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ABSTRACT

Mice and rats use a sophisticated sensory system to acquire tactile information about their surroundings. Vibris-

sae, located in the mystacial pad, are either used passively to sense environmental forces, e.g., wind, or actively,

when they are rhythmically moved to scan objects or surfaces. Inspired by this biological sensory system, three

mechanical models with a rigid, rod-like vibrissa are developed based on findings in the literature. The models

take into account the viscoelastic support of the vibrissa in the mystacial pad (follicle-sinus-complex and skin) on

the one hand, and on the other hand they simulate the muscles (extrinsic and intrinsic) empowering the animals to

whisk actively by using adaptive control algorithms. To model the range of movement of the biological vibrissa,

the degree of freedom is gradually increased from 1 to 3 — enabling the examination of the support’s influence

on the sensitivity of the system. Numerical simulations with chosen perturbation forces show that specific control

variables contain adequate information on the force to be identified.

Index Terms— Vibrissa, tactile sensor, mechanical model, adaptive control.

1. INTRODUCTION

Mice and rats use the vibrissae in the mystacial pad (see Fig. 1, left) to acquire informations about their surround-

ings. While the vibrissa itself, just consisting of dead tissue, is mainly used as a lever for the force transmission,

the actual detection of contact forces is made possible by pressure-sensitive mechanoreceptors in the support of

the vibrissa – the follicle-sinus-complex (see Fig. 1, right). Each vibrissa has its own follicle-sinus-complex,

consisting of the hair follicle embedded in a blood-sinus, ensuring its viscoelastic support. [1; 2]

Fig. 1. Left: schematic drawing of the mystacial pad. Right: schematic drawing of the follicle-sinus-complex

consisting of the hair follicle and the blood-sinus (in blue: the mechanoreceptors), [2].
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Fig. 2. Schematic drawing of two neighbouring mystacial follicles, which can be moved by extrinsic and intrinsic

muscles (latter innervated by the facial nerve). Note that the attachment point of an intrinsic muscle sling is always

situated at its neighbouring follicle. (R - rostral, C- caudal) [1]

The vibrissae can either be moved passively (e.g., by wind), or actively through alternate contractions of the

intrinsic and extrinsic muscles (see Fig. 2). The resulting rhythmic pro- and retractions of the vibrissae, called

whisking, are used to scan surfaces of interest, gathering relevant informations by adjusting the frequency and

amplitude of the oscillation to each task. By observing rats accomplishing several types of exercises, Berg and

Kleinfeld [3] could distinguish two main whisking patterns:

• exploratory whisking: rodents explore their environment with large amplitude sweeps in a low frequency

(5-15Hz) range,

• foveal whisking: rodents palpate object surfaces with small amplitude, high frequency (15-25Hz) move-

ments.

How the animals convert these multiple contacts with single objects into coherent informations about their sur-

roundings remains unclear. However there is the consensus that the position of an object is encoded spatially and

temporally – relatively to the initial position of the snout and the vibrissae, [4].

Furthermore, every biological sensory system has the ability to constantly adapt its sensitivity to its current en-

vironment in a way that empowers it to distinguish the relevant informations out of the multitude of negligible

stimuli (→ adaptive system). Several control strategies enhance the relevance-oriented stimulus processing:

• a feedback-loop (closed-loop control system) enables the rodents to immediately react to an object contact:

they slow down the concerned vibrissae, diminishing the occuring wear-out effect on the hair, [5; 6],

• depending on the mode (passive or active) and the expectations of the rodent, the neurons reaction is being

suppressed, enhanced or left unaltered, [7; 8; 9],

• the rodents can probably modify the stiffness of the vibrissa support by varying the pressure in the blood-

sinus, [1; 2], and by so doing, specifically alter the properties of the vibrissa in motion.

This biological sensory system is highly interesting for applications in the field of autonomous robotics, since

tactile sensors can offer reliable information, where conventional sensors fail – in dark, smoky or noisy envi-

ronments. Nevertheless the goal of our work is not to recreate an exact copy of the biological system, but to
implement in a mechanical model the specific characteristics of the vibrissa needed for the detection of
useful informations in challenging surroundings.



