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INTRODUCTION 

Overview of the human immune system 

The word “immune” originates from the latin “immunis” and means pure or intact. In the 

figurative sense it means unsusceptible to diseases. Every day humans get in contact with 

foreign cell, substances or microbes, like fungi, bacteria, viruses or parasites. To be protected 

against these foreign invaders the human body developed an elaborate and dynamic 

communication network of organs, tissues, cells and effector substances that specifically 

fend unmeant infections of the body. The immune system recognizes and attacks infective 

agents by using two layers of immune defense-the innate and the adaptive immunity. The 

innate immune system is composed of anatomic (e.g. skin, mucous membrane) and 

physiological (e.g. acid pH, high salt conditions, temperature, lysozyme) barriers, which build 

an effective mechanical and chemical defense against infections. When invaders overcome 

these barriers the innate immune system reacts immediately within seconds. Pathogen 

recognition receptors (PRR) on the surface of innate immune effector cells identify pathogen 

associated molecular patterns (PAMPS) and activate tissue or blood derived macrophages 

and dendritic cells to phagocytise foreign particles and release cytokines, which also activate 

inflammatory response and trigger influx of white blood cells. Humoral components of the 

innate immunity, like the complement system recognizes particles, gets activated, and 

opsonises them for phagocytes, destroy membranes by forming the membrane attack 

complex (MAC) and release anaphylatoxins, which are potent initiators of the inflammatory 

response. Furthermore attacked human cells secrete antimicrobial agents. Such are 

defensins and lysozymes, which destabilize membranes of invaders. Consequently the 

microorganism dies, because of the loss of cell homeostasis. Acute phase proteins are 

activated and promote inflammation, activate the complement cascade and stimulate 

chemotaxis of phagocytes. Cytokines and chemokines mediate the organization of the 

cellular part of innate immunity. The cellular components of the innate immunity, such as 

macrophages and neutrophils, detect and phagocytise foreign cells and release cytokines, as 

well as chemokines to promote inflammation. Damaged cells trigger mast cells and basophils 

to release histamine. Consequently blood vessels dilate and get permeable to facilitate white 

blood cells to move to the site of infection. In addition natural killer cells of the innate 

immune defense attack virus infected cells and tumor cells by releasing damaging enzymes. 
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Figure 1: Overview of the immune system1 

The immune system consists of two interactive networks- the innate and the adaptive immune system. The 
innate immune system includes soluble substances, like antimicrobial molecules, cytokines/chemokines and 
the complement system, as well as effector cells, like dendritic cells, macrophages and granulocytes. The 
adaptive system is composed of chemical active substances like cytokines/chemokines and antibodies. T and B 
lymphocytes play a major role in specific recognition and clearance of pathogens. Characteristic for the 
adaptive immune system is the immunological memory. 

The innate and adaptive immune systems communicate at several interfaces. When 

microbes overcome the innate immune system, the adaptive immunity answers with a 

specific antigenic response and the applied immunological memory allows recognition of 

pathogens for a faster clearance of the infection. To initiate the adaptive immune response, 

phagocytes (e.g. dendritic cells) present antigens to lymphocytes. Thymus derived 

lymphocytes mature to effector T-lymphocytes. CD8+ cytotoxic T-cells kill infected human 

cells. CD4+-TH1-cells stimulate macrophages to kill intracellular parasites and CD4+-TH2-cells 

in combination with antigens activate B-cells to antibody producing plasma cells. Antibodies 

bind specific to epitopes on the surface of pathogens and depict the basic part of the 

humoral immune answer in adaptive immunity. Phagocytes recognize the constant part of 

the bound antibodies with the Fc receptor. Consequently the phagocytes uptake and kill the 

pathogen. In addition pathogen bound antibodies activate the innate complement system. 

Furthermore cytotoxic γδ-T-cells and natural killer T-cells act as link between innate and 

adaptive immune system. 

The innate immune system 

The innate immune system abolishes infections of the human body with foreign substances 

for the most part, demonstrating a well structured and effective system of cellular and 

humoral components. Chemical components of the innate immune system coordinate the 

cellular network. Cytokines and chemokines target cells of the innate and adaptive immune 

system and induce inflammatory responses.  
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Recognition of foreign cells by the innate immune system 

The central step to induce the immune system is the discrimination between self and foreign 

cells and particles. The innate immune system use germline encoded receptors for 

recognition of microbes in comparison to the adaptive immune system, which is based on 

receptors that are produced by somatic recombination. Innate pathogen recognition 

receptors (PRR) are genetically predetermined and thought to be in the hundreds. 

PRRs bind pathogen-associated molecular patterns (PAMPs). These PAMPs are exclusively 

microbe derived. Common PAMPs are lipopolysaccharid (LPS), peptidoglycan, lipoteichoic 

acid, mannans, bacterial DNA, double stranded RNA and glucans. PRRs are divided into three 

groups of endocytic PRRs, signaling receptors and secreted proteins. Endocytic PRRs are 

arranged on the surface of phagocytes. Binding of endocytic PRRs to on the microbial surface 

expressed PAMPS results in uptake and processing of the invader. Microbe derived proteins 

are presented by major MHC complexes on the surface of the phagocyte. Typical endocytic 

PRRs are the macrophage mannose receptor or scavenger receptor. Signalling receptors 

recognize PAMPs and induce expression of immune response genes, like inflammatory 

cytokines. Typical signaling receptors are the toll like receptors (TLR). Secreted proteins, like 

the mannan binding lectin binds microbial carbohydrates and thus initiate the mannan 

binding lectin pathway of complement activation. 

PRRs play a crucial role in the induction of the adaptive immune system. Failure in the innate 

immune recognition results in absence of an antigen specific adaptive immune response. 

The humoral components of the innate immune system 

Chemical components of the innate immune system coordinate the cellular network and 

take part in the clearance of foreign or abnormal cells. Different groups of humoral effector 

substances are defined. Inflammatory lipid metabolites, such as platelet activating factor 

(PAF) function as phospholipid activator and mediate leukocyte functions, like platelet 

aggregation, inflammation and anaphylaxis. Others like the derivates of the arachidonic acid, 

such as prostaglandins regulate physiological effects, such as smooth muscle cell contraction 

and relaxation. Leukotrienes mediate histamine production and chemotaxis of neutrophils, 

have effects in bronchoconstriction and increase vascular permeability2. Lipoxins inhibit 
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transmigration, superoxide generation and NFκB activation, but also stimulate chemotaxis of 

polymorphonuclear cells (PMNs) and calcium mobilization3.  

Antimicrobial peptides or substances directly kill microbes or initiate inflammatory response. 

Lactoferrin and transferrin limit bacterial growth by binding ion, an essential nutrient for 

bacteria. Enzymes like lysozyme or phospholipase found in tears, saliva or nasal secretions 

destruct bacterial cell walls. Epithelial cells and phagocytes contain antimicrobial peptides, 

such as defensins or cathelicindins (LL-37)4. These peptides disrupt the integrity of microbial 

membranes by forming pores, which leads to disruption of the osmotic stability of the cell5. 

LL-37 exhibits additional biological functions, it attracts neutrophils, monocytes, mast cells 

and T-cells, initiate degranulation of mast cells, regulates transcriptional response of 

macrophages, stimulates wound vascularization and re-epithelarization of the skin6. Various 

defensins attract monocytes, dentritic cells and T-cells or act as an antagonist to 

adrenocorticotropic hormone (ACTH) by binding the ACTH receptor. This inhibits the 

production of the immunosuppressive hormone cortisol and thus support immunological 

answer to infections7. 

Nitric oxide acts as a potent vasodilator and is generated by phagocytes after IFN-γ 

stimulation by inducible nitric oxide synthetase (iNOS). Free nitric oxide radicals act toxic on 

bacteria by damaging DNA and by degradation of iron sulphur centers into iron ions8. 

Three zymogen cascades generate proinflammatory peptides, the complement system, the 

coagulation system and the kinin system. Initiation of the intrinsic pathway of coagulation 

leads to the cleavage of kininogen and the release of antimicrobial acting bradykinin9. 

Platelets produce β-lysine during aggregation, which acts antimicrobial on gram positive 

bacteria.  

In answer to inflammation liver cells release acute phase proteins, such as the C-reactive 

protein, the mannose binding protein, complement factors, ferritin, ceruloplasmin, serum 

amyloid A, haptoglobin, which stimulate inflammation or serpins, which give a negative 

feedback on inflammatory response. 
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Table 1: Role of cytokines/chemokines in actute inflammation  

name effect source Chromo. 

cytokines    

Interleukin-1 (IL-1) enhance PGE2  fever, 

stimulate T-cell proliferation, 

stimulate release of histamine  from mast cells  histamine 

trigger vasodilation and increase vascular permeability, 

stimulate  release of collagenase  and PGE2 by synovial cells 

mononuclear 

phagocytes, 

fibroblast, 

keratinocytes,   

T- and B-cells 

2 

Tumor necrosis factor-α 

(TNF-α) 

stimulate PGE2  fever, 

induce release of  IL-1, 

stimulate  release of collagenase and PGE2 by synovial cells 

induce production of acute phase proteins by the liver, 

stimulate IL-6 synthesis 

activated 

macrophages 

and monocytes, 

fibroblast, mast 

cells, some T- 

and NK cells 

6 

Tumor necrosis factor-β 

(TNF-β) 

properties like TNF-α, 

induce apoptosis in transformed, virally infected and tumor 

cells, 

stimulate several PMN effector functions 

activated T- and 

B-cells 

6 

Interleukin-6 (IL-6) production of acute phase proteins by the liver, 

growth factor for mature B-cells, induce B-cell maturation to 

plasma cells, 

induce T-cell activation and maturation, 

induction of IL-2 and IL-2 receptor expression, 

inhibition of TNF production and limiting acute phase 

response 

mononuclear 

phagocytes, 

fibroblasts, 

T-cells 

7 

Interleukin-11 Proliferation of plasmacytoma cell lines, production of acute 

phase proteins by the liver, stimulate T-cell dependent B-cell 

IgG secretion, increase platelet production, induce IL-6 

expression by CD4+ T cells 

Bone marrow 

stromal cells, 

fibroblasts 

19 

Colony stimulating 

factors (CSF)-G-CSF, GM-

CSF 

stimulate neutrophils, 

GM-CSF activate eosinophils and mononuclear phagocytes 

monocytes, 

T-cells, 

fibroblasts, 

endothelial cells 

17 

chemokines    

Interleukin-8 (IL-8) endothelial adherence, diapedesis, chemotactic migration  

and activation of neutrophils and other cell types (e.g. 

monocytes, lymphocytes, basophils, eosinophils) 

 

phagocytes, 

Antigen 

activated 

T-cells, 

endothelial and 

epithelial cells, 

neutrophils 

4 

prostaglandin E2 (PGE2), IL-1 receptor antagonist (IL-1Ra), immunglobulin G (IgG), Chromo.=Chromosome 
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Cytokines and chemokines play a key role in organizing the cellular component of the innate 

and adaptive immune system. These soluble proteins are involved in leukocyte recruitment 

by increasing expression of endothelial adhesion molecules and act as chemo attractants. 

Cytokines regulate the activation of resident cells, such as fibroblasts, endothelial cells, 

tissue macrophages and mast cells, as well as newly recruited cells, such as monocytes, 

lymphocytes, neutrophils and eosinophils. Functions of these mediators result in fever, 

hypotension, synthesis of acute phase proteins, leukocytosis and cachexia10. Important 

cytokines/chemokines, which are involved in acute inflammation, are listed in Table 1. 

The cellular components of the innate immune system 

Innate immune effector cells play important roles in the clearance of microbes, initiation of 

inflammation and activation of the adaptive immune response. The cellular barrier of the 

innate immunity is composed of neutrophils, macrophages, dentritic cells, eosinophils, 

basophils, mast cells and natural killer cells. As a key component in infection, neutrophils act 

as potent phagocytes, stimulators of innate and adaptive effector cells, undergo the 

respiratory burst and degranulate in response to infective agents. Neutrophils secrete TNF 

and other cytokines, which influence differentiation, activation and chemotaxis of 

macrophages and dentritic cells and recruit and activate antigen presenting cells (APC). 

Secreted IFN-γ helps to drive differentiation of T-cells and activation of macrophages. 

Otherwise neutrophils can also function as supressors of the T-cell activation. The 

neutrophils derived B-lymphocyte stimulator (BLys) is involved in B-cell proliferation and 

maturation. In addition neutrophil produce proteases, like Cathepsin G, neutrophil elastase, 

protease 3 or matrixmetalloproteinases (MMPs). Even neutrophil chromatin defends against 

microorganisms by trapping them in extracellular nets, which are decorated with proteases 

from azurophil granules (α-defensins and myeloperoxidase (MPO))11. Polymorphnuclear cells 

(PMN) contribute to collateral tissue damage that occurs during inflammation.  

Macrophages and dentritic cells act as phagocytes and kill microbes intracellularly. The 

stimulation of macrophages with cytokines are followed by the production of reactive 

oxygen species (ROS) and microbicidal substances in response to INF-γ, as well as by 

increased tissue repair and suppression of inflammation in response to Interleukin (IL)-4, 

IL-10, IL-13 and transforming growth factor-β (TGF-β)12. In cause of the ability to present 

antigens, macrophages and dentritic cells induce the adaptive immune system. Dentritic 
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cells (DC) display an extraordinary capacity to stimulate native T cells and initiate the primary 

immune response. Furthermore DCs play a role in the induction of peripheral immunological 

tolerance and regulate the types of T cell immune response 13. 

Eosinophils comprise granules, which efficiently kill parasites. Basophil and mast cell 

activation is initiated by the crosslinking of FcεRI bound IgE with multivalent antigen, which 

promotes the aggregation of FcεRI. Activated mast cells or basophils synthesis 

proinflammatory lipid mediators, secrete cytokines and chemokines or degranulate 

vasoactive amines, neutral proteases, proteoglycans, cytokines and growth factors14. Natural 

Killer cells (NK) distinguishes between healthy and abnormal cells and thus attack virus 

contaminated human cells and tumor cells. Therefore NKs use comparable killing mechanism 

like CD8+ cytotoxic T lymphocytes (e.g. perforin and granenzymes) and secrete 

proinflammatory acting IFN-γ15. 

The adaptive immune system 

When a pathogen evades the innate immune system and generates a threshold level of 

antigen, the adaptive immune system is triggered. It is composed of highly specialized cells 

that recognize, eliminate and remember specific microorganisms to generate immunity. The 

adaptive immune system is able to differentiate between specific “non-self” antigens and 

“self” motifs. The recognition of specific microorganisms or microorganism infected cells is 

tailored by V(D)J recombination and somatic hypermutation in the gene region of the 

antigen receptors. These mechanisms allow a small number of genes to generate a vast 

number of different antigen receptors on the surface of lymphocytes, which specifically 

binds pathogen derived antigens. Receptor specificity is stored after an accomplished 

infection in memory B cells and memory T cells, which mediate long-lived specific immunity. 

Recognition of foreign cells by the adaptive immune system 

The adaptive immune system recognizes antigens from microorganisms, parasites or 

infected host cells, but not antigens from the host. All nucleated host cells possess ability to 

present antigens by using the major histocompatibility complex I (MHC I) and activate 

adaptive response. Professional APCs, like dentritic cells, B-cells and macrophages express 

the MHC II. For example dentritic cells engulf and process microorganisms, undergo 

maturation and present antigens using MHC II to CD4+ T helper cells passing through the 
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lymph node. Infected host cells processes and presents antigens of the infecting microbe by 

MHC I to cytotoxic CD8+ T cells. The cytotoxic CD8+ T cell release perforin, granzymes, and 

granulysin. Perforin forms pores in the membran of the cell and enables granzymes to 

activate the intracellular caspase system. This leads to apoptosis of the infected cell. In 

addition cytotoxic CD8+ T cell induce apoptosis of infected cells by binding of the FAS ligand 

to the FAS receptor on the target cell. 

The humoral components of the adaptive immune system 

The humoral immune response of the adaptive immunity is mainly mediated by plasma-cell 

derived immunoglobulins. Immunoglobulins are also named antibodies and are classified 

into five groups: IgA, IgD, IgE, IgG, and IgM, which differ in its biological role and deal with 

different antigens. Antibodies recognise and neutralise foreign antigens of microorganisms 

or foreign cells. Each antibody recognizes a specific antigen unique to its target. Antibodies 

which bound their antigen fulfil different functions: They agglutinate the antigen, opsonise 

the target for removal by phagocytes and activate the classical pathway of the complement 

system, which induces lysis of microbial cells. Furthermore, antibodies stimulate 

Fc receptors on the surface of immune cells, like macrophages, dendritic cells, PMNs, 

mast cells and natural killer cells. Based on the type of antibodies, the different types of 

FcγR (IgG), FcαR (IgA) and FcεR (IgE) are defined. FcRs bind the Fc part of antibodies, which 

bind the antigen via the Fab portion, and thus initiate a cellular response like phagocytosis or 

cytokine release. FcγRIII on the surface of natural killer cells gets activated by IgG and 

promotes the release of proinflammatory cytokines, like IFN-γ or apoptosis inducing 

mediators, such as perforins and granzymes. This process is known as antibody-dependent 

cell-mediated cytotoxicity (ADCC). IgE binds to allergens-and interacts with FcεRI receptors 

on the surface of mast cells to induce a degranulation. The released granula contains 

histamine, proteoglycans, and serine proteases. Parasites which are not accessible for 

phagocytosis are coated with IgE and recognized by FcεRI on the surface of eosinophils and 

mast cells. Eosinophils release mediators, like the major basic protein and enzymes such as 

peroxidase, attack and kill helminths16, 17. In addition activated mast cells synthesise 

proinflammatory mediators, such as prostaglandins, leukotrienes, and platelet-activating 

factor, as well as cytokines and chemokines to mediate clearance of parasite infections18, 19. 
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The cellular components of the adaptive immune system 

The main cell types of the adaptive immune response are T- and B-lymphocytes. Whereas 

B-cells play a crucial role for the humoral immune answer; T-cells mainly act in the cell 

mediated response of the adaptive immune system. Different types of T-cells mediate 

specific functions in organisation of the cell mediated immune attack. CD 4+ T helper cells 

(TH), activate immune cells like macrophages or B-cells, CD 8+ cytotoxic T cells (Tc or CTL) 

eliminate infected host cells, longliving CD 4+ memory T cells facilitate memory and 

regulatory T cells maintain tolerance against self cells and molecules 

(suppressor T cells, Treg). 

B-cells are also divided into different functional groups. B2-lymphocytes are activated upon 

recognition of their specific antigen and mature to plasma cells, which secrete large amounts 

of a specific antibody. Other antibody secreting B-cell types are the B1 cells, marginal-zone 

B-cells and follicular B-cells. Memory B-cells exhibit function in immunological memory. 

