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ABSTRACT

The present manuscript deals with the development and

the application of toroidal finite elements. These finite

elements belong to the class of curvilinear elements

and, therefore, a special element formulation is required.

This means to express stress, strain, and displacement

in curvilinear coordinates. Here, an 8-node quadrilat-

eral element is developed which is described by an iso-

parametric interpolation. The development of the gov-

erning equations is one main topic of this contribu-

tion. Another main topic is to evaluate the quality and

efficiency of these elements with respect to the cal-

culation of disc springs. In this context, calculations

with toroidal elements are checked against experimen-

tal data which consists of load-deflection-curves. In ad-

dition, the effects of friction and differences to the exact

rectangular cross section are considered. With the help

of Riks procedure, characteristic curves with negative

spring rates are obtained.

Index Terms— Toroidal finite elements, curvilin-

ear coordinates, covariant derivatives, disc springs, ge-

ometrical nonlinearities

1. INTRODUCTION

Toroidal finite elements are very interesting in many

applications of mechanical engineering.

They take advantage of a special symmetry, the ro-

tational symmetry. Machine elements like disc springs

or complete aggregates like pressure vessels feature this

symmetry and, therefore, they are predestinated to be

calculated by toroidal finite elements.

The present contribution deals with high order toroidal

finite elements which are used for calculating disc sp-

rings. Disc springs are widely used in construction of

machines, vehicles, and apparatus and their special me-

chanical behaviour requires numerical methods in or-

der to calculate displacements and stresses.

2. BASIC MECHANICAL EQUATIONS

The basis for deriving a finite element formulation is

represented by the equilibrium equations. Expressed

by a variational principle, these equations can have the

form of equation (1), compare [2]. This form results

as the undeformed shape is used for referencing and

the Lagrangian strain λ is choosen for describing the

material behaviour. Like it is shown here, it is valid for

static analysis without body forces.∫∫∫
V

S · δλ dV =

∫∫
A

t · δu dA (1)

Herein S name the second Piola-Kirchhoff’s stresses,

δλ are the virtual Lagrangian strains, and δu are the

virtual displacements. The stress vector is symbolized

by t. Choosing the undeformed shape as the reference-

configuration means the Lagrangian way of referenc-

ing is applied. It follows that integration in left part of

equation (1) has to be adopted to the volume V of the

undeformed finite element respectively disc spring. In

the same way, the surface integration in right part of

equation (1) operates on the surface of the undeformed

disc spring. This surface area A is the surrounding sur-

face of the whole finite element model (here the model

of the disc spring), excluding parts of this area with

kinematic boundary conditions.

The Lagrangian strain λ can be obtained by consid-

ering a material line element and its change of quadrat

of length. This change of length is shown in equation

(2).

l2 − L2 = dx · dx− dX · dX (2)

By introducing the Lagrangian strain λ as a result of a

Taylor’s row (see (3)),

2λ =

(
∂x

∂X

)T
∂x

∂X
− 1 (3)

the change of length can be expressed as follows:

dx · dx− dX · dX = 2 dX · λdX (4)
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Fig. 1. Definitions of DIN 2092 [1] for describing disc springs

Recalling that x = X + u, the Lagrangian strain

can be expressed as it is displayed in (5). Here, it can

be calculated from the displacement u. The position

of each material point at the undeformed configuration

is symbolized by X and it yields that the displacement

field u has to be formulated as a function of X, u =
u(X).

λ =
1

2

(
∂u

∂X
+

(
∂u

∂X

)T

+

(
∂u

∂X

)T
∂u

∂X

)
(5)

Assuming that strains remain small, although displace-

ments might be large, a linear relationship between stre-

sses and strains can be applied. The corresponding con-

stitutive equation is Hooke’s law, which is shown in (6).

Here, Hooke’s law is generalized to the theory of large

displacements.

S = Cλ (6)

The introduced quantity C can be calculated by two

material parameters, which are the Young’s modulus

E and the Poisson ratio ν.

