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ABSTRACT
The Nanopositioning and Nanomeasuring Machine

NMM-1 was designed for measurements within a mea-

suring volume of 25 mm by 25 mm by 5 mm. The in-

terferometric length measuring and drive systems make

it possible to move the stage and corner mirror with a

resolution of 0.1 nm in all three axes. The object be-

ing measured is placed on the corner mirror and can

be measured with different probe systems. The very

high precision of the machine can be attributed to sev-

eral factors, the accuracy of the interferometric mea-

suring systems, the three-dimensional realization of the

Abbe comparator principle, the precise reference co-

ordinate system defined by the corner mirror and the

additional compensation of angular deviations. This

article describes a small part of the measurement un-

certainty analysis for a displacement measurement us-

ing two positions of the measuring mirror. In particular

this article discusses the influence of offset, amplitude

and phase deviations in the interference signals.

Index Terms— nanomeasuring, nanopositioning,

homodyne interferometer, uncertainty analysis, demod-

ulation, Heydemann correction

1. INTRODUCTION

Over the last several years the demands have risen on

the measurement of micro- and nanostructures over

larger measurement ranges with increasing accuracy

and precision. Specimens with micro- and nano-

structures are becoming larger and larger on the one
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hand, yet the structures themselves are becoming

smaller and more complex. Measuring devices must

provide multiple orders of magnitude for positioning

and measurement, from sub-nanometres up to hundreds

of millimetres. Surface scans must be realised in 21/2
dimensions over very large regions with nanometre pre-

cision. The Nanomeasuring Machine is equipped with

three single-beam homodyne plane-mirror miniature in-

terferometers for the measurement of the displacement

of a movable corner mirror [1, 2, 3]. The object being

measured is placed on the corner mirror, which is posi-

tioned by a three-axis drive system. The plane-mirror

miniature interferometers and the probing system are

fixed on a metrology frame made of Zerodur R©.

The machine is capable of carrying out both 21/2-D
surface scans and 3-D coordinate measurements [4, 5,

6]. Depending on the installed probing system, surface

scans and three-dimensional point measurements and

scans, including freeform scans, are possible within a

range of 25 mm by 25 mm by 5 mm with this machine.

The overall 3-D uncertainty for measurements done

with the machine depends on the machine itself and the

probe system in use as well as the specific measuring

task.

2. DEMODULATION PRINCIPLE

Interferometers are often-used length measuring sys-

tems. In a Michelson-type interferometer, light from

a light source is split into a reference beam and a mea-

suring beam. The beams are reflected back from the

reference and measuring mirrors, respectively. Recom-

bination of the beams at the output of the beam splitter

allows the two waves to interfere. The different optical

paths result in two different phases of the two waves.

Only the phase difference can be determined from the

interference signal by the demodulation system. It is

not possible to specify which mirror has moved and
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therefore, one of the mirrors is fixed. Then the phase

changes can definitely be attributed to the movement

of the other mirror. The wavelength of light in the arm

with the moveable mirror serves as the measurement

scale for the interferometric measurement. For mea-

surements in air the actual wavelength depends on the

vacuum wavelength λvac(t) and the refractive index of

air n(t). The unequal paths in the measuring and refer-

ence arms along with changes in the wavelength lead to

variations in the measurement value, although the mir-

rors have not actually changed position. The conver-

sion of the discrete demodulation value N(t) from the

demodulation electronics into an actual position value

lm(t) must take into account the dead path length lt,
which is the length difference between the measuring

and reference paths at the moment the fringe counter

was reset [7]. The discrete demodulation value N(0)
are the corresponding values shortly after the counter

system was set to zero.

lm(t) =
λ(t)

2kTF

(N(t)−N(0))+

(
λ(t)

λ(0)
− 1

)
lt (1)

This equation for a λ/2-interferometer includes the

wavelength λ(0) = λvac(0)/n(0) when the counter was

set to zero as well as the current wavelength λ(t)
= λvac(t)/n(t). According to the second term in equa-

tion, a non-zero dead path length leads to an additional

uncertainty contribution for the measurement because

of possible changes in the refractive index and the vac-

uum wavelength as well as the determination of the re-

fractive index from the environment sensor values. The

equation can be reduced to a linear function with two

coefficients through substitution.

lm(t) = k1(t) (N(t)−N(0)) + k0(t) (2)