Types of T- and B-lymphocytes and their functions are listed in Table 2. 
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Table 2: Effector cells of the adaptive immunity 

name effect reference 

T cells   

T helper cells B cell maturation, activation of cytotixic T cells and macrophages, 

cytokine secretion 

 

      TH1 Induced by intracellular protozoa, respond with cell mediated immunity, 

secrete IFN-γ and TNF-β, acts on macrophages and CD8+ T cells 

20, 21 

….. TH2 Induced by intestinal helminthes, respond with induction of the humoral 

immunity, secrete IL-4, IL-5, IL-6, IL-10, IL-13, acts on B-cells 

20, 21 

….. TH3 (adaptive Treg) secretes transforming growth factor beta-1 (TGF-beta1), down regulates 

TH1 and TH2 response  

22 

….. TH17 Acts in inflammation, immune defense and auto immunity, secrete 

IL-17, TNF-α, IL-1, IL-22 

23 

……TFH regulates B cell immunity, secrete IL-10 and IL-21 to promote B-cell 

survival and antibody production 

24-26 

Cytotoxic T cells Lysis of virally infected and tumor cells, implicate transplant rejection 27, 28 

Memory T cells Immunological memory, 29 

…..TCM (central memory) express L-selectin and chemokine receptor CCR7, secrete IL-2  

…..TEM (effector memory) Secrete IFN-γ and IL-4  

Regulatory T cells Immunological tolerance, suppress T cell mediated immunity and 

autoreactive T cells 

25, 30 

Natural killer T cells bridges the adaptive immune system with the innate immune system, 

NKT cells recognize MHC-antigen complexes and glycolipid antigen 

presented by CD1d, functions as discribed to both Th and Tc cells 

31 

γδ T cells γδ TCR, respond to small non-peptidic antigens, Vγ9/Vδ2 respond to 

phosphoantigens, Vγ2/Vδ2 recognize and respond to non peptidic 

antigens of bacteria and parasites and haematopoietic tumor cells 

32 

B cells   

Plasma cells (B2) antibody production, APC  

B1 cells polyspecific receptors, IgM>IgG production  

Marginal zone B cells noncirculating, immune defense against systemic blood-borne antigens,  33, 34 

Follicular B cells function as a guidance system for mature resting B cells in peripheral 

lymph nodes 

35 

Memory B cells immunological memory  
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The complement system 

The complement system is an evolutionarily ancient defense system. The complement 

system is next to the coagulation system, the kinin system, and the fibrinogen system as a 

triggered enzyme cascade. About 30 proteins in plasma, the extracellular matrix and on the 

cell surface are involved in complement activation, regulation and its effector functions. 

Since it is part of the innate immunity it can be activated within minutes after contact to 

foreign cells or immune complexes. Therefore mannan binding lectin recognizes surfaces of 

microorganism or C1q binds to antigen-antibody complexes. Products of the activated 

complement system are involved in opsonization of cells for phagocytosis and lysis of 

microorganism, foreign cells or cell waste. Thereby a central aspect of complement is the 

disposal of microorganism and foreign substances, but also the removal of immune 

complexes and apoptotic/necrotic cells to keep the body’s homeostasis. Furthermore 

complement acts in the coordination of the cellular immune response and thereby bridges 

the innate and adaptive immune response. 

Activation of the complement system 

The activation of the complement system occurs by three different pathways- the 

alternative, the mannan binding lectin and the classical pathway. 

The alternative pathway 

The alternative pathway (AP) is activated spontaneously by conversion of soluble C3 to 

C3(H2O), which results in the formation of an reactive thioester. Consequently C3(H2O) 

together with the Factor B cleavage product Bb generate the initial C3 convertase 

(C3(H2O)Bb), that activates C3 into C3b and the anaphylatoxin C3a. C3b bind close to the site 

of its generation covalently to nucleophiles at cell surfaces, immune complexes or 

carbohydrates. Deposited C3b forms the alternative C3 convertases (C3bBb), which induces 

a positive feedback loop of the cascade and thus initiates the amplification of C3b on the 

surface. Not deposited C3b is inactivated within a split second by water molecules. 
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Figure 2: complement activation pathways36 

Complement activation occurs via three pathways- the alternative, the mannan binding or lectin or the classical 
pathway. Activation of the alternative pathway happens spontaneously by binding of C3b to hydroxyl groups 
on carbohydrates on the surface. The mannan binding lectin pathway is initiated by a complex of mannan 
binding lectin, the mannan binding lectin associated proteases (MASP 1/2) and mannans on the surface of a 
bacterial cell. The classical pathway is activated by the binding of C1 to antibodies, which detects antigens on 
bacterial cells. All pathways converge in the generation of the C3 convertase. The C3 convertase cleaves C3 into 
C3b and C3a. C3b binds the C3 convertases to form the C5 convertase. The C5 convertase cleaves C5 in C5b and 
C5a. C5b initiates the terminal pathway. C5b binds C6, C7, C8 and several molecules of C9 to form the lytic 
membrane attack complex in bacterial membranes. 

The classical pathway 

The classical pathway (CP) is induced by binding of C1q, which is the sensor domain of C1, to 

immunoglobulins, pentraxins, polyanions, viruses, marker of damaged cell, prions or 

amyloid37-41. Consequently C1 conformation change and C1 component r cleave C1s. The 

activated C1s display an active serine protease, which cleaves C4 in C4b and the 
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anaphylatoxin C4a42. C4b binds to hydroxyl groups on surfaces and recruits C2, which is also 

cleaved by C1s in C2b and C2a Cleavage products C4b and C2a result in the active 

C3 convertase (C4bC2a) of the classical pathway.  

The mannan binding or lectin pathway 

The mannan binding lectin pathway (MBL) is initiated by the binding of mannan binding 

lectin to carbohydrates on the surface of microorganisms. This binding activates the mannan 

binding lectin serine proteases MASP1 and MASP2, which are homolog to C1r and C1s. 

MASP1 cleaves MASP2. Subsequent MASP2 cleaves C4 in C4b and the anaphylatoxin C4a. 

C4b recruits C2 and MASP2 cleave C2 in C2b and C2a. The major fragments C4b and C2b 

form the central C3 convertase C4b2b. 

The terminal pathway 

The C3 convertases of the alternative, the classical and the mannan binding lectin pathway 

cleave C3 in to C3b and C3a. Freshly generated C3b forms with the central C3 convertases 

the C5 convertases (C3bBbC3b, C4b2a3b) on surfaces, which cleave C5 into C5b and the 

anaphylatoxin C5a. C5b can initiate the terminal pathway by an aggregation between C5b, 

C6 and C7. The C5b-C7 complex integrates into membranes in cause of its hydrophobicity 

and the ability to bind phospholipids. C5b-C7 binds the eight component of complement and 

generate the C5b-C8 complex to penetrate into the cell membrane. Finally the C5b-C8 

complex recruits up to 17 C9 molecules. Complexed C9 forms the pore of the so called 

membrane attack complex (MAC)43. MAC formation in membranes leads to a loss of cell 

homeostasis. The cell leaks cytoplasma and ions, which destabilize membrane potential. 

Moreover extracellular proteases attack the damaged cell. Consequently the cell lyses. 

The complement system and it`s biological roles 

(1) The induction of the terminal complement pathway results in the formation of the 

membrane attack complex (MAC). The MAC builds pores in membranes, such as gram – 

bacteria or unprotected human cells. Gram+ bacteria, as well as fungi are not attacked by the 

membrane attack complex as the cell wall is to thick to be penetrated by complement 

derived pores. Pore formation in membranes destabilized the osmotic balance and cause 

efflux of essential ions and nutrients. The terminal complement complex (TCC) is also formed 

in fluids like the plasma. This sublytic complex plays a role in inflammation by cell 
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proliferation and by rescuing apoptotic cells44, 45. C5b-9 initiate Ca++ influx and the 

generation of second messenger molecules, such as cAMP, inositol phosphate mediates or 

arachidonate metabolites during interaction with specific cell types46 (figure 5). 

 

Figure 3: formation of soluble TCC and membrane bound MAC43 

The terminal pathway of complement activation ends in the formation of either the soluble (TCC) or a 
membrane bound terminal complement complex (MAC). The MAC builds transmembrane channels, which 
results in the lysis of the cell. 

(2) Furthermore activated complement system leads to the deposition of complement on 

surfaces and therefore to the opsonisation for phagocytes. The complement derived 

proteins C3b, iC3b, C4b, C1q and MBL acts as opsonisins on phagocytes. C3b and C4b bind to 

the complement receptor 1 (CR1) on erythrocytes, neutrophils and macrophages and 

induces phagocytosis47. The fragments iC3b and C3d of the third complement component 

bind to complement receptor 2 (CR2) on B cells and trigger Ig class switching and the 

memory function. A bound C3d molecule enhances the response to an antigen by about 

20-fold. The enhancement is mediated by crosslinking of CR2 with IgM, thus CR2 amplifies 

signals and triggers a distinct signalling pathway48. The complement fragment iC3b is also 

recognised by complement receptor 3 and 4 (CR3/CR4) on the surface of 

monocytes/macrophages and neutrophils. And leads to phagocytosis of the opsonised 

particles either independently or in combination with the Fc receptor47, 49,50. Moreover 

complement opsonisation plays an important role in immune complex clearance from the 

circulation. The complement components C3b and C4b opsonise immune complexes, which 

results in the detection of the complexes by CR1 on the surface of erythrocytes. Erythrocytes 

transport the immune complexes in the liver or spleen where they give them up to 

phagocytes for destruction51.  

The q domain of the first component of the classical pathway binds C1q receptors on the 

surface of macrophages and induces phagocytosis. In addition the mannan binding lectins of 

the MBL pathway bind MBL receptors on phagocytes and likewise initiate phagocytosis. 

Terminal Complement Complex (TCC) 

Membrane Attack Complex (MAC) 
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(3) During complement activation the complement effector peptides C3a, C4a and C5a are 

formed. These complement fragments have a wide range of proinflammatory and 

antimicrobial activities. The complement effector peptides C3a, C4a and C5a act as potent 

chemoattractiv and anaphylatoxic agents. The active peptides activate endothelial cells and 

increases expression of adhesions, such as E-selectin, the intracellular adhesion molecule 1 

or the vascular cell adhesion molecule 1 on these cells52. Furthermore C3a, C4a and C5a 

initiate vasodilation to support the migration of lymphocytes through the endothelium and 

have spasmogenic on smooth muscles.  

 

Figure 4: C3a and C5a mediated extravasion of lymphocytes53 

The anaphylatoxins C3a and C5a increases leukocyte adhesion to the endothelium and transmigration into the 
interstitial tissue. In addition C3a and C5a stimulate mast cells to release histamine and proteases, which 
mediate vascular alterations. Macrophages recognize pathogens and induce innate immune response causing 
production of proinflammatory cytokines and chemokines, as well as antimicrobial eicosanoids. 

C3a and C4a, but not C5a displays antimicrobial activity. Effects of C3a on gram- bacteria E. 

coli and P. aeruginosa were comparable to the potent keratinocyte derived peptide LL-3754. 
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C3a receptors were identified on the surface of polymorphnuclear cells and monocytes55. 

C3a and C5a act on the body homeostasis. C5a mediates organ regeneration and 

neuroprotection, whereas C3a assists the release of progenitor haematopoietic stem cells56-

58. The cleavage product C5a binds C5aR and C5aL2, which are expressed on phagocytes and 

mast cells. C5a activated mast cells release histamine and activated phagocytes to express 

cytokines and chemokines, like IL-1 and TNF α59, 60. C5a activates the arachidonic acid 

metabolism in neutrophils and monocytes, which lead to the production of antimicrobial 

acting eicosanoid. In addition C5a is a potent chemo attractant for phagocytes36, 53 (Figure 4). 

 (4) Since complement acts onB cell- and T cell immunity, the linkage between innate and 

adaptive immunity by the complement system demonstrated61, 62.  

Regulators of the complement system 

Activation of the complement system normally leads to the removal of modified host cells, 

microorganisms and immune complexes, whereas host cells are protected against the 

complement attack. To keep this in balance several complement regulators have to protect 

self cells and tissues by fine adjusting activation and inhibition of complement. No or 

defective complement regulators ends in host cell damage and the inefficient removal of 

apoptotic cells and immune complexes causes secondary necrosis and pathology. Thus 

complement has to be carefully regulated. Regulators act mainly on four central steps in the 

complement cascade. They interfere in complement initiation (C1INH), in C3 convertase 

activation and C3b amplification (Factor H, FHL1, C4BP, Properdin), C5 convertase activation 

(CFHR1), in TCC activation and MAC formation (clusterin and vitronectin) and control the 

anaphylatoxins C3a, C4a and C5a (Carboxypeptidase N)63. Figure 6 displays action of soluble 

regulators within the complement system.  

Next to soluble complement regulators, surface bound regulators prevent self destruction by 

activated complement and control phagocytosis, leukocyte recruitment and inflammation. 

The complement regulators C1qR and SIGNR1 interact with C1q of the classical pathway and 

mediate cell adhesion, phagocytosis and inflammation64-66. The complement receptors (CR) 

CR 1-CR 4 interact with C3 fragments (C3b, C3dg, C3d and iC3b), C4b, C1q and Factor H to 

control C3b amplification, to enhance adhesion and phagocytosis and to regulate B cell 

function (CR2)48, 63 . Cell bound complement receptor of the immunoglobulin family (CRIg) 

acts in phagocytosis, T cell activation and control the alternative pathway of complement 
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activation67. The membrane cofactor protein (MCP) and the decay accelerating factor (DAF) 

interfere in C3b inactivation and accelerate the decay of the C3 convertase68. Cell bound 

protectin inhibit the formation of the TCC. Also the anaphylatoxins C3a and C5a bind to 

receptors like C3aR, C5aR and C5L2 to control immune cell recruitment and inflammation63.  

 

Figure 5: soluble regulators control the complement system 

Soluble complement regulators act in different steps of the complement activation. C1 inhibitor (C1INH) blocks 
the serine protease C1s and thus controls the initiation of the classical pathway69. Factor H and FHL1 act as 
cofactor for Factor I in C3b inactivation and accelerate the decay of C3 convertase and thus prevent 
amplification of C3b of the alternative pathway. C4BP exhibits same function like Factor H, but controls C3 
convertase of the classical and mannan binding lectin pathway. Properdin stabilizes C3 convertase of the 
alternative pathway and thus acts as an positive regulator of complement activation70. Clusterin and vitronectin 
interfere with components of the terminal pathway and avoid membrane integration and pore formation of 
the TCC71, 72. Carboxypeptidase N inactivates the anaphylatoxins C3a, C4a and C5a, which are generated during 
complement activation73. 

Factor H family 

The alternative pathway of complement activation is initiated spontaneously and 

continuously. To avoid complement activation on self surfaces, this pathway has to be 

strictly controlled. Major regulators of the alternative pathway are the members of the 

Factor H family. Best characterized is Factor H and the Factor H like protein 1 (FHL1). Five 

Factor H related members are identified (CFHR 1-5). 
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Table 3: Factor H family: ligands, functions and structure 

protein ligands function structure 

CFH C3b, C3c, 

C3d, 

heparin, 

CRP, 

microbial 

ligands 

C3b inactivation, 

acceleration of C3 

convertase decay, cell 

adhesion, enhances 

neutrophil adhesion and 

antimicrobial response 

 

 

 

FHL1 C3b, 

heparin, 

CRP, 

microbial 

ligands 

C3b inactivation, 

acceleration of C3 

convertase decay, cell 

adhesion 

 

 

CFHR1 C5b, 

microbial 

ligands 

inhibits C5 convertase 

and TCC formation, 

enhances neutrophil 

adhesion and 

antimicrobial response 

 

 

CFHR2   

 

CFHR3 C3b, C3d, 

heparin 

enhances FH cofactor 

activity  

CFHR4 C3b, C3d, 

CRP, 

necrotic 

cells 

enhances FH cofactor 

activity, opsonise 

necrotic cells by binding 

CRP 

 

 

CFHR5 C3b, 

heparin, 

CRP 

weak C3b inactivation, 

acceleration of C3 

convertase decay 
 

* Numbers represent amino acid homologies of the individual SCR domains to that of Factor H  and are given 
in [%] 

All members of the Factor H family are mainly produced in the liver and circulate in the 

human plasma. They are structurally composed of loop forming domains termed short 

consensus repeats (SCR). The Factor H and CFHR genes are located in the Factor H gene 

cluster on chromosome 1q32. Amino acid homologies of the CFHRs to Factor H are labeled 

within the structures in Table 3. 

Complement Factor H is the best characterized member of the Factor H family. This protein

is composed of 20 SCRs, in particular the SCRs 1-4 are defined as the N-Terminus and 

* 

* 

* 

* 

* 

* 
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SCRs 19-20 as the C-terminal region of the protein. Using deletion mutants of Factor H, the 

N-Terminus of Factor H were shown as region, which exhibits regulatory properties, such as 

cofactor activity for Factor I and C3 convertase decay accelerating activity. The C-Terminus 

binds to several ligands, like C3b, C3d, heparin or cell surface glycosaminoglycans and thus 

can discriminate between self and foreign surfaces74. Binding of Factor H to human cells 

regulates complement activation on self cells and thus avoids imbalance and secondary 

necrosis of misspent complement. The C-Terminus of Factor H is highly conserved within the 

members of the Factor H family, suggests similar functions of the C-Termini of CFHRs. Next 

to its complement regulatory function Factor H bind as an adhesion ligand to the 

complement receptor 3 (CD11b/CD18) on human neutrophils75. Increased attachment of 

C. albicans to neutrophils confirmed the binding of Factor H and also show binding of FHL1 

and CFHR1 to CR3 on neutrophils. Furthermore binding of Factor H and CFHR1 enhance 

release of reactive oxygen species and the antimicrobial acting lactoferrin from 

neutrophils76. FHL1 consists of the first seven SCRs of Factor H and additional four amino 

acids on the C-Terminus. The RGD motif in SCR 4 mediates cell adhesion and facilitates Ca++ 

dependent cell spreading of fibroblast77. CFHR1 regulates complement activation on the 

level of C5 convertase by inhibiting C5b cell surface attachment. Subsequently MAC 

formation in membrans is avoided78. CFHR3 enhance complement regulatory activity. CFHR4 

binds necrotic cells and the acute phase protein C-reactive protein (CRP) in its native 

pentameric form. CFHR4 bound CRP activates complement by the classical pathway, as 

determined by C3b fragment deposition, indicating a role of CFHR4 in opsonization of 

necrotic cells79, 80. CFHR5 enhance like CFHR3 the complement regulatory activity. CFHR2, 

CFHR3 and CFHR5 are poorly described. Functions in complement regulator competition on 

surfaces, but also independent functions of this proteins are under investigation81. 

The human skin 

The human skin builds a protective shield against chemical and microbial agents, thermal 

and electromagnetic radiation and mechanical trauma to keep the bodies homeostasis82. 

The human skin is consists of two main compartments-the outer epidermis and the inner 

dermis. The epidermis contains four main strata, the stratum corneum, stratum granulosum, 

stratum spinosum and stratum basale. The outermost stratum corneum mainly has barrier 

function to resist toxic agents and prevent dehydration. It comprises corneocytes, which are 
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dead keratinocyte derived cells that are devoid of organelles. The stratum granulosum is 

characterized by dark clumps of cytoplasmatic material; the cells produce keratin and lipids. 

The polygonal cells of the stratum spinosum (also known as pickle cell layer) start to 

maturate or divide to regenerate the cells of the stratum basale. The columnar cells of the 

stratum basale renew the cells of the whole epidermis. They produce keratins, which are 

different to the keratins of the stratum spinosum. The dermis contains broader cell diversity 

and is anatomical divers. Next to immune cells, fibroblasts and nerve related cell types, the 

dermis is drained with lymphatic and vascular vessels. 

 

Figure 6: layers of the skin196 

The epidermis contains four main strata-the stratum corneum, stratum granulosum, stratum spinosum and 
stratum basale. The stratum corneum consists of keratinized squames. The following granular cells form the 
stratum granulosum. The polygonal cells of the stratum spinosum border on the columnar cells of the stratum 
basale. 

The immune system of the skin 

Streitlein described first in 1983 the skin as an immunological active tissue containing 

individual immune cells, which continually traffic between the skin, the draining lymph 

nodes and the circulation. He summarized his concept as skin-associated lymphoid tissue 

(SALT)83. Later on Bos improve this concept and the term skin immune system become 

accepted84. Different resident and circuiting immune cells in the skin were identified. 

Specialiced cells of the epidermis, e.g. keratinocytes, malanocytes, Langerhans cells and 

CD8+ T cells were detected in the stratum basale and the stratum spinosum. The dermis 

immune cells include DCs, CD4+ T helper cells, γδ T cells, (i) NKT cells, as well as 

macrophages, mast cells, fibroblasts and nerve related cell types. Table 4 summerizes skin 

immune cells, their surface markers and functions.
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Main cell type of the epidermis is the keratinocyte. Keratinocytes sense pathogens and 

danger signals by expressing pathogen recognition receptors (PRR) on their surface. 

