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Abstract
The identification and reconstruction of hidden, not directly accessible processes
from measured data is important in many areas of research and engineering. This
thesis focusses on applications in magnetostatics, magnetocardiography, and magnetic
induction tomography. One approach to identify these processes is to solve a related
linear inverse problem. Unfortunately, noise and errors in the data have a significant
impact on inverse solutions.

The aim of this work is to reduce the effects of noise and errors by improving the
condition of the problem and to increase the sensitivity of measurement setups. To
quantify the condition, we propose the ratio of the largest and the mean singular
value of the kernel matrix. Moreover, we outline approaches to analyse quantitatively
and qualitatively the sensitivity to electromagnetic sources and electrical conductivity
changes.
In four simulation studies, strategies to improve the condition and sensitivity in

magnetic applications are described. First, we present a tabu search algorithm to
optimize arrangements of magnetic sensors. Optimized sensor arrays result in a
considerably improved condition compared with regular arrangements. Second, we
adapt parameters that define source space grids for magnetic nanoparticle imaging.
One conclusion is that the source space should be defined slightly larger than the
sensor area. Third, we demonstrate for mono-axial sensor arrays that variations in the
sensor directions and small variations in the sensor positions lead to improvements
of the condition, too. Finally, we evaluate and compare the sensitivities of six coil
setups for magnetic induction tomography. Our investigations indicate a rapid decay
of sensitivity by several orders of magnitude within a range of a few centimetres. By
using relatively large coils that cover the measurement region almost completely, the
condition and sensitivity can be improved clearly.

The methods and strategies presented in this thesis facilitate substantial improve-
ments of the condition for linear inverse problems in magnetic applications. In
particular, the arrangement of sensors relative to the measurement object is critical
to the condition and to the quality of inverse solutions. Moreover, the presented
methods are applicable to linear inverse problems in various fields.
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Zusammenfassung
Die Identifikation nicht direkt zugänglicher Prozesse anhand gemessener Daten ist von
großer Bedeutung in vielen Bereichen. Im Fokus dieser Arbeit liegen Applikationen in
der Magnetostatik, Magnetokardiographie und Magnetinduktionstomographie. Ein
Ansatz zur Identifikation besteht in der Lösung eines entsprechenden linear inversen
Problems. Unglücklicherweise haben in den Daten enthaltene Fehler und Rauschen
einen signifikanten Einfluss auf die inverse Lösung.

Ziel dieser Arbeit ist die Reduktion der Einflüsse von Fehlern und Rauschen durch
eine Verbesserung der Kondition des Problems, sowie eine Steigerung der Sensitivität
der Messanordnungen. Zur Bestimmung der Kondition wird das Verhältnis des
größten und mittleren Singulärwerts der Kernmatrix als neues Maß vorgeschlagen.
Darüber hinaus werden Ansätze zur Analyse der Sensitivität hinsichtlich der Messung
elektromagnetischer Quellen und der Erfassung elektrischer Leitfähigkeitsveränder-
ungen präsentiert.
Strategien zur Verbesserung von Kondition und Sensitivität werden in vier Simu-

lationsstudien beschrieben. In der ersten Studie wird ein Tabu-Suche-Ansatz zur
Optimierung der Anordnung magnetischer Sensoren vorgestellt. Anordnungen mit
optimierte Sensorpositionen resultieren dabei in einer deutlich besseren Kondition
als regelmäßige Anordnungen. In einer zweiten Studie werden Parameter adap-
tiert, welche den Quellenraum für die Bildgebung durch magnetische Nanopartikel
definieren. Als eine Schlussfolgerung sollte der Quellenraum etwas größer als das
Sensorareal definiert werden. Diese Arbeit zeigt ebenfalls, dass Variationen in den
Sensorrichtungen für monoaxiale Sensorarrays zu einer Verbesserung der Kondition
führen. Zudem wird die Sensitivität von Spulenanordnungen für die Magnetinduk-
tionstomographie bewertet und verglichen. Durch Nutzung relativ großer Spulen,
die das Messgebiet nahezu vollständig abdecken, können Kondition und Sensitivität
wesentlich verbessert werden.

Die präsentierten Methoden und Strategien ermöglichen eine substantielle Ver-
besserung der Kondition des linear inversen Problems bei der Analyse magnetischer
Messungen. Insbesondere die Anordnung von Sensoren in Bezug auf das Messobjekt
ist kritisch für die Kondition, sowie die Qualität inverser Lösungen. Die vorgestellten
Methoden sind darü ber hinaus für linear inverse Probleme in zahlreichen Bereichen
einsetzbar.
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Nomenclature

Acronyms

AtB Advanced Technologies Biomagnetics, Pescara, Italy

BEM boundary element method

ECG electrocardiography

EEG electrocardiography

EFEM edge finite element method

FEM finite element method

GCV generalized cross validation

MCG magnetocardiography

MEG magnetoencephalography

MIT magnetic induction tomography

PSO particle swarm optimization

PTB Physikalisch-Technische Bundesanstalt, Berlin, Germany

SD standard deviation

SNR signal to noise ratio

SQUID superconducting quantum interference device

STL standard template library

SVD singular value decomposition
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TSVD truncated singular value decomposition

VOI volume of interest

Notations

0 matrix or vector with all elements 0

A matrix, A ∈ Rm×n

A[i,∼] ith row of A

A[i, j] element of row i and column j of A

B(i, j, t) magnetic field at integration point t of sensor i, originating from source
j, B(i, j, t) ∈ R3×1

b vector of magnetic measurement values, b ∈ Rm×1

c changes of electrical conductivity, v ∈ Rm×1

C complex field

κp(A) condition number of A with respect to p-norm

κ(A) condition number of A with respect to 2-norm

di direction of sensor i, di ∈ R3×1, ‖di‖ = 1

diag(x) matrix with diagonal elements x

ej direction of source j, ej ∈ R3×1

exp(x) exponential function, ex

F non-linear forward operator

I identity matrix

J Jacobian matrix, real part, J ∈ Rm×n

L lead field matrix, L ∈ Rm×n

N natural numbers including 0

O( · ) quantification of computational costs, O-notation

p vector of dipole moments, p ∈ Rn×1

p-norm of x (∑i |x[i]|p)1/p, p ≥ 1

r, rank(A) rank of matrix A

x



rd(A) relative determination with respect to a linear operator A

R real field

R+ real field of numbers > 0

R? real field without 0

rijt displacement vector between integration point t of sensor i and source
j

r̃ijt displacement unit vector corresponding to rijt with ‖r̃ijt‖2 = 1

σi, σi(A) ith singular value of A

s total number of singular values of A, including 0; s := min(m,n)