2. STATE OF THE ART

Since R. Andrew Russel, an australian scientist from the University of Wollongong, succeeded in the 1980s to

determine the position of a robot arm with vibrissa-like sensors (made of guitar strings) [10], the demand for

technical vibrissae grew steadily. Meanwhile tactile sensors often complement or even replace optical sensors

in their two main fields of application: flow measurements and autonomous robotics. However especially in the

latter field, technical vibrissae are currently just used to avoid imminent collisions: as mere contact sensors with a

binary output, [11]. Nevertheless in the last decade, the number of scientific publications in which the skills of the

tactile sensors were improved, grew significantly. While it still constituted a considerable achievement in 1996, to

just let robots equipped with vibrissae drive along walls, [12], more recently robots with a similar configuration

managed to distinguish objects on the basis of their surface texture, [13; 14; 15; 16; 17], or to determine the form

and position of nearby objects, [18].

In the majority of the encountered papers, the development of innovative technical whiskers was based on

mechanical models of the vibrissa. As the focus of this paper lies on mechanical models with a finite degree of

freedom, only models with a rigid, rod-like vibrissa are presented in the following.

2.1. Model of the follicle-sinus-complex

Mitchinson’s research group [19; 6] has developed a model of the follicle-sinus-complex (FSC) to increase the

knowledge over this biological sensory system on the one hand, and on the other hand to promote the development

of innovative and efficient tactile sensors. Following the anatomical descriptions in the literature, the scientists

modeled the various layers of the FSC, linking them with spring and damping elements (see Fig. 3) to simulate

the compliance of the biological tissue. However, the model has been confined at the level of the ring-sinus, as

the density of the mechanoreceptors is believed to be the highest there (also see Fig 1, right) – besides at this level

the FSC is nearly symmetrical to its longitudinal axis, so that only a radial section had actually to be taken into

account.

In numerical simulations, the model was gradually improved by varying the parameters (damping and spring

stiffness, see Tab. 1) until the motion characteristics of the modeled vibrissa fitted those of the biological vibrissa.

Fig. 3. Mechanical model of the FSC, [19].

Parameter Value

Spring stiffnes
estimated cRS 5kNm−1

cMS 100kNm−1

chosen cMP 100kNm−1

cMT 50kNm−1

cWS 100kNm−1

Damping
estimated dRS 2

√
mGMkRSNsm−1

dMS 2
√

mMSOkMSNsm−1

dMT 2
√

mGMkMT Nsm−1

dWS 2
√

mWCkWSNsm−1

dMP 2
√

mFCkMP Nsm−1

dSI 2
√

mGMkRSNsm−1

Table 1. Parameters: RS - root sheat, MS - mes-

enchymal sheath, MT - miscellaneous tissues, WS

- whisker shaft, MP - mystacial pad, SI - ring sinus;

[19].



2.2. Model of the musculature in the mystacial pad

The function of the musculature in the mystacial pad was investigated by Berg and Hill in [3; 20]. The scientists

recorded electromyogram (EMG) activity from the intrinsic and extrinsic muscles while rats were whisking, to

characterize the pattern of muscular dynamics. The following observations were made during one whisking cycle

(also see Fig. 4):

• the protraction of the vibrissa is caused by the contraction of the intrinsic muscle retracting the FSC

(→ angular deflection),

• the retraction of the vibrissa is induced by the contraction of the extrinsic muscle retracting the vibrissa at

skin level (→ translatory shift).

Fig. 4. Mechanical model relating cyclic vibrissa movements to the alternating intrinsic and extrinsic muscle

contractions during whisking, [3].

In the resting position, the angle between the vibrissa and the snout amounts to ϕrest ≈ 80◦. While whisking, the

vibrissa is being protracted to an angle of ϕrest + 65◦ and retracted to an angle of ϕrest − 35◦. In addition, during

whisking the pivot point of the vibrissa (located at skin level) slides up to ∼ 5mm in the caudal-rostral direction

and up to ∼ 3mm in the dorsal-ventral direction. These observations imply that the total range of movement of the

vibrissa can only be attained due to the interaction of the different types of musculature. Based on these findings,

the researchers developed a mechanical model of the vibrissa, focussing on the relationship between the various

muscle contractions and the resulting vibrissa motion. Furthermore three vibrissa / follicle units, linked by spring

and damping elements, were incorporated in the model so that the influence of the intrinsic muscle slings on their

neighbouring follicles could also be considered, (see Fig. 5 with Tab. 2).



Fig. 5. Schematic drawing of the mechanical model of a row of three vibrissae, [20].

Description Parameter Value

Number of vibrissae N 3

Length of hair lh 40mm

Length of follicle lf 4mm

Distanz between vibrissae at rest s 2mm

Extent of mystacial pad w 20mm

Resting angle of vibrissae φrest 80

Mass of hair Mh 0.5mg

Masse of follicle Mf 10mg

Center of mass of vibrissa as measured from base of hair C -1.43mm

Moment of inertia of vibrissa unit about center of mass I 112mg·mm2

Relaxation time-constant of the mystacial pad τRel. 27ms

Table 2. Parameters used in simulations, [20].