Epidermal keratinocytes express toll like receptors TLR 1, TLR 2, TLR 4, TLR 5 and TLR 6 and 

on the endosomes TLR 3 and TLR 985, 86. TLR 7 can be induced by dsRNA-TLR 3 complexes on 

endosomes87. Activation of the TLR results in a predominant TH1-type immune response and 

to the release of type I interferons. Keratinocyte expressed nucleotide binding leucine rich 

repeat containing family proteins (NLR) recognizes pathogen and danger associated 

molecular patterns and results in the activation of the inflammasome (complex of NLR, an 

adaptor protein named ASC (apoptosis associated speck-like protein containing a caspase 

recruitment domain) and procaspase 1. Activated Caspase 1 cleaves pro IL-1β and pro IL-18 

to generate active proinflammatory cytokines, which activate tissue resident immune cells. 

In addition keratinocytes potently release antimicrobial peptides (AMP), like β defensins, 

cathelicidins (LL-37). Under inflammatory conditions T cell derived cytokines (TH17 response 

induced IL-17A, IL-22) increase the production of AMPs by keratinocytes88. Next to AMPs, 

keratinocytes produce numerous cytokines, like IL-1, IL-6, IL-10, IL-18 or TNF and 

chemokines, like CC-chemokine ligands 9, 10, 11 and 20 to attract effector T cells, CX-

chemokine ligands 1 and 8 (IL-8) to recruit neutrophils and CCL 20 to regulate the trafficking 

of Langerhans cells. The linkage between innate and adaptive immune system in skin is 

provided by non professional antigen presentation via MHC class II molecules on 

keratinocytes. Thus keratinocytes provide signals for T cell proliferation, induce functional 

response in epitop specific CD4+ and CD 8+ memory T cells, process antigens to present it to 

CD4+ T cells to initiate TH1 and TH2 response and to CD8+ T cells to initiate lysis and cytokine 

release89. Keratinocytes also induce T cell anergy and tolerance90. 

The main dentritic cell (DC) types in the epidermis are Langerhans cells, which include 

characteristic Birbeck granule and CD 1a on the surface. Langerhans cells process lipid and 

microbial proteins to T-cell and induce TH2 response and prime CD naive CD8+ T cells. 

Inflammatory dentritic epidermal cells (IDEC) express the macrophage mannose receptor CD 

206 and overexpress FcεRI91. Dermis derived DCs and macrophages induce T cell 

proliferation, and sense pathogens by the expression of TLR 2, 4, CD 206 and CD 209. 

Activated DC secretes cytokines and chemokines. TNF or inducible Nitric oxide synthase 

(iNOS) producing dentritic cells are known as TIP or IDC92. The early induction of 

plasmacytoid dentritic cells (pDC) leads to the initiation of innate immune response, 
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activation of myeloid DCs and consequently to an induced adaptive immune response93. 

Stressed skin cells release self DNA. Self-DNA in complex with the antimicrobial peptide 

LL-37 triggers TLR 9 activation in pDC, resulting in IFN-α production and in activation of the 

adaptive immune response94. Skin Macrophages, which express the scavenger receptor CD 

163 and the coagulation cascade component Factor XIIIa, stay sessil, but migrate under 

inflammatory conditions to the lymph nodes. 

Another important group of immune cells are T-cells. Next to memory T-cells and cytotoxic 

CD8+  cells, CD4+ TH cells that produce TH1, TH2 and TH17 response are identified. TH1 

response to intracellular infections leads to lymphotoxin and IFN γ production, and the 

activation of macrophages. TH17 response is essential for the defense against bacterial and 

fungal infections88. TH17 cells derived cytokines may link immune and epithelial cells to 

support immune response to skin infecting pathogens, e.g. IL-17 and IL-22 increase LL-37 

production by keratinocytes95. Unconventional T cell subsets like γδ T cells and (invariant) 

NKT are also identified in the skin. The functional role of these subtypes is less described. Γδ 

T cells have been shown to produce growth factors and may contribute to the production of 

AMPs96, 97. Invariant NKT recognize bacterial glycopeptides. The presentation of self derived 

glycopeptides by CD1d restricted NKT cells may contribute to keratinocyte activation98. 
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Table 4: skin immune sentinels 

cell types location Main surface 

markers 

function literature 

Keratinocytes Epidermis CD 1d+ Immune recognition by TLRs, DC and  T cell 

regulation and induction, neutrophils 

recruitment, nonprofessional APCs, antimicrobial 

protein (AMP) release 

56-61 

Langerhans cells Epidermis CD 1a, CD 207, 

MHC class II 

APC, possible immune tolerance induction 62 

Inflammatory 

dentritc 

epidermal cells 

(IDEC) 

Inflamed 

epidermis 

CD 11b, CD 23, 

CD 206, FcεRI, 

IgE, MHC class II 

Antibody-allergen response 63 

Dermal DC Dermis CD 1a, CD 1c, CD 

206, CD 209, 

MHC class II 

APC, cytokine and chemokine secretion  

Inflammatory DC 

(TIP DC) 

Inflamed 

dermis 

CD 11c TNF, NO production 63 

Plasmacytoid DC 

(pDC) 

Dermis CD 45Ra, CD123, 

CD 303, MHC 

class II 

AMP, pro and anti inflammatory mediator 

secretion, IL-6 and TNF dependent TH22 induction 

64,65 

macrophages Dermis CD 163, CD16, 

CD32, CD 64, 

factor XIIIa 

IFN-α production, self DNA-LL 37 complex 

recognition 

 

CD 8+ T cells Epidermis CD 2, CD 3, CD 

5,CD 8, TCR 

“cytotoxic”, kill antigen bearing target cells, 

effector cells in graft rejection 

 

Memory T cells Epidermis, 

dermis 

Cutanous 

lymphocyte 

antigen (CLA, CD 

4 or CD 8 

Skin-homing 82 

CD 4+ TH1 cells Inflamed 

dermis 

CD 2, CD 3, CD 

4,CD 5, TCR 

“inflammatory”, IFN-γ, lymphotoxin production, 

macrophage induction, intracellular  pathogen 

killing, promote skin DTH reactions 

88 

CD 4+ TH2 cells Dermis CD 2, CD 3, CD 4, 

CD 5 TCR 

“helper”, Stimulation of B cell proliferation and 

differentiation, produce IL-4 and IL-5, IL-13,IL-25 

clearance of helminthes 

88 

CD 4+ TH17 cells Dermis CD 2, CD 3, CD 4, 

CD 5 TCR 

defense against fungal and bacterial infections, IL 

17, IL 22, GN-CSF, Il 6 release, AMP induction in 

keratinocytes 

88 

γδ T cells Dermis CD 3, γδ-TCR NK like “cytotoxicity”, growth factor expression, 

AMP production, NKG2D dependent skin cancer 

regulation 

99 100 
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Invariant NKT 

cells (iNKT) 

Dermis CD 1d restricted 

TCR, CD 161, NK 

associated 

receptors (CD 

56,NCAM-1, 

NKG2D) 

Bacterial glycolipid recognition, clearance of 

infected cells by perforin pore formation and 

granzyme induced apoptosis, AMP production, 

keratinocyte induction, TNF dependent 

regulation of DC trafficking via α-

galactosylceramide activated iNKT,  

101 

melanocyte Epidermis  Produce melanin   

Mast cell Dermis CD 34, FCεRI Pathogen defense, wound healing, anaphylaxis, 

allergy by release of granule molecules 

(histamine, serine protease, serotonin, 

proteoglycans), eicosanoids (prostaglandine, 

leukotriene, PAF), cytokines 

102, 103 

fibroblast Dermis  Wound healing, secrete ECM precursors, growth 

factors, chemokines 

104 

 

The complement system in skin 

The complement system plays a crucial role in the defence against invading microorganism, 

in immune recognition and in activation of innate and adaptive immune components. 

Althought secretion of complement components and receptors by keratinocytes and 

Langerhans cells is described, less is known about the function of the complement system in 

skin105. 

Human keratinocytes constitutively expressed C3, C5, C7, C8γ and C9 mRNA, whereas C6, 

C8α and C8β mRNA were not detected. They secrete C3, C7 and C9, but not C5, C6 and C8, 

thereby C9 production is upregulated by TNF-α 106. In addition keratinocytes express Factor 

B, Factor I and the complement regulator Factor H 107,108,109. However, Langerhans cells and 

macrophages are shown to express C3 receptors110. 

Activation of the complement system results in lysis of gram negative bacteria by formation 

of the membrane attack complex (MAC) and formation of reactive complement fragments, 

which exhibit function as opsonisins, anaphylatoxins and antimicrobial substances. 

The complement fragments C3a and C5a were formed during complement activation of the 

AP/CP and act as potent chemo attractive and anaphylatoxic agents. C5a binds C5aR and 

C5aL2 which are expressed on phagocytes, mast cells, Langerhans cells, melanocytes and 

under inflammatory conditions on keratinocytes. C5a activated cells release cytokines and 
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chemokines, which attract phagocytes to the site of infection. In addition C5aR stimulation 

on DC induces Th1 response and MHC II upregulation to enhance antigen presentation. C3a 

and C4a, but not C5a displays antimicrobial activity. Effects of C3a on gram- bacteria E. coli 

and P. aeruginosa were comparable to the potent keratinocyte derived peptide LL-37. 

Overview of dermatophytes 

      Introduction dermatophytes 

Dermatophytes are defined as fungi, which causes superficial infections in humans and 

animals. These fungi belong to the phylum of Ascomycota and are dedicated in the 

anamorph classification of Trichophyton, Microsporum and Epidermophyton. Teleomorph 

species related to the genus Arthroderma. Morphological, growthing of dermatophytes 

occur filamentous. Dermatophytes were transmitted by direct contact to infected skin of 

humans and animals, like rodents, dog or horses. In addition infection is transmitted 

indirectly by infected exfoliated skin in clothing, combs and shoes. Infections termed Tinea 

or ringworm. Infections of the nails are known as onychomycosis. Since dermatophytes 

nutrilize keratin, infections usually limited in the upper layer of the skin- the stratum 

corneum. 

Immune response to a dermatophyte infection 

The immune system reacts on a dermatophyte infection with a cell mediated response of 

the delayed type hypersensitivity (DTH). Main players of the DTH are macrophages and some 

key cytokines, like Interferon-γ (IFN-γ).  CD 4+ T cells get activated by antigen presentation 

via MHC class II molecules and respond with a TH1 immune answer. Thus the 

proinflammatory cytokine IFN-γ is released and activate macrophages. The DTH reaction is 

associated with lower titers of IgG directed toward dermatophyte antigens and the absence 

of IgE and IgG4111. DTH response leads to the clearance of dermatophyte infections112. In 

contrast chronic dermatophyte infections were associated with immediate hypersensitivity 

(IH) reactions113. IH response results in less inflammation and a predominantly TH2 response. 

TH2 mediated release of IL-4 activates B-cells to switch the isotype of the antibodies to IgE 

and IgG4. The binding of antigen to IgE on the surface of mast cells leads to cross-linking of 

IgE, the degranulation of mast cells and following release of proinflammatory mediators and 

histamine114. 
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Innate immunity response is instrumental for the cell mediated response. Phagocytes ingest 

fungal cells or inhibit fungal growth, trigger inflammation and present fungal antigens to T-

cells. The interactions of dermatophytes and macrophages were analysed concerning 

morphological and immunological changes. Macrophage derived anti inflammatory cytokine 

IL-10 and TNF-α, which favours the growth of intracellular pathogens was upregulated under 

infectious conditions. Simultanous class II MHC, CD54 and CD80 costimulatory molecules, 

nitric oxid and IL-12 were downregulated115. After the intracellular differentiation of conidia 

into hyphae inside of macrophages, cell membrane breaking causing the death of this 

immune effector cells. Dense infiltration of neutrophils in infected areas of the skin were 

detected116. Consequently the respiratory burst and phagocytosis is enhanced during 

dermatophytosis. Even so long periods of neutrophil incubation with T.rubrum resulted in 

increased fungal viability117. Humoral components, like the complement system get 

activated during incubation with dermatophytes. Incubation of human serum with T.rubrum 

increases chemotaxis and adhesion to neutrophils. Consequently complement-opsonized 

spores, but not hyphae were killed by neutrophils118. Dentritic cells modulate and initiate 

immune response in skin. Immature DCs process antigen, get activated by LPS, cytokines, like 

IL-1β, GM-CSF and TNF-α and thus migrate to the lymph nodes and the spleen to activate 

naive antigen specific T cells. During maturation process DCs upregulate IL-12 release, which 

induce cell mediated response to intracellular pathogens by NK and T cell mediated INF-γ 

production119, 120. 

To understand pathophysiological mechanisms underlying an infection, interactions 

between fungal cells and keratinized tissues were examined. Immune recognition of fungal 

cells, like C.albicans occur via a TLR 2-dependent mechanism. It remains to be determined 

whether dermatophytes also activate TLR 2. Dectin-1 was shown to be expressed on DC and 

macrophages and mediates cellular response to conidia by inducing pro-inflammatory 

cytokines121. Sato et al showed that dectin-2 binds fungal hyphae, including T. rubrum 

hyphae, which results in upregulation of the expression of TNF-α amd IL-1 receptor 

antagonist122. Human keratinocytes react with the release of IL-8 in the presents of 

dermatophyte antigens like Trichophytin123. The cytokine IL-8 induces the accumulation of 

neutrophils in the stratum corneum.  
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 Dermatophyte virulence factors 

Pathogenesis of dermatophytes is poorly described. Some virulence factors contribute to the 

adhesion process and to immune modulation of the host cellular response during infection 

are defined. 

Adhesion to epithelial cells is mediated by T.rubrum expressed carbohydrate specific 

adhesins on the surface of microconidia 124. T. mentagrophytes adhesion may contribute to 

the development of long, sparse fibrilis, which connecting the fungus to the keratinocytes125. 

Trichophyton spp. and M.canis produced dipeptidylpeptidase IV (DppIV) could act like 

P. gingivalis DppIV in binding of fibronectin and thus mediate adhesion126.  

Genes for thioredoxin and and cellulose homologue in T. mentagrophytes were upregulated 

during growthing on medium supplemented with skin extracellular matrix proteins. 

Thioredoxin could activate fungal or host proteases or act against host derived reactive 

oxygen species127. 

T. rubrum cell wall mannans (TRM) inhibit lymphoproliferative response of mononuclear 

leukocytes in response to dermatophyte derived antigens and mitogens and bind selectively 

to human monocytes128, 129. Contrary TRM are also the major T-cell antigen130. In addition 

TRM may inhibit the turnover of the stratum corneum131. 

Dermatophyte secreted proteases 

To utilize the keratin of the stratum corneum as a nutrient, dermatophtes secrete 

keratinolytic proteases, like multiple subtilisin- (serine) and fungalysin- (metallo) 

endoproteases132. Essential for the degradation of keratinized tissues is the reduction of the 

disulphide bridges of the insoluble protein network, consisting of cysteine rich loricrin and 

prolin containing proteins by sulfite efflux pumps encoded by the ssu1 gene133. Sulfite 

excretion leads to sulfitolysis of the proteins and make the accessible to the activity of fungal 

proteases134. 
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Figure 7: keratinized tissue degradation by dermatophytes133 

Dermatophytes excrete sulphite to reduced disulphite bonds within the insoluble keratinized protein network. Reduced 
polypeptide chains were attacked by dermatophyte derived endo- and exopeptidases to make amino acids and dipeptides 
susceptible for nutrilisation. 

Dermatophyte secreted endo- and exoproteases were encoded by 20 genes, not less than 15 

encoded proteases are secreted in vitro during growth on protein medium. Next to 

endoproteolytic acting seven subtilisins (SUB) and five metalloproteases (MEP), also 

exoproteolytic acting two leucine aminopeptidases and two dipeptidyl-peptidases were 

identified as dermatophyte secreted proteases (Table 5). 

Some secreted proteases of dermatophytes, like Subtilisin 3 (Sub 3) and metalloprotease 3 

(Mep 3) from M. canis induce specific immune response135, 136. The protease antigens Tri r2 

and Tri t4 elicit delayed-type or immediate hypersensitivity response. Tri r2 antigen is part of 

the SUB 6 protease of Trichophyton and Tri t4 was extracted from T. tonsurans mycelium 

and is the orthologue of DppV from A. fumigatus and T. rubrum 111. 
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Table 5: dermatophyte secreted proteases 

Protease 

familya 

Genesb proteases Molecular 

mass 

substrate inhibitor references 

M36 Mep1-

5 

Mep 1,3,4 40-48 kDa 

Zn dependent 

 Phosphoramidon, 

EDTA,  

137 

S8A Sub 1-7 Sub 2-7 30-37 kDa, 

not 

glycosylated 

N-Suc-Ala-Ala-

Pro-Phe-p-

nitroanilide 

(synthetic) 

PMSF, 

chymostatin 

138, 139 

S9B DPPIV DppIV 90 kDa 

N-linked 

carbohydrates 

X-Pro, X-Ala Lys-[Z(NO2)]-

pyrolidide, Lys-

[Z(NO2)]-

thiazolidide 

140 

S9C DPPV DppV X-Ala  

M28E LAP1 Lap 1 33 kDa 

Non 

glycolsylated 

Leucine-7-

amido-4-

methylcoumarin 

Sensitive to 

different ions 

140 

M28A LAP2 Lap 2 58-65 kDa 

M14 MCPA, 

MCPB 

McpA, 

McpB 

   133 

S10 SCPA, 

SCPB 

ScpA, 

ScpB 

   133 

a classification like MEROPS database b nomenclature adopted for T.rubrum and M. canis 

A. benhamiae as a model organism 

Most dermatophytes are difficulte to handle under culture conditions. Common 

dermatophytes, like Trichophyton rubrum or Trichophyton mentagrophytes are unsuitable 

for molecular examinations. A clinical isolate of A. benhamiae was shown to growth under in 

vitro conditions. Current works of the Leibniz-Institute for Natural Product Research and 

Infection Biology in Jena provide a fully sequenced genome of the dermatophytes 

A. benhamiae and Trichophyton verrucosum. In addition secretome analysis and 

transcriptome profiling of the interaction between A. benhamiae and human keratinocytes 

give molecular insights in the infection process and support work on pathogenesis of 

dermatophytes. Since transformation systems using A. benhamiae were developed, more 
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detailed informations about several proteins in the infection process can be obtained. 

Infection models in guinea pigs and reconstituted skin models are established and facilitate 

the research on immunological properties during dermatophyte infections. Thus 

A. benhamiae provided us the opportunity to use this fungus as a model organism to 

investigate dermatophyte host adaption and thus identify virulence factors of these fungi.  

Infections with the dermatophyte A. benhamiae were initially described in the US and 

subsequently also in Afrika, Asia and Europe 141, 142. This fungus causes high inflammatory 

infections, which causes dermatophytosis, like Tinea capitis, Tinea corporis and Tinea faciei 
143. Tinea manifests in a clinical picture by irregular alopecia, seborrheic dermatitis, rosacea, 

discois lupus erythematosus and contact dermatitis141, 144. A. benhamiae infects animals, like 

rodents, dogs or horses, but can also be transmitted to humans145-147. 

AIMS OF THIS PHD THESIS 

Dermatophytes are the major cause of superficial infections in humans and represent a 

prevalent worldwide health problem. Approximatly 10-20% of the world population is 

affected by dermatophytosis. However, fungal pathogenesis and immunological response of 

the human host, as well as fungal immune escape strategies are poorly understood so far. 

The characterization of e immune evasion of dermatophytes may help to identify new fungal 

targets that are helpful for therapy and will in addiotn expand our knowledge to defend such 

particular longlasting infections with dermatophytes.  

The complement system plays a crucial role in the clearance of infections. Complement 

activity in the skin is poorly described. Human keratinocytes secrete several complement 

components. If the secreted complement components act as a complete active complement 

system was unknown and question of this study. 

Furthermore dermatophyte interaction with the complement system is not examined in 

detail so far. Thus the attack of skin derived complement on A. benhamiae was analysed. 

Previous research on T. rubrum showed complement activation of serum during incubation 

with the fungus. In addition chemotactic factors are produced in serum, as shown by 

neutrophil attraction118. This indicates a role of complement in immune defense of 

dermatophytes. How complement affects the dermatophyte A. benhamiae was question of 

this work.  
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Furthermore dermatophyte infections are cleared by cell mediated immune answer. Thus 

dermatophytes may evade complement attack. If A. benhamiae inactivates complement and 

thus protect itself against complement attack was examined in the following assays. 

