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Chapter 1

Introduction

When shrinking down material from macroscopic (bulk) toward microscopic scales, the prop-

erties of the material will begin to deviate from bulk properties at some size before the scale

of single atoms is reached. Typically, this happens at length scales from a few nanometers to

several 100 nanometers, resulting in the term “nano” to describe structures at this mesoscopic

length scale. The properties of such nanosized materials or nanostructures can differ quite

strongly from the respective bulk properties; for example these can be different elastic con-

stants [Che07a,Die11], optical [Flo11] as well as electrical [Wan09] properties and also thermal

properties as for instance lower melting points [Gui07]. Furthermore, new effects occur in nano-

structures, which can be due to quantization [Naw10], reduced dimensionality [Che07b] or the

large surface-to-volume ratio [Sti07]. On the one hand, these aspects have to be accounted for in

the on-going miniaturization of conventional devices and technology. On the other hand these

different properties and new effects also allow completely new device concepts and applications

beyond “simply being smaller”.

One class of nanosized materials are nanowires (NWs). These have an approximate shape

of a long cylinder and are thus reduced in two dimensions but not in the third dimension.

Typical diameters range from a few to several hundred nanometers. Very thin nanowires can

appear quasi one-dimensional for electrons or show quantum confinement effects, while thicker

nanowires appear as bulk material toward electrons. Nevertheless, also these somewhat thicker

nanowires exhibit a very large surface-to-volume ratio compared to bulk material, and they

can strongly confine visible light when their diameter is comparable to the wave length. The

large surface-to-volume ratio as well as the confinement can be utilized, leading to a number of

different nanowire based devices that have been demonstrated. In these devices, the nanowires

(usually consisting of some semiconductor material) can act as the functional element as well

as the electric or optic wire to access the device.
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Chapter 1: Introduction

Examples are nanowire field effect transistors (FETs) [Cui03b], where the NWs constitute the

channel and can for instance be wrapped with an all-around gate [Tan10]; nanowire based

solar cells [Weh08,Pet09,Hoc10], where the absorption is largely increased over bulk material;

or nanowire FET based sensors [Yeh09], where the large surface-to-volume ratio is made use

of. Nanowires can further be used for light emission or photonic applications [Aga06,Wil09],

for instance as nanowire LEDs [Yan08], where the NWs act as electrical wire, light emitter

and waveguide for the light [Vos07]; as nanowire lasers [Joh03, Aga05, Hua07, Zim08, Gar09,

Zim10], where the nanowires form the cavity/resonator as well as the active laser medium; or

as ultra-small/extremely confined light sources, where the light is actually not guided within

the nanowire itself, but in an extremely small volume between the nanowire and the substrate

[Oul08].

One big advantage of nanowires is that they can be produced in large numbers in parallel

using self-organized growth (“bottom-up”), which means that they do not need to be “carved

out” from bulk material (which would be called “top-down”) [Cui03a]. There exists a variety of

chemical and physical growth methods to create nanowires of different semiconductor materials,

ranging from growth in solution [Zha00], vapor transport [Bor06] and metal-organic vapor

phase epitaxy (MOVPE) [Mik04,Gut09] to molecular beam epitaxy (MBE) [Ihn07]. A widely

employed growth mechanism is the vapor-liquid-solid growth [Wag64], which will be explained

later in section 2.1.

A further advantage during nanowire growth is their small footprint, which allows growing

nanowires of one semiconductor material heteroepitaxially on a wafer of another semiconductor

material: while lattice mismatch causes stress and fracture in heteroepitaxial thin film growth,

such stress can quickly relax laterally in nanowires, allowing growth with very high crystal

quality [Man06].

Apart from the advantages and useful properties of nanowires, they also pose several problems

regarding applications. The most important property for the technological success of semi-

conductors is the possibility to adjust their properties by doping; however, doping is a major

obstacle for semiconductor nanowires because the chemistry and complex microscopic physical

processes at work in the growth process make doping during growth very difficult. Dopants may

segregate in secondary phases [Sad07], may accumulate at the surface [Xie09] or may disrupt

the growth and cause morphological changes [Wha07]. If incorporation of dopants is possible,

it is often difficult to control the exact amount; only for a few materials and dopants, successful

and controlled doping during growth has been achieved [Li07,Cao08,Gut09]. Another problem
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Chapter 1: Introduction

for a number of nanowire based devices (FETs, sensors, lasers) is that great effort or many

processing steps are required to manipulate a single nanowire and to create a single functional

device from a nanowire.

Doping by ion implantation or simply “ion beam doping” is a widely used technique to dope semi-

conductor materials [Zie92]. As a hyperthermal doping method, ion beam doping is not bound

by solubility limits and in principle any element can be ionized, accelerated and implanted into

any target. The dopant concentration and the implantation depth can be well controlled via

the ion fluence and the ion energy, and furthermore, homogeneous doping of wafer scale targets

is possible. The most important drawback of ion beam implantation is the high concentration

of defects created by the ions, making post-implantation annealing a necessity. Nevertheless,

appropriate annealing techniques have been developed for most semiconductor materials and

ion beam doping has been widely used in industry for decades.

In combination with nanostructures, ion beams have not only been used for doping [Ell08],

but also for manipulation (e.g. the “ion hammering” effect [Sno00]) or even production of

nanostructures, for example nanoscale pattern formation on surfaces (“ripples”, [Hab99]), or

“carving” of nanostructures using focused ion beams [Ink04], or ion-beam induced nanostructure

growth [Ell08,Bet09], see also the reviews [Dha07,Kra10].

Specifically concerning nanowires, ion beam implantation can address both problems mentioned

earlier (doping and manipulation): first, it can be used to force dopants into the nanowires after

growth, independent of the growth method, and second, as a wafer-scale method it allows to

manipulate large numbers of nanowires simultaneously. Doping of nanowires by ion beam

implantation has been achieved in recent years for several nanowire materials [Col08,Ron10a,

Ron10b,DK11] and for electrically [Sti08b], optically [Geb08b], as well as magnetically [Zha09]

active dopants. Furthermore, pn-junctions created by ion beam doping of nanowires were

reported [Hof09,Kan10].

Despite the advantages of ion beam doping, several new problems arise when implanting ions

into semiconductor nanostructures compared to implantation into bulk material: an important

issue are the lower melting points of nanostructures [Gui07] prohibiting direct adoption of

established annealing methods from bulk materials. Furthermore, the heat introduced into

the target by the ion beam is dissipated much slower in some nanostructures than in bulk,

giving rise to different thermal conditions during implantation. In some cases, ion beams are

observed to drive changes in structure and morphology of nanostructures, not known from bulk
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Chapter 1: Introduction

irradiation. Additionally, it is more difficult to calculate the concentrations of implanted ions

and ion beam induced damage in nanostructures. The reason is that conventional simulation

codes for ion beam irradiation can only take into account flat or bulk targets, which may

pose severe problems: for example, ions can leave nanostructured targets laterally and not

contribute to doping, which frequently leads to overestimation of doping concentrations in ion

beam implanted nanostructures.

This thesis reports three approaches, which address – from different points of view – several of

the issues raised above; in particular how the ions interact with nanostructures as compared

to bulk, the influence of ion beam implantation on the structure and morphology of nanowires,

how damage created during ion beam doping of nanowires can be annealed or avoided and how

ion beam implantation into nanostructures can be simulated. Detailed motivations for each

approach are provided at the beginnings of the respective chapters:

(i) Simulating ion beam irradiation of nanostructures:

In the scope of this thesis, a Monte Carlo ion beam simulation program called iradina

(ion range and damage in nanostructures) was developed. The transport of the ions

through the solid works in principle similar to other conventional Monte Carlo ion beam

simulations programs employing a binary collision model. However, the flexible three

dimensional target definition allows accurate representation of nanostructured targets,

and the use of fast look-up algorithms allows reduction of calculation times by up to two

orders of magnitude. The program is described in detail in chapter 3.

(ii) Ion beam induced bending of nanowires:

In chapter 4, the ion beam induced bending and alignment of semiconductor nanowires

is discussed. Experimental results are presented for the irradiation of ZnO and GaAs

nanowires. Irradiations of single nanowires as well as “ensembles” of nanowires are inves-

tigated. A basic (qualitative) model for the bending is presented in section 4.4, showing

that defect production by the ion beam is the key mechanism. For a better and more

quantitative understanding of the bending dynamics, a linear elastic nanowire model was

developed, which is described in section 4.6. In combination with the ion beam simula-

tion program iradina it allows dynamic simulations of the bending of nanowires under ion

beam irradiation.
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Chapter 1: Introduction

(iii) Ion beam doping of nanowires:

Diluted magnetic semiconductors (DMS) are interesting materials in order to control

the spin-polarization of electrons, which is necessary for prospective spintronic devices.

One such DMS material is highly Mn doped GaAs, which can be grown as a thin film

by low temperature MBE [Ohn96]. When one wants to create highly Mn doped GaAs

nanowires however, it turns out that incorporation of sufficient Mn during growth of the

GaAs nanowires is not possible due to the low solubility of Mn. A possible solution to

this problem is ion beam implantation of as-grown GaAs nanowires with Mn, which is

discussed in chapter 5.
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Chapter 2

Experimental Methods

2.1 Nanowire growth

As mentioned in the introduction, a variety of growth methods is available for semiconductor

nanowires, where the most suitable depends on the desired nanowire material. Nanowires

are often grown via the so-called vapor-liquid-solid (VLS) mechanism first described by Ellis

and Wagner in 1964 [Wag64]: In order to grow wires of material B, a catalyst material A

is needed, which has a lower melting point than B and which forms an eutectic system with

B. The catalytic particles of material A (typically gold) with diameters in the range of the

desired wire diameter are deposited onto a substrate. The substrate is heated to a temperature

between the two melting points of A and B. The catalyst particles become liquid droplets. The

material B is provided from the vapor phase, absorbed at the droplet surface and dissolved

in the liquid droplet. The concentration of B within the droplet increases, until the droplet

becomes saturated and B starts to segregate. In most cases, this happens at the interface

of substrate and droplet. Providing more of material B in the vapor phase leads to further

absorption and further segregation at the interface: a wire with the diameter of the particle

grows and lifts up the droplet. The solid-phase solubility1 of A in B is usually very low and

hardly any catalyst is incorporated in the growing wire. This simple model does not fully

explain growth of compound semiconductor nanowires, where ternary phase diagrams must

be taken into account [Bor06]. Furthermore, generalizations of this growth model have been

discussed in the literature [Wac09].

In the scope of this work, semiconductor nanowires consisting of ZnO and GaAs were inves-

tigated. Growth of ZnO nanowires was performed at the IFK/Jena within a horizontal tube

furnace. As the source material, ZnO powder is evaporated at 1350 ◦C and transported with

1“Randlöslichkeit”
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Chapter 2: Experimental Methods

an argon gas flow to the substrates covered with gold particles, where the ZnO nanowires grow

at temperatures between 1000 ◦C and 1200 ◦C. Depending on the substrate, the nanowires

grow in random direction on Si (covered with SiO2), or homo-epitaxially on single crystalline

ZnO, or hetero-epitaxially on AlN. Nanowires mostly grow in c-direction of ZnO. The influ-

ence of the various growth parameters (temperature, pressure, transport gas flow, etc. . . . )

and their optimum values have been discussed in detail in several previous theses and pub-

lications [Sti05, Mül05, Bor06, Koz09, Gna10, Mil10, Spi11]. Growth of GaAs nanowires was

performed at the Lund Nano Lab (Sweden)2, and at the Institute for Semiconductor Tech-

nology, University of Duisburg-Essen3, in both cases using metal-organic vapor phase epitaxy

(MOVPE). Arsine and trimethylgallium are used as sources and are transported by an H2 or

N2 carrier gas to GaAs substrates covered with Au particles. At ≈ 450 ◦C, the nanowires grow

homo-epitaxially in [111]-direction, details in [Bor04,Mik04,Gut09].

2.2 Ion beam irradiation

In order to irradiate samples with energetic ions, an ion source and an ion accelerator are

required. Depending on the desired ion species, the source material can be gaseous, or the

source material may be in a condensed state. The first case allows simple ionization using

electrons or a discharge process, while in the second case, the material must be evaporated or

sputtered and then ionized.

The ions are usually extracted from the source by a defined extraction voltage, then pre-

accelerated by a static electric field and mass-separated for example by a magnetic dipole field.

Finally, the selected ions are accelerated to the desired energy. This can be performed with

static electric fields for energies up to a few MeV. In a tandem accelerator, the electric potential

is used twice (or more often) by changing the ion charge from negative to positive using an

electron stripper after half the acceleration distance [Wit88].

Two types of ion beam accelerators were used in the scope of this work. The first one is

the general purpose implanter ROMEO of the IFK/Jena. Almost all chemical elements are

available as ion species and the energy can be selected between 10 keV and 380 keV. The

2see http://www.nano.lth.se/lundnanolab, NWs were grown by Magnus Borgström and Jesper Wallentin
from the group of Lars Samuelson.

3Growth of GaAs NWs in Duisburg was performed by Christoph Gutsche and Ingo Regolin from the group
of Werner Prost and Franz-Josef Tegude.
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implanter provides an unfocused broad beam, which can be used to irradiate areas of several

cm2. The targets can be heated to several hundred ◦C.

The other type are Focused Ion Beam (FIB) systems. They provide an ion beam, which can

be focused down to a few nm; but the energy as well as the choice of ion species is limited.

The reason is that the ion source must be small to obtain a good focus, thus, special sources

are required: typically, a “liquid metal ion source” (LMIS) is used, where a liquid metal wets

an ultrasharp tungsten tip (radius ≈ 2 nm). A high electric field at the tip (> 108 V/m)

ionizes metal atoms which are then extracted and accelerated. Most proprietary systems only

provide Ga+ ions. The big advantages of the FIB are (a) that the ion beam has a small focus

(few nm) and can be scanned or set to defined positions on the sample with nm resolution, and

(b) setups often combine a FIB with a SEM (see section 2.3), which allows in-situ imaging and

characterization with electrons. In the scope of this work, two machines were used: a Tescan

Lyra XMU including a SEM column with a thermal tungsten source and a FEI DualBeam FIB

Helios Nanolab 600i including an electron column with a field emission gun for high resolution

SEM imaging. Both machines are limited to an ion energy of 30 keV and the use of Ga+ ions.

2.3 Characterization

Characterization of nanostructures requires techniques with resolutions beyond optical micro-

scopy. Imaging of the structures is typically done using scanning electron microscopes (SEM):

A focused electron beam is scanned over the sample, a type of sample response (for example

backscattered electrons) is detected and the intensity of that signal is plotted as a function of

scanning location on the sample. Due to the small DeBroglie wavelengths of energetic electrons

(30 keV), the electron beam can be focused down below a nm; however, the imaging resolution

is not only limited by the beam focus, but also by the lateral extension of the sample’s response

function. Other responses than secondary electrons can be detected, for example backscattered

electrons, electron beam induced current (EBIC), X-rays, cathodoluminescence (CL) . . . . The

energy of X-rays can be analyzed to obtain information on chemical composition in the sample

via characteristic X-ray emission (energy dispersive X-ray spectroscopy, EDX). More details

can be found in [Rei98].

In the scope of this work, a Jeol JSM 6490 with a thermal LaB6 electron gun and equipped

with EDX and CL (imaging and spectroscopy) was used, as well as the field emission SEM

column of the FEI DualBeam FIB.
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Chapter 2: Experimental Methods

Imaging with sub-nm resolution and structural analysis of nanostructures can be performed with

a transmission electron microscope (TEM). Here, the image is not created by scanning; instead,

a parallel electron beam with higher energy (for example 300 keV) illuminates the sample.

There are various possibilities how images are created in the TEM and different mechanisms

generate contrast. Very short and simplified explanations of the most used imaging modes

follow, details can be found in relevant text books [Wil96,Ful08]. In the bright field (BF) mode

the image is mainly formed by transmitted, non-scattered electrons and contrast is achieved

by occlusion and absorption of electrons by the sample (“mass-thickness contrast”). The image

is projected and enlarged to a screen or to a CCD camera for recording. In dark field (DF)

mode, the image is formed only by electrons diffracted to a certain direction and structures

that diffract into that particular direction appear bright (“diffraction contrast”). High resolution

TEM images (HR-TEM), where single columns of atoms become visible, are achieved by phase

contrast imaging: an interference pattern of transmitted (non-diffracted, forward-scattered)

electron reference wave and diffracted electron wave forms the image. The crystallinity can

be analyzed from Fourier transformations (FFT, “fast Fourier transform”) of these HR-TEM

images. Furthermore, electron diffraction patterns (DPs) can be recorded in the TEM, which

allow conclusions on the crystal structure. These DPs can also be recorded of confined areas

of the sample (SAED, “selected area electron diffraction”). Apart from imaging and recording

diffraction patterns, the electron beam can be focused to specific points on the sample and the

emitted X-rays can be analyzed (EDX), allowing elemental characterization with high spatial

resolution. For this work, TEM images were recorded with a Jeol JEM 3010 (IMT/Jena) or in

some cases with a Jeol JEM 3000F by Dr. Maria Messing at Lund University, Sweden.

Since samples must be very thin to allow electron transmission (typically < 100 nm), prepa-

ration of TEM specimen from bulk or thin films is not trivial. However, the preparation of

nanowires for the TEM is rather simple, because they are usually thin enough to allow suffi-

cient transmission of electrons. The nanowires are transferred to a copper mesh covered with

an ultrathin carbon foil by pressing the mesh face down onto the nanowire growth substrate.

The mesh can then be mounted in the TEM.
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Chapter 3

Monte Carlo Simulations

A Monte Carlo code for the simulation of ion beam irradiation of nanostructures was developed

within the scope of this thesis. Parts of this chapter are published in [Bor11b]; however, the

code has been improved since then and the current version is described here. The latest version

of the source code and a user manual are available from the internet1.

3.1 Motivation

Ion beam irradiation experiments are often accompanied by computer simulations of the ex-

periment, because from these simulations it is possible to determine the distribution of the im-

planted ions as well as the ion beam induced damage in the target material. These simulations

are frequently done using Monte Carlo (MC) codes and a number of different MC programs have

been presented and successfully applied in the past decades [Bie80,Möl84,Hau84,Pos86,Möl88,

Hob95,Lee95,Ber97]; one of the most widely used being TRIM [Zie85,Zie11]. These TRIM-like

codes usually represent the target by a number of flat layers, where each layer consists of a

homogeneous material. It is possible to obtain a three-dimensional distribution of implanted

ions, but still the target is always flat and layered. Thus, the irradiation of nanostructures

cannot be accurately simulated. A few specialized TRIM-like Monte Carlo codes have been

used, which can take into account the full 3d geometry, but these codes are specialized for their

respective applications and are not widely available [Sch09b,Bor09].

There exist several advanced MC codes intended and optimized to simulate the ion implantation

of semiconductor devices, for example MCIMPL [Hob89] or TOMCAT [Li01]. These codes

can take into account 3d target geometries and additionally effects like channeling. They

1http://www.iradina.de
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Chapter 3: Monte Carlo Simulations

employ advanced techniques to save computation time, e.g. trajectory replication, spatial

octree division [Sti93,Obr98] or convolution of point response functions [Bur99].

There exists another group of programs which are optimized to calculate the evolution of a

target surface in FIB-milling [Box01,Kim07,Kun10,Hob11]. These codes can simulate sputter-

ing effects for non-flat targets and they take into account effects like redeposition of sputtered

atoms. However, these “FIB-codes” focus on the evolution of the target surface, which they

represent as a height value for each lateral position. Additionally, they are optimized for the

high fluencies, where sputtering is the dominant process. They are not suitable to obtain

distribution of implanted ions and implantation damage in nanostructures.

Ion beam irradiation of nanostructures can also be done by molecular dynamic (MD) simula-

tions, which attempt to solve the equations of motion for the ion and all atoms within in target,

thus avoiding a number of simplifying approximations made in the MC approaches. However,

MD simulations require computation times orders of magnitude larger than MC simulations

making these MD simulations far too time-consuming for simulation of nanostructures larger

than a few tens of nm and with more than a few 100 ions [Jär08,Hoi11].

In order to simulate the ion irradiation of nanostructures, it would be desirable to have a

relatively simple and fast MC code similar to TRIM, but which can accurately represent nano-

structured targets and thus bridge this gap between the “non-3D” TRIM-like MC codes, the

comparatively complex semiconductor device codes, the high fluence “FIB-sputter-codes” and

the MD codes. For this reason, a new MC code named iradina (ion range and damage in

nanostructures) was developed in the scope of this thesis. It should be noted that a version of

TRIDYN supporting 3d target geometry is currently being developed [Möl11].

3.2 Program description

Iradina simulates the ion beam irradiation of a target by letting a large number of ions impinge

subsequently on the target and following each ion’s path in detail through the target material

by means of a MC transport algorithm. It works similar to other MC programs like TRIM, but

with a different target definition. Some calculation routines are adapted from the open source

simulation code corteo published by F. Schiettekatte [Sch07, Sch08]. The purpose of corteo is

different from iradina, as it is intended for the simulation of ion beam analysis spectra. Never-

theless, it uses a MC transport algorithm and provides some very fast functions to calculate

scattering angles and stopping powers, which are useful for iradina as well.

13



Chapter 3: Monte Carlo Simulations

3.2.1 Target definition

In iradina, the simulation volume is a rectangular box with arbitrary dimensions. The box

is divided into a possibly large number of equal-sized rectangular cells. The number of cells

and the cell size can be defined independently for each direction. A list of materials that

are present in the target is defined. Each material can contain different elements and for each

element a lattice binding energy Eb, a displacement energy ED and a surface binding energy ES

must be defined. Each cell contains one of the defined materials, or alternatively no material

at all, setting it to vacuum. By selecting appropriate cell sizes and materials, almost any

three-dimensional structure can be approximated.

The cell size and contents remain constant throughout the complete simulation, which makes

iradina a static MC code. No dynamic composition variations are possible in the current

implementation.

Periodic boundary conditions (PBC) can be defined in any of the three spatial directions,

allowing to simulate irradiation of periodic structures. Furthermore, PBC often allow to reduce

the simulation volume for large targets, if the target exhibits translational symmetry.

3.2.2 Ion transport simulation

Very detailed discussions of MC ion transport can be found in various textbooks [Zie85,Eck91,

Sch07]. A more compact description will be given here, not discussing each point in detail. A

simplified schematic flow-chart of the transport algorithm is illustrated in appendix B.2.

The basic idea of the transport algorithm is to follow a projectile through the material in small

steps, where each step corresponds to a collision with a target nucleus, until the projectile has

lost all its energy or left the target. The projectile is assumed to interact with only one target

nucleus at a time, which is known as the binary collision approximation (BCA). Several random

numbers are used in each step which account for the name “Monte Carlo” code2.

At any moment, a projectile is described by its momentary position in space, by its velocity

vector (reduced to unit length) and its kinetic energy. Each step begins with the “free path”: the

projectile is assumed to proceed on a straight line before it collides with a target nucleus. Along

this straight line, the projectile loses energy due to a constant non-local electronic stopping.

The values for electronic stopping are obtained from tables calculated with the SRIM package

2Conventional computers actually cannot generate true random numbers, because they are deterministic
machines (although they may sometimes appear to do random things). Iradina uses the same pseudo random
number generater (PRNG) as corteo, suggested by L’Ecuyer [L’E88].
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(SRModule.exe, see [Zie11]) and the fast table-look-up function from corteo is used for this

purpose. Electronic energy loss straggling is taken into account by randomly varying the

electronic stopping. The straggling values are calculated using the empirical formulas proposed

by Yang et al. [Yan91]. The length of the free path l is selected randomly according to a poisson

distribution with the mean free path corresponding to the interatomic distance. Alternatively,

the free path can be constant and set to the interatomic distance. TRIM-like programs can

employ much longer path lengths to save computation time. This approximation, which saves

a lot of time for high energy ions, is not made in iradina. First, this is not very useful for small

nanostructures and second, on modern fast computers and with the fast calculation routines

from corteo, it is not necessary. Furthermore, short path lengths simplify the calculation of

electronic stopping: when using long path lengths as in TRIM, one must check if the material

has changed along the path and one must correct electronic stopping accordingly. But when

path lengths are comparable with inter-atomic distances, this correction can be neglected.

Next, an impact parameter is selected for the collision happening at the end of the free path.

The maximum impact parameter pmax is related to the free path l in such a way that a cylinder

of length l and radius pmax contains on average one target atom. This ensures an appropriate

frequency of collisions to occur. The actual impact parameter p is selected randomly between

0 and pmax with a square distribution, details in [Sch07]. In addition to the impact parameter,

the azimuthal angle φ is required in order to determine the direction into which the projectile is

scattered (and to determine the exact position of the target nucleus). This azimuthal angle is

selected randomly between 0 and 2π. The random selection of target nuclei positions account

for the so-called random phase approximation (RPA). Thus, subsequent collisions are not cor-

related at all, rendering these kind of MC codes unable to simulate ion beam irradiation along

channeling directions in crystalline targets. In case the material at the target position contains

different elements, the collision partner of the projectile is randomly selected according to the

stoichiometry.

The collision itself involves the calculation of the energy transfer from the projectile to the target

nucleus and the deflection of the projectile. These can be calculated knowing the interaction

potential, the projectile energy and the impact parameter. The universal potential proposed by

Ziegler, Biersack and Littmark is used [Zie85]. The so-called “scattering integral”, from which

the scattering angle is calculated, cannot be solved analytically for the universal potential. One

way to avoid the lengthy numerical calculation is to use the so-called MAGIC algorithm [Bie80],

which is employed by TRIM and related programs. Even faster is the use of a database with
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precalculated scattering angles and a neat indexing mechanism to access the entries, which

was proposed by Yuan et al. [Yua93]. The scattering angles as a function of reduced energy

and reduced impact parameter are stored in a large two-dimensional logarithmically scaled

table. Iradina uses the database from corteo, which is explained in detail in [Sch07], see also

appendix B.1.

To simulate the collision, the velocity unit vector of the projectile is rotated according to

the scattering angle and the azimuthal angle. The energy transfer T to the target nucleus is

calculated from conservation of momentum and energy, and T is subtracted from the projectile’s

kinetic energy. Then the projectile can proceed to the next step.

It is important to consider also the fate of the target nucleus, in order to calculate the ion

beam induced damage. If the target nucleus gains more energy than its displacement energy

ED, it is permanently displaced from its lattice site, leaves a vacancy behind and becomes itself

a moving projectile in the target. (Recoils gaining less than ED must be considered as well,

details follow below). The transport of such a recoil is simulated with the same function as for

the ion, using recursive function calls. This way, a complete collision cascade can be simulated.

A special case considers “replacement collisions”: when projectile and recoil are of the same

type, and the projectile loses so much energy to the recoil that its remaining kinetic energy is

below ED, then the projectile is assumed to replace the recoil on its lattice site. In that case,

no vacancy is created.

In order to record the ion induced damage, each cell of the simulation volume has a number of

counters for the various type of defects (vacancies, displacements, interstitials, replacements,

atoms sputtered from this cell). Separate counters are defined for each material and each

element. Whenever a displacement or replacement occurs or when a projectile stops, the

respective counters are increased. Counters also exist for primary ions that have stopped.

Finally, the distribution of all types of damage as well as the distribution of implanted ions can

be extracted from these counters.

In order to appropriately calculate sputtering, some more details must be taken into account

during the simulation. The surface binding energy ES is the important quantity here: when

a projectile attempts to move from a cell with material to a cell with vacuum, it must over-

come this energy barrier. When moving from vacuum to material, it gains ES. The surface

binding energy acts in direction perpendicular to the surface; thus, if the projectile velocity is

not perpendicular to the surface, the velocity vector needs to be adjusted (surface refraction).
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Furthermore, the displacement of recoils must be treated differently: if a target nucleus gains

less than its displacement energy, it does not mean that it does not move at all. It just means

that in the end it will usually be placed at its original site with a high probability. But in

between, it may transfer energy to other target atoms, or it may leave the solid and become a

sputtered atom. This issue is quite important, considering that typical displacement energies

are in the order of 10 to 25 eV, while typical surface binding energies are in the order of 1

to 5 eV. To account for this effect in the simulation, recoils are assumed to be displaced and

become moving recoils even if their energy is below ED. However, in that case the recoil is

marked as a “sub-threshold” particle and when it has lost all its energy it is placed back to its

original site, not creating a vacancy and interstitial. A further issue important for sputtering

is interaction of a projectile moving in vacuum with close-by material. If the projectile is less

than a few mean atomic distances away from material, it may still be scattered in a collision

and it may transfer energy to target atoms which can then be sputtered. Thus, even if the

projectile is moving in vacuum, a possible target atom position is calculated in each step and

if this target position is inside a cell with material, then a collision is assumed to happen. It is

not sufficient to take into account collisions only within a cylinder of radius pmax, because small

energy transfers can also be important for sputtering. Thus, target atom positions are also
√ √

searched for in ring cylinders with radii between n · pmax and n + 1 · pmax with n = 1, 2, 3;

details in [Eck91, p.92ff].