The parameters in Table 2 were used to calculate the spring and damping constants of the mystacial pad. The

fact that a passively deflected vibrissa returns to its initial position without oscillating, implies that the mystacial

pad is overdamped, [20], thus equation (1) describes the relationship between the spring (c) and damping (d)

coefficients. A multiplication factor of 4 was arbitrarily chosen because of the relative insensitivity of a linear

overdamped system to the exact value of this ratio:

d2

4c
> N · (Mh + Mf ) (1)

⇒ d2

4c
= 4N · (Mh + Mf ).



The spring and damping constants of the mystacial pad were determined using equation (2) with the relaxation

time constant (τRel.) and the measured masses of the hair (Mh) and the follicle (Mf ) (see Tab. 2):

τRel. =
2N(Mh + MF )

d − √
d2 − 4cN(Mh + Mf )

(2)

(1)−→ τRel. =
2N(Mh + MF )

d −
√

d2(1 − 1
4 )

=
2N(Mh + MF )

d
(
1 −

√
3
4

) ,

d =
2N(Mh + MF )

τRel.

(
1 −

√
3
4

) = 17.41
[
Ns

m

]
, c =

d2

4 · 4N · (Mh + Mf )
= 601.8

[
N

m

]
.

2.3. Model of the stimulus transmission from the vibrissa to the mechanoreceptors

Based on mechanical models and control algorithms presented by Behn and Steigenberger in [21; 22; 23], an

abstract model of the stimulus transmission from the vibrissa to the mechanoreceptors was developed by Schmitz

in [24]. The system has been divided into the two levels of stimulus reception (vibrissa) and stimulus processing1

(mechanoreceptors) to assign an appropriate model to each.

Fig. 6. Model of the stimulus transmission from the vibrissa to the mechanoreceptors. �F (t) - input signal (disturb-

ing force), �Mu(t) - control torque, α - dimensional factor, y(t) - output signal, [24].

2.3.1. Vibrissa model

The level of stimulus reception was simulated with a mechanical model containing essential characteristics of the

biological vibrissa (see Fig. 7). The center of rotation of the thin, rod-like vibrissa lies at skin level, a viscoelastic

element located beneath it, represents the compliance of the FSC.

g

mm

1

m,L

F(t)

c d

M (t)u

F(t)

�

Fig. 7. Mechanical model of the vibrissa: d - viscous damping coefficient, c - spring constant, m - mass of the rod,

L - length of the rod, �F (t) - disturbing force, �Mu(t) - control torque, [24].

1Although the actual processing of the stimuli takes place in the rodents brain, the mechanoreceptors play an important role in the selection

of the significant informations. [25]



The ability of the rodents to either stabilise or swing their vibrissa actively, was implemented with a control

torque �Mu(t). The differential equation (3) describes the motion of the rod:

ϕ̈(t) =
1

J0z

[ (
L − L

a

)
F (t) cos(ϕ(t)) − c

L2

a2
cos(ϕ(t)) sin(ϕ(t)) − d

L2

a2
cos2(ϕ(t))ϕ̇(t)

+
(

L

2
− L

a

)
mg sin(ϕ(t)) + Mu(t)

]
, (3)

with the following initial conditions:

ϕ(0) = 0 ϕ̇(0) = 0,

and the control algorithm (developed in [21; 22; 23]) generating the torque Zu(t) = Mu(t) with z = ϕ:

e(t) := z(t) − zrefi(t)

Zu(t) = − [
k(t)e(t) + κ

(
k(t)ė(t)

)]

k̇(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ(||e(t)|| − λ)2, when ||e(t)|| ≥ λ + 1
γ(||e(t)|| − λ)0,5, when (λ + 1) > ||e(t)|| ≥ λ

0, when (||e(t)|| < λ) ∧ (t − tE < td)
−σk(t), when (||e(t)|| < λ) ∧ (t − tE ≥ td)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀t. (4)

The gain factors of the control algorithm were set to: σ > 0, κ = 1 and γ 
 1. The reference signal zrefi(t)
(with i = 0, 1) simulates the passive mode when set to zref0(t) = 0, and the active mode when for example set to

zref1(t) = π
8 sin(5t). The margin of tolerance was set to λ > 0 and the dwell time to td = 2. tE is an internal

parameter.

