

This Lorenz model is presumed to be a paradigm for deterministic chaos and indicates one 

important problem for practical usage of wind power: A reliable prediction of wind relations at a 

certain place even considering actual measurements from numerous grid points is only possible 

for some hours, maximal for something more than one day. 

In accordance with [48], [51], the largest source of error in a typical short-term prediction model 

is the NWP input. Within the weather forecast, the largest error possibilities are due to  

 the (limited) horizontal and vertical resolution of the model,  

 the number of weather observations used (especially upstream)  

 and the quality of the data assimilation,  

 plus the actual model physics as well.  
The limited horizontal resolution is especially important in complex terrain, which is why wind 

farms in mountains and to some extent, near-shore conditions, show typically higher errors than 

wind farms in easy terrain [51]. Additionally, typical error sources can be the power curve 

modelling and modelling of wind-to-power conversion process.  

Besides of modelling errors, reliability of input data is crucial for operational application since, if 

some error appears in the process, the short time frame does not permit human intervention. 

Typical errors in the process can be due to [51]:  

 Failure of SCADA system or communication system with the wind farm.  

 Failure of NWPs delivery.  

 Failure of wind power prediction models 

 Other sources of problems may be security problems, database problems, bugs in 
the software, problematic graphical user interfaces etc.  

For this, it is needed to have adequate IT infrastructure and redundant servers to meet high 

reliability requirements.  

Such forecast errors can result in hundreds of MW needed to be purchased/sold additionally 

(Figure 2-18). If they could be detected (e.g. by means of more accurate forecast) quite early (e.g. 

till 75 minutes to contract execution), there is a possibility to balance the differences within the 

intraday trade. However, according to the historical data available to TSOs, the prices on the 

intraday market are usually much more unfavourable (for purchase – much more expensive, for 

selling – much cheaper) than on e.g. day-ahead market or in comparison with longer-term 

contracts a TSO may have with conventional power supplier with short-times power disposability 

(wind reserves). If the possibility of intraday trading is not given, the deviations are equalized by 

using balancing energy, for which TSOs must have guaranteed continuous full availability in 

advance. 
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Figure 2-18:  Additional sublimation quantities due to the day-ahead forecast error  

Unforeseen fluctuations of wind power amounts mean a challenge for market participants, and 

first of all for TSOs that are responsible of cost-effective operation of RES-BG, not to mention 

maintaining of the nominal frequency in the grid. The last mentioned task refers to TSO’s role of 

provider of ancillary (system) services (see Figure 2-9) and can be quite difficult in case of 

situations when substantial part of wind farms in a supply area is switched off for security reasons 

during a storm. Control power applied to compensate such wide-ranging outages is provided 

through an activation of additional fossil fuel driven plants [35]. As a result substantial 

environmental costs are caused by undesirable CO₂ emissions. Table 2-5 gives an overview of 

these and other costs connected with stochastic nature of wind power. 

Table 2-5: Costs and influencing variables of RES equalisation process 

TSO 
Responsibility 

Expense factor Influencing variables 

RES equalisation 
(sublimation) 

Trading 

Forecast of the total RES feed-in 

Correlation RES feed-in with spot price 

Activation strategy of the wind reserve 

Wind reserve 

Procurement 
Forecast of the total RES feed-in 

Individual activation strategies 

Activation 
Deviation of the RES forecast 

Individual activation strategies 

Service agreement Operating expenses 

Operating costs of RES balancing 
group 

Forecasting costs, etc. 

Administration and personnel costs 



Role of a German TSO in the unbundled environment 40 

 

Table 2-5. Continuation. 

TSO 
Responsibility 

Expense factor Influencing variables 

Ancillary 
services 

Wind caused control power 

Online estimation error 

Short-term fluctuations in RES balancing 
group 

Compensation with load and generation 

Balancing energy 

Online estimation error 

Correlation of RES balancing group with 
the control area 

In any of these cases47 these adjustment measures result in higher costs for a TSO and therefore 

in higher electricity tariffs for final customers (Figure 2-19). 
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Figure 2-19:  Adjustment contracts and their consequences  

In order to understand what amounts these adjustment costs can have, Figure 2-17 is presented. 

It shows the costs for capacity provision for control power and for its application in the control 

area of 50Hertz Transmission GmbH48 for the year 2009 [50]. These costs become due as a 

consequence of WPF’s inaccuracy, which could not be covered through intraday power market or 

RES reserves. If one adds the costs for these two measures for overcoming the forecast inaccuracy 

as well, the values could have been even more. 
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 Derived from [64] 
48

 The example of 50Hertz is chosen because it is the only TSO that made this information publicly 
accessible. 
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Figure 2-20:  Additional costs due to forecast inaccuracy 

The next section summarizes all the circumstances of a TSO position in the nationwide 

equalisation scheme and defines the boundary conditions for the optimization of its market 

performance. 

2.5 Boundary conditions for optimization of TSO’s market 
behaviour  

Previous Subchapters have shown that traditional obligations of a German TSO as of provider of 

system services have changed significantly. Being involved in the nationwide equalisation scheme 

a TSO has now tasks that are quite new for him and where it does not have years of successful 

operation. Further boundary conditions dictated by an electricity market and specifications of the 

trading object (wind power) limit the optimization possibilities for TSO’s market performance. 

Figure 2-21 reviews the environment a TSO must work within. 

Being obliged to purchase, transmit and pay for RES-energy in advance a TSO must overtake all 

the risks combined with stochastic nature of the obtained amounts. Due to regulations of the HE 

some TSOs must market wind power volumes that exceed their own generation capacities in 

many times. In correspondence with the unbundling restrictions a TSO does not own any 

generation units that could equalize the volatility of received wind power feed-in.  

Becoming a market player a TSO has no rights to exploit the whole palette of marketing 

possibilities since it must market the received wind power only in form of hour contracts with no 

specification of a price. In fact, the only leverage a TSO can use in optimization of its bidding 

behaviour is the trading amount. However, this value is determined through the WPF a TSO 

receives at 8 a.m. As long as a TSO receives the WPF as a service, it has no influence on the 

modelling assumptions and techniques used within these forecasts. It means it has no control 

over errors contained in the NWPs, SCADA, prediction models and must accept them as they are. 
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The only opportunity to discover whether its marketing decisions were right is given on the next 

day, when the “real-time” values (online estimation data) are available. 
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Figure 2-21:  Boundary condition for optimization of TSO’s market performance 

Becoming a market player a TSO has no rights to exploit the whole palette of marketing 

possibilities since it must market the received wind power only in form of hour contracts with no 

specification of a price. In fact, the only leverage a TSO can use in optimization of its bidding 

behaviour is the trading amount. However, this value is determined through the WPF a TSO 

receives at 8 a.m. As long as a TSO receives the WPF as a service, it has no influence on the 

modelling assumptions and techniques used within these forecasts. It means it has no control 

over errors contained in the NWPs, SCADA, prediction models and must accept them as they are 

(Figure 2-22). The only opportunity to discover whether its marketing decisions were right is given 

on the next day, when the “real-time” values (online estimation data) are available. 
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Figure 2-22: Optimization possibilities of a TSO. Non-influenceable and influenceable 
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Consequently the only possibility to optimize a TSO’s electricity market performance is to 

predict the forecast inaccuracy of the WPF it receives. Having no information about the internal 

modelling errors, the obtained prediction data must be assumed as an isolated time series with 

implied inaccuracy nature.  

Moreover, since according to regulations on the EEX, a market bid must be passed on to the 

power exchange not later than 12 a.m., a TSO has only limited time (4 hours) at its disposition to 

evaluate the errors, the received WPF may contain.  

These boundary conditions restrict the optimization measures a TSO can take in order to improve 

its market behaviour. It means in particular that the optimization methods that are to be 

developed within this thesis are subjected to fulfill some requirements. Thus the methods to be 

used for optimization of TSO’s market behaviour must: 

 rely on limited input data. In fact there are no NWP forecasts available to the operator 
or specifications which SCADA data is used;  

  the only data source the operator can use is these two time series described before: 
day-ahead WPF (weighted WPF from several providers) and ex-post “real-time” values 
(therefore the methods could be defined as “post-processing” optimization methods, 
see Figure 2-22); 

 not claim much time for calculations. It must be rather a simple model, which is easy to 
use. A possibility to change the initial conditions must be ensured; 

 the calculations must consider the current RES legislation (include regulations of the HE); 

 the model must outperform the initial day-ahead forecast. 

These boundary conditions were considered for the search of suitable optimization methods, and, 

as it is usual in modelling, in order to overcome these limitations some assumptions about input 

data and simulation object were made. 
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Chapter 3  

Optimization methods 

In addition to considerations from the previous chapter a typical TSO’s decision making problem is 

presented and must be optimized: 

A TSO receives a WPF. After the exchange of energy amounts within the HE the exact amount of 

expected wind power on the nest day in its control area is known. Based on this input information 

it must submit the market bids for each hour of the next day (day-ahead trading). On the next day 

it receives actualized “real-time” data – the wind power quantities that are really occurred in its 

control area. Due to forecast errors discussed above some differences between the forecasted 

and “real-time” data are revealed. These differences must be balanced out by means of RES-

reserves, control energy or intraday trading. The greater the difference, the more costs a TSO 

must take. It is obvious, that if these deviations are reduced, more costs can be saved and thus 

the performance of a TSO on the power market can be optimized. Hence better forecasting 

techniques must capture this problem. 

3.1 Motivation 

In fact, this task can be solved using various techniques, i.e. linear autoregressive models (i.e. 

ARMA49 as it is i.e. in [59]) or non-linear time series models (i.e. ARCH50, as it is for load 

forecasting in [60]). These techniques could predict the next value of a certain time series based 

on known past events. However, the task of this thesis was not to predict the next forecasted 

value. This information is actually already given within the 24-hours-forecast a TSO obtain. It was 

more important to support an individual operator in its decision making: having this predicted 
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 Auto-regressive moving average models 
50

 Auto-regressive conditional heteroscedasticity 
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value, what should be made in order to hold the difference between this and the “real-time” 

value, which is not known at the moment, as small as possible.  

Such kinds of decision making situations can be assumed to be a Markov decision process (MDP). 

This kind of process, named after Russian mathematician Andrey Markov, provide a mathematical 

framework for  modelling decision-making in situations where outcomes are partly random (a TSO 

has no influence on “real-time” values it receives) and partly under the control of a decision 

maker (by modifying its market bids a TSO can influence the difference between forecasted and 

real values). MDPs are useful for studying a wide range of optimization problems solved via 

dynamic programming and reinforcement learning. 

The core problem of MDPs is to find a policy for the decision maker: a function   that specifies 

the action      that the decision maker will choose when in state  . This problem definition fits 

best the situation a TSO has each day: it needs a policy that support it to choose an action that 

minimize the difference between its market bid and “real-time” value it receives afterwards.  

Since a TSO does not know whether a WPF it receives over- or underestimates the real wind 

power feed-in, it does not have any defined policy for its market bid submission. It must first 

discover, which decisions (market bids it makes) lead to what “results” (differences in comparison 

with the “real-time” values.) This type of interaction with its environment can be best described 

as the reinforcement learning – a TSO, taking an action in a certain time step, receives an answer 

from its environment in form of “real-time” values. In dependence on the differences between 

the action and answer (reward) the next action (and since confidence in the WPF) is reinforced 

(small difference) or weakened (big difference). 

For comparison, in the standard reinforcement learning model an agent interacts with its 

environment (Figure 3-1). This interaction takes the form of the agent sensing the environment, 

and based on this sensory input choosing an action to perform in the environment. The action 

changes the environment in some manner and this change is communicated to the agent through 

a special signal from the environment called the reward. Unlike the sensory information, which 

may be a large feature vector, or the action, which may also have many components, the reward 

is a single real-valued scalar, a number. The goal of learning is the maximization of the cumulative 

reward received over time [71], [72]. 

Learning agent

Environment

Sensory input 
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Action Reward

TSO

Environment
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Figure 3-1: The Reinforcement Learning Problem (left) and the TSO’s decision making 

problem (right) 
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Inspired by related psychological theory, in computer science, reinforcement learning is a sub-

area of machine learning concerned with how an agent has to take actions in an environment so 

as to maximize some notion of long-term reward. Reinforcement learning algorithms attempt to 

find a policy that maps states of the world to the actions the agent has to take in those states. In 

economics and game theory, reinforcement learning is considered as a boundedly rational 

interpretation of how equilibrium may arise. 

The environment is typically formulated as a finite-state MDP, and reinforcement learning 

algorithms for this context are highly related to dynamic programming techniques. 

Brian Arthur [54] was among the first economists to suggest modelling agent behaviour using 

reinforcement-type learning algorithms and to calibrate the parameters of such learning models 

using data from human subject experiments. Roth and Erev [55] and Erev and Roth [56] go 

beyond Arthur’s study and examine how well reinforcement learning algorithms track 

experimental data across various different multi-player games that have been studied by 

experimental economists. Varieties of reinforcement learning algorithms have become a mainstay 

of agent-based modelling because they accord with Axelrod’s KISS principle51. Other attractive 

features are the low level of history-dependent rationality, and relatively few parameters [58]. 

There are numerous examples of the use of these models in electricity market models. Nicolaisen 

et al. [59] use Roth-Erev-type reinforcement learning to model buyer and seller price-quantity 

decisions in a computational model of the wholesale electricity market. Bower and Bunn [62] use 

a modified version of the same algorithm for price forecasting in bilateral trading negotiations 

within the model of UK electricity market. Finally, Sun and Tesfatsion [63] apply reinforcement 

learning to model suppliers’ behaviour in the USA electricity market model.  