Taking into account the above mentioned effects requires quite some calculation time. In case

the sputter yields are not of interest, some calculations can be skipped. Therefore, an alterna-

tive faster variant of the transport algorithm is also implemented in iradina. This simplified

algorithm is more similar to the transport algorithm of the corteo code and mainly uses the

following approximations: (1) When the projectile is in vacuum, no interaction with nearby

material is considered. (2) Additional target atoms in ring cylinders are not taken into account.

(3) The recoils are assumed to start exactly from the point where the projectile changes its

direction (and not one impact parameter away). (4) Surface refraction is neglected. These sim-

plifications make the calculations about four to five times faster. The resulting distributions of

implanted ions and of displacement events are almost the same as for the non-simplified (“full”)

transport algorithm, a comparison follows below.

17



Chapter 3: Monte Carlo Simulations

3.3 Simulation results and discussion

3.3.1 Comparison to TRIM

Comparisons between simulation results obtained from iradina and from TRIM were made.

Since iradina works similar to TRIM, the results should be comparable and can serve as a basic

test for correct functionality of the code. Figure 3.1 shows simulation results for Ar irradiation

of bulk Si (perpendicular incidence). The distribution of implanted ions as a function of depth

and as a function of lateral offset from entry point is shown for three different energies. Close

agreement between (both algorithms of) iradina and TRIM is achieved in all three cases. The

ion beam induced damage resulting from the simulations is illustrated in figure 3.2, which shows

the displacement events as a function of depth. The results from iradina and TRIM are mostly

in good agreement as well.3

In order to verify functionality of iradina over a larger range of ion masses, further comparisons

were made with different ions (H, N, Ag and Pb), each with 10, 100, and 1000 keV (results

illustrated in appendix B.3). The results from iradina and TRIM are in good agreement for most

cases. For hydrogen ions, the TRIM simulations yield slightly sharper distributions of implanted

ions than iradina. Problems with the hydrogen implantation profiles also occurred in corteo

and may be caused by the universal potential used to calculate the scattering angles [Sch10].

3.3.2 Sputtering

An interesting application for simulating ion beam irradiation of nanostructures is the calcu-

lation of sputter yields. The sputter yields of nanostructures can strongly differ from bulk

values, especially when the size of the collision cascade becomes comparable to the size of the

nanostructure itself. The rectangular target structure used in iradina poses a problem for sput-

tering: as illustrated in figure 3.3(a), surfaces inclined to the rectangular grid become stepped

in the simulation. Their effective surface area is thus enhanced, which may increase sputtering.

3A minor deviation occurs here: in the iradina results, the fraction of replacement events is about 30%
of all displacements, which is in agreement with the SRIM manual, see [Zie11]. But in contrast, the TRIM
program finds a replacement fraction of only about 10%. As it is not known how exactly TRIM calculates
the replacements and the source code of TRIM is not available to the author of this thesis, the reason for this
discrepancy could not be determined. In any case, the method to use the displacement energy as a sharp cut-off
to calculate the replacement fraction is a very simple model, that cannot be expected to yield very accurate
results compared with experiments. This error further does not influence the shape of the distribution of damage
but only its amplitude. The amplitude of damage obtained from MC simulations is not very accurate anyway,
as a number of point defects anneal out during implantation (“dynamic annealing”). Thus, this discrepancy is
not assumed to have any severe effect.
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Figure 3.1: Simulation results from iradina (full and fast algorithm) and TRIM (SRIM 2008.03)

for Ar implantation into bulk Si. The top row shows depth distribution of implanted ions for three

different energies, the bottom row shows the lateral distribution for the respective energies.

Additionally, sputtered particles may re-enter the solid material and cause extra damage and

sputtering. Furthermore, the local angles of incidence are affected by the rectangular grid. In

order to determine the magnitude of this problem, simulations were made for irradiation of

bulk Si with 5 keV Ar ions using different angles between surface plane and grid axes (but with

the ion beam always being perpendicular to the plane). The resulting sputter yields are plotted

in figure 3.3(b). When a cell size of 10 nm is selected, the sputter yield increases almost by a

factor of 2, when the angle changes from 0◦ to 45◦, showing the significant error caused by using

a rectangular grid. One way to circumvent this problem is to reduce the cell size to very small

values as shown in 3.3(b). At 5 nm cell size, the sputter yield still changes, but at 1 nm cell

size, almost no influence on the sputter yield occurs. The reason is that when the cell size is in

the same order of magnitude as the flight length of the projectile, then the surface effectively

becomes smooth. This observation is also in agreement with sputter simulations made with the

3d version of TRIDYN, which is currently being developed [Möl11]. On the other hand, the

drawback of using very small cell sizes is that the total number of cells may become very large

– especially in 3d targets. Since each cell requires a few counters for all the different types of

defects, this can result in huge requirements for memory.

19



Chapter 3: Monte Carlo Simulations

10 keV 100 keV 1000 keV 

0.0 

0.5 

1.0 

1.5

D
is

pl
ac

em
en

ts

[1
0 8 /c

m
 3  p

er
 io

ns
/c

m
2 ] TRIM 

iradina full 
iradina fast 

0.0 

0.5 

1.0 

1.5

0.0 

0.4 

0.8 

1.2

 0  10  20  30  40 0  100  200 0  500  1000  1500 

Depth [nm] 

Figure 3.2: Simulation results from iradina (full and fast) and TRIM (SRIM 2008.03) for Ar

implantation into bulk Si. The displacement events are shown as a function of depth for three

different Ar energies.
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Figure 3.3: Problem of sputtering at surfaces inclined to the rectangular grid. (a) Top row: in

reality, the sputter yield is of course always the same, as along as the ion beam is perpendicular to the

surface. Bottom row: In the simulation, the sputtering details depend on the angle between surface

and rectangular grid. Blue: ions, red: sputtered particles. (b) Simulated sputter yields (5 keV Ar

ions on silicon target) as a function of angle between surface plane and grid for different cell sizes.

Therefore, another solution to this problem is implemented in iradina for nanostructures of

simple geometry: for example nanoparticles or nanowires can easily be described analytically

by spheres or cylinders, respectively. Iradina uses the analytical formula to decide whether

a given position is inside or outside the nanostructure, meaning whether there is material or

vacuum at a possible location of a target nucleus. Nevertheless, for counting damage and

implanted ions, the rectangular cell geometry is kept. This combination allows on the one hand

to accurately represent smooth surfaces, but on the other hand to maintain the simplicity of a

rectangular geometry. Thus, only little changes of the code are required to incorporate accurate

description of nanosized spheres or cylinders.
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Figure 3.4: Schematic illustration of simulating ion irradiation of a nanowire with iradina. (a) A

nanowire, (b) the gray shaded box is used as the simulation volume, with PBC along the nanowire

axis, (c) the simulation volume is divided into cells, and (d) a cylinder is used to define the NW

surface during irradiation.
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Figure 3.5: (a) Homogeneous bulk implantation profile achieved by adding simulated profiles from

four different energies. (b) The same profile implanted into a GaAs NW of 150 nm diameter.

(c) A cross sectional view of the nanowire, the number of implanted ions is shown as color scale. The

white arrow corresponds to the profile in (b).

3.3.3 Irradiation of nanowires

The original motivation for developing iradina was to accurately simulate ion beam implantation

into semiconductor nanowires. In the experiments performed in the scope of this thesis, all

nanowires were irradiated from the side and their lengths were much larger than their diameters

(details in chapters 4 and 5). Thus, it is sufficient to use only a slice from the nanowires in

the simulation and apply periodic boundary conditions (PBC) in axial direction, see figure 3.4

for illustration. The simulation volume (gray shaded box in the figure), which just surrounds

the slice of the NW, is divided into a number of cells in two directions (typically 30 × 30 or

40 × 40). No subdivision is required in the third direction along the nanowire axis due to the

translational symmetry along the NW. The cells are used to count implanted ions and ion beam

induced defects, but a cylinder is used to accurately define the NW surface as described above.
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In past experiments of doping semiconductor nanowires with ion beams, bulk simulations were

frequently performed in order to obtain homogeneous implantation profiles. Figure 3.5(a) shows

Zn implantation profiles as simulated for bulk GaAs (these profiles were used in reference

[Sti08b]). By choosing appropriate factors, profiles for four different implantation energies were

superimposed to form a more or less homogeneous profile over a depth range of about 200 nm.

The same implantation energies and fluencies were used to implant inclined GaAs nanowires.

Now iradina was used to simulate the Zn implantation into GaAs nanowires with the correct

target geometry, and the resulting implantation profile can be compared to the bulk simulations:

figure 3.5(c) shows the concentration of implanted ions over the cross section of the nanowire and

3.5(b) illustrates the profile corresponding to the white arrow in (c) for comparison to the bulk

profile. First, fewer ions are implanted into the nanowire than expected from bulk simulations,

and second, the doping profile is quite inhomogeneous. The reason for this inhomogeneity can

be found when comparing the implantation profiles of the lowest and highest ion energy: for

the lowest energy of 20 keV, the nanowire appears almost as bulk, and most of the ions are

implanted like in bulk, but for the highest energy of 450 keV, where the range is comparable

to the NW diameter, many ions can leave the NW to the side or completely pass through the

NW instead of being implanted.

The observation that fewer ions are implanted in the NW than expected from bulk simulations is

in agreement with experimental observations: charge carrier concentrations in ion beam doped

nanowires are reported to be lower than expected [Col08,Sti08b]. Partly, this can be explained

by compensation, migration and fractional ionization of dopants. But the lower concentration

of implanted ions in nanowires than in bulk must also be taken into account and contributes

significantly to the lower charge carrier concentrations.

For high concentrations of implanted ions, it is possible to directly measure the concentration

using EDX within a TEM. It is shown in chapter 5 that the concentration of Mn in ion implanted

GaAs NW is in good agreement with simulation results from iradina using the correct nanowire

geometry, whereas bulk simulations using TRIM overestimate the concentration.

3.3.4 Sputtering of nanoparticles

The sputter yields of nanoparticles (NPs) are different from bulk values and strongly depend

on their size, or more precisely on the ratio of their size and the ion range. Different approaches

to investigate the size-dependence of the sputter yields of NPs are reported in the literature:

semi-analytical models have been used, as well as molecular dynamics (MD) simulations [Jär08,
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Kli09]. Iradina can also be used to simulate ion beam irradiation of nanoparticles and obtain

the sputter yield as a function of nanoparticle size. In order to compare results from iradina to

results from alternative methods, two examples were selected: (1) irradiation of Au NPs with

25 keV Ga+ ions (compared to [Jär08]) and (2) irradiation of Au NPs with 200 keV Ar+ ions

(compared to [Kli09]).

Figure 3.6 shows the calculated sputter yield of spherical Au NPs irradiated with 25 keV Ga+

ions as a function of NP diameter. Very small NPs have a low sputter yield, which can be

explained by the fact that the ions only deposit a small fraction of their energy within the

NPs before exiting again. The sputter yield quickly increases with diameter d and reaches a

maximum at about d = 8−10 nm. This size is approximately the same as the projected range of

the ions in bulk material (8.3 nm): the ions deposit most of their energy within the particle but

the particle is still so small, that a large fraction of the kinematic energy in the collision cascades

reaches the surface of the particle. At larger diameters, the sputter yield decreases again. The

reason is that now the collision cascades will often not extend to the surface or the kinematic

energy in the collision cascades is to a large extend absorbed within the particle and does not

reach the surface. For very large NPs (> 150 nm), the sputter yield converges. Here, the NPs

are much larger than the projected range, thus they appear to the ions as bulk. However, the

sputter yield does not reach the bulk value (which was calculated for perpendicular incidence

and is similar for iradina and TRIDYN). The reason is simply that the incidence angles of

the ions hitting the particle at different locations are always distributed between 0◦ and 90◦,

no matter how large the NP becomes and the sputter yield depends strongly on this angle of

incidence.

The behavior of the sputter yield obtained from iradina is similar to the results obtained by

T. T. Järvi et al. [Jär08]. They calculated the sputter yields from molecular dynamic (MD)

simulations (only possible up to 15 nm diameter) and from a semi-analytical model. Their MD

results show a similar behavior as iradina, but their absolute sputter yields are much higher

(factor 1.5 – 3). However, one cannot expect MC and MD simulations to yield the same results.

For instance, the MD simulations will be more accurate for very small nanoparticles: while

Monte Carlo (MC) simulations intrinsically assume a static solid with a temperature of 0 K, the

MD allows all atoms to be in motion and can represent temperatures > 0 K. In the MD, heating

of the NP by the ion impact and subsequent thermal (non-ballistic) evaporation of Au atoms

is possible – as opposed to MC simulations. The following estimation shows the importance of

this effect: consider a small Au NP of 10 000 atoms (≈ 7 nm diameter). Even if an ion deposits
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Figure 3.6: Size dependence of sputter yield for irradiation of Au NPs with 25 keV Ga+ ions

(ED = 25 eV, Eb = 0 eV, ES = 3.8eV ) calculated by iradina (+). Data from [Jär08] are shown

for comparison. The bulk sputter yields for perpendicular incidence are shown as calculated with

TRIM [Zie85], TRIDYN [Möl10] and iradina.

only 1 keV into heat, this accounts for an average of 100 meV per atom, corresponding to a

temperature of about 900 ◦C, which can lead to thermal evaporation of atoms. Furthermore,

the MD can simulate emission of small Au clusters with several atoms, which requires less

energy than to sputter each atom individually. The MD shows indeed that about 30% of

sputtered Au is emitted in clusters of two or more Au atoms [Jär08]. Nevertheless, the MD

simulations allow only very limited target sizes and small ion numbers due to the extremely

large computation times required. The maximum size of a Au NP reported in [Jär08] was 15 nm

diameter, corresponding to 130000 atoms, and the maximum number of ions was several 100).

In contrast, MC simulations allow to simulate the irradiation of a particle of 1 μm diameter

with 105 ions within several minutes time on current standard computers.

For their semi-analytical model, Järvi et al. assume that the local sputter yield is proportional

to the damage inflicted at the surface [Jär08]. They use a Gaussian damage distribution for

a single ion impact (approximated to MC simulation results for bulk targets), determine the

damage at the surface and integrate this over all entry points on the sphere. Their model

results in a similar dependence of the sputter yield as a function of diameter as in iradina, but

their absolute sputter yield is larger by a factor of about 1.5. However, for some reason, they

use a bulk sputter yield of about 28 instead of what one expects from TRIDYN simulations.

Possibly they assumed a lower surface binding energy.
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Figure 3.7: Size dependence of sputter yield for irradiation of Au NP with 200 keV Ar+ ions

(ED = 25 eV, Eb = 0 eV, ES = 3.8eV ) calculated by iradina. The calculation from [Kli09] is shown

for comparison. The bulk sputter yields for perpendicular incidence are shown as calculated with

TRIM [Zie85], TRIDYN [Möl10] and iradina.

Figure 3.7 shows the sputter yield of spherical Au particles irradiated with 200 keV Ar+ ions

as a function of NP diameter, obtained from iradina simulations. The behavior is comparable

to irradiation with 25 keV Ga+ ions: The sputter yield is very low for small particles, then

increases and reaches its maximum when the particle diameter becomes comparable to the ion

range. The sputter yield converges for large diameters.

Klimmer et al. used a similar semi-analytical approach like Järvi to calculate the sputtering

of Au NPs under bombardment with 200 keV Ar ions: they obtained damage distributions

from TRIM simulations, approximated them by three dimensional Gaussian distributions and

integrated them of the sphere [Kli09]. Their resulting sputter yields are slightly different from

iradina simulations in two points: Their maximum sputter yield is about 9 and their sputter

yield converges to about 6.9 for large diameters. The iradina simulations result in a maximum

sputter yield of about 17 and the sputter yield converges to about 9. This discrepancy can be

explained by the fact that Klimmer et al. normalized their results to the bulk sputter yield of 6.9

(obtained from some version of TRIM). However, as mentioned above, it is not valid to assume

that the NP sputter yield converges to the bulk sputter yield (for perpendicular incidence)

due to the distribution of entry angles between 0◦ and 90◦. Apart from that, Klimmer et al.

find the maximum sputter yield at a diameter of about 130 nm, which is twice as large as

the one obtained from iradina. This difference may be due to the following assumption for

the energy distribution: their model uses a Gaussian energy distribution obtained from bulk
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(a) (b) (c)

Figure 3.8: Schematic illustration of simulated collision cascades (blue: primary ion, red: recoils).

(a) Cascade simulated for bulk target. (b) Applying the same cascade to a nanoparticle. (c) In

reality, the ion cannot be scattered back into the nanoparticle and the damage shown by dashed

black lines should not occur.

simulations. Using such an energy distribution and cutting it at the NP surface is inaccurate,

because for instance projectiles leaving the nanoparticle are lost in reality, but may still deposit

energy in the bulk simulations as illustrated in figure 3.8. This example nicely shows, why it

is necessary to take into account the correct geometry of the nanostructure already during the

MC simulation and why it is inaccurate to use bulk simulations and “cut them” to emulate

irradiation of nanostructures.

3.3.5 Limitations of the simulation

When using iradina, one should be aware of its limitations. All Monte Carlo ion beam codes

suffer from some inherent limitations, because the MC algorithm is only an approximation to

what actually happens to the ion in the solid. Some other limitations are specific to iradina.

• Binary Collision Approximation (BCA): The projectile is assumed to collide only with

one target atom at a time. At high projectile energies this is a valid assumption; but at

very small energies (a few tens of eV) this becomes inaccurate as many-body interactions

become important. This is no problem for the ion, as it has much higher energy most

of the time, but it could be problematic for low energy recoils. Nonetheless, it does not

seem to pose a large problem for sputtering; for details see [Eck91, p. 28ff].

• Random Phase Approximation (RPA): The target atoms are assumed to be at random

places. Subsequent collisions are uncorrelated. This is a very strong approximation,

because such a solid does not exist. Even in amorphous materials, the atoms are not at

random positions, but at least first and second nearest neighbors are correlated, which

is reflected in the radial distribution function. Nonetheless, the RPA works quite well in

random directions of crystalline targets; that is when the ion beam is not aligned along
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a low index crystal direction. This is often the case when irradiating nanostructures, for

example for randomly dispersed nanoparticles on a substrate.

• Central Potential Approximation (CPA): the interaction potential is assumed be to a

central potential. This is certainly a good approximation for ion energies where the

Coulomb interaction between the two nuclei dominates. Also when the Coulomb force is

partly screened by the inner-shell electrons this may still be a good approximation, but

at very low ion energies (< 10 eV) the binding electrons begin to play a role and thus the

potential may depend on the orientation with respect to the surrounding lattice.

• Another approximation is the model of a sharp displacement threshold: it is assumed that

a recoil can only leave its lattice site permanently if it gains more energy in the collision

than a certain displacement energy ED. In reality, the recoil might for example gain

just enough energy to jump to a neighbouring interstitial site, but then there are certain

probabilities that it jumps back immediately or stays at its new place. Furthermore, the

threshold for leaving a site depends on the direction into which the recoil moves. Thus,

the displacement energies ED used in simulation code are no well-defined microscopic

physical quantities but rather empirical values, selected to fit experimental observations.

• In MC simulations, all target atoms are assumed to have no energy and momentum prior

to any collision; the temperature is assumed to be 0 K. This is certainly a good approxima-

tion for calculating the collision kinematics, because even the smallest considered kinetic

projectile energies (a few eV) are far larger than typical thermal energies (≈ 25 meV).

Nevertheless, in reality some degree of annealing occurs (a) due to the target temperature

and (b) due to the energy introduced into the target by the ion and subsequent ions (so

called dynamic annealing).

• Iradina focuses on the irradiation of nanostructures with small ion energies, where the ion

range is comparable to the nanostructures size. At these energies, the nuclear stopping

typically dominates and the electronic stopping is of less importance. Therefore, some

simplifications are made concerning electronic stopping, namely iradina does not perform

compound correction of stopping and ignores the time integral in its current implemen-

tation. This latter approximation appears to be acceptable, considering the agreement

between simulated implantation profiles from iradina and TRIM.
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3.4 Summary and conclusion

A computer code named iradina for the simulation of ion beam irradiation of nanostructures

was developed. The program simulates the transport of energetic ions through matter by

a Monte Carlo (MC) algorithm using the binary collision approximation (BCA). The ion is

followed step by step from collision to collision until it has lost its kinetic energy or leaves

the simulation volume. Recoils are followed recursively to simulate the collision cascade. The

target in iradina is defined as a three-dimensional rectangular equal-spaced grid, which allows

to represent arbitrarily shaped nanostructures, in contrast to many other (TRIM-like) MC

programs. The comparison of simulation results from iradina and TRIM for implantation into

bulk material demonstrates the basic correct functionality of the code. Several very fast routines

(for example for the calculation of scattering angles and for electronic stopping) are adopted

from the open source computer code corteo, published by F. Schiettekatte [Sch08]. These make

iradina faster compared to TRIM by up to about two orders of magnitude, depending on the

computer in use and the simulation parameters.

Experimental results for ion beam implantation into GaAs nanowires show that it is indeed im-

portant to take into account the correct geometry of the target structure during the simulation:

the concentration of implanted ions obtained from iradina simulations with the nanowire target

geometry are in much better agreement with experimental observations than bulk simulation

carried out with TRIM. Furthermore, iradina was used to simulate the implantation of boron

into Si nanowires and the results were compared with simulation results obtained from the new

version of TRIDYN, which is currently being developed and supports three dimensional target

definitions [Möl11]. The results of this comparison are also in reasonable agreement, which

further indicates that iradina works correctly.

One interesting application of iradina is the calculation of sputter yields from nanostructures,

which deviate strongly from bulk sputter yields. The sputtering from spherical Au nanoparticles

is discussed and iradina results are compared to alternative methods. First, the bulk sputter

yield obtained from iradina is compared to values obtained from TRIM and TRIDYN. There

is reasonable agreement with the TRIDYN results, while the TRIM results differ strongly.

It is not known to the author of this thesis, how exactly TRIM works and calculates the

sputter yield, because the source code of current versions of TRIM is not available. Therefore,

the reason for the deviation could not be identified. Further information might be obtained

by comparing the distribution of energy and ejection angles of sputtered particles. For the
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sputtering of Au nanoparticles, iradina results exhibit a strong size-dependence of the sputter

yield. The observed trends are in good agreement with results from MD simulations and similar

to the trends observed from semi-analytical approaches, which integrate damage distributions

obtained from TRIM simulations. The exact numbers are different though, which is partly

caused by different normalization and due to errors made when using damage distributions

simulated for bulk and applying them to spherical nanoparticles. Furthermore, it must be said

that there are several uncertainties for very small nanoparticles. For example, the uncertainty

of the surface binding energy ES remains as a major inaccuracy, because ES may be lower for

strongly curved surfaces than for flat surfaces. Additionally, the sputter yield is an average

value, but the actual number of sputtered atoms for each individual ion scatters largely, as

illustrated in appendix B.4. This is less important for experiments irradiating bulk but may

have severe effects when sputtering small nanoparticles, where a significant fraction of the

particle may be sputtered away by a single ion. For example, this effect has been observed to

cause roughening of ion beam implanted nanowires [Sti08a, p.77].

While the current version of iradina has been shown to yield appropriate results in agreement

with experiments and other codes, there is still room for improvement. For example, compound

correction for stopping powers, the time integral, and correction of stopping when crossing cell

boundaries could be implemented. Moreover, the possibility to allow composition changes dur-

ing simulation and to relax a target structure would be very interesting for dynamic simulations.

However, allowing relaxation in three dimensions and maintaining a rectangular grid is more

complex than relaxation in one dimension.
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Ion Beam Induced Bending of Nanowires

This chapter reports on the ion beam induced bending of GaAs and ZnO nanowires. Ex-

perimental results for GaAs and ZnO nanowires are presented as well as results from Monte

Carlo simulations and a dynamic bending model. The experiments on GaAs nanowires were

done in collaboration with the group of Dr. W. Prost/Prof. F.-J. Tegude at the University of

Duisburg-Essen, where the nanowires were grown; some of the results are published in [Bor09].

The experiments on ZnO nanowires were done in close collaboration with Susann Spindler (see

her diploma thesis [Spi11]) and are partly published in [Bor11c]. Results from the dynamic

bending calculations are unpublished up to now.

4.1 Motivation and background

A variety of chemical and physical growth techniques to create nanowires have been reported

(see introduction). Even so, it is not possible to achieve any arbitrary desired shape, morphol-

ogy or growth orientation. The orientation of the growing nanowires is sometimes limited by

epitaxial relations putting a constraint on possible applications, as illustrated in the following

example: in semiconductor electronics, [100]-oriented substrates are always used due to the

better quality of the (100) surface plane (lower trap density than (111)). However, zinc blende

structured semiconductor nanowires like GaAs usually grow in a 〈111〉-type direction, thus it

is difficult to perpendicularly grow nanowires on such [100]-oriented substrates.

For many applications, post-growth methods to control the shape, morphology and orienta-

tion of nanowires are required. Different methods to align large numbers of nanowires have

been reported, for example the Langmuir-Blodgett technique [Kim01], the blown bubble film

approach [Yu08] or alignment by dielectrophoresis [Smi00]. The disadvantage of these methods

is the necessity to suspend the nanowires in solution.
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It has been known for some time that ion beam irradiation can cause plastic deformation of

materials [Tri95] and that shape and morphology of nanostructures can be manipulated using

ion beams [Tub09, Kra10], one example being the “ion hammering” effect [Sno00]. However,

ion beam induced morphological and structural changes of nanostructures are often observed

as undesired side effects of ion beam doping.

The advantage of using ion beams to control nanowire shape, morphology or orientation is the

possibility to irradiate a large area and modify large numbers of nanowires in parallel. Further-

more, any nanowires can be irradiated independent of the growth method, and suspension in

solution is not required.

Bending of semiconductor nanowires under ion beam irradiation was first observed as an un-

wanted side effect during ion beam doping of nanowires [Sti08a,Sti08b]. In 2009, several groups

reported the use of ion beam irradiation with the purpose to bend or align semiconductor

nanowires:

(1) Romano and Pecora et al. irradiated Ge nanowires with 30 keV Ga ions in a focused

ion beam system [Rom09]. They observed bending of the nanowires toward the ion beam

and explained this effect by densification of the amorphized material or ion hammering in

combination with a negative thermal expansion coefficient. In later experiments, they studied

the bending of Si nanowires under 45 keV Ge ion irradiation and the influence of annealing on the

bending [Pec10,Pec11]. They observed bending and alignment only above a fluence threshold,

which corresponds to amorphization of the NW material. Upon annealing and recrystallization

they observed a reversal of the bending.

(2) Jun et al. irradiated single Si nanowires with 30 keV Ga ions using a focused ion beam

system [Jun09]. Their experiments were different from the Catania group: in most cases they

focused the beam on one spot of the nanowire, instead of scanning the beam about an area

surrounding the nanowire for imitating homogeneous irradiation. On the point of irradiation,

the nanowire kinks and bends toward the ion beam direction. For homogeneous low dose

irradiation they observed bending away from the ion beam. They explained their findings by

tensile stress caused by amorphization of Si and at low doses by compressive stress caused by

interstitial Ga, respectively.

(3) The bending and alignment of GaAs nanowires under ion beam irradiation was investigated

in the scope of this thesis [Bor09]. Following the studies with GaAs nanowires, the bending of

ZnO nanowires was examined in much more detail for several reasons. As opposed to elemental

group IV and III-V compound semiconductors, ZnO can hardly be amorphized by ion irradi-
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ation. Thus, it allows to test bending models relying on amorphization and it allows to study

the crystal structure in detail after high fluence irradiation. Furthermore, as discussed in the

introduction, the ion beam doping of ZnO nanowires with electrically, optically or magnetically

active dopants is of great interest. Understanding the structural and morphological impact of

ion irradiation on the ZnO nanowires helps to avoid or even utilize originally undesired side

effects, for example making use of bending to achieve alignment.

