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Abstract

Davidson (1981) developed a general procedure, based on group
representation theory, for determining the spectra of graphs distin-
guished by a certain rotational symmetry, with application to molec-
ular graphs. In this paper a more general method, applicable to
any arbitrarily arc weighted directed graph that has a non-trivial
automorphism, and yielding both eigenvalues and eigenvectors, is
developed. The proofs, elementary and straightforward, avoid the
use of the theory of group characters altogether.
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1 Introduction

In 1981 R.A. Davidson [2] published a reduction procedure, based on group
representation theory, which allows the spectrum of a finite weighted graph
endowed with a certain rotational symmetry to be calculated from spec-
tra of smaller graphs, a method with rich applications in the theory of
molecular graphs, in particular, of hydrocarbons and related compounds [3].
Here we shall develop an extended method, applicable to any finite directed
(undirected) graph G with arbitrary complex arc (edge) weights that has a
non-trivial automorphism, yielding the spectrum via the eigenvectors of G.

A remarkable feature is the fact that all proofs are quite elementary and
straightforward: stressing this aspect we shall avoid any reference to group
representation theory (group characters).

2 Definitions, Notation, Terminology

Let G = (V,A) be a finite directed graph (multiple arcs and loops being
admitted) on n vertices whose arcs are arbitrarily weighted with complex
numbers – briefly called a graph.

An arc from vertex x to vertex y with weight w is denoted a = a[w] =
[x, y;w] (Fig. 2.1). Every non-arc is considered a “zero arc”, i.e., an arc a
with weight zero: a[0] = [x, y; 0].

A multiple (k-fold) arc – i.e., a set of parallel arcs ai = [x, y;wi], i =
1, 2, . . . , k – may be replaced with a single arc a whose weight is the sum of
the wi: a = [x, y;

∑k
i=1wi].
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Figure 2.1: Arc a from x to y with weight w

An undirected edge (x, y;w) is equivalent to, and replaced by, the pair
of antiparallel arcs [x, y;w], [y, x;w].

It is convenient to assume that, for every ordered pair [x, y] of vertices,
there is in G precisely one arc a from x to y: a = [x, y;w] where x = y
and w = 0 are allowed. Therefore, whenever a multiple arc {[x, y;wi] | i =
1, 2, . . . , k} is encountered, it will be considered a single arc [x, y;

∑k
i=1wi].

Thus the ordered pair [x, y] uniquely determines an arc a = a(x, y) =
[x, y;w] with weight w = w(a) = w(x, y).

Let, for the moment, V = {1, 2, . . . , n} and define the weight matrix
(weighted adjacency matrix) W of G by W = (w(i, j))i,j=1,2,...,n.a

The symmetry group of G, consisting of all automorphisms of G, is
isomorphic to the group of permutations P of the vertex set of G that
leave the weight function w invariant, or, equivalently, of all permutation
matrices P satisfying P−1WP = W; we shall identify an automorphism with
the permutation P that describes it. Graph G is called symmetric iffb its
symmetry group is non-trivial.

Let P be an arbitrary non-trivial automorphism of G consisting of dis-
joint cycles C1, C2, . . . , Cr (including cycles of length one) where cycle C%
has length s% and contains vertices x%σ, σ = 0, 1, . . . , s% − 1:

P = C1C2 · · ·Cr, C% = (x%0 x%1 · · · x%,s%−1).

Set C̃% = {x%σ | σ = 0, 1, . . . , s% − 1}.
Let M denote the least common multiple of the cycle lengths s% of P

and arrange the vertices according to the following (cyclic) cartesian scheme
H = H(P ): the rows are R% (% = 1, 2, . . . , r), the columns are Sκ (κ =
0, 1, . . . ,M − 1) which may be cyclically repeated by SM = S0, SM+1 = S1,
etc. . Row R% contains the cycle C%, the vertices in R% are arranged in
equidistant positions, i.e., x%σ is placed in row R% and in column Sκ(%,σ)

where κ(%, σ) =
M

s%
σ (% = 1, 2, . . . , r; σ = 0, 1, . . . , s% − 1) (Fig. 2.2).

aNote the one-to-one correspondence between the set of graphs (as defined above)
with labelled vertices and the set of square matrices with complex entries.

bWe use iff for if and only if if and only if “if and only if” (briefly,“iff”) is part of a
definition.
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The parameters of P are: r = 3 ; s1 = 15, s2 = 10, s3 = 6 ; M = 30.