Aim of this work is to get an insight in humoral immunity against dermatophytes. Moreover, 

immune escape strategies of A. benhamiae were evaluated. Therefore complement-

dermatophyte interactions were examined. 
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MATERIAL AND METHODS 

Materials 

Sera, antibodies and proteins. Normal human serum (NHS) was obtained from healthy 

human donors or from the blood bank of the University Hospital of the 

Friedrich Schiller University, Jena, Germany. The study was approved by the ethical 

committee of the Friedrich Schiller University, Jena. Commercial goat-generated antisera 

against Factor H, C3, C4, C5 and C6 were used to detect Factor H and the members of the 

Factor H family; C3 and C3b; C4 and C4b; C5; and C6, respectively unless otherwise specified. 

Plasminogen antiserum obtained from goat was used to detect plasminogen and plasmin. 

Factor H and complement components antisera were obtained from Comp Tech, and the 

plasminogen antiserum was purchased from Calbiochem. Antiserum for CFHR1 and both 

monoclonal and polyclonal antibodies against fragments of Factor H were generated in our 

laboratory. Horseradish peroxidase-conjugated rabbit-anti-goat and goat-anti-rabbit sera 

(Dako Cytomation), and Alexa 647-conjugated rabbit-anti-goat serum (Invitrogen) were used 

for detection. Factor H fragments (SCR 1-4, SCR 1-7, SCR 8-11, SCR 11-15, SCR 15-18, 

SCR 15-19, SCR 15-20 and SCR 19-20) and CFHR1 fragments (SCR1-2, SCR 3-5) were 

generated in Baculo or Pichia pastoris expression system as described 148 .  

A.benhamiae wild type and Subtilisin 3 disruption mutant. A clinical isolate of 

A. benhamiae strain 2354 was kindly provided by Michel Monod 

(Centre Hospitalier Universitaire Vaudois, Lausanne)141. A. benhamiae Subtilisin 3 disruption 

mutant was kindly provided by Anke Burmester, department of molecular and applied 

microbiology, Leibniz Institut, Jena. 

 Cell culture 

A. benhamiae strains and growth conditions.  A. benhamiae was cultivated at 28°C on 

Sabouraud medium supplemented with 2% glucose or medium supplemented with Keratin 

(20 mM potassium phosphate pH 5.5, 0.4 mM magnesium sulphate, 77 mM sodium chloride, 

10g/l C/N source, 5 ml/l SL 8 micronutrient and 5 mM glucose) for 12 days. Fungal cells were 

extracted with isotonic water or DPBS (Lonza). Hyphae and conidia were separated by 

filtration using 0.2 μm filterunits (BD Bioscience). Conidia were counted using a cell counter 
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(Beckman, Coulter, Krefeld, Germany) or by using a Thoma chamber. Conidia were obtained 

after culturing A. benhamiae in water for over night. Culture supernatants were collected 

and concentrated using falcon concentrators (Amicon) with and cut off 10 kDa.  

Cell culture of the keratinocyte cell line HaCaT. The human keratinocyte cell line THP-1 was 

grown in DMEM supplemented with 10% fetal bovine serum (FBS) and ultraglutamatine 

UG-1(PAA) at 5% CO2 and 37°C. For experimental approaches HaCaTs were detached by 

adding trypsin/EDTA solution (PAA) and resuspended in DMEM without phenol red. Cells 

were counted using CASY-1 (Schärfe systems, Reutlingen).  

Cell culture of the monocyte cell line THP-1. The human monocyte cell line THP-1 was 

grown in RPMI supplemented with 10% fetal bovine serum (FBS) and ultraglutamatine 

UG-1(PAA) at 5% CO2 and 37°C. For cytokine release assays and phagocytosis approaches 

monocytes were centrifuged at 800 rpm for 5 minutes. Following THP-1 cells were 

resuspended in RPMI without phenol red and counted using CASY-1 (Schärfe systems, 

Reutlingen). 

Isolation of blood polymorphnuclear cells. Polymorphnuclear cells (PMN) were freshly 

isolated from human blood by density centrifugation using polymorphPrep solution from 

Progen Biotechnik GmbH (Heidelberg). Afterwards PMNs were washed in 0.45% NaCl 

solution. Contaminating erythrocytes were lysed by washing the PMN fraction with 

0.2% NaCl. The PMNs were washed with 1.2% NaCl and DPBS. Following cells were 

resuspended in indicator free RPMI medium. 

Viability assay. Viability assays were performed by using cell titer blue reagents. Living cells 

are able to deoxidise resorufin and thus generate the fluorescent end product resazurin. 

75.000 cells were seated in a 96 well plate and 100 μl resazurin solution from Promega 

(Mannheim) was added. Cells were incubated at 37°C and 5% CO2 for 4 h and resazurin 

fluorescence emission signal was measured at 570 nm by using fluorescence reader safire2. 

Methods 

Western Blot. Samples were separated by SDS-PAGE. Proteins were electrophoretical 

transferred to nitrocellulose membrane (Roth) for 1 h at 45 mA. After transfer, the 

membranes were blocked with 10% Roti Block in PBS II supplemented with 0.05%Tween 
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over night at 4°C. Specific primary antibody diluted 1:1000 in DPBS was incubated with the 

membrane for 2 h at RT. After washing, the membrane was incubated with an appropriated 

HRP-labelled secondary antiserum for 1h at RT. Following several washing steps, the blot 

was developed with ECLTM Western Blotting Detection Reagents (GE Healthcare). Detection 

carried out by 2 MF-ChemiBis 3.2 camera (Biostep). 

The Secretion of Factor H, CFHR1, C3 and plasminogen by human keratinocytes were 

determined in the culture supernatant of the human keratinocytes cell line HaCaT. 

Therefore, HaCaT was grown in DMEM supplemented with 10% fetal bovine serum (FBS), 

gentamicin and ultraglutamatine UG-1(PAA) at 5% CO2 and 37°C. For expression analysis 

keratinocytes were washed with DPBS (Lonza) and cultured in DMEM medium over night. 

Supernatant of keratinocytes was collected and concentrated ten times using a filter unit 

with a cut off 10 kDa (Millipore). Keratinocyte cultures were stimulated with 50-100 U/ml 

interferon-γ to detect Factor H and CFHR1 in the supernatant. Factor H was detected after 

Western blotting with monoclonal C18 antibody, which binds to an epitop in the C-terminus 

of Factor H. CFHR1, C3 and plasminogen were detected by appropriate antisera. 

To determine binding of the human proteins Factor H, CFHR1 or plasminogen to 

A. benhamiae, the fungus (500 μg dry weight) was washed with washing buffer 

(100 mM NaCl/50 mM Tris pH 7.4) and incubated with 50% NHS/PBS II for 1 h at 37°C. 

Following cells were washed five times with washing buffer. Bound proteins were eluted 

with 3 M KSCN, separated by SDS PAGE under non-reductional conditions, transferred to a 

membrane and detected with appropriate antiserum. 

Cofactor Assay. Purified human Factor H (1 μg) was bound to the surface of fungal cells for 

15 minutes at 28°C. Conidia were washed three times to remove unbound protein and 

purified Factor I (0.5 μg) and C3b (1μg) were added. The mixture was centrifuged at 3500 x g 

at 4°C and supernatant was separated in SDS-PAGE and C3b cleavage products were 

detected using Western blot. 

Complement cleavage assay. To characterize whether proteases secreted by A. benhamiae 

wild type or Subtilisin 3 disruption mutant cleave human complement components, purified 

C3a, C5a, C3b, C4b, C3, C4, C5 or C6 (1 μg) was incubated with supernatant (10 μl) obtained 

from A. benhamiae culture for 5-15 minutes at 37°C. After incubation, the mixture was 
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separated by SDS-PAGE under reducing conditions, transferred to a nitrocellulose membrane 

and detected with appropriated antiserum using Western blotting. 

Kinetics of C3b cleavage of A. benhamiae conidia in the presents or absence of Factor H was 

done. Purified human Factor H (1 μg) was bound to the surface of conidia for 15 minutes 

at 28°C. Cells were washed three times to remove unbound protein and purified 

Factor I (0.5 μg) and C3b (1μg) were added before incubation at room temperature. 

Additional conidia without Factor H and Factor I pretreatment were incubated with purified 

C3b (1μg) at room temperature. After one, five and ten minutes of incubation samples were 

taken from pretreated and untreated conidia. Treated and untreated conidia were 

centrifuged at 3500 xg at 4°C and supernatant were separated in SDS-Page. After 

transferring proteins to a membrane, C3b cleavage products were detected with 

C3 antiserum and HRP-labelled secondary goat antiserum. 

ELISA. Binding of human complement proteins or plasminogen to A. benhamiae cells and 

binding domains of A. benhamiae in Factor H and CFHR1 was identified using a cell based 

ELISA. Fungal cells (500 μg dry weight) were bound to a filter microtiterplate (Millipore) for 

1h at room temperature. Purified proteins (0.5-2.5 μg) or recombinant deletion mutants of 

Factor H and CFHR1 (1 μg) were added for 1 h at room temperature. After washing, bound 

proteins were identified with the corresponding primary antisera and appropriated HRP-

linked secondary antisera. Samples were developed with Sigma Fast OPD (Sigma) and the 

reaction was stopped with 2M H2SO4. Absorption was measured at 492 nm by Multiscan 

Ascent microtiterplate reader (Thermo Labsystems). 

To localize the A. benhamiae binding region in Factor H, A. benhamiae cells 

(500 μg dry weights) were immobilized on a filter microtiterplate (Millipore) for 1h at room 

temperature. Factor H together with domain mapped monoclonal antibody reacting with 

Factor H SCRs 1-4 (anti SCR 1-4); SCR 5 (B22) and SCRs 19-20 (C18) were preincubated for 1 h 

at 37°C. These samples were added to the immobilized fungal cells. Binding was determined 

by using the ELISA described above. 

To measure the cytokine release of human monocytes after incubation with the supernatant 

derived from an A. benhamiae culture, fungal culture supernatant (20 %) were incubated 

with 1 μg C5a in a total volume of 200 μl RPMI for 10 minutes at 37 °C. Mixtures were added 

to human monocytes cell line THP-1 (250.000 cells/well) over night at 37 °C and 5 % CO2. 
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Supernatant of treated macrophages were collected and proinflammatory cytokines TNF α, 

IL 6 and IL 8 were detected using cytokine ELISA kit from Immunotools (Friesoythe). 

Hemolysis Assay. To analyze whether A. benhamiae secreted proteases affect complement 

attack, hemolysis assays were performed 149. Rabbit erythrocytes were washed in 1ml HEPES 

buffer (20 mM HEPES, 144 mM NaCl, 7 mM Mg2Cl, 10 mM EGTA). Supernatant derived from 

A. benhamiae wild type and Subtilisin 3 disruption mutant or from an S. cerevisiae culture 

were incubated with different concentrations of human serum for 30 minutes at 37°C. 

Preincubated mixtures and additional varying concentrations of human serum used as a 

control of complement mediated lysis were incubated with 1×107 rabbit erythrocytes for 

30 minutes at 37°C. Treated rabbit erythrocytes were centrifuged at 2500 x g at 4°C and the 

absorption of the supernatant was measured at 414 nm. 

To analyze whether human keratinocytes secrete functionally active complement 

components, culture supernatant of human keratinocytes was used in hemolysis assay. 

Rabbit erythrocytes were washed in 1 ml HEPES buffer and 1×107 cells were added to the 

concentrated supernatant of keratinocytes (100 μl) for 30 minutes at 37°C. Background lysis 

was determined by adding HEPES or DPBS buffer (100 μl) to rabbit erythrocytes (1×107) and 

incubating for 30 minutes at 37°C. Sample absorption was measured as described before. 

Keratin degration assay. To determine proteolytic activity of A. benhamiae secreted 

proteases, the culture supernatant of the A. benhamiae wild type and Subtilisin 3 disruption 

mutant was collected and concentrated four times using filterunits with a cut off 5 kDa. 

A. benhamiae supernatant was incubated with chromogen charged keratin (Hide Powder 

Azur, Calbiochem) for 1h at 37°C. Proteolysis of keratin was followed by quantifying the 

released chromogen in the supernatant. (Millipore). The keratin substrate was centrifuged 

and the optical density of the chromgen in fungal supernatant was measured at 595 nm.  

Flow cytometry. To quantify C3b deposition on A. benhamiae conidia, conidia (5x105) were 

incubated with either culture supernatant (100 μl) obtained from an A. benhamiae wild type 

or Subtilisin 3 disruption mutant or loaded with Factor H for 15 minutes at room 

temperature. Afterwards, purified C3b (10 μg/ml) as well as Factor I (2.5 μg/ml) were added 

for 15 minutes at room temperature. In addition untreated conidia were incubated with 

C3b. After extensive washing with DPBS, C3 antiserum diluted in DPBS was added to the 

conidia for 15 minutes at room temperature. After several washes with DPBS, appropriated 
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secondary Alexa 647-labelled antiserum was added for 15 minutes at room temperature. 

Additional washing steps released the unbound antiserum. Incubation of conidia with 

appropriated primary and secondary antiserum excluded false positive fluorescence signals. 

After extensive washing fluorescence intensity was measured at 647 nm by LSR II (Becton 

Dickinson) and evaluated in FLOW Jo 7.0 software. 

Flow cytometry was also used to determine phagocytosis of prepared A.benhamiae conidia 

by human monocytes. Gfp fluorescent A.benhamiae mutant were kindly provided by 

Anke Burmester from Leibniz Institut for natural product research and infection biology, 

Jena. THP-1 monocytes were stimulated with 2.5 μg/ml PMA per 1x106 cells over night at 

37 C and 5 % CO2. 5x105 fluorescent A. benhamiae conidia were added to 1x106 THP-1 

macrophages and incubated for 30 minutes at 37°C and 5% CO2. To separate adhered from 

phagocytosed cells the fungal cell wall was stained with 5 μg/ml Calcoflour. After several 

washings with DPBS, fluorescence signal of A. benhamiae conidia were measured at 355 nm 

and interpreted as described before.  

Immunofluorescence. A. benhamiae (500 μg dry weights) was incubated with NHS-EDTA for 

30 minutes at room temperature. Cells were washed three times with DPBS. Nonspecific 

binding sites were blocked with DPBS/Roti Block (Roth) for 30 minutes at room temperature. 

Surface bound Factor H or plasminogen was detected with polyclonal Factor H and 

plasminogen antiserum diluted 1:300 in DPBS/1xRoti Block for 45 minutes at room 

temperature. After three washes with DPBS appropriated secondary Alexa 647 conjugated 

antibody diluted 1:500 in DPBS/1xRoti Block was bound for 45 minutes at room 

temperature. After washing it three times with DPBS bound proteins were visualized by laser 

scanning microscopy (LSM 510 Meta, Zeiss). 

Neutrophil migration assay. Polymorphnuclear cells (PMN) were freshly isolated from 

human blood by density centrifugation and stained with 1:10 dilution of 50 mM Calcein for 

30 minutes at 37°C. 75.000 PMNs per upper well were incubated with either 8.5 μg/ml C5a 

diluted or a mixture of 8.5 μg/ml C5a and 20 μl culture supernatant derived from 

A. benhamiae wild type or Subtilisin 3 disruption mutant diluted in 235 μl DPBS in the lower 

well for 1 h at 37 °C. Medium, DPBS, gelantine, as well as activated serum and C5a des arg 

were added as controls. Fluorescence signal of migrated PMNs were measured using 
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fluorescence reader safire2 (TecanTrading AG, Männedorf, Switzerland) at an emission 

wavelength of 530 nm. 

Fungal killing assay. Culture supernatant derived from A. benhamiae wild type or Subtilisin 3 

disruption mutant (20 μl), 1 μg Factor H or medium (20 μl) were incubated with 1 μg C3a for 

10 minutes at 37 °C. C. albicans strain SC5314 were cultivated in 20 ml YPD medium over 

night at 30°C to get yeast cells. 5x104 C. albicans cells were diluted in 50 μl 10mM Tris buffer 

and incubated with C3a mixtures for 2 h at 30 °C. Afterwards cell suspension was diluted 

1:100 in 10 mM Tris buffer, plated on YPD and incubated over night at 30°C. C. albicans 

colonies were counted from two replicates. 

ROS release of PMN. Polymorphnuclear cells (PMN) were freshly isolated from human blood 

by density centrifugation using polymorphPrep solution. Afterwards PMNs were washed in 

0.45% NaCl solution. Contaminating erythrocytes were lysed by washing the PMN fraction 

with 0.2% NaCl. The PMNs were washed with 1.2% NaCl and DPBS. To minimize 

preactivation of fresh isolated PMNs, a white 96 well microtiterplate (Nunc, denmark) were 

treated with 0.05% bovine serum albumin in DPBS (200μl/well) for 1 hour at room 

temperature. A 5x105 phagocyte suspension were placed in each well and C3a (2μg) or C3a 

supplemented with culture supernatant derived from A. benhamiae wild type or Subtilisin 3 

disruption mutant was added. The samples were incubated for 3 hours at 37°C and 5 % CO2. 

Detection solution (100 μl) was added to the wells for 20 minutes at room temperature to 

determine H2O2 release from human PMNs as described in the user manual of the cellestial 

red hydrogen peroxide assay kit (Enzo life science GmbH, Lörrach). Fluorescence was 

measured using fluorescence reader safire2 at an emission wavelength of 590 nm.
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RESULTS 

Human keratinocytes form a functional lytic complement response.  

Upon skin infection human keratinocytes represent the first cellular contact site for 

dermatophytes. To analyse, if keratinocytes form an intact functionally active complement 

system, culture supernatant derived from stimulated human keratinocytes was assayed for 

its complement mediated hemolysis. Supernatant derived from human keratinocytes caused 

lysis of rabbit erythrocytes as measured by hemolysis assays. This effect was dose 

dependent (Figure 8 A). The hemolytic activity of keratinocyte culture supernatant used at 

60 % was comparable to that of 10% NHS. Hemolysis is specific for supernatant derived from 

human keratinocytes, because supernatant derived from the human epithelial cells (ARPE) 

lacked hemolytic activity (data not shown). The hemolytic activity of the keratinocyte 

supernatant was blocked by the staphylococcal complement inhibitor Sbi that inhibits 

complement activation at the level of C3 convertase formation (Figure 8 B). Thus, the results 

demonstrate that supernatant derived from human keratinocytes cause hemolysis of 

erythrocytes and that this lysis is complement-mediated.  

To identify whether human keratinocytes release complement components, expression of 

C3, Factor H, CFHR1 and also plasminogen was assayed. Culture supernatant was 

concentrated, separated by SDS-PAGE, proteins were transferred to a nitrocellulose 

membrane and detected by appropriate antisera. C3 antiserum identified the 114 kDa 

α chain and the 75 kDa β chain of complement C3. Factor H antiserum detected a 150 kDa 

band, representing Factor H and two bands of 42 and 37 kDa representing the two isoforms 

of CFHR1 (Figure 8 C). In addition plasminogen antiserum identified a 75 kDa band as 

plasminogen (Figure 8 C). Thus, human keratinocytes express and secrete the complement 

components C3; but also the central regulators Factor H and CFHR1, as well as plasminogen.  

Since complement activation results in C3b deposits on surfaces, opsonisation of 

keratinocyte derived complement was assayed by flow cytometry. Keratinocyte derived C3 

deposited on the surface of A. benhamiae conidia (Figure 8 D). This confirms that human 

keratinocytes secrete a functionally active complement system and that dermatophytes are 

challenged by keratinocyte derived complement attack. 
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C3b deposition on A. benhamiae conidia leads to opsonisation and enhanced phagocytosis 

by human monocytes, as shown in phagocytosis assays. Both adherence and phagocytosis of 

A. benhamiae conidia by monocytes was enhanced after deposition of C3b on the surface of 

conidia (Figure 8 E). Adherence and phagocytosis increase dose dependent. After thirty 

minutes of incubation opsonisation of conidia (1.5 μg C3b) resulted in an increase of 

adherence (36%) to and phagocytosis (19%) by monocytes. 