Coefficients k0(t) and k1(t) only need to be recalcu-

lated when measured environment values change. This

equation enables the correction of systematic deviations

caused by the refractive index of air in the dead path

and reduces the measuring uncertainty for the measur-

ing length. The evaluation of the measured signals

based on the registration of the number and the fraction

of the fringes passed through. The amplitudes of the

two 90◦-phase-shifted sinusoidal and offset-free sig-

nals UA and UB are sampled and discretised with two

very fast ADCs. The most significant bits in the dig-

ital signals (quadrature signals) are fed to an up-down

counter. This counter value Ncnt(t) is incremented or

decremented at a selected transition in accordance with

the motion direction. The counter and the two analogue-

to-digital converter values are used to determine the

length measurement value. The fractional part of the

demodulation phase is derived using the arctan func-

tion on the quotient of the two ADC values DA and DB

using equation (4).

ϕ = arctan

(
UA

UB

)
(3)

ADC arctan maximum standard mean

width width deviation deviation distance

in bits in bits in pm in pm in pm

6 8 1760.8 1016.6 1678.8

8 12 353.31 203.99 367.81

10 14 89.88 51.89 107.04

12 16 22.03 12.72 24.26

14 16 7.36 4.25 7.68

16 16 3.62 2.09 5.72

Table 1. Demodulation deviations caused by the quan-

tisation in the ADC and round-off in the arctan func-

tion (calculation of length for a λ/2-interferometer and

a wavelength λ = 632.82nm)

Narctan(t) =
kTF

2π
arctan

(
DA + 0, 5

DB + 0, 5

)
(4)

The factor kTF is the number of steps per fringe (for the

NMM-1 kTF = 16384). The analogue-to-digital con-

verters round down the values; therefore, a 0.5 could

be added to two ADC values. The demodulation value

N(t) can be determined from the demodulation value

part Narctan(t) and counter value Ncnt.

N(t) = kTFNcnt(t) +Narctan(t) (5)

A component of the demodulation value Narctan(t) re-

mains unchanged at the moment the counter is set to

zero. In order to bring the length value lm(t) fully to

zero, the demodulation value N(0) is captured shortly

after the counter is reset and is thereafter always sub-

tracted from the current values as an offset value.

3. QUANTISATION AND ROUNDING
DEVIATIONS

Some demodulation deviations arise due to the quanti-

sation associated with the analogue-to-digital convert-

ers and the need for additional round-off for the arc-

tan function. The maximum deviations for different

analogue-to-digital converters and arctan register

widths were calculated through a simulation for a λ/2-

interferometer. For the demodulation with a 10-bit ADC

and a 14-bit arctan register, the uncertainty contribu-

tion due to quantisation and round-off is u = 52 pm.

The analogue-to-digital converter values DA and DB

can be read and used for interference signal monitor-

ing and the reduction of the uncertainty through real-

time ellipse regression and correction. Preferred values

were able to be identified from the histograms of the

length values. These are caused by the quantisation of

the ADC and the round-off in the arctan function. The

average distances between these preferred values was

obtained from a simulation (see table 1). These dis-

tances correspond to the nominal resolution.



4. INTERFERENCE SIGNAL NOISE

At higher relative resolutions the quantisation of the

analogue-to-digital conversion is less important than

the signal-to-noise ratio. The achievable measurement

resolution without “useless magnification” depends on

the noise of the interference signals. The signal-to-

noise ratio of the interference signals should be greater

than or equal to the signal-to-noise ratio of the analogue-

to-digital converter. The noise of the interference sig-

nals depends on the power stability of the laser and the

various noise sources in the photo detectors and signal

amplifiers. In the Nanomeasuring Machine, the diodes

operate in quasi-short-circuit mode (RL = 0, U = 0,

I < 0), in which no dark current occurs and only ther-

mal noise (or Johnson noise) arises in the photodiode

due to the shunt resistor [8]. The photoamplifier cir-

cuits with operational amplifiers also possess several

noise sources. Subsequently the signals of the interfer-

ometers are further amplified and deviations in offset

and amplitude corrected. Each amplifier stage trans-

mits the noise of the previous stages and is itself a

source of noise. Electromagnetic interference (EMI)

and radio frequency interference (RFI) cause additional

noise in the interference signals. A theoretical deter-

mination of the noise for the estimation of measure-

ment uncertainty does not make sense due to the com-

plexity of signal processing. A better measurement of

length noise can be done by disabling the NMM-1’s

drive system. Here, the influence on the ADC val-

ues and thus on the length measurements almost exclu-

sively stems from noise and quantisation effects. Stan-

dard deviations of 0.079 nm (x-axis), 0.094 nm (y-axis)

and 0.065 nm (z-axis) were determined using this type

of measurement. The larger values of the x- and y-axes

are caused by the larger lateral mechanical vibrations.