3. FORMULATION IN CURVILINEAR
COORDINATES

The special symmetry of toroidal elements requires to

adapt the basic mechanical equations presented in sec-

tion 2 to cylindrical coordinates. Therefore, the dis-

placement field u needs to be expressed in these curvi-

linear coordinates as it is displayed in equation (7).

u = ur er + uϕ eϕ + uz ez (7)

In this equation ur, uϕ, and uz represent the displace-

ments in r−, ϕ−, and z−direction, while er, eϕ, and

ez build up the corresponding coordinate basis.

Next, expressions for describing strain by cylindri-

cal coordinates are derived. For that purpose, the fol-

lowing identity, taken from [3], is used.

λ =
∑
i,j

λijeij =
∑
i,j

ΛijG
ij (8)

In equation (8) λij denote the Lagrangian strains, mea-

sured in cartesian coordinates, whereas Λij stands for

the Lagrangian strains, measured in covariant coordi-

nates. In this manner eij name the unit matrices of the

cartesian basis and Gij describe the unit matrices of the

contravariant basis. Equation (9) and (10) give exam-

ples for both, the cartesian and the contravariant basis.

Note that in (8) λ represents the matrix formulation of

strain.

e12 =

⎡
⎣0 1 0
0 0 0
0 0 0

⎤
⎦ (9)

G23 =

⎡
⎣G2

1G
3
1 G2

1G
3
2 G2

1G
3
3

G2
2G

3
1 G2

2G
3
2 G2

2G
3
3

G2
3G

3
1 G2

3G
3
2 G2

3G
3
3

⎤
⎦ (10)

By replacing the superscripts 2 and 3 in (10) through

i and j, the general expression for Gij is obtained. The

items Gi
k of this resulting expression symbolize the co-

ordinates of the unit vector Gi, which belongs to the

contravariant basis. The exact definition is shown in

(11).

Gi =

⎡
⎣Gi

1

Gi
2

Gi
3

⎤
⎦ =

⎡
⎢⎣

∂ξi
∂X1
∂ξi
∂X2
∂ξi
∂X3

⎤
⎥⎦ (11)

The corresponding covariant basis vectors Gi

Gi =

⎡
⎣G1

i

G2
i

G3
i

⎤
⎦ =

⎡
⎢⎣

∂X1

∂ξi
∂X2

∂ξi
∂X3

∂ξi

⎤
⎥⎦ (12)

behave inverse to Gi, what means that their dot prod-

uct become one or zero and can be expressed by the

Kronecker-symbol. Thus, equation (13) follows, com-

pare [4].

Gi · Gj = δij (13)

3.1. Strain measurement in covariant coordinates

With the help of a Taylor’s row, an infinitesimal mate-

rial line element dX can be expressed by the covariant

basis, compare equation (14).

dX =
∑
i

Gidξi (14)



Next, it is shown that the coefficients Λij are appli-

cable to measure strain in covariant coordinates. There-

fore, (14) and (8) are inserted into (4). Combining the

result with (2) yields to equation (15).

2 dX · λdX = 2
∑
i,j,k,l

Gidξi · ΛjkG
jkGldξl (15)

Applying (11) and the general form of (10), the ma-

trix vector product in equation (15) will simplify ac-

cording to (16) if relation (13) is accounted.

GjkGl = Gjδkl (16)

Finally, after using (13) a second time, equation

(17) is obtained.

2 dX · λdX = 2
∑
i,j

dξiΛijdξj (17)

This relation points out that the coefficients Λij are

suitable for describing strain in covariant coordinates.

In order to get a calculation rule for these coefficients,

it is required to express (2) by (14). The resulting equa-

tion is presented in (18).

l2 − L2 =
∑
ij

(
∂x

∂ξi
· ∂x
∂ξj

− ∂X

∂ξi
· ∂X
∂ξj

)
dξidξj

(18)

Accounting that x = X + u, equation (18) yields

to (19).

l2 − L2 =
∑
ij

(
∂X

∂ξi
· ∂u
∂ξj

+
∂u

∂ξi
· ∂X
∂ξj

+
∂u

∂ξi
· ∂u
∂ξj

)
dξidξj

(19)

Next, the definition of the covariant basis (12) is

inserted to achieve equation (20).

l2 − L2 =
∑
ij

(
Gi · ∂u

∂ξj
+

∂u

∂ξi
·Gj

+
∂u

∂ξi
· ∂u
∂ξj

)
dξidξj

(20)

The partial derivatives in (20) have to be expressed

by components related to the covariant coordinate basis

in order to calculate the dot products efficiently. There-

fore, the general form of partial derivation in curvilin-

ear coordinates (21) which is taken from [4] is applied.