When an external force deflects the rod, the gain factor k increases until the deflection ϕ(t) enters the λ-tube,

dwells in there for the time td and decreases afterwards with −σk(t). The constant adaption of the gain factor

ensures the high sensibility of the system, since a new disturbance force can only be percieved, if the generated

torque �Mu(t) allows a sudden, additional deflection. Furthermore the influence of the measured error e is being

taken into account: the control algorithm distinguishes between great and small error values and enables good

system dynamics in both cases.

Thereby the control algorithm (4) has the ability to compensate unknown disturbance forces in the passive, as well

as in the active mode: the rod-like vibrissa follows the reference signal (ϕref , see Fig. 8) within the margin of

tolerance λ. This is similar to the rodents reaction: they suppress the perception of a bothering permanent vibrissa

deflection (here: keeping the motion of the rod in the λ-tube), while still staying sensitive for an interesting sudden

deflection.

Fig. 8. Left: passive mode (λ- stabilisation), right: active mode (λ-tracking), [26].

2.3.2. Receptor model

The mechanoreceptors were modeled as a mass-spring-damper system in a box (depicted in Fig. 9) with an indirect

excitation over the control torque �Mu(t) generated in the vibrissa model. An additional control force �u(t) stabilizes

the mass oscillations and thus simulates the ability of the mechanoreceptors to constantly adapt their sensibility to

the actual situation: suppressing the annoying persisting stimuli and enhancing the interesting sudden stimuli.



Fig. 9. Mechanical model of the mechanoreceptors; d - viscous damping coefficient, c - spring constant, m -

seismic mass, �u(t) - control force, x(t) - absolute coordinate, y(t)- relative coordinate, �Mu(t)- control torque

generated in the vibrissa model, α - dimensional factor; [21].

The differential equation (5) describes the motion of the mass in the receptor model:

ÿ(t) = − d

m
ẏ(t) − c

m
y(t) +

1
m

u(t) − α · Mu(t), (5)

with the dimensional factor α ≥ 1 and the initial conditions:

y(0) = x0 − ϕ(0), x0 = 0,

ẏ(0) = x1 − ϕ̇(0), x1 = 0.

The control force �u(t) is being generated by the algorithm (4) with z = y and one single reference signal zref (t) =
0, as the mass motion only needs to be stabilized at its rest position.

2.3.3. Performance of the model

In numerical simulations with MATLAB (version 7.6), several external forces (e.g., approximated gust of wind,

encounter with an object) have been used to examine the performance of the vibrissa-receptor-model, especially

regarding its sensibility and adaptivity. Altogether the vibrissa model is sensitive and reacts well to the external

forces: the vibrissa can be stabilized and actively moved due to the control torque �Mu(t). Moreover the disturbing

force can clearly be recognized in the course of the control torque, which thereby has been found suitable for

the use as an input signal for the receptor-model. This model is able to rapidly suppress the persisting stimuli

and shows a good reaction to sudden deflections. The external force (occuring at the tip of the vibrissa) can be

identified with the plots of the displacement y(t) and the reaction of the control force �u(t) in the receptor model.

2.4. Brief summary

Table 3 summarizes the relevant informations found in the literature for this paper.



Mechanical models with a stiff vibrissa

Mitchinson 2004, 2007 Model of the follicle-sinus-complex
[19; 6] � too complex for a technical implementation

⊕ Determinantion of spring and damping coefficients for the FSC

Berg 2003, Hill 2008 Model of the musculature in the mystacial pad
[3; 20] ⊕ Implementation of the intrinsic and extrinsic musculature

⊕ Simulating the viscoelastic properties of the skin

↪→ Determination of spring and damping coefficients for the skin

� Neglect of the viscoelastic properties of the FSC

� Connection between the follicles

↪→ leads to complex control strategy

Determination of the range of movement of the vibrissa
↪→ ϕRest ≈ 80◦

angular deflection in rostral direction ϕRest + 65◦

angular deflection in caudal direction ϕRest − 35◦

translatory shift ≈ 5mm in caudal-rostral direction

translatory shift ≈ 3mm in dorsal-ventral direction

Schmitz 2009 Model of the stimulus transmission
Behn 2005, 2009 ⊕ Implementation of the viscoelastic properties of the FSC

[24; 21; 22; 23] � Neglect of the viscoelastic properties of the skin

⊕ Simulation of the passiv/active mode

↪→ through adaptive control algorithms

Table 3. Summary of the state of the art with a brief evaluation of the model characteristics with respect to the

development of improved models, (⊕: positive feature, �: negative feature).