SA sensitivity with respect to a linear operator A

v measured secondary voltage differences, v ∈ Rm×1

wit weight of integration point t of sensor i, wit ∈ R?

Symbols

A−1 inverse of A

A+ Moore-Penrose inverse (pseudo-inverse) of A

AT A transposed

| · | absolute values of matrix, vector, scalar elements; number of set ele-
ments

‖ · ‖p p-norm of matrix or vector

A := B A is defined by B

A =⇒ B if A then B

A ⇐⇒ B A if and only if B

∧ logical conjunction

∨ logical disjunction

← assignment in algorithms

a · b scalar product of vectors a and b

∃ existential quantifier
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∀ universal quantifier

\ relative complement of sets

∪ union of sets

× product of scalars; Cartesian product of sets
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Notation

Positions, coordinates and distances are in units of m, unless otherwise stated. The
sensitivities of magnetometer arrays to magnetostatic dipoles are in units of TA−1m−2,
and the sensitivities of magnetic induction tomography systems to conductivity
changes are in VmS−1. The moments of magnetic dipoles are given in Am2 and the
electrical conductivities are in Sm−1. Matrices are indicated by upper case, vectors
and scalars by lower case italic letters. We use i, j, and k as indices.

The PDF file of this document provides for all links to figures, tables, sections, and
publications also the corresponding hyper-references. Digital object identifiers (doi)
in the bibliography refer to the full texts on the publisher’s websites. Page numbers
in the bibliography link back to the citing pages.
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1
Introduction

1.1. Inverse Problems in Magnetic Applications

Overview
Inverse problems arise in almost all fields of science and engineering. On the basis of
observed data, an inverse problem consists in the identification and reconstruction of
the underlying causes. This reconstruction can provide essential insight into hidden,
not directly accessible processes of interest.

To solve inverse problems, an appropriate modelling of the causes, the observed data,
and their interaction is generally required. Since the majority of inverse problems
can not be solved directly, an iterative optimization or linearization techniques are
utilized. Unfortunately, the solutions may not exist or be unique, and small changes
in the observations can lead to substantial changes in the results. Inevitable errors
and noise contained in the measurement data can lead to dominant interferences in
inverse solutions. We term inaccuracies that originate, for instance by limitations
of floating point numbers, data sampling and quantization processes as errors, and
parts of the measurement that not represent the signals of interest as noise.
Linear inverse problems, where small changes in the measurement data can have

substantial effects on the solution, are denoted as ill-conditioned. Imposed a priori
assumptions enable effective solutions of inverse problems. During the last decades,
numerous approaches that reduce the influence of noise and errors within the solution
process were proposed.
Our objective is to improve the condition of linear inverse problems in magnetic

applications to generally reduce the effects of noise and errors on solutions, independ-
ently from specific linear inverse methods. Moreover, the sensitivity of measurement
systems can be very low. We present methods to analyse and to compare the sensit-
ivity of different measurement setups to further improve solutions of linear inverse
problems.

This work focusses on applications, in which static magnetic or quasi-static electrical
sources are reconstructed from magnetic measurements. Furthermore, we consider

1



2 CHAPTER 1. INTRODUCTION

the application of estimating changes of the electrical conductivities by magnetic
induction tomography.

Reconstructing Static Magnetic Sources
Typical applications that involve magnetostatic inverse problems are the reconstruc-
tion of magnetic nanoparticles distributions for imaging purposes [Baumgarten et al.
2008], the localization of magnetic markers in the gastro-intestinal system [Hilgenfeld
and Haueisen 2004], and the detection of buried magnetic objects from geomagnetic
measurements [Eichardt et al. 2009a]. In these examples, measured magnetic activ-
ities originate from almost static magnetic sources, which can be approximated by
magnetostatic dipoles.

For the imaging of magnetic nanoparticles, functionalized particles with diameters
in the range of nanometres are applied to a sample under test. Owing to active and
passive distribution processes, nanoparticles spread in a sample and bind to target
structures, such as tumour cells. Subsequently, bound and unbound nanoparticles
are magnetized until saturation using a static external field. When turning off this
magnetic field, particles start to align back to random orientations. In this process of
relaxation, a decay of the magnetic remanence field caused by aligned particles can be
observed. The reorientation of particles bound to target structures in absence of an
external magnetic field ensues relatively slowly and is referred to as Nèel relaxation.
The remanence field and the Nèel relaxation can be measured using highly sensitive
sensor technologies.

In geomagnetic applications, hidden ferromagnetic and paramagnetic objects cause
deformations of the quasi-homogeneous magnetic field of the earth. Based on magnetic
measurements at the ground surface, one can determine positions of hidden objects
using inverse methods. Since the earths magnetic field is changing very slowly, we
can assume static magnetic sources. Accordingly, compact and sufficiently distant
magnetic objects can be approximated by magnetostatic dipoles.
Previous work in this field was presented by McFee et al. [1990], Barrell and

Naus [2007], and Sheinker et al. [2009]. In [Eichardt et al. 2009a], we deployed
a measurement system that exhibited several gradiometer sensors mounted on a
non-metallic vehicle, which could be pulled by car over ground surface. Recorded sets
of data typically consisted of successively scanned lines with sample point distances
of a few centimetres or less and line-to-line distances of about 0.5m. Differential
GPS (global positioning system) and inertial sensors provided sensor positions and
orientations for each measurement sample.