There is also a parallel and much more voluminous literature on reinforcement learning in the 

machine learning literature. See, e.g. Sutton and Barto [70] for surveys. A popular reinforcement 

learning model in this literature is Q-Learning [68], which is closely related to Bellman’s approach 

to dynamic programming, but differs from the latter in being much less informationally 

demanding, e.g. the agent need not know the period payoff or state transition functions. Q-

Learning algorithms involve on-line estimation of an evaluation function, denoted       , 

representing the maximum expected discounted sum of future payoffs the agent earns from 

taking action   in state  . Starting from some random initialization of values, estimation of the Q-

function occurs in real-time using the history of states and payoffs earned by the agent form 

action choices in those states. To determine the action chosen, a probabilistic choice rule is used: 

action with higher Q-values for the given state s and the current approximation of the Q-function, 

are more likely to be chosen than the actions with lower Q-values. Thus Q-learning is learning an 

evaluation function mapping from states to actions, analogous to the policy function of dynamic 

programming. An advantage of Q-Learning over reinforcement learning algorithms presented 
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 The principle is derivated from the army slogan “Keep it simply, stupid” and implicates that simplicity in  
modelling presumptions may result in interesting findings about the investigated process . Robert Axelrod 
formulates it as follows: “Although agent-based modelling employs simulation, it does not aim to provide 
an accurate representation of a particular empirical application. Instead, the goal of agent-based model-ling 
is to enrich our understanding of fundamental processes that may appear in a variety of applications. This 
requires adhering to the KISS principle, which stands for the army slogan ‘keep it simple, stupid” [57] 
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before (e.g. Roth-Erev algorithm) is that convergence results for Q-Learning can be proved under 

certain assumptions, e.g. for simple MDPs [58].  

Applications of Q-Learning algorithms in modelling of electricity market are also widely spread. 

Harp et al. [65] use this approach for the optimal pricing bidding of generation companies 

dependent on customer acceptance of their generation rates. Assuming the node-pricing system 

of the USA, Yu et al. [66] consider a simple demand-side response model for formulating of Q-

Learning state vector. In [67] the Q-Learning algorithm is used with the purpose of maximization 

of a supplier profit in the long-term and to satisfy the requirement of generation usage factor. 

Concluding following characteristics of Q-Learning algorithm are best suitable to model the TSO’s 

market behaviour: 

 It is the natural tool for describing and simulating a system composed of behaviour al 
entities where individual behaviour can be characterized by if-then rules; 

 It provides an optimal policy in long-term; 

 It can be used in real-time using the history of states and payoffs (look-up table); 

 There is no necessity to model the TSO’s behaviour explicitly; the optimal policy evolves 
on its own during the training phase; 

 Its convergence is proved for Markov-decision processes. 

However, as every modelling tool, Q-Learning has also its drawbacks. In particular, the stochastic 

of the input data is not explicitly described. This volatility must be firstly learned. It means a 

certain waiting time for learning is necessary and an operator can not use this tool immediately, 

having i.e. only a pair of known “real-time” values. Furthermore, the underlying system is a 

dynamic one, i.e. it can change its statistical properties over time, e.g. due to seasonal 

fluctuations.  

However, it will be shown that appropriate adaptation of the algorithm will allow overcoming the 

mentioned difficulties. In particular, in order to learn the wind volatility an optimal learning phase 

must last approx. few months. These historical values are normally available. Regarding the 

second point, the periodical re-initialization of the method is proposed. The details are presented 

in sections 3.3.2 and 4.2. 

The second estimation method applied in this work is the Kalman filter (KF). Named after its 

discoverer R.Kalman [88], KF is probably the most famous estimator for dynamic systems. KF 

applications range from tracking the trajectories of celestial bodies till the forecasting of the 

prices of traded commodities. KF is an efficient recursive filter that estimates the state of a linear 

dynamic system from a series of noisy measurements. Simply speaking, it is used to remove the 

disturbance caused by the measuring instruments. 

The Kalman filter is important because it may be applied in real time. That is, as each value of the 

time series is observed, the forecast for the next observation can be computed. 
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In contrast to the Q-Learning application, which suggests a policy to be followed; the Kalman filter 

predicts the current state (the forecasted level of wind power feed-in) better than the initial day-

ahead forecast. In this way, the adjusted market bid can be submitted. Finally, the advantages of 

both models are gathered within a combined approach.  

Following sections are dedicated to description of mathematical backgrounds of both methods. 

3.2 Mathematical background  

3.2.1 Q-Learning 

The wide application of the Q-Learning algorithm is grounded through its simplicity to learn how 

to act optimally and because it imposes limited computational demands. It works by successively 

improving its evaluations of the quality of particular actions at particular states. The Q-Learning 

[68] is an incremental reinforcement learning (RL) method. It is a good representative for RL 

because it is simple, mathematically well founded, and widely used [69]. 

RL is learning what to do - how to map situations to actions - so as to maximize a numerical 

reward signal. An agent is not told which actions to take, but instead must discover which actions 

yield the most reward by trying them. In the most interesting and challenging cases, actions may 

affect not only the immediate reward but also the next situation and, through that, all subsequent 

rewards. These two characteristics - trial-and-error search and delayed reward - are the two most 

important distinguishing features of RL [70]. These and other features, listed below, make RL 

appealing: 

 learning occurs through trial-and error experimentation with the environment; 

 the feedback used for learning takes the form of scalar payoff – no explicit 
teacher, who offers the “correct answer” is required (unsupervised learning); 

 little or no prior knowledge is required; 

 RL is incremental and can be used online; 

 RL architectures are extensible.  
There are three fundamental parts of a reinforcement learning problem and since of a Q-Learning 

problem:  

 the environment,  

 the reinforcement function,  

 and the value function 
which will be described further in detail. 

The environment 

The environment is modelled as a MDP. At each point of time the agent directly observes the 

state of the environment and the effects of actions depend only upon the action and the current 

state.  
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Formally, a MDP is described by the tuple (     ), where   is the set of possible states,   is the 

set of possible actions, and   is the reward function. At each time, the environment occupies 

exactly one state from  , and accepts one action from  .   and   are usually assumed to be 

discrete and finite. Payoffs generated by the environment are determined by a reward function, 

 , which maps state-action pairs into scalar-valued rewards                [69].  

By "the state" whatever information is meant, which is available to the agent. The assumption is 

that the state is given by some pre-processing system that is nominally part of the environment. 

The issues of constructing, changing, or learning the state signal are unimportant for the current 

context, since the goal is to focus fully on the decision-making issues. In other words, the main 

concern is not with designing the state signal, but with deciding what action to take as a function 

of whatever state signal is available.  

Ideally, a state should be a signal that summarizes past sensations compactly, yet in such a way 

that all relevant information is retained. This normally requires more than the immediate 

sensations, but never more than the complete history of all past sensations. A state signal that 

succeeds in retaining all relevant information is said to be Markov, or to have the Markov 

property. This is sometimes also referred to as an "independence of path" property or said to be a 

memoryless process because all that matters is in the current state signal; its meaning is 

independent of the "path," or history, of signals that have led up to it [69],[70]. The Markov 

property is fundamental to this model of the environment because it implies that knowledge of 

the current state is always sufficient for optimal control (i.e., to maximize the reward received 

over time). Thus, even though it may be possible to devise action-selection strategies whose 

decisions depend upon additional information (e.g., a history trace), these strategies cannot 

possibly outperform the best decision strategies that depend only upon knowledge of the current 

state [70]. 

Formally the Markov property for the reinforcement learning problem can be defined as follows. 

To keep the mathematics simple, the assumption about a finite number of states and reward 

values is made [70]. This circumstance makes it possible to work in terms of sums and 

probabilities rather than integrals and probability densities, but the argument can easily be 

extended to include continuous states and rewards. Consider how a general environment might 

respond at time     to the action taken at time  . In the most general, causal case this response 

may depend on everything that has happened earlier. In this case the dynamics can be defined 

only by specifying the complete probability distribution: 

   {                |                              }   (3.1) 

for all      and all possible values of the past events:                    . If the state signal has 

the Markov property, on the other hand, then the environment's response at     depends only 

on the state and action representations at  , in which case the environment's dynamics can be 

defined by specifying only  

   {                |      }  (3.2) 
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for all         and   . In other words, a state signal has the Markov property, and is a Markov 

state, if and only if Eq. 3.2 is equal to Eq. 3.1 for all      and histories,                    . In this 

case, the environment and task as a whole are also said to have the Markov property.  

If an environment has the Markov property, then its one-step dynamics of Eq. 3.2 makes it 

possible to predict the next state and expected next reward given the current state and action. 

One can show that, by iterating this equation, one can predict all future states and expected 

rewards from knowledge only of the current state as well as would be possible given the 

complete history up to the current time. It also follows that Markov states provide the best 

possible basis for choosing actions. That is, the best policy for choosing actions as a function of a 

Markov state is just as good as the best policy for choosing actions as a function of complete 

histories [70]. 

The reinforcement function 

As stated previously, RL systems learn a mapping from situations to actions by trial-and-error 

interactions with a dynamic environment. The “goal” of the RL system is defined using the 

concept of a reinforcement function, which is the exact function of future reinforcements the 

agent seeks to maximize. In other words, there exists a mapping from state/action pairs to 

reinforcements; after performing an action in a given state the RL agent will receive some 

reinforcement (reward) in the form of a scalar value. The RL agent learns to perform actions that 

will maximize the sum of the reinforcements received when starting from some initial state and 

proceeding to a terminal state [71]. In particular, the mapping procedure is as follows. 

The agent is responsible for generating actions. At each time step it senses the current state, 

selects an action, and observes the new state and reward that result. Rewards are used as 

feedback for learning. 

The agent’s action choices are a stochastic function of the state, called a policy, which prescribes, 

for each state, an action to perform. Formally, a policy   is a function from states to actions: 

     ( (    )), where  (    )denotes the action to be performed in state  .  

In Q-Learning, the agent’s objective is to learn a policy that maximizes some measure of the total 

reward accumulated over time. In principle, any number of reward measures can be used, 

however, the most prevalent measure is one based on a discounted sum of the reward received 

over time. This sum is called the return and is defined for time t as 

            ∑         
 
    ,  (3.3) 

where the discount rate,         , determines the relative weighting of immediate and 

delayed rewards, and        is the reward received at time      . Because the process may 

be stochastic, the agent’s objective is to find a policy that maximizes the expected return [69], 

[73].  
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The value function 

Almost all RL algorithms are based on estimating value functions - functions of states (or of state-

action pairs) that estimate how good it is for the agent to be in a given state (or how good it is to 

perform a given action in a given state). The notion of "how good" here is defined in terms of 

future rewards that can be expected, or, to be precise, in terms of expected return. Of course the 

rewards the agent can expect to receive in the future depend on what actions it will take. 

Accordingly, value functions are defined with respect to particular policies [70].  

For a fixed policy  , define      , the value function for policy  , to be the expected return, given 

that the process begins in state   and follows policy   thereafter. The agent’s objective is to find a 

policy,   , that is uniformly best for all possible states. That is, find   , such that 

    
                     (3.4) 

There is always at least one optimal policy,     that achieves this maximum at all states    . The 

Principle of Optimality from dynamic programming [74] guarantees that for a discrete time, 

discrete Markov state there always exists a deterministic policy that is optimal. Furthermore, a 

policy   is optimal if and only if it satisfies the following relationship: 

                    (       )        (3.5) 

where        , the action-value function, is defined to be the expected return given that the 

agent starts in state , applies action   once, and follows policy   thereafter. Intuitively, Eq. 3.5 

states that a policy is optimal if and only if in each state, the policy specifies an action that 

maximizes the local “action-value”. That is,  

                       
              (   

     )         (3.6) 

and 

    
           [   

     ]       (3.7) 

For a given MDP, the set of action-values for which Eq. 3.7 holds is unique. These values are said 

to define the optimal action-value function    for the MDP [69]. 

The Q-learning algorithm 

One-step Q-Learning of Watkins [68], or simply Q-Learning, is a simple incremental algorithm 

developed from the theory of dynamic programming for delayed reinforcement learning. In Q-

Learning, policies and value function are represented by a two-dimensional lookup table indexed 

by state-action pairs. The Q-Learning algorithm works by maintaining an estimate of the   , which 

is denoted by    
, and adjusting    

values (often just called Q-values) based on actions taken 

and reward received. This is done using Sutton’s prediction difference, or temporal-difference 
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(TD52) error [75] – the difference between the immediate reward received plus the discounted 

value of the next state and the Q-value of the current state-action pair [76]: 

                    
         

     ,  (3.8) 

where   is the immediate reward,    is the next state, resulting from taking action   in state   

and, considering Eq. 3.8,    
              

     .  

Formally, the Q-Learning algorithm can be described as follows. The Q-values are estimated on 

the basis of experience, starting from arbitrary initial values (e.g., uniformly zero). After 

initialization, the agent enters the main control/learning loop, which consists of three basic steps 

[77]: 

1. From the current state  , select an action  , receiving an immediate reward  , and arrive 
at a next state   ; 
 

2. Based on this experience, update        to                 using following updating 
rule: 

                                   ,  (3.9) 

where   is the learning rate,        , and   is the discount factor. Equivalently, letting 
                         denote the new Q-value, a suitable manipulation of (3.9) 
indicates that the new Q-value is formed as a weighted average of old and new estimates 
as follows: 

                                       . (3.10) 

3. Return to step 1. 

Once the Q-values have been learned, the optimal action from any state is the one with the 

highest Q-value. The general form of the update rule 

                                                             (3.11) 

can be written as: 

                                               . (3.12) 

As already mentioned, for the learning algorithm the difference                      

represents some “error” in the estimate. The target is presumed to indicate the direction in which 

to move, although it may be noisy, and   is the corresponding step size. If   satisfies the following 

conditions: 

 ∑   
 
        and  ∑       

       (3.13) 

                                                           
52

 TD learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte 
Carlo methods, TD methods can learn directly from raw experience without a model of the environment's 
dynamics. Like DP, TD methods update estimates based in part on other learned estimates, without waiting 
for a final outcome (they bootstrap) [70] 
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convergence can be established [78]. The first condition is required to guarantee that the steps 

are large enough to eventually overcome any initialization or path dependent fluctuation of the 

estimated Q-values. The second condition guarantees that the update steps become small enough 

to allow for convergence. While a simple choice of       ⁄  satisfies the conditions of Eq. 3.13, 

setting       as constant does not meet these conditions. In the latter case, estimates never 

completely converge as the new realization always leads to the same scaled update the Q-value, 

independently of the number of updates already made on this particular state-action 

combination. However, this can be a desirable feature in a non-stationary environment with time-

varying migration functions   , e.g. for tasks with online learning on real-time market data where 

stationarity cannot be presumed and no migration function is known (optimizing of the market 

performance of a TSO belongs to this type of tasks). On the other hand, step size parameters that 

meet the conditions of Eq. 3.13 often require considerable tuning to obtain a satisfactory 

convergence rate. For this reason they are more of theoretical interest than used in real 

applications or empirical research [70], [78]. 