 

Figure 8: Keratinocytes secrete a functional active complement system 

(A) Culture supernatant was collected from human keratinocytes, concentrated and assayed for hemolysis. 
Keratinocyte culture supernatant induced lysis of rabbit erythrocytes. This effect was dose dependent. 
(B) S. aureus derived complement inhibitor Sbi reduced hemolytic activity of keratinocyte culture supernatant, 
demonstrating that hemolysis is due to complement. (C) Culture supernatant was concentrated, separated by 
SDS-PAGE, proteins were transferred to a nitrocellulose membrane and detected by appropriate antisera. The 
complement protein C3; the complement regulators Factor H and CFHR1, as well as plasminogen were 
identified, which shows that human keratinocytes express and secrete central complement components. 
(D) The opsonic activity of keratinocyte derived C3 was measured by flow cytometry. C3 deposited on the 
surface of A. benhamiae conidia demonstrating that keratinocyte derived C3 is active.The abbreviation co 
stands for control. (E) Adherence and phagocytosis of A. benhamiae conidia by human monocytes was 
determined by flow cytometry. C3b (1.5 μg) opsonisation of fungal conidia resulted in 36% increased 
adherence and 19% increased phagocytosis. The effect was dose dependent. 
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A. benhamiae binds Factor H, CFHR1 and plasminogen. 

Upon skin infection A. benhamiae is in contact with keratinocytes and thus exposed to 

complement attack. Consequently, we asked, if A. benhamiae binds human complement 

regulators Factor H, CFHR1, as well as plasminogen and uses the attached human proteins to 

control complement activation on the fungal surface.  

Binding of Factor H, CFHR1 or plasminogen to the surface of A. benhamiae was assayed, 

using a cell based ELISA. The fungus was immobilised and purified proteins were added and 

after washing bound proteins were identified with appropriated antisera. A. benhamiae 

bound each of the three host proteins and binding was dose dependent (Figure 9 A-C). To 

confirm binding of the human proteins to the fungal surface, A. benhamiae was incubated in 

human plasma, as a source for complement proteins. After extensive washing, bound 

proteins were eluted, separated by SDS-PAGE, transferred to a membrane and analysed by 

Western blotting. In the elute fraction, Factor H was identified as a 150 kDa band and CFHR1 

as 42 and 37 kDa bands (Figure 9 D, lane 2). Plasminogen was identified as a 75 kDa protein 

(Figure 9 E, lane 2). Thus A. benhamiae acquires host complement regulators Factor H and 

CFHR1 and also the human protease plasminogen to its surface.  

In addition surface distribution of Factor H and plasminogen at the fungal surface was 

assayed by laser scanning microscopy. Purified proteins were attached to the fungus and 

then identified with the appropriate antisera. Factor H and plasminogen showed a patchy 

distribution, indicating clustering of the proteins on the fungal surface (Figure 9 F, G) 
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Figure 9: A. benhamiae binds the complement regulators Factor H and CFHR1, as well as plasminogen. 

(A-C) The binding of complement components by A. benhamiae was assayed using a cell based ELISA. The 
fungus binds the complement regulators Factor H, CFHR1 and plasminogen in a dose dependent manner. 
(D, E) Binding of complement proteins and plasminogen to A. benhamiae cells was confirmed upon incubating 
fungal cells in human plasma. After extensive washing, bound proteins were eluted, separated by SDS-PAGE, 
transferred to a membrane and analysed by Western blotting. In the elute fraction Factor H, CFHR1 and 
plasminogen were identified as A. benhamiae binding proteins. (F, G) Fungal cells were loaded with the 
complement Factor H or plasminogen. Bound proteins were detected with appropriated fluorescence labelled 
antibodies (red). The fungal cell wall was stained with Calcoflour White in blue. Attached host proteins appear 
patchy on the fungal surface. 

Localization of A. benhamiae binding sites in Factor H and CFHR1. 

Factor H and also CFHR1 deletion mutants were bound to A. benhamiae, in order to localize 

the interaction domains in Factor H and CFHR1 that contact the fungus Therefore 

A. benhamiae was immobilised and various Factor H or CFHR1 deletion mutants were added. 

After extensive washing bound fragments were identified with appropriated antiserum. 

Factor H deletion mutants SCR 1-7, SCR 15-18, SCR 15-19 and SCR 15-20 bound to the 

fungus. Factor H deletion mutant SCR 1-4, SCR 8-11 and SCR 19-20 bound with lower 

intensity and SCR 11-15 did not bind to the fungus (Figure 10 A). This binding pattern shows 

that Factor H attaches to A. benhamiae via two separate regions. One binding region is 

located in the N-terminus, in domain SCR 1-7, likely SCR 6-7 and a second region is located in 

the C-terminus of Factor H within SCR 15-20 (Figure 10 D). 
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Figure 10: Localisation of A. benhamiae binding sites in Factor H and CFHR1. 

(A) The binding of Factor H and also CFHR1 deletion mutants to A. benhamiae was assayed by ELISA. Factor H 
deletion mutants SCR 1-7, SCR 15-18, SCR 15-19 and SCR 15-20 bound to the fungus. Factor H deletion mutant 
SCR 1-4, SCR 8-11 and SCR 19-20 bound with lower intensity and SCR 11-15 did not bind to the fungus. 
(B) Specific domain mapped polyclonal antiserum, reacting with the N-terminus of Factor H (anti SCR 1-4) and 
domain mapped monoclonal antibodies binding to an epitop within SCR 5 (B22) or SCR 19-20 (C18) were 
assayed on their effect on binding of Factor H to A. benhamiae. Antiserum directed against the N- terminus of 
Factor H (anti SCR 1-4) reduced Factor H binding to A. benhamiae by 39%. Antibodies reacting with an epitope 
close to SCR 5 (B22) reduced binding by 56% and the monoclonal antibody C18, which binds to SCR 19-20, 
inhibited binding by 91 %. (C) Two CFHR1 deletion mutants (CFHR1 SCR 1-2, CFHR1 SCR 3-5) were analysed for 
binding to A. benhamiae cells. Both recombinant proteins bound with similar intensity to A. benhamiae, but 
each deletion mutant bound with a lower intensity as compared to intact CFHR1 to the fungus. (D)The figure 
shows the Factor H binding regions, which are responsible for attaching to A. benhamiae. One was located in 
the N-terminus containing SCR 1-7 and a second in the C-terminus containing SCR 15-20. CFHR1 uses two 
separate binding regions to contact A. benhamiae in the N-terminal SCR 1-2 the C-terminal SCR 3-4. 

In order to verify that Factor H contacts A. benhamiae with two regions, the effect of a 

specific domain mapped polyclonal antiserum, reacting with the N-terminus of Factor H 

(anti SCR 1-4) and domain mapped monoclonal antibodies to SCR 5 (B22) and SCR 19-20 

(C18) on binding, was assayed. Antiserum directed against the N- terminus of Factor H 

(anti SCR 1-4) reduced Factor H binding to A. benhamiae by 39%. Antibodies reacting with an 

epitope close to SCR 5 (B22) reduced binding by 56% and the monoclonal antibody C18, 

which binds to SCR 19-20, inhibited binding by 91 % (Figure 10 B). These results confirm that 

Factor H uses two binding regions to contact A. benhamiae. An N-terminal binding region 
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was identified in Factor H SCR 1-7. In addition the C-terminal surface attachment region of 

Factor H is also central for binding to the fungus. Taken together, Factor H uses two binding 

regions for attaching to A. benhamiae, an N-terminal one containing SCR 1-7 and a 

C-terminal region in SCR 15-20.  

In addition, binding regions of CFHR1 were localized by using two CFHR1 deletion mutants 

(CFHR1 SCR 1-2, CFHR1 SCR 3-5). Both CFHR1 deletion mutants bound with similar intensity 

to A. benhamiae. Each deletion mutant bound with a lower intensity as compare to intact 

CFHR1 to the fungus (Figure 10 C). These results suggest that CFHR1 uses two separate 

binding regions to contact A. benhamiae, one is located in the N-terminus in SCR 1-2 and a 

second in the C-terminus in SCR 3-4 (Figure 10 D). 

A. benhamiae bound Factor H displays complement regulatory activity.  

As Factor H binds to A. benhamiae, we asked, whether the bound inhibitor displays 

complement regulatory function. Factor H was attached to conidia and after washing Factor I 

and C3b were added. After incubation, the reaction mixture was separated by SDS-PAGE and 

transferred to a membrane. When C3b cleavage was assayed by Western blotting, α chain 

fragments of 68, 43 and 41 kDa were identified (Figure 11). This shows, that Factor H bound 

to the surface of A. benhamiae maintains complement regulatory activity and acts as a 

cofactor for Factor I mediated C3b degradation.  

 

Figure 11: A. benhamiae bound Factor H displays complement regulatory activity. 

Factor H was attached to conidia and Factor I and C3b were added. After incubation, the reaction mixture was 
separated by SDS-PAGE and transferred to a membrane. C3b cleavage was assayed by Western blotting. 
C3b α chain fragments of 68, 43 and 41 kDa were identified as typical Factor H mediated C3b cleavage 
products.  
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A. benhamiae bound complement regulator Factor H reduces C3b deposition, 

opsonisation and phagocytosis on conidia. 

In order to analyse the influence of A. benhamiae bound Factor H on opsonisation, C3b 

deposition on conidia was measured using Factor H pretreated or untreated conidia. Factor I 

was added and C3b deposition on conidia was analysed by flow cytometry. C3b added to 

non treated conidia remained active and C3 deposited on the fungal surface 

(Figure 12 A black line). In comparison, when C3b was added to Factor H treated conidia 

supplemented with Factor I, the C3 deposition rate was reduced by 98 % 

(Figure 12 A red line).  

A. benhamiae utilizes human complement regulator Factor H to inhibit complement 

activation on the fungal surface. Factor H assists C3b degradation to iC3b and thus stops 

assembly of the C3 convertase on the surface and amplification of C3b.To demonstrate that 

Factor H loaded conidia are protected against the opsonic activity of C3b, A. benhamiae 

conidia were loaded with increasing concentrations of complement regulator Factor H and 

Factor I as well as C3b was added. Afterwarts monocytes were added to the prepared 

conidia and adherence and phagocytosis were measured using flow cytometry. A decrease 

of adherence (36 %) and phagocytosis (25 %) was observed for conidia treated with 1 μg 

Factor H. Adherence of conidia to monocytes decreased dose dependent with increasing 

amounts of Factor H. Phagocytosis of fungal conidia by monocytes decreased, when 

0.5 μg Factor H was used. Higher Factor H concentrations of 1 μg slightly increased 

phagocytosis (Figure 12 B). Factor I and C3b incubation with conidia resulted in no reduction 

of either adherence or phagocytosis (data not shown). 
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Figure 12: A. benhamiae bound complement regulator Factor H reduces C3b deposition, opsonisation and 
phagocytosis on fungal conidia. 

(A) C3b deposition on conidia was measured either using Factor H pretreated conidia or using untreated 
conidia. Factor I was added and C3b deposition on conidia was analysed by flow cytometry. C3b added to non 
treated conidia remains its activity and deposited on the fungal surface (black line). In comparison, C3b added 
to Factor H treated conidia supplemented with Factor I showed a reduced deposition rate of 98 % (red line). 
(B) A. benhamiae conidia were loaded with increasing concentrations of complement regulator Factor H. 
Factor I as well as C3b was added. Following adherence and phagocytosis of fungal conidia by human 
monocytes was measured using flow cytometry. A decrease of adherence (36 %) and phagocytosis (25 %) was 
observed, when 1 μg Factor H was added. Adherence of fungal conidia to monocytes decrease dose dependent 
with increasing amounts of Factor H. Phagocytosis of fungal conidia by monocytes decrease, when 
0.5 μg Factor H was used in the approach. Higher Factor H concentrations of 1 μg slightly increase 
phagocytosis. 

A.benhamiae secretes functional active proteases 

In order to assay, whether A. benhamiae secretes active proteases and if disruption of the 

Subtilisin 3 gene influences keratin degradation, culture supernatant derived from 

A. benhamiae was added to chromogen labelled keratin and proteolysis of keratin was 

assayed by quantifying the released chromogen in the supernatant. The chromogen content 

in both fungal supernatants treated samples increased. Thus, fungal supernatant has 

proteolytic, keratin degrading activity. Culture supernatant derived from an A.benhamiae 

Subtilisin 3 disruption mutant showed an decrease in keratin degradation as compared to 

culture supernatant derived from the wild type (Figure 13). 
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Figure 13: A.benhamiae secretes keratin degrading proteases 

Culture supernatant derived from A. benhamiae wild type or Subtilisin 3 disruption mutant was added to 
chromogen labelled keratin and proteolysis of keratin was assayed by quantifying the released chromogen in 
the supernatant. The chromogen in both fungal supernatants treated samples increased. Thus fungal 
supernatant has proteolytic, keratin degrading activity. In comparison to the culture supernatant derived from 
the A.benhamiae wild type, the Subtilisin 3 disruption mutant shows decreased keratin degradation. 

 

A. benhamiae derived proteases cleave complement 

To assay, if secreted fungal proteases also degrade complement components, culture 

supernatant derived from A. benhamiae wild type was added to purified complement C3, 

C3b, C4, C4b, C5 and C6. After incubation, the reaction mixture was separated by SDS-PAGE, 

transferred to a membrane and cleavage was assayed by Western blotting. Fungal proteases 

degraded C3 and C3b, as revealed by the appearance of cleavage products with approximate 

mobilities of 68, 42, 40, 38, 27 and 25 kDa (Figure 14 A, B). This pattern is clearly distinct 

from that obtained by Factor H assisted Factor I cleavage (68, 43 and 41 kDa) (Figure 10). 

Incubation of fungal culture supernatant with C4 and C4b resulted in major cleavage 

fragments with apparent mobilities of 64, 60, 54, 50 kDa, 38 kDa and 18 kDa (Figure 14 C, D). 

C5 was cleaved in three major products of 60, 55, 48 and 45 kDa (Figure 14 E). In addition 

fungal proteases degrade C6 into four fragments with mobilities of 75, 55, 45 and 30 kDa 

(Figure 14 F). In contrast human IgG remained intact upon incubation with fungal 

supernatant (data not shown). Thus the fungal culture supernatant cleaves human 

complement proteins C3, C3b, C4b, C4, C5 and C6. 

Complement activation results in opsonisation of foreign surfaces, assembly of the 

membrane attack complex and in the release of anaphylatoxins. Since opsonisation and 

membrane attack complex formation is inhibited by proteases in the supernatant of 
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A. benhamiae, degradation and inactivation of the anaphylatoxins C3a and C5a by fungal 

endogenous activity was analysed. C3a and C5a were incubated with the supernatant 

derived from an A. benhamiae culture. Then degradation of C3a and C5a were assayed in 

Western Blotting by using specific antisera. The bands of 9 kDa and 12 kDa representing C3a 

and C5a disappeared during incubation with fungal culture supernatant, demonstrating 

cleavage of the two anaphylatoxins (Figure 14 G, H). 

 

Figure 14: A. benhamiae derived proteases cleave complement 

Culture supernatant derived from A. benhamiae wild type was added to purified C3, C3b, C4, C4b, C5, C6 and to 
the anaphylatoxins C3a and C5a. After incubation, the reaction mixture was separated by SDS-PAGE and 
transferred to a membrane and cleavage was assayed by Western blotting.(A, B) C3 and C3b was degraded by 
fungal proteases, as revealed by the appearance of cleavage products with approximate mobilities of 68, 42, 
40, 38, 27 and 25 kDa. This pattern is distinct from that obtained by Factor H assisted Factor I cleavage 
(Figure 10). (C, D) C4 and C4b cleavage resulted in fragments with apparent mobilities of 60, 55, 48 and 45 kDa. 
(E) C5 was cleaved to products with approximate mobilities of 60, 55, 48 and 45 kDa.(F) C6 is degraded in four 
major products of 75, 55, 45 and 30 kDa. (G, H) The bands of 9 kDa and 12 kDa representing C3a and C5a 
disappeared during incubation with fungal culture supernatant, demonstrating cleavage of the anaphylatoxins. 

A. benhamiae secreted protease Subtilisin 3 cleave C3a, C3b and C5b 

In order to define, which of the secreted protease of A. benhamiae exhibits complement 

degrading activity; culture supernatant derived from an A. benhamiae Subtilisin 3 disruption 

mutant was collected and incubated with purified C3a, C3b and C5b. After incubation, the 

reaction mixtures were separated by SDS-PAGE, transferred to a membrane and cleavage 
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was assayed by Western blotting Complement degradation of the central components C3b 

and C3a by culture supernatant derived from A. benhamiae Subtilisin 3 disruption mutant 

was decreased in comparison to C3b and C3a degradation by the supernatant derived from 

the wild type culture. Secreted proteases in the culture supernatant derived from the 

Subtilisin 3 disruption mutant lacks the ability to degrade C5b (Figure 15). Complement 

cleavage by the fungal medium was excluded. 

 

Figure 15: A. benhamiae secreted protease Subtilisin 3 cleave C3a, C3b and C5b 

Purified C3b, C5b and C3a were incubated with culture supernatant of the A. benhamiae Subtilisin 3 disruption 
mutant. After incubation, the reaction mixtures were separated by SDS-PAGE, transferred to a membrane and 
cleavage was assayed by Western blotting.(A, C) Complement degradation of C3b and C3a by culture 
supernatant derived from A. benhamiae Subtilisin 3 disruption mutant was decreased in comparison to C3b 
and C3a degradation by the supernatant derived from the wild type culture. (B) Secreted proteases in the 
culture supernatant derived from the Subtilisin 3 disruption mutant lack ability to degrade C5b. 

Taken together, A. benhamiae secretes proteases in the culture supernatant, which are 

functional active and degrade keratin as well as several human complement components, 

i.e. C3, C3b, C4, C4b, C5 and C6 and the anaphylatoxins C3a and C5a. The secreted protease 

Subtilisin 3 is responsible for the degradation of the central complement components C3b, 

C5b and the anaphylatoxin C3a. 

A. benhamiae proteases inhibit complement activation on activator surfaces. 

Proteases contained in the supernatant of A. benhamiae cleave human complement. We 

asked, if this cleavage affects complement activity. To this end the inhibitory effect of 

A. benhamiae culture supernatant was determined in hemolysis assays. At first fungal 

culture supernatant was incubated with human serum and then rabbit erythrocytes, which 

represent activator surfaces, were added. A. benhamiae culture supernatant reduced 

complement mediated lysis of rabbit erythrocytes. This effect was dose dependent 
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(Figure 16 A). Supernatant derived from A. benhamiae reduced lytic act ivity of serum (20%) 

by 77%. Culture supernatant derived from the non-pathogenic yeast S. cerevisiae lacked this 

inhibitory activity and did not affect complement mediated lysis of erythrocyte. Thus 

A. benhamiae proteases in the culture supernatant block host complement attack on 

surfaces. A. benhamiae inhibition of erythrocyte hemolysis was completely blocked by the 

serine protease inhibitor phenyl-methyl-sulphonyl-fluorid (PMSF). This shows that secreted 

serine proteases of A. benhamiae mediate inactivation of complement (Figure 16 B). 

In order to define secreted serine proteases of A. benhamiae, which inactivate complement 

components, culture supernatant of the A. benhamiae Subtilisin 3 disruption mutant was 

incubated with NHS. Quantification of hemolysis showed a decrease of the complement 

inhibitor effect (21%) in comparison to culture supernatant derived from the A. benhamiae 

wild type (Figure 16 C). An effect of fungal medium on hemolysis was excluded. 
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Figure 16: A. benhamiae proteases, particular Subtilisin 3 inhibit complement activation on activator 
surfaces. 