Reconstructing Bioelectrical Current Sources from Magnetic
Measurements
The reconstruction of electrical currents or potentials from measured magnetic fields of
the human heart (magnetocardiography, MCG) and brain (magnetoencephalography,
MEG) plays a vital role in research and medical diagnosis.
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We apply the tabu search algorithm to optimize sensor arrangements in MCG.
First recordings of the magnetic field of the heart using single coils were presented
by Baule and McFee [1963]. Today, sensor systems with several hundred sensors
cover major regions of the chest to measure the magnetic fields emerging from
physiologic or pathophysiologic cardiac processes. To reconstruct the underlying
electrical activities, a person-specific volume conductor model of the torso is typically
used. The electromagnetic model is based on quasi-static approximations of Maxwell’s
equations, since frequencies of biological electrical currents are in the range of or
below 1 kHz. Relevant clinical applications of the MCG include the localization of
ventricular arrhythmogenic sites in patients suffering from Wolff-Parkinson-White
syndrome [Nenonen et al. 1993; Leder et al. 2001] and the imaging of delayed high-
frequency depolarization signals indicating the risk of malignant tachyarrhythmias
after myocardial infarction [Leder et al. 1998]. Surveys on MCG are provided by
Andrä and Nowak [2006, section 2.3], Clark and Braginski [2006, section 11.3], and
Weinstock [1996, chapter 10].

Reconstructing Electrical Conductivities by Magnetic Induction
The aim of the magnetic induction approach is the reconstruction of the electrical
conductivity and permittivity of objects such as the human head or body. By
using multiple coils for exciting and measuring magnetic fields, magnetic induction
tomography (MIT) enables a visual representation of electrical conductivity and
permittivity values of the measurement object.
When emitting time-varying magnetic fields to an electrically conducting object,

eddy currents emerge depending on conductivity, permittivity, and permeability. In
turn, these eddy currents produce secondary magnetic fields, which can be measured
by coils. Primary and secondary magnetic fields cause inductions of primary and
phase-shifted secondary voltages at the measurement coils. As a consequence of low
conductivities of biological tissue, secondary voltages are very weak in biomedical
applications.
The first work in the area of magnetic induction from Tarjan and McFee [1968]

focused on the detection of vital signs. The first MIT system was presented by Netz
et al. [1993]. Further concepts of tomographic systems were published, for example
by Korjenevsky et al. [2000], Igney et al. [2005], Watson et al. [2008], Scharfetter
et al. [2008], and Vauhkonen et al. [2008]. Applications of magnetic induction and
MIT include monitoring of vital parameters, detection of bleedings, and sensing of
defects in metal components. An overview of MIT is given by Griffiths [2001].

1.2. Outline of this Thesis
In the subsequent chapter 2, we address definition and properties of linear inverse
problems in magnetic applications, describe the setup of related kernel matrices, and
take a look at methods to solve linear inverse problems.
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Chapter 3 presents methods to assess the condition and sensitivity, both repres-
enting practically important properties of kernel matrices related to linear inverse
problems. To evaluate the condition, the condition number with respect to the 2-norm
is used. Furthermore, we deploy a new measure that quantifies the ratio of largest
and mean singular value of kernel matrices. Both measures are also defined relative
to the kth singular value, which can be relevant, for example when comparing the
condition for sensor systems with different numbers of sensors.

In chapter 4, we describe strategies to evaluate and improve the condition and the
sensitivity in magnetic applications. A tabu search algorithm for the optimization of
sensor arrangements is presented in section 4.2. We demonstrate the improvement of
the condition in the application of MCG, when optimized sensor positions are used
instead of regular sensor arrangements. Section 4.3 shows the effects of adaptations
of source grid parameters on the condition of linear inverse problems in magnetic
nanoparticle imaging. The results indicate that the area of the source space should
extend the sensor area slightly. The number of sources considerably affects the
condition, in case that fewer sources than sensors are utilized. By using generic
examples of mono-axial sensor arrays, we show in section 4.4 that variations in the
sensor directions and small variations in the sensor positions lead to improvements of
the condition, too. Sensitivities of different coil setups for MIT are evaluated and
compared in section 4.5. We observe a rapid decay of the sensitivity by several orders
of magnitude within a relatively small range between coils and volume elements.
The main part is closed by general conclusions and an outlook in chapter 5. In

appendix A, we present a supplemental study on linear inverse problems in magnetic
applications. It reveals that predefining the directions of sources mainly improves
the condition, if in this process the degree of overdetermination is considerably
increased. Appendix B provides general details on the singular value decomposition,
the Moore-Penrose inverse, and matrix norms.
Unless stated otherwise, this thesis represents my own scientific work. This also

applies for parts that are based on joint publications. Contents that originate from
other people’s work are identified correspondingly. Figure 1.1 outlines the structure
of this thesis at a glance.
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respect to 2−norm (3.2)

kth singular value (3.5)
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lead field matrix (2.2.3)
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effects of source
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Jacobian matrix (2.2.4)
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measured or

simulated data
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 kernel matrix

magnetic linear inverse problem

array of sensors setup of coils

solution of the inverse problem

inverse methods (2.3)

source space

Figure 1.1.: Outline of this thesis. Major investigations are indicated by boxes with
rounded edges. Newly defined measures for the evaluation of the condi-
tion and sensitivity of kernel matrices are represented by solid rectangles.
References to the particular sections of this thesis are given in parenthesis.
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2
Theory of Inverse Problems in Magnetics

2.1. Magnetic Sensors, Sensor Arrays, and Models
Sensor systems can utilize different types of sensors to measure the magnetic field
(magnetometers) or its gradient (gradiometers). Two of the currently most relevant
sensor technologies are coils and superconducting quantum interference devices
(SQUIDs).