The algorithm is guaranteed to converge to the correct Q-values with probability one under 

certain specified conditions. These conditions include [77]:  

 no action is neglected forever;  

 the learning rate is suitably decreased over time;  

 the environment is stationary; 

 the state transition probabilities are Markov in the sense that the probability of 
transiting from   to    depends only on  ,   , and the current action  , and not on 
previous history. 

3.2.2 Kalman filter 

Forecasts are rarely perfect; instead they show what is likely to happen “on average”. So it is a 

good practice to complement forecasts with measures of the forecast uncertainty. The most 

common measure of uncertainty is the variance. Such measures are particularly useful for 

decision making. 

The Kalman filter (KF) is an iterative computational algorithm designed to calculate forecasts and 

forecast variances for time series models. It can be applied to any time series model which can be 

written in “state space” form. Almost all of the standard time series models in common use can 

be written in this form.  

The KF is applied recursively through time to construct forecasts and forecast variances. Each step 

of the process allows the next observation to be forecast based on the previous observation and 

the forecast of the previous observation. That is, each consecutive forecast is found by updating 

the previous forecast. The update rules for each forecast are weighted averages of the previous 

observation and the previous forecast error. These update rules resemble those of an allied 

approach to forecasting called exponential smoothing. The intriguing feature of the KF is that the 

weights in the update rules are chosen to ensure that the forecast variances are minimised. These 

weights, referred to collectively as the Kalman gain, play a similar role to the so-called smoothing 

constants in exponential smoothing [93].  
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Figure 3-2 from [89] depicts the essential subjects forming the foundations for KF theory. 

Although it shows KF as the apex of a pyramid, it is itself is a part of the foundations of another 

discipline – modern control theory – and a proper subset of statistical decision theory.  

Least Squares Probability Theory Dynamic Systems

Least Mean Squares Stochastic Systems

Kalman Filter

Mathematical foundations

 
Figure 3-2: Foundational concepts in Kalman filtering  

The fundamental concept of description of a dynamic system (linear or nonlinear) is according to 

Kalman [90] the notion of the state. By this is meant, intuitively, some quantitative information (a 

set of numbers, a function, etc.) which is the least amount of data one has to know about the past 

behaviour of the system in order to predict its future behaviour. The dynamics is then described 

in terms of state transitions, i.e., one must specify how one state is transformed into another as 

time passes. 

The state of a dynamic system at a given instant of time is characterized by the instantaneous 

values of its attributes of interest. A state variable of a system is the associated real number. The 

state vector of a system has state variables as its component elements. This state vector is often 

denoted as  . The future state of a system may be determinable from its current state and future 

inputs. In order to do that, the dynamic behaviour of each state variable of the system must be a 

known function of the instantaneous values of other state variables and the system inputs [89]. 

The state-space model for a dynamic system represents these functional dependencies in terms 

of first-order differential equations (in continuous time) or difference equations (in discrete time). 

The differential or difference equations representing the behaviour of a dynamic system are 

called its state equations. 

It is often of interest to determine the states occurring in points of time with fixed time intervals 

  :           with      . For the sake of simplicity the notation of discrete time points    is 

shortened with an index  , correspondingly      with     etc.  

The KF addresses the general problem of trying to estimate the state       of a discrete-time 

process that is governed by the linear stochastic difference equation: 

                  , (3.14) 

where      is the  -dimensional system state vector at time     ,    is its value at time    

    ,    is the state transition matrix for the system at time    (relates the state at the previous 

time step     to the state at the current step  ). In addition to the actual system dynamic, 

expressed through the matrix   , the state equation also models other, external influences on the 

system. Thereby a distinction is made between deterministic, i.e. completely identifiable, 
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influences and the ones of a random nature. The deterministic part is presented by the control 

vector      and its dynamic in form of      (control-input matrix). The matrix   relates the 

optional control input     to the state  . The random, not detectable components are enclosed 

within a noise term     . This random variable is called the process noise and assumed to be 

normally distributed with a zero mean, having the covariance    [89], [91]: 

            . (3.15) 

Due to the unpredictability of the noise term the state vector also contains a certain amount of 

"randomness" and is thus a stochastic value, a random variable. The set of all state vectors form a 

special stochastic process, a Markov chain or a Markov model of first order, i.e. the state at a time 

point   depends merely on the immediate temporal predecessor at    . 

The process of observation (measurement) of true states   ,     , … must contain the 

characteristics of an observer or measuring equipment. It involves the biases that can be 

modelled and the unpredictable measurement noise. The corresponding observation (or 

measurement) equation is as follows:  

          , (3.16) 

where the matrix   (its dimension is case specific) relates the state to the measurement    and 
   is the measurement noise which is assumed to be zero mean Gaussian white noise with 
covariance   : 

            . (3.17) 

The noise vectors at each step {              } are all assumed to be mutually independent 

from each other.  

The conducted measurement results often in only single realization of normally distributed 

random variable   . Then the inverse problem occurs, in particular, using the series of 

measurements with the values              to infer about the corresponding states 

             

It is a fairly generally accepted fact that primary macroscopic sources of random phenomena are 

independent Gaussian processes. In most cases, observed random phenomena are not 

describable by independent random variables. The statistical dependence (correlation) between 

random signals observed at different times is usually explained by the presence of a dynamic 

system between the primary random source and the observer. Thus a random function of time 

may be thought of as the output of a dynamic system excited by an independent Gaussian 

random process [90]. 

An important property of Gaussian random signals is that they remain Gaussian after passing 

through a linear system. Assuming independent Gaussian primary random sources, if the 

observed random signal is also Gaussian, we may assume that the dynamic system between the 

observer and the primary source is linear. This conclusion may be forced on us also because of 

lack of detailed knowledge of the statistical properties of the observed random signal: Given any 

random process with known first and second-order averages, we can find a Gaussian random 

http://en.wikipedia.org/wiki/Statistical_independence
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process with the same properties. Thus Gaussian distributions and linear dynamics are natural, 

mutually plausible assumptions particularly when the statistical data are scant [90]. 

Due to the linearity of the model and the assumptions made for the noise terms   and   the 

states that must be determined also remain normally distributed for all times. As generally 

known, the normal distribution is fully described by its mean and covariance, and therefore the 

filter problem for the state estimation is limited to the estimation of these two determining 

factors. A possible exact solution of this inverse problem is the discrete KF. It is a set of equations 

that returns the estimations of the mean and covariance of the state  

  ̂      ̅      (3.18) 

on the basis of the measurement sequence                 . Hereby  ̅  denotes the true state 

and    – its covariance, which are normally uknown. 

The discrete Kalman filter algorithm 

The task of KF can be stated as: Given a system such as the one described with Eq. 3.14, how can 

we filter   so as to estimate the variable   while minimizing the effects of   and  ?  

KF algorithm suggests using a so-called a priori estimate  ̂ |      to predict an estimate for the 

output,  ̂ .  

  ̂ |        ̂          (3.19) 

The difference between this estimated output and the actual output is called the residual, or 

innovation.  

               ̂         ̂ |      (3.20) 

If the residual is small, it generally means a good estimate was made; if it is large the estimate is 

bad. This information can be used to refine the estimate of   ; this new estimate is called then 

the a posteriori estimate,  ̂ . If the residual is small, so is the correction to the estimate.  As the 

residual grows, so does the correction. The pertinent equation is:  

  ̂    ̂ |                      ̂ |        (      ̂ |     ) (3.21) 

where    is called is the Kalman gain and used to refine the estimate. 

The equations 3.19 and 3.21 for KF can be divided into two groups: time update equations and 

measurement update equations. As already shown, the time update equations are responsible for 

projecting forward (in time) the current state and error covariance estimates to obtain the a priori 

estimates for the next time step. The measurement update equations are responsible for the 

feedback—i.e. for incorporating a new measurement into the a priori estimate to obtain an 

improved a posteriori estimate [91]. 

The time update equations can also be thought of as predictor equations, while the measurement 

update equations can be thought of as corrector equations. Indeed the final estimation algorithm 
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resembles that of a predictor-corrector algorithm for solving numerical problems as shown below 

in Figure 3-3. 

Time Update 
(„Predict“)

Measurement Update 
(„Correct“)

 
Figure 3-3: The ongoing discrete Kalman filter cycle  

Since the goal is not only to define the actual variable    but also its covariance, the Eq. 3.19 

receives an enhancement in the form of the appropriate estimation equation (Eq. 3.22). The 

control input    as well as its gain   are usually optional parameters, and since there are no 

influencing parameters in the current optimization problem (there is no control inputs that 

influence the curve of estimation variable), these are omitted in the following mathematical 

descriptions. Therefore the time update projects the current state estimate ahead in time as 

follows: 

  ̂ |          ̂    , (3.22) 

  ̂ |          ̂     
    . (3.23) 

The index notation  |    expresses the conditional nature of the estimates at the time points   

and     from each other. The superscript T denotes the transpose of the matrix marked 

accordingly.  

The measurement update adjusts the projected estimate by an actual measurement at that time: 

      ̂ |      
 (  ̂ |      

    )
  

, (3.24) 

  ̂    ̂ |         (      ̂ |     ), (3.25) 

  ̂           ̂ |     . (3.26) 

The first task during the measurement update is to compute the Kalman gain,   . This matrix 

minimizes the a posteriori error covariance equation: 

  ̂   [     
 ],  (3.27) 

where            ̂ . (3.28) 

The next step is to actually measure the process to obtain   , and then to generate an a posteriori 

state estimate by incorporating the measurement as in Eq. 3.25. The final step is to obtain an a 

posteriori error covariance estimate via Eq. 3.26. 
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Looking at Eq. 3.25 it is evident that as the measurement error covariance approaches zero, the 

gain   weights the innovation more heavily. Specifically, 

   
    

        

On the other hand, as the a priori estimate error covariance  ̂    ( ̂     [         
 ]), 

approaches zero, the gain  weights the innovation less heavily. Specifically, 

   
      

      

Another way of thinking about the weighting by   is that as the measurement error covariance   

approaches zero, the actual measurement    is “trusted” more and more, while the predicted 

measurement   ̂ |      is trusted less and less. On the other hand, as the a priori estimate error 

covariance  ̂ |      approaches zero the actual measurement    is trusted less and less, while the 

predicted measurement   ̂ |      is trusted more and more [91]. 

 

Figure 3-4: A complete picture of the operation of the Kalman filter 

After each time and measurement update pair, the process is repeated with the previous a 

posteriori estimates used to project or predict the new a priori estimates. This recursive nature is 

one of the very appealing features of KF—it makes practical implementations much more feasible 

than (for example) an implementation of a Wiener filter [92] which is designed to operate on all 

of the data directly for each estimate. KF instead recursively conditions the current estimate on all 

of the past measurements [91]. Figure 3-4 above offers a complete picture of the operation of the 

filter, combining the high-level diagram of Figure 3-3 with the Eq. 3.24 … 3.28. 

As can be seen from the correction equation (Measurement Update) the estimate of the mean 

depends on the observation linearly, KF is thus a linear filter. With increasing number of 

measurements the estimates for the mean and variance approach to their actual values arbitrarily 

Time Update („Predict“) 

Measurement Update („Correct“) 

 Project the state ahead 
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 Project the error covariance ahead 
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𝑇  𝑄𝑘 

 Compute the Kalman gain 
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exactly (that is what is called an unbiased and consistent estimator with minimum variance). 

Based on these estimation properties, which in this case correspond to the minimization of the 

mean squared error, the Kalman filter is an optimal53 linear filter. Even generalized nonlinear 

filters do not yield better results for the linear state space model with normally distributed 

variables considered here. In contrast to other (recursive) linear estimators, which also minimize 

least squares, the Kalman filter also allows the treatment of problems with correlated noise 

components which are often observed in practice. 

3.3 Application of the methods for the optimization task 

Before starting with particular applications it is essential to explain, how the basic input 

information that is used for further optimization, is calculated within this thesis.  

As previously emphasized not only day-ahead forecast of wind power feed-in in the respective 

control area is important for a TSO to participate on the power market, but the regulations of 

nationwide equalisation scheme, in particular that of HE. Actually only after this process is 

completed a TSO has the full information about the wind energy quantity it has to market on the 

EEX. Consequently it is crucial to model this process in order to know the exact amount of wind 

energy a TSO has on its control area. Unfortunately not all the information necessary for the 

modelling are provided for public access. Thus some modelling assumptions were made. They are 

presented in the next Subchapter. 

3.3.1 Preliminary assumptions 

In order to participate in the power market as a supplier of wind power each TSO must know (as 

exactly as possible) the quantity of wind power it has on it disposal. It means the wind power 

quantity in each of four control areas (RES BG) must be determined. To a certain extent this 

information a TSO receives from a WPF at 8 a.m. on the day-ahead of the actual power delivery. 

However, the quantities predicted by the WPF are only partly in ownership of an individual TSO, 

since a part of them must be exchanged within the process of HE.  

To calculate which amounts of wind power are exchanged, the HE allocation key54 is needed. This 

key shows in particular how much wind power from wind-rich regions (that of tps, 50Hertz) must 

be transported into the areas with less wind power generation but more power consumption 

needs (Amprion, EnBW).  

The calculation of the HE allocation key is performed monthly, basing on the so-called “reference 

values”. They are calculated as follows: 

                          
                                                            ,  (3.29) 

                                                           
53

 “optimal” means in this case unbiased and consistent with minimum variance 
54

 The details of how are the amounts for HE are calculated are presented in Subchapter 2.2.3 
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where     is the final electricity consumption in each control area,          - privileged FEC55, 

the index   stands for “month”,   - for individual TSO and the “deemed” special FEC is 

determined as (see also Eq. 2.1): 

                             
                            

             
 (3.30) 

However, all the relevant data: the monthly share of each TSO on the individual parameter (FEC 

(general and privileged), RES-feed-in (general and privileged) is not publicly available. Therefore 

some assumptions had to be made about these parameters based on the data that is publicly 

released. These were: 

1) The share of the individual TSO on RES generation and final energy consumption in month 
(n/a56) does not change during a particular year (a57); 

2) Through multiplication of monthly values of relevant parameters for Germany (a) with the 
shares, calculated in previous step, the monthly quantities for each individual area can be 
determined (n/a); 

3) The monthly reference value of each parameter for individual TSOs is then calculated 
using Eq. 3.29 and Eq. 3.30. 