3. DEVELOPING VIBRISSA MODELS WITH A FINITE DEGREE OF FREEDOM

Starting from the publications presented in Section 2, three innovative mechanical models with a stiff, rod-like

vibrissa are being developed, (see Fig. 10). The degree of freedom (DoF) is being successively increased from 1

to 3, to investigate the impact of different supports on the sensory capabilities of the system.

• In model 1 the rod has one rotational degree of freedom: the angular deflection ϕ(t). The control torque
�Mu(t) simulates the rodents ability to regulate the deflection of the vibrissa with their intrinsic musculature.

• In model 2A the rod has, in addition to the rotational, a linear degree of freedom: the lateral translatory

motion of the pivot point (following the informations found in [20; 3], see Subsection 2.2). A control

force �Fux(t) simulates the rodents ability to alter the position of the pivot point through contractions of the

extrinsic musculature.

• In model 2B the rod has two degrees of freedom as well: the angular deflection as in the models 1/2A and a

longitudinal translatory motion of the vibrissa. A control force �Fuy(t) determines the longitudinal position

of the pivot point. This force is not simulating any natural musculature, see Remark 3.1.

• In model 3 the models 2A and 2B are being combined, thus the rod possesses three degrees of freedom,

which enables it to perform a rotatory deflection, as well as lateral and longitudinal displacements.

Remark 3.1. The implementation of the linear degree of freedom in the longitudinal direction is based
on findings in [27], revealing that vibrissa experience considerable forces in longitudinal direction when
touching an object. Furthermore Stuettgen [28] found out that the rodents neurons react strongly to the



Fig. 10. Innovative mechanical models with a rigid, rod-like vibrissa, (x: lateral direction, y: longitudinal direc-

tion).

longitudinal displacements of the vibrissa – which leads to the assumption that they provide relevant infor-
mations about their environment.

Model 1 Model 2A Model 2B Model 3

Compliance of the skin
√ √

Lateral compliance of the FSC
√ √ √ √

Longitudinal compliance of the FSC
√ √

Torque �Mu(t)
√ √ √ √

Force �Fux(t)
√ √

Force �Fuy(t)
√ √

Table 4. Summarizing list of the characteristics and the control variables implemented in the different models.

The models are all equipped with a rod of the length L, supported at a height a, performing a rotational

deflection ϕ(t) when an external force �F (t) touches its tip. A spring-damper-element beneath the pivot point

simulates the lateral compliance of the FSC. The angular deflection of the rod is being controlled by a torque
�Mu(t) generated by the control algorithm (4) already presented in Subsection 2.3.

In the passive mode, the rod motion only needs to be stabilized, therefore it can be simulated with the refer-

ence signal (6). The active mode has to be implemented with reference signals performing periodical oscillations



enabling the rod to either explore its surroundings or to scan specific objects – and since rodents use two different

kinds of oscillations depending on the task, the exploratory and foveal whisking are simulated by two different

reference signals. Rodents employ large amplitude sweeps in a low frequency range (5-15Hz) to investigate their

environment. As the range of movement of the biological vibrissa amounts to ca. 100◦ = 1.74 rad (see Subsection

2.2), the amplitude of the exploratory reference signal (7) can be chosen to A = 1.74
2 ≈ 0.8 rad. The frequency

of the signal ϕref1(t) has been set to f = 5 Hz according to the findings in [3]. Foveal whisking has been imple-

mented with the reference signal (8), using an amplitude of A = 0.2 rad ≈ 12◦ and a frequency of f = 25 Hz,

since rodents scan specific objects with small amplitude, high frequency movements (15 − 25 Hz).

zref0(t) = ϕref0 = 0 (6)

zref1(t) = ϕref1 = 0.8 sin(5t) (7)

zref2(t) = ϕref2 = 0.2 sin(25t) ∀t (8)

The additional control forces �Fux(t) (for the models 2A and 3) and �Fuy(t) (for the models 2B and 3) needed to

stabilize the lateral or longitudinal displacements of the rod, are also being generated by the algorithm (4), although

with the reference signals zref0(t) = xref0(t) = 0, respectively zref0(t) = yref0(t) = 0.

Since the characteristics of a system are significantly influenced by the choice of its parameters, it can be

advantageous when modeling a biological system to employ the biological values as model parameters. However

the characteristic values of a biological system usually vary from animal to animal, as demonstrated in Table 5

with the values of the vibrissa C2 (see Fig. 1, left) measured on different rats (in different publications) – although

the order of magnitude between the length/mass of the vibrissa and follicle seems to be roughly consistent.