The measurement principle of coils is based on Faraday’s law of induction. Coils
measure the temporal derivative of the magnetic flux dΦ/dt with Φ = BA. The
sensitivity to the magnetic field B depends inherently on the cross sectional area
A and the number of windings. However, these parameters are usually subject to
practical restrictions. Highly sensitive coil magnetometers result in substantial sensor
dimensions, such as in the first MEG experiment by Cohen [1968]. In the field of
MIT, coils are applied for the measurement and excitation of magnetic fields using
frequencies in the range of megahertz, as they are required to induce eddy currents
for conductivity measurements. In combination with SQUID sensors, coils increase
the sensor pickup area and enable the design of gradiometers.

An overview on the technology of SQUIDs, SQUID systems, and their applications
give, for instance Clark and Braginski [2004, 2006] and Andrä and Nowak [2006].
Presently, SQUIDs represent one of the most sensitive technologies to measure
magnetic fields at lowest levels of noise. The measurement principle bases essentially
on two quantum mechanical phenomena: flux quantization, first predicted by London
[1950], and the Josephson effect described by Josephson [1962]. First publications on
SQUID-based sensor technologies were presented by Jaklevic et al. [1964] and Silver
and Zimmerman [1967]. SQUID sensors are small in size, but require liquid helium
(low temperature SQUIDs) or liquid nitrogen cooling (high temperature SQUIDs).
This results in voluminous cryostat casings, and high initial and maintenance costs.
Recent multichannel magnetometer systems for MEG or MCG typically combine
several hundred SQUID sensors.
Coils and SQUIDs merely provide vectorial measurements of relative changes of

the magnetic field. Today, three-axial magnetometers are used in many multichannel

7
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Figure 2.1.: The PTB 304 channel SQUID sensor system. Sensor positions are indic-
ated by dots, directions by small bars.

sensor arrays. Three-axial magnetometer obtain full spatial information of the
magnetic field at each sample point by measuring all three orthogonal components.

In section 4.3 and appendix A, we deploy sensor models of the Physikalisch-
Technische Bundesanstalt (PTB), Berlin, Germany, 304 channel SQUID system
(Schnabel et al. [2004], Figure 2.1) and the Advanced Technologies Biomagnetics
(AtB), Pescara, Italy, Argos 200 system with 195 SQUID sensors (Figure 2.2). Both
sensor arrays utilize orthogonally oriented magnetic sensors in multiple layers. The
pickup area of each sensor is 8mm× 8mm. In our simulations, we do not consider
specific characteristics of measurement systems, such as the noise sensitivity, the
electronic system, or the electromagnetic shielding.

Further sensor technologies applicable for biomedical measurements have been
evolved recently. For instance, optically pumped magnetometers, as presented by
Bloom [1962], were successfully applied for MCG recordings by Bison et al. [2003].
Such sensors are relatively small and work at room temperature. Therefore, they
facilitate multichannel measurements at low costs and enable a higher degree of
flexibility for the sensor positions compared with SQUIDs. Further concepts of
magnetic sensors are outlined by Ripka [2001].

We model magnetometers as ideal point-like sensors and use identical weights
for sensors within one simulation. The sensor weights reflect values for coil area
and windings, as they typically apply for SQUID sensor systems. To model MIT
systems, coils are approximated by up to several thousands sensor integration points,
depending on the coil dimensions and the size of the finite elements. As observed by
Vauhkonen [2008], the quantity of coil discretization points seems to have a relatively
high influence on the numerical accuracy of finite element computations.
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Figure 2.2.: Positions and directions of 195 SQUID sensors of the AtB Argos 200 sys-
tem.

2.2. Setting up Inverse Problems
2.2.1. Reconstruction of Electromagnetic Sources
The inverse problem we consider consists in the reconstruction of electromagnetic
sources based on measured data. In this process, parameters Pi describe the sources,
for example by their positions, orientations, and the moments. By solving an inverse
problem, the source parameters Pi are estimated from the measurement values B. This
inverse problem likewise involves a direct problem, which consists in the computation
of sensor values Bf from given source parameters P . To solve the direct problem,
appropriate models for sources, sensors, and the propagation of electromagnetic fields
between sources and sensors (forward model) are required. The relation between
direct and inverse problems are illustrated in Figure 2.3.

Similar to Tarantola [2005, section 1.1], we introduce a model space containing all
conceivable models that describe together with their parametrization the electromag-
netic sources. Furthermore, the data space contains all conceivable measurements.
We can formalize the solution of the direct problem by introducing a forward operator
F that maps the model space onto the data space with

Bf = F (P ) . (2.1)

The deployed sensor, source, and forward models are implemented by the forward
operator F . Since it is generally not possible to obtain its inverse F−1 directly, we
formalize the solution of an inverse problem

Pi = arg min
P
‖F (P )−B‖2 +M (P ) . (2.2)

By using a priori assumptionsM, we can imply constraints that have to or should
be fulfilled by Pi. To solve inverse problems as defined in equation (2.2), iterative
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inverse
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Source parameters

Measurement data

Figure 2.3.: Illustration of the direct and the inverse problem for the reconstruction of
electromagnetic sources. The required modelling is indicated by the dashed
boxes.

optimization procedures, such as proposed by Nelder and Mead [1965] or as we
present in [Eichardt et al. 2008], are typically applied.
The properties of direct and inverse problems differ considerably. The direct

problem can be characterized as well posed, which implies that the existence, unique-
ness and stability of a solution Bf are provided. When having a stable solution, it
continuously depends on the input data: Small changes in the input solely lead to
small changes in the result. In contrast, the inverse problem is generally ill-posed,
This implies the non-existence or the non-uniqueness, and the instability of solutions
Pi. By involving particular a priori assumptions on Pi, we enforce the existence as
well as the uniqueness and improve the stability of the solutions. The terminology of
well and ill posed problems are attributed to Hadamard [1902], cited, for example by
Hawkes [1989, part 1].