After calculation of the HE allocation key, the quantities that are exchanged between the 

individual TSOs can be determined. Through the multiplication of the wind power quantity, a 

particular TSO has each hour (according to the WPF), with the HE allocation key of three other 

TSOs, a quantity to be transferred in each of these three control areas is calculated.  

The difference between the quantities, a TSO gives and that, it takes, build the overall wind 

energy balance of its control area. If a TSO gives up more than it receives, this balance will be 

negative and vice versa. Thereby it is important to consider, that the nationwide sum of 

transferred and accepted quantities within the HE must be equal to zero (all the transferred wind 

power must be accepted). As a result, the wind energy available in each control area in every hour 

is determined. 

The exemplary calculation of HE allocation key and exchanged wind power quantities for 

November 2008 is shown in Appendix A.  

The same procedure is accomplished for the “real-time” values – the ex-post available 

measurements of wind power feed-in58.  

In order to understand the meaning of HE for a particular TSO, Figure 3-5 is presented. Two 

different variants of wind power availability are shown (exemplarily for 23.08.2007): on the left 

side – wind power feed-in in each of four control areas in the form they are generated by wind 

                                                           
55

 See Exceptional regulation in section 2.2.3 
56

 Not available 
57

 Available 
58

 The information about wind energy feed-in (forecast and online projection (“real-time”)) in four control 
areas was acquired from corresponding statistics, published by German TSOs on their Internet pages. 
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power plants existing in the control area of each TSO; on the right side – the availability of wind 

power after the exchange between TSOs. It is obvious, that the individual variability of wind 

power is smoothed through the HE. It means in particular, that each TSO has in principle the same 

wind stochastic that differs merely in volumes.  

 

Figure 3-5: Wind power availability in each control area before and after horizontal 
equalisation  

These moderated wind power feed-in are further compared with the delivery obligation of each 

TSO, which they have in accordance with the REA legislation that was in force till 01.01.2010 

(EEG2004). It means in particular, that the determined wind power quantity in each control area is 

not the quantity that will be sold on the power market (as it is in the case of the EEG2009). The 

delivery commitment (RES-Quota59) to electric utilities previously existing in the RES balancing 

scheme must be deducted from this quantity. The result represents the bidding quantities for the 

day-ahead electricity market (called sublimation values (SVs) (Figure 3-6). 
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Figure 3-6: Calculation of the sublimation values 

Thus the input information for further optimization steps includes two time series: day-ahead 

forecast and “real-time” values to sublimate in each control area in every hour.  

These time series build the basis for further optimization with the help of the methods introduced 

before. With everything included is the optimization of a TSO’S market participation a certain kind 

of decision support tool for a particular operator (Figure 3-7).  

                                                           
59

 The monthly value of the RES-Quota determined by BDEW is thereby converted to its hourly equivalent. 
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Figure 3-7: Decision support tool for a particular TSO operator 

The next sections are dedicated to the description how the calculated SVs are involved into the 

respective optimization algorithm. 

3.3.2 Q-Learning 

In order to model the TSO’s optimization problem in accordance with the Q-Learning principles it 

is first necessary to define the environment a TSO interact with.  

Representations of states and actions as a part of the environment could have different layouts. 

So, in [67] 24 separate hourly market clearing price from the previous day are used for initializing 

of the 24 hourly states of the current trading day (numerical values); in [65] the states are 

indicated through the share of accepted supply quotes (percentage values). The actions can also 

be described through the numerical vectors, as in [66]; can have a character of an order (methods 

to change a supply rate, descriptive values), as in [65]; or can be presented in the form of 

movement command as in robotics. In our case numerical values are used for both state and 

action vectors. 

As generally described, an environment is the tuple (     ), where   is the set of possible 

states,   is the set of possible actions, and   is the reward function. In the current model it is 

assumed, that a TSO as a learning agent interacts with its environment at each of a sequence of 

discrete time steps,          . Time steps symbolize the hours of each day of the year. Possible 

states within the current  modelling framework are defined through the day-ahead forecast wind 

power available for trading in each control area in every hour (SVs), determined in accordance 

with the principles described in the previous section. It is the finite set, denoted as   

 {             }. The finite set of admissible actions an agent can take -    {             }, 

are the possible deviations to forecasted values, an agent consider to appear on the day of 

delivery. In the model, there are      states and actions.  
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While choosing the specific number of states and actions one must consider the update frequency 

of each state-action pair. While having all other parameters constant (in the current case the 

magnitude of SV’s variation), the increasing of the number of the states leads to splitting of the Q-

values. Since in this case the number of state-action pairs, which must be regularly updated, 

grows, their update must occur more often in order to keep them feasible. In view of the stable 

number of learning time steps, the increasing of the number of states results in sparse visiting of 

the state-action cells and thus to inadequate Q-values.  

The dimensionality of the state space is validated by the magnitude of SV’s variation. In the 

current model the largest range from all four TSO’s was chosen for the design of the state space 

(that is from Amprion). Therefore in the cases of 50Hertz and EnBW, where the sublimation often 

do not reach the range limits, the Q-values update occurs in the “central” part of Q-table, while 

the values in the limit cells remain at their initialized values (zeros). Figure 3-8 shows an example 

of the Q-table for 50Hertz. 

 

Figure 3-8:  Example of a Q-table with the Q-values, updated and not 

These are intervals that are equally distributed between their minimum and maximum values, as 

it is shown in Figure 3-9. 

The same range of state vector (from -3500 MWh to +3500MWh) for each hour was used for all 

four TSOs, because the experiments conducted have proven, that the algorithm brings more 

improvement in comparison with the initial day-ahead forecast at these conditions as conversely.  
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States

state 1 state 2 state 20

Forecasted energy amount for the day-ahead electricity 
market [MWh]

state 3 state 19...

Actions

action 1 action 2

Deviations from the forecasted value, the TSO expects to 
occur on the next day [MWh]

action 3 action 19... action 20

-3500 + 3500...

-500 + 500...

 

Figure 3-9: Q-Learning states and agent‘s actions 

Dimensioning of the action space was performed in accordance with the distribution of the 

forecast error of the day-ahead prediction of SVs (Figure 3-10). The limits were set to [-500MWh, 

500MWh] since the most deviations occur within this range. 

 
Figure 3-10:  Frequency distribution of the forecast error (basis for the dimensionality of the 

action space) 
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As in the case with the increasing the number of states, the respective widening of the action 

space, leads to the splitting of the existent action intervals. However the deviations, which appear 

most frequently, are concentrated around the zero mark. It means that usually small quantities 

are necessary additionally for covering the difference between “real-time” SVs and their 

predictions. In this respect the increasing of the number of actions (while holding the dimensions 

constant) will lead neither to improvement nor to worsening of the achieved results, as long as 

the most frequent deviations remain considered.  

As in the case with the state dimensioning, the same range of action vector was used for all four 

TSOs, because of the better performance.  

Within this modelling framework a special MDP is considered, where the next state distribution is 

the same for each state, i.e. to [-3500MWh, 3500MWh]. It means that there is no influence 

between the action performed and the states reached, and the states are distributed i.d.d60. 

Moreover, the Q-learning occurs asynchronously, i.e. at each time step only one state-action pair 

is updated, not all the state-action pairs each time unit, as it were in the case of synchronous Q-

learning. 

The Q-Learning algorithm is implemented in two phases: during the first, learning phase, a TSO 

chooses its actions randomly in order to determine the initial arbitrary Q-values. This phase serves 

for the creation of the look-up Q-table. This table is used thereafter as a basis for optimal decision 

making. The Q-Learning algorithm works in the learning phase as follows: 

1) At each time step, a TSO receives information about a certain level of sublimation value. It 
refers this quantity to the respective state.  

2) After that it randomly chooses an action (the exploration strategy is used) – an additional 
quantity, it believes to be necessary to add/subtract to/from the current sublimation 
value in order to reach the “proper real-time” value. 

3) The Q-Learning system compares the result of its action (sum of sublimation value and 
action) with the real-time data. 

4) The reward is calculated in accordance with the integrated penalty function.  

Penalty function was involved into the Q-Learning algorithm in order to emphasize the 

importance of prediction of the right deviation. If an agent chooses the “wrong” action, and the 

rest deviation after performing this action is large, the reward, it attains for its action, will be 

penalized, i.e. reduced. The extent, to which the reward is reduced, is defined through two 

variants of penalty function: linear and exponential (Figure 3-11).  

They are calculated for each of the four TSO, as follows: 

                         (3.31) 

                     
  

       

   (3.32) 

                                                           
60

 identically distributed data 
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where   is TSO’s index,    is maximum profit a TSO can achieve for its action,       is modulated 

difference between “real” SVs and forecasted SVs together with the chosen deviation (action),   

is a parameter of exponential function and is set to 5.  

 
Figure 3-11:  Penalty functions 

The tests conducted have shown that the exponential penalty function usually results in better 

performance and since in an enhanced improvement of the day-ahead forecast of SVs that the 

linear penalty function.  

In the current version of the Q-Learning implementation, no difference in penalty is envisaged for 

positive and negative deviations. Merely the degree of the deviation is decisive for the respective 

penalty, therefore       has always a positive value. In further development of the algorithm this 

differentiation can be integrated, i.e. the positive deviations could be punished with greater 

decrease in reward, as the negative ones. 

5) The Q-value is calculated in accordance with the Eq. 3.10. Thereby the learning factor   is 
calculated as follows: 

          
 

       
 (3.33) 

It means, that the learning rate   is designed to be state-action dependent varying with time. 

That is, the learning rate in the initial learning phase of simulation is inversely proportional to the 

visited number         of state-action pairs       up to the present trading day.  

Learning rate is the degree to which estimated Q-values are altered by new data. High values 

imply more rapid updates, with a risk of instability; a factor of 0 will make the agent not learn 

anything. As states before in the learning phase this factor is inversely proportional to the visited 

number of state-action pairs. In the prediction phase it has a constant value of 0,5.  

Authors of [80], referring to [81], prove the convergence of the Q-learning algorithm for the 

modelling case used in this thesis (asynchronous Q-learning, identical distribution of states, no 
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influence between the performed action and the reached state). It was shown that, using the 

learning rate as in Eq. 3.33, the convergence rate has an exponential dependence on       ⁄ , 

where   is the discount factor. 

Further learning rates could be considered, e.g. a polynomial one (    ⁄ , where          ). 

Using this learning rate leads to convergence of the Q-learning algorithm either, in this case the 

convergence rate will be polynomial in       ⁄  [80]. For the test of the Q-Learning 

performance (reference case study) the discount factor   is set to 0,1. 

Each of Q-values, calculated in accordance with the Eq. 3.10, is then stored in the look-up Q-table 

in the respective state-action cell. 

As a result a TSO receives a look-up Q-table, where all the Q-values are saved, which were learned 

during the learning phase. This table can be then used as a simple “if-then”-rule, as illustrated in 

Figure 3-12. 

It means in particular, if a TSO receives a forecasted value that corresponds to one of the states, 

then it must add/subtract the additional value in order to correct the initial forecast. 

  

[-1288:-921] 
   

-26,3 

if your forecasted 
value is within the 
limits [MWh] 

[-920:-553] then the best action you 
can undertake is      (the 
amount you should add 
to your market bid, 
[MWh]) 

-26,3 

[-552:-184] -78,9 

[-184:184] -184 

[185:552] -26,3 

[553:920] 131,5 

  

[921:1288] 
   

-236,8 

Figure 3-12: Example of the “if-then”-rule deduced from the resultant Q-Table (here for 
50Hertz, all values in MWh) 

Moreover, the results from the learning phase can be used as a risk evaluation tool, since other 

values from Q-Table (apart from the maximum value) for the same state can be presented as a 

certain kind of likelihood function (Figure 3-13). 

 
Figure 3-13:  Exemplary optimization distribution for 50Hertz (state 7) 

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q
-v

a
lu

es
 

Actions 

50Hertz, State 7 



 
Optimization methods 68 

In accordance with this example, if a TSO operator receives a level of day-ahead forecast of SV 

that corresponds to the state 7 (SVs in the range [-1657:-1289] MWh), the best action he or she 

can perform in this situation is the action 10 (subtract from your market bid 26,3 MWh). The 

“next-best” action would be the action 9 (subtract from your market bid 78,9 MWh), further the 

11 (add to your market bid 26,3 MWh), etc.  

In the next step, the optimal policy calculated through the Q-Learning algorithm (“if-then”-rule) is 

tested in the prediction phase, where the produced Q-table is used for correction of the initial 

day-ahead forecast. As previously in the learning phase, at each time step, a TSO receives its 

sublimation value, it chooses the action with the highest Q-value (optimal policy) from the row of 

the Q-table that corresponds to the respective state (exploitation strategy). The reward is 

calculated in the same manner as in the learning phase. The system will continue to learn in the 

prediction phase, however with the fixed learning rate. The rate of 0,5 was chosen for ensuring 

the balance between rapid updates (high values of learning rate) and absence of learning (very 

small values). The discount factor remains unchanged. 

The results of the prediction phase are then compared with the real-time data. The rest 

deviations, which remain after the optimization, means a forecast error. It is further used as the 

measure of evaluation of the Q-Learning performance.  

Table 3-1 summarizes all the variables within the Q-Learning modelling and their counterparts 

from the TSO’s real-world situation. 