5. OFFSET, AMPLITUDE AND PHASE
DEVIATIONS

The demodulation of the interference signals requires

two offset-free signals (ŪA = ŪB = 0) of equal ampli-

tude (ÛA = ÛB) and a phase angle of 90◦ between the

two signals (phase difference α = 0). The output sig-

nals from the electronics most likely exhibit low ampli-

tude, offset deviations and deviations of the phase an-

gle, which cause periodic nonlinearities of the demod-

ulated length measurement signals. Maximum relative

offset and amplitude deviations of ≤3% were deter-

mined for various measurements with the NMM-1 [9].

The deviations arise from electronic component toler-

ances and movement-dependent dynamic deviations

which can only be corrected by the automatic control

with a delay. An adjustment of the phase angle to 90◦

based on the Lissajous figure on a oscilloscope can re-

duce the maximum phase difference α to 1.5◦. To de-

scribe the resulting demodulation deviations, the two

voltage values in equation (3) can be replaced by si-

nusoidal voltage characteristics depending on the ideal

demodulation phase γ (see equation (6)).

ϕ = arctan

(
ÛA sin (γ + α) + ŪA

ÛB cos (γ) + ŪB

)
(6)

The offset deviations ΔŪA and ΔŪB cause offset-free

and sinusoidal periodic demodulation deviations. The

effects of amplitude deviations ΔÛA and ΔÛB also have

a sinusoidal curve with half of the period length. The

phase difference α also causes a sinusoidal periodic de-

modulation deviation.

The additionally read ADC values allow the com-

pensation of static offset, amplitude and phase devia-

tions. The offset, amplitude and phase deviations of the

digitally converted interferometer signals can be deter-

mined using with an ellipse-shaped regression. The de-

termined phase difference value can be used for fine ad-

justment of the phase difference α to < 0.1◦ by slanting

a beam splitter in the detection unit. The phase differ-

ence remains unchanged in subsequent measurements

and leads to a maximum length measurement devia-

tion of < 0.088 nm. The static offset and amplitude

deviations can be reduced by altering the signal con-

trol set points to approximately ≤ 1%. The amplitude

and offset deviations vary during the subsequent mea-

surements and could be only avoided using continuous

monitoring and correction. The ellipse regression and

computational correction of the two sinusoidal signals

to an offset-free circle was originally proposed by Hey-

demann [10] and is based on equation (7).

AD2
A +BD2

B +CDADB +DDA +EDB = 1 (7)

The ellipse equation coefficients A,B,C,D,E can be

determined by direct or recursive estimation using the

least squares method on the ADC values DA und DB.

The quality of the estimation depends on the number of

data points and the noise of the two input signals [11].

The greater the noise of the input signals, the greater

amount of observation amount must used in the esti-

mation. These parameters can then be used to correct

the demodulation signals [10].

6. UNCERTAINTY CONTRIBUTION FROM
THE DEMODULATION

For a simple differential measurement between two mea-

sured corner mirror positions, the difference length ld
corresponding to equation (8) are calculated by:

ld = lm(t2)− lm(t1) (8)

=
λ(t2)(N(t2)−N(0))− λ(t1)(N(t1)−N(0))

2kTF

+
λ(t2)− λ(t1)

λ(0)
lt



Calculation of the uncertainty must take into account

any correlation of the wavelengths. However, the wave-

lengths can be decoupled for the uncertainty analysis

by replacing the wavelengths with λ(t1) = λ(0)+Δλ1

and λ(t2) = λ(t1)+Δλ2. After inserting these factors

into equation (8), multiplying out and combining yields

the following equation:

ld =
(λ(0) + Δλ1)(N(t2)−N(t1))

2kTF

(9)

+Δλ2

(
N(t2)−N(0)

2kTF

+
lt

λ(0)

)

Starting from equation (9), the uncertainty contribution

of demodulation values N(t) are determined for the

differential measurement (see equation (10)).

u1b(ld) =

√(
λ(t2)