Source Parameter

L – Length of vibrissa a – Length of follicle m – Mass of vibrissa

Hill, [20] 40 mm 4 mm 0.5 mg

Neimark, [29] 37 mm − 0.291 mg

Carl, [2]

Ratte 1 33 mm 2 mm 0.267 mg

Ratte 2 23 mm 2 mm −

Table 5. Parameter values of several biological vibrissae C2.

Other values like the viscosity and elasticity of the FSC could not be found in the literature and had to be

calculated using the informations in [19] (see Fig. 3 and Tab. 1) with the following assumptions:

1st assumption: di = 0

1
c

=
1

cMP
+

1
cMT

+
1

cRS
→ cFSClat.

= 4347
N

m

2nd assumption: ci = 0

d// =
(

1
dMS

+
1

dMP

)−1

+ dMT

1
d

=
1

dMP
+

1
d//

+
1

dRS
→ dFSClat.

= 0.53
Ns

m

The compliance of the skin can be calculated with the formulas (9) (also see Subsection 2.2 and [20]). With a

relaxation time constant τRel. = 27ms and a chosen mass of 0.3mg, the damping constant amounts to



dskin = 0.165Ns
m and the spring constant to cskin = 5.671N

m :

dskin =
2m

τRel.

(
1 −

√
3
4

) = 0.165
Ns

m
, cskin =

d2
1

16 · m = 5.671
N

m
. (9)

Since no informations about the longitudinal viscoelasticity of the FSC were available, the parameters cFSClong.

and dFSClong.
were chosen identical to the lateral spring and damping coefficients of the FSC.

Table 6 summarizes and compares the biological values with the model parameters ascertained in preliminary

numerical studies in which the behavior of the four models were analysed and gradually improved by varying the

values. The resulting parameter configuration, presented on the right side of Table 6, is being used for all further

simulations.

Parameter Biological values Num. sim.

All models Vibrissa length L 37 mm 40 mm

Follicle length a 2 mm L
3 mm

Vibrissa mass m 0.3 mg 1 mg

Lateral spring coefficient of FSC c1 4350 N
m 80 N

m

Lateral damping coefficient of FSC quer d1 0.5 Ns
m 0.5 Ns

m

Models 2A & 3 Spring coeff. skin c2 0.2 N
m 80 N

m

Damping coeff. skin d2 5.7 Ns
m 0.5 Ns

m

Models 2B & 3 Longitudinal spring coeff. of FSC c3 4350 N
m 80 N

m

Longitudinal damping coeff. of FSC d3 0.5 Ns
m 0.5 Ns

m

Table 6. Model parameters, on the left: parameter values found in rodents, on the right: appropriate values for the

models, chosen after numerical simulations.

4. SENSORY CAPABILITIES OF THE MODELS

Three types of disturbing forces (see Fig. 11) were used in numerical simulations with MATLAB (version 7.6), to

analyse and compare the sensory capabilities of the four models:

Force 1

0 10 20 30 40−0.05

0

0.05

0.1

0.15

0.2

t in [s]

F(
t) 

in
 [N

]

Force 2

0 10 20 30 40−0.05

0
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0.1

0.15

0.2
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F(
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 [N

]

Force 3

0 10 20 30 40−0.1

0

0.1

0.2

0.3

0.4

t in [s]

F(
t) 

in
 [N

]

Fig. 11. Disturbance forces used in the num. simulations - left: �F1(t), center: �F2(t), right: �F3(t).

• 1st force: passing by an object

F1(t) =
0.15

1 + e−0.35(t−15)
− 0.15

1 + e−5(t−30)
[N ] (10)

• 2nd force: a sudden gust of wind

F2(t) =
0.15

1 + e−5(t−15)
− 0.15

1 + e−5(t−30)
[N ] (11)



• 3rd force: texture caracteristics (e.g. roughness) of an object with a single defect

F3(t) = 0.1 cos(4t) + 0.25e−(t−22)2 [N ] (12)

The angle of attack has been varied from α0 = 0◦ to α2 = 90◦ to investigate its impact on the sensitivity of the

system.

However, to limit the content of this paper to its essential results, we chose to only present in detail the models

1 and, in particular 2B – the most promising model. For further informations about the models 2A and 3, see [30].