∂u

∂ξi
=

∑
kl

(
∂uk

∂ξi
+ Γk

liu
l

)
Gk (21)

Therein the coefficients Γk
li are commonly known

as Christoffel-symbols. Concerning cylinder coordi-

nates, they are listed in [4] and this source is used here-

after. Comparing (2), (4), and (17) the formula (22)

for calculating strain in covariant coordinates is found.

Below, the explicit expression of Λ11 will be developed

step by step, while the other coordinates of λ will be

limited to compact presentation.

Λij =
1

2

(
Gi · ∂u

∂ξj
+

∂u

∂ξi
·Gj +

∂u

∂ξi
· ∂u
∂ξj

)
(22)

Because the covariant basis is orthogonal when us-

ing cylinder coordinates, the coordinate Λ11 reduces to

(23), accounting equation (21).

Λ11 =
1

2

∑
k

((
∂u1

∂ξ1
+ Γ1

k1u
k

)
G11

+

(
∂u1

∂ξ1
+ Γ1

k1u
k

)
G11

+
∑
l

(
∂ul

∂ξ1
+ Γl

k1u
k

)2

Gll

)
(23)

The quantities Gll symbolize dot products as it is

illustrated below.

Gll = Gl · Gl (24)

Their values in case of cylinder coordinates (25) are

taken from [4].

G11 = 1, G22 = r2, G33 = 1 (25)

Furthermore the following Christoffel-symbols are

required.

Γ1
11 = Γ1

21 = Γ1
31 = 0

Γ2
11 = 0, Γ2

21 =
1

r
, Γ2

31 = 0

Γ3
11 = Γ3

21 = Γ3
31 = 0

(26)

Finally, it is necessary to transform the contravari-

ant coordinates of displacement and substitute the deriva-

tives with respect to ξi by derivatives with respect to

r, ϕ, and z.

u1 = ur, u2 =
uϕ

r
, u3 = uz

∂

∂ξ1
=

∂

∂r
,

∂

∂ξ2
=

∂

∂ϕ
,

∂

∂ξ3
=

∂

∂z

(27)

Altogether, this yields to equation (28), which is

ready for discretization by finite elements.

Λ11 =
∂ur

∂r
+

1

2

((
∂ur

∂r

)2

+

(
∂uϕ

∂r

)2

+

(
∂uz

∂r

)2) (28)



The other coordinates Λij can be developed simi-

larly, the resulting expressions are shown below.

Λ22 = r
∂uϕ

∂ϕ
+ r ur +

1

2

((
∂ur

∂ϕ
− uϕ

)2

+

(
∂uϕ

∂ϕ
+ ur

)2

+

(
∂uz

∂ϕ

)2) (29)

Λ33 =
∂uz

∂z
+

1

2

((
∂ur

∂z

)2

+

(
∂uϕ

∂z

)2

+

(
∂uz

∂z

)2) (30)

Λ12 = Λ21 =
1

2

(
∂ur

∂ϕ
− uϕ + r

∂uϕ

∂r
+

∂ur

∂r(
∂ur

∂ϕ
− uϕ

)
+

∂uϕ

∂r

(
∂uϕ

∂ϕ
+ ur

)

+
∂uz

∂r

∂uz

∂ϕ

) (31)

Λ23 = Λ32 =
1

2

(
r
∂uϕ

∂z
+

∂uz

∂ϕ
+

∂ur

∂z(
∂ur

∂ϕ
− uϕ

)
+

∂uϕ

∂z

(
∂uϕ

∂ϕ
+ ur

)

+
∂uz

∂ϕ

∂uz

∂z

) (32)