2.2.2. Linearization of Inverse Problems
The forward operator F forms the central element when solving direct and inverse
problems. When deploying a dipole-based source model, the domain of F (model
space) is represented by 6n parameters that describe the position, orientation, and
moment for each of the n sources. Thereby, n needs to be defined in advance. The
operator F depends non-linearly on the parameters for the dipole positions and
linearly on the parameters for the orientation and the moment.
To allow a direct inversion of F and to considerably simplify computations of

direct and inverse solutions, F can be transformed into an linear operator. In
electromagnetic applications that focus on the reconstruction of electromagnetic
dipolar sources, the linear forward operator is typically denoted as lead field matrix
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[Hämäläinen and Ilmoniemi 1984, 1994] and denoted by L. In the more general
context of numerical analysis, this operator is referred to as kernel matrix. Within
this thesis, we indicate general kernel matrices by A.

According to the non-linear operator F , the lead field L maps the model space into
the data space and comprises information on the sensor, source, and forward models.
In this process, L specifies the influence of the activity of sources on the sensors and
correspondingly the sensitivity of the sensors to the activity of the sources.

To create L as a linear representation of F , the source space needs to be discretized.
Potential locations of sources are predefined, for example by using regular arrange-
ments of dipoles (source space grids) within a volume of interest. Also the directions
of the sources are determined in advance. In case that the source directions are a
priori known, we can use these information directly. To facilitate arbitrary directions
of sources, we define at each source position three orthogonally oriented dipoles with
uniform moments. Thereby, the total number of sources contained in the model is
increased by factor three. After solving the linear inverse problem, the final source
orientations and moments can be obtained by the linear combination of the three
predefined direction vectors, scaled by their estimated moments.

Each row of L ∈ Rm×n corresponds to one of the m sensors and each column
represents one of the n source dipoles. Parameters p ∈ Rn×1 describe the moments of
magnetic or electrical current dipoles for the predefined sources contained in L with
respect to their particular positions and directions. We describe the linear direct
problem of computing measurement values b ∈ Rm×1 from dipole moments p by

b = Lp . (2.3)

For simplicity, we consider in this thesis only single measurements at one point in
time. However, an extension to multiple measurements is easily feasible, for example
by extending vectors b and p to matrices, in which each column represents one
measurement sample in time. In this case, the presented methods are valid likewise
or can be adapted easily. We discuss the computation of L in the next section 2.2.3.

According to the linear direct problem in equation (2.3), the linear inverse problem
consists in the estimation of the dipole moments p from the measured data b. This
inverse problem corresponds to the least square problem of finding optimal source
parameters p that explain the measurement data b best. If the number of known
measurement values in b exceeds the number of unknown source parameters in p,
that is m > n, the linear inverse problem is denoted as overdetermined. When the
quantity of measurement values is smaller than the number of source parameters, that
is m < n, the linear inverse problem is referred to as underdetermined. A synoptic
view on standard methods to solve linear inverse problems follows in section 2.3.
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2.2.3. Creating the Lead Field Matrix
The element for the sensor with index i and the source with index j of the lead field
matrix L ∈ Rm×n can be computed by

L[i, j] =
∑
t∈Ti

wit di · B(i, j, t) , (2.4)

where t ∈ Ti is the integration point index for sensor i, wit is the integration point
weight, and di ∈ R3×1 is the sensor direction, with ‖di‖2 = 1.

The determination of the magnetic field B(i, j, t) ∈ R3×1 depends on the utilized
source, sensor, and forward modelling. A standard methodology in many biomedical
application is to model electromagnetic sources by equivalent current dipoles. For
forward modelling, quasi-static approximations of Maxwell’s equations in conjunction
with boundary (BEM) or finite element method (FEM) based models of the con-
ducting volume are typically applied. In these applications, the forward modelling is
more specifically denoted as volume conductor modelling.

In applications, such as the inverse estimation of magnetic nanoparticle distributions
from remanence measurements or the detection of hidden magnetic objects in the
underground, sources can be represented by magnetic dipoles. For these examples, we
can assume that magnetic sources are static and that a homogeneous volume conductor
with constant magnetic permeability is present. Therefore, the magnetostatic dipole
model can be applied to describe the sources and the propagation of magnetic fields.

An overview on the magnetostatic model and applications give Clark and Braginski
[2006, section 10.1]. Using this model, we can obtain the magnetic field B that
originates from the source with index j at the integration point t of the sensor i by

B(i, j, t) = µ0

4 π

(
3 ej · rijt
‖rijt‖5

2
rijt −

ej
‖rijt‖3

2

)
. (2.5)

The direction and the magnetic moment of a sources are specified by ej ∈ R3×1. The
displacement vector connecting source j with the integration point t of sensor i is
denoted by rijt. To set up L, we predefine the sources by using uniform moments
with ‖e‖2 = 1.

When simulating a static magnetic field using equation (2.5), relevant numerical
errors might arise in regions with strong gradients, where the magnetic field is supposed
to be almost zero. In the studies [Eichardt and Haueisen 2010] and [Eichardt et al.
2010], we compute B using a normalized displacement vector

B(i, j, t) = µ0

4 π ‖rijt‖3
2

(3 [ej · r̃ijt] r̃ijt − ej) with r̃ijt = rijt
‖rijt‖2

(2.6)

that provides a higher numerical stability.
When sensors are modelled as ideal point-like magnetometers, we have for all

sensors constantly t = 1. Therefore, B(i, j, t) is simplified to B(i, j) := B(i, j, 1) and
all indices t can be omitted in the equations (2.4), (2.5), and (2.6).
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2.2.4. Estimating Conductivity Changes in MIT
The linear inverse problem in MIT consists in estimating complex conductivity
changes c ∈ Cn×1 from measured secondary voltage differences v ∈ Rm×1 between
two points in time, with v := v1 − v0. Secondary voltages are related to secondary
magnetic fields that emerge from eddy currents. The kernel matrix J ∈ Cm×n of the
linear inverse problem in MIT is denoted as Jacobian matrix and is defined by

J := ∂v
∂c

. (2.7)

The Jacobian matrix contains all relevant information on the setup of coils and the
electromagnetic modelling.