4.1. Model 1

Fig. 12. Vibrissa model 1 (DoF 1): m - mass of the rod, L - rod length, a- follicle length, d - damping coeff., c -

spring coeff., �F (t) - deflecting force, α - angle of attack, �Mu(t) - control torque. Adapted from [24]

To analyse the sensory properties of the model (see Fig. 12), it is being implemented in MATLAB using the

differential equation (13), describing the trajectory of the rod:

ϕ̈(t) =
1

J0z

[
− d1a

2 cos2(ϕ(t))ϕ̇(t) − c1a
2 sin(ϕ(t)) cos(ϕ(t)) + mg

(
L

2
− a

)
sin(ϕ(t))

+ Mu(t) + (L − a)F (t) cos(ϕ(t) − α)
]
, (13)

with the initial conditions:

ϕ(0) = 0 ϕ̇(0) = 0.

Equation (13) has been derived by using the Lagrangean equations of the 2nd kind for this system. To keep the

focus of this paper on the sensory capabilities of the models, the derivation of the equation is not being presented,

see [30] for a detailed description of the mathematical approach.

In the following, the systems behavior when deflected by an external force is being analysed in the passive and

active mode, based on the plots of the rod deflection ϕ(t) and of the control torque �Mu(t).



4.1.1. Passive mode

Figure 13 depicts the reaction of model 1 when deflected by the 2nd force (11) in the passive mode. The deflection

of the rod ϕ(t) is delimited by the control algorithm to the angle of 0.1rad, so that merely the temporal extension

of the acting force can be determined out of its graphical course. However the curve of the torque �Mu(t) distinctly

reproduces the curve of the acting external force for small and medium angles. Furthermore the torque illustrates

the decreasing sensitivity of the model for increasing angles of attack. In model 1 only the x-component of the

disturbing force leads to a deflection – since this component amounts to zero for α2 = 90◦, model 1 is incapable

of sensing vertical forces.

Numerical simulations with the 1st and 3rd force (shown in [30]) confirm these statements.
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Fig. 13. Model 1: system behaviour in the passive mode deflected by the external force �F2(t) with different

angles of attack α.

4.1.2. Active mode

Figure 14 illustrates the systems reaction in the active mode to the 2nd force as well. In addition to the rather

uninformative plots of the deflection ϕ(t), the curves of the error value eϕ(t) := ϕ(t)−ϕref (t) are being shown –

although they are not offering any relevant information either. Solely the course of the torque �Mu(t) allows some

conclusions about the acting force: the torque primarily assures the tracking of the reference signal ϕref1(t), nev-

ertheless the moment the tip of the rod is being deflected by the disturbing force, the curve reflects its impact. All in

all, the systems reaction is also decreasing with increasing angles of attack – even though the torque paradoxically

seems to react to a vertical force in the active mode.

This singularity may be caused by the inaccurate representation of the number π in the floating point arithmetic,

internally used in MATLAB, [31]. In this special case, the perturbation force enters the differential equation (13)

with: F (t) cos(ϕ(t)− π
2 ), so that the initial condition ϕ(0) = 0 yields: F (t) cos(−π

2 ). In MATLAB, this expression

is not equal to 0, but only near 0 – with the result that the external force minimally affects the deflection of the rod,

impedes the tracking of the reference signal and thus influences the course of the torque.

These observations were also made with the 1st and 3rd force (numerical simulations shown in [30]).
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Fig. 14. Model 1: system behaviour in the active mode using the reference signal ϕref1(t) (exploratory whisk-

ing), deflected by the force �F2(t) with different angles of attack α.

4.2. Model 2B

The differential equations of model 2B (see Fig. 15), also derived by using the Lagrangean equations of the 2nd

kind (further informations on this approach in [30]), are:

ÿ(t) =
1
m

[
m

(
L

2
− a

) [
ϕ̈(t) sin(ϕ(t)) + ϕ̇(t)2 cos(ϕ(t))

] − d3ẏ(t) − c3y(t) − mg

− F (t) sin(α) + Fuy(t)
]

(14)

ϕ̈(t) =
1

J0z

[
m

(
L

2
− a

) [
ÿ(t) sin(ϕ(t)) + g sin(ϕ(t))

] − d1a
2 cos2(ϕ(t))ϕ̇(t)

− c1a
2 sin(ϕ(t)) cos(ϕ(t)) + (L − a)F (t) cos(ϕ(t) − α) + Mu(t)

]
(15)

with the initial conditions:

y(0) = 0, ẏ(0) = 0,
ϕ(0) = 0, ϕ̇(0) = 0.