A number of nanowire bending experiments have been reported in which the nanowires were

bent mechanically by external forces. For static experiments, microwires were directly bent

with tweezers [Die11] or nanowires were bent with a nanomanipulator [Che07a] or an AFM

tip [Hof06] within a SEM. Other bending experiments were done dynamically by exciting me-

chanical oscillations of the nanowires similar to a pitchfork [Che06, CT10] and determining

resonance frequencies. The elastic bending by external forces is quite different from bending

by ion beam irradiation, because ion irradiation causes bending by internal changes in the

NW structure. Nevertheless, the mechanical properties of nanowires as determined from ex-

ternal bending measurements are important for the discussion of ion beam induced bending

as well. In particular, the Young moduli and fracture strengths of semiconductor nanowires

depend on their diameter; for ZnO nanowires they are both increased compared to the bulk

value [Che06,Che07a,Agr08]. The diameter dependence of the Young modulus can be explained

by a superposition of bulk modulus and a surface modulus, the latter being different due to

different bond lengths near the surface: the Young modulus scales with the inverse fourth power

of bond length [Agr08]. Increased fracture strengths of semiconductor nanowires are attributed

to the lack of crystal imperfections from which fractures are initiated and propagate in bulk

material.

There is one report on the investigation of the strain of ZnO nanowires caused by low energy

ion beam induced bending [Che11]; however, the bending mechanism is not discussed at all and

no correlation to the ion beam induced strutural changes is made. Another reported possibility

to bend nanowires is depositing additional material on the NW side by pulsed laser deposition

(PLD) [She10], but the mechanism is not fully understood and may actually be the same as

ion irradiation (atoms in PLD may be “deposited” with up to a few hundred eV).
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Figure 4.1: Schematic illustration of the two implantation conditions. (a,b) GaAs NW mostly grow

in [111]-direction epitaxially on GaAs substrate with [100] surface normal, thus the NW are inclined.

Irradiation from the top. (a) Shallow implantation, where ions are implanted to the side of the NW

facing the ion beam, (b) deep implantation, where ions are implanted to the back half. (c,d) ZnO

NW grow in c-direction epitaxially on c-oriented ZnO substrates, thus perpendicular. Irradiation

from the side. (c) Shallow implantation, (d) deep implantation.

4.2 Irradiation experiments

4.2.1 Ensemble irradiation

Substrates with well aligned epitaxially grown nanowires were irradiated with ions using the

general purpose implanter ROMEO (details in section 2.2). The ion beam was not focused,

leading to a large number of nanowires being irradiated simultaneously, which is why these

experiments are designated ensemble irradiations. Noble gas ions were selected in order to

exclude chemical effects occurring in the NWs. The noble gas atoms are assumed mostly to

diffuse out after being implanted.

Inclined GaAs nanowires with diameters of about 150 nm were irradiated with Ar and Xe ions

perpendicular to the substrate surface and at room temperatures. Energies between 35 keV

and 210 keV were selected to achieve projected ranges significantly below and above the radius

of the nanowire. This was done in order to realize (1) shallow implantation, where mostly just

one half of the nanowire is affected and (2) deep implantation, where ions are implanted to the

“back-side” of the nanowires, see illustration in figure 4.1(a,b). The fluencies were increased in

several steps from 1 · 1013/cm2 to 5 · 1015/cm2.

Perpendicular ZnO nanowires with diameters in the range of typically 50 to 120 nm were

irradiated with Ar ions under angles of about 38 to 45◦. Energies of 10 keV and 20 keV

were used for shallow implantation and energies of 100 keV and 200 keV were used for deep

implantation, see figure 4.1(c,d).
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In between each irradiation step, the samples were investigated using a SEM (see section 2.3)

to study the bending as a function of ion fluence. To characterize the bending, the curvatures

of a number of nanowires were measured from the SEM images of each sample. These ensemble

measurements have two disadvantages: First, for each step of increasing fluence, the samples

have to be taken out of the implanter, have to be transferred to the SEM, characterized and

then taken back to the implanter. Only one step of increasing fluence could be done per slot

of beam time, so that the total number of possible fluence steps was very limited. The other

(minor) disadvantage is that it is usually not possible in the SEM to find exactly the same

nanowires after each step. But on the other hand, the ensemble irradiation also has several

advantages: First, all ion species are available in the implanter, which allows using noble gas

ions, second, all ion energies in the range from 10 keV to 380 keV are available and third, due to

the large number of nanowires irradiated simultaneously it is possible to obtain good statistics

of the curvature as a function of fluence.

4.2.2 Single nanowire irradiation

Using a focused ion beam (FIB) machine avoids the two disadvantages of the ensemble irradia-

tion. The focusing of the beam allows single nanowires to be irradiated and most importantly,

the bending of the nanowires can be observed practically in-situ with the SEM column of the

FIB. It is possible to record the bending of a single nanowire as a function of fluence for a large

number of small fluence steps: in each step, the NW is irradiated with a very small fluence of

ions, the ion beam is blanked, a SEM image is recorded using the electron beam and then ion ir-

radiation is continued. The ion irradiation of the NW is done by scanning the focused ion beam

over a quadratic area surrounding the NW. The fluence steps are chosen small (≈ 1 · 1013/cm2)

to achieve “quasi-homogeneous” irradiation of the NW.

One significant limitation of the available FIB machines is the maximum ion energy of 30 keV,

which just allows to realize the situation of “shallow implantation”, where the ions only penetrate

a small fraction of the nanowire. The other disadvantage is the choice of ions, limited to Ga:

at high fluencies, the implanted Ga contributes a significant atomic fraction to the nanowire

material, which may change its material properties.
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4.2.3 Subsequent annealing

In order to investigate the stability of the bent state against annealing, irradiated and bent

ZnO nanowires were annealed in subsequent steps at temperatures from 500 ◦C to 900 ◦C for 30

minutes each. Annealing was performed in ambient conditions. When annealing ZnO nanowires

in vacuum, oxygen is lost, but this loss is avoided when annealing in air. The curvatures of the

nanowires were measured in between each annealing step. From doping experiments of ZnO

nanowires, it is known that typically 700 ◦C in air are sufficient to remove most of the ion beam

induced damage and to activate dopants [Geb08b].

4.2.4 High temperature implantation

In order to gain additional insight into the bending mechanisms, a few substrates with ZnO

nanowires were irradiated at elevated temperatures ranging from 300 ◦C to 800 ◦C. High tem-

perature irradiation was only possible for the ensemble irradiation using the ROMEO implanter,

because the FIB machines were not equipped with heating stages.

4.3 Results on bending and alignment

4.3.1 GaAs nanowires

Ensemble irradiation

Figure 4.2(a-c) illustrates the effect of 35 keV argon irradiation (shallow implantation) on GaAs

nanowires. The NWs are initially inclined but straight, see figure part (a). With increasing

fluence, the nanowires bend down toward the substrate, away from the ion beam. Note that

some NWs appear to be perpendicular. This is due to the four possible 〈111〉-type growth

directions and the orientation of the NWs with respect to the electron beam in the SEM. The

NWs, which appear perpendicular, are inclined toward or away from the direction of the electron

beam and their bending cannot be observed.

The effect of higher energy irradiation with 210 keV Ar ions (deep implantation) is illustrated

in figure 4.2(d-f). In this case, the initially straight nanowires bend upward with increasing

fluence. At high fluencies of 1 · 1015/cm2 the nanowires become almost perpendicular and thus

aligned with the incident ion beam direction.
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Figure 4.2: SEM images of GaAs nanowires (150 nm diameter) irradiated with 35 keV Ar ions

(top row, shallow implantation) and 210 keV Ar ions (bottom row, deep implantation). Blue arrows

indicate ion beam direction. Numbers denote ion fluence in 1 · 1015/cm2. (a) As-grown, straight,

non-irradiated NW, (b,c) down-bending, (d-f) up-bending and alignment toward ion beam. All scale

bars show 5 μm.

Single nanowire irradiation

Irradiation of a single GaAs nanowire with 30 keV Ga ions was performed using a FIB with in-

situ SEM imaging. The results are illustrated in figure 4.3. The nanowire is initially inclined but

straight. Under ion beam irradiation the nanowire begins to bend down toward the substrate

away from the ion beam. However, starting at fluencies of approximately 1 · 1016/cm2 the

nanowire begins to decompose. The reason becomes obvious when taking a look at the GaAs

phase diagram [Sci94] and taking into account that the FIB features a Ga ion beam: the only

stable mixed phase is stoichiometric Ga0.50As0.50, phase segregation into GaAs and pure Ga or

As occurs for all other compositions in thermal equilibrium. Irradiation is done at RT, where

thermal equilibrium phases may not be reached; however, the impacting ions may provide

sufficient energy to cause phase segregation. The NW material is thus quickly destabilized

rendering meaningful evaluation of NW curvatures impossible. In the SEM images one can

observe an emerging droplet at the top of the NW, which probably consists of the excess Ga

implanted by the ion beam (the melting point of Ga is about 30 ◦C, which is most probably

reached in the NW due to heating by ion and electron beam). At very high fluencies, these

droplets also appear on the substrates.

36



Chapter 4: Ion Beam Induced Bending of Nanowires

FIB

SEM

(a) (b)0.061 2.2 16 24 52 76

Figure 4.3: (a) A single GaAs nanowire, irradiated with 30 keV Ga ions within a FIB system. Top

row: SEM images with increasing ion fluence from left to right. The numbers denote fluencies in

units of 1 · 1015/cm2. Bottom row: corresponding “ion images” from secondary electrons generated

during ion beam irradiation. Scale bars show 5 μm. (b) Schematic illustration of geometry. Ions

irradiate inclined NW from the top, electron beam scans NW from the side.
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Figure 4.4: The curvature of the irradiated nanowires as a function of ion fluence for (a) shallow

implantation and (b) deep implantation. Negative curvature denotes bending away from ion beam,

positive curvature toward ion beam.

Figure 4.4 shows the curvature of irradiated GaAs nanowires as a function of ion fluence. The

curvature is the reciprocal value of the bending radius; positive values of curvature are used

for upward bending toward the ion beam and negative values of curvature are used for down-

bending away from the ion beam. The data points for 30 keV Ga irradiation are determined

from the single nanowire irradiated in the FIB, the accuracy is estimated to about 10%. No

curvatures were measured above 1·1016/cm2, because of starting decomposition of the NW. Data

points for other ion species and energies were obtained from ensemble irradiations. About ten

different nanowires were measured for each data point and the error bars represent the standard

deviation of curvatures, which is rather large in some cases. Additionally, the curvature is not

always the same along the complete nanowire. Thus, especially for NWs which are almost
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Figure 4.5: (a-d) SEM images of ZnO nanowires (≈ 60 nm diameter) irradiated with 20 keV Ar ions

(shallow implantation) with increasing fluencies as denoted, scale bars are 1 μm. (e-h) ZnO nanowires

(≈ 90 nm diameter) irradiated with increasing fluencies of 100 keV Ar ions (deep implantation), scale

bars are 5 μm. Blue arrows indicate ion beam direction.

perpendicularly aligned a single value for the curvature cannot be defined clearly, leading to

large errors.

Although the statistical deviations are quite large, a general trend can be observed for both

cases: down-bending away from the ion beam for shallow implantation as well as up-bending

toward the ion beam for deep implantation, both increasing with ion fluence. Note, however,

that also in the deep implantation case the NWs first bend down a little bit before bending

upward for Ar as well as Xe implantation.

Figure 4.4 also shows bending results from irradiation experiments with sulfur ions (originally

intended for n-doping of the GaAs NWs). These results exhibit in general similar trends to

irradiation with noble gas ions.

4.3.2 ZnO nanowires

Ensemble irradiation

Figure 4.5 (top row) illustrates the effect of 20 keV Ar irradiation (shallow) on ZnO nanowires for

increasing fluencies. The nanowires are initially straight and perpendicular, but with increasing

ion fluence, they bend away from the ion beam. Similar observations are made for 10 keV Ar

ions (also shallow implantation case, not shown here). The case of deep implantation (100

keV Ar ions) is illustrated in figure 4.5 (bottom row). The initially straight nanowires bend

38



Chapter 4: Ion Beam Induced Bending of Nanowires

(a) 0.0 (b) 0.7 

0.6 

0.5 

10 keV Ar, 50 nm 
20 keV Ar, 50 nm 
30 keV Ga, 80 nm 

1015 1016 1017 

C
ur

va
tu

re
 [1

/μ
m

] 

100 keV Ar, 90 nm 
200 keV Ar, 120 nm 

C
ur

va
tu

re
 [1

/μ
m

]

-0.5 
0.4 

0.3 

0.2 

0.1 

0.0 

-1.0 

1015 1016 1017 

Implanted fluence [/cm2] Implanted fluence [/cm2] 

Figure 4.6: Curvature of ZnO nanowires as a function of fluence. (a) Shallow implantation, NWs

bending away from ion beam and (b) deep implantation, NWs bending toward ion beam. Typical

NW diameters are noted in the key.

toward the ion beam with increasing fluence until they become approximately aligned with

the ion beam direction. Similar observations were also made for 200 keV Ar ions (also deep

implantation, not shown here). These two trends observed for ZnO are the same as observed

for GaAs nanowires.

After each irradiation step, the curvatures of the ZnO nanowires were evaluated from SEM

images as described above, in this case measuring about 200 nanowires for each data point. The

resulting curvatures as a function of fluence are plotted in figure 4.6. One can clearly observe

that the curvature becomes stronger with increasing ion fluence for both cases of bending away

and toward the ion beam. Irradiation with 10 keV and 20 keV Ar ions result in comparable

bending, taking into account the distribution of curvatures. In both cases, the average diameter

of the nanowires was approximately 50 nm; however, the exact distribution of diameters varies

from sample to sample limiting inter-sample comparison of curvatures. The curvature results of

single nanowire irradiation with the FIB (30 keV Ga) are shown for comparison, details follow

in the next section. For the deep implantation case (irradiation with 100 keV and 200 keV

Ar ions), the NW diameters were different, but the curvature shows similar trends of bending

toward the ion beam for both energies.

Single nanowire irradiation

Figure 4.7 illustrates a single ZnO nanowire irradiated with a focused ion beam. SEM images

were recorded after each of the ≈ 100 small steps of irradiation, six of them are shown exem-

plarily. The curvature of the nanowire as a function of fluence is plotted in figure 4.7(g). The
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Figure 4.7: FIB-irradiation of a single ZnO nanowire with diameter of 80 nm: (a-f): SEM images,

recorded after irradiation with increasing ion fluence as noted. The white arrows indicate the ion

beam direction. Scale bars are 10 μm. (g) Curvature as a function of fluence. (The curvature was

measured at the point of strongest bending.)

error bars of the curvature represent the fact that the curvature is not constant along the NW

and the error bars in the fluence represent the uncertainty of the ion beam current that cannot

be measured exactly in the FIB (10% accuracy estimated).

The curvature as a function of fluence shows the same general trend as for shallow Ar im-

plantation: the nanowire bends away from the ion beam. However, the larger number of data

points allows a more detailed analysis. Furthermore, in comparison to the FIB-irradiated GaAs

nanowire, the ZnO nanowire seem to be more stable against Ga irradiation, because the NW

does not decompose before very strong bending occurs. In the plot of curvature versus fluence,

one can discern three not sharply separated domains, as illustrated in figure 4.7(g): (1) slow

bending up to about 1.4 ·1015 ions/cm2, (2) accelerated bending up to about 2.6 ·1015 ions/cm2,

and (3) slower bending again at higher fluencies. Discussion follows below (section 4.4.3) after

establishing a model for the bending mechanism.

Similar experiments were done for 11 different single nanowires in the FIB (results not shown

here, can be found in [Spi11]). They all show in general a similar behavior; however, the absolute

value of curvatures and the fluencies necessary to achieve the same curvature are different for all

the nanowires. One reason are different diameters and different initial angles between ion beam

and nanowire, but no distinct correlation between these parameters and bending curvatures

could be found [Spi11]. Different adjustments of the FIB machine on different days may play

a role here.
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Figure 4.8: (a) Curvature of ZnO nanowires irradiated at RT and subsequently annealed at increas-

ing temperatures. The samples were irradiated with Ar ions of 20 keV with a fluence of 6.3 ·1016/cm2

and 100 keV with a fluence of 2.0 · 1016/cm2. (b) Curvature of ZnO nanowires irradiated at different

temperatures with 2 · 1016/cm2 Ar ions of 20 keV.

Annealing of bent nanowires and high temperature irradiation

Figure 4.8(a) shows the curvature of ZnO nanowires, which were irradiated at room temper-

ature and subsequently annealed at increasing temperatures up to 800 ◦C. In between each

annealing step, the samples were characterized in the SEM (images not shown here, can be

found in [Spi11]), and the curvatures of a large number of nanowires were measured. For both

directions of bending, there is no significant change in the curvature as a function of annealing

temperature, showing that the bent state is stable upon annealing. At 900 ◦C, the nanowires

begin to melt and no curvatures can be measured. Interestingly, the melting point of bulk ZnO

is much higher (1975 ◦C). Even though nanostructures can have lower melting points compared

to bulk, this cannot explain melting at 900 ◦C. However, during ion beam irradiation, carbon

from the residual gas in the vacuum vessel is deposited on the ZnO nanowires. Carbon reduces

ZnO already at 900 ◦C [Wan08], and the remaining pure Zn melts at 419 ◦C.

In order to investigate the influence of temperature during the irradiation, different nanowire

samples were irradiated at various temperatures in the range from 300 ◦C to 800 ◦C with Ar

ions of 20 keV and a fluence of 2.0 · 1016/cm2. The resulting curvatures are shown in figure

4.8(b). It should be noted that different samples were used, which have similar but not exactly

the same distribution of NW diameters, so the comparability of the data points is limited.

Nevertheless, up to irradiation at 700 ◦C, the curvature remains about the same. At 800 ◦C,

the curvature is significantly less; the NW are only slightly bent (SEM images of NW irradiated

at high temperatures can be found in [Spi11]).
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Figure 4.9: Results from iradina simulations for irradiation of GaAs NW (150 nm diameter) with

different ions and energies. NW cross sections are shown; the ion beam comes from the top in all

cases. The top row (a-e) shows concentration of implanted ions, the bottom row (f-j) shows the value

of interstitials minus vacancies. For each image, the color scale denotes the concentration of ions or

defects in units of 105/cm3 per ions/cm2.

4.4 Discussion with qualitative model

In order to understand the mechanisms causing the nanowires to bend in different directions

upon ion beam irradiation, one has to take a closer look on how exactly the ions interact with

the nanowire material. At the energies used for these studies, the number of point defects

(vacancies and interstitials) produced per ion is in the order of 103 (as calculated by iradina or

TRIM [Zie85]). Additionally, noble gas atoms are assumed to easily diffuse out of the material

after implantation. These considerations indicate that the bending is mainly related to defect

production and not to the implanted ions themselves. To obtain a good understanding of the

bending mechanism, it is necessary to know the distribution of defects within the nanowire.

This distribution can be obtained from Monte Carlo computer simulations of the ion irradiation.

4.4.1 Simulations and ion beam induced defects

Iradina was used to simulate the irradiation of GaAs and ZnO nanowires with different ion

species and energies corresponding to the parameters used in the experiments (see section 3.3.3

for details on the simulation). Figures 4.9 and 4.10 show simulation results for irradiation

of GaAs and ZnO nanowires with different diameters, ions and ion energies, as used in the

experiments1. In the top rows, the concentration of implanted ions is plotted, each colorized dot

1The simulations shown in the publication [Bor09] were performed with a 3d-variant of TRIM by Daniel
Schwen, University of Illinois [Sch09b], because iradina had not been developed at that time. The simulation
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Figure 4.10: Results from iradina simulations for irradiation of ZnO NW with different diameters,

ions and energies. NW cross sections are shown; the ion beam comes from the top in all cases.

The top row (a-e) shows concentration of implanted ions, the bottom row (f-j) shows the value

of interstitials minus vacancies. For each image, the color scale denotes the concentration of ions

or defects in units of 105/cm3 per ions/cm2. Ar irradiation: 38◦ between ion beam and NW, Ga

irradiation: 27◦.

corresponding to one cell of the simulation. For the cases of low-energy (shallow) implantation

shown in subfigures (a-c) one can observe that the ions are only implanted into that side of the

nanowire, which faces the ion beam. For the high-energy implantations shown in subfigures

(d,e), the ions are implanted deep into the nanowire; nevertheless, ions can be found almost

everywhere in the nanowires.

Concerning the production of point defects by the ion beam, it must be taken into account that

Monte Carlo simulation codes like iradina do not take into account any annealing (dynamic or

thermal); implicitly, a temperature of 0 K is assumed. In reality, however, annealing occurs and

for example a vacancy may annihilate with a close-by interstitial. Room temperature, where

irradiation took place, is above a major recovery stage of GaAs reported at 250 K [Hof92]. In

ZnO, annihilation of vacancies and interstitials is also very likely; shown by the fact that ZnO

can hardly be amorphized by ion irradiation due to its high ionicity [Nag75]. However, diffusion

of point defects over large distances is unlikely at room temperature. In order to make a rough

estimate of the remaining defects from the simulation results, one may assume that interstitials

and vacancies can annihilate within each cell of the simulation, but not across cell boundaries

(typical cell dimensions are 1 to 4 nm). A vacancy and an interstitial are always created

together in the collision cascade, but the vacancy remains at the point of the collision, while

results shown here are obtained from iradina simulations done with higher accuracy than the ones shown
in [Bor09].
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the interstitial proceeds some distance before it stops. On average, interstitials are transported

forward due to the momentum of the incoming ion. Thus, the spatial distribution of vacancies

and interstitials is not exactly the same. When assuming fully effective annihilation of point

defects within each cell, some cells will have excess interstitials and some excess vacancies.

This is illustrated in figures 4.9 and 4.10, subfigures (f-j), which show the difference value of

interstitials minus vacancies. Red shows excess vacancies, blue excess interstitials.

The inhomogeneous distribution of defects within the nanowire results in an inhomogeneous

distribution of stress: material with vacancy excess tries to reduce its volume causing tensile

stress, while material with excess interstitials tends to expand causing compressive stress. These

inhomogeneous distributions can now explain both bending directions away and toward the ion

beam for shallow and deep implantation in a qualitative way:

In case of the shallow implantation, the defect distribution is centered near the surface of

the NW on the side facing the ion beam, see figure 4.9 and 4.10 (f-h). A closer look shows

that a high concentration of excess vacancies only occurs in the cells which are at the NW

surface. This is due to the static simulation, where the surface remains fixed: recoils leaving

the NW (sputtered atoms) do not lead to interstitials and thus, excess vacancies accumulate

close to the surface. In reality, the surface itself is retracted due to sputtering and such a

strong accumulation of vacancies at the surface cannot occur. However, many cells with excess

interstitials remain within the nanowire. For shallow implantation, these excess interstitials

occur in the half of the NW which faces the ion beam, causing this half of the NW to expand.

The other half remains undamaged. Consequently, a bending momentum is induced. For

shallow implantation this bending momentum bends the nanowire away from the incident ion

beam. In the case of deep implantation, the damage is produced all over the nanowire cross

section, but excess vacancies remain at the side facing the ion beam, while excess interstitials

remain deeper in the nanowire, see figure 4.10(i,j). As the interstitial-rich material expands

and the vacancy-rich material shrinks, the nanowires bends in direction toward the ion beam.

For both bending directions the curvature increases with fluence, because the number of ion

beam induced defects increases with fluence.

Having established a model to explain how bending in the two different direction works, it is

now possible to analyze and discuss in more detail the curvature as a function of fluence for

the different experimental situations.
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4.4.2 Bending and alignment of GaAs nanowires

One observes down-bending away from the ion beam in agreement with the model for the

case of low-energy ensemble irradiation of GaAs NWs [see figure 4.4(a)]. However, due to the

few data points and large distributions of curvature a more detailed discussion is of little use.

For the irradiation of a single GaAs NW in the FIB, one can clearly see that the curvature

monotonically increases with fluence, as expected from the model, until the NW begins to

decompose as discussed in section 4.3.1. The overall curvature of the single NW is not as

strong as for ensemble NWs. This is probably due to a steeper angle of the NW, which perhaps

grew in a 〈224〉-direction instead of 〈111〉, which happens occasionally [Sti08a].

For the high energy irradiation of GaAs NWs, [figure 4.4(b)], one observes in general upward-

bending, but a little downward bending occurs first for small fluencies. Indeed, looking at the

simulations results for GaAs NW in figure 4.9(i,j), one can see that the distribution of excess

interstitials is almost centered. Depending on the exact angle and NW diameter, there may be

more interstitials on the side facing the ion beam at first, causing down-bending initially. As

the nanowires become thinner due to sputtering, the distribution of damage is shifted deeper

into the nanowire. The excess interstitials accumulate on the side facing away from the ion

beam and the nanowire bends upward in agreement with the model.

The GaAs NWs become amorphous for high fluencies (typically at the order of 1 · 1015/cm2 or

more), as was shown in earlier implantation experiments [Sti08a,Sti08b]. But even in amorphous

material, the bending mechanism works for both directions. The amorphous phase has a lower

density than crystalline GaAs. In the shallow implantation case, only the material facing the

ion beam is amorphized, leading to additional expansion of the material on the side facing

the ion beam and thus amplifying the down-bending process. For the deep implantation case,

almost all of the nanowire material can be amorphized. However, the forward transport of

recoil atoms persists leading to additional expansion of the material on the side facing away of

the ion beam and contraction on the side facing the beam, which bends the nanowire upward.

The observation that nanowires become aligned with the incident ion beam for high fluencies [see

figure 4.2(f)] remains to be explained. As the nanowire is bended upward, the angle between

nanowire and ion beam decreases, especially close to the tip of the nanowire, see schematic

illustration in figure 4.11(a,b). Thus, the projected range of the ions decreases, which also shifts

the damage distribution closer to the side of the nanowire facing the ion beam. Consequently,

the situation changes from the deep implantation case to the shallow implantation case, the
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(a) (b) (c)

Figure 4.11: Schematic illustration of alignment model. (a) Initially straight nanowire is irradiated

homogeneously. Expansion at the bottom side (blue), contraction at top side (red). (b) With

bending, angle between ion beam and NW changes, regions of expansion/contraction change, bending

at tip reverses. (c) Once aligned, only few ions are implanted. Note, that in the illustration, the NW

diameter is increased with respect to length for clarity.

bending momentum is reversed, the curvature decreases, and the nanowire tip is straightened

out again. In contrast, the foot of the nanowire is firmly attached to the substrate and the angle

between ion beam and nanowire almost stays constant. Here, the upward-bending persists.

Depending on how fast the two mechanisms at tip and foot are, this may lead to a point, where

the nanowire is relatively straight and almost aligned with the ion beam. In that case the area

of the nanowire as seen from the ion beam direction becomes very small. Very few ions hit

the nanowire anymore and further bending is very slow, see figure 4.11(c). Consequently, once

the NW is in an aligned state with the ion beam it will remain so over a larger fluence range.

This persistence once alignment with the ion beam is achieved is also reported for aligning Si

nanowires with ion beams [Pec10].

4.4.3 Bending and alignment of ZnO nanowires

The agreement between experimental observations and bending model is more pronounced

for irradiation of ZnO nanowires than for GaAs nanowires. In the case of shallow ensemble

implantation, see figure 4.6(a), one observes the practically monotonic increase of curvature

with ion fluence. Results from 10 keV and 20 keV Ar irradiation are similar within the error

bars; the respective damage distributions are similar as well, see figure 4.10(f,g).

The curvature of the single ZnO nanowire irradiated with the FIB is plotted in more detail in

figure 4.7(g). The bending proceeds slow at first (1), then becomes faster (2) and finally slows

down (3), which can be understood partly by geometric considerations. At first, the nanowire is

quite steep and the angle between NW and ion beam is very small. Only few ions are implanted

per nanowire length, bending is slow and the angle hardly changes. But with increasing angle,

the number of ions implanted per nanowire length increases, and the bending is accelerated

until the nanowire is perpendicular to the ion beam. This is the case around 2.5 ·1015 ions/cm2,
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Figure 4.12: TEM images of bent ZnO nanowires after irradiation with 100 keV Ar ions with a

fluence of 2 · 1016ions/cm2. (a) After irradiation, (b) after irradiation and subsequent annealing at

800 ◦C. HR-TEM images recorded at different locations on the NW show that the c-direction is

parallel to the NW axis at each point.

corresponding to SEM image 4.7(e). However, with increasing angle, the projected range and

concurrently the distribution of defects is shifted away from the NW surface a little deeper into

the NW. The bending momentum depends on the distance of the region with excess interstitials

from the middle of the nanowire; thus, the additional bending momentum caused by additional

damage is reduced, slowing down the further bending. Moreover, this effect is enhanced by

thinning of the NW through sputtering.