Table 3-1: Q-Learning application. Variables 

Denotation 

Real-
world 

counter-
part 

Internal 
parameter 

of the 
method 

Description Units 

States x   day-ahead forecast of SV MWh 

Actions x   
possible deviations of the day-ahead 
forecast from the "real-time" SVs, a TSO can 
add/subtract to its market bid 

MWh 

Reward   x 

combined with the integrated penalty 
function ensures that the "right" prediction 
of the deviation is rewarded with the higher 
Q-value and vice versa   

Q-Value   x 

multilayer value, if maximal for certain 
state-action pair, determines the optimal 
policy for a TSO to follow, based on actions 
taken and reward received   

Learning 
rate 

  x 

degree to which estimated Q-Values are 
altered by new data. High values imply more 
rapid updates, with a risk of instability; is 
inversely proportional to the visited number 
of state-action pairs   
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Table 3-1. Continuation 

Denotation 

Real-
world 

counter-
part 

Internal 
parameter 

of the 
method 

Description Units 

Discount 
factor 

  x 
discounts future awards (small values imply 
that expected future rewards count for less)   

Rest 
deviation 

x   forecast error of the Q-Learning MWh 

3.3.3 Kalman filter 

As described before one can consider the input information a TSO obtain each day (day-ahead 

forecast) as a dynamic system with the certain stochastic that can be described by means of the 

Kalman filter (KF).  

The challenging task in filter design consists in a correct description of the underlying process by 

means of two model equations of the KF: state and measurement equation. The former describes 

the target state evolution in time, which requires more or less exact knowledge of target 

dynamics. The latter bridges the target state with the measurement process, which involves 

knowledge about the sensor characteristics.  

Within the KF modelling framework the “real-time” values are assumed to be a path, describing a 

certain development of a dynamic system. With the help of the Kalman algorithm it is tried to 

estimate the position of the system in each given period of time. There is no possibility to observe 

this path directly. The only information one has on its disposal is the measurements of this path 

(corrupted by measurement noise).  

Accordingly the “real-time” values of sublimation are regarded as the system variables    to be 

estimated. The day-ahead forecast of the sublimation is used to define the measurements of the 

dynamic system    . Time periods   are defined to [1:24] within a day. 

For definition of the initial values for state equation (Eq. 3.14) the last known “real-time” value is 

taken. Consequently, the initial values for   |      and   |      are defined as follows: 

   |     [
   

          
],  (3.34) 

where the state vector is formed by the last known “real-time” value (   )61 and the velocity of 

the system is defined through the alteration of sublimation value in the next hour (          ); 

and 

   |     [
    
    

] (3.35) 

                                                           
61

 Subscript „RT“ stands for „real-time“ 
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Since there is no possibility to influence the system progress, there is no control input    and the 

corresponding matrix   in the model is absent in the present simulation. Therefore the Eq. 3.14 is 

simplified to: 

   |           |         |   ,  (3.36) 

where     |    is the process noise, which is normally distributed in accordance with Eq. 3.15. It 

is specified according to a common kinematic model as a scalar-valued zero-mean white sequence 

[93]. 

              
        (3.37) 

and enters into the dynamic equation as follows 

   |           |          |     (3.38) 

where the noise gain   is an   -dimensional vector. 

If it is assumed, that     |    is the constant acceleration of the state position during the certain 

sampling period of length  , then the increment in the velocity during this period is     |      

while the effect of this acceleration on the state position is     |   
  

 ⁄  [93]. These 

assumptions indicate a belonging of the process to the piecewise constant acceleration model 

[93], which is of the second order and defined in accordance with the Eq.3.38. 

The transition matrix is  

    [
  
  

] ,  (3.39) 

and the vector gain multiplying the scalar process noise is given, in view of the above discussion, 

by 

    [   
 
 

 
] .  (3.40) 

In the current model the sampling period is equal to the observation period and amounts to 1 

hour. 

The covariance   of the process noise is used for specification the non-linearities in the state 

model (defined by Eq. 3.38). The variance of the process noise   
  is given through the deviations 

of the process from its linear approximation (given the “start” position and the corresponding 

acceleration), as it is shown on Figure 3-14: 
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Figure 3-14: Process noise  

Multiplied by the gain,  , the covariance   of the process noise is 

       [     |       |    
 ] 

      
    

   [
  

 
   

 
 

  
 
   ]   

 . (3.41) 

It is further assumed, that the process of observation (measurement) of true states   ,     , … is 

given by the day-ahead forecast of the SVs. These values    are related to the state vector by the 

means of linear observation equation: 

     [
 
 
]
 

              . (3.42) 

The observation noise vector is characterized in accordance with Eq. 3.17. The corresponding 

observation noise matrix    is determined through the deviation of the day-ahead forecasted 

data in every hour   (       from the “real-time” process        : 

       
   

 

  
∑ (           )

   
    (3.43) 

In each simulation sequence the forecasted and “real-time” values from the last 24 hours are 

taken and the means and covariances of the Kalman filter calculated recursively in accordance 

with the algorithm from Figure 3-4. During the time update (prediction step) the state and state 

covariance estimates (  |      and   |     ) from the previous time step     are propagated to 

the current time step  . As the current observation    becomes available the predicted state and 

covariance estimates are updated in the measurement update (correction step). Hereby the so 

called innovation covariance matrix   : 

       ̂ |      
     (3.44) 
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and Kalman gain    are calculated. The former is a covariance matrix of the innovations or 

measurement residuals       ̂ |     , which are effectively the difference between the current 

and the predicted observation. The latter weights the innovation vector thus essentially affecting 

the updated state estimate. The matrices    and    are altered with each sequence and thus 

reflect the latest changes in the variability of states and observations. Table 3-2 summarizes all 

the variables within the Kalman filter modelling framework. 

Table 3-2: The Kalman filter application. Variables 

Denotation 

Real-
world 

counter-
part 

Internal 
parameter 

of the 
method 

Description Units 

States of the 
system,    

x   "real-time" values of SVs to predict MWh 

Measurements 
(observations), 
   

x   day-ahead forecast of SVs MWh 

   
  

x 
process noise, which is normally 
distributed    

  

 

x transition matrix 

 
  

  
x noise gain 

  

   
  

x 
covariance of the process noise, used for 
specification the non-linearities in the 
state model    

  

 

x observation noise vector 

 

  
  

  

x 
variance of the process noise, given 
through the deviations of the process 
from its linear approximation    

   

  

x 

observation noise matrix, determined 
through the deviation of the day-ahead 
forecasted data in every hour from the 
real-time process    

   

  

x 

innovation covariance matrix, a 
covariance matrix of the effectively 
differences between the current and the 
predicted observation   

   
  

x 
Kalman gain, weights the innovation 
vector thus essentially affecting the 
updated state estimate   
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Chapter 4  

Case studies, results and their evaluation 

In this Chapter methods motivated and described before are applied to the optimization task in 

accordance with modelling assumptions presented in the previous Chapter. It is started with case 

studies for the Q-Learning method, followed by performance test for the Kalman filter. Finally, 

advantages of both techniques are gathered within the framework of combined approach. 

In order to measure how good the investigated methods predict the “real-time” values results of 

each case study are evaluated with the help of error measures. These quality indicators build the 

basis for comparison of the performance of each optimization method and of the initial day-

ahead forecast. Section 4.1 gives a general overview of error measures that are usually applied for 

evaluation of WPF’s quality.  

4.1 General definition of error measures 

WPFs are characterized by an inherent uncertainty. It means in particular that no available wind 

power prediction can ever be exact. Therefore, it is essential that wind power forecasts are 

properly evaluated, not only to assess the performance of the chosen approaches adequately, but 

also to obtain a deeper understanding of what characterizes the prediction uncertainty.  

Evaluation of the quality of forecasting methods is conducted by comparing wind power 

predictions made at a certain time directly with the actual corresponding observations. Hence, 

the quality of a given forecasting method is assessed through analysis of the deviation between 

the prediction and the truth (or the actual). The actions of determining and quantifying the quality 
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of forecasting methods in terms of their statistical performance imply that there will be an 

evaluation of a long series of predictions, so that enough data is analyzed [40]. 

There are two basic criteria for illustrating a predictor performance: the Mean Absolute Error 

(MAE) and the Root Mean Squared Error (RMSE). In statistics, the MAE is a quantity used to 

measure how close forecasts or predictions are to the measured values. It is given by 

     |     |   
 

 
∑ |     |

 
    

 

 
∑ |  |

 
     (4.1) 

As the name suggests, the MAE is an average of the absolute errors          , where    is the 

predicted value and    the measured (“real-time”) value.   stays for the length of prediction 

interval (number of forecasted values). 

RMSE is a quadratic scoring rule which measures the average magnitude of the error. RMSE is a 

good measure of how accurately the forecast predicts the real-time values, and is the most 

important criterion for fit if the main purpose of the model is prediction: 

       √
 

 
∑        

  
    √            

   (4.2) 

An alternative to the use of the RMSE is to consider the Standard Deviation of Errors (SDE): 

      √
 

   
∑      ̅   

    (4.3) 

The SDE criterion is an estimate for the standard deviation of the error distribution. It shows how 

much variation there is from the "average" (mean,  )̅. A low standard deviation indicates that the 

data points tend to be very close to the mean, whereas high standard deviation indicates that the 

data is spread out over a large range of values. 

The MAE and the RMSE can be used together to diagnose the variation in the errors of forecasts. 

The RMSE will always be larger or equal to the MAE; the greater difference between them, the 

greater is the variance in the individual errors in the sample. If the RMSE=MAE, then all the errors 

are of the same magnitude. Both the MAE and RMSE can range from 0 to  . They are negatively-

oriented scores: lower values indicate better fit. 

Statistically, the values of MAE are associated with the first moment of the prediction error, and 

hence this is measure which is directly related to the produced energy. The values of RMSE and 

STD are associated with the second order moment, and hence to the variance of the prediction 

error. For the latter measures large prediction errors have the largest effect [40]. 

It might be of interest to highlight and to quantify the gain of preferring an advanced approach to 

the reference ones. This gain, denoted as an improvement with respect to the considered 

reference model (in this case the reference model is the initial day-ahead forecast, thus the 

subscript DA), is 

     
        

    
     , (4.4) 
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where    is the considered Evaluation Criterion, which can be either MAE, RMSE, or even SDE – 

or the equivalent normalized versions. In following case studies MAE is considered as Evaluation 

Criterion. 

4.2 Case studies. Q-Learning 

Several case studies were conducted in order to discover the optimization ability of the Q-

Learning method. First of all the general ability of the technique to outperform the day-ahead 

forecast of SVs was tested. Then the consequences of broadening of the learning periods are 

presented and thereupon the optimal length of learning/prediction intervals is examined. Finally 

the optimization of day-ahead market performance with the best frames for learning/prediction 

for one of four German TSOs is performed.  

4.2.1 Performance test 

The performance of the described Q-Learning was tested on the basis of wind feed-in data from 

the period of 2006-2007, provided online by TSOs [86]. The general improvement of the day-

ahead forecast through implementing of the Q-Learning algorithm was tested in the reference 

case study [82]. Its performance was compared with the initial day-ahead forecast each TSO 

receives each day.  

Experiments and results, described here, are based on the statistics of forecasted and real 

occurred wind energy feed-in from the year 200762. The corresponding Q-Tables were learned 

during first 180 days of the year, the rest 154 days were used for testing (prediction phase). This 

combination of learning/prediction days was used to test the algorithm’s prediction ability. It will 

be shown further (section 4.1.5) that the optimal configuration of learning/prediction days is 

crucial for the algorithm to perform properly. 

Thereby the exponential function was used as a penalty function. Performance of the Q-Learning 

is presented in comparison with the initial day-ahead forecast available to TSO’s operators. For 

the comparison presented in Figure 4-1 a measure to quantify the quality of prediction called 

mean average (prediction) error (MAE) is used (see Eq. 4.1).  

Obviously the Q-Learning method provides the better results. In order to quantify the gain of the 

approach compared with the initial forecast one further measure is used called Improvement (see 

Eq. 4.4). Figure 4-2 shows the percentage ratio of superiority (improvement) of results of the Q-

Learning in comparison with the initial day-ahead forecast based on MAE from the previous 

Figure. 
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 January 2007 is excluded from the consideration due to partly missing data 
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Figure 4-1: Comparison of the performance of Q-Learning (red, solid) and Day-Ahead forecast 
(dashed, green) 

 
Figure 4-2: Improvement received through implementing of Q-Learning 
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It is seen, that in some cases implementation of the Q-Learning reduces the quantities that have 

to be balanced out in one hour on the next day on 30,3% (maximal value for 50Hertz in hour 12). 

However, the quality of Q-Learning results in relation to early hours is less convincing. It is 

justified by the fact, that the deviations in these hours show high-amplitude dynamic of variation 

and since the limited number of learning data can barely be well learned. The way to improve this 

factor can be increasing the number of learning days and in this way the number of visiting of 

corresponding state-action pairs.  

The better results of Q-Learning for 50Hertz and EnBW are explained by smaller volumes of wind 

energy feed-in they have to trade with (since their final energy consumption is less compared 

with other two TSOs). Since dynamic of their forecasted SVs nearly never achieves states [1…5] 

and [17…20], the Q-values corresponding to remaining states can be updated oftener and 

therefore lead to enhanced outcomes. In order to improve the performance of Q-Learning by 

other TSOs more learning data must be acquired. 

4.2.2 Influence of internal model parameter 

Penalty function 

Additionally the influence of the art of penalty function on the achieved results was investigated. 

Comparison of exploring of different penalty functions by Q-Learning (linear and exponential) is 

presented on Figure 4-3. 

 

Figure 4-3: Comparison of using different penalty functions by the Q-Learning 
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It is clearly visible that despite of the fact that exponential penalty function brings better results 

for 50Hertz and EnBW, its exploring by Amprion yields almost no improvement, and by tps it is 

even better to apply linear function to obtain enhanced outcomes.  

The results mean that if the Q-Learning will be implemented by individual TSOs a detailed case-

related analysis of suitable learning parameter must be conducted. 

Discount factor 

The discount factor modifies future awards and determines their importance. It is in range      . 

Small values imply that expected future rewards count for less. A factor of 0 will make the agent 

"opportunistic" by only considering current rewards, while a factor approaching 1 will make it 

strive for a long-term high reward. If the discount factor meets or exceeds 1, the Q-values will 

diverge. 