For electromagnetic computations in MIT, we use the software implementation of
Vauhkonen et al. [2007]. Approximations of Maxwell’s equations are utilized that
consider the frequency for excitation of 10MHz, the size, and the specific electrical
properties of the measurement object. For numerical modelling, the edge finite
element method (EFEM) is used. The electromagnetic field is approximated by first-
order vector basis functions. Further information and details on the applied models
are given by Bíró [1999], Morris et al. [2001], Merwa et al. [2003], and Vauhkonen
et al. [2007].
Each nodal element in the EFEM model contains information on the relative

permeability, relative permittivity, and electrical conductivity of the measurement
object and domain. In our approach, the real parts of c and J are mainly related to
changes of electrical conductivities, whereas the complex parts refer to changes of
relative permittivities primarily. We denote real parts of c, J , and v by

c := real(c) ,
J := real(J ) ,
v := real(v) .

When solving the linear inverse problem of estimating conductivity changes, we
assume that the relative permeability is 1 and that the permittivity is constant. We
can formalize the direct problem of mapping conductivity changes to voltage changes
by

v = Jc , (2.8)

which results in a linear inverse problem of estimating c from v.

2.3. Solving Linear Inverse Problems
2.3.1. Introduction
In this section, we consider general linear inverse problems of estimating parameters
x ∈ Rn×1 from observations y ∈ Rm×1 using the kernel matrix A ∈ Rm×n, according
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to

y = Ax . (2.9)

The simplest approach to obtain x is to use the Moore-Penrose inverse (pseudo-inverse)
A+ (see appendix B.3) with

x = A+y .

Corresponding to Penrose [1955], the Moore-Penrose inverse uniquely exists for all
matrices A. Consequently, also the solution x is existent and unique. However, this
linear inverse problem is still ill conditioned and solutions are in general not stable.
Inevitable noise and errors contained in y affect the solutions x considerably. Therefore,
regularization approaches, such as the truncated singular value decomposition (section
2.3.2) or the Tikhonov-Phillips method (section 2.3.3) are often necessary to obtain
solutions that are not dominated by the effects of noise and errors.
Furthermore, an explicit computation of the Moore-Penrose inverse should be

avoided, since numerical errors and computational costs are higher compared with
calculations using implicit representations of the matrix pseudo-inverse. An overview
on this matter gives Higham [1996, section 13.1].

2.3.2. Truncated Singular Value Decomposition
A generic tool that can be used to compute the inverse solution of problem (2.9) is
the singular value decomposition (SVD) method.
From equation

y = Ax =
(
UΣV T

)
x ,

we can obtain x by

x =
(
UΣV T

)+
y = V Σ+UTy =

r∑
i=1

uTi y

σi
vi (2.10)

with

Σ+ := diag
(
σ−1

1 , . . . , σ−1
r , 0, . . . , 0

)
∈ Rn×m . (2.11)

According to Golub and Kahan [1965] and Björck [1996, section 1.2.5], this x is the
unique solution of the linear inverse problem

min
x

(
‖y − Ax‖2

2

)
, (2.12)

which describes the discrepancy the between measured data y and the forward solution
Ax with respect to the 2-norm. Details on the SVD are given by Golub and Kahan
[1965]; Golub and van Loan [1996] and the appendix B.2.
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When solving inverse problems, for instance by using (2.10), large differences of
singular values σi can lead to considerable amplifications of errors and noise in the
inverse solutions. Relatively large σi represent major features of the kernel matrix
A. Since σ−1

i are then relatively small, the influence of distortions contained in y
on the solution x is also low. Proportionally small σi represent minor features of
A. However, they considerably increase the effects of noise and errors on x, as σ−1

i

are large in relation to σ−1
1 . Differences in the scale among singular values can be

assessed by measuring the condition, which is covered by chapter 3.
By excluding the smallest part of singular values of A from the estimation of x, we

apply the truncated singular value decomposition (TSVD) [Hanson 1971]. In this
regularization process, an similar linear inverse problem with improved condition is
solved.The influence of noise and errors contained in A and y on solutions x can be
reduced.
The TSVD solution of the linear inverse problem can be obtained by

x = xk :=
k∑
i=1

uTi y

σi
vi . (2.13)

The TSVD regularization is controlled by the regularization parameter k ∈ N, with
1 ≤ k ≤ r. Corresponding to [Hansen 1998, sections 4.2 and 5.3], we define filter
factors for the by

fki :=

1 i ≤ k

0 i > k
. (2.14)

An alternative formulation of the TSVD solution xk using filter factors fk is given by

xk =
r∑
i=1

fki
uTi y

σi
vi . (2.15)

By applying the TSVD regularization with k < r, we effectively improve the
condition (see the following section 3.2) of the regularized linear inverse problem.
Because singular values smaller than σk are not utilized to compute the inverse
solution, the condition number of the TSVD regularized linear inverse problem can
be defined

κtsvd(A, k) := σ1(A)
σk(A) . (2.16)

Since k < r ≤ s and σk ≥ σs, we obtain for any matrix A and parameter k

1 ≤ κtsvd(A, k) < κ(A) . (2.17)
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2.3.3. Tikhonov-Phillips Regularization
The approach of Tikhonov-Phillips was similarly proposed by Phillips [1962] and
Tikhonov [1963], cited by Hansen [1998]. It extends the problem (2.12) by introducing
a model term to improve the condition and solution stability. The linear inverse
problem solved by the Tikhonov-Phillips approach consists in

min
x

(‖y − Ax‖2
2︸ ︷︷ ︸

data term

+λ2 ‖Rx‖2
2︸ ︷︷ ︸

model term

) , (2.18)

where λ ∈ R, with λ ≥ 0, is the regularization parameter that weights between the
model and the data term. The regularization operator R ∈ Rn×n can be designed to
achieve smooth solutions x by using second order spatial derivatives [see, for example
Messinger-Rapport and Rudy 1988] or, in the simplest case of R = I, to privilege
solutions with minimum energy ‖x‖2