2kTF

)2

u2(N(t2)) (10)

+

(
λ(t1)

2kTF

)2

u2(N(t1)) +

(
Δλ2

2kTF

)2

u2(N(0))

The sensitivity coefficients for demodulation values

N(t1) and N(t2) are determined with the correspond-

ing wavelengths λ(t1) and λ(t2). In contrast, the sensi-

tivity coefficient for demodulation value N(0) only de-

pends on the wavelength difference Δλ2 between the

two measured points. The uncertainties of demodula-

tion values N(0), N(t1) and N(t2) are influenced by

the signal-to-noise ratio of analogue interference sig-

nals UA and UB as well as rounding and quantisation

deviations of the ADC values DA and DB. A standard

uncertainty of u1(N(t)) = 5 digits was determined by

measurements.

Furthermore, the uncertainties of the demodulation

values depend on the offset and amplitude deviations

and phase difference of the interference signals. When

measuring movements in all coordinate directions and

at different speeds, the ADC values were recorded and

the position-dependent changes with ellipse regressions

over 1000 consecutive values evaluated. The offset val-

ues (≤ 0.2 digits or 0.04 % relative to the signal ampli-

tude) and phase difference (≤0.02◦) varied only mar-

ginally, while the amplitudes changed by about 1 % and

the changes had a correlation of ≥0.96. These ampli-

tude deviations are caused by dirt and tilting of the cor-

ner mirror used in the measurement as well as mirror

coating inhomogeneities and laser power fluctuations.

The amplitudes ÛA and ÛB in equation (6) must be ex-

panded with the correlated amplitude deviations ΔÛA

and ΔÛB in order to separate the uncorrelated and cor-

related amplitude deviations.

ϕ = arctan

⎛
⎝
(
ÛA +ΔÛA

)
sin (γ + α) + ŪA(

ÛB +ΔÛB

)
cos (γ) + ŪB

⎞
⎠

(11)

The partial derivatives of this equation can be used to

determine uncertainty. The uncertainty of the demod-

ulation phase ϕ or the demodulation value N(t) can

be calculated with these sensitivity coefficients using

equation (12). This leads to a significant reduction of

uncertainty u2(N(t)) because of the significantly

smaller sensitivity coefficients.

u2(N(t)) =
kTF

2π

√(
∂ϕ

∂α

)2

u2(α) (12)

+

(
∂ϕ

∂ÛA

)2

u2(ÛA) +

(
∂ϕ

∂ÛB

)2

u2(ÛB)

+

(
∂ϕ

∂ŪA

)2

u2(ŪA) +

(
∂ϕ

∂ŪB

)2

u2(ŪB)

+

(
∂ϕ

∂ΔÛA

)2

u2(ΔÛA) +

(
∂ϕ

∂ΔÛB

)2

u2(ΔÛB)

+2
∂ϕ

∂ΔÛA

∂ϕ

∂ΔÛB

u(ΔÛA)u(ΔÛB)r(ΔÛA,ΔÛB)

The maximum and minimum uncertainties are

u2(N(t)) = 18.5 digits and u2(N(t)) = 15 digits, re-

spectively. The combined uncertainty for the demodu-

lation can be calculated using equation (13).

uc(N(t)) =
√
u2
1(N(t)) + u2

2(N(t)) (13)

When the demodulation phase is unknown, the com-

bined uncertainty of the demodulation value must be

assumed to be at its maximum uc(N(t)) = 19.3 digits

(x- and y-axes) and 19.5 digits (z-axis). The combined

uncertainty of the demodulation value uc(N(t)) can be

used in equation (10) for the uncertainties u(N(t2)),
u(N(t1)) and u(N(0)), which allows us to calculate

the measurement uncertainty contribution from the de-

modulation taking place in the measurements of length

difference.

7. CONCLUSION

With the development of new demodulation electron-

ics for the Nanomeasuring Machine, the measurement

resolution has been improved to less than 0.1 nm. The

additional use of the ADC values allows to compen-

sate the static offset, amplitude and phase deviations of

the interference signals through an off-line ellipse re-

gression and adjustment and a subsequent analysis of

the signals during the measurements. This was able

to drastically reduce the uncertainty in the length mea-

surement caused by the demodulation. Consideration

of the correlation of the remaining amplitude devia-

tions also resulted in a decreased uncertainty contribu-

tion.
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