When the discount factor is enabled (<1), it makes the reward reduce by time and hence the total 

reward at time  is given by: 

                                   (4.5) 

In the tests conducted the variation of the discount factor led to following results. It was proven, 

that the increasing of the discounting from the initial value of 0,1 to its maximal value 0,9 (the 

value of 1 was not considered in order to avoid divergence) results in different quality of the Q-

learning performance dependent on the particular hours (Figure 4-4, case for 50Hertz). 

Correspondingly, using high discount factor leads to superior results in the hours 9-12 (right side) 

comparing with the smaller one. In the same time, implementing the factor at the value of 0,1 

surpasses the higher values in the hours 2-7 (left side). 

 

Figure 4-4: Influence of the discount factor on performance of the Q-Learning  

4.2.3 Adding of further learning data 

In the reference case study the implementation of the Q-Learning brought the best results for 

prediction of possible deviations in comparison the day-ahead forecast of TSOs. However, the 

performance of the Q-Learning was unsatisfactory e.g. at forecasting in early hours. To overcome 
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this instability an assumption was made, that this problem could be eliminated through the 

adding of more learning data. The assumption was tested within the next case study, described 

here. To the real-world data about forecasted and “real” occurred wind energy feed-in from the 

year 2007 appropriate values were added from the year 2006.  

However the results achieved showed that the performance of Q-Learning algorithm became 

worse. For comparison, on Figure 4-5, the results from the reference case study are shown with 

following parameters: 180 days for initial learning, and 154 days for prediction learning (2007) 

and the outcomes from recent experiments with parameters: 360 days for initial learning phase 

and 366 days of prediction (2006-2007). All other factors remained constant.  

Degradation of results can be explained by several reasons. Firstly, the simple adding of data does 

not bring any improvement, but more stochastic and, therefore, more unstable data to consider. 

Secondly, different weather conditions in these two years provide different forecast values. It 

means in particular, that the data that was learned during the year 2006 may not be valid 

anymore for the year 2007. 

Finally, the reasons for this difference can simply lie in the quantity of the averaged data. In the 

case of the year 2007, there were 154 days for averaging; in 2006 this amount was 366 days. Thus 

the increased number of data could have led to the increased mean error by averaging.  

 
 

Figure 4-5: Results of including of additional learning data 
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Several conclusions can be drawn from these results for further simulations with Q-Learning 

algorithm: 

1) It is not really an issue, how much data is provided for simulation. Certainly there must be 
enough to achieve feasible results. But once the sophisticated number of data is achieved, 
further increasing of this number may not contribute to improvement of simulation 
results. The exact quantity of learning days must be defined by tests since different input 
data may need different learning periods. 

2) Wind generation data shows such stochastic characteristics as non-standard distributions, 
instationarity, complex chronological persistence, intermittency and interdependence 
phenomena [84], [85]. That’s why a method must be found, which could learn this 
unstable behaviour (dynamic) and consider this in further predictions.  

3) For proper forecasting of deviations of sublimation quantities with the Q-Learning 
method some special time frames (number of learning and prediction days) must be 
found, for which it provides the best results.  

4.2.4 Optimal learning/prediction intervals 

Within [83] the special attention is dedicated to the first and third mentioned conclusion. It was 

tried to find certain time frames for which the Q-Learning algorithm yields its best outcomes. 

Different combinations of learning/prediction days for each of four TSO were simulated and 

compared on the criterion of a smallest mean deviation for one day (for all 24 hours). For 

determination of the best time frame for learning/prediction the input data from two years – 

2006 and 2007 – was used. The comparison was based on the method of “sliding window”. It 

means in particular, that given the certain combination of learning/prediction days, their sum was 

taken from the beginning of testing data to implement the Q-Learning algorithm. Then the 

“window” “slides” from the beginning of the testing data on the number of prediction days and 

the Q-Learning algorithm is repeated for the next sum of learning/prediction days. This is 

replicated till the end of the testing data.  

The combinations were formed from 14 variants for learning phase (from 50 till 180 days with an 

increment step of 10) and 9 variants for prediction phase (from 10 till 90 days with an increment 

step of 10). Since the achieved results are rather similar for all four TSOs and differs almost only in 

a value of rest deviation, just one of four graphics is shown on Figure 4-6, the one of tps. 
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Figure 4-6: Comparison of different combinations of learning/prediction days for  

the Q-Learning algorithm   

Through these simulations best combinations of learning/prediction days for each of four TSOs 

was found. These are as follows (Table 4-1):  

Table 4-1: Best combinations of learning/prediction days for four TSOs 

tps 50Hertz Amprion EnBW 

80/10 110/10 90/10 140/10 

It means in particular, that values of lookup Q-tables, gained by initial learning phase (which could 

last 80/110/90/140 days accordingly) can be used by TSO’s operators during the next 10 days 

(predictions days) for correction of the day-ahead forecast. Afterwards another Q-values table 

must be generated. Number of learning days varies from TSO to TSO. It testifies to the fact, that 

wind feed-in data of each TSO has its individual stochastic characteristic. Consequently it takes 

from 80 till 140 days to learn these special features. 

Using the best combination of learning/predictions days allows a TSO to improve the performance 

of its own Q-Learning algorithm. Figure 4-7 shows an example for 50Hertz (first 110/10 days were 

simulated, based on the data from 2006). On the left side the rest deviations after using ordinary 

day-ahead forecast (DA) and the Q-Learning algorithm (QL) are presented (10 days (240 hours) 

tested). On the right side the improvement of Q-Learning compared to day-ahead forecast is 

illustrated. Compared with results from Figure 4-1 and Figure 4-2 one can see that the 

performance of the Q-Learning in early hours could be significantly improved.  
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Figure 4-7: Comparison of using the best calculated combination of learning/prediction days 
with the initial day-ahead forecast 

The achieved results indicate some conclusions about the performance of the Q-Learning 

algorithm: 

 Q-Learning contributes a significant improvement to TSO’s market performance (its 
forecast is about 10%-15% on average better than the performance of the initial day-
ahead forecast); 

 Improvement of even more percentage can be achieved if suitable learning/prediction 
time frames can be found (in individual cases improvement of 25%-30% on average can 
be achieved); 

 However, performance of the Q-Learning in the early hours of a day is less convincing. 
As a rule, the ordinary day-ahead forecast predicts these hours better; 

 This fact may be due to stochastic of the input data, which is not explicitly described 
with the algorithm; 

 Further, for the application of the Q-Learning a certain waiting time for learning is 
necessary. 

The last mentioned drawbacks of the Q-Learning were the reasons for search of an alternative 

method. This new approach should overcome the problems, listed above and still fulfill the 

requirements to the optimization method defined before. It means in particular, the alternative 

method must: 

 Explicitly describe the system stochastic; 

 Not need much time to get started; 

 Outperform the prediction of the initial day-ahead forecast in the early hours of a 
day as far as possible. 

 

In the next section the alternative approach that corresponds to these requests is presented. 
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4.3 Case studies. Kalman filter 

With the initial modelling assumptions described in the section 3.3.3 the ability of the Kalman 

filter to surpass the initial day-ahead forecast of SVs was tested.  

4.3.1 Performance test 

The tests were conducted on the basis of wind feed-in data from the years 2006-200763 (726 days 

(17424 hours) tested). Time interval between each run of the KF is one hour. For the initialization 

of state vector   |    the last two “real-time” values from the day     are taken. The very last of 

these two is referred to as initial position, the difference between them – as velocity of the 

system. Based on this initialization and Eq. 3.35 the KF algorithm is started and the forecasts for 

the next 24 hours are made. Thereafter a new initialization is conducted in order to predict the 

system development for the next 24 hours. Results of the KF performance are presented on 

Figure 4-8. 

 

Figure 4-8: Comparison of the performance of the Kalman filter and Day-Ahead forecast  

It is obvious, that the Kalman filter surpasses the initial day-ahead forecast significantly in the first 

five hours of the day. It is explained by the repeated application of “real-time” values at the 

initialization step. However, in the following hours the performance of the Kalman filter is notably 

influenced by day-ahead forecast, which is included into the simulation as the observation of the 
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 Some days with inaccurate values were excluded from the considerations 
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system behaviour. Although the Kalman filter achieves the improvement of almost 70% for the 

first hour of each day tested, it fails to follow the run of the real-time values curve because the 

system responses rapidly to the observation in the phase of state updating (large Kalman gain).  

Figure 4-9 shows the percentage improvement of the forecast by means of the Kalman filter for 

all four TSOs (it is the same for all of them).  

The mentioned “rapidness” of the system response can vary by alteration of observation error 

variance,   . If it is multiplied by a certain factor, it allows the system to revert to the forecasted 

values more slowly, and thus to predict the “real-time” values better. However, in the last day 

hours the inferior performance observed is strengthened and leads to major deviations to “real-

time” values than before. 

 
Figure 4-9: Improvement by Kalman filter in comparison with the initial day-ahead forecast 

(mean value based on 726 days tested) 

The achieved results indicate some conclusions about the performance of the Kalman filter: 

1) The Kalman filter predicts the wind power feed-in for first hours of each day (on average 
five) with very high accuracy (improvement up to 75% for one hour ); 

2) Improvement of even more percentage can be achieved for smaller number of days 
tested (i.e. for one day, improvement for the first hour up to 90%); 

3) Strong dependence on the day-ahead forecast included in the  modelling as the 
observations (  ) of the system behaviour reduces the quality of prediction after first five 
hours; 

4) This indicates that the day-ahead forecast does not correspond to the observation 
definition as it is to be found within the framework of the Kalman filter; 
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5) Prediction by means of the Kalman filter does not need any time for learning or similar. 
Only two “real-time” values from the previous day are necessary to optimize the trading 
decisions. 

4.3.2 Changes in initial assumptions 

In order to improve the performance of KF some changes were conducted in the phase of system 

modelling in comparison with performance test: 

 The state error covariance matrix    is calculated in accordance with equation (3.41). 
However, the variance   

  from this equation is initially set to the fixed value of 1000 and 
is not changed within the simulation; correspondingly    must then be noted as  , which 
means it is constant over time; 

 The observation error covariance matrix    is set to the predetermined value of 10000. 
The same conditions as for    are presumed for this factor: constant over time, therefore 
the notation is  ; 

 The state error covariance   |    is set initially to 

   |     [
    
   

] (4.6) 

and is changed in each period of simulation; 

 Just as in the performance test prediction by means of the KF is conducted on the basis 
from previous 24 hours for the next 24 hours of the next day; 

 In this case the second step of the KF (correction) is absent due to absence of 
measurement data (day-ahead forecast is not regarded anymore). 

In its first, prediction step, predicts the future states linearly, relying on the initial state position 

and velocity. In order to avoid the too high divergence in the prediction results, the estimated 

states are combined with the day-ahead forecast of sublimation values. It means in particular, 

that the certain amount of first hours, estimated by the prediction step of KF are taken as they are 

(because at the beginning these are very close to the real values), whereas the next estimates are 

weighted with a factor   (   ), which is being declined as the sequence number of an hour 

increases. Therefore the last estimates of the KF (some hours till 24) are almost fully replaced by 

the day-ahead forecasted values, because they are more trustworthy than the state estimations 

of the KF. These weighting factors as well as the number of hours weighted can be allocated 

variously. The both parameters are those that can be modified to achieve the best result possible. 

One of the possible variants for weighting is shown on Figure 4-10. It is used in simulations, the 

results of which are presented further. This variant of weighting was chosen since it allows 

trusting the values of the KF in the early hours more (which are proved to be better than the 

initial forecast), and further the day-ahead forecast is used to correct the inaccuracy of the KF 

modelling results, until ultimately the values of the day-ahead forecast are fully undertaken for 

the late hours.  
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Figure 4-10: Weighting of the estimates made by the Kalman filter with the day-ahead forecast  

According to Figure 4-10 the first six estimates provided by the KF are involved into the final 

prediction without any “correction”; the further hours are adjusted with the day-ahead forecast 

to receive more feasible results. Figure 4-11 also illustrates the reason for this weighting. For this 

simulation 10 days were taken for testing (case of 50Hertz). 

 

Figure 4-11: Simulation results. Prediction for 24 hours (testing period: 10 days) 

Due to the linearity of the approach the state estimations of the Kalman filter launched by the 

initial state position and velocity swerve from the appropriate approximation and result in 

unfeasible predictions. Their weighting with the day-ahead forecast in turn allows avoiding this 

discrepancy. This compounding improves the day-ahead forecast itself on 20% (based on the 

cumulative prediction error for the shown case, Figure 4-12). Increasing the number of testing 

days leads to degradation of results. 
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Figure 4-12: Cumulated prediction error. Comparison of day-ahead forecast and Kalman filter 

(testing period: 10 days) 

4.3.3 Decreasing of the prediction interval 

The performance of KF presented in the section 4.2.2 can be improved if the prediction horizon is 

reduced. It is assumed, that a TSO has the possibility to receive the actualized forecast with the 

real-time values for e.g. the past 6 hours and use it for prediction for the next 6 hours. The 

consideration of this updated information could improve the state estimations of the KF, as it is 

shown in Figure 4-13.  

 

Figure 4-13: Simulation results. Prediction for 6 hours 
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In this case it is even not necessary to weight the estimates with the day-ahead forecast. The 

results shown improve the initial day-ahead forecast on 55% (for the given testing period, based 

on the cumulative prediction error, Figure 4-15 and Figure 4-15).  

 

Figure 4-14: Prediction error with assumptions of section 4.2.2 

 
Figure 4-15: Cumulated sum of prediction error with assumptions of section 4.2.2 

The results of performance test could also be significantly improved, if the prediction period is 
reduced (Figure 4-16).  

 
Figure 4-16: Cumulated sum of prediction error with assumptions of section 4.2.1 

As shown in the previous section, weighting supports the stability of good performance of the 

Kalman filter as the testing period increases. For example, with the first three hours, predicted by 

means of KF, taken without any correction and the last three taken on the half (Figure 4-17), the 

weighted estimations outperform the uncorrected estimations with the increasing number of 

testing days as shown in Figure 4-18. 



 
Case studies, results and their evaluation 89 

 

Figure 4-17: Weighting variant for the prediction of the next 6 hours  

 
Figure 4-18: Comparison of weighted and unweighted estimations of the Kalman filter given 

the increasing number of testing days 

For the further modelling with the help of the Kalman filter it is essential to consider following 

features. 