Complement inhibition caused by A. benhamiae culture supernatant on activator surfaces was determined in 
hemolysis assays. Fungal culture supernatants were incubated with NHS and rabbit erythrocytes were added. 
The fungal medium did not cause hemolysis. (A) A. benhamiae wild type culture supernatant reduced 
complement mediated lysis of rabbit erythrocytes dose dependent. Supernatant derived from A. benhamiae 
wild type reduced lytic activity of serum by 77%. Culture supernatant derived from the non-pathogenic yeast 
S. cerevisiae lacked this inhibitor activity and did not affect erythrocyte lysis. (B) A. benhamiae inhibition of NHS 
(7.5%) derived hemolytic activity was completely blocked by adding 5% of PMSF. This shows that secreted 
serine proteases of A. benhamiae mediate inactivation of complement. (C) Culture supernatant derived from 
the Subtilisin 3 disruption mutant was incubated with NHS. Quantification of hemolysis shows a decrease of the 
complement inhibitor effect (21%) in comparison to A. benhamiae wild type culture supernatant. 
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Endogenous proteolytic activity of A. benhamiae reduces C3b deposition, 

opsonisation and phagocytosis on conidia. 

Since A. benhamiae expresses and secretes proteases, which degrade the human 

complement component C3b, the effect of fungal culture supernatant on C3b deposition on 

conidia was analysed using flow cytometry. Therefore C3b was preincubated with culture 

supernatant derived either from the A. benhamiae wild type or from the Subtilisin 3 

disruption mutant. Mixtures were added to conidia and C3b deposition was analysed on the 

fungal surface by flow cytometry. Not treated C3b remained its active and deposited on 

conidia. In comparison, fungal supernatant treated C3b showed a reduced deposition rate of 

44 %. Disruption of the Subtilisin 3 gene in A. benhamiae resulted in the loss of complement 

inhibitor activity. Culture supernatant of this mutant lacks the ability to reduce C3b 

deposition on conidia (Figure 17 A). 

 

Figure 17: Endogenous proteolytic activity of A. benhamiae, in particular Subtilisin 3 reduces C3b deposition, 
opsonisation and phagocytosis of conidia. 

(A) C3b was preincubated with supernatant derived from an A. benhamiae wild type or Subtilisin 3 disruption 
mutant culture. Mixtures were added to conidia and C3b deposition on the fungal surface was analysed by flow 
cytometry. None treated C3b remains its activity and deposited on conidia. In comparison, wild type culture 
supernatant treated C3b showed a reduced deposition rate of 44 %. Culture supernatant of the Subtilisin 3 
disruption mutant lacks ability to reduce C3b deposition on fungal conidia. (B) Adherence and phagocytosis of 
treated fungal conidia by human monocytes was determined by flow cytometry. Human C3b was incubated 
with supernatant derived from an A. benhamiae wild type culture. Mixture was added to fungal conidia and 
incubated with human monocytes. Fungal supernatant (5%) reduces complement induced adherence at 37 % 
and phagocytosis at 58 %. Adherence and phagocytosis of treated fungal conidia by monocytes was dosed 
dependent reduced. 

Endogenous proteolytic activity of A. benhamiae reduced deposition of complement C3b on 

fungal surfaces. The impact of reduced fungal opsonisation by C3b on adherence and 

phagocytosis by human monocytes was determined by flow cytometry. Human C3b was 

incubated with supernatant derived from an A. benhamiae wild type culture. The mixture 
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was added to fungal conidia and incubated with human monocytes. Fungal supernatant 

(5 %) reduced complement induced adherence to monocytes at 37 % and phagocytosis at 

58 % (Figure 17 B). Increasing amounts of fungal supernatant caused a concentration 

dependent reduction of adherence and also phagocytosis of conidia by monocytes. 

Culture supernatant of A. benhamiae reduces C3a activity. 

The anaphylatoxin C3a mediates antifungal activity. In order to test, if C3a treated with 

culture supernatant of the A. benhamiae wild type or the Subtilisin 3 disruption mutant 

keeps its antifungal properties, killing of fungal cells was analysed. Therefore pretreated or 

non treated C3a was added to C. albicans and the fungal survivial was determined. C3a 

added to C.albicans reduced fungal growth by 78 % in comparison to the fungal growth 

without C3a. Pretreated C3a, which was added to the culture supernatant of A. benhamiae 

wild type resulted in increased overliving of C. albicans up to 194 % in comparison to 

nontreated C3a added to C albicans. C3a added to the culture supernatant of A. benhamiae 

Subtilisin 3 disruption mutant incubated with C. albicans leads also to significant survivial of 

the fungal cells, but was reduced compared to wild type culture supernatant treated C3a 

added to Candida (Figure 18 A). 

In addition C3a induces ROS production in human neutrophils. Human C3a was treated with 

the culture supernatant of the A. benhamiae wild type or Subtilisin 3 disruption mutant. To 

determine the effect of treated and non treated C3a on the ROS production of freshly 

isolated PMNs, a fluorescent detection solution was used to quantify ROS release. Purified 

C3a increases ROS production by 87 %. Treatment of C3a with the culture supernatant of the 

A. benhamiae wild type or Subtilisin 3 disruption mutant repressed the ROS production. C3a 

treated with culture supernatant of the wild type leads to a reduction of ROS production by 

99 %. In comparison, C3a treated with culture supernatant of the Subtilisin 3 disruption 

mutant showed reduction of the ROS production by 59 % (Figure 18 B). Thus C3a treated 

with the culture supernatant of the Subtilisin 3 disruption mutant resulted in lesser 

reduction of ROS by human neutrophils than C3a treatment with the culture supernatant of 

the wild type. 
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Figure 18: Culture supernatant of A. benhamiae, in particular Subtilisin 3 reduces C3a activity. 

(A)To assay antifungal properties of C3a treated with culture supernatant of the A. benhamiae wild type or the 
Subtilisin 3 disruption mutant fungal survivial assays were performed. C3a added to C.albicans reduces fungal 
growth at 78 %. C3a added to the culture supernatant of A. benhamiae wild type resulted in an increased 
survival of C. albicans up to 194 %. Culture supernatant of A. benhamiae Subtilisin 3 disruption mutant treated 
C3a incubated with C. albicans led also to significant survival of the fungal cells, but was reduced in comparison 
to wild type culture supernatant treated C3a added to Candida. (B) To determine ROS production of freshly 
isolated PMNs, purified C3a was added and ROS was quantified by an flurescent detection solution. Purified 
C3a increases ROS release by 87 %. Treatment of C3a with the culture supernatant of the A. benhamiae wild 
type or Subtilisin 3 disruption mutant effects freshly isolated PMNs by repression of the ROS production. C3a 
treated with culture supernatant of the wild type leads to a reduction of ROS production by 99 % compared to 
non treated C3a. C3a treated with culture supernatant of the Subtilisin 3 disruption mutant resulted in a 
reduction of ROS production by 59 %. Thus C3a treated with the culture supernatant of the Subtilisin 3 
disruption mutant resulted in lesser reduction of ROS by human neutrophils than C3a treated with the culture 
supernatant of the wild type. 

 

Culture supernatant of A. benhamiae reduces C5a activity. 

Since the proteases in the culture supernatant of A. benhamiae cleave C5a, the biological 

effects to the C5a activity were investigated. C5a induces the release of the proinflammatory 

cytokines IL 6, IL 8 and TNF α from human monocytes. C5a was incubated with culture 

supernatant of A. benhamiae. Afterwarts pretreated C5a or non treated C5a was added to 

human monocytes. To investigate secretion of proinflammatory cytokines by human 

monocytes after stimulation, ELISA was performed to determine cytokine and chemokine 

levels. Monocytes supplemented with non treated C5a produce increased IL 6 (69 %), 

IL 8 (88 %) and TNF α (82.5 %) levels in comparison to the control level. In comparison to the 

cytokine levels, which were produced by C5a treated monocytes, the preincubation of C5a 

with the culture supernatant of the A. benhamiae wild type resulted in an inhibition of 

IL 6 (156 %), IL 8 (154 %) and TNF α (103 %) secretion (Figure 19 A-C). The fungal medium 

without C5a was used to quantify C5a independent cytokine release. 
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To exclude cell damaging effects of the keratin medium or of fungal culture supernatants on 

monocytes, viability assays were done. Therefore the ability of living cells to deoxidise 

resazurin to the florescent end product resorufin was used. Resorufin production by human 

monocytes after treatment was determined by fluorescence measurement. With this assay it 

was excluded that different concentrations of keratin medium or culture supernatant of 

A. benhamiae had an effect on the viability of human monocytes (data not shown). 

 

Figure 19: Culture supernatant of A. benhamiae reduces C5a activity. 

(A-C) Secretion of proinflammatory cytokines by human monocytes after stimulation with none treated C5a or 
pretrated C5a was analysed using cytokines ELISA. Monocytes supplemented with C5a produce increased 
IL 6 (69 %), IL 8 (88 %) and TNF α (82.5 %) levels. In comparison, preincubation of C5a with the culture 
supernatant of the A. benhamiae wild type resulted in complete reduction of IL 6 (156 %), IL 8 (154 %) and 
TNF α (103 %) secretion. The fungal medium without C5a was used to quantify C5a independent cytokine 
release. (D) None treated C5a or C5a treated with supernatant of an A. benhamiae wild type culture was 
incubated with freshly isolated PMNs. Migration of PMNs was analysed using migration assay. C5a and 
5 % activated serum increased neutrophil migration by 14 % and 21 % respectively. C5a incubation with culture 
supernatant of A. benhamiae resulted in complete inhibition of neutrophil migration of 146 %. 

C5a is a potent chemo attractant for human neutrophils. Chemoattraction of freshly isolated 

PMNs by none treated C5a or C5a treated with supernatant of an A. benhamiae wild type 

culture was analysed using neutrophil migration assay. C5a and also activated serum (5 %) 

increased neutrophil migration by 14 % and 21 % respectively. C5a incubation with culture 
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supernatant of A. benhamiae resulted in a complete inhibition of neutrophil migration by 

146 % (Figure 19 D). 

Taken together, A. benhamiae secrete proteases, which cleave complement components. 

Thereby the opsonic activity of C3b, the antifungal and proinflammatory properties of C3a 

and the chemotattractic and proinflammatory activities of C5a were inactivated. In addition 

cleavage of C3, C4, C5 and C6 resulted in the inhibition of complement activation and thus 

the MAC is not formed on surfaces. Hence, complement degradation by fungal proteases 

leads to the inactivation of the complement effector functions. 

A. benhamiae uses two separate mechanisms to evade host complement 

attack. 

Here we identified two separate strategies of A. benhamiae to control human complement. 

A. benhamiae acquires human complement regulators and also secreted proteases to 

inactivate complement attack. To define, if these two complement escape mechanisms act 

simultaneously or in a timely separated manner, the cleavage kinetics was followed. C3b 

cleavage of Factor H coated and non coated conidia were examined. Therefore conidia were 

coated with Factor H and after washing Factor I and C3b were added. In comparison, C3b 

was directly added to non coated conidia. Supernatant of the samples was collected at 

different time points, separated by SDS PAGE, transferred to a membrane and assayed by 

Western blotting using C3 antiserum.  

C3b cleavage was observed already after one minute of incubation with Factor H coated 

conidia, but not by non coated conidia (Figure 20 A, lanes 2, 5). The generated C3b products 

of 68, 43 and 41 kDa correspond to the pattern obtained by Factor I (Figure 20 A, lane 8). 

After ten minutes of incubation C3b fragments of 68, 43, 41, 35, 27 and 8 kDa appeared in 

samples of Factor H coated or non coated conidia (Figure 20 A, lane 4, 7). The generated 

cleavage fragments were comparable to that obtained by fungal secreted proteases 

(Figure 19 B). C3b cleavage fragments are pictured in Figure 20 B to demonstrate similarities 

and differences of C3b cleavage fragments derived from Factor H or from fungal secreted 

proteases.  

The C3b cleavage kinetics indicate that A. benhamiae use human regulator Factor H in the 

initial phase in the first minutes of conidial contact with complement for complement 
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evasion. Later on, secreted fungal proteases efficiently cleave complement and thus 

inactivate complement attack. Thus, the two complement degradation strategies are 

independent from each other and can be separated in time. 

 

Figure 20: A. benhamiae uses two separate mechanisms to evade host complement attack. 

(A) To separate Factor H mediated from fungal supernatant mediated C3b degradation, cleavage kinetics were 
done. C3b cleavage of Factor H coated and non coated conidia were examined. Therefore conidia were coated 
with Factor H and after washing Factor I and C3b were added. In comparison C3b was added to non coated 
conidia. Supernatants of the samples were collected after different time points, separated by SDS-PAGE, 
transferred to a membrane and assayed by Western Blotting. C3b cleavage was observed after one minute 
incubation by Factor H coated, but not by non coated conidia. The generated degradation products of 68 kDa, 
43 kDa and 41 kDa correspond to the pattern obtained by Factor I. After ten minutes of incubation C3b 
fragment of 68 kDa, 43 kDa, 41 kDa, 35 kDa, 27 kDa and 8 kDa appear in samples using Factor H coated or non 
coated conidia. (B) The figure displays the proposed C3b cleavage pattern mediated by Factor H or fungal 
culture supernatant.  

 



 

 
58 

DISCUSSION 

Scope of the study 

Since prevalences of dermatophyte infections increase, much interest is given on infection 

and immune evasion strategies of these fungi. In comparison to systemic infecting fungi, like 

C. albicans or A. fumigatus, dermatophyte infections are limited on keratin-rich substrates, 

e.g. dead cell layers of the skin, hair or nails. Investigating immune evasion of 

dermatophytes may lead to new therapeutic targets and will expand our knowledge to 

defend this partial long-lasting infection with dermatophytes.  

The complement system plays a crucial role in the clearance of infections. Until now, 

complement activity in the skin is poorly described. Human keratinocytes secrete several 

central complement components and regulators. The culture supernatant derived from 

human keratinocytes contains complement components, which are activated on surfaces 

and build lytic pores in membranes. Thus the secreted complement components act as a 

fully active complement system, which is described for the first time in this study. 

It was asked whether the skin-derived complement also attacks A. benhamiae. The results of 

this work show that keratinocyte-derived C3 deposits on A. benhamiae conidia. 

Furthermore, dermatophyte opsonisation leads to increased adherence and phagocytosis by 

human monocytes. Thus skin cells provide active C3, which attack A. benhamiae.  

Since other dermatophytes like T.rubrum was shown to exhibit resistance in serum and that 

dermatophyte infections are cleared by cell-mediated immune response, immune evasion of 

A. benhamiae was examined120. Two immune evasion strategies of A. benhamiae are 

described in this work.  A. benhamiae immediately binds the human complement regulator 

Factor H on the surface after contact with complement in the skin to degrade the central 

complement component C3b and thus inhibits further complement activation and 

opsonophagocytosis. Later on, endogenous proteolytic activity of A. benhamiae takes over 

complement degradation and stops complement activation. A. benhamiae secreted 

proteases degrade also the anaphylatoxins C3a and C5a. Consequently the antifungal, 

chemoattractive and proinflammatory properties of these peptides are inhibited. 
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Taken together, this work provides an insight into the humoral immunity against 

dermatophytes. Moreover, complement immune escape strategies of A. benhamiae were 

identified and described to be time dependent.  

Skin - a barrier with immunological properties 

A. benhamiae causes superficial infection in humans and animals which leads to severe 

inflammation. The pathogenicity of dermatophytes is poorly understood. Moreover, nearly 

no attention was paid on interactions of dermatophytes with the human complement 

system.  

To investigate the role of complement in skin, secretion and function of complement by 

human keratinocytes were examined. This study shows that keratinocytes secrete the 

central complement components, like C3 and the regulator Factor H (Figure 8). Keratinocytes 

continuously secrete C3 in contrast with Factor H which is generated in detectable amounts 

after IFN-γ stimulation.. This proves that  Factor H is specifically secreted under 

inflammatory conditions. This finding was confirmed in several publications 107, 109, 150. 

Furthermore keratinocytes secrete the complement regulator CFHR1 and the serine 

protease precursor plasminogen, which was shown for the first time (Figure 8). It was 

published that keratinocytes express and secrete additional complement components, like 

Factor B, Factor I and additionally, of the terminal pathway, like C5, C7, C8gamma and C9 106-

109. Timar described in 2007, that C6, as well as C8 α and β mRNA are not constitutively 

expressed by human keratinocytes, but it was not excluded, that mRNA expression of these 

components can be induced. Thus keratinocytes secrete components to generate a fully 

active complement system. To prove if keratinocytes secrete complement components, 

which can be activated and perform effector function, keratinocyte-derived culture 

supernatant was analysed to form lytic pores in membranes. It was shown for the first time 

that keratinocyte-derived complement gets activated on surfaces. The activated 

complement system forms the terminal complement complex, which builds pores in 

unprotected membranes like rabbit erythrocytes, as shown in hemolysis assays (Figure 8 A). 

The staphylococci-derived complement inhibitor Sbi blocked hemolytic activity of the 

keratinocyte supernatant, thus demonstrating that hemolysis is caused exclusively by 

complement proteins (Figure 8 B). This effect is specific for keratinocytes as supernatant 

derived from the retinal pigment epithelial cell line ARPE lacks hemolytic activity (data not 
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shown). Hemolysis mediated by 60% keratinocyte supernatant was comparable to the 

hemolytic activity mediated by 7.5 % NHS. Since complement secretion by human 

keratinocytes is inducible by the proinflammatory cytokines like IFN-γ and TNF-α, 

complement activity may eventually increase after stimulation or infection of the cells106, 107, 

109, 151. 

During the infection process, the dermatophyte A. benhamiae gets in contact with human 

keratinocytes and thus with keratinocyte-derived complement (Figure 21). If the secreted 

complement affects dermatophytes was a question of this dissertation. 

 

Figure 21: Dermatophyte interaction with a human keratinocyte 

 The picture shows a SEM micrograph of an A. benhamiae infection of a human keratinocyte. 

Keratinocyte-derived complement attacks fungal surfaces, as shown by deposition of dermal 

C3 on resting A. benhamiae conidia (Figure 8 D). Increasing concentrations of C3 leads to 

better adherence and enhanced phagocytosis of A. benhamiae conidia by human monocytes 

(Figure 8 E). That C3 increases phagocytosis of microorganism via CR1 and CR3 on human 

monocytes was revealed by e.g. Schlesinger in 1990 152, 153. During complement activation 

the anaphylatoxin C5a is generated. This complement activation product C5a increases the 

CR3 expression on monocytes and may also increase recognition of opsonised fungal cells by 

monocytes154.  
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Figure 22: Keratinocyte derived C3b opsonises A. benhamiae conidia and increases adherence and 
phagocytosis by human monocytes 

Keratinocyte derived C3b opsonises A. benhamiae cells and interacts with the CR3 on human monocytes. 
Following adherence and phagocytosis of A. benhamiae conidia by monocytes was increased. 

A. benhamiae was displayed as hyphae stained in blue with Calcoflour white and visualised using laser scanning 
microscopy. It should be marked, that opsonisation, adherence and phagocytosis was measured using conidia. 
To give evidence about hyphae was not possible. 

To sum up, this study demonstrates that human keratinocytes secrete central complement 

components and regulators. The keratinocyte derived complement is fully functionally active 

and attacks A. benhamiae conidia by opsonisation (Figure 22).  

A. benhamiae binds host proteins to evade complement attack 

Dermatophytes attached to human keratinocytes are exposed to a fully active host 

complement system. Nevertheless these pathogens still manifest in skin. How 

dermatophytes escape complement has not been investigated before this work.  

Keratinocytes secrete the complement regulators Factor H and CFHR1 in the ECM of the 

skin. Thus A. benhamiae is exposed to these complement regulators. Interestingly, human 

Factor H and CFHR1 are acquired to the surface of A. benhamiae as shown by serum binding 

assays (Figure 9 D). The binding of the complement regulators was dose dependent as 

demonstrated in cell-based ELISA (Figure 9 A, B). The distribution of Factor H on the surfaces 

of A. benhamiae appears in clusters as illustrated by immune fluorescence (Figure 9 F). 
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Fungal binding regions and function of the A. benhamiae-bound complement 

regulator Factor H  

The human complement regulator Factor H contacts A. benhamiae within two binding sites. 