In the case of deep implantation with high energies, one observes a monotonic increase of

curvature as a function of fluence, see figure 4.6(b), in agreement with the bending model.

Figure 4.5(g) and (h) illustrate roughly the alignment and straightening of the NW with the

incident ion beam as explained above. This alignment is not reflected in the plot in figure

4.6(b), because the curvatures were measured at the point of strongest bending, which is close

to the NW foot, as illustrated in figure 4.11.

4.5 Impact of ion irradiation on the crystal structure and the influence

of temperature

While the GaAs nanowires become amorphous for high fluencies, this is not the case for ZnO

nanowires. Due to the high ionicity of about 1.8, ZnO can hardly be amorphized [Nag75]. The

question arises how the crystal structure of the ZnO nanowires is affected by the ion irradiation

and how the crystal structure accommodates the bending of the nanowires.
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Figure 4.13: Fourier-filtered HR-TEM images of bent ZnO nanowires after irradiation with fluencies

of 2 · 1016ions/cm2. (a) After irradiation with 100 keV Ar ions, (b) after irradiation with 100 keV Ar

ions and subsequent annealing at 800 ◦C, (c) after irradiation with 20 keV Ar ions at 800 ◦C. Red

circles mark positions of dislocations.

The as-grown ZnO nanowires mostly exhibit single-crystalline wurtzite structure and grow in

[0001]-direction (or “c-direction”) [Bor06]. Figure 4.12(a) shows a TEM image of a single bent

ZnO nanowire after irradiation. HR-TEM images were recorded on different points of the

nanowire. Fringe patterns with a spacing of 0.26 nm appear in these HR-images. This spacing

corresponds to the distance of Zn-planes in c-direction (in other words to the [0002] reflex). At

each point of the nanowire, these fringes are perpendicular to the local nanowire axis, indicating

that the c-direction is always parallel to the nanowire and changes gradually along with the

nanowire. No grain boundaries were found and the nanowire still consists of one single crystal.

Such a bending of the single crystal is associated with strain energy. Upon annealing, point

defects become mobile and one might assume that excess vacancies and interstitials can be

annihilated or pushed out of the crystal so that the nanowire is straightened again to minimize

this strain energy. Increased mobility of point defects and annealing stages in ZnO are observed

already between 130 ◦C and 330 ◦C, depending on the type of defect [Tuo05]; however, the

bending of irradiated ZnO nanowires persists even up to 800 ◦C as shown in figure 4.8(a). A

TEM image of a nanowire bent by irradiation and subsequently annealed at 800 ◦C is shown

in figure 4.12(b). The NW is still bent and the c-direction is still parallel with the NW axis at

each point.

Consequently, there must exist a mechanism that stabilizes the bending against annealing.

Indeed, this can be found in Fourier-filtered HR-TEM images of bent nanowires, see figure

4.13(a). While as-grown nanowires usually exhibit very few dislocations, the bent nanowires

exhibit a high density of dislocations (approximately in the order of magnitude of 1013/cm2 at

the point of strongest curvature). In order to understand how these dislocations are created,

we can estimate the tensile or compressive stress in axial direction of the nanowire close to its

surface. If one bends a nanowire of 50-100 nm diameter elastically to a curvature of 0.5/μm,
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the axial stress at the surface is about 2-4 GPa (considering an increased Young modulus for

ZnO nanowires as compared to bulk [Che06]). These values are still below the yield stress of

7.0 GPa [Ria08], so one would expect that this curvature can still be reached elastically with-

out the creation of dislocations [Che07a]. However, the nucleation of dislocation loops under

axial strain is known to be enhanced by ion irradiation due to the introduced point defects

and has been observed in ZnO [Wei07,Wen09]. The stress in the bent nanowire changes from

compressive on one side to tensile on the other side. In this inhomogeneous stress field, dislo-

cation loops may grow and can move, the movement (climbing) being enhanced by generation

of new point defects from the ion beam. If dislocation loops grow and are partly pushed out

toward the surface, they can leave behind single edge dislocations, which are observed in figure

4.13(a). The creation and motion of dislocations allows to relax the axial stresses occurring in

the nanowires.

It is expected that extended defects like dislocations are only removed from ZnO at temperatures

above 1000◦C [Kuc03]. The activation energy for dislocation motion in ZnO is around 0.7 to

1.2 eV [Yon09], which is still much more than the thermal energy at 800 ◦C (≈ 0.09 eV). Never-

theless, additional stress might easily move dislocations at high temperatures; the yield stress

at 800 ◦C is reduced to about 20-30 MPa compared to 7.0 GPa at room temperature [Yon09].

Since the bending of the ZnO nanowires persists at annealing at 800 ◦C and dislocations are

still found after annealing [see figure 4.13(b)], it can be concluded that the stresses occurring

in the bent nanowire are indeed mostly relaxed after ion irradiation and before annealing. This

finding clearly shows that the nanowire bending by ion irradiation is plastic and not elastic (as

stated above, elastic bending would require stresses at the order of 2-4 GPa).

The bending of ZnO nanowires during high temperature irradiation remains to be discussed,

see figure 4.8(b). No difference in the bending was observed from room temperature up to

implantation at 700 ◦C. This finding indicates that the bending is primarily not an effect

caused by temperature (i.e. inhomogeneous heating of the NW through irradiation) but indeed

a ballistic effect based on damage distribution. If it was a temperature effect, the temperature

gradients would probably change with base temperature, and one would observe a dependence

of the bending from implantation temperature.

Only when increasing the implantation temperature to 800 ◦C, the bending is strongly reduced.

This means that below 800 ◦C, the diffusion of point defects must be slower than the creation

of dislocations and seems not to be sufficient to balance defects over all the nanowire cross

section, although the point defect mobility is already enhanced at temperatures around 130 ◦C
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to 330 ◦C [Tuo05]. Since the bending is reduced starting at 800 ◦C, one can assume that the

mobility becomes so large that point defects move over larger distances and can annihilate or

diffuse to the surface, quickly balancing the inhomogeneous defect distribution introduced by

the ion beam, before many dislocations is created. Indeed, TEM images taken from nanowires

implanted at 800 ◦C show only few dislocations; an example is illustrated in figure 4.13(c).

4.6 Dynamic bending calculations in the linear elastic regime

The proposed bending model based on inhomogeneous distribution of excess vacancies and

excess interstitials is only qualitative up to this point, except for a rough estimation of stresses

to evaluate the possibility to create and move dislocations. In this section, it will be attempted

to evaluate the bending model quantitatively by numerically calculating the bending dynamics

of nanowires. The basic idea is to obtain damage distributions caused by ion beam irradiation

under different angles using iradina, see chapter 3. These damage distributions are translated

into stress fields, which are forced into the nanowire. From this internal stress field, the bending

curve of the nanowire is calculated. It should be noted that standard beam bending theory2

cannot be used for this calculation: in simple beam bending theory [Fey64, Ch. 38], external

forces are applied to a homogeneous beam and the resulting bending as well as the stress

distribution within the beam are calculated. In the present case however, the ions force a

specific damage field (=̂ initial stress field) into the nanowire and the resulting bending curve

needs to be calculated.

For these calculations a simplified linear elastic model of the nanowire is developed. It should

be noted that a full calculation of the bending dynamics could be done using finite element

methods; however, as the nanowires have a high aspect ratio, only the axial stresses are of

interest, and the simple model described here is assumed to be sufficient.

4.6.1 Modeling the nanowire

The nanowire is first assumed to be a cylinder of length L and diameter D with D � L,

see figure 4.14(a). The nanowire is divided into n cylindrical segments indexed by s with

initial lengths ls = L/n, see figure 4.14(b). Each segment is further divided into a number of

rectangular-shaped elements (long thin rods), see figure 4.14(c). If a sufficiently large number

2Here, “beam” must not be confused with “ion beam”. It means something like “bar” here (“beam bending
theory” in German is “Theorie der Balkenbiegung”).
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Figure 4.14: Schematic illustration of nanowire model: (a) Nanowire of length L and diameter D.

(b) The NW is divided into nearly cylindrical segments indexed by s with lengths ls. (c) Each

segment s is further divided into elements. (d) These elements are numbered by the two in-plane

indices j and k. (e) The length of each element is designated by lsjk.
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Figure 4.15: Schematic illustration how bending is modeled: (a) The elements of one segment form

a plane end-cap (marked in red). (b) The end-cap of a segment is tilted by an angle of α with respect

to the x-axis. (c) The combined segments represent a bent nanowire.

of elements is used (i.e. 40×40), the cylinder can be well approximated as shown in “top view”

in figure 4.14(d). The elements within one segment are indexed using j, k and the positions

within the plane can be calculated by x = j ·Δx and y = k ·Δy.

Next, the bending of a nanowire needs to be represented in the model. Therefore, we take a

closer look at one arbitrary segment s. One can assume that the length lsjk of each element

within the segment can be changed, depending on the local stress induced by the ion beam. For

simplification, the width Δx and depth Δy of the all elements are assumed to remain constant.

As the elements are tightly bound together to form the segment, the elements’ lengths cannot

be changed independently: to ensure material integrity the elements are assumed to form up a

plane end-cap of the segment, as illustrated in figure 4.15(a,b).

The plane end-cap of the segment is characterized by three parameters: the tilt angle αs with

respect to the x-axis, the tilt angle βs with respect to the y-axis (not illustrated for the sake of

clarity) and the mean segment length ls
m. The complete nanowire in its bent state is formed by
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subsequently “mounting” each segment s on the plane end-cap of the previous segment s − 1,

as illustrated schematically in figure 4.15(c).

Next, we consider the stress induced in the nanowire by the ion beam. The ion beam irradiation

of a segment of the nanowire is simulated using iradina, see chapter 3. In the simulations, each

simulation cell corresponds exactly to one element (jk). The simulation yields the distributions

of the various interstitials and vacancies within the nanowire. In each cell (and for each element)

the difference value of interstitials minus vacancies is calculated assuming annihilation of defects

(as described above). This can lead to compressive or tensile stress within each element (details

how the damage is converted to stress are discussed in section 4.6.4). Simulations are done for

all segments yielding stress values σsjk for all elements of the nanowire. These stresses will lead

to a bending of the nanowire.

4.6.2 Calculation of bending

At first, one individual segment s will be considered. After a certain field of stress σ has been

induced in the segment, we need to calculate the resulting length ls
m and the tilt angles αs and

βs of the plane end cap of that segment. To do this, let us first assume that all elements of a

segment were independent and not connected. Then their lengths would change purely because

of the induced local stress σsjk. We denote the length which each free element (sjk) would like

to assume as the “relaxed length” lr = l0 · (1+ σsjk/Y
c ), where Y c is the Young’s modulus ofsjk s jk jk

the material (in c-direction for ZnO)3. However, in reality the elements are parts of one solid.

We force all elements of one segment together by choosing their lengths such that they reach

a common plane end-cap as described above. The forced length of each element shall be lfsjk.

Each element will thus be strained and the strain energy depends on the difference between

relaxed and forced length Δlsjk = lr − lf The strain energy is Esjk = (Δlsjk)
2 · Y c

sjk sjk. jk.

The length and the strain energy of each element now depend on the end-cap, or more specifi-

cally on the mean segment length ls
m and the tilt angles αs and βs. Thus, the complete strain

energy of the segment (which is the sum of all its elements’ strain energies) can be expressed

as a function of these three parameters: Es = Es(ls
m, αs, βs). The nanowire will bend in such a

way as to minimize this total strain energy Es. The parameters ls
m, αs and βs can thus be found

3The Young’s modulus may depend on the element index, because close to the surface it differs from the
bulk value [Che06].
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by minimizing Es with respect to these three parameters. Doing this leads to the following set

of equations (the derivation being shown in appendix C):

∑
Y c
jk · (lms − lrsjk − j ·Δx · tanαs − k ·Δy · tan βs)

!
= 0

jk∑
Y c
jk · j · (lms − lrsjk − j ·Δx · tanαs − k ·Δy · tan βs)

!
= 0 (4.1)

jk∑
Y c
jk · k · (lms − lrsjk − j ·Δx · tanαs − k ·Δy · tan βs)

!
= 0

jk

Instead of minimizing the energy, the same conditions can also be derived by requiring that the

sum of all forces as well as the sum of all angular momenta acting on the end plane vanish.

The set of equations 4.1 is solved numerically by using Newton’s method [Got95, p.681], details

are shown in appendix C. The solution tells us how the end-cap of the segment s is tilted for

any given distribution of stress. To calculate the complete shape of the nanowire, one simply

needs to calculate the length and tilt angles of each segment and assemble them to form a

nanowire as illustrated in figure 4.15(c).

4.6.3 The dynamics of the bending

In order to calculate the dynamics of NW bending under ion beam irradiation, the virtual

nanowire is irradiated step by step with small fluencies. Between each step, the bending of the

nanowire is calculated. In each irradiation step, all the angles between ion beam and nanowire

axis may be different for all the segments, which poses a problem in terms of efficiency: for

the iradina simulations, the angle between ion beam and nanowire must be known. However,

it would take far to much time to fully simulate the irradiation of all segments in between all

steps. Thus, before the calculation of the bending begins, simulations are made with iradina

for 20 different incidence angles. All simulation results are loaded to memory and then, for

irradiating a segment during the dynamic calculation, the iradina simulation is used with the

angle that is closest to the correct angle.

The errors made by this approximation are estimated to be small, because the differences in

implantation profiles between two adjacent angles are small. This is ensured by not distributing

the incidence angles evenly but distributing their cosines evenly: whether the ion beam hits the

nanowire perpendicular or 10◦ off perpendicular direction does not make much of a difference;

but whether the ion beam is parallel to the NW or 10◦ off the axis makes a huge difference.
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4.6.4 Bending of ZnO nanowires

Translating damage to stress

In the qualitative model it was simply assumed that excess interstitials cause expansion and

excess vacancies cause contraction of the material. However, such an approach is too simple

for ZnO for several reasons: the formation volumes for Zn and O interstitials and vacancies

are different, and the formation volumes depend strongly on the charge state of the defects,

due to the high ionicity of ZnO. In fact, some type of vacancies can even cause expansion of

the material, and interstitials can cause contraction. Erhart et al. have made first-principle

studies of defects in ZnO from which the formation volumes of the different defect types can

be determined [Erh05,Erh06]. The values are listed in appendix C.

The following steps are performed to calculate the expansion or contraction caused by damage

obtained from iradina simulations: Zn interstitials and Zn vacancies are assumed to annihilate

in each simulation cell, and separately, O interstitials and O vacancies are assumed to annihilate

within each simulation cell. “Cross-annihilation” of defects from different elements is not taken

into account, because the formation energies of antisites are higher than of other defects in ZnO

[Koh00] and they are thus less likely to occur. The Monte Carlo simulations cannot distinguish

between the different types of oxygen interstitials that occur in ZnO (octahedral and dumb-bell

interstitials), thus an average value for the formation volume has to be used. Furthermore,

the charge states of the defects in the nanowires are not known. One can determine probable

charge states of the various defect types by using the energy diagram of the ZnO band gap from

reference [Erh06, fig. 6c], see also figure C.1 in appendix C, which shows the various energy

levels for all the charge states of each defect type. However, it is not known at which position

the Fermi level is within the band gap for such heavily damaged NW material. Assuming that

the Fermi energy level is approximately in the middle of the band gap (Position A in figure C.1),

V Zn,ione obtains the average formation volumes: zinc interstitials: f = −0.30, zinc vacancies:

V Zn,v = 0.45, oxygen interstitials: V O,i = 0.53, and oxygen vacancies: V O,v = −0.32 in unitsf f f

of the ZnO formula volume (=2.41 · 10−22 cm3).

The numbers n of excess defects of each type after annihilation are counted in each element

(sjk) of the nanowire segment and the defects are assumed to cause an isotropic expansion or

contraction of the volume of that element:

Zn,i · V Zn,i Zn,v · V Zn,v O,i · V O,i O,v · V O,v= n + n + n + nΔVsjk sjk f sjk f sjk f sjk f
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Figure 4.16: Results of dynamic bending calculation. (a) shows the shape of a ZnO nanowire,

bending with increasing ion fluence (color-coded) of 10 keV Ar irradiation (50 nm diameter, 20

segments, 5 μm length, fluence steps of 5 ·1012 ions/cm2). Blue arrow shows ion beam direction. (b)

shows the maximum curvature of the nanowire as a function of fluence.

Zn,i Zn,vEither n or n must vanish, the same is true for oxygen. From the change in volume,sjk sjk

the change in length of each element can be calculated, which leads to the above mentioned

“relaxed length” lr However, if the element is not allowed to relax, it is stressed and thesjk.

corresponding value for the ion beam induced stress is: σsjk = (lr /l0 − 1) · Y c , where l0 issjk sjk jk sjk

the length of the undamaged element. As explained above, relaxation is done in such a way as

to minimize the total strain energy of a segment of the nanowire.

Calculation results

Dynamic bending calculations were done for various situations corresponding to the experi-

ments. Figure 4.16 shows the bending of a ZnO nanowire under 10 keV Ar irradiation compa-

rable with the experimental situation shown in figure 4.6. Initially, the NW is perpendicular

and straight. With increasing ion fluence (ions coming from the left), the NW bends away from

the ion beam, down toward the substrate. However, the bending in the simulation proceeds

about 33 times faster than observed in the experiment: in the simulation the curvature reaches

−0.5/μm at an ion fluence of about 3 ·1014/cm2, while in the experiments about 1 ·1016/cm2 are

required. For the simulations is was simply assumed that defects annihilate only within each

simulation cell (in this case, the lateral cell size is only 1.25×1.25 nm2). In reality, annihilation

of defects by dynamic annealing might be more effective, explaining why higher ion fluencies

are required to reach the same curvature. Furthermore, exact values for the displacement en-

ergies in ZnO are not known (for the simulations, ED(Zn)=18.5 eV and ED(O)=41.4 eV were

used [Loo99]).
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Figure 4.17: Results of dynamic bending calculation. (a) The shape of the nanowire is shown

as a function of fluence (color-coded). Parameters are 30 keV Ga irradiation, 80 nm diameter, 20

segments, 20 μm length. Blue arrows show ion beam direction. (b) Maximum curvature as a function

of fluence. While (a) shows the bending of NW for EF in middle of band gap, (c) shows the bending

for EF close to the valence band.

Figure 4.17 illustrates the bending of a ZnO nanowire under 30 keV Ga irradiation, comparable

to the experimental situation shown in figure 4.7. Subfigure (a) shows the bending for the

Fermi level approximately in the middle of the band gap as used above. The NW bends away

from the ion beam, down toward the substrate like observed in the experiment. Figure 4.17(b)

illustrates the curvature as a function of fluence. Again, one observes that the bending in the

simulation proceeds much faster than in the experiment, due to less effective annihilation of

defects as explained above. A division into three fluence ranges with slow, faster and slower

bending was observed in the experiment [figure 4.7(g)]. The simulation results reproduce this

effect, albeit somewhat weaker.

Figure 4.18 illustrates calculation results for bending of ZnO nanowires irradiated with 100 keV

Ar ions (deep implantation case), comparable to the experimental situation shown in figure

4.5(e-h) and 4.6(b). In figure 4.18(a) one can observe that the simulated NW bends away

from the ion beam in contrast to the experiments, where the nanowires were bent toward the

ion beam. In order to investigate, whether this might be due to a wrongly selected Fermi

level, simulations were done for two other Fermi levels leading to different charge states and to

different formation volumes of the various defects [figures 4.18(b) and (c)]. When a Fermi level

of 0.15 ·EG above the valence band is selected [4.18(c)], the NW bends in direction toward the

ion beam as observed in the experiment. In this case, one can also observe the alignment effect:

at first, the bending increases with fluence, but as the NW becomes increasingly aligned with

the ion beam, the bending slows down, and the bending direction at the tip of the nanowire is

reversed.
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Figure 4.18: Results of dynamic bending calculation. The shape of the nanowire is shown as a

function of fluence (color-coded) for three different Fermi energy levels. (100 keV Ar irradiation,

90 nm diameter, 20 segments, 5 μm length, fluence steps of 2 · 1013ions/cm2). Blue arrows show

ion beam direction. (a) EF in middle of band gap, (b) close to CB, (c) close to VB; compare with

figure C.1.

However, ZnO is almost always n-type; thus, such a low Fermi level close to the valence band

is quite unlikely. Furthermore, this low Fermi level of 0.15 · EG above the valence band is not

consistent with the case of low energy irradiation: Figure 4.17(c) shows the bending of a ZnO

nanowire under 30 keV Ga irradiation for this low Fermi level. In this case, the NW bends

towards the ion beam direction, as opposed to the experimental observation, where the NW

bends down. No consistent Fermi level was found that reproduces both cases correctly.

An unrealistically high concentration of vacancies occurred close to the NW surface in the

iradina simulations, as discussed in section 4.4. Bending simulations were made, in which the

surface part of the nanowires was ignored (calculations limited to material within 90% of NW

radius) in order to exclude a major impact from these surface effects. However, the results did

not change much and the inconsistency of the bending directions could not be resolved.

The inconsistent bending directions are therefore ascribed to the fact that too many approx-

imations and inaccuracies are included in the dynamic bending calculations: One important

source of error are the charge states and formation volumes obtained from the first-principle

studies of ZnO [Erh05,Erh06]. Experimental confirmation of those results is not available. The

calculations result in a band gap of 1.83 eV as opposed to the experimentally observed 3.4 eV

in ZnO, and all values for transition levels must be extrapolated to the experimental band gap.

Furthermore, defect formation volumes and charge states are calculated for isolated defects

(more precisely, the values are extrapolated from finite periodic supercells to infinite dilution,
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which causes quite some uncertainty). The high defect densities in the experiment may lead

to formation of impurity bands, changes in the charge state distribution and changes in the

formation volumes. Furthermore, the Fermi level may be pinned at the surface of the nanowire,

leading to band bending and inhomogeneous charge state distribution of the defects through-

out the nanowire. Further approximations are made by the dynamic model itself: linearity of

defect concentration with ion fluence as well as linear elasticity are assumed. The occurrence

of dislocations clearly shows that this assumption is invalid for high fluencies. Additionally, the

NW diameter is assumed to be constant, while in reality the NW is thinned by sputtering.

It is possible to find parameters for each case of irradiation that allow to reproduce the expe-

rimental observations with the dynamic bending calculations; but due to the inconsistencies

caused by the many assumptions and approximations, it must be concluded that the model pre-

sented here cannot be used to predict the bending of nanowires for arbitrary other irradiation

parameters.

Future improvements may be possible by calculating the irradiation itself dynamically, meaning

that the nanowire is allowed to change its shape and composition. This could also eliminate

the problem of sputtering at the NW surface. However, iradina is currently a static code and

cannot be used for such calculations.

4.6.5 Bending of GaAs nanowires

In contrast to ZnO, no values for the formation volumes of defects in GaAs were found in the

literature. But one can find calculated values for the volume relaxation of the tetraeders formed

by the four neighboring atoms of a defect in GaAs [Seo95,Sta01,Mal07]. These volume relax-

ations can be used as an approximation for the expansion or reduction caused by each defect

type; detailed values are listed in appendix C. Since GaAs is less ionic than ZnO, the formation

of antisites is more probable. This is accounted for in the calculations for GaAs NWs: first,

the interstitials and vacancies of each type are allowed to annihilate within each simulation cell

(like for ZnO). Subsequently, “cross annihilation” of Ga and As defects is performed, meaning

that if there is an excess of As vacancies and Ga interstitials, they annihilate to GaAs antisites

and vice versa. The tetraeder volume relaxation of the various defects in GaAs does not show

a strong dependence on the charge state, as opposed to ZnO. Only As vacancies and GaAs

antisites shows a little dependence [Seo95]; thus, for these defects the charge states is selected

for a Fermi level approximately in the center of the band gap, value taken from [Sch09a].
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Figure 4.19: Results of dynamic bending calculation for GaAs nanowires of 150 nm diameter, 20

μm long, 40 segments, irradiated with 35 keV Ar. (a) shows the shape of the nanowires as a function

of fluence (color-coded) if the full cross section is taken into account, blue arrow shows direction of

ion beam. (b) shows the evolution of nanowire shape if the diameter is cut off at 87%. (c) shows

the maximum curvature of the nanowire as a function of fluence for different cut-off values, as well

as the experimentally observed curvature.

An increased Young modulus of GaAs nanowires is taken into account in the calculations:

Wang et al. recently studied the size dependence of the Young modulus of GaAs nanowires by

combining mechanical bending experiments (and in-situ TEM observation) with finite element

analysis of the bent NWs [Wan11]. They obtain a young modulus of 118 GPa for GaAs NWs

of 150 nm diameter (compared to the bulk value of 86 GPa).

Calculation results

Figure 4.19(a) illustrates the calculated bending results for irradiation of GaAs NWs with 35 keV

Ar (situation of shallow implantation). As opposed to the experiment, the nanowire bends

upward in the simulation (compare to figure 4.2(a-c)). The problem here may be the strong

excess of vacancies that occurs close to the nanowire surface in the results from iradina (figure

4.9), which is not realistic as explained in section 4.4. In order to monitor the influence of this

effect, bending calculations were also made where the cells close to the nanowire surface were

ignored. Figure 4.19(b) illustrates the evolution of the nanowire shape for a cut-off radius of

87%, meaning that all material outside this cut-off radius is ignored in the bending calculation.

The cut-off results in the correct bending direction of the nanowire down toward the surface.

Calculations were made for different cut-off values and the resulting maximum curvature of the

nanowires is shown as a function of fluence in figure 4.19(c). The direction of the curvature as

well as its dependence on fluence vary strongly with the selected cut-off radius. For the lower

fluencies (< 2 · 1014/cm2), a cut-off of 87% is in reasonable agreement with the experimentally

59



Chapter 4: Ion Beam Induced Bending of Nanowires

(a) (b)5·1014 

20 20 

4·1014 

15  15
F

lu
en

ce
 [i

on
s/

cm
2 ] 

3·1014 

2·1014 

P
os

iti
on

 [μ
m

] 

10

P
os

iti
on

 [μ
m

] 

10

 5  5
1·1014

0
0·100 0

 0  5  10  15 0  5  10  15 

Position [μm] Position [μm]

Figure 4.20: Results of dynamic bending calculation for GaAs nanowires of 150 nm diameter,

20 μm long, 40 segments, irradiated with 210 keV Ar. (a) shows the shape of the nanowires as a

function of fluence (color-coded) if the full cross section is taken into account. (b) shows the evolution

of nanowire shape if the diameter is cut off at 87%.

observed maximum curvatures. For higher fluencies, a somewhat larger cut-off radius would

fit better to the curvature; but at these larger cut-off radii, the nanowire tips start to bend

upwards in the bending simulations (not shown), which is not observed in the experiments.

Thus, it must be concluded that the cut-off procedure is too simple and cannot be used to

consistently fit the calculations to the experimental observations.

Results of the bending calculations for irradiation with 210 keV Ar ions (deep implantation) are

illustrated in figure 4.20. The calculated shape of the nanowire after irradiation with 5 · 1014

ions/cm2 is remarkably similar to the experimentally observed shape after irradiation with

1 · 1015 ions/cm2 [see figure 4.2(f)]. The factor of about 2 between calculation and experiment

shows that the annihilation of defects is probably more effective in reality than in the simulation.

Note that for ZnO, this factor is about 33 (see section 4.6.4) resembling the fact that ZnO is more

ionic and thus more resistant to radiation than GaAs. Incidentally, the lower ionicity of GaAs

poses an additional problem: while ZnO nanowires remain crystalline, the GaAs nanowires can

be amorphized during irradiation, which changes the mechanical properties of the nanowires.

This is not taken into account by the bending calculations.

Calculations for the deep implantation case were also made with different cut-off radii, in

order to check consistency with the low-energy irradiation. The result for a cut-off radius

of 87% is shown in figure 4.20(b). Obviously, the cut-off has much less effect for the high

energy irradiation than for the low energy irradiation. This is no surprise considering that the

simulated defect distribution for 210 keV Ar is not so much dominated by near-surface defects

[see figure 4.9(i)].
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In general, one finds a similar conclusion for the GaAs as for the ZnO nanowires: although it

is possible to reproduce the experimental observations with the dynamic bending calculations,

there are too many assumptions and approximations to allow reliable predictions of nanowire

bending for arbitrary other irradiation parameters.