It is important to remember that the Kalman gain and error covariance equations are 

independent of the actual observations. The covariance equations alone are that is required for 

characterizing the performance of a certain sensor system before it is actually built. At the 

beginning of the design phase of a measurement and estimation system, when neither real nor 

simulated data is available, just covariance calculations can be used to obtain preliminary 

indications of estimator performance [89].  

In the actual implementation of the filter, the measurement noise covariance   is usually 

measured prior to operation of the filter. Measuring the measurement error covariance is 

generally practical (possible) because it is necessary to measure the process anyway (while 

operating the filter) so it should generally be possible to take some off-line sample measurements 

in order to determine the variance of the measurement noise. 

The determination of the process noise covariance   is generally more difficult as it is typically 

not possible to directly observe the process that is being estimated. Sometimes a relatively simple 
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(poor) process model can produce acceptable results if one “injects” enough uncertainty into the 

process via the selection of  . Certainly in this case one would hope that the process 

measurements are reliable. 

In either case, whether or not a rational basis for choosing the parameters is available, often 

times superior filter performance (statistically speaking) can be obtained by tuning the filter 

parameters   and  . The tuning is usually performed off-line, frequently with the help of another 

(distinct) Kalman filter in a process generally referred to as system identification [91]. 

4.4 Combined approach 

In the recent time it is more and more often the tendency to be observed in wind power 

forecasting of combination of advantageous characteristics of individual forecasting models in 

one combined (or hybrid) approach [95]. In this way it is tried to merge the forecast accuracy of 

some models for the short-time horizons with the high levels of accuracy of another models for 

longer-term time horizons. 

In the most of cases the physical and mathematical models are combined. Besides of beneficial 

fusion of forecasting abilities the physical model also allows the spatial resolution of the NWP 

forecasts to increase, taking the terrain characteristics into account, as well as forecasting without 

SCADA measures [41]. In the field of powerful forecasting tools that are in use by governmental 

authorities, international research communities and TSOs two types of combinations are used for 

the hybrid physical-statistical approach: (i) a combination of physical and statistical approaches 

(e.g., Zephyr model [96]); and (ii) a combination of models for the short-term (0 to 6 hours) and 

for the medium-term (0 to 48 hours) (e.g., UMPREDICTION project [97]. 

A different approach is the combination of alternative statistical models. One example of that is 

the Spanish Sipreólico [98]. The combination is achieved through the use of the horizon as a 

criterion after the model that best suits each horizon is identified off-line or by a selection process 

based on the recent performance of each individual model [41].  

In this thesis the last mentioned example is followed up. Since the Kalman filter procedure brings 

better results for the first five hours of prediction, the Q-Learning algorithm is beneficial for the 

longer-term forecasting (till 24 hours), a new combined approach is developed to unify both of 

these advantages. In order to show the performance of the combined approach the input data 

from the year 2006 is taken. Thereby the first 180 days are used for learning within the Q-

Learning approach; the rest of the year (174 days) is used for the actual prediction and its 

evaluation. Figure 4-19 presents the results.  
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Figure 4-19: Performance of combined approach in comparison with the initial day-ahead 

forecast 

 

Figure 4-20: Improvement of the initial day-ahead forecast by combined approach  
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If the combined approach is applied to the best learning/prediction time frames (here for 

50Hertz), calculated in section 4.2.4, the improvement is more obvious (Figure 4-21, see either 

Figure 4-7 for comparison). 

 

Figure 4-21: Application of the combined approach to the best calculated combination of 
learning/prediction time frames of Q-Learning (data base 2006) 
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Chapter 5  

Algorithm validation 

In order to generalize the achieved results as well as to describe application specifications of the 

used optimization methods following section is introduced. It analyzes the potential optimization 

abilities of the applied approaches, whereas the main attention is dedicated to the Q-Learning 

method. 

5.1 Introducing remarks 

It is important to evaluate the error measures, proposed in the previous section, on data which 

has not been used for constructing the prediction model or for tuning some parameters of the 

method.  

Training (or estimation) error does not provide a good estimate of the test error, which is the 

prediction error on new (independent) data. Training error consistently decreases with model 

complexity, typically dropping to zero if the model complexity is large enough. In practice, 

however, such a model will perform poorly, and this will be clearly seen from the performance for 

the test period [40]. 

The capability to provide adequate predictions on new and independent test data is usually 

known as generalization, and its importance in assessing the quality of forecasting methods is 

crucial because it translates the ability of the method to predict under different circumstances. 

Therefore, it is very important to evaluate the error measures on data that has not been used to 

build the prediction model or to tune the method’s parameters.  
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In order to achieve this, the data is usually divided into two different sets, according to their time 

characteristics: (1) the training dataset, and (2) the testing dataset (see Figure 5-1). The training 

dataset is used to build the model, taking into consideration the validation of decisions and/or 

rules on the model’s structure. However, since the training dataset does not provide adequate 

estimates for the prediction errors, it is necessary to use new and independent data — the test 

dataset. Thus, prediction models should be developed and tuned by using the training data and 

disregarding the test data, while the error measures should be based on the test data only 

[40],[41]. 

 

Figure 5-1: A dataset from the wind power feed-in in the control area of 50Hertz split into a 
training and a testing dataset 

5.2 Algorithm performance study 

Following section analyses the performance of the optimization methods. The purpose is to 

validate the algorithms’ ability to improve the initial day-ahead forecast. 

With respect to the KF it was already shown that its major contribution to improvement of initial 

day-ahead forecast consists in the prediction enhancement in the first hours. It must not 

necessarily be the morning hours; the method can be applied autonomously disregarding the 

time. Due to its linear estimation characteristics it benefits from the available “real-time” values. 

The more distance between this initialization and the further time of prediction, the major the 

error this prediction is subject to.  

Whereas analyzing the performance of the Q-Learning more possible ways of its application can 

be discovered. In the section 4.1.4 optimal intervals for learning/prediction for each TSO were 

investigated. These intervals were applied to test the performance of the Q-Learning during the 

whole period of available data (two years, 2006-2007). In order to achieve the uniformity of 

results for all four TSOs, the testing dataset (see Figure 5-1) was chosen as it is shown in Figure 

5-2. 

The goal was to analyze which hours are more likely to be over- or underestimated. The results 

are comprised of MAE for the optimal 10 days of prediction over the whole testing period and 

presented in Figure 5-3. 
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Figure 5-2: Datasets for analysis of performance of the Q-Learning algorithm 

 

 

Figure 5-3: Over-/Underestimation by means of the Q-Learning 

They are rather similar for each of four German TSOs. The reason is the relative equality of initial 

data (see e.g. Figure 3-5 to recall). It is further to notice that the rest deviations each TSO has are 

correlated with the volumes of wind power that is available in each control zone. So, e.g. Amprion 

that has the most wind power in its control area has the major rest deviations after optimization 
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by means of the Q-Learning; EnBW as the TSO with the smallest wind power volumes has 

correspondingly the minimum error. 

If all the deviations during the whole period of 24 hours are summed up (Figure 5-4 and Figure 

5-5), it will be seen, that the greatest part of deviations (nearly 7% of the day sum) occurs at 12 

p.m. in the case of underestimation and at 12 a.m. in the case of overestimation (see Figure). In 

general, the SVs are more likely to be underestimated at night hours (from 10 p.m. till 2 a.m.), 

whereas during the day the tendency is to overestimate the needed bidding volume (10 a.m. till 

12 a.m.). This phenomenon takes place almost in the same manner at all four TSOs.   

 
Figure 5-4: Share of individual overestimations within the day error (Q-Learning) 

 
Figure 5-5: Share of individual underestimations within the day error (Q-Learning) 

Underestimation is from the TSO operator’s point of view is better for grid operation since in 

order to cover the difference to the forecasted data no additional power plants must be run up. 

Instead of that power reserves accumulated during the day (i.e. spinning reserves64) can be 

activated. Overestimation leads to more undesirable consequences on the day-ahead market 

such as not-commitment of some generations or imports and in real-time scheduling of more 

expensive generation. In the worst case more cost-intensive power plants must be run up. It is 

therefore important for the further application of the Q-learning method to assume these 

modelling peculiarities. In order to overcome this system error an offset can be applied. 

                                                           
64

 The spinning reserve is the unused capacity which can be activated on decision of the system operator 
(TSO) and which is provided by devices which are synchronized to the network and able to affect the active 
power [99] 
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In the next step it was investigated how often certain deviations occur if the best 

learning/prediction days’ combination is applied for the whole period of available data basis 

(Figure 5-6). For each TSO’s case its own best combination was used (see Table 4-1 to recall). 

As it already could be assumed from the previous Figure the distribution of over- and 

underestimated SVs is to a certain extent identical: both positive and negative deviations are 

allocated in the similar manner. It means the approach do not possess the ability to favour one of 

the both prediction alternatives.  

 

Figure 5-6: Distribution of deviations after application of the Q-Learning 

Further, it is repeatedly to observe that the accuracy of the forecast by means of the Q-Learning is 

highly correlated with the wind power volumes a certain TSO has to trade with. Accordingly, the 

greatest spreading of prediction errors has a TSO with the maximum wind power in its control 

area, Amprion. On the contrary, EnBW, has the comparatively high quality of prediction, more 

that 35% of deviations in its case are within the limits of [0:100] MWh, almost 30% within the [-

100:0] limits. 50Hertz is the TSO with the second-best results: almost 30% of its deviations do not 

exceed the value of 100 MWh, almost 25% are within the limits of [-100:0] MWh.  
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In further step prediction by means of the Q-Learning algorithm is presented in the context of 

month perspective (Figure 5-7). The goal is to investigate which role the seasonality obtains for 

predictions with the mentioned optimization method. 

 

Figure 5-7: Over- and underestimation using Q-Learning. Month view 

On the individual figures of each four TSOs, which are very similar again, it is to observe that July 

2006 was the month with the minimum overestimation error. It concerns all four TSOs. Further in 

the case of three TSOs (tps, 50Hertz, Amprion) October 2007 exhibits the second-best result; 

August 2006 is the month with the third small overestimated deviation. Prediction results of 

EnBW vary from the rest: the second place in overestimation takes August 2007 and October 

2007 is the month with the third-best result. In the case of underestimation again three of four 

TSOs (tps, 50Hertz, Amprion) show the same statistics: the first three best results in the 

underestimated deviations are June 2007, August 2006 and October 2006. In the case of EnBW 

these are August 2006, October 2006 and June 2007.  

Considering the greatest prediction errors from the month point of view the results are not so 

uniform as before. In general months with the highest magnitude of overestimation are 

November 2006, February 2007, November 2007, and December 2007. The maximum 

underestimation occurs however in the same month in all fours cases – in December 2006.  

Classified by days of the week the phenomenon of December 2006 becomes more obvious. On 

Figure 5-8 the results for the corresponding 4 weeks are presented. Underestimated values clearly 
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prevail over overestimated ones. The difference is specifically to notice on Tuesday and 

Wednesday as well as on Saturday and Sunday.  

 

Figure 5-8: Over- and underestimation by means of the Q-Learning algorithm in December 
2006. Week day view 

The graphics of tps and Amprion are quite comparable because of the similarity of power volumes 

they have to sell on the power market. The same counts for 50Hertz and EnBW whose power 

capacities are smaller in comparison with two other TSOs and alike to each other. 

It is evident that the seasonality has an important influence on the prediction results. Thus 

significant wind energy events as, i.e. abrupt changes in wind speed that characteristic for the 

autumn months lead to extreme and rapid changes in wind power output and this unforeseen 

circumstances increase the prediction error consequently. In the contrary, in summer, during the 

windless months the quality of prediction is significantly better.  

In order to prevent such unfavourable characteristics of forecast, length of learning/prediction 

intervals can be adapted, i.e. changed from month to month. The adapted algorithm will then 

continuously explicitly learn peculiarities of winter/summer months. 

Another possibility to avoid observable under-/overestimation is to use a fix offset for particular 

prediction period. It means i.e. in case of December 2006 to divide from sublimation values 

suggested by the Q-Learning algorithm 100 MWh (tps, Amprion) or 50 MWh (50Hertz, EnBW). 
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Chapter 6  

Conclusions and outlook 

 

6.1 Summary and conclusions 

The points that are addressed in this thesis refer to the problems that a TSO faces with during its 

everyday operation. These problems do not belong to its core business (securing of reliable 

energy supply in the broadest sense), but to its new obligations emerged after adoption of 

unbundling regulations and conducted in accordance with the German governmental 

environment policy. The main question thereby is – how can the day-ahead trading of wind power 

be optimized if the only information available to TSO’s market operator is the day-ahead forecast 

of wind power feed-in and its extrapolations (“real-time” values) that become obtainable 24 

hours thereafter.  

The methods proposed in this thesis can be defined as “post-processing” methods, since their 

main task is to improve the quality of already existent day-ahead wind power forecasts. Two 

optimization methods were presented – Q-Learning and the Kalman filter. The first was chosen 

because of its simple implementation and advantages, known from the price forecasting for 

energy markets. The second was an alternative to the first method in order to explicitly consider 

the stochastic nature of wind power feed-in in form of mathematical equations. 

The great advantage of Q-Learning algorithm and the reason it was chosen as an optimization 

method is its independency of the model of the environment’s dynamics. This dramatically 
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simplifies the analysis of the algorithm and enables early convergence proofs. Its self-learning 

mechanism allows the operator to let the machine decide which policy should be followed in 

order to achieve the improved results. Thanks to its simple application and a finite number of 

states and action it does not require extensive calculation and thus can be implemented even on 

systems with limited computational capabilities (Figure 6-1).  

 

Figure 6-1: The Q-Learning method. The principal scheme 

The resultant Q-table is a convenient guide for actions, where for each level of sublimation value 

the appropriate additional quantity for day-ahead trading is determined. Moreover the 

distribution of Q-values for a certain state can be used for risk evaluation of other possibilities 

(actions) for improving the day-ahead market performance.  