Λ31 = Λ13 =
1

2

(
∂uz

∂r
+

∂ur

∂z
+

∂ur

∂z

∂ur

∂r

+
∂uϕ

∂z

∂uϕ

∂r
+

∂uz

∂z

∂uz

∂r

(33)

3.2. Strain measurement in physical coordinates

Concerning cylinder coordinates, there are three differ-

ent possibilities to define the coordinate basis. It can

be defined by the contravariant basis, the covariant ba-

sis or the physical basis. The advantage of the con-

travariant basis and the covariant basis is their common

mathematical handling. Considering the treatment of

the derivatives in equation (21), it would be almost im-

possible to use the physical basis. However, the con-

travariant basis and the covariant basis also have a dis-

advantage, which forces to switch to the physical basis.

The lengths of the basis vectors aren’t one, the basis

vectors aren’t unit vectors [4]. By contrast, the basis

vectors of the physical basis are unit vectors.

This is why coordinates of the strain λ finally have

to be expressed related to the physical basis. Otherwise

it would be impossible to gain a formulation of the ba-

sic equation (1), which is reduced to a pure coordinate

formulation. Such a formulation is required for imple-

mentation in a finite element code.

The general transformation rules between covariant

and physical coordinates are given in [4]. These rules

are applied hereafter to the Lagrangian strain λ.

Λr
rr = Λ11, Λr

ϕϕ =
1

r2
Λ22, Λr

zz = Λ33

Λr
rϕ =

1

r
Λ12, Λr

ϕz =
1

r
Λ23, Λr

zr = Λ31

(34)

The superscript r in equation (34) denotes that these

quantities belong to the physical coordinate basis. With

the help of these transformation rules, the strain coor-

dinates related to the physical basis can be obtained as

following.

Λr
rr =

∂ur

∂r
+

1

2

((
∂ur

∂r

)2

+

(
∂uϕ

∂r

)2

+

(
∂uz

∂r

)2) (35)

Λr
ϕϕ =

1

r

∂uϕ

∂ϕ
+

1

r
ur +

1

2

1

r2

((
∂ur

∂ϕ
− uϕ

)2

+

(
∂uϕ

∂ϕ
+ ur

)2

+

(
∂uz

∂ϕ

)2) (36)

Λr
zz =

∂uz

∂z
+

1

2

((
∂ur

∂z

)2

+

(
∂uϕ

∂z

)2

+

(
∂uz

∂z

)2) (37)

Λr
rϕ = Λr

ϕr =
1

2

1

r

(
∂ur

∂ϕ
− uϕ + r

∂uϕ

∂r

+
∂ur

∂r

(
∂ur

∂ϕ
− uϕ

)
+

∂uϕ

∂r(
∂uϕ

∂ϕ
+ ur

)
+

∂uz

∂r

∂uz

∂ϕ

) (38)

Λr
ϕz = Λr

zϕ =
1

2

1

r

(
r
∂uϕ

∂z
+

∂uz

∂ϕ

+
∂ur

∂z

(
∂ur

∂ϕ
− uϕ

)
+

∂uϕ

∂z(
∂uϕ

∂ϕ
+ ur

)
+

∂uz

∂ϕ

∂uz

∂z

) (39)

Λr
zr = Λr

rz =
1

2

(
∂uz

∂r
+

∂ur

∂z
+

∂ur

∂z

∂ur

∂r

+
∂uϕ

∂z

∂uϕ

∂r
+

∂uz

∂z

∂uz

∂r

(40)



3.3. Material behaviour and calculation of stresses

Having obtained the equations for Lagrangian strain

coordinates related to the physical basis of the cylin-

der coordinate system, the material behaviour has to

be specified in order to get equations for calculating

stresses. By choosing the physical coordinate basis

for strains and stresses, the magnitudes of the several

strain and stress components are completely stored in

their coordinates and this is why it is sufficient to ex-

press the material equations directly in coordinates of

strains and stresses. The corresponding basis matrices

which are shown for example in (8), can be cutted out.