2.
A solution of the minimization problem (2.18) can be obtained [see, for example

Golub et al. 1999] by

x = xλ :=
(
ATA+ λ2RTR

)−1
ATy . (2.19)

For the standard form of (2.18) with R = I, the equation (2.19) can be simplified to

xλ =
(
AT A+ λ2In×n

)−1
ATy . (2.20)

For underdetermined linear inverse problem with R = I, solutions xλ are computed
more efficiently by

xλ = AT
(
AAT + λ2Im×m

)−1
y . (2.21)

To express the standard form of the Tikhonov-Phillips regularization by filter
factors and the SVD components, we define fλ corresponding to Hansen [1998,
section 5.1.1] by

fλi := σ2
i

σ2
i + λ2 . (2.22)

With fλ we can obtain xλ by

xλ =
r∑
i=1

fλi
uTi y

σi
vi . (2.23)

When applying the TSVD and Tikhonov-Phillips methods with λ ≈ σk, similar
inverse solutions with xk ≈ xλ are often obtained. In general, the matrix inverse
in equations (2.19) – (2.21) should not be computed explicitly. In MathWorks®

MATLAB, the mldivide operation is typically applied.
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2.3.4. Choice of Regularization Parameters
The choice of regularization parameters, which are k for TSVD and λ for Tikhonov-
Phillips, has essential influences on the quality of inverse solutions x. If an inverse
problem is insufficiently regularized, that is, we use too high values of k or too small
values of λ, then x is dominated by effects of errors and noise. On the other hand, an
excessive regularization leads to a poor explanation of the measurement data y and
to results, which are overly biased by the applied regularization model. An optimal
determination of regularization parameters is in practice often a difficult issue.

Two frequently used methods, which determine regularization parameters automat-
ically, are the generalized cross validation (GCV) method introduced by Wahba [1977]
and the L-curve of Hansen [1992]. GCV provides the regularization parameter that
minimizes the weighted mean square of the data prediction error, which is specified
in equation (1.4) of [Wahba 1977]. Noise and errors are assumed to be uncorrelated
with zero mean and common, possibly unknown variance.

By applying the L-curve, we select the regularization parameter α that sufficiently
minimizes the residual

‖Axα − y‖2 (2.24)

and the model term

‖Rxα‖2 . (2.25)

For TSVD, we use R = I in the model term. The vector xα is the inverse solution
obtained with regularization parameter α. The plot of the quantity (2.25) against
(2.24) in log-log scale often exhibits an L-shaped curve. The particular α representing
the corner of the L-curve with maximum curvature is considered as optimal. An
overview on these and further approaches to set regularization parameters provide
Hansen [1998, chapter 7] and Vogel [2002, chapter 7]. In certain cases, GCV and
L-curve do not result in proper values for α. This occurs when the prediction error
exhibits no minimum, the L-curve has no adequate L-shape, or the corner of the
L-curve can not be detected correctly.

Alternatively, we can also chose regularization parameters empirically. One possib-
ility to set k in case of the TSVD is

k = dβ re , (2.26)

where r = rank(A); β is manually chosen based on previous solutions or tests, with
0 < β ≤ 1. From this k, we can choose λ for the standard form of the Tikhonov-
Phillips approach by

λ = σk .

This empiric approach does not consider any optimality criterion. However, it often
results in acceptable solutions when the linear inverse problem, its condition, and
the characteristics of noise and errors are varying only inconsiderably for different
representations of the measurement data.
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2.3.5. Weighted and Sparse Solutions
The TSVD and Tikhonov-Phillips (with R = I) methods privilege solutions with
minimum norm ‖x‖2. This results in a minimum energy bias of the solutions x, which
appear smooth and non-focal. This bias is particularly critical when the distances
between the positions of the sources and sensors differ considerably and when the
source space is only partly framed by sensors. Owing to the minimum 2-norm bias,
the estimated activity of sources is often too closely located at the sensors.
To reduce the localization bias for distant sources, we can use a specific source

weighting matrix R to adapt the linear inverse problem in equation (2.19), as presented
for instance by Köhler et al. [1996]. Furthermore, we can normalize the kernel matrix
A prior to the inversion process by left multiplication with a matrix N ∈ Rn×n. The
linear inverse solution using the parameter α for regularization and the matrix N for
normalization can be obtained by

x = N(NA)+
αy .

When defining N [see, for example Phillips et al. 1997] by

N := diag
(
‖A[∼, 1]‖−1

2 , . . . , ‖A[∼, n]‖−1
2

)
,

where A[∼, i] represents the ith column of A, we obtain for all columns of the matrix
product NA identical sensitivity values corresponding to the definitions in section 3.6.
However, the weighting of distant sources can result in considerable disturbances in x
when the measurement data are affected by higher levels of noise. Furthermore, the
regularization and determination of regularization parameters have more pronounced
effects on x compared with uncompensated solutions.

To facilitate sparse solutions x with only a few elements unequal zero the 1-norm
in the model term can be utilized [Tsaig and Donoho 2006]. The resulting inverse
problem consists in minimizing the expression

min
x

(
‖b− Ax‖2

2 + λ2‖Rx‖2
1

)
. (2.27)

Owing to the 1-norm, problem (2.27) is not linear and requires iterative solvers.
Various algorithms exist to obtain sparse solutions. Basic approaches were proposed
for example by Gorodnitsky et al. [1995], Natarajan [1995], and Daubechies et al.
[2008]. As reported by Gorodnitsky et al. [1995], recursively weighted 1-norm
solutions provide higher spatial accuracies for deep sources than weighted solutions
with minimum 2-norm.