One is located in SCR 4-7 and the second in the C-terminal SCR 15-20 of Factor H 

(Figure 10 A, B, D). The N-terminal SCR 1-4 of Factor H does not bind A. benhamiae.  This is 

consistent with the fact that SCR 1-4, which is responsible for the cofactor activity for 

Factor I, is not blocked and can mediate C3b degradation 155. C. albicans and A. fumigatus 

cause systemic infections in humans156, 157. Thus these fungi are exposed to serum 

complement. Both pathogens bind complement regulator Factor H and use the same contact 

regions, indicating common fungal binding sites of the serum- and tissue-derived Factor H 
158, 159. 

Factor H has complement regulatory activity as the protein acts as a cofactor for Factor I in 

the cleavage of C3b. The incubation of Factor H-coated A. benhamiae conidia with Factor I 

and C3b resulted in the formation of the typical Factor I C3b cleavage pattern of the α chain 

fragments with a mobility of 68, 43 and 41 kDa. Thus Factor H bound on the surface of 

A. benhamiae remains intact and helps to inactivate the complement component C3b 

(Figure 11). Following the effect of fungal-bound Factor H in inactivation of the opsonic 

properties of complement, adherence and phagocytosis of A. benhamiae conidia by innate 

immune cells were analysed. Factor H-coated conidia show decreased C3 deposition on the 

fungal surface as compared to non-coated conidia (Figure 12 A). Furthermore, the inhibition 

of C3b deposition can prevent C3 amplification on the fungal surface. Hence C3 convertase 

assembly on A. benhamiae is avoided and complement activation is blocked. C3b-mediated 

adherence and phagocytosis of Factor H-coated or non- coated A. benhamiae conidia to 

monocytes was also determined. Increasing concentrations of Factor H on the fungal surface 

resulted in decreasing adherence and in a lower uptake of conidia by monocytes. Higher 

concentration of 1.0 μg Factor H leads to a slight increase of phagocytosis (Figure 12 B). 

Human C3b interacts with the CR3 on human monocytes and initiate adherence and 

phagocytosis of C3b-opsonised cells (Figure 23). Factor H-mediated inactivation of C3b may 

block the interaction of C3b and CR3 on monocytes and thus decrease adherence and 

phagocytosis of A. benhamiae conidia. Since CR3 also detects the C3b degradation product 

iC3b, it is unclear that adherence and phagocytosis to monocytes is not increased160. 
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However, it was shown that serum-opsonised zymosan down regulates the expression of 

CR3 on monocytes161. Thus keratinocyte complement proteins in combination with fungi 

may also decrease CR3 expression on monocytes. Furthermore, monocyte differentiation 

into dentritic cells results in a lack of the iC3b binding ability 162. Since DCs act as immune 

cells in the skin, it should be mentioned that iC3b may not act as an opsonin for DC mediated 

phagocytosis. 

 

Figure 23: Factor H bound to A. benhamiae conidia mediate C3b degradation and consequently reduces 
opsonisation and phagocytosis by human monocytes 

Host complement protein Factor H bind to the surface of A. benhamiae conidia and interacts with complement 
Factor I to degrade the opsonisin C3b. The interaction between C3b and the CR3 on human monocytes was 
inhibited and following adherence and phagocytosis of A. benhamiae conidia by monocytes was reduced. 

A. benhamiae was displayed as hyphae stained in blue with Calcoflour white and visualised using laser scanning 
microscopy. Factor H mediated C3b degradation on the surface of A. benhamiae, opsonisation, adherence and 
phagocytosis studies was shown for fungal conidia, not for hyphae, which should be note during interpreting 
this illustration. Factor H was pictured using twenty balls standing for the 20 SCRs. Dark blue balls clarify 
binding regions of Factor H to A  benhamiae, red balls mark the region SCR 1-4, which hold cofactor activity. 

Fungal binding regions and function of the A. benhamiae-bound complement 

regulator CFHR1 

The human CFHR1 protein is part of the Factor H family and exhibits complement regulatory 

properties. Using CFHR1 deletion mutants the binding region of CFHR1 to A. benhamiae was 

localized within SCR 1-2 and SCR 3-5. Both deletion mutants bind with lower intensity to the 

fungus than the intact protein. This shows that in intact CFHR1 both fragments contribute to 

binding (Figure 10 C, D). CFHR1 is a complement regulator that acts on C5 convertase and 

thus blocks assembly of the terminal complement complex, which forms lytic pores in 

membranes78. Since TCC is assembled, but not lytic on fungal or gram positive bacterial 
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surfaces, other functions of TCC are proposed163, 164. Consequently A. benhamiae-bound 

CFHR1 may decrease complement activation on conidial surfaces. Inhibition of terminal 

complement activation prevents generation of the potent chemoattractive and 

anaphylatoxic agent C5a. Since C5a induces phagocytes, mast cells, Langerhans cells, 

melanocytes and under inflammatory conditions keratinocytes and exhibits proinflammatory 

and chemotactic properties, C5a formation has to be avoided by A. benhamiae 165, 166  

Function of the A. benhamiae-bound human coagulation proenzyme plasminogen 

A. benhamiae binds the coagulation proenzyme plasminogen on its surface. Plasminogen is 

converted to the active serine protease plasmin by human plasminogen activators like 

urokinase (uPa) or the tissue plaminogen activator (tPa), but also by pathogen-derived 

activators like the streptokinase (Streptococcus spec.) or staphylokinase 

(Staphylococcus spec.)167-169 Pathogen-bound plasmin exhibits functions in ECM degradation 

and cell migration, which may assist colonisation of A. benhamiae in the skin 158, 170. 

Furthermore plasmin affects complement degradation of C1, C2, C3 and C4171. Plasmin 

cleaves the complement C3 and thus needs no preactivation of the C3 component to C3b for 

degradation172. In comparison, Factor H exclusively assists the cleavage of the activation 

product C3b. Cleavage of C3 instead of C3b is beneficial as the production of the 

anaphylatoxin C3a during C3 activation is prevented. 

This study shows that A. benhamiae blocks complement activation by binding the central 

host complement regulators Factor H, CFHR1 and plasminogen to its surface. Pathogen-

attached regulators control complement and thus inhibit complement activation. The 

binding of human complement regulators to control complement activation was also shown 

for systemic infecting fungi, like C. albicans and A. fumigatus 74, 159, 173. These fungi get in 

contact with serum. Tissues like the skin exhibit another biological niche and show other 

immunological properties. Complement regulation is shown for the first time for 

dermatophytes, which are exclusively in contact with the human skin.  

In addition, A. benhamiae-bound host proteins may increase virulence of the dermatophyte 

by inhibiting complement activation and by degrading extracellular matrix components to 

facilitate tissue damage and migration. Moreover, binding of host proteins to the fungal 

surface may prevent immune recognition of fungal cell wall components by pattern 
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recognition receptors, like dectin or mannose receptors on keratinocytes and phagocytes 

and thus function in molecular mimicry 174, 175, 176. 

A. benhamiae secretes complement-degrading proteases to evade 

complement attack 

A. benhamiae secretes proteases 

Dermatophytes secrete a high level of proteases during growth on keratin 133. Genome 

analysis of A. benhamiae revealed 235 predicted protease-encoding genes and 87 of these 

sequences posses a putative secretion signal. Twenty five proteases were specific to the 

Onygenales as analysed using MEROPS, NCBI and Broad Institute databases. Nine of these 

twenty five proteases have a secretion signal (unpublished data). Secretome analysis of an 

A. benhamiae culture demonstrated the existence of three subtilisin-like proteases (Sub 3, 

Sub 4 and Sub 7), three fungalysine type metalloproteases (Mep 1, Mep 3, Mep 4), the 

leucine aminopeptidases Lap 1 and Lap 2, as well as the dipeptidylpeptidases DppIV and 

DppV.  

A. benhamiae-secreted proteases, such as Subtilisin 3, degrade keratin 

Secretion profiles of the dermatophyte A. benhamiae shows increased expression of 

Subtilisin 3 in cultures supplemented with keratin. To examine the role of Subtilisin 3 in 

pathogenesis and immune escape strategies, a Subtilisin 3 disruption mutant was generated 

from the A. benhamiae Ku 70 wild type, which was kindly provided by Anke Burmester 

(Department Molecular and Applied Microbiology, Leibniz-Institute for Natural Product 

Research and Infection Biology-HKI, Jena) 

The first contact of dermatophytes with its hosts is mediated by the contact of the fungi with 

the cornified layers of the skin. The outer layers of the skin mainly consists of keratin, but 

also comprises different cross-linked proteins like elafin, filagrin, involucrin, loricrin and 

small proline rich proteins177, 178. Dermatophytes are shown to degrade the keratin-protein 

network of the upper layers of the skin. Specifically, A. benhamiae Subtilisin 3 degrades 

keratin133. Culture supernatants of the A. benhamiae wild type and the Subtilisin 3 disruption 

mutant were incubated with a chromogen-charged keratin substrate to quantify proteolytic 

activity. Results showed that medium supplemented with keratin induces A. benhamiae to 



Discussion 
 

 
66 

secrete proteases with keratinolytic activity (Figure 13). Culture supernatant of the 

Subtilisin 3 disruption mutant shows few degradation of the keratin substrate, which 

confirms the role of Subtilisin 3 in keratin degradation. Subtilisin 3 and Subtilisin 4 of the 

dermatophyte T. rubrum are also highly potent keratin degrading enzymes and hence 

suggested as virulence factors133. 

A. benhamiae secretes complement-degrading proteases 

Activation of complement in the skin by A. benhamiae is shown above in this study 

(Figure 8). Since the complement system is a crucial part of the innate immune defense, 

A. benhamiae must strictly control complement activation to survive on skin. To investigate 

if A. benhamiae-secreted proteases degrade and thus inhibit complement, supernatant 

derived from A. benhamiae was incubated with the complement components C3b, C3, C4b, 

C4, C5 and C6. Western Blot analysis showed degradation of all the tested complement 

proteins (Figure 14 A-F). C3b consist of a 115 kDa α-chain and a 75 kDa β-chain. 

 

Figure 24: Cleavage of C3b by FactorH/FactorI or by A. benhamiae-derived proteases 

C3b consist of a 115 kDa α-chain and a 75 kDa β-chain. C3b inactivation occurs by Factor H-assisted Factor I 
cleavage of the C3b α-chain to 68- and 43-kDa fragments by the release of a 3 kDa fragment named C3f. The 
68 kDa fragment is further cleaved to 41- and 27-kDa fragments. The C3b cleavage pattern obtained from 
fungal proteases differs with additional cleavage products of 38 and 5 kDa. This effect may be due to an 
additional cleavage site within the α-chain fragment of 43 kDa by the proteases of A. benhamiae. 

C3b cleavage pattern obtained from fungal proteases differs to those mediated by Factor I in 

the presence of Factor H. Although C3b α chain cleavage products of 68 kDa, 43 kDa and 

41 kDa and 27 kDa occur in both cleavage patterns, additional cleavage products of 38 and 

5 kDa were observed during cleavage of C3b by fungal proteases179. This effect may due to 

an additional cleavage site within the α-chain fragment of 43 kDa by the proteases of 

A. benhamiae (Figure 24). Fungal proteases also mediate C3 cleavage. The generated 

C3 fragments are comparable to the formed C3b fragments, indicating similar cleavage sites. 
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C4b and C4 are cleaved by fungal proteases. C4b consists of an 82 kDa α-chain, 

a 75 kDa β-chain and a 40 kDa γ-chain. Fungal proteases might have cleaved the α-chain and 

the γ-chain of C4b, because of their loss of intensity shown in Western Blotting.. The α-chain 

of C4b is cleaved to main products of 64 kDa, 60 kDa, 54 kDa, 50 kDa and 18 kDa. The γ-chain 

of C4b is cleaved to a 38 kDa fragment. Proposed cleavage pattern of C4b derived from 

A benhamiae secreted proteases resulted also in the generation of small 4 kDa and 6 kDa 

fragments (Figure 25). Host complement C4BP acts as cofactor for Factor I in C4b 

inactivation180.Factor I cleaves the 82 kDa α-chain of C4b in 64 kDa (iC4b), 46 kDa (C4d) and 

18 kDa (C4c) fragments. Excluding the 64 kDa fragment of the α-chain of C4b, cleavage 

products derived from C4BP/Factor I and fungal proteases differ, suggesting different 

cleavage sites within C4b. C4 cleavage by fungal proteases resulted in fewer fragments 

compared to the C4b cleavage of the control, indicating reduced susceptibility of C4 for 

A. benhamiae secreted proteases and the necessity for C4 precleavage to C4b for optimal 

fungal protease accessibility. 

 

Figure 25: Cleavage of C4b by C4BP/Factor I or A. benhamiae derived proteases. 

C4b consists of a α-, β- and a γ-chain. Host complement C4BP acts as cofactor for Factor I in C4b inactivation. 
Factor I cleaves the 82 kDa α-chain of C4b to 64 (iC4b), 46 (C4d) and 18 kDa (C4c) fragments. Fungal proteases 
attack the α-chain of C4b and products of 64, 60, 54, 50 and 18 kDa were formed. The γ-chain of C4b is cleaved 
to a 38 kDa fragment. Excluding the 64 kDa fragment of the α-chain of C4b, cleavage products derived from 
C4BP/Factor I and fungal proteases differ. C4b cleavage products derived from A. benhamiae secreted 
proteases also resulted in the generation of small 4 kDa and 6 kDa fragments. 

Also, C5 and C6 are cleaved by A. benhamiae-derived proteases. C5 cleavage was observed 

by cysteine proteases of the gram negative bacterium Porphyromona gingivalis. The 

cleavage products are not described in detail181. Secreted aspartyl proteases of the yeast 

C.albicans degrade C5, which consequently confers escape from the complement attack149. 

The degradation and thus inactivation of C5 results to non-formation of the surface-bound 

membrane attack complex which consequently leads to inhibition of the terminal pathway. 

C6 bind C5b during formation of the lytic terminal complement complex. Degradation of C6 
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by A. benhamiae-derived proteases helps to block the terminal pathway and TCC formation. 

A. benhamiae is the first pathogen, which is described to cleave the sixth component of 

complement. C6 is similar in structure to complement C7. Both proteins share 

33.5% identical residues including all 56 cysteine residues182. Since cysteine proteases of 

P.gingivalis cleave C5, cysteine-rich C6 and C7 may also be degraded by cysteine specific 

proteases present in the supernatant of A. benhamiae. 

The peptides C3a and C5a are formed during complement activation and exhibit several 

inflammatory, chemotactic and antifungal properties. C3a and C5a were degraded by 

A. benhamiae-derived proteases (Figure 14 G, H). C3a degradation by pathogens is new and 

has not been described before. Human mast cell-derived chymase degrades C3a in vivo. 

Chymase (Merops classification: S01.140) belongs to the serine peptidase family of 

chymotrypsin peptidases. C5a peptidases are reported for group A and virulent 

group G Streptococci183, 184. Since Chymase and the C5 peptidase belong to the group of 

serine proteases, A. benhamiae-released serine proteases, like the Subtilisins, may 

specifically mediate C3a and C5a degradation. 

Subtilisin 3 plays an important role in complement degradation 

Subtilisin 3 was identified in the culture supernatant of A. benhamiae during growth in 

medium supplemented with keratin. Since serine proteases, such as Factor I, exhibit 

specificity for complement degradation, the function of the fungal serine protease 

Subtilisin 3 in complement cleavage was studied. Cleavage assays using culture supernatant 

of the Subtilisin 3 disruption mutant of A. benhamiae showed lesser degradation of C3b and 

nearly no degradation of C5 and the anaphylatoxin C3a (Figure 15). However, 

C3b degradation was not totally blocked by Subtilisin 3 disruption of A. benhamiae 

suggesting that other proteases are also involved in complement degradation. Nevertheless, 

these results demonstrate an important role of Subtilisin 3 in C5b and C3a inactivation.  

Degradation of complement by A. benhamiae secreted proteases results in the loss 

of complement functionality 

To test if the cleavage of complement proteins by A. benhamiae proteases leads to the 

inhibition of the formation of the lytic terminal complement complex on membranes, 

hemolysis assay using rabbit erythrocytes as a complement activator surface was done. 
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Culture supernatant derived from A. benhamiae blocked complement activation on rabbit 

erythrocytes. The effect was specific for A. benhamiae, as culture supernatant derived from 

the non pathogenic yeast S. cerevisiae lacked complement inhibitor activity (Figure 16 A). 

Since A. benhamiae secreted proteases degrade C3 and C5, the complement activation is 

inhibited on C3 convertase and C5 convertase level. Thus TCC formation on surfaces is 

prevented. The activity of secreted proteases of A. benhamiae was mainly inhibited by the 

serine protease inhibitor PMSF (Figure 16 B), which shows that serine proteases are involved 

in TCC inhibition. Furthermore, this indicates that the A. benhamiae secreted serine protease 

Subtilisin 3 acts in complement inactivation. To determine this, culture supernatant of the 

Subtilisin 3 disruption mutant was analysed in hemolysis assays133. A loss of Subtilisin 3 led 

to the reduced hemolysis inhibition (Figure 16 C). Thus, Subtilisin 3 prevents TCC formation. 

Since hemolysis is not totally blocked by Subtilisin 3, additional proteases in the culture 

supernatant of A. benhamiae might be involved in complement inhibition. 

To examine, if secreted fungal proteases affect the opsonisic activity of C3b, culture 

supernatant derived from the A. benhamiae wild type or the Subtilisin 3 disruption mutant 

was incubated with C3b and added to conidia. Fungal proteases derived from the wild type 

inhibited deposition of C3 on conidia. In comparison, the loss of Subtilisin 3 in the fungal 

culture supernatant led to higher C3 deposition rates (Figure 17 A). C3b deposition on fungal 

surfaces opsonizes conidia for phagocytes. To measure adherence and phagocytosis of 

A. benhamiae conidia by human monocytes, C3b was treated with culture supernatant 

derived from the A. benhamiae wild type and then conidia were added before incubating the 

samples with monocytes. Increasing concentrations of fungal wild type culture supernatant 

resulted in decreasing adherence and in lower phagocytosis rates (Figure 17 B). Thus, by 

degrading C3b, secreted fungal proteases inhibit its opsonic activity and C3b-mediated 

adherence and phagocytosis by monocytes is blocked (Figure 26). Particularly, Subtilisin 3 is 

relevant in avoiding deposition of C3b on fungal surfaces and consequently blocking 

opsonophagocytosis. Consistent with these results, a recent study on a cell envelope-bound 

Subtilisin (SSU0757) of Streptococcus suis described its ability to mediate resistance of 

Streptococcus in whole blood. The study suggests that the protease degrades human serum 

proteins with bactericidial activity or opsonins and thus Subtilisins are involved in 

phagocytosis of immune cells185. Harris et al. reported about the Subtilisin CspA of 

Streptococcus agalactiae, which mediates resistance to opsonophagocytic killing by 
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neutrophils and mediates virulence in neonatal rat sepsis model186. Altogether, Subtilisins 

play a pivotal role in the resistance against complement attack. 

 

Figure 26: A. benhamiae secreted proteases prevent C3b-mediated opsonisation and phagocytosis by human 
monocytes 

A. benhamiae-derived culture supernatant was incubated with C3b and added to resting fungal conidia. 
Analysis of the C3 deposition on the conidial surface shows reduction of the opsonin C3b in the presence of 
secreted fungal proteases. Thereafter, adherence and phagocytosis of A. benhamiae conidia by monocytes was 
reduced. 

A. benhamiae is shown as hyphae stained in blue with Calcoflour white and visualised using laser scanning 
microscopy. C3b mediated opsonisation, adherence and phagocytosis studies were shown for A. benhamiae 
conidia, not for hyphae, which should be noted when interpreting this illustration. Secreted fungal proteases 
are illustrated using colored balls.  

A. benhamiae-secreted proteases inactivate C3a and C5a 

Activation of complement leads to the formation of the anaphylatoxins C3a, C4a and C5a. 

C3a is a potent antimicrobial peptide and its activity is comparable to the cathelicidin LL-37. 