4.7 Summary and conclusion

Ion beam induced bending of GaAs and ZnO nanowires was investigated. Ensembles of nano-

wires were irradiated with unfocused ion beams mostly of noble gas ions. When the ion range

is much smaller than the NW diameter, the nanowires bend away from the ion beam direction,

the curvature increasing with ion fluence. For the case of higher ion energies, when the ion

range becomes comparable to the NW diameter, the nanowires bend toward the ion beam and

it is possible to align the nanowires with the incident ion beam direction. Single nanowires

were irradiated with Ga ions in a FIB and the bending could be monitored in detail by in-situ

observation with the attached SEM column. However, only the low energy case could be stud-

ied, as the ion energy was limited to 30 keV. Like for low energy Ar irradiation, the nanowires

were bent away from the Ga ion beam.

The bending can be explained by an inhomogeneous distribution of defects over the nanowire

cross section, which can be obtained from iradina simulations. In the low energy case, all defects

remain on the irradiated side, causing expansion of the material and a bending momentum

away from the beam. In the high energy case, defects are created all over the nanowire;

however, an excess of vacancies accumulates at the irradiated side while an excess of interstitials

accumulates on the other side, because the interstitials are transported forwards and vacancies

are left behind. This inhomogeneous distribution causes contraction on the irradiated side and

expansion on the back side, leading to a bending momentum toward the ion beam.

GaAs nanowires were amorphized during irradiation [Sti08b,Sti08a], but in contrast, the ZnO

nanowires remained crystalline, as shown by HR-TEM investigations. This finding supports

the hypothesis that the inhomogeneous distribution of ion beam induced defects is indeed the

driving force for bending in these experiments, in contrast to the observations reported by

the Catania group attributing the bending of Ge and Si nanowires to amorphization [Rom09,

Pec10, Pec11]. Detailed analysis of the crystalline structure reveals that the c-axis is parallel

to the NW axis at each point of the bent nanowire. This gradual change in crystal orientation

is achieved by dislocations. The stresses expected from the curvatures are not sufficient to
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explain the onset of dislocations alone, but the ion beam irradiation enhances their production

and movement. These dislocations relax the stresses in the nanowire and stabilize the bent

state during post-irradiation annealing: the NW curvature remains constant up to 800 ◦C.

Carbon-induced decomposition occurs at higher temperatures.

In order to investigate the influence of temperature during the bending process, nanowires

were irradiated at elevated temperatures up to 800 ◦C. The bending of the nanowires does

not change from RT up to 700 ◦C, indicating that the bending is not a temperature effect.

However, the bending becomes significantly less for irradiation at 800 ◦C. Here, the mobility

of point defects becomes so large that defect annihilation is possible over larger distances and

the inhomogeneous defect distribution can partly be balanced. This is an important result

for ion beam doping of ZnO nanowires, because implantation at 800 ◦C can be used to avoid

undesired bending of the nanowires. Furthermore, the lower density of dislocations occurring

during irradiation at 800 ◦C is advantageous, because dislocations in ZnO are known to decrease

the electron mobility [Miy04]. On the other hand, one has to make sure that no out-diffusion

of the dopants occurs. For ion beam implantation of rare earth elements, temperatures above

750 ◦C begin to be problematic [Geb08a].

Attempts were made to calculate the bending of nanowires under ion irradiation dynamically.

A simple linear elastic model of a nanowire was established and simulation results from iradina

were used as input parameters to obtain the distribution of ion-beam induced stresses in the

nanowire. The simulated bending as a function of fluence increases faster than in the exper-

iments, showing that defect annihilation is very effective. This may be expected due to the

enhanced dynamic annealing observed for nanowires. For each irradiation case, parameters can

be found that lead to agreement between the simulated and experimentally observed bending.

However, the parameters are inconsistent between various irradiation conditions; which is not

totally unexpected, considering all the assumptions and approximations made in the model. In

conclusion, the model cannot be used for reliable predictions of NW bending.

Nevertheless, the experiments demonstrate a way to achieve bending and alignment of semi-

conductor nanowires independent of the growth method. Mechanical deformation of nano-

structures by external forces has to overcome large elasticities before permanent deformation

can be achieved [Che07a]. In contrast, ion beam irradiation easily allows permanent plastic

deformation of the nanostructures. Simultaneous doping of semiconductor nanostructures may

be achieved by selecting appropriate ions. Furthermore, ion beam irradiation of wafer-scale

targets is possible, allowing to align large numbers of nanostructures in parallel.
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Manganese Doping of GaAs Nanowires

The experiments described in this chapter were done in close collaboration with the group of

Prof. Lars Samuelson and Prof. Håkan Pettersson from Lund in Sweden. Parts of the results

are published in [Bor11a].

5.1 Motivation - diluted magnetic semiconductors for spintronics

Today’s information processing and microelectronics is based on semiconductors. The success

of semiconductors is based on several key elements. Their electrical properties can be controlled

by doping, which allows to adjust the conductivity over many orders of magnitude. Further-

more, like in a field effect transistor (FET), it is possible to electrically control the concentration

of charge carriers and with that the conductivity by applying a gate bias. In today’s microelec-

tronic devices, the charge carriers are not spin-polarized and the spin degree of freedom is not

used for the transport or processing of information. It is used though in permanent magnetic

data storage, where information is stored as magnetization. Spin-dependent effects are used for

reading the data via the giant magnetoresistance effect [Bai88,Bin89].

Microelectronic device concepts, which make use of the electron spin in addition to conventional

use of the electron charge, are summarized in the term “spintronics”. An example for such a

device, which features new functionality compared to conventional electronics, is a “spin-FET”.

For example, it shows an oscillating output current as a function of gate bias due to spin pre-

cession of spin-polarized charge carrier in the FET channel [Dat90,Sug10].

In general, the requirements for useful applications of such devices can be summarized com-

pactly by quoting H. Ohno: “One has to be able to create, sustain, control and detect the

spin polarization of carriers.” [Ohn98]. To control the spin polarization, splitting of the energy

levels for charge carriers of the two different spin states is desired. In non-magnetic semicon-

63



Chapter 5: Manganese Doping of GaAs Nanowires

ductors, unusefully large external magnetic fields would be required to achieve any significant

splitting [Ohn98]. But sufficient energy splitting could be achieved with magnetic semicon-

ductors. There exist intrinsically ferromagnetic semiconductors (for example the europium-

chalcogenides [Mau86]); however, they are not useful for spintronic applications for several

reasons: they are difficult to grow in high quality and they are incompatible to standard semi-

conductor technology. Much more useful is the possibility to make technologically established

but intrinsically non-magnetic semiconductors, like Si or GaAs, ferromagnetic. This takes us

to the concept of a diluted magnetic semiconductor (DMS).

While in pure transition metals ferromagnetism can be described well in a band model, the

magnetism in a DMS is better understood in a model based on localized magnetic moments.

Basically two conditions must be fulfilled for ferromagnetism to occur: First, unpaired spins

are required, which provide the magnetic moments, and second, a coupling mechanism must

exist, which makes parallel orientation of the unpaired spins energetically favorable. Unpaired

spins can be provided by 3d-transition metal (TM) atoms, which are incorporated into the

semiconductor host matrix (these are the “diluted” magnetic atoms of the “DMS”). A Mn atom

for example provides a spin of 5/2 from the five electrons in the 3d sub-shell with parallel spins.

Coupling between the unpaired spins from various atoms is achieved indirectly via the free

charge carriers in the semiconductor. In case of Mn doped GaAs, this coupling can roughly be

described by the Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction [Yos57,Ohn98]: simply

speaking, a local magnetic moment (from one TM atom) spin-polarizes the surrounding charge

carriers via exchange coupling. The polarized charge carriers then interact with other localized

magnetic moments (other TM atoms) again via exchange coupling. Thus, the spins of the

TM atoms are indirectly coupled. Since the spin polarization of charge carriers oscillates, the

RKKY coupling can be ferromagnetic or antiferromagnetic depending on the distance between

neighboring TM atoms, the host material and the charge carrier concentration. Ferromagnetic

DMS have been achieved by Mn-doping of various III-V [Ohn99], II-VI [Fur88], as well as group

IV [Par02] semiconductors.

In thin films of highly Mn doped GaAs, ferromagnetism has been observed for Mn concentra-

tions in the order of a few percent [Ohn96, Esc97]. The Mn atoms provide the spins as well

as the charge carriers, because they act as acceptors when substitutionally incorporated on Ga

sites. However, the solubility limits of transition metals in III-V semiconductors are low and

the only possibility to obtain ferromagnetic GaMnAs is by non-equilibrium growth techniques,

for example low temperature MBE at 250 ◦C [Ohn96]. When using higher growth temper-
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atures or subsequent annealing, higher doping levels are achieved, but segregation of MnAs

clusters occurs [Boe96,Wel97]. These MnAs clusters are ferromagnetic; thus, GaAs with MnAs

clusters may exhibit ferromagnetism on a macroscopic scale. There are several applications of

MnAs clusters embedded in a GaAs host matrix [Wel97,Mor03,Hai07,Hai09]; however, this is

not a DMS, the coupling of spins is not carrier-mediated and thus, the magnetism cannot be

controlled electrically.

The low solubility limit of transition metals in III-V semiconductors (typically below 0.1%1

[DeS82]) at thermal equilibrium makes it especially difficult to create DMS GaMnAs nanowires,

because the growth of nanowires requires higher temperatures than in low-temperature MBE

for thin films. However, various attempts have been reported: Successful growth of InGaMnAs

NWs by migration enhanced epitaxy was reported by Sadowsky et al. in 2002 [Sad02]. They

also reported on growth of Ga1−xMnxAs NWs using MnAs nanoclusters as growth seeds [Sad07].

Manganese concentrations in the nanowires up to 7% were obtained, but the NW were strongly

tapered and exhibited irregular side facets. Additionally, the high Mn content can lead to

branching of the NWs [Dlu09]. Another attempt to obtain highly Mn doped GaAs NW is to

use Mn-assisted growth [Mar06].

Room temperature ferromagnetism in Ga1−xMnxAs nanowires with low Mn content (<5%) has

been reported by Kim et al., who grew the nanowires via vapor transport [Kim09]. However,

the magnetic properties are questionable, because there is no mechanism that could explain the

high TC values [Rud09]. Some reports even show room temperature ferromagnetism of GaMnAs

nanowires with Mn concentrations of 20% [Jeo07]. However, at these concentrations one does

not have diluted Mn in a GaAs matrix, but rather a new compound or possibly ferromagnetic

MnAs clusters. In other approaches, non-homogeneous structures were created on purpose by

combining a GaAs nanowire with a GaMnAs shell [Rud09] or decorating GaAs nanowires with

MnAs nanoparticles [Wol11].

The problem with most of the reported attempts to create highly Mn-doped GaAs nanowires is

the segregation of the MnAs phase during growth. This is not unexpected, because, according

to the phase diagram determined by Ohno for Ga1−xMnxAs layer growth via MBE [Ohn99],

MnAs forms above about 300 ◦C for x in the order of 0.5% to 6%. A GaAs nanowire with

small segregated ferromagnetic MnAs nanoclusters can easily be mistaken for a DMS. It has

been reported that the detection of small MnAs nanoclusters in GaAs with XRD or HR-

1Here, % always refers to the atomic fraction, not the mass fraction.
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TEM is rather challenging [Seo04]. Even if no MnAs clusters segregate, the Mn might not

incorporate homogeneously in the NWs, but for example accumulate in a shell. This effect has

been seen directly for doped Ge nanowires by tomographic atom probe measurements [Per09].

In conclusion, growing highly Mn doped homogeneous GaAs nanowires is a challenging issue.

The possibility to incorporate Mn after growth remains. However, any diffusion based approach

will fail due to the low solubility limit; only hyper-thermal doping has a prospect of success,

which is why ion beam implantation comes into play at this point. Ion beam implantation

can in principle be used to incorporate any element into any material beyond any solubility

limit. However, due to the introduced defects, post-implantation annealing is usually required.

For Mn ion implantation of GaAs thin films, thermal annealing at 650 ◦C has been reported

to lead to MnAs cluster formation [Bür09]. Only non-equilibrium annealing, like pulsed laser

melting [Sca03, Sca08] and ion beam-induced epitaxial crystallization annealing [Che09] have

shown promising results regarding the incorporation of Mn in GaAs to create DMS systems.

Regarding nanowires, it must be noted that the annealing methods known from bulk material

cannot be directly adapted in most cases. The reason is that the nanostructures are often not

the equilibrium form of the material and the large surface-to-volume ratio may lead to lower

melting points compared to bulk counterparts. Nevertheless, examples of successful doping by

ion beam implantation and subsequent annealing exist for GaAs nanowires: for example, it has

been shown that p-type doping was achieved by ion beam implantation of Zn and subsequent

annealing at 800 ◦C under tertiarybutylarsine atmosphere [Sti08b].

In the scope of this thesis, possibilities to create highly Mn doped GaAs nanowires by ion beam

implantation and annealing were evaluated. In this context two approaches are compared: (1)

ion beam implantation with subsequent annealing and (2) ion beam implantation at elevated

temperatures to facilitate in-situ annealing.

5.2 Experiments

5.2.1 Ion beam implantation

GaAs nanowires were implanted with Mn ions at room temperature and at temperatures up to

400 ◦C. Ion fluencies from 1 · 1015/cm2 to 2 · 1016/cm2 were used. The nanowires had diameters

ranging from about 30 to 80 nm. The diameter distribution on one growth substrate is only a few

nanometers wide, but typically the nanowires are slightly tapered and a few percent thinner

close to their tip than at their bottom, due to additional growth at the side facets [Bor04].

66



Chapter 5: Manganese Doping of GaAs Nanowires

4.0 ⋅ 105

 0

 10

 20

 30

 40 

y 
[n

m
] 

0  10  20  30  40 

x [nm]
Im

pl
an

te
d 

M
n 

[a
to

m
s/

cm
3  p

er
 io

ns
/c

m
2 ] 

3.0 ⋅ 105 

2.0 ⋅ 105 

1.0 ⋅ 105 

iradina average 

TRIM average 

iradina with NW geometry 
TRIM bulk simulation

0.0 ⋅ 100 

0  5  10  15  20  25  30  35  40 

Depth, x [nm] 

Figure 5.1: Simulation results created by iradina for implantation of 40 keV Mn ions into a GaAs

nanowire with 40 nm diameter. Left: cross sectional distribution of implanted ions, grey scale shows

concentration of Mn ions in arbitrary units. Blue arrows show the direction of incoming ions. Right:

Implantation profile corresponding to the red arrow from the left figure. A bulk implantation profile

simulated with TRIM is shown for comparison. The average concentrations of implanted ions are

indicated as dashed lines.

The nanowires were well aligned on homoepitaxial growth substrates. The substrates were

inserted into the implantation chamber and the nanowires were implanted under oblique angles

of about 45◦. Computer simulations were performed in order to find the optimum ion energies

for implantation and to obtain the concentration of implanted Mn atoms within the nanowires.

The simulations were done with iradina (see chapter 3). It is important to take into account

the correct nanowire geometry during the simulation, because bulk simulations turn out to

overestimate the concentration of implanted atoms strongly: for implantation of 40 keV Mn

ions into GaAs nanowires of 40 nm diameter, bulk simulations done with TRIM overestimate

the concentration of implanted ions by a factor of 1.6. This effect is illustrated in figure 5.1,

comparing the distribution of implanted ions as simulated with TRIM and iradina.

The range straggling is quite large compared to the ion range itself at such low implantation

energies; thus, it was decided to implant each nanowire substrate only with one energy for

the sake of simplicity instead of using profiles of multiple ion energies, as usually done for

homogeneous bulk doping. Implantation energies between 40 keV and 60 keV were selected

depending on the mean nanowire diameter.

For the example of Mn ions with 40 keV implanted into NW with 40 nm diameter, shown

in figure 5.1, a fluence of 1 · 1015/cm2 results in an average volume concentration of about

1.4 · 1020/cm3, corresponding to a relative Mn concentration in GaAs of about 0.3%. In terms
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of Ga1−xMnxAs, this corresponds to x = 0.006. Higher Mn concentrations in the range of

x ≈ 0.03 to 0.07 are desirable for ferromagnetic ordering to occur [Ohn98]. Therefore, some

nanowire samples were implanted with 1 · 1016/cm2, corresponding to x ≈ 0.06. One should

note though, that at these high fluencies the iradina simulations might overestimate the average

Mn concentration: the nanowires are thinned during the implantation by sputtering – an effect

not captured in a static simulation. At the end of the implantation process, fewer ions will be

implanted in the thin nanowire, because more ions are transmitted. The sputter yield of 40 keV

Mn ions incident on the GaAs NW of 40 nm diameter is about 20. Thus, as a rough estimation,

implanting 3% Mn would result in removal of 60% of the material and consequently a reduction

in diameter of about 36%. However, since the sputter yield depends on the nanowire diameter

(compare to section 3.3.4), a dynamic simulation code would be required in order to calculate

this effect more accurately.

5.2.2 Post-implantation annealing

In order to remove ion beam induced defects, the implanted nanowires were annealed using

different parameters. Some samples were annealed in vacuum (about 10−2 mbar) at temper-

atures ranging from 350 ◦C up to 500 ◦C, for 30 minutes each. The temperature was not

increased further, because decomposition of the nanowires occurred (see below, section 5.3.2).

Other substrates with implanted nanowires were annealed under AsH3 atmosphere to prevent

loss of arsenic at temperatures ranging from 350 ◦C to 650 ◦C2. In preliminary experiments,

it had been tried to anneal Mn implanted GaAs nanowires in arsine atmosphere at 800 ◦C, as

was reported successful for Zn implanted GaAs nanowires [Sti08b]; however, the Mn implanted

GaAs nanowires were completely decomposed at 800 ◦C [Skö07].

In order to investigate the morphology and crystal structure of the nanowires, TEM specimens

were prepared as described in section 2.3 before and after the annealing of each sample3.

5.2.3 Implantation at elevated temperatures

Nanowires were implanted at elevated temperatures ranging from 100 ◦C to 400 ◦C. Higher

temperatures were not selected, because decomposition of Mn-implanted nanowires occurred

in vacuum at 500 ◦C (see below, section 5.3.2). The substrates with nanowires were mounted

2The annealing experiments under arsine atmosphere were performed by Magnus Borgström in Lund.

3TEM investigations were partly done in Jena by the author of this thesis and partly in Lund by Maria E.
Messing.
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into the implantation chamber, the chamber was pumped down and heating of the samples

was started when the vacuum was about 1 · 10−5 mbar. Typical heating rates of 25K/min

were used. The ion beam implantation was started a few minutes after reaching the desired

temperature in order to allow the sample surface to reach equilibrium temperature with the

surrounding holder. The ion current density was always limited to 500 nA/cm2, corresponding

to a power density of about 20 mW/cm2, in order to avoid excessive additional heating of the

sample surface by the ion beam.

5.3 Results and discussion

5.3.1 Room temperature implantation

Figure 5.2 illustrates the structural impact of implanting Mn into GaAs nanowires. The as-

grown nanowires [figure part (a)] are highly-crystalline with zincblende structure, growing in

[111] direction. The Au droplet (growth seed particle) is still attached. The nanowires exhibit

planar defects, which are mostly twin planes, all perpendicular to the nanowire axis4. The twin

planes cause two orientations to occur in the fourier transform [see inset of figure part (a)].

These two orientations just differ by rotation of 180◦ about the [111] axis5.

After ion beam implantation with high fluencies of Mn, the nanowires are amorphized, as shown

in figure 5.2(b). The diffraction pattern (DP) recorded from large parts of the nanowires, shows

no peaks but only rings corresponding to the amorphous phase. For lower fluencies or larger

diameters, the NWs do not become completely amorphized, as illustrated in figure 5.2(c). In

this case, half of the nanowire became amorphous, while the crystal structure was preserved in

the other half, as shown by the fractional FFTs.

This half amorphized nanowire presents a very interesting case, which allows to estimate an

amorphization threshold for Mn implantation of GaAs nanowires: The NW in question has a

diameter of 60 nm and was irradiated with 60 keV Mn ions using a fluence of 2.6 ·1015 ions/cm2.

An iradina simulation was made with these parameters and the displacement events were ex-

tracted from the simulation. Note that a single ion causes approximately 103 displacements.

The displacement events can be compared to the TEM image, as illustrated in figure 5.3. From

the point in the nanowire where amorphization stops, an amorphization threshold of approxi-

4Different definitions of twin planes can be found in the literature. Here, a twin plane A is a mirror plane
where the stacking order of (111)-planes is reversed: . . . ABCACBA. . . , see [Car08] for details.

5Note, most of the following HR-TEM images were recorded with a zone axis (ZA) of [110] or equivalent.
For clarity, the indices in the following FFTs are mostly not labeled.
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Figure 5.2: (a) HR-TEM image of as-grown (non-implanted) GaAs NW. The Au droplet is visible

at the bottom left. Inset shows FFT of wire only, reflexes are labeled; two directions occur due to

twin planes. (b) NWs implanted with 9.5 · 1015/cm2, 40 keV, at RT. The inset shows a DP of the

completely amorphized nanowires (Au droplets were excluded when recording the DP). (c) Nanowire

implanted with 2.6 · 1015/cm2, 60 keV, RT. The NW is partly amorphized. The two insets are FFTs

calculated from upper left and lower right region of the image.

mately 7 DPA (displacements per atom) can be estimated for RT implantations, meaning that

each target atom has to be displaced 7 times until the material is amorphized. At first, this

number appears to be quite high for GaAs. For example during Si implantation into GaAs at

room temperature, about 2 DPA were observed to lead to complete amorphization [Bro97]. A

part of that discrepancy can be explained by sputtering: The original nanowire was thicker and

some material was sputtered away. Thus, the material at the back side of the nanowire suffered

less damage in reality than in the simulation, because the static simulation cannot capture this

effect. The sputter yield for 60 keV Mn ions incident on GaAs NWs of 60 nm diameter is about

20. At the given fluence, this results roughly in a reduction of the NW radius by about 10

nm throughout the irradiation. Shifting the damage distribution by an average 5 nm to the

front, would result in an amorphization threshold of about 5 DPA, which is still higher than in

bulk. This indicates that strong dynamic annealing occurs in the nanowire: the ion deposits

its energy in a small volume, leading to local heating of the material. High temperatures can

be reached and immediate annealing of a fraction of the defects is possible. In bulk material,

the thermal energy quickly dissipates (typically on a time scale of about 0.1 ps [Hof98]) leav-

ing little time for annealing. In the nanowire, the thermal energy can only dissipate in one

dimension as opposed to three dimensions in bulk. Thus, there is more time for in-situ removal

of defects. This significant enhancement of dynamic annealing increases the amorphization

threshold. A similar effect has been observed for Ga implantation of GaN nanowires: Dhara

70



Chapter 5: Manganese Doping of GaAs Nanowires

10nm

0

2

4

6

8

10

12

14

16

D
is

p
la

c
e
m

e
n
ts

a
to

m

0

15

30

45

60

0.0 1.0 2.0 3.0

10 Displacements/cm per ions/cm8 3 2

(a) (b)

0.0

0.5

1.0

1.5

2.0

2.5

0 15 30 45 60 0 10 20 30 40 50 60
x [nm] Depth [nm]

Figure 5.3: (a) Simulation results from iradina for implantation of 60 keV Mn ions into GaAs

NW with 60 nm diameter. The number of displacement events (coded in grey scale) is shown over

the cross section of the nanowire. Blue arrows indicate ion beam direction. (b) TEM image of

implanted NW [the same image as in figure 5.2(c)]. Superimposed is a plot of the displacement

events corresponding to the red arrow in (a). Right ordinate shows displacements per implanted

ions, left ordinate is multiplied with fluence of 2.6 · 1015/cm2 as implanted in reality and divided

by GaAs density, yielding the number of displacements per target atom (DPA). The amorphization

threshold is ≈ 7DPA at RT.

et al. reported a five-fold increase in amorphization threshold and attributed this to enhanced

dynamic annealing [Dha03].

5.3.2 Subsequent annealing

Figure 5.4 shows TEM micrographs of GaAs nanowires implanted with 9.5·1015 Mn ions /cm2 at

room temperature and subsequently annealed in vacuum. The previously amorphized nanowires

are recrystallized during the annealing at 400 ◦C. However, they do not become single crystals

as before, but become polycrystalline, as shown in the inset of figure 5.4(a). The situation

is similar at 350 ◦C (not shown). When annealing the nanowires at 500 ◦C in vacuum, their

structure changes strongly, see figure 5.4(b-d). They also recrystallize (see the DP), but they

become very inhomogeneous. EDX measurements show that these NWs consist of typically

≈ 90% Ga and only little As. The loss of As can be attributed to the high As vapor pressure

over GaAs at such temperatures, and has also been reported for annealing ion implanted bulk

GaAs [Wes92].

In conclusion, 400 ◦C vacuum annealing after implantation is not sufficient to obtain single

crystalline nanowires but higher annealing temperatures lead to the decomposition of the nano-

wires. Thus, the possibility to remove the ion beam induced damage via vacuum annealing is

eliminated.
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Figure 5.4: TEM micrographs of nanowires implanted with Mn (9.5 ·1015/cm2) at RT and annealed

in vacuum. (a) After annealing at 400 ◦C. The NW is recrystallized but polycrystalline (see inset

FFT). (b,c) After annealing at 500 ◦C, the nanowires become very inhomogeneous. (d) shows a

typical DP of NWs annealed at 500 ◦C.

For that reason, GaAs nanowires implanted with Mn were annealed in AsH3 atmosphere to avoid

excessive loss of arsenic. Similar methods were reported successful for annealing of Zn implanted

GaAs nanowires [Sti08b] and have been used for annealing bulk GaAs for decades [Kas79].

Figure 5.5 illustrates the resulting structure of Mn implanted GaAs nanowires after annealing

in arsine. Within the investigated temperature range, all nanowires were recrystallized (350

to 650 ◦C). In figure 5.5(a), bottom part, one observes the single crystalline structure of the

nanowire with the original twin planes perpendicular to the nanowire axis. However, in the top

part of figure 5.5(a), twin planes in a new direction appear, not found in the as-grown nanowires.

Probably, the nanowire was half amorphized during irradiation, similar to the situation shown in

figure 5.2(c). The original crystal structure is maintained in the non-amorphized half, while the

amorphous half recrystallized starting from the remaining crystals. However, strong twinning

occurs, possibly due to ion beam induced or thermal stress in the nanowire. Figure 5.5(b)

illustrates a nanowire which became polycrystalline after the annealing. The radius of the

ring in the FFT corresponds to the (111)-plane spacing in GaAs, indicating that the crystals

consist of GaAs. This nanowire was probably one that was completely amorphized during ion

beam irradiation. The original crystalline orientation was completely lost and recrystallization

occurred randomly, leading to the polycrystalline nanowire.

A new phenomenon occurs when annealing at higher temperatures in arsine atmosphere, il-

lustrated in figure 5.5(c,d). In contrast to vacuum annealing, the loss of arsenic is avoided;
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Figure 5.5: TEM images of nanowires implanted at RT and annealed in arsine atmosphere. Insets

are FFTs, their scale bars are 2 nm−1. (a) Annealed at 350 ◦C, twinning in new direction occurs.

(b) Annealed at 350 ◦C, polycrystalline nanowire, radius of the ring in the FFT corresponds to

the (111)-plane spacing in GaAs. (c) Annealed at 550 ◦C, bumps appear on the nanowire sides.

(d) Annealed at 650 ◦C, structural analysis of a bump: localized FFTs of bump and wire show that

they have same crystal structure (the middle FFT is an overlay of the red and the blue one). (e)

Annealed at 650 ◦C, strong twinning in new direction.

however, “bumps” appear on the nanowire side facets. EDX measurements indicate that these

bumps may consist of GaAs, but the significance is low, due to the limited spatial resolution

of EDX and the small volume of the bumps compared to the nanowires. Nevertheless, in the

HR-TEM images, the bumps show the same crystal structure and the same orientation as the

nanowires (see overlay FFT in 5.5(d), even the twin planes from the NW extend into the bump).