The shaded areas contain the subsets Uκ of V (G), e.g., U4 = {x1,2}, U15 = {x2,5, x3,3}.

Figure 2.2: An example of H(P )

Column Sκ contains the set

Uκ = {x%σ |
M

s%
σ = κ}

which may be empty. Let K = {κ | Uκ 6= ∅}. Vertex set V (G) decomposes
into (disjoint non-empty) sets Uκ:

V (G) =
⋃̇

κ∈K
Uκ (Fig. 2.2).

We shall abbreviate S0, x%σ and x%0 by S, %σ and % (= %0), respectively.
Thus

S = S0 = {1, 2, . . . , r}.

Let d(α, β) and m(α, β) denote the greatest common divisor and the least
common multiple of sα, sβ and define

g(α, β) = sβ/d(α, β) = m(α, β)/sα. (2.1)

3 Consequences of the symmetry

By cyclicity the weight function w(%1σ1, %2σ2) can be defined for all integers
σ1, σ2. So extended, w(%1σ1, %2σ2) (%1, %2 fixed) is periodic in σ1 with period
s%1 and in σ2 with period s%2 . Whenever necessary, a σ argument is reduced
modulo its respective period. The above implies that whenever for some
integers q1, q2 the equation

σ′1 − σ1 + q1s%1 = σ′2 − σ2 + q2s%2

holds then
w(%1σ

′
1, %2σ

′
2) = w(%1σ1, %2σ2).
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The set of numbers q1s%1 − q2s%2 being identical with the set of multiples of
d(%1, %2) we conclude:

σ′1 − σ′2 ≡ σ1 − σ2, mod d(%1, %2)(A)
implies w(%1σ

′
1, %2σ

′
2) = w(%1σ1, %2σ2).

4 The reduction procedure

For every κ ∈ K we shall construct a graph G(κ) = (Vκ, Aκ) on |Uκ|
vertices. Vκ , the vertex set of G(κ), is the projection of Uκ into S:

Vκ = {% | %σ ∈ Uκ}.

To define the arc set Aκ let ε = exp(2πi/M) and

Ũκ =
⋃
%∈Vκ

C̃% = {%σ | % ∈ Vκ, σ = 0, 1, . . . , s% − 1}.

Every arc z = [x1, x2;w] of G with x1 = %1 ∈ Vκ, x2 = %2σ ∈ Ũκ is in G(κ)
replaced by the arc ẑ′ = [x′1, x

′
2; ŵ

′
κ] with x′1 = x1 = %1 ∈ Vκ, x′2 = %2 ∈ Vκ,

ŵ′κ = w · εκσ. Note that all arcs with both their ends in Vκ are retained in
G(κ). The arcs ẑ′ with fixed ends x′1 = %1, x

′
2 = %2 (%1, %2 ∈ Vκ) are united

to form in G(κ) the single arc z′ = [%1, %2;w
′
κ] where

(B) w′κ = w′κ(%1, %2) =
∑
ŵ′κ =

s%1−1∑
σ=0

w(%1, %2σ)εκσ.

The resulting set of arcs is Aκ.
Note that G(0) is a front divisor of G (see [1], Chapter 4 and Section 5.3).

5 Claims

Let, for fixed κ ∈ K, u = {u(%) | % ∈ Vκ} be an eigenvector of G(κ) with
corresponding eigenvalue λ, i. e., assume that

u 6= 0 and λ satisfy the equation
(C) ∑

%∈Vκ

w′κ(%0, %)u(%) = λu(%0) (%0 ∈ Vκ).