Concerning the material behaviour, Hooke’s law is ap-

plied to connect Lagrangian strain and second Piola-

Kirchhoff’s stress. Second Piola-Kirchhoff’s stress has

to be taken, because it is work-conjugated with the La-

grangian strain, compare [3]. In literature, this con-

stitutive equation which results from a generalization

of Hooke’s law to the theory of large displacements is

also named St. Venant’s law [2]. In classical linear the-

ory of elasticity, the cartesian coordinates of stress and

strain are simply replaced by the corresponding physi-

cal cylinder coordinates to get the Hooke’s law in cylin-

der coordinates. If the Lagrangian strain coordinates

are related to the physical cylinder coordinate basis, it

will be possible to do the same in nonlinear elasticity.

Using Lamé’s parameters, Hooke’s law becomes (41).

Sr
ij = λ

(
Λr
rr + Λr

ϕϕ + Λr
zz

)
δij + 2μΛr

ij (41)

Therein λ and μ symbolize Lamé’s parameters, which

are defined by (42), see [6]. They can be used instead

of Young’s modulus E and Poisson’s ratio ν.

λ =
E ν

(1− 2 ν) (1 + ν)

μ =
E

2 (1 + ν)

(42)

4. FINITE ELEMENT DISCRETIZATION

This chapter deals with the development of an 8-node

toroidal element for numerical solving of the curvilin-

ear mechanical formulation above. The following sec-

tion is based on theory and implementation of the Z88-

element torus no. 8 [5]. First of all, the same shape

functions Ni are used to interpolate displacements. Be-

cause of the rotational symmetry, the integration in ϕ-

direction can be done analytical and a two-dimensional

discretization is sufficient for modeling disc springs or

other machine elements with the same symmetry. Ac-

cordingly, the displacement (7) simplifies to (43) and

every node has two degrees of freedom.

u = ur er + uz ez (43)

Figure 2 illustrates shape, node position, and coor-

dinate system orientation of the applied Z88-element

torus no. 8.

8

3

6

7

Z(=Y)

1

5

2

R (=X)

4

Fig. 2. Toroidal element No. 8 of Z88 [5]

It follows that the shape functions for interpolation

of displacements look like equation (44) displays.

ur =
∑
k

Nku
k
r , uz =

∑
k

Nku
k
z (44)

Next, stresses and strains are expressed in Z88-notation

(45) for toroidal elements.

S =

⎡
⎢⎢⎣
Sr
rr

Sr
zz

Sr
rz

Sr
ϕϕ

⎤
⎥⎥⎦ , λ =

⎡
⎢⎢⎣
Λr
rr

Λr
zz

Λr
rz

Λr
ϕϕ

⎤
⎥⎥⎦ (45)

Because of the symmetry (46), the coordinates Λrϕ

and Λϕz disappear. Due to the isotropic material be-

haviour the corresponding stress coordinates Srϕ and

Sϕz become zero, too.

∂

∂ϕ

(··) = 0, uϕ = 0 (46)

Introducing the displacement-strain transformation

matrix B,

B =
∂λ

∂u
(47)

where u stands for the nodal displacement vector,

leads to following form of the equilibrium equations

(1). ∫∫∫
V

ST B dV δu = FT δu (48)

In addition, the nodal force vector F is introduced

in (48). Finally, by demanding (48) to be valid for ar-

bitrary variations δu, the algebraic equation (49) is ob-

tained. ∫∫∫
V

BT S dV = F (49)
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The next chapter deals with the numerical solution

of this equation by using Newton-Raphson’s and Riks

procedures.

5. CALCULATION OF DISC SPRINGS

In this chapter, the toroidal element developed above

is applied to several disc springs. These disc springs

differ from their height h, which is the distance in s-

direction between points II and III (see figure 1). The

other geometrical parameters are shown in (50).