Thus, the bumps most likely consist of GaAs. The bumps are possibly formed during annealing

by As from the arsine atmosphere and excess Ga from the nanowire: the sputter yield for As

is about a factor of 1.5 larger than the sputteryield of Ga; thus, one can expect excess Ga after

the implantation.

Apart from the bumps, the nanowires annealed at 650 ◦C in AsH3 exhibit the same structure

as the ones annealed at 350 ◦C in AsH3: figure 5.5(e) illustrates the strong twinning in new
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Figure 5.6: (HR-)TEM images of GaAs nanowires implanted with 2 ·1015 Mn ions/cm2 at elevated

temperatures, as indicated at the sides; insets are FFTs. (a,b) NW mostly remains single crystalline;

amorphous gap between wire and Au tip. (c-k) At higher temperatures, NWs remain single crystalline

as well, sharp interfaces between crystalline NWs and Au tip. Twin planes perpendicular to NW

axis.

directions, in addition to the original twin structures. A high density of twins decreases the

conductivity in semiconductors [Sti90], and is therefore not desired.

In conclusion, neither post-implantation annealing technique can be used to obtain single crys-

talline low-defect GaAs nanowires after high dose ion beam implantation of Mn.

5.3.3 Implantation at elevated temperatures

Instead of post-implantation annealing, in-situ annealing (in addition to the dynamic annealing)

is performed by heating the target during ion beam implantation. The idea is that most of the

ion beam damage anneals immediately; thus, no amorphization occurs and the crystallinity is

never lost. In bulk GaAs, it has been observed that amorphization can be delayed greatly by

increasing the substrate temperature above room temperatures [Bro97]. Since the target must

be in vacuum for ion beam implantation, 400 ◦C cannot be exceeded to avoid decomposition

of the nanowires, as shown in the previous section.
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Figure 5.6 shows TEM images of nanowires implanted with Mn at different temperatures from

100 ◦C to 350 ◦C, all with fluencies of 2 · 1015 ions/cm2 (corresponding to an atomic Mn

concentration of about 1%). Even at an implantation temperature of 100 ◦C [figure 5.6(a,b)],

the nanowires are mostly crystalline after implantation. There are twin planes, all perpendicular

to the NW axis, indicating that the original crystal structure is preserved during implantation.

However, the shell of the NW is amorphized during implantation and an amorphous gap exists

between the Au tip and the nanowire. Probably, the Au tip allows faster cooling of the NW

close to the tip (thermal conductivity of Au is 5-6 times larger than that of GaAs), and thus

reducing dynamic annealing in this region.

At 150 ◦C, the NWs remain crystalline as well, but still an amorphized shell is observed in

figure 5.6(d). This is further reduced at 200◦C, see figure 5.6(e,f). At these high implantation

temperatures, no amorphous gap between tip and nanowire appears, and instead, the interface

remains perfectly flat as for the as-grown nanowires. The same observation is made for the

higher implantation temperatures 250 ◦C, 300 ◦C (not shown) and 350 ◦C. The original crystal

structure with its twin planes is always preserved, as shown in figures 5.6(e)-(k). Unfortunately,

for the fluencies of 2 · 1015 ions/cm2, the detection limit of the EDX system does not allow to

show that the implanted Mn remains within the nanowire.

Anyway, in order to make GaAs ferromagnetic, higher Mn concentrations are required. Thus,

further nanowires were implanted with higher fluencies of 1 · 1016 Mn ions/cm2, corresponding

to a Mn concentration of about 2.9% (x ≈ 0.058). The implantation with lower fluencies

showed preservation of crystallinity at all temperatures above about 150 ◦C, but the higher

the temperature, the fewer defects are expected to remain. On the other hand, there is an

upper limit, when it comes to high Mn concentrations: according to the growth phase diagram

of GaMnAs determined by H. Ohno from MBE growth [Ohn96,Ohn98], phase segregation of

MnAs might occur at temperatures above about 300 ◦C. Thus, an implantation temperature

of 250 ◦C was selected for this high-fluence implantation experiment.

Figure 5.7 shows TEM images of a nanowire implanted with 1 · 1016 Mn ions/cm2 at 250 ◦C,

which is highly crystalline and the original structure with its twin planes is preserved. The

electron beam was focused to different points on the nanowire, and EDX spectra were recorded,

an exemplary spectrum is illustrated in figure 5.8. The characteristic X-ray lines from Ga,

As and from Mn are observed. The signal from Au appears as well, because the spectrum

was recorded in the vicinity of the nanowire tip. The Cu signal originates from the mesh

holding the nanowire, the oxygen may stem from oxidized copper. Other small signals are
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Figure 5.7: GaAs NW implanted with 1 · 1016 Mn ions/cm2 at 250 ◦C. (a) Single crystallinity

with original twin plane structure maintained, inset shows FFT. (b) HR-TEM image of the same

nanowire. (c) TEM image of another nanowire, no amorphous gap between wire and tip occurs.
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Figure 5.8: X-ray spectrum of a GaAs nanowire implanted with 1 · 1016 Mn ions/cm2 at 250 ◦C.

The spectrum was recoreded in a TEM on a point close to the NW tip.

attributed to elements from the sample holder. From these spectra, the Mn concentrations

were evaluated to be between 2% and 3% on all measured points, being in good agreement

with the concentrations obtained from the iradina simulations. This example clearly shows

how bulk simulations overestimate concentrations in ion implanted nanostructures and why it

is necessary to take into account the correct target geometry, as in iradina. However, the EDX

spectrum just shows the total Mn concentration, it cannot be concluded what fraction of the

Mn atoms actually occupies Ga sites as desired.
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5.4 Magnetotransport properties

5.4.1 Sample preparation and measurements

The electrical and magnetotransport properties of nanowires implanted with 1·1016 Mn ions/cm2

at 250 ◦C, as well as unimplanted reference nanowires, were investigated. Single nanowires were

contacted and their transport properties measured at different temperatures and with different

magnetic fields6. First, silicon substrates were prepared for the measurements: the substrates

were covered by a 210 nm thick SiO2 layer for insulation, into which trenches were etched in

order to achieve a preferred alignment direction of the NW. The substrates were further covered

with markers and macroscopic contact pads. Then some NWs were transferred mechanically

onto the substrates, passivated and finally contacted and connected to the macroscopic metal

pads using electron beam lithography and evaporation of Pd/Zn/Pd. Four contacts were created

on each nanowire to allow 4-point measurements, eliminating the influence of contact resistance.

A SEM image of such a contacted nanowire is shown in figure 5.9(a). A Janis VariTemp super-

conducting cryomagnet system (Model 8T-SVM) was used to perform the magnetotransport

measurements. The measurements were carried out at temperatures between 1.6 K and 300 K

and at magnetic fields up to 5T parallel and perpendicular to the nanowires.

5.4.2 Results and discussion

2-point and 4-point measurements were compared down to about 70 K. Below, 4-point mea-

surements became difficult, due to the high NW resistance. It can be concluded from the

comparison that the contact resistance is mostly negligible compared to the NW resistance.

Figure 5.9(b) shows the current-voltage characteristics of a Mn implanted nanowire for dif-

ferent temperatures. Down to about 100 K, it is mostly ohmic, while a somewhat non-linear

but symmetrical behavior dominates at low temperatures. Non-implanted reference samples

exhibited resistance in the order of 200 GΩ at room temperature (not shown here); thus, it can

be concluded that the ion implantation of Mn strongly increases the conductance.

From the room-temperature resistance in the MΩ regime, a hole concentration of about 1017/cm3

can be estimated, assuming a reduced mobility of 60 cm2/Vs [Slu07] and 40 nm wire diameter.

This hole concentration is very low, considering the high doping levels of Mn (x ≈ 0.058).

Several effects may explain this observation. Fermi-level pinning at the GaAs surface (typical

6The preparation and measurements were done by Waldomiro Paschoal Jr. and Sandeep Kumar in Lund.
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Figure 5.9: (a) SEM image of a contacted nanowire with schematic illustration of 4-point measure-

ment. (b) IV characteristics of a contacted nanowire for different temperatures (inset shows curve for

70K again with different scaling). (c) ln(R) plotted as a function of 1/T to extract activation energy.

(d) Relative drop in resistance of the nanowire as a function of magnetic field, which is parallel (||)
or perpendicular (⊥) to the NW axis.

in GaAs NWs [Dem10]) effectively creates a radially depleted semiconductor nanowire, leaving

only a thin channel of high conductance in the center. Furthermore, the simulated implan-

tation profiles show that the Mn concentration close to the surface is lower than the average

(see figure 5.1). Additionally, the Mn acceptors may be compensated to a large extend by

donor-type point defects produced during the ion implantation: for example interstitial Mn as

well as substitutional AsGa antisites both act as double donors [Sca08].

Figure 5.9(c) shows the resistance as a function of temperature as an Arrhenius plot. An

activation energy of about 70 meV is extracted from the linear fit for high temperatures; similar

results were obtained for several different nanowires. Slupinski et al. found a similar behavior

in GaMnAs thin films and attributed it to thermal emission of holes from a Mn impurity band

to the valence band [Slu07]. It should be noted that this result is different from the activation

energy of isolated substitutional Mn impurities on Ga sites in (low doped) GaAs, which is

typically observed around 113 meV [Ile75].

If ferromagnetic ordering of Mn spins occurred in the nanowire, one would expect a singularity

in the derivative of the resistance at the critical temperature [Nov08]. Such singularity does
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not occur, indicating that ferromagnetic ordering does not occur. The reason for this absence

is most probably the hole concentration (see above). It is too low to mediate ferromagnetic

coupling between the Mn spins. The uncoupled spins can only lead to a paramagnetic state.

More light can be shed on the magnetic properties of the nanowires by the measurements of

the resistance as a function of an externally applied magnetic field at different temperatures

[see figure 5.9(d)]. No significant magnetoresistance (MR) effect is observed for 70K, but at the

lower temperatures of 30K and 1.6 K, the resistance decreases with increasing magnetic field

(negative MR). The MR is not observed to saturate within the investigated range up to 5T

and no hysteresis effects were found, supporting the finding that the Mn implanted nanowires

are in a paramagnetic state and not ferromagnetic. Furthermore, no significant anisotropy

was observed for magnetic fields parallel and perpendicular to the nanowire, which one might

expect for a ferromagnetic DMS due to different orientation of the magnetization relative to the

current direction. Magnetotransport measurements of the non-implanted reference nanowires

were practically impossible due to the high resistance of ≈ 200 GΩ.

There are two mechanisms to which the negative MR is usually attributed: spin-disorder scatter-

ing in metallic samples [Ohn99] and suppression of Anderson localization of holes in insulating

or semiconducting samples [Iye99]. Both mechanisms possibly contribute to the decrease in re-

sistance at high magnetic fields. The Zeeman energy splitting for a spin of 5/2 and an external

field of 5 T is in the order of 1.4 meV, (corresponding to a temperature of about 16 K). Thus, at

higher temperatures like 70 K, the spins are almost randomly oriented. At lower temperature,

the Mn spins become successively oriented by the magnetic field and spin-disorder scattering is

reduced. At high magnetic fields, the Zeeman shift may also move the Fermi energy for one of

the spin-orientations to the non-localized side of the mobility edge, suppressing the localization

and enhancing conductivity [Iye99].

From the magnetoresistance properties, one can also obtain some information about possible

segregation of small MnAs clusters: theoretical studies by Michel et al. on the influence of

ferromagnetic MnAs clusters in a paramagnetic GaMnAs thin film reveal that a high density

of MnAs clusters leads to a strong positive MR behavior of several hundred percent between

30 and 100 K [Mic08]. Negative MR at high cluster densities is only expected below 30 K. In

contrast, the experimental results on Mn-doped GaAs nanowires only show a weak negative

MR below 70 K and no positive MR at all, see figure 5.9(d), which indicates that there are

either no MnAs clusters in the nanowires or at least a low density of them, meaning that most

of the Mn is indeed diluted in the GaAs host matrix as desired.
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5.5 Summary and outlook

Diluted magnetic semiconductors (DMS) are prospective materials for future spintronic devices,

because they allow electrical control of the magnetism and the spin-polarization. One of the

promising candidates is Ga1−xMnxAs, because the GaAs is a well studied semiconductor and

has been used in technological applications for decades. When x is in the order of a few percent,

Ga1−xMnxAs can become a ferromagnetic DMS. The Mn atoms provide the unpaired spins as

well as holes that couple the spins.

The low solubility limit of transition metals in semiconductors makes it difficult to incorpo-

rate sufficient amounts without causing phase segregation; nevertheless ferromagnetic thin film

Ga1−xMnxAs has been achieved via low temperature MBE [Ohn98]. However, the incorpora-

tion of sufficient Mn into GaAs nanowires remains problematic, due to the complex mechanism

employed during nanowire growth. Most reported attempts suffer from phase segregation of

MnAs.

Within the scope of this thesis, ion implantation was investigated as a possibility for hyper-

thermal Mn doping of pre-grown GaAs nanowires beyond the solubility limit. As ion beam

implantation induces a large amount of damage in the material, annealing is required to remove

the damage. Two approaches were studied: First, post-implantation annealing in vacuum or

arsine atmosphere and second, implantation at elevated temperatures in order to facilitate

in-situ annealing.

In the first approach, the nanowires were to a large extent amorphized during implantation.

A high amorphization threshold of 5 to 7 DPA was found, which can be attributed to the

enhancement of dynamic annealing in nanowires as compared to bulk. Subsequent annealing in

vacuum up to 400 ◦C leads to recrystallization but either to polycrystalline GaAs or to heavily

twinned NWs. At higher temperatures, decomposition was observed. Annealing in arsine

atmosphere could not solve the problems: the NWs became heavily twinned or polycrystalline

at 350 ◦C. At higher temperatures, unwanted side growth of GaAs bumps occurred.

The second approach using in-situ annealing showed promising results: At implantation tem-

peratures above about 150 ◦C, the crystal structure of the GaAs nanowires was preserved

during implantation. The dynamic annealing, which is already enhanced due to the confined

geometry of the nanowire, is further enhanced by the higher base temperature. Highly Mn

doped Ga1−xMnxAs nanowires with x ≈ 5 − 6% with high crystallinity were obtained at an

implantation temperature of 250 ◦C. These nanowires were contacted and their electrical and

80



Chapter 5: Manganese Doping of GaAs Nanowires

magnetotransport properties were investigated. The electrical measurements showed that the

implantation decreased the room temperature resistance by about 5 orders of magnitude from

about 200 GΩ to 1.2 MΩ. The temperature-dependent resistance reveals an activation energy

of 70 meV, which points to a Mn impurity band rather than isolated impurities. Nevertheless,

the estimated hole concentration (≈ 1017/cm3) is far lower than expected from the Mn doping

concentration, possibly due to depletion by Fermi-level pinning at the NW surface and due to

compensation by donors (interstitial Mn and AsGa antisites). The low carrier concentration

inhibits ferromagnetic ordering to occur in the nanowires.

At low temperatures (30K and 1.6K), a negative magnetoresistance (MR) is observed, inde-

pendent of the direction of the external magnetic field. This could be caused by reduced

spin-disorder scattering and suppression of Anderson localization. No traces of ferromagnetism

are found in the MR curves. Nevertheless, the MR behavior indicates that the implanted Mn

is mainly diluted in the GaAs matrix as desired and does not segregate in MnAs clusters.

Although no ferromagnetic DMS nanowires of Mn-doped GaAs were achieved, the results ob-

tained here pave the way for further attempts, as the possible range for implantation parameters

and the structural impact of the implantation are identified. In future experiments, a higher

activation level of Mn impurities might be reached by optimizing the implantation conditions;

temperatures slightly above 250 ◦C might be beneficial. Furthermore, mild post-implantation

annealing (below the destructive temperatures of 500 ◦C for vacuum and 650 ◦C for arsine)

could reduce the number of donor-type defects, though the likely segregation of MnAs has to

be taken into account above 300 ◦C.

At the moment it is unknown how the implanted Mn ions are incorporated exactly in the GaAs

matrix of the nanowire and what fraction of Mn is actually placed on the Ga sites. More

information on this can be extracted from photoluminescence (PL) spectroscopy, which should

reveal the various impurity types by their energy levels within the band gap. Much lower

doping levels are required for PL, because the crystal should have as little damage as possible

and because impurities are more easily identified when isolated. At the moment, low dose ion

implantations of Mn in GaAs/AlGaAs core/shell nanowires are under way. The AlGaAs shell

is necessary to passivate the GaAs surface, which otherwise quenches most of the PL [Dem10].

More detailed knowledge on the Mn incorporation will allow to improve the activation of Mn

acceptors and to increase the hole concentration, which will be a further step on the path to

ferromagnetic DMS GaAs nanowires.
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Summary and Conclusion

Since it is difficult to dope self-assembled nanowires during growth owing to the complex growth

mechanisms, hyperthermal post-growth doping is required to adjust the properties of semicon-

ductor nanowires. This doping can be achieved by ion beam implantation. Ion beam implan-

tation has been a standard tool for doping of flat or bulk semiconductor materials for decades,

but ion beam doping of nanostructured materials has only been studied more recently. New

effects occur and new problems arise when implanting ions into nanostructured materials as

compared to their bulk counterparts.

This thesis reports on how the ions interact with nanostructures as compared to bulk, how the

ion beam influences the structure and morphology of the nanowires, how ion beam induced

damage in nanowires can be minimized or annealed and additionally how the ion beam implan-

tation into nanostructures can be simulated accurately. The thesis is divided into three parts,

addressing the issues raised above.

For the simulation of ion beam implantation into nanostructures, the new Monte Carlo (MC)

code iradina, based on the binary collision approximation (BCA), was developed. It works in

principle similar to other MC codes like TRIM [Zie85], but in contrast, it allows a flexible defi-

nition of three-dimensional target geometries and can thus accurately represent nanostructured

targets. Furthermore, several fast routines from the open source computer code corteo [Sch08]

are adapted, accounting for considerable savings in computation time. The basic correct func-

tionality of the code is demonstrated by comparisons of implantation profiles calculated with

iradina and TRIM. The profiles of implanted ions as well as ion beam induced damage are

mostly in good agreement for light as well as heavy ions in the investigated energy range from

10 to 1000 keV.

The calculation of sputter yields is an interesting application of iradina, because sputter yields
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of nanostructures can differ strongly from bulk values. The influence of the rectangular grid

used in iradina on the sputter yield was investigated and shown to be a problem for large cell

sizes. Therefore, an analytical description of simple nanostructures (spheres and cylinders)

was implemented in iradina. The sputtering of Au nanoparticles was investigated and the size

dependence of the sputter yield was compared to reported values from literature. There was

reasonable agreement with molecular dynamic simulations, but some differences between irad-

ina results and semi-analytical models occurred. In this context, it was illustrated why it is not

possible to simply use bulk simulations and “cut them off” at the nanostructure surface.

Comparison of bulk sputter yields showed reasonable agreement between iradina and TRI-

DYN [Möl88]. Larger differences occurred to results from TRIM, but the reason could not

be clarified, because it is not known how exactly the TRIM calculations work. Currently, the

target in iradina is static and no dynamic variation of composition or relaxation of densities

can be simulated.

The impact of ion beam irradiation on the structure and morphology of semiconductor nano-

wires was investigated in the context of ion beam induced bending and alignment of GaAs and

ZnO nanowires. Nanowires are observed to bend toward or away from the ion beam depending

on the ion energy. For both materials, it was shown that the nanowires can roughly be aligned

along the incident ion beam direction, which points out another application of ion beams be-

sides doping: since homogeneous ion beam irradiation of wafer-scaled targets is possible, this

method may be used to manipulate huge numbers of nanowires in parallel. For example, [111]-

oriented nanowires grown with an inclined angle on (100)-oriented substrates, could be erected

by ion irradiation to obtain perpendicular nanowires.

In order to study the underlying mechanisms at work during the bending process, ensembles

of nanowires were irradiated with different energies in steps of increasing fluence and their

curvatures were measured in between. It was observed that low energy irradiation, where the

ions only penetrate a small fraction of the nanowire, leads to bending away from the beam,

and high energy irradiation, where the ions are implanted deep into the nanowire, leads to

bending toward the ion beam. To obtain a more detailed understanding, single nanowires were

irradiated with focused ion beams and the curvatures were studied with in-situ SEM. However,

the limited ion energy restricted the in-situ studies to the low-energy case.

The distribution of ion beam induced defects could be identified as the key mechanism for the

bending of the nanowires. Defect distributions were obtained from iradina simulations and the
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bending in both directions could be explained by inhomogeneous distributions of vacancies and

interstitials. A simplified linear elastic model of a nanowire was introduced in an attempt to

calculate the bending dynamics of a nanowire under ion irradiation. The model is fed with

defect distributions obtained from iradina simulations. It turned out that it is problematic to

convert the damage distribution to stress induced in the nanowire, because the formation vol-

umes of single defects are not well known. Values from theoretical calculations reported in the

literature were used; but these values are partly uncertain and in some cases strongly depend

on the charge state of the defects, which are uncertain. For the case of ZnO, the calculations

within the linear elastic model could reproduce each experimentally observed case of bending

individually, but it was not possible to find common parameters to consistently explain all

bending results. For the GaAs nanowires, the experimental results could be reproduced only

by ignoring the nanowire surface layer, which points out the limited applicability of a static

simulation code. In conclusion, it must be said that the proposed linear elastic bending model

contains too many approximations and uncertainties to reliably predict the exact bending dy-

namics of nanowires for arbitrary irradiation parameters.

The crystalline structure of bent ZnO nanowires was studied in detail. The nanowires remain

crystalline during irradiation and the c-axis remains parallel to the local nanowire axis and

thus changes gradually. The gradual change in crystal axis is achieved by dislocations, which

are shown to stabilize the bent state of the nanowire, even against annealing up to 800 ◦C.

This observation demonstrates that the ion beam causes permanent plastic deformation of the

nanowires, in contrast to mechanical bending experiments where nanowires are bent elastically

by external forces and permanent bending is difficult to achieve because huge elasticities have

to be overcome first.

It was shown that the bending of ZnO nanowires is significantly reduced when heating the

samples to 800 ◦C during irradiation. The reason is probably the increased defect mobility at

higher temperatures, which can balance the inhomogeneous distribution of defects. This is an

important result for doping of nanowires when bending is not desired.

Ion beam implantation of Mn into GaAs nanowires was investigated as a possible means to

create highly Mn doped GaAs nanowires for possible spintronic applications. Highly Mn doped

GaAs can be a diluted magnetic semiconductor, where the Mn provides the unpaired spins

as well as the charge carriers to couple the spins. Thin films of highly Mn doped GaAs have

been reported to exhibit ferromagnetism [Ohn96]. But when trying to create highly Mn doped
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GaAs nanowires, it turns out that sufficient doping cannot be achieved during growth, because

Mn has a low solubility in GaAs and segregation of MnAs occurs at the temperatures required

for nanowire growth. Therefore, the Mn must be incorporated after growth of the NWs, for

example by ion implantation.

In a first approach, GaAs nanowires were implanted at room temperature and subsequently an-

nealed. During implantation, the nanowires were completely amorphized and the annealing up

to 400 ◦C always lead to polycrystalline nanowires of poor quality. Annealing at higher temper-

ature was not successful, because the nanowires either decomposed (in vacuum) or unwanted

additional regrowth of GaAs occurred (in AsH3 atmosphere). Thus, in a second approach,

the nanowires were heated during irradiation to temperatures ranging from 100 ◦C to 400 ◦C.

Above about 150 ◦C, the higher base temperature further enhances the dynamic annealing to

such extent that most defects are annealed immediately and the nanowires always remain crys-

talline. This way it is possible to achieve highly Mn doped, highly crystalline GaAs nanowires.

A suitable implantation temperature was determined to about 250 ◦C, considering the risk of

phase segregation above. Energy dispersive X-ray spectroscopy showed that the Mn is indeed

incorporated into the NWs and does not diffuse out. Furthermore, the measured Mn content is

in good agreement with simulation results from iradina, while TRIM results overestimate the

concentration, which demonstrates the importance of taking into account the correct target

geometry during simulation.

The implanted nanowires were characterized electrically and the influence of a magnetic field on

the electrical properties was investigated. The conductivity was greatly enhanced by Mn dop-

ing, as Mn is an acceptor when placed on the Ga site. However, the carrier concentration was

probably too low to mediate ferromagnetism and the nanowires were paramagnetic. Probably,

the acceptors were to some extent compensated by donors (Mn interstitials and AsGa antisites)

and Fermi level pinning at the surface may have caused depletion. Even though ferromagnetic

GaAs DMS nanowires have not been achieved yet, the results from ion implantation at ele-

vated temperatures are an important step toward creating nanowire-based spintronic devices.

The method may also work for other material systems beside Mn doped GaAs. A better un-

derstanding about the exact Mn incorporation should be the focus of future experiments, for

instance by PL spectroscopy, in order to find ways to increase the acceptor activation.

With the increasing use and applications of nanostructured materials, the necessity to be able

to control and manipulate the nanostructures increases. Ion beam implantation / irradiation
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is shown as one important method to address this requirement. Apart from doping of semi-

conductor nanowires, this thesis also illustrates the possibility of using ion beams to control

the morphology of nanowires. The reaction of nanostructures to ion irradiation can be quite

different from bulk materials, and these differences must be well understood, in order to make

use of ion beams for control and manipulation of nanostructures. The results of this thesis

demonstrate some of these differences ranging from doping concentrations, defect production

and sputtering to different thermal stability and annealing conditions.

The bending experiments as well as the Mn doping showed that it can be very useful to perform

ion beam doping of nanowires at elevated temperatures, because the lower thermal stability of

the nanowires make “repairing” of structural and morphological changes by post-implantation

annealing difficult. Regarding simulations, all the examples presented in this thesis exhibit the

necessity to accurately represent the target structure during the simulations in order to obtain

reliable results concerning doping profiles, damage profiles and sputter yields. This necessity

emphasizes the importance of the newly developed simulation code iradina. For the future, it

would certainly be interesting to extend iradina to allow dynamic changes of target structure

during simulations, in order to obtain a better understanding of the dynamic processes the

nanostructures undergo during irradiation. Morphological modifications like bending could be

calculated more accurately, and changes in doping profiles caused by thinning of nanostructures

due to sputtering could be taken into account. Furthermore, dynamic composition variations

would open the door to study additional effects like ion beam mixing in nanostructures, which

can be important for example when doping nanowires embedded in other materials or nanowires

with a core-shell structure.

86



Bibliography

[Aga05] R. Agarwal, C. J. Barrelet, and C. M. Lieber.
optical cavities. Nano Letters 5, 917 (2005).

Lasing in single cadmium sulfide nanowire

[Aga06] R. Agarwal and C. Lieber.
Physics A 85, 209 (2006).

Semiconductor nanowires: optics and optoelectronics. Applied

[Agr08] R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa. Elasticity Size Effects in ZnO
Nanowires - A Combined Experimental-Computational Approach. Nano Letters 8, 3668
(2008).

[Bai88] M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau, F. Petroff, P. Eitenne, G. Creuzet,
A. Friederich, and J. Chazelas. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Su-
perlattices. Physical Review Letters 61, 2472 (1988).

[Ber97] B. Ber, V. Kharlamov, Y. Kudrjavtsev, A. Merkulov, Y. Trushin, and E. Zhurkin. Computer
simulation of ion sputtering of polyatomic multilayered targets. Nuclear Instruments and
Methods in Physics Research B 127/128, 286 (1997).

[Bet09] M. Bettge, S. MacLaren, S. Burdin, J.-G. Wen, D. Abraham, I. Petrov, and E. Sammann.
Low-temperature vapour-liquid-solid (VLS) growth of vertically aligned silicon oxide nano-
wires using concurrent ion bombardment. Nanotechnology 20, 115607 (2009).

[Bie80] J. P. Biersack and L. G. Haggmark. A monte carlo computer program for the transport of
energetic ions in amorphous targets. Nuclear Instruments and Methods 174, 257 (1980).

[Bin89] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn. Enhanced magnetoresistance in
layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B
39, 4828 (1989).

[Boe96] J. D. Boeck, R. Oesterholt, H. Bender, A. V. Esch, C. Bruynseraede, C. V. Hoof, and
G. Borghs. Controlled formation of nanoscale MnAs magnetic clusters in GaAs. Journal of
Magnetism and Magnetic Materials 156, 148 (1996). Proceedings of the Second International
Symposium on Metallic Multilayers.

[Bor04] M. Borgström, K. Deppert, L. Samuelson, and W. Seifert. Size- and shape-controlled GaAs
nano-whiskers grown by MOVPE: a growth study. Journal of Crystal Growth 260, 18 (2004).