The extended eigenvector u′ is defined on S by

u′(%) =

{
u(%) if % ∈ Vκ,

0 if % ∈ S − Vκ.

Let
v = {v(%σ) | %σ ∈ V (G)}

(D)
where v(%σ) =

{
u(%) · εκσ if %σ ∈ Ũκ (i.e., if % ∈ Vκ)

0 otherwise (i.e., if % ∈ S − Vκ).
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Theorem 5.1. v and λ are an eigenvector and corresponding eigenvalue of
G , i.e., v and λ satisfy the equation∑

%σ∈V (G)

w(%0σ0, %σ)v(%σ) = λv(%0σ0) (%0σ0 ∈ V (G)).

Theorem 5.2. Eigenvectors v of G obtained from linearly independent ex-
tended eigenvectors u′ of the G(κ) are linearly independent.

Theorem 5.3. Let κ1 6= κ2. Eigenvectors v1, v2 of G obtained from eigen-
vectors u1 of G(κ1) and u2 of G(κ2) are orthogonal.

6 Proofs

Proof of Theorem 5.1

Let κ ∈ K (fixed), %0σ0 ∈ V (G), set εκ = ω and abbreviate∑
%σ∈V (G)

w(%0σ0, %σ)v(%σ) = Q. (6.1)

We have to show: Q = λv(%0σ0).
Because of (D) (Section 5) (6.1) reduces to

Q =
∑
%∈Vκ

s%−1∑
σ=0

w(%0σ0, %σ)u(%)ωσ.

Recall: κ =
M

s%
σ∗ for some σ∗ < s%, thus

ω = exp

(
2πi

M
κ
)

= exp

(
2πi

s%
σ∗
)

is an s%-th root of unity. Therefore, both w(%0σ0, %σ) and ωσ are periodic
in σ with period s% for every % ∈ Vκ. This implies

Q =
∑
%∈Vκ

s%−1∑
σ=0

w(%0σ0, %(σ + σ0))u(%)ωσ+σ0

= ωσ0

∑
%∈Vκ

u(%)

s%−1∑
σ=0

w(%0σ0, %(σ + σ0))ω
σ.

By (A) (Section 3), w(%0σ0, %(σ + σ0)) = w(%0, %σ), therefore,

Q = ωσ0

∑
%∈Vκ

u(%)

s%−1∑
σ=0

w(%0, %σ)ωσ. (6.2)
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We distinguish two cases. Case 1: %0 ∈ Vκ; Case 2: %0 6∈ Vκ.

Case 1. Because of (B) (Section 4),

Q = ωσ0

∑
%∈Vκ

w′κ(%0, %)u(%)

which, by (C) and (D) (Section 5), implies

Q = ωσ0 · λu(%0) = λv(%0σ0), as claimed.

Case 2. To show: Q = 0.
Abbreviate d(%0, %) = d, m(%0, %) = m, g(%0, %) = g.
First we show

(I) ωd is a gth root of unity,

(II) ωd 6= 1.

We have κ =
M

s%
σ∗ where σ∗ < s%; d =

s%
g

, thus κd =
M

g
σ∗ and

ωd = exp

(
2πi

M
κd
)

= exp

(
2πi

g
σ∗
)
.

This proves (I).
To prove (II) we shall show that σ∗/g is not an integer.
Assume that σ∗/g = α is an integer. Let β = m/s%, τ = αβ, both being

integers. We have (see (2.1))

τ =
σ∗

g
· m
s%

=
σ∗

s%
· s%0 . (6.3)

σ∗/s% < 1 implies τ < s%0 . From (6.3) we conclude M
s%0
τ = M

s%
σ∗ = κ which

means that %0τ ∈ Uκ, thus %0 ∈ Vκ; this contradiction proves (II).
As a consequence of (I) and (II),

g−1∑
γ=0

(
ωd
)γ

= 0. (6.4)

Now we resume (6.2) which we write as

Q = ωσ0

∑
%∈Vκ

u(%) ·Q%, Q% =

s%−1∑
σ=0

w(%0, %σ)ωσ.