Furthermore, C3a stimulates the production of reactive oxygen species by human PMNs. 

A. benhamiae-derived culture supernatant degrades the complement fragment C3a. In 

particular, Subtilisin 3 cleaves C3a. To analyse if the degradation of C3a by A. benhamiae 

derived proteases affects the function of C3a, the antifungal activity and the ability to 

stimulate ROS production of PMNs were determined. 

In order to test if C3a treated with culture supernatant of the A. benhamiae wild type or the 

Subtilisin 3 disruption mutant keeps its antifungal properties, fungal killing assays were 

performed. C3a added to C. albicans reduced fungal growth. C3a-supplemented culture 

supernatant of A. benhamiae wild type resulted in increased survivial of C. albicans. 
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C3a-supplemented culture supernatant of the A. benhamiae Subtilisin 3 disruption mutant 

showed also significant survival of the fungal cells, but was lower in comparison to the 

activity of wild type culture supernatant (Figure 18 A). Therefore, C3a cleavage by 

A. benhamiae-derived proteases, in particular Subtilisin 3, inactivates the antifungal 

properties of C3a. However, the C. albicans growth in culture medium was increased by a 

combination of C3a and A. benhamiae-derived proteases. Investigation of stimulation of the 

C. albicans growth by A. benhamiae-derived culture supernatant is beyond the scope of this 

study  

 C3a induces ROS production in human neutrophils187. ROS production of freshly-isolated 

PMNs was quantified after induction with C3a or after pretreatment with C3a-supplemented 

fungal culture supernatant derived from the A. benhamiae wild type or Subtilisin 3 

disruption mutant. Purified C3a increased the ROS release. In comparison, treatment of C3a 

with the culture supernatant of the A. benhamiae wild type or Subtilisin 3 disruption mutant 

repressed ROS production by freshly isolated blood derived PMNs. C3a treated with the 

culture supernatant of the Subtilisin 3 disruption mutant resulted in lesser reduction of ROS 

by human PMNs than C3a treated with the culture supernatant of the wild type 

(Figure 18 B). Evidently, C3a activity in ROS induction of PMNs is inactivated by addition of 

A. benhamiae-derived proteases. Thereby Subtilisin 3 plays an important role in the 

inhibition of C3a-mediated ROS stimulation of PMNs. 

In conclusion, A. benhamiae-derived proteases block the antifungal and proinflammatory 

functions of C3a. Subtilisin 3 is one of the main C3adegrading proteases since it reduces C3a 

mediated antifungal activity by 75 % and ROS induction of PMNs by 60 %. 

Since the proteases in the culture supernatant of A. benhamiae cleave C5a, effects on the 

activity of C5a were investigated. C5a induces the release of the proinflammatory cytokines 

IL 6, IL 8 and TNF-α from human monocytes. To investigate secretion of these cytokines by 

human monocytes after stimulation with C5a or C5a which was pretreated with fungal 

culture supernatant, cytokine assays were performed. Monocytes treated with C5a 

produced higher levels of IL-6, IL-8 and TNF-αin comparison to the control. Preincubation of 

C5a with the culture supernatant of A. benhamiae resulted in complete reduction of IL-6, 

IL-8 and TNF-α secretion by human monocytes to the level of control (Figure 19 A-C). Since 

the Subtilisins CspA from S. agalactiae and SufA isolated from Finegoldia magna are known 
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to cleave CXC chemokines, the influence of Subtilisins on chemokines were also tested. 

Although CspA and SufA do not cleave IL-8, the reduction of IL-8 production under the level 

of control could also be explained by the degradation of the chemokine through 

A. benhamiae derived Subtilisins188, 189. The cytokines TNF-α, IL-6 and the chemokine IL-8 act 

as proinflammatory mediators. The inhibition of TNF-α and IL-6 influences, amongst others, 

the production of acute phase proteins. IL-8 is a major attractant for neutrophils, inhibition 

of IL-8 production may prevent accumulation of PMN in the skin. Viability assays showed 

that different concentrations of keratin medium or culture supernatant of A. benhamiae had 

no effect on the viability of human monocytes which might have caused the decrease of 

secreted cytokines and chemokines (data not shown). 

In addition, C5a is a potent chemoattractant for human neutrophils. Using neutrophil 

migration assays, the function of C5a or C5a treated with culture supernatant of 

A. benhamiae on freshly isolated PMNs was analysed. C5a and 5 % activated serum 

increased neutrophil migration. C5a incubation with culture supernatant of A. benhamiae 

resulted in complete inhibition of neutrophil migration (Figure 19 D). No effects of the fungal 

culture supernatant on neutrophil migration were observed (data not shown). Since 

neutrophil migration was blocked with the value under that of the level of the control, the 

influence of the C5a cleavage products in combination with the fungal culture supernatant 

on human neutrophils should be further analysed. 

Taken together, A. benhamiae-derived secreted proteases degrade and inactivate C5a, 

which affects monocyte stimulation and neutrophil chemotaxis. Since C5a functions 

contribute to a proinflammatory response, A. benhamiae prevents the immune response by 

secreting C5a-degrading proteases. 

Fungal secreted proteases act as potent virulence factors. C. albicans expresses aspartyl 

proteases (SAPs) during oral and cutanous candidosis in vivo190. The family of ten SAPs 

contributes to nutrient acquisition, facilitates adhesion and tissue invasion and degrades 

cells and molecules of the host immune system191. A. fumigatus expresses different classes 

of proteases, which are implicated with virulence, such as the alkaline serine proteases 

(Alp 1 and Alp 2), metalloproteases (Mep), aspartic proteases (Pep 1 and Pep 2), dipeptidyl-

peptidases (Dpp IV and Dpp V), phospholipase C and phospholipase B (Plb 1 and Plb 2)132, 192, 

193. Serine proteases, in particular, play an important role in pathogenesis as reported, for 
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instance, for A.fumigatus Alp 1, which was shown to degrade immune components194. 

Furthermore, the group of subtilisins was reported to interfere with immune components. 

The C5a peptidase on the surface of group A Streptococci degrades the anaphylatoxin C5a 

(S08.020, MEROPS classification) and TPP II (S08.090) which is found in mammals and has a 

role in the processing of antigens 195, 183.  

Taken together, A. benhamiae-derived proteases degrade complement and thereby 

inactivate complement functions by inhibiting the formation of the terminal complement 

complex, blocking opsonophagocytosis and inhibiting the proinflammatory, chemotactic and 

antifungal properties of C3a and C5a. A. benhamiae-secreted serine protease Subtilisin 3 is 

described for the first time as a main complement-degrading protease in the culture 

supernatant of A. benhamiae. Thus, A. benhamiae gets attacked by the skin-derived 

complement system and evades the attack by endogenous proteolytic activity. This study is 

the first description of A. benhamiae skin complement evasion strategies. 

A. benhamiae uses two subsequent acting strategies to evade complement 

attack 

A.benhamiae is specialized to infect human skin and thus encounters the complement 

system. To evade the complement system, A. benhamiae developed two separate 

mechanisms. The fungus binds the host complement regulator Factor H to mediate C3b 

inactivation and thus block opsonophagocytosis. In addition, A. benhamiae secretes potent 

proteases, which degrade complement components and thus inhibit complement activation. 

To define if this two complement escape mechanisms act simultaneously or in a timely 

separated manner, C3b cleavage kinetics clarified the differences between Factor H-coated 

and non-coated conidia in complement degradation during a time lapse study.  

C3b cleavage was observed already after 1 minute incubation by Factor H-coated conidia, 

but not by non-coated conidia (Figure 20 A, lane 2, 5). The generated C3b products of 

68 kDa, 43 kDa and 41 kDa correspond to the pattern obtained with Factor I (Figure 20 A, 

lane 8). The result demonstrates that Factor H-coated conidia in comparison to non-coated 

conidia cleave C3b and are protected against opsonophagocytosis. Furthermore, 

complement activation was blocked on the C3b level and formation of the anaphylatoxins 

C3a and C5a, as well as the formation of the TCC was inhibited within the first minute of 
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complement attack. After 10 minutes of incubation, C3b fragments of 68 kDa, 43 kDa, 

41 kDa, 35 kDa, 27 kDa and 8 kDa appeared in samples using Factor H-coated and also 

non-coated conidia (Figure 20 A, lane 4, 7). The generated cleavage fragments are 

comparable to the pattern obtained by fungal secreted proteases (Figure 20 B). This means 

that proteases are secreted ten minutes later and thus mediate time-delayed complement 

degradation and inactivation. The C3b cleavage kinetics indicates that A. benhamiae uses 

human regulator Factor H in the first minutes of conidial contact with complement for 

complement evasion. Later on, secreted fungal proteases efficiently cleave complement and 

thus inactivate complement attack. This theory is confirmed by the fact that Factor H in fluid 

phase is cleaved by secreted Subtilisin 3 (data not shown). In comparison, immobilized 

Factor H is not attacked by Subtilisin 3. For this reason Factor H binds to the surface of 

A. benhamiae before fungal proteases are secreted. Thus, both complement degradation 

strategies are independent events and can be separated in time.
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Conclusions 

In this dissertation I show that human keratinocytes secrete a functional complement 

system and thus form an intact humoral innate immune defense system in skin. The 

complement system displays an important defense system against infecting microorganism. 

Activation of the complement system leads to the generation of potent and damaging 

activation products that ultimately result in the clearance of infectious microbes by 

opsonisation of microbes for phagocytosis and by the formation of the lytic terminal 

complement complex in membranes. Keratinocyte derived complement component C3b 

deposits on the conidial surface of the dermatophyte A. benhamiae. The opsonisation of the 

conidia leads to an increase of phagocytosis by human monocytes in absence of complement 

regulatory proteins. 

Dermatophytes resist complement attack. I characterized this complement resistance and 

demonstrate that A. benhamiae uses two independent and timely separated strategies to 

control complement attack. Immediately upon infection the fungus acquires several host 

complement regulators, such as Factor H, CFHR1 and plasminogen to its surface. Fungal 

bound Factor H mediates cleavage of the central complement component C3b. This 

degradation by Factor I leads to an inactivation of C3b and thus to the inhibition of the 

whole complement cascade.  

Furthermore I showed in this study that A. benhamiae secretes complement degrading 

proteases. Complement cleavage by these fungal proteases leads to an inactivation of the 

complement system on the level of the C3- and the C5 convertases. 

I identified the serine proteases Subtilisin 3 as a major complement degrading protease, 

which is secreted by A. benhamiae into the culture supernatant. This protease cleaves the 

complement components C3b, C5b and C3a. Consequently complement activation on the 

fungal surfaces is blocked and in addition the antifungal and proinflammatory effector 

functions of the complement peptide C3a are inhibited.  

Furthermore I show in this work that the immune escape strategies of A. benhamiae act at 

different times upon infection. Complement inactivation by acquiring human complement 

regulators occur immediately after contact with complement. Later on endogenous 
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proteolytic activity of A. benhamiae takes over the role of complement degradation and 

inactivation (Figure 27). 

 

Figure 27: A. benhamiae uses two time dependent strategies to escape complement attack 

Time lapse of the C3 cleavage by A. benhamiae conidia showed that the fungus immediately after contact with 
complement proteins binds human complement regulators to degrade C3b. Later on secreted fungal proteases 
take over the role in complement cleavage. A. benhamiae was displayed as hyphae stained in blue with 
Calcoflour white and visualised using laser scanning microscopy. 
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SUMMARY 

Dermatophytes cause superficial infections of the upper layers of the skin, nails or hair. 

Although about 10-20% of the world population is affected the pathogenesis and the 

immunology against these fungi is poorly understood and requires further investigations to 

facilitate diagnostics and adapt therapy to dermatophytes. 

Dermatophytes cause superficial infections. To colonise the skin, dermatophytes have to 

evade the local immune system. The skin is mainly composed of keratinocytes, which are 

immunocompetent cells. This work shows that keratinocytes secrete a functional 

complement system in skin. The complement system displays an important defense 

mechanism against infecting microorganism. Complement activation generates C3b that 

opsonises surfaces in order to allow phagocytosis. Keratinocyte derived C3b deposits on the 

conidial surface of the dermatophyte A. benhamiae. The opsonisation of the conidia leads to 

an increase of phagocytosis by human monocytes. 

Former studies showed that dermatophytes exhibit resistence against serum derived 

complement. Hence dermatophytes developed strategies to evade complement attack. This 

work identified two separate acting complement escape strategies of the dermatophyte 

A. benhamiae. Initially the fungus aquires keratinocyte derived complement regulatory 

proteins, such as Factor H and CFHR1 on its surface. Fungal bound Factor H mediate cleavage 

of the central complement component C3b. The degradation leads to an inactivation of C3b 

and thus to the decrease of opsonophagocytosis of the conidia. Furthermore C3b cleavage 

results in the inhibition of the following complement cascade enzymes and avoids the 

formation of the anaphylatoxins C3a, C4a and C5a, as well as the formation of the lytic 

terminal complement complex.  

The hyphal form of A. benhamiae secretes after in vitro stimulation with keratin a 

multiplicity of proteases in the culture supernatant. These proteases are associated with the 

virulence of pathogenic dermatophytes. This study shows that A. benhamiae secreted 

proteases cleave and inactivate several complement components. The A. benhamiae 

mediated cleavage of the complement proteins C3, C3b, C4, C4b, C5, C6 and of the 

anaphylatoxins C3a and C5a leads to the inactivation of the respective complement effector 

function. The proteolytic activity of A. benhamiae inactivates the opsonic properties of C3b. 
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Thus the phagocytosis of conidia is reduced. The cleavage of C3, C4, C5 and C6 blocks the 

formation of the terminal complement complex on surfaces and consequently the lysis of 

complement sensitive cells. Moreover A. benhamiae derived proteases inhibit the antifungal 

properties of C3a, as well as the C3a mediated release of reactive oxygen species by human 

granulocytes. The endogenous proteolytic activity of A. benhamiae inhibits the C5a mediated 

chemoattractive effect on granulocytes, as well as the C5a induced release of cytokines by 

human monocytes. 

The serine proteases Subtilisin 3 was identified as major complement degrading protease in 

the supernatant of an A. benhamiae culture. This protease cleaves the complement 

components C3b, C5b and C3a. Thereby Subtilisin 3 inactivates C3a and C5a properties in 

complement activation, opsonisation and inflammation, as well as the antifungal properties 

of C3a.  

Complement inactivation by acquiring human complement regulators or endogenous 

proteolytic activity of A. benhamiae are timely separated mechanisms. In the first minutes of 

the contact with keratinocyte derived complement, human derived complement regulators 

on the surface of A. benhamiae mediate complement inactivation. When synthesis of fungal 

proteases is induced, the endogenous proteolytic activity of A. benhamiae takes over the 

role of complement degradation and inactivation.  

 

 



 

 
79 

ZUSAMMENFASSUNG 

Dermatophyten verursachen oberflächliche Infektionen des stratum corneum der Haut, der 

Nägel oder Haare. Etwa 10-20% der Weltbevölkerung sind von Dermatomykosen betroffen. 

Trotzdem sind die Pathogenese und die immunologische Antwort des Menschen auf 

Dermatophyteninfektionen nur ansatzweise beschrieben und bedürfen weiterer Forschung, 

um die Diagnostik der Hautpilzerkrankungen zu erleichtern und die Therapien der 

Erkrankungen auf den Pilz abzustimmen. 

Dermatophyten manifestieren sich in den keratinreichen Schichten der Hornhaut und bilden 

normalerweise keine systemischen Infektionen aus. Um die Haut zu besiedeln müssen 

Dermatophyten das lokale Immunsystem umgehen. Die Haut wird hauptsächlich durch 

verschiedene Differenzierungsstadien der Keratinozyten aufgebaut. Keratinozyten sind 

immunologisch potente Zellen. Unter anderem wurde in dieser Arbeit gezeigt, dass diese 

Zellen diverse Komplementkomponenten in die Haut sezernieren. Das durch Keratinozyten 

sezernierte Komplement agiert in einem System und wird auf ungeschützten Oberflächen 

aktiviert. Die Komplementkomponente C3b opsonisiert Oberflächen für die Phagozytose. Mit 

dieser Arbeit konnte gezeigt werden, dass sich C3b auf Konidien des Dermatophyten 

A. benhamiae ablagert. Folglich wird die Phagozytose jener opsonisierten Konidien durch 

humane Monozyten erhöht. 

Frühere Studien zeigten, dass Dermatophyten resistent gegen Serumkomplement sind. 

Demzufolge bilden Dermatophyen Strategien aus, um dem Angriff durch Komplement zu 

entgehen. In dieser Arbeit wurden zwei unabhängige Komplementevasionsstrategien des 

Dermatophyten A. benhamiae identifiziert. Zunächst bindet der Pilz 

Komplementregulatoren, wie Faktor H oder CFHR1, die durch Keratinozyten sekretiert 

werden. Ist Faktor H an die Oberfläche von Konidien gebunden, so spaltet es mittels Faktor I 

das Opsonisin C3b. Die Spaltung bewirkt eine Inaktivierung des C3b und damit eine 

Reduzierung der Opsonophagozytose der Konidien von A. benhamiae. Des Weiteren wird 

durch die C3b Spaltung die Aktivierung der folgenden Kaskadenenzyme unterbunden und 

damit die Freisetzung der Anaphylatoxine C3a, C4a und C5a, sowie der Aufbau des 

Membranangriffskomplexes verhindert. Im Gegensatz zur konidialen Form von A. benhamiae 

sekretiert die hyphale Form des Pilzes nach in vitro Stimulation mit Keratin eine Vielzahl an 

Proteasen in den Kulturüberstand. Diese Proteasen werden vielfach mit der Virulenz der 
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pathogenen Dermatophyten in Zusammenhang gebracht. Diese Studie zeigt, dass sekretierte 

Proteasen des Dermatophyten A. benhamiae humane Komplementproteine spalten und 

inaktivieren. Die Spaltung der Komplementproteine C3, C3b, C4, C4b, C5, C6 und der 

Anaphylatoxine C3a und C5a führt zur Inaktivierung der jeweiligen 

Komplementeffektorfunktionen. Die opsonisierenden Eigenschaften der 

Komplementkomponente C3b wird proteolytisch inaktiviert und damit die Phagocytoserate 

der Konidien verringert. Die Spaltung der Komponenten C3, C4, C5 und C6 verhindert den 

Aufbau des Membranangriffskomplexes auf Oberflächen und die damit verbundene Lyse von 

Zellen. Des Weiteren blockieren die sekretierten Proteasen von A. benhamiae die 

antifungalen Eigenschaften von C3a, sowie die C3a induzierte Ausschüttung von reaktiven, 

oxygenen Spezies durch Granulozyten. Die C5a vermittelte chemoattraktive Wirkung auf 

Granulozyten, sowie die C5a induzierte Ausschüttung von Zytokinen durch Monozyten wird 

ebenfalls durch endogene proteolytische Aktivität von A. benhamiae inhibiert. 

Diese Studie identifiziert die Protease Subtilisin 3 als wichtige, Komplement spaltende 

Protease in vitro. Die sekretierte fungale Protease Subtilisin 3 spaltet die 

Komplementkomponenten C3b, C5b und C3a und inaktiviert dabei deren Komplement 

aktivierenden, opsonisierenden und antifungalen Eigenschaften und proinflammatorischen 

Effekte. Somit ist Subtilisin 3 hauptsächlich an der Komplementspaltung und Inaktivierung 

beteiligt.  

Die Inaktivierungsprozesse von Komplement durch die wirtseigenen 

Komplementregulatoren oder sekretierten fungalen Proteasen sind zeitlich getrennte 

Ereignisse. Die Inaktivierung des Komplements durch wirtseigene Regulatoren an der 

Oberfläche von Konidien ist in den ersten Minuten des Kontaktes mit Komplement 

essentiell. Fungale Proteasen werden erst nach ihrer induzierten Synthese sekretiert und 

vermitteln so in den ersten Minuten keinen Schutz vor Komplementangriffen. Im weiteren 

Verlauf übernimmt die endogene proteolytische Aktivität von A. benhamiae die 

Inaktivierung des Komplementsystems. 
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