[Bor06] C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, and C. Ronning. Catalyst-Nanostructure
Interaction in the Growth of 1-D ZnO Nanostructures. Journal of Physical Chemistry B
110, 1656 (2006).

[Bor09] C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F.-J. Tegude,
D. Stichtenoth, D. Schwen, and C. Ronning. Alignment of Semiconductor Nanowires Using
Ion Beams. Small 5, 2576 (2009).

[Bor11a] C. Borschel, M. E. Messing, M. T. Borgström, W. Paschoal, J. Wallentin, S. Kumar, K. Mer-
genthaler, K. Deppert, C. M. Canali, H. Pettersson, L. Samuelson, and C. Ronning. A New

87



BIBLIOGRAPHY

Route toward Semiconductor Nanospintronics: Highly Mn-doped GaAs Nanowires Realized
by Ion-Implantation under Dynamic Annealing Conditions. Nano Letters 11, 3935 (2011).

[Bor11b] C. Borschel and C. Ronning. Ion Beam Irradiation of Nanostructures - A New 3D Monte
Carlo Simulation Code. Nuclear Instruments and Methods in Physics Research B 269, 2133
(2011).

[Bor11c] C. Borschel, S. Spindler, D. Lerose, A. Bochmann, S. H. Christiansen, S. Nietzsche, M. Oer-
tel, and C. Ronning. Permanent bending and alignment of ZnO nanowires. Nanotechnology
22, 185307 (2011).

[Box01] W. Boxleitner and G. Hobler. FIBSIM - dynamic Monte Carlo simulation of compositional
and topography changes caused by focused ion beam milling. Nuclear Instruments and
Methods in Physics Research B 180, 125 (2001).

[Bro97] R. A. Brown and J. S. Williams. Critical temperature and ion flux dependence of amor-
phization in GaAs. Journal of Applied Physics 81, 7681 (1997).

[Bur99] A. Burenkov, K. Tietzel, A. Hossinger, J. Lorenz, H. Ryssel, and S. Selberherr. A compu-
tationally efficient method for three-dimensional simulation of ion implantation. In Intern.
Conf. on Simulation of Semiconductor Processes and Devices, 1999, 6-8 Sept., pp. 55–58,
doi:10.1109/SISPAD.1999.799258. IEEE (1999). ISBN 4-930813-98-0.

[Bür09] D. Bürger, S. Zhou, J. Grenzer, H. Reuther, W. Anwand, V. Gottschalch, M. Helm, and
H. Schmidt. The influence of annealing on manganese implanted GaAs films. Nuclear
Instruments and Methods in Physics Research B 267, 1626 (2009). Proceedings of the 16th
International Conference on Ion Beam Modification of Materials.

[Cao08] B. Q. Cao, M. Lorenz, M. Brandt, H. von Wenckstern, J. Lenzner, G. Biehne, and M. Grund-
mann. p-type conducting ZnO:P microwires prepared by direct carbothermal growth. physica
status solidi (RRL) - Rapid Research Letters 2, 37 (2008).

[Car08] P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson. Con-
trolled polytypic and twin-plane superlattices in III-V nanowires. Nature Nanotechnology 4,
50 (2008).

[Che06] C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan. Size Dependence of Young’s Modulus
in ZnO Nanowires. Physical Review Letters 96, 075505 (2006).

[Che07a] C. Q. Chen and J. Zhu. Bending strength and flexibility of ZnO nanowires. Applied Physics
Letters 90, 043105 (2007).

[Che07b] L. Chen, T. Niebling, W. Heimbrodt, D. Stichtenoth, C. Ronning, and P. J. Klar. Dimen-
sional dependence of the dynamics of the Mn 3d5 luminescence in (Zn, Mn)S nanowires and
nanobelts. Physical Review B (2007).

[Che09] C. Chen, H. Niu, H. Hsieh, C. Cheng, D. Yan, C. Chi, J. Kai, and S. Wu. Fabrication of
ferromagnetic (Ga,Mn)As by ion irradiation. Journal of Magnetism and Magnetic Materials
321, 1130 (2009).

[Che11] R. Chen, Q.-L. Ye, T. C. He, T. Wu, and H. D. Sun. Uniaxial tensile strain and exciton-
phonon coupling in bent ZnO nanowires. Applied Physics Letters 98, 241916 (2011).

[Col08] A. Colli, A. Fasoli, C. Ronning, S. Pisana, S. Piscanec, and A. C. Ferrari. Ion beam doping
of silicon nanowires. Nano Letters 8, 2188 (2008).

[CT10] D. Cohen-Tanugi, A. Akey, and N. Yao. Ultralow Superharmonic Resonance for Functional
Nanowires. Nano Letters 10, 852 (2010).

88



BIBLIOGRAPHY

[Cui03a] Y. Cui, X. Duan, Y. Huang, and C. M. Lieber. Nanowires as Building Blocks for Nanoscale
Science and Technology. In Z. L. Wang, editor, Nanowires and Nanobelts, Vol 1: Metal and
Semiconductor Nanowires, chapter 1. Kluwer Academic Publishers, Norwell, MA (2003).

[Cui03b] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber. High Performance Silicon
Nanowire Field Effect Transistors. Nano Letters 3, 149 (2003).

[Dat90] S. Datta and B. Das. Electronic analog of the electro-optic modulator. Applied Physics
Letters 56, 665 (1990).

[Dem10] O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. i Morral. Impact of surfaces on
the optical properties of GaAs nanowires. Applied Physics Letters 97, 201907 (2010).

[DeS82] D. DeSimone, C. E. C. Wood, and C. A. Evans. Manganese incorporation behavior in
molecular beam epitaxial gallium arsenide. Journal of Applied Physics 53, 4938 (1982).

[Dha03] S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, Y. L. Wang, L. C. Chen, C. W.
Hsu, H. M. Lin, and C. C. Chen. Enhanced dynamic annealing in Ga+ ion-implanted GaN
nanowires. Applied Physics Letters 82, 451 (2003).

[Dha07] S. Dhara. Formation, Dynamics, and Characterization of Nanostructures by Ion Beam
Irradiation. Critical Reviews in Solid State and Materials Sciences 32, 1 (2007).

[Die11] C. P. Dietrich, M. Lange, F. J. Klüpfel, H. von Wenckstern, R. Schmidt-Grund, and
M. Grundmann. Strain distribution in bent ZnO microwires. Applied Physics Letters 98,
031105 (2011).

[DK11] P. Das Kanungo, R. Koegler, N. Zakharov, P. Werner, R. Scholz, and W. Skorupa. Character-
ization of Structural Changes Associated with Doping Silicon Nanowires by Ion Implantation.
Crystal Growth and Design 11, 2690 (2011).

[Dlu09] P. Dluzewski, J. Sadowski, S. Kret, J. Dabrowski, and K. Sobczak. TEM determination of
directions of (Ga,Mn)As nanowires grown by MBE on GaAs(001) substrates. Journal of
Microscopy 236, 115 (2009).

[Eck91] W. Eckstein. Computer Simulation of Ion-Solid Interactions. Springer Series in Materials
Science. Springer, Berlin, Heidelberg, New York (1991). ISBN 3-540-19057-0.

[Ell08] R. Elliman, A. Wilkinson, T. Kim, P. Sekhar, and S. Bhansali. Ion beam synthesis and
doping of photonic nanostructures. Nuclear Instruments and Methods in Physics Research
B 266, 1362 (2008).

[Erh05] P. Erhart, A. Klein, and K. Albe. First-principles study of the structure and stability of
oxygen defects in zinc oxide. Physical Review B 72, 085213 (2005).

[Erh06] P. Erhart, K. Albe, and A. Klein. First-principles study of intrinsic point defects in ZnO:
Role of band structure, volume relaxation, and finite-size effects. Physical Review B 73,
205203 (2006).

[Esc97] A. V. Esch, J. D. Boeck, L. V. Bockstal, R. Bogaerts, F. Herlach, and G. Borghs. Mag-
netotransport and magnetization properties of p-type Ga1−xMnxAs, a new III - V diluted
magnetic semiconductor. Journal of Physics: Condensed Matter 9, L361 (1997).

[Fey64] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics. Addison-
Wesley, Reading, Massachusetts (1964). ISBN 0-201-02117-X.

[Flo11] F. Flory, L. Escoubas, and G. Berginc. Optical properties of nanostructured materials: a
review. Journal of Nanophotonics 5, 052502 (2011).

89



BIBLIOGRAPHY

[Ful08] B. Fultz and J. M. Howe. Transmission Electron Microscopy and Diffractometry of Materials.
Springer, Berlin, Heidelberg (2008).

[Fur88] J. K. Furdyna. Diluted magnetic semiconductors. Journal of Applied Physics 64, R29 (1988).

[Gar09] D. J. Gargas, M. E. Toimil-Molares, and P. Yang. Imaging Single ZnO Vertical Nanowire
Laser Cavities Using UV-laser Scanning Confocal Microscopy. Journal of the American
Chemical Society 131, 2125 (2009).

[Geb08a] S. Geburt.
(2008).

Lanthanoid-dotierte ZnO-Nanodrähte. Diplomarbeit, Universität Göttingen

[Geb08b] S. Geburt, D. Stichtenoth, S. Müller, W. Dewald, C. Ronning, J. Wang, Y. Jiao, Y. Y. Rao,
S. K. Hark, and Q. Li. Rare Earth Doped Zinc Oxide Nanowires. Journal of Nanoscience
and Nanotechnology 8, 244 (2008).

[Gna10] M. Gnauck. Elektrische Kontaktierung von ZnO-Nanostrukturen und deren Verwendung für
sensorische Zwecke. Diplomarbeit, Universität Jena (2010).

[Got95] S. Gottwald, H. Kästner, and H. Rudolph, editors. Meyers kleine Enzyklopädie Mathematik.
Meyers Lexikonverlag, Mannheim (1995). ISBN 3-411-07771-9.

[Gui07] G. Guisbiers and S. Pereira. Theoretical investigation of size and shape effects on the melting
temperature of ZnO nanostructures. Nanotechnology 18, 435710 (2007).

[Gut09] C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F. J. Tegude. Controllable p-
type doping of GaAs nanowires during vapor-liquid-solid growth. Journal of Applied Physics
105, 024305 (2009).

[Hab99] S. Habenicht, W. Bolse, K. P. Lieb, K. Reimann, and U. Geyer. Nanometer ripple formation
and self-affine roughening of ion-beam-eroded graphite surfaces. Physical Review B 60,
R2200 (1999).

[Hai07] P. N. Hai, K. Takahashi, M. Yokoyama, S. Ohya, and M. Tanaka. Magnetic properties of
MnAs nanoclusters embedded in a GaAs semiconductor matrix. Journal of Magnetism and
Magnetic Materials 310, 1932 (2007). Proceedings of the 17th International Conference on
Magnetism, The International Conference on Magnetism.

[Hai09] P. N. Hai, S. Ohya, M. Tanaka, S. E. Barnes, and S. Maekawa. Electromotive force and huge
magnetoresistance in magnetic tunnel junctions. Nature 458, 489 (2009).

[Hau84] M. Hautala. Nuclear stopping in polycrystalline materials: Range distributions and Doppler-
shift attenuation analysis. Physical Review B 30, 5010 (1984).

[Hob89] G. Hobler and S. Selberherr. Monte Carlo simulation of ion implantation into two- and
three-dimensional structures. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems 8, 450 (1989).

[Hob95] G. Hobler. Monte carlo simulation of two-dimensional implanted dopant distributions at
mask edges. Nuclear Instruments and Methods in Physics Research B 96, 155 (1995).

[Hob11] G. Hobler and D. Kovac. Dynamic binary collision simulation of focused ion beam milling of
deep trenches. Nuclear Instruments and Methods in Physics Research B 269, 1609 (2011).

[Hoc10] A. I. Hochbaum and P. Yang. Semiconductor Nanowires for Energy Conversion. Chemical
Reviews 110, 527 (2010).

[Hof92] H. Hofsäss, S. Winter, S. G. Jahn, U. Wahl, and E. Recknagel. Emission channeling studies
in semiconductors. Nuclear Instruments and Methods in Physics Research B 63, 83 (1992).

90



BIBLIOGRAPHY

[Hof98] H. Hofsäss, H. Feldermann, R. Merk, M. Sebastian, and C. Ronning. Cylindrical spike model
for the formation of diamondlike thin films by ion deposition. Applied Physics A 66, 153
(1998).

[Hof06] S. Hoffmann, I. Utke, B. Moser, J. Michler, S. H. Christiansen, V. Schmidt, S. Senz,
P. Werner, U. Gösele, and C. Ballif. Measurement of the Bending Strength of Vapor-Liquid-
Solid Grown Silicon Nanowires. Nano Letters 6, 622 (2006).

[Hof09] S. Hoffmann, J. Bauer, C. Ronning, T. Stelzner, J. Michler, C. Ballif, V. Sivakov, and S. H.
Christiansen. Axial p-n Junctions Realized in Silicon Nanowires by Ion Implantation. Nano
Letters 9, 1341 (2009).

[Hoi11] S. Hoilijoki, E. Holmström, and K. Nordlund. Enhancement of irradiation-induced defect
production in Si nanowires. Journal of Applied Physics 110, 043540 (2011).

[Hua07] B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui. Characterization of Fabry-Perot
microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase
epitaxy. Applied Physics Letters 91, 131112 (2007).

[Ihn07] S.-G. Ihn, J.-I. Song, Y.-H. Kim, J. Y. Lee, and I.-H. Ahn. Growth of GaAs Nanowires on
Si Substrates Using a Molecular Beam Epitaxy. IEEE Transactions on Nanotechnology 6,
384 (2007).

[Ile75] M. Ilegems, R. Dingle, and L. W. R. Jr. Optical and electrical properties of Mn-doped GaAs
grown by molecular-beam epitaxy. Journal of Applied Physics 46, 3059 (1975).

[Ink04] B. J. Inkson, G. Dehm, and T. Wagner. Thermal stability of Ti and Pt nanowires manufac-
tured by Ga+ focused ion beam. Journal of Microscopy 214, 252 (2004).

[Iye99] Y. Iye, A. Oiwa, A. Endo, S. Katsumoto, F. Matsukura, A. Shen, H. Ohno, and H. Munekata.
Metal-insulator transition and magnetotransport in III-V compound diluted magnetic semi-
conductors. Materials Science and Engineering B 63, 88 (1999).

[Jär08] T. T. Järvi, J. A. Pakarinen, A. Kuronen, and K. Nordlund. Enhanced sputtering from
nanoparticles and thin films: Size effects. Europhysics Letters 82, 26002 (2008).

[Jeo07] H. C. Jeon, T. W. Kang, T. W. Kim, Y.-J. Yu, W. Jhe, and S. A. Song. Magnetic and
optical properties of (Ga1−xMnx)As diluted magnetic semiconductor quantum wires with
above room ferromagnetic transition temperature. Journal of Applied Physics 101, 023508
(2007).

[Joh03] J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally. Optical Cavity Effects in ZnO Nanowire
Lasers and Waveguides. Journal of Physical Chemistry B 107, 8816 (2003).

[Jun09] K. Jun, J. Joo, and J. M. Jacobson. Focused ion beam-assisted bending of silicon nanowires
for complex three dimensional structures. Journal of Vacuum Science and Technology B 27,
3043 (2009).

[Kan10] P. D. Kanungo, R. Kögler, P. Werner, U. Gösele, and W. Skorupa. A Novel Method to
Fabricate Silicon Nanowire p-n Junctions by a Combination of Ion Implantation and in-situ
Doping. Nanoscale Research Letters 5, 243 (2010).

[Kas79] J. Kasahara, M. Arai, and N. Watanabe. Capless anneal of ion-implanted GaAs in controlled
arsenic vapor. Journal of Applied Physics 50, 541 (1979).

[Kim01] F. Kim, S. Kwan, J. Akana, and P. Yang. Langmuir-Blodgett Nanorod Assembly. Journal
of the American Chemical Society 123, 4360 (2001).

91



BIBLIOGRAPHY

[Kim07] H.-B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagnolli. Full three-dimensional
simulation of focused ion beam micro/nanofabrication. Nanotechnology 18, 245303 (2007).

[Kim09] H. S. Kim, Y. J. Cho, K. J. Kong, C. H. Kim, G. B. Chung, J. Park, J.-Y. Kim, J. Yoon,
M.-H. Jung, Y. Jo, B. Kim, and J.-P. Ahn. Room-Temperature Ferromagnetic Ga1−xMnxAs
(x≤ 0.05) Nanowires: Dependence of Electronic Structures and Magnetic Properties on Mn
Content. Chemistry of Materials 21, 1137 (2009).

[Kli09] A. Klimmer, P. Ziemann, J. Biskupek, U. Kaiser, and M. Flesch. Size-dependent effect of
ion bombardment on Au nanoparticles on top of various substrates: Thermodynamically
dominated capillary forces versus sputtering. Physical Review B 79, 155427 (2009).

[Koh00] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle. First-principles study of native
point defects in ZnO. Physical Review B 61, 15019 (2000).

[Koz09] M. Kozlik. Synthese von Halbleiternanodrähten für die Photonik. Diplomarbeit, Universität
Jena (2009).

[Kra10] A. V. Krasheninnikov and K. Nordlund. Ion and electron irradiation-induced effects in
nanostructured materials. Journal of Applied Physics 107, 071301 (2010).

[Kuc03] S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, C. Evans, A. J. Nelson, and A. V. Hamza.
Ion-beam-produced structural defects in ZnO. Physical Review B 67, 094115 (2003).

[Kun10] D. Kunder, E. Baer, M. Sekowski, P. Pichler, and M. Rommel. Simulation of focused
ion beam etching by coupling a topography simulator and a Monte-Carlo sputtering yield
simulator. Microelectronic Engineering 87, 1597 (2010).

[L’E88] P. L’Ecuyer. Efficient and portable combined random number generators. Communications
of the ACM 31, 742 (1988).

[Lee95] H.-Y. Lee and H.-B. Chung. Three-dimensional Monte Carlo calculation of Ga+ ion pene-
tration in an a-Se75Ge25 thin film. Journal of Applied Physics 78, 5975 (1995).

[Li01] D. Li, G. Wang, Y. Chen, L. Lin, G. Shrivastav, S. Oak, A. Tasch, S. Banerjee, and
B. Obradovic. A computationally efficient simulator for three-dimensional Monte Carlo
simulation of ion implantation into complex structures. Nuclear Instruments and Methods
in Physics Research B 184, 500 (2001).

[Li07] H.-Y. Li, O. Wunnicke, M. T. Borgström, W. G. G. Immink, M. H. M. van Weert, M. A.
Verheijen, and E. P. A. M. Bakkers. Remote p-Doping of InAs Nanowires. Nano Letters 7,
1144 (2007).

[Loo99] D. C. Look, J. W. Hemsky, and J. R. Sizelove.
Physical Review Letters 82, 2552 (1999).

Residual Native Shallow Donor in ZnO.

[Mal07] M.-A. Malouin, F. El-Mellouhi, and N. Mousseau. Gallium self-interstitial relaxation in
GaAs: An ab initio characterization. Physical Review B 76, 045211 (2007).

[Man06] B. Mandl, J. Stangl, T. Mårtensson, A. Mikkelsen, J. Eriksson, L. S. Karlsson, G. Bauer,
L. Samuelson, and W. Seifert. Au-Free Epitaxial Growth of InAs Nanowires. Nano Letters
6, 1817 (2006).

[Mar06] F. Martelli, S. Rubini, M. Piccin, G. Bais, F. Jabeen, S. De Franceschi, V. Grillo, E. Carlino,
F. D’Acapito, F. Boscherini, S. Cabrini, M. Lazzarino, L. Businaro, F. Romanato, and
A. Franciosi. Manganese-Induced Growth of GaAs Nanowires. Nano Letters 6, 2130 (2006).

92



BIBLIOGRAPHY

[Mau86] A. Mauger and C. Godart. The magnetic, optical, and transport properties of representatives
of a class of magnetic semiconductors: The europium chalcogenides. Physics Reports 141,
51 (1986).

[Mic08] C. Michel, M. T. Elm, B. Goldlücke, S. D. Baranovskii, P. Thomas, W. Heimbrodt, and P. J.
Klar. Tailoring the magnetoresistance of MnAs/GaAs:Mn granular hybrid nanostructures.
Applied Physics Letters 92, 223119 (2008).

[Mik04] A. Mikkelsen, N. Sköld, L. Ouattara, M. Borgström, J. N. Andersen, L. Samuelson,
W. Seifert, and E. Lundgren. Direct imaging of the atomic structure inside a nanowire
by scanning tunnelling microscopy. Nature Materials 3, 519 (2004).

[Mil10] S. Milz. Konzepte zur Realisierung von einfachen Nanodrahtbauelementen für die En-
ergiegewinnung. Diplomarbeit, Universität Jena (2010).

[Miy04] K. Miyamoto, M. Sano, H. Kato, and T. Yao. High-electron-mobility ZnO epilayers grown
by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth 265, 34 (2004).

[Möl84] W. Möller and W. Eckstein. TRIDYN - a trim simulation code including dynamic compo-
sition changes. Nuclear Instruments and Methods in Physics Research B 2, 814 (1984).

[Möl88] W. Möller, W. Eckstein, and J. P. Biersack. Tridyn binary collision simulation of atomic
collisions - and dynamic composition changes in solids. Computer Physics Communications
51, 335 (1988).

[Möl10] W. Möller and M. Posselt. TRIDYN_FZR User Manual. Technical Report FZR-317,
Helmholtz-Zentrum Dresden-Rossendorf (2010).

[Möl11] W. Möller. Personal communication (2011).

[Mor03] M. Moreno, B. Jenichen, V. Kaganer, W. Braun, A. Trampert, L. Däweritz, and K. Ploog.
MnAs nanoclusters embedded in GaAs studied by x-ray diffuse and coherent scattering.
Physical Review B 67, 235206 (2003).

[Mül05] S. Müller. Wachstum von ZnO Nanodrähten und deren Dotierung durch Ionenstrahlen.
Diplomarbeit, Universität Göttingen (2005).

[Nag75] H. M. Naguib and R. Kelly. Criteria for bombardment-induced structural changes in non-
metallic solids. Radiation Effects 25, 1 (1975).

[Naw10] W. Nawrocki. Electrical and thermal properties of nanowires in quantum regime. Reviews
on Advanced Materials Science 23, 107 (2010).

[Nov08] V. Novák, K. Olejník, J. Wunderlich, M. Cukr, K. Výborný, A. W. Rushforth, K. W. Ed-
monds, R. P. Campion, B. L. Gallagher, J. Sinova, and T. Jungwirth. Curie Point Singularity
in the Temperature Derivative of Resistivity in (Ga,Mn)As. Physical Review Letters 101,
077201 (2008).

[Obr98] B. J. Obradovic, G. Balamurugan, G. Wang, Y. Chen, and A. F. Tasch. Monte Carlo
simulation of ion implantation into topographically complex structures. Electron Devices
Meeting, 1998. IEDM ’98 Technical Digest., International, pp. 513–516 (1998).

[Ohn96] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye. (Ga,Mn)As:
A new diluted magnetic semiconductor based on GaAs. Applied Physics Letters 69, 363
(1996).

[Ohn98] H. Ohno. Making Nonmagnetic Semiconductors Ferromagnetic. Science 281, 951 (1998).

93



BIBLIOGRAPHY

[Ohn99] H. Ohno. Properties of ferromagnetic III-V semiconductors. Journal of Magnetism and
Magnetic Materials 200, 110 (1999).

[Oul08] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang. A hybrid plasmonic
waveguide for subwavelength confinement and long-range propagation. Nature Photonics 2,
496 (2008).

[Par02] Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F.
Ambrose, A. Wilson, G. Spanos, and B. T. Jonker. A Group-IV Ferromagnetic Semiconduc-
tor: MnxGe1−x. Science 295, 651 (2002).

[Pec10] E. F. Pecora, A. Irrera, and F. Priolo. Ion beam-induced bending of silicon nanowires. Physica
E: Low-dimensional Systems and Nanostructures In Press, doi: 10.1016/j.physe.2010.11.001
(2010).

[Pec11] E. Pecora, A. Irrera, S. Boninelli, L. Romano, C. Spinella, and F. Priolo. Nanoscale amor-
phization, bending and recrystallization in silicon nanowires. Applied Physics A 102, 13
(2011).

[Per09] D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and J. L.
Lauhon. Direct measurement of dopant distribution in an individual vapour-liquid-solid
nanowire. Nature Nanotechnology 4, 315 (2009).

[Pet09] C. H. Peters, A. R. Guichard, A. C. Hryciw, M. L. Brongersma, and M. D. McGehee. Energy
transfer in nanowire solar cells with photon-harvesting shells. Journal of Applied Physics
105, 124509 (2009).

[Pos86] M. Posselt. A Short Overview on Monte Carlo Simulations of Ion Beam Penetration into
Amorphous Solids. Physica Status Solidi A 94, 337 (1986).

[Rei98] L. Reimer. Scanning Electron Microscopy. Springer, Berlin, Heidelberg, New York, Tokyo
(1998). ISBN 3-540-63976-4.

[Ria08] M. Riaz, A. Fulati, Q. X. Zhao, O. Nur, M. Willander, and P. Klason. Buckling and mechan-
ical instability of ZnO nanorods grown on different substrates under uniaxial compression.
Nanotechnology 19, 415708 (2008).

[Rom09] L. Romano, N. G. Rudawski, M. R. Holzworth, K. S. Jones, S. G. Choi, and S. T. Picraux.
Nanoscale manipulation of Ge nanowires by ion irradiation. Journal of Applied Physics 106,
114316 (2009).

[Ron10a] C. Ronning, C. Borschel, S. Geburt, and R. Niepelt. Ion beam doping of semiconductor
nanowires. Materials Science and Engineering R R 70, 30 (2010).

[Ron10b] C. Ronning, C. Borschel, S. Geburt, R. Niepelt, S. Müller, D. Stichtenoth, J.-P. Richters,
A. Dev, T. Voss, L. Chen, W. Heimbrodt, C. Gutsche, and W. Prost. Tailoring the properties
of semiconductor nanowires using ion beams. Physica status solidi B 247, 2329 (2010).

[Rud09] A. Rudolph, M. Soda, M. Kiessling, T. Wojtowicz, D. Schuh, W. Wegscheider, J. Zweck,
C. Back, and E. Reiger. Ferromagnetic GaAs/GaMnAs Core-Shell Nanowires Grown by
Molecular Beam Epitaxy. Nano Letters 9, 3860 (2009).

[Sad02] J. Sadowski, K. Deppert, V. Kanski, J. Ohlsson, A. Persson, and L. Samuelson. Migration
enhanced epitaxial growth of (In,Ga,Mn)As magnetic semiconductor nanowhiskers. Proc. of
the 7th International Conference on Nanometer-scale Science and Technology, June 24th–
28th. Malmö, Sweden (2002).

94



BIBLIOGRAPHY

[Sad07] J. Sadowski, P. Dluzewski, S. Kret, E. Janik, E. Lusakowska, J. Kanski, A. Presz, F. Terki,
S. Charar, and D. Tang. GaAs:Mn Nanowires Grown by Molecular Beam Epitaxy of
(Ga,Mn)As at MnAs Segregation Conditions. Nano Letters 7, 2724 (2007).

[Sca03] M. A. Scarpulla, O. D. Dubon, K. M. Yu, O. Monteiro, M. R. Pillai, M. J. Aziz, and
M. C. Ridgway. Ferromagnetic Ga1−xMnxAs produced by ion implantation and pulsed-laser
melting. Applied Physics Letters 82, 1251 (2003).

[Sca08] M. A. Scarpulla, R. Farshchi, P. R. Stone, R. V. Chopdekar, K. M. Yu, Y. Suzuki, and
O. D. Dubon. Electrical transport and ferromagnetism in Ga1−xMnAs synthesized by ion
implantation and pulsed-laser melting. Journal of Applied Physics 103, 073913 (2008).

[Sch07] F. Schiettekatte. Some notes on Corteo, available from
www.lps.umontreal.ca/~schiette/index.php?n=Recherche.Corteo (2007).

[Sch08] F. Schiettekatte. Fast Monte Carlo for ion beam analysis simulations. Nuclear Instruments
and Methods in Physics Research B 266, 1880 (2008).

[Sch09a] P. A. Schultz and O. A. von Lilienfeld. Simple intrinsic defects in gallium arsenide. Modelling
and Simulation in Materials Science and Engineering 17, 084007 (2009).