We set σ = δ+ γd; note that summation over σ (σ = 0, 1, . . . , s%− 1) is the
same as summation over δ, γ (δ = 0, 1, . . . , d− 1; γ = 0, 1, . . . , g − 1).

We have

Q% =

g−1∑
γ=0

d−1∑
δ=0

w(%0, %(δ + γd))ωδ+γd.
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By (A) (Section 3), this reduces to

Q% =
d−1∑
δ=0

g−1∑
γ=0

w(%0, %δ)ω
δωγd =

d−1∑
δ=0

w(%0, %δ)ω
δ

g−1∑
γ=0

(
ωd
)γ

which by (6.4) implies Q% = 0, thus Q = 0, as claimed.
Theorem 5.1 is now proved. �

Proof of Theorem 5.2

Assume that eigenvectors v1,v2, . . . ,vm of G that have been obtained from
linearly independent extended eigenvectors u′µ of the G(κ) are linearly de-
pendent. Then there are numbers c1, c2, . . . , cm, not all equal to zero, such

that
m∑
µ=1

cµvµ = 0 or, equivalently,

m∑
µ=1

cµvµ(%σ) = 0, % = 1, 2, . . . , r; σ = 0, 1, . . . , s% − 1.

True in particular for σ = 0 which by (D) (Section 5) implies

m∑
µ=1

cµvµ(%) =
m∑
µ=1

cµu
′
µ(%) = 0, % = 1, 2, . . . , r, thus

m∑
µ=1

cµu
′
µ = 0,

contradicting the linear independence of the vectors u′µ. �

Proof of Theorem 5.3

Assume κ1 6= κ2 and let v1 and v2 be eigenvectors of graph G derived from
eigenvectors u1 and u2 of graphs G(κ1) and G(κ2), respectively. We shall
show that v1 · v2 (the scalar product of v1 and v2) equals zero. We have

v1 · v2 =
r∑

%=1

c% where c% =

s%−1∑
σ=0

v1(%σ)v2(%σ).

If % 6∈ Vκ1 ∩ Vκ2 then, by (D), at least one of v1(%σ), v2(%σ) is zero, thus
c% = 0. Assume % ∈ Vκ1 ∩ Vκ2 . By (D),

c% =

s%−1∑
σ=0

u′1(%) εκ1σ u′2(%) ε−κ2σ = u′1(%)u′2(%)

s%−1∑
σ=0

ε(κ1−κ2)σ.

Recall: ε = exp(2πi/M), κi = M
s%
σ∗i where 0 ≤ σ∗i < s%; note that |σ∗1−σ∗2| <

s% and, because of κ1 6= κ2, also σ∗1 6= σ∗2, thus 0 < |σ∗1−σ∗2| < s%. Therefore,
εκ1−κ2 = exp(2πi(σ∗1 − σ∗2)/s%) is an s%-th root of unity distinct from 1
implying

s%−1∑
σ=0

ε(κ1−κ2)σ = 0.

As immediate consequences, c% = 0 and v1 · v2 =
∑r

%=1 c% = 0. �
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Figure 7.1: Graph G of prismane C8.
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Figure 7.2: Graph G of prismane rearranged

7 Appendix: An Example

We consider the graph G of prismane C8, a metastable carbon cluster an-
alyzed in [4]; Figs. 7.1 both show this graph. From Fig. 7.1(b) we take
that P = (1 2 3 4 5 6)(7 8) is an automorphism of G. In Fig. 7.2 graph G
is rearranged according to this permutation. Fig. 7.3 shows the resulting
graphs G(κ) whose eigenvalues and eigenvectors determine those of G (The-
orems 5.1, 5.2), see Fig. 7.4. From the complex eigenvectors we obtain real
ones by taking the real and the imaginary parts. Note that the eigenvectors
are pairwise orthogonal (Theorem 5.3).
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Figure 7.3: The graphs resulting from the reduction procedure as applied
to the prismane graph G.
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Figure 7.4: Eigenvalues and eigenvectors of the prismane graph G.
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