Fig. 15. Vibrissa model 2B (DoF 2): L - rod length, m - mass of the rod, a - follicle length, d1, d2 - damping coeff.,

c1, c2 - spring coeff., �F (t) - deflecting force, α - angle of attack, �Mu(t) - control torque, �Fuy(t) - longitudinal

control force.

In this model, the external force �F (t) does not only induce a rotational, but also a longitudinal translatory

displacement of the rod. In the following, the angular deflection will be analysed based on the plots of the rods

deflection ϕ(t) and of the control torque �Mu(t). The translatory motion is being examined using the plots of the

displacement y(t) and of the control force �Fuy(t). The graphs have been arranged according to their direction of

motion, in the active mode the graphs of the rotational deflection ϕ(t) have been left out in favor of the graphs of

the error value eϕ.

4.2.1. Passive mode

The Figures 16 and 17 illustrate the systems reaction on the 2nd external force (11) in the passive mode, depending

on its angle of attack. The plots of the angular deflection ϕ(t) are identical to the plots out of the simulations with

model 1 (see Fig. 13). This leads to the conclusion that the additional DoF in longitudinal direction, does not

interfere with the rotational rod motion. Thus, as in model 1, the course of the control torque �Mu(t) reflects the

course of the exerted force for small and medium angles of attack, whereby the sensitivity of the model decreases

for increasing angles of attack. A vertical force causes no angular deflection ϕ(t).

The graphs of the translatory displacement y(t) provide a reliable representation of the acting force and this

with increasing sensitivity for increasing angles of attack. This is due to the fact that only the y-component of the

external force leads to a translatory displacement – accordingly horizontal forces (α = 0◦) cannot be perceived.

However the plot of the control force �Fux gives a disappointingly bad idea of the disturbing force – independently

of the angle of attack.

Numerical simulations with the 1st and 3rd disturbing force (shown in [30]) confirm the statements made

above.
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Fig. 16. Model 2B: rotatory motion of the system in the passive mode, deflected by an external force �F2 with

different angles of attack α.
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Fig. 17. Model 2B: translatory motion of the system in the passive mode, deflected by the external force �F2

with different angles of attack α.

4.2.2. Active mode

The Figures 18 and 19 illustrate the systems reaction on the disturbing force (11) in the active mode. The plots of

the rotational deflection are similar to the corresponding plots out of the simulations with model 1 (also see Fig.

14). The course of the torque provides a decent depiction of the acting force for angles of attack reaching from

small to medium and can be used for the identification of the acting force. The statement about numerical errors

caused by vertically acting forces (α = 90◦) made in the evaluation for model 1, may also apply here.



The graphs of the translatory displacement are identical to the corresponding graphs of the model in the passive

mode. This can be seen as another evidence for the detachment between the translatory and rotatory motion of the

rod. As described above, the graphs of the displacement y(t) can be used for the identification of the external force

in the active mode as well.

These observations were also made with the 1st and 3rd force (numerical simulations shown in [30]).
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Fig. 18. Model 2B: Rotatory motion of the system in the active mode using the reference signal ϕref1(t)
(exploratory whisking), deflected by the external force �F2 with different angles of attack α.
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Fig. 19. Model 2B: Translatory motion of the system in the aktive mode using the reference signal ϕref1(t)
(exploratory whisking), deflected by the external force �F2 with different angles of attack α.



5. CONCLUSION

The examined mechanical models all meet the basic requirements for high-quality sensor systems:

• They react with sensitivity to occuring disturbance forces,

• the response time is short,

• the disturbance force can be identified.

Still the performance of the models differ greatly from another, especially in the latter point. The gradual in-

crease of the degree of freedom from model 1 (DoF 1), to the models 2A, 2B (DoF 2) and 3 (DoF 3) revealed

the significant benefits of the respective direction of motion. Thus, although the enhancement of model 1 with

a translatory DoF in x-direction led to an improvement of the sensibility in model 2A (see [30]), the additional

DoF in y-direction was by far more relevant for the identification of the disturbance force: in model 2B the force

can be identified in the passive, as well as in the active mode – and this for angles of attack reaching from 0◦

to 90◦. Yet the positive characteristics of the models 2A and 2B could not be united in model 3: the interaction

between the translatory displacement in x with the angular deflection ϕ impeded, especially in the active mode,

the identification of the disturbance force.

While the models 1 and 2A are only suitable for applications with forces acting mostly horizontally, the
models 2B and 3 can also provide reliable information in widely unknown surroundings. Furthermore,
model 2B can be used in the passive, as well as in the active mode.

Future work shall be directed to elastic vibrissa systems modeled as a single beam.
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