[Sch09b] D. Schwen, M. Huang, P. Bellon, and R. S. Averback. Molecular dynamics simulation of
intragranular Xe bubble re-solution in UO2. Journal of Nuclear Materials 392, 35 (2009).

[Sch10] F. Schiettekatte. Personal communication (2010).

[Sci94] Scientific Group Thermodata Europe. SGTE Alloy Database,
http://www.sgte.org/fact/phase_diagram.php?file=As-Ga.jpg&dir=SGTE (1994).

[Seo95] H. Seong and L. J. Lewis. Tight-binding molecular-dynamics study of point defects in GaAs.
Physical Review B 52, 5675 (1995).

[Seo04] S. S. A. Seo, T. W. Noh, Y.-W. Kim, J. D. Lim, Y. D. Park, Y. S. Kim, Z. G. Khim, H. C.
Jeon, T. W. Kang, and S. J. Pearton. Nondestructive spectroscopic method to detect MnAs
metallic nanocrystals in annealed GaAs:Mn. Journal of Applied Physics 95, 8172 (2004).

[She10] Y. Shen, J.-I. Hong, S. Xu, S. Lin, H. Fang, S. Zhang, Y. Ding, R. L. Snyder, and Z. L.
Wang. A General Approach for Fabricating Arc-Shaped Composite Nanowire Arrays by
Pulsed Laser Deposition. Advanced Functional Materials 20, 703 (2010).

[Skö07] N. Sköld and C. Ronning. Personal communication (2007).

[Slu07] T. Slupinski, J. Caban, and K. Moskalik. Hole Transport in Impurity Band and Valence
Bands Studied in Moderately Doped GaAs:Mn Single Crystal. Acta Physica Polonica A
112, 325 (2007).

[Smi00] P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and
T. E. Mallouk. Electric-field assisted assembly and alignment of metallic nanowires. Applied
Physics Letters 77, 1399 (2000).

[Sno00] E. Snoeks, A. van Blaaderen, T. van Dillen, C. M. van Kats, M. L. Brongersma, and A. Pol-
man. Colloidal Ellipsoids with Continuously Variable Shape. Advanced Matererials 12, 1511
(2000).

[Spi11] S. Spindler. Morphologieänderungen und Ausrichtung von Halbleiternanodrähten durch Io-
nenbeschuss. Diplomarbeit, Universität Jena (2011).

95



BIBLIOGRAPHY

[Sta01] T. E. M. Staab, R. M. Nieminen, J. Gebauer, R. Krause-Rehberg, M. Luysberg, M. Haugk,
and T. Frauenheim. Do Arsenic Interstitials Really Exist in As-Rich GaAs? Physical Review
Letters 87, 045504 (2001).

[Sti90] M. D. Stiles and D. R. Hamann. Electron transmission through silicon stacking faults.
Physical Review B 41, 5280 (1990).

[Sti93] H. Stippel and S. Selberherr. Three dimensional monte carlo simulation of ion implantation
with octree based point location. in Proceedings of VPAD pp. 122–123 (1993).

[Sti05] D. Stichtenoth. Wachstum und Modifikation von Halbleiternanodrähten.
versität Göttingen (2005).

Diplomarbeit, Uni-

[Sti07] D. Stichtenoth, C. Ronning, T. Niermann, L. Wischmeier, T. Voss, C.-J. Chien, P.-C. Chang,
and J. G. Lu. Optical size effects in ultrathin ZnO nanowires. Nanotechnology 18, 435701
(2007).

[Sti08a] D. Stichtenoth. Dimensionseffekte in Halbleiternanodrähten.
tingen (2008).

Dissertation, Universität Göt-

[Sti08b] D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. Tegude, W. Prost, M. Seibt, and
C. Ronning. P-type doping of GaAs nanowires. Applied Physics Letters 92, 163107 (2008).

[Sug10] S. Sugahara and J. Nitta. Spin-Transistor Electronics: An Overview and Outlook. Proceed-
ings of the IEEE 98, 2124 (2010).

[Tan10] T. Tanaka, K. Tomioka, S. Hara, J. Motohisa, E. Sano, and T. Fukui. Vertical Surrounding
Gate Transistors Using Single InAs Nanowires Grown on Si Substrates. Applied Physics
Express 3, 025003 (2010).

[Tri95] H. Trinkaus and A. I. Ryazanov. Viscoelastic Model for the Plastic Flow of Amorphous
Solids under Energetic Ion Bombardment. Physical Review Letters 74, 5072 (1995).

[Tub09] V. Tuboltsev and J. Raisanen. Sculpturing Nanowires with Ion Beams. Small 5, 2687 (2009).

[Tuo05] F. Tuomisto, K. Saarinen, D. C. Look, and G. C. Farlow. Introduction and recovery of point
defects in electron-irradiated ZnO. Physical Review B 72, 085206 (2005).

[Vos07] T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow.
High-Order Waveguide Modes in ZnO Nanowires. Nano Letters 7, 3675 (2007).

[Wac09] B. A. Wacaser, K. A. Dick, J. Johansson, M. T. Borgström, K. Deppert, and L. Samuel-
son. Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for
Nanowires. Advanced Matererials 21, 153 (2009).

[Wag64] R. S. Wagner and W. C. Ellis. Vapor-liquid-solid mechanism of single crystal growth. Applied
Physics Letters 4, 89 (1964).

[Wan08] D. D. Wang, J. H. Yang, L. L. Yang, Y. J. Zhang, J. H. Lang, and M. Gao. Morphology and
photoluminescence properties of ZnO nanostructures fabricated with different given time of
Ar. Crystal Research and Technology 43, 1041 (2008).

[Wan09] Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, and Y. Wang. Nanodevices Based on Silicon
Nanowires. Recent Patents on Nanotechnology 3, 1 (2009).

[Wan11] Y.-B. Wang, L.-F. Wang, H. J. Joyce, Q. Gao, X.-Z. Liao, Y.-W. Mai, H. H. Tan, J. Zou,
S. P. Ringer, H.-J. Gao, and C. Jagadish. Super Deformability and Young’s Modulus of
GaAs Nanowires. Advanced Matererials 23, 1356 (2011).

96



BIBLIOGRAPHY

[Weh08] R. Wehrspohn. Powered by Nanowires. Chemistry & Sustainability 1, 173 (2008).

[Wei07] D. Weissenberger, M. Dürrschnabel, D. Gerthsen, F. Perez-Willard, A. Reiser, G. M. Prinz,
M. Feneberg, K. Thonke, and R. Sauer. Conductivity of single ZnO nanorods after Ga
implantation in a focused-ion-beam system. Applied Physics Letters 91, 132110 (2007).

[Wel97] P. Wellmann, J. Garcia, J.-L. Feng, and P. Petroff. Formation of nanoscale ferromagnetic
MnAs crystallites in low-temperature grown GaAs. Applied Physics Letters 71, 2532 (1997).

[Wen09] E. Wendler, O. Bilani, K. Gärtner, W. Wesch, M. Hayes, F. Auret, K. Lorenz, and E. Alves.
Radiation damage in ZnO ion implanted at 15 K. Nuclear Instruments and Methods in
Physics Research B 267, 2708 (2009).

[Wes92] W. Wesch. Ion implantation in III-V compounds.
Physics Research B 68, 342 (1992).

Nuclear Instruments and Methods in

[Wha07] S.-J. Whang, S. Lee, D.-Z. Chi, W.-F. Yang, B.-J. Cho, Y.-F. Liew, and D.-L. Kwong.
B-doping of vapour-liquid-solid grown Au-catalysed and Al-catalysed Si nanowires: effects
of B2H6 gas during Si nanowire growth and B-doping by a post-synthesis in situ plasma
process. Nanotechnology 18, 275302 (2007).

[Wil96] D. B. Williams and C. B. Carter. Transmission electron microscopy: a textbook for materials
science. Plenum Press, New York (1996).

[Wil09] M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Z. Perez, C. Czekalla,
G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer,
A. C. Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and
D. L. S. Dang. Zinc oxide nanorod based photonic devices: recent progress in growth, light
emitting diodes and lasers. Nanotechnology 20, 332001 (2009).

[Wit88] A. Witzmann. Experimental Equipment. In G. Götz and K. Gärtner, editors, High Energy
Ion Beam Analysis of Solids, chapter 2. Akademie-Verlag, Berlin (1988).

[Wol11] M. Wolff, D. Görlitz, K. Nielsch, M. Messing, and K. Deppert. Synthesis and magnetic
characterization of MnAs nanoparticles via nanoparticle conversion. Nanotechnology 22,
055602 (2011).

[Xie09] P. Xie, Y. Hu, Y. Fang, J. Huang, and C. M. Lieber. Diameter-dependent dopant location
in silicon and germanium nanowires. Proceedings of the National Academy of Sciences of the
USA 106, 15254 (2009).

[Yan91] Q. Yang, D. J. O’Connor, and Z. Wang. Empirical formulae for energy loss straggling of
ions in matter. Nuclear Instruments and Methods in Physics Research B 61, 149 (1991).

[Yan08] Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo. A p-n homojunction
ZnO nanorod light-emitting diode formed by As ion implantation. Applied Physics Letters
93, 253107 (2008).

[Yeh09] P.-H. Yeh, Z. Li, and Z. Wang. Schottky-Gated Probe-Free ZnO Nanowire Biosensor. Ad-
vanced Matererials 21, 4975 (2009).

[Yon09] I. Yonenaga, Y. Ohno, T. Taishi, and Y. Tokumoto. Recent knowledge of strength and
dislocation mobility in wide band-gap semiconductors. Physica B 404, 4999 (2009).

[Yos57] K. Yosida. Magnetic Properties of Cu-Mn Alloys. Physical Review 106, 893 (1957).

[Yu08] G. Yu, X. Li, C. M. Lieber, and A. Cao. Nanomaterial-incorporated blown bubble films for
large-area, aligned nanostructures. Journal of Materials Chemistry 18, 728 (2008).

97



BIBLIOGRAPHY

[Yua93] B. Yuan, F. Yu, and S. Tang. A database method for binary atomic scattering angle calcu-
lation. Nuclear Instruments and Methods in Physics Research B 83, 413 (1993).

[Zha00] J. Zhan, X. Yang, S. Li, D. Wang, Y. Xie, and Y. Qian. A chemical solution transport
mechanism for one-dimensional growth of CdS nanowires. Journal of Crystal Growth 220,
231 (2000).

[Zha09] Z. H. Zhang, X. Wang, J. Xu, S. Müller, C. Ronning, and Q. Li. Evidence of intrinsic
ferromagnetism in individual dilute magnetic semiconducting nanostructures. Nature Nano-
technology 4, 523 (2009).

[Zie85] J. F. Ziegler, J. P. Biersack, and U. Littmark. Stopping and Range of Ions in Solids. Perg-
amon, New York (1985). ISBN 0-08-021603-X.

[Zie92] J. F. Ziegler, editor. Handbook of Ion Beam Implantation Technology. North-Holland, Ams-
terdam, London, New York (1992). ISBN 0-444-89735-6.

[Zie11] J. F. Ziegler, J. P. Biersack, and U. Littmark. http://www.srim.org (2011).

[Zim08] M. A. Zimmler, J. Bao, F. Capasso, S. Müller, and C. Ronning. Laser action in nanowires:
Observation of the transition from amplified spontaneous emission to laser oscillation. Ap-
plied Physics Letters 93, 051101 (2008).

[Zim10] M. A. Zimmler, S. Müller, C. Ronning, and F. Capasso. Optically pumped nanowire lasers:
invited review. Semiconductor Science and Technology 25, 024001 (2010).

[Zol07] G. Zollo and F. Gala. Stability of I3 complexes in III-V compound semiconductors by
tight-binding molecular dynamics. Physical Review B 75, 115205 (2007).

98



Appendix A

List of Publications

Publications directly related to this thesis

Alignment of Semiconductor Nanowires Using Ion Beams
C. Borschel, R. Niepelt, S. Geburt, Ch. Gutsche, I. Regolin, W. Prost, F.-J. Tegude,
D. Stichtenoth, D. Schwen and C. Ronning
Small 5, 2576–2580, (2009)

Tailoring the properties of semiconductor nanowires using ion beams
C. Ronning, C. Borschel, S. Geburt, R. Niepelt, S. Müller, D. Stichtenoth, J.-P. Richters,
A. Dev, T. Voss, L. Chen, W. Heimbrodt, Ch. Gutsche and W. Prost
Physica Status Solidi B 247, 2329, (2010)

Ion beam doping of semiconductor nanowires
C. Ronning, C. Borschel, S. Geburt and R. Niepelt
Material Science and Engineering R 70, 30, (2010)

Permanent Bending of ZnO Nanowires
C. Borschel, S. Spindler, D. Lerose, A. Bochmann, S. H. Christiansen, S. Nietzsche, M. Oertel
and C. Ronning
Nanotechnology 22, 185307, (2011)

Ion beam irradiation of nanostructures - A 3D Monte Carlo simulation code
C. Borschel and C. Ronning
Nuclear Instruments and Methods B 269, 2133, (2011)

A New Route toward Semiconductor Nanospintronics: Highly Mn-Doped GaAs Nanowires Re-
alized by Ion-Implantation under Dynamic Annealing Conditions
C. Borschel, M. E. Messing, M. T. Borgström, W. Paschoal Jr., J. Wallentin, S. Kumar,
K. Mergenthaler, K. Deppert, C. M. Canali, H. Pettersson, L. Samuelson, and C. Ronning
Nano Letters 11, 3935, (2011)

99



Chapter A: List of Publications

Other publications

Magnetic coupling in Gd/Ni bilayers
A. Barth, F. Treubel, M. Marszalek, W. Evenson, O. Hellwig, C. Borschel, M. Albrecht and
G. Schatz
Journal of Physics: Condensed Matter 20, 395232 (6pp), (2008)

Structure and defects of epitaxial Si(111) layers on Y2O3(111)/Si(111) support systems
C. Borschel, C. Ronning, H. Hofsäss, A. Giussani, P. Zaumseil, Ch. Wenger, P. Storck, and
T. Schroeder
Journal of Vacuum Science and Technology B 27, 305, (2009)

Simulation and Fitting of High Resolution RBS spectra
C. Borschel, M. Schnell, C. Ronning, and H. Hofsäss
Nuclear Instruments and Methods B 267, 1737-1739, (2009)

Influence of metallic coatings on the photoluminescence properties of ZnO nanowires
J.-P. Richters, A. Dev, S. Müller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss
Physica Status Solidi - Rapid Research Letters 3, 166-168, (2009)

Phase diagram of Si nanowire growth by disproportionation of SiO
W. Dewald, C. Borschel, D. Stichtenoth, T. Niermann and C. Ronning
Journal of Crystal Growth and Design 312, 1751–1754, (2010)

Self-organized nanostructuring of composite coatings at high temperatures for drag reduction
and self-cleaning
P. Schaaf, S. Günschmann, M. Hopfeld, J. Wilden, V. Drescher, C. Borschel and C. Ronning
Thin Solid Films 205, 1584, (2010)

Hexagonal Boron Nitride Nanowalls Synthesized by Unbalanced RF Magnetron Sputtering
B. BenMoussa, J. D’Haen, C. Borschel, M. Saitner, A. Soltani, V. Mortet, C. Ronning,
M. D’Olieslaeger, H.-G. Boyen and K. Haenen
MRS Proceedings 1307, mrsf10-1307-cc06-09, (2011)

Composition and texture of barium silicate crystals in fresnoite glass-ceramics by various scan-
ning electron microscopic techniques
M. Nagel, W. Wisniewski, G. Völksch, C. Borschel, C. Ronning and C. Rüssel
CrystEngComm 13, 3383, (2011)

Strong Molecular Fluorescence inside a Nanoscale Waveguide Gap
V. Sorger, O. Pholchai, E. Cubukcu, R. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ron-
ning, X. Zhang
Nano Letters, 11, 4907, (2011)

100



Appendix B

Details Regarding The MC Simulations

B.1 The database method for scattering angles

Tables (the “database”) of precalculated scattering angles θCM (CM : center-of-mass system)
can be used to avoid the lengthy calculation of the scattering angles during the simulation.
Iradina uses the data base from corteo, details in [Sch07]. The basic table does not store θCM

itself, but rather sin2(θCM/2), because this value is required in the calculations. The two dimen-
sional table contains values as a function of reduced energy ε = E · a/(Z1Z2e

2) and of reduced
impact parameter b = p/a, with E: energy in center-of-mass system, Z1, Z2: proton numbers

+Z0.23of projectile and target, p: impact parameter, a = 0.8853 · a0/(Z1
0.23

2 ): screening length,
and a0: Bohr radius. These reduced quantities allow to use one general table independent of
projectile and target masses.
It is useful to scale the table logarithmically in order to cover a large range of ε and b without
making the table too large. This requires calculating the logarithms of ε and b whenever the
table is accessed. The calculation of a logarithm takes a lot of time compared to other oper-
ations or memory access. In order to avoid this calculation, a neat indexing mechanism was
proposed by Yuan et al. [Yua93] and improved by Schiettekatte [Sch07]: computers represent
non-integer numbers in an exponential form anyway; thus, a good approximation of the dual
logarithm can directly be extracted from the 32 bits of a floating point number. The corteo

database uses the 8 exponent bits plus the first four mantissa bits as the index to access entries
in the table, for details see [Sch07].
Using just the basic table with values for sin2(θCM/2) still requires conversion to the laboratory
frame of reference, which involves several calculations of trigonometric functions. This can
be avoided if sufficient memory is available: On startup, the program creates tables of sin(θ)
and cos(θ) as a function ε and b for each possible combination of projectile and target nucleus
(≈ 2.6 MByte per combination). These calculations take up a few seconds on startup, but then
the calculations of trigonometric functions can almost be completely avoided during simulation,
regardless of the numbers of projectiles to simulate.
It may be noted that this database methods is useful because the required amounts of mem-
ory are easily available on every computer nowadays (typical simulations shown in this thesis
required up to about 100 MByte). This is in contrast to the earlier days of simulating ion
implantation in the 1980’s, when memory was far more expensive and the MAGIC algorithm
was a great achievement to save computing time.
Naturally, approximation errors occur when accessing a table with a limited number of entries.
According to [Sch07] the accuracy of the database is within 5%. The MAGIC algorithm is
implemented in iradina as well for comparison. No deviations were observed when comparing
implantation profiles calculated with the database and the MAGIC algorithm. Figure B.1 com-
pares values for sin2(θCM/2) calculated with MAGIC and the database for different ε and b.
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Figure B.1: Comparison of the database method (adapted from corteo [Sch08]) to the MAGIG for-

mula [Bie80], both for the universal potential. sin2(θCM/2) is shown as a function of the reduced impact pa-

rameter p/a for different reduced energies ε (color-coded). The smooth lines are calculated using the MAGIC

algorithm, the “stepped” lines are calculated using corteo’s database method. Compare with [Zie85, p.59].

The calculations were done using the implementations in the iradina code for both algorithms.

The approximation errors become visible as “steps”, but are distributed to both sides and are
thus assumed to average out.

B.2 Computing flow of ion transport

The computing flow of the transport function is illustrated schematically in figure B.2. Note,
that the current implementation of iradina varies a little: The fractional calculations of stopping
are not performed for the sake of simplicity and computation time. Since flight paths are chosen
to be short (no long extended flight lengths as in TRIM), this is a good approximation.
Note that collision partners are searched for in multiple cylinders of different radii. This is
important to calculate sputtering accurately, because a projectile flying in vacuum may interact
with surface atoms not being within in the first cylinder of radius pmax. For details, see [Eck91,
p.92ff].

102



Chapter B: Details Regarding The MC Simulations

Check what happens to projectile 
along path (border crossings etc.) 

was initial position 
in vacuum? 

is new position 
in vacuum? 

subtract SBE, 
calculate refraction 

is new position 
in vacuum? 

calculate refraction, 
add SBE 

energy perp. to 
surface >SBE? 

Projectile may now collide 
(interaction with targnet nuclei) 

subtract fractional 
electronic stopping 

subtract fractional 
electronic stopping 

subtract 
electronic stopping 

energy > 
cut−off? 

projectile stops 

Transport of projectile starts 

Calculate flight path and 
position at the end of flight path 

Apply PBC 

is end position 
in sim volume? 

is position now 
in sim volume? 

projectile exits 

no 

yes 

no 

yes 

yes 

yes 

no 

yes 

nono 

yes 

no 

yes 

no 

Search collision partners 
and simulate collisions 

coll_count:=0 

coll_count<3 ? 

projectile stops 

select IP between 
pmax*sqrt(coll_count) 

and 
pmax*sqrt(coll_count+1) 

select azimutal angle and 
calculate position of target nucleus 

Target position 
in vacuum? 

Do collision 
Calculate energy transfer, 

recoil angle 
and deflection of projectile 

recoil_energy > 
cut−off? 

Recoil starts as new 
projectile −> recursive 

call of transport function 

recoil_energy > 
E_disp ? 

mark recoil as 
sub−threshold 

recoil remains at position, 
energy goes to phonons 

no collision happens 

coll_count:=coll_count+1 

energy > 
cut−off ? 

yes 

no 

yes 

yes 

no 

no 

yes 

no 

no 

recursive 
call 

yes 

Figure B.2: Simplified illustration of computing flow of the transport function. PBC: periodic

boundary conditions, SBE: Surface binding energy, Coll_count: Collision counter.
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B.3 Additional comparisons between iradina and TRIM

The implantation of different elements (atomic masses 1, 6, 107, 207) into bulk Si with different
energies was simulated with iradina and TRIM. For iradina simulations, the full transport
algorithm was used, not the simplified fast one. TRIM simulations were done with program
version SRIM 2008.03 and the mode “Detailed Calculation with Full Damage Cascades” was
selected (except for high energy hydrogen, where “Monolayer collision steps” were used to avoid
anomalous peaks, as recommended by SRIM manual). Figure B.3 shows the resulting depth
distributions of implanted ions for iradina and TRIM. They are mostly in good agreement.
Small deviations occur for hydrogen ions.
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Figure B.3: Comparison of simulation results from iradina (--) and TRIM (–). The depth distri-

bution of different elements implanted into bulk Si at perpendicular incidence with different energies

is shown in units of 105/cm3 per ions/cm2.
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B.4 Distribution of single ion sputter yields

Figure B.4 shows the distribution of the number of sputtered target atoms per each individual
ion for different sizes of Au nanoparticles. Simulations were done with iradina; Ga ions with
25 keV were used. The number of sputtered particles per ion scatters greatly for individual ion
impacts.
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Figure B.4: Distribution of the number of sputtered atoms per incoming ion for different NP

diameters as noted in the figure key.
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Details for the dynamic bending calculation

Derivation of the conditions for minimum strain energy of a segment

By basic geometrical considerations, one finds that the total strain energy Es of a segment s
can be expressed by

∑ ( )2
E = Y c · lm − lr − j ·Δx · tanα − k ·Δy · tan β .s jk s sjk s s

j,k

Necessary condition for minimum energy is that the partial derivatives of Es with respect to
mls , αs and βs vanish, from which the three equations (4.1) follow:

( )! ∑
∂Es 2 · Y c m r0 = = · ls − lsjk − j ·Δx · tanαs − k ·Δy · tanβs∂lm jk

!

s ∑ ( )j,k

∂Es 2 · Y c m r0 = = · ls − lsjk − j ·Δx · tanαs − k ·Δy · tanβs · j ·Δx · (1 + tan2 αs)∂αs
jk

j,k

Since (1 + tan2 αs) > 0 for all αs

∑ ( )
m r⇒ 0 =

!
Y c · l − l − j ·Δx · tanα − k ·Δy · tan β · j.jk s sjk s s

j,k

(C.1)
The derivative with respect to βs is similar to the one with respect to αs.
Although these conditions are not sufficient for minimum energy, it is unlikely that the global
minimum is not found, because the functions are approximately linear for not too large angles.

Newton’s method

Newton’s method can be used to solve a set of equations f(x) = 0 numerically [Got95, p.695].
An initial solution x0 is guessed and then improved iteratively using the following recursive
formula:

− J−1x = xn (x ) · f(xn)n+1 nf

where J−1 is the inverse Jacobi matrix of f .
f

mFor the case of equations (4.1), the solution vector has three components: xn = (ln , αn, βn).
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The initial guess uses the old segment length (from the last irradiation step) and vanishing tilt
angles (horizontal end-plane). The Jacobi matrix of f is

⎛ ⎞
1 −j ·Δx · (1 + tan2 αs) −k ·Δy · (1 + tan2 βs)

J = Y c
jk ·

⎜⎜⎝ j −j2 ·Δx · (1 + tan2 αs) −j · k ·Δy · (1 + tan2 βs)
⎟⎟⎠ .

j,k
k −j · k ·Δx · (1 + tan2 αs) −k2 ·Δy · (1 + tan2 βs)

The required matrix inversion is performed numerically by Gauss-Jordan elimination [Got95,
p.681]. This inversion method is slow [complexity O(n3)] but it is relatively simple to implement
and fast enough for inverting a 3× 3 matrix.
Usually, a good solution is found quickly after a few iteration steps, where a “good” solution

αn+1−αnmeans:
αn

< 10−7. The reason for the quick convergence in this case is that the system is
approximately linear for small angles αs and βs.
When a nanowire is irradiated from one side, it should be sufficient for the calculation to use
only one bending angle α. Nevertheless, β was included in the implementation to conserve
generality, but the calculations show that β remains practically 0 during bending.

Formation volumes of defects

Defects in ZnO

Erhart et al. performed first-principle studies of intrinsic defects in ZnO using density functional
theory (DFT) calculations [Erh06]. Apart from transition levels and formation enthalpies, their
calculations also allow to determine formation volumes. Since only small volumes with up to
about 100 atoms were possible to simulate, the formation volumes had to be extrapolated to
obtain bulk values. Their results are listed in table C.1. For illustration of the various defect
types, see [Erh05].
The transition levels of the various defect types are illustrated in figure C.1. The charge states
of the defects can be determined, depending on the position of the Fermi energy level.

Table C.1: Formation volumes of different intrinsic point defects in ZnO, values taken from [Erh06],

units are relative volumes with respect for ZnO formula unit. int: interstitial, vac: vacancy, oct: on

octahedral site, db: dumbbell interstitial, db-rot: rotated dumbbell interstitial

Defect type

Zn int,oct
O vac
O int,db
O int,db-rot
O int,oct
Zn vac

charge state

−2 −1 0 +1 +2
0.81 0.28 −0.30

−0.26 −0.18 −0.32
0.47 0.13 −0.26

1.15 0.76 0.43 0.08 −0.32
1.05 0.68 0.33 −0.05 −0.46
0.81 0.45 0.05
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Figure C.1: Illustration of transition levels of the intrinsic defects of ZnO within its band gap, data

taken from [Erh06]. The charge state of the defects depends on the Fermi level; the three energy

levels used in this work are shown.

Defects in GaAs

No values for the formation volumes of intrinsic defects in GaAs were found in the literature.
Reported measurements of positron annihilation times yield the open volumes of defects but
not the formation volumes. Several ab-initio studies of intrinsic defects in GaAs with different
methods (tight-binding, density-functional theory) are reported; however, they do not report
formation volumes, but they do report the relaxation of bond-lengths or of tetraeder volumes
Vtetra, which can be used as a rough measure for the volume expansion or reduction ΔV caused
by defects. The dependence on charge state is less pronounced compared to ZnO, because GaAs
is less ionic. In cases where the volume depends on charge states, the charge states were selected
for a Fermi energy approximately in the middle of the band gap (see [Sch09a]). The values
used for the dynamic bending calculation in section 4.6.5 are listed in table C.2. It should be
noted that somewhat contradicting values were found for the AsGa antisite, see [Sta01, Seo95]
and that defect complexes are ignored [Zol07].

Table C.2: Relative and absolute expansion or reduction of tetraeder volume around various in-

trinsic defects in GaAs. int: interstitials, vac: vacancy

Defect type ΔV/Vtetra ΔV [Å3] Source
Ga int

Ga vac
As int
As vac
GaAs antisite
AsGa antisite

33%

−34%
15%
19%
5.5%
7.8%

2.4

−2.5
1.1
1.4

0.41
0.56

calculated from average bond length increase for
different types of Ga ints [Mal07], charge state 0
from [Seo95], charge state −2
twice as much as AsGa antisite [Sta01]
from [Seo95], charge state −1
from [Seo95], charge state −1
from [Seo95], charge state 0
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