3
Assessing Condition and Sensitivity

3.1. Overview
Linear inverse problems can be characterized by assessing the properties of the
respective kernel matrix. The main part of this chapter focusses on the evaluation
of the matrix condition using the condition number with respect to the 2-norm and
the ratio between largest and mean singular value. By evaluating the condition,
we can quantify the potential amplification of noise and errors in the measurement
data on the linear inverse solution. Moreover, we present approaches to quantify
the sensitivity of measurement systems to conductivity changes and to activities of
electromagnetic sources.

3.2. Condition and the Condition Number
A frequently used measure of condition is the condition number κp relative to the
p-norm. The condition number as a measure for rounding-off errors was first applied
by Turing [1948].
For square matrices A, κp(A) is defined by

κp(A) := ‖A‖p ‖A−1‖p (3.1)
with κp(A) :=∞, if A is singular [Golub and van Loan 1996, section 2.7.2].

Kernel matrices related to linear inverse problems in magnetic applications are in
general not square. To analyse the condition of a rectangular matrix A, we apply
corresponding Zielke [1988] the Moore-Penrose inverse A+ to compute κp with

κp(A) := ‖A‖p ‖A+‖p , (3.2)
and κp(A) :=∞, if A is rank-deficient. For square A, the definitions (3.1) and (3.2)
are equivalent. The condition number of A ∈ Rm×n with respect to the 2-norm
follows from (3.2) with

κ(A) := κ2(A) = σ1(A)
σs(A) , (3.3)

19
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where σ1 is the largest and σs the smallest singular value including 0. The index s
denotes the total number of singular values with

s := min(m,n) . (3.4)

Similar to Higham [1995], we define the condition of the linear inverse problem

y = Ax , (3.5)

with A ∈ Rm×n, by

κp(A, y) := κp(A) + ‖A
+‖p ‖y‖p
‖A+y‖p

. (3.6)

The inequality

‖A‖p ≥
‖y‖p
‖x‖p

, (3.7)

follows from the definition (3.5) and from the property ‖Ax‖p ≤ ‖A‖p ‖x‖p [Golub
and van Loan 1996, inequality (2.3.3)]. Using ‖A+y‖p = ‖x‖p, the inequality (3.7),
and the definitions (3.2) and (3.6), we obtain analogue to Higham [1995]

κp(A) ≤ κp(A, y) ≤ 2κp(A) . (3.8)

With this limitation, the matrix condition number κp(A) is an adequate measure for
the condition κp(A, y) of a related linear inverse problem, too.
By κp and κ we denote the condition numbers with respect to the p-norm and

the 2-norm for any A ∈ Rm×n. The following properties apply to κp [Hogben 2007,
section 37.5]

κp ≥ 1 ,
∀l ∈ R? : κp(l A) = κp(A) ,
κp(WA) ≤ κp(W )κp(A) ,
∀p, q ∈ {1, 2, F,∞} : ∃ l1, l2 ∈ R+ : l1 κp(A) ≤ κq(A) ≤ l2 κp(A) , (3.9)
κ(A) = 1 ⇐⇒ ∃ l ∈ R? : ATA = l I ∨ AAT = l I ,

κ(A) =∞ ⇐⇒ rank(A) < s ,

κ(A) = κ(A+) = κ(AT ) .

Specific values for the constants l1 and l2 in inequality (3.9), depending on p and
q, are given by Zielke [1988]. Further properties of the SVD and matrix norms are
provided in appendices B.2 and B.4.
For square matrices, κ−1 is a measure for the normwise [Demmel 1987], [Stewart

and Sun 1990, theorem III.2.8], [Demmel 1997, theorem 2.1] and the componentwise
distance [Rump 1999] to the nearest singular matrix. For rectangular matrices, κ−1
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proportionally measures the normwise distance to the nearest rank-deficient matrix
[Demko 1986].
Furthermore, κ(A) quantifies the sensitivity of A−1 to changes in A [Stewart and

Sun 1990, page 119f]. Referring to linear inverse problems, κ denotes likewise the
sensitivity of the output to changes in the input. Such changes in the input are not
solely related to the measurement signal. The input data are constantly effected
by measurement noise and numerical errors. Demmel [1988] applies the condition
number as a general measure of difficulty for problems in numerical analysis.

As κ can also be considered as a measure of row dependency, Di Rienzo et al. [2005]
use κ as a rough indicator for the information content of a kernel matrix. They apply
κ to compare sensor arrangements of mono-axial and three-axial magnetometers.
The condition number was further used by Rouve et al. [2006] to identify optimal
arrangements of magnetic sensors.

3.3. Computing Singular Values and the Condition
Number

To compute singular values and vectors, software packages often revert to efficient
LAPACK implementations. A documentation on LAPACK is available from Anderson
et al. [1999]. To compute singular values and κ, we use with the exception of section 4.2
the SVD algorithm of MathWorks® MATLAB. For the decomposition of real matrices
in double precision, MATLAB 2010a deploys the QR-based LAPACK DGESVD
routine.

DGESVD results in deviations of computed singular values σ̂i from true values σi,
bounded by [Anderson et al. 1999, section 4.9.1]

|σ̂i − σi| ≤ ε σ1 , (3.10)

in which ε ≈ 2.2× 10−16 is the relative floating-point accuracy of the 64 bit systems
we deployed for the computations. Consequently, a high relative accuracy in σ̂i is
only ensured for singular values close to σ1. For particularly small values σi, we have
to anticipate significant numerical errors. To compute κ, we divide corresponding
the definition (3.3) by the smallest singular value σs, which is a numerically instable
operation, too [see, for example Hermann 2001, chapter 1.2].
Considering the definition of the condition number in (3.3), the accuracy of κ

crucially depends on the smallest singular value σs. Using the inequality (3.10), we
obtain for the relative error of σs

|σ̂s − σs|
σs

≤ ε σ1

σs
= ε κ . (3.11)

Consequently, values of κ with κ ≥ ε−1 are potentially inaccurate even in the order
of magnitude. Demmel