De = 100.0mm, Di = 51.0mm

t = 2.7mm
(50)

For discretization of this structures the mapped me-

sher Z88N is used, who generates the meshes on the left

of figure 3. Each of these meshes contains 200 toroidal

elements, five in axial direction and 40 in radial direc-

tion. Disc springs with small heights h ≤ 2.5mm can

be calculated by Newton-Raphson-procedure, while for

springs with larger heights the procedure of Riks is re-

quired. This characteristic is reasoned by the negative

spring rate of disc springs with large heights h. The

Newton-Raphson-procedure is not capable of overcom-

ing points near to the local maximum, because it is

controled by applied force. The same problem is ob-

served by Niepage, who suggests to use a procedure

controled by displacement [7]. In this context, the pro-

cedure of Riks can be applied. It is controled by a

given arc length increment, which can be a force in-

crement, a displacement increment or a composition of

force and displacement increment. It follows that Riks

procedure enables calculating characteristic curves up

to high forces and displacements for disc springs with

negative spring rates, too. Concerning the material pa-

rameters on which the calculations of figure 3 are based,

the following values for Young’s modulus E and Pois-

son’s ratio ν are used.

E = 210, 000N/mm2, ν = 0.29 (51)

On the left side of figure 3, the different finite el-

ement meshes are shown. Toroidal elements greatly

simplify modeling of disc springs: only the cross sec-

tion has to be meshed. With regard to the boundary

conditions, one force and one given displacement ex-

ist. The force is applied to the node on point I, while

the displacement of the node on point III (see figure 1)

is set to zero.

6. EXPERIMENT

The quality of the results obtained by the presented

toroidal element will be checked against experimental

data in chapter 7. Here, it is illustrated, how this exper-

imental data is gained. The disc spring is loaded by a

hydraulic system, while bearing and loading only is ap-

plied to a small annular surface. Thus, high deflections,

which are larger than h, can be reached. Measurement

of force is performed by a load cell, which is placed

between hydraulic cylinder and disc spring. A dial in-

dicator is used to measure the deflection of point I.

7. COMPARISON OF CALCULATION AND
EXPERIMENT

This chapter deals with the results of the measured and

calculated characteristic curves of the disc spring (52).

De = 100.0mm, Di = 51.0mm

t = 2.7mm, h = 3.5mm

E = 206, 000N/mm2, ν = 0.3

(52)



0

5,000

10,000

15,000

20,000

25,000

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Fo
rc

e 
F 

/ N

Displacement s / mm

Characteristic curves of disc spring,
measured and calculated

Experiment
Torus no. 8
Torus no. 8, KA = 0.2, � = 0.3
Torus no. 8, KA = 0.3, � = 0.3
Torus no. 8, KA = 0.4, � = 0.2

Fig. 4. Measured characteristic curve compared to calculations with torus no. 8, taken from [8] (modified)

Figure 4 illustrates the corresponding characteris-

tic curves. The last three curves, labeled by ”KA” and

”μ” take additional boundary conditions into account.

One of these conditions is a displacement of the applied

force and the bearing reasoned by a difference to the ex-

act rectangular cross section. Actually, the corners of

disc springs have small roundings and, hence, the ap-

plied force acts further outwards, while the bearing is

located further inwards. The displacement of force and

bearing position is labeled KA and measured in mm, so

KA = 0.2 means a displacement of 0.2 mm.

The other additional boundary condition is a fric-

tion force, which acts radially on the outer diameter.

The corresponding friction parameter μ which is used

for the calculations is shown in figure 4. The results

point out that with these additional effects the charac-

teristic curve can be calculated exactly up to a deflec-

tion of s ≈ h ≈ 3.5mm. Without accounting round-

ings and friction, the stiffness at s < h is less than

measured.

At higher deflections s > h, all curves lay upside

the measured data, whether additional boundary condi-

tions are accounted or not.

8. CONCLUSION AND OUTLOOK

In terms of development toroidal elements are sophis-

ticated and require finite element formulation in curvi-

linear coordinates. The corresponding set up of equa-

tions is presented in this paper. Having implemented

an 8-node quadrilateral element based on Z88 element

type no. 8, calculation results with high qualities are

obtained. Due to the application of finite element cal-

culation, it is possible to account additional boundary

conditions, which leads to nearly exact characteristic

curves up to deflections s ≈ h.

At higher deflections s > h the calculated stiffness

is higher than observed experimentally. This proba-

bly might be explained by inelastic material behaviour.

With regard to applications of disc springs accounting

inelastic processes might be of less interest, but with re-

gard to maufacturing processes, it is an important topic

for further research.
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