For the improvement of the day-ahead forecast by means of Q-Learning following features are 

important to consider: 

1) The number and distribution of state/action space. It must be modelled in accordance 
with actual amplitude of wind power feed-in/forecast deviations; 

2) The algorithm should be tested on the optimal time horizons for learning/prediction; 

3) Improvement of the Q-Learning performance can further be achieved through tuning of 
penalty function, learning rate, discount factor; 

4) Prediction results can be improved if the learning/prediction intervals are updated 
continuously depending on the season/month. 

Q-Learning as all reinforcement learning architectures are effective at trial-and-error learning, but 

not more. They can not do any of the things that are considered “cognitive”, such as reasoning or 
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planning. They do not learn an internal model of the world's dynamics, of what-causes-what, but 

only of what-to-do (policy) and how-good-is-it (return predictions) [72]. 

This was the main reason for search of an alternative method that could cope with the dynamic 

characteristics of the input data. The Kalman filter was chosen because it is an efficient recursive 

filter that estimates the internal state of a linear dynamic system from a series of noisy 

measurements. Having considered the initial day-ahead forecast as such a measurement series it 

was expected to predict the state of the “real-time” dynamic system for each hour of a certain 

trading day (Figure 6-2).  

 

Figure 6-2: The Kalman filter method. The principal scheme 

A correct description of the underlying process by means of two model equations of the Kalman 

filter (state and measurement equation) is the most challenging task in filter design. Further, the 

quality of Kalman filter performance depends largely on  

 initial  modelling parameters (accordance of the available data to the Kalman 
filtering framework); 

 the parameter estimation of the underlying dynamic system (                ).  
 

It is also worth to mention, that many real dynamical systems do not exactly fit the model 

proposed by the Kalman filter. In fact, unmodelled dynamics can seriously degrade the filter 

performance, even when it was supposed to work with unknown stochastic signals as inputs. The 

reason for this is that the effect of unmodelled dynamics depends on the input, and, therefore, 

can bring the estimation algorithm to instability (divergence). 

In this thesis the day-ahead forecast considered as a series of noisy measurements do not fit the 

requirements set by the Kalman filter. Notwithstanding that the significant improvement brought 

by the Kalman filter in the first hours of a day gives this method the chance to be implemented by 

a TSO.  

Time Update („Predict“) 

Measurement Update („Correct“) 

 Project the state ahead 

 𝑥𝑘|𝑘    𝐹𝑘𝑥𝑘   

 Project the error covariance ahead 

 �̂�𝑘|𝑘    𝐹𝑘�̂�𝑘  𝐹𝑘
𝑇  𝑄𝑘 

 Compute the Kalman gain 

 𝐾𝑘   �̂�𝑘|𝑘  𝐻
𝑇(𝐻�̂�𝑘|𝑘  𝐻

𝑇  𝑅𝑘)
  

 

 Update estimate with measurement 𝑧𝑘 

 𝑥𝑘   𝑥𝑘|𝑘    𝐾𝑘(𝑧𝑘   𝐻𝑥𝑘|𝑘  ) 

 Update the error covariance 

 �̂�𝑘    𝕀 𝐾𝑘𝐻 �̂�𝑘|𝑘   

  

Initial estimates for  

𝑥𝑘|𝑘   and �̂�𝑘|𝑘   
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Performance of Kalman filter in the later hours can be improved if weighted with the initial day-

ahead forecast. The weighting prevents the linear approximation of the algorithm to distort the 

prediction results. It is further advantageous for the method’s prediction quality if the “real-time” 

values are available in shorter time lags (less than 24 hours). 

The favourable characteristics of both optimization methods can be further emphasized if 

combined.  

As shown in the thesis presented optimization methods satisfy the requirements declared at the 

beginning completely. The methods are:  

 embedded in a simulation model which corresponds to the RES regulatory framework in 
Germany;  

 modelling assumptions gave the possibility to overcome the obstacles of limited input 
information;  

 different market strategies can be tested with the help of predicted sublimation values 
(an operator can fully trust to the predicted values or choose the second-best variant, a 
fix offset can be applied if some over/underestimation is expected etc.);  

 initial modelling assumptions can be easily changed in accordance with actual user 
needs. 

Improvement of the TSO’s forecast ability brought by presented optimization methods leads to: 

 Cost savings due to decreased amounts of control energy to be provided;  

 Reduced imbalance charges and penalties; 

 Competitive knowledge advantage in day-ahead and intraday energy market 
trading. 

6.2 Further research 

Besides further development of proposed optimization methods further topics relevant for TSO’s 

market performance are interesting to be investigated.  

New RES legislation 

As mentioned before, the RES legislative regulation has been changed during the writing of this 

thesis. Consequently, the quantities of wind power feed-in were increased that a TSO has to sale 

on the energy market. It is therefore important in the further research step to test the 

performance of used methods on this new real-world data. It is may be the case that the 

allocation of state/action space may have to be adjusted; new optimal time horizons for 

learning/prediction periods may have to be defined (for Q-Learning),            –matrices may 

have to be adjusted (for Kalman filter).  
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Assuming new legislative restrictions are coming into the field of the day-ahead trading (i.e. 

marketing of all received RES power quantities regardless their volumes) necessity to predict the 

wind power volumes for the next 24 hours becomes redundant. All the more the proposed 

optimization methods must be used for intraday trading. The most important factor that has to 

be considered within the methods’ adaptation is the short-term availability of “real-time” values 

of wind power.  

Uncertainty forecasting 

The complexity of the weather will probably never allow for perfect wind power forecasts leaving 

always a risk in trusting the forecast. It is therefore important to provide the end-user (in this case 

- a TSO, but even more end-users can gain from improved WPF as well) with additional 

information concerning the specific forecast situation to enable an assessment the risk of relying 

on the wind power forecast. This additional information may contain the information about 

uncertainty of a certain single value for each look-ahead time. This uncertainty forecasting may be 

expressed in the form of probabilistic forecasts or with risk indices provided along with the 

traditional point predictions. It can be shown that any decision related to wind power 

management and trading cannot be optimal without accounting for prediction uncertainty. The 

first studies devoted to this subject have shown that reliable estimation of prediction uncertainty 

allows wind power producer to significantly increase their income in comparison to the sole use 

of an advanced point forecasting method. Other studies of this type deal with optimal dynamic 

quantification of reserve requirements, optimal operation of combined systems including wind, or 

multi-area multi-stage regulation. More and more research efforts are expected on prediction 

uncertainty and related topics. 

Ramp events 

To date the majority of work on the uncertainty of wind energy forecasts (this thesis as well) has 

been focused on the possible amplitude of wind production that might occur at a given time. 

However, there has been limited investigation into effectively defining the possible timing of 

significant wind energy events, called ramp events. Wind ramp events are extreme and rapid 

changes in wind power output due to abrupt changes in wind speed. The severity of the large 

deviation depends highly on how fast it happens, and on the timing especially if concurrently 

other events happen (i.e. the electricity demand is also highly fluctuating). 

There are two ways in which variation in wind speed can result in a rapid change in power 

production: ramp up wind speed and high wind speed. At ramp up wind speeds the power output 

of a wind turbine is highly dependent on wind speed, and rapid changes in wind speed will 

therefore cause rapid changes in power. At high wind speeds a smaller increase in wind speed can 

trigger high wind speed shutdown, causing a rapid drop off in power production. The majority of 

ramps are caused by rapid changes in ramp up wind speed, but high wind speed shutdown events 

are also significant. 

Ramp events occur rarely, but unexpected rapid changes in power from wind farms can be 

problematic for TSOs, and the impact of ramp events grows as the penetration of wind energy 

continues to increase. The difficulties presented by periods of rapid change are consequently 
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passed on to the energy trading in the form of a lowered overall market value of wind energy. 

With accurate prior warning of a large ramp event and information about its widening within a 

certain area, energy from other sources may be scheduled in order to mitigate a steep rise or 

drop in wind energy. This means the accurate forecast of ramp events and quantification of ramp 

forecast accuracy is crucial to the large-scale integration of wind energy into electricity grids, and 

also to help TSOs better understand the risk involved in energy trades at times of high variability. 

Nowadays it is a future challenge to improve the forecasts for such situations [100], [101]. 
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Appendix A 

Assumptions and corresponding exemplary calculation of HE 

allocation key and exchanged wind power quantities in order to 

avoid the lack of necessary data 

 
1) Individual shares of each TSO on the relevant parameter 

 
For calculation of the individual shares of each TSO on the relevant parameters the respective 

amounts, published in the annual TSO’s reports are taken. Based on the sum of these amounts, 

the individual share of a TSO on each relevant parameter is determined. It is subsequently 

assumed, that the share of each TSO on the relevant parameter does not significantly change 

during one year.  

Table A-1 and Table A-2 show an exemplary calculation. 

Table A-1: Shares of German TSO’s on final electricity consumption (calculated on the basis 
of annual reports of 2007) 

 

Final electricity consumption (FEC) 

 

Total [GWh] Share [%] 
Thereof privileged in 

terms of §40 EEG 2009 
[GWh] 

Share [%] 

tps 147.177,09 29,7% 15.425,79 21,4% 

50Hertz 94.586,30 19,1% 15.983,02 22,2% 

Amprion 189.071,90 38,2% 35.390,20 49,1% 

EnBW 64.205,20 13,0% 5.250,78 7,3% 

Sum: 495.040,50 100% 72.049,79 100% 
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Table A-2: Shares of German TSO’s on RES-feed-in (calculated on the basis of annual reports 
of 2007) 

 

RES-infeeds 

 

Total [GWh] Share [%] 
Thereof privileged in 

terms of §40 EEG 2009 
[GWh] 

Share [%] 

tps 26.340,44 39,4% 110,84 21,8% 

50Hertz 21.704,34 32,5% 112,69 22,2% 

Amprion 14.180,22 21,2% 245,84 48,5% 

EnBW 4.577,93 6,9% 37,946 7,5% 

Sum: 66.802,93 100% 507,31 100% 

 
2) Monthly amounts on the relevant parameters for each control area 

 
These amounts are calculated through the multiplication of the previously defined shares and the 

nationwide total values for these parameters, which are available monthly: 

 
                                                           , (A.1) 

 
where the index   stands for “parameter”,   - for individual TSO. An example for calculation of 

these monthly amounts is presented in Table A-3. The “deemed” special FEC is determined in 

accordance with Eq. (3.2). The calculation in Table A-3 is performed as an example for November 

2008. 

Table A-3: Monthly amounts of the relevant parameter for each TSO (calculation example for 
November 2008) 

  FEC, [GWh] 
priv. FEC, 

[GWh] 

„deemed“ 
special FEC, 

[GWh] 

tps 12.788,24 1.331,72 45,60 

50Hertz 8.218,62 1.379,83 46,37 

Amprion 16.428,49 3.055,26 101,15 

EnBW 5.578,80 453,30 15,61 

Total nationwide, 
month value [GWh] 

43.014,15 6.220,11 208,74 

 
 

3) HE allocation key 
 

The reference value for the calculation of the HE allocation key and the key per se are then 

determined according to the Eq. 3.1 (Table A-4). 
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Table A-4: HE allocation key (calculation example for November 2008) 

  
Reference value 

[GWh] 
HE allocation key 

[%] 

tps 11.502,13 31,1% 

50Hertz 6.885,16 18,6% 

Amprion 13.474,38 36,4% 

EnBW 5.141,11 13,9% 

Sum: 37.002,78 100,0% 

 

Table A-5: Calculation of exchange quantities within the HE 

Horizontal equalisation 

To Wind energy 
feed-in on 
05.01.2008 

from 00:00 till 
01:00 

tps 50Hertz Amprion EnBW 
Sum 

Transferred 
Nation-

wide 

From [MWh] [MWh] [MWh] [MWh] [MWh] [MWh] [MWh] 

tps 3955   735,63 1.439,62 549,75 2.725,00 -910,31 

50Hertz 4148 1.290,03   1.509,87 576,57 3.376,47 -2.327,06 

Amprion 1611 501,02 299,65   223,93 1.024,60 1.952,56 

EnBW 76 23,64 14,14 27,66   65,44 1.284,81 

Sum 
Received   1.814,69 1.049,41 2.977,16 1.350,25   0,00 

 
As it seen from Table A-5, tps and 50Hertz give up the excessive power, they can not consume 

within their control areas; other two TSOs, Amprion and EnBW receive these additional amounts 

in order to cover their higher final consumption. 
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Theses 

 

1. Growth of renewable energies in German energy-mix, unbundling regulations and German 
environmental legislation have changed the traditional role of a Transmission System Operator 
(TSO) as of provider of ancillary services to ensure network stability, further responsible for 
congestion prevention and management, ensuring the system availability. 

2. In its new role of coordinator of renewable energy sources (RES) balancing group within the 
Nationwide Equalisation Scheme (EEG-Ausgleichsmechanismus) the TSO takes responsibilities for 
marketing of stochastic wind power on the day-ahead spot market of the energy exchange. 

3. In order to market received wind power quantities the TSO needs a high quality of day-ahead 
wind power forecast (WPF). This service is provided by corresponding organisations. However, 
prediction error contained in the WPF is still significant and results in millions of Euro additional 
costs. These expenditures become then a burden for final electricity customers. 

4. In order to decrease the prediction error connected with the WPF the TSO receives as a service 
two optimization methods (Q-Learning and Kalman filter) are presented. They are defined as 
“post-processing” optimization methods since their application occurs after the initial day-ahead 
prediction. Their goal is to improve the quality of the initial day-ahead forecast.   

5. To obtain the necessary modelling data the Nationwide Equalisation Scheme was simulated. 
Thereby specific modelling assumptions were made in relation to simulation of the horizontal 
equalisation process.  

6. The resulted modelling data contains two time-series: the initial day-ahead forecast of 
sublimation values (wind power quantities to be market on the day-ahead spot market) and the 
“real-time” values (online estimation data, available to the TSO with the time lag of 24 hours). 

7. The Q-Learning algorithm, which is a reinforcement learning method, improves the initial day-
ahead forecast, especially in the noon hours. For the proper performance specific 
learning/prediction intervals must be defined. 

8. The Kalman filter is a set of mathematical equations that provides an efficient computational 
(recursive) means to estimate the state of a process, in a way that minimizes the mean of the 
squared error. This method is especially effective in improvement of early morning hours of the 
initial WPF. 

9. The favourable characteristics of both optimization methods can be further emphasized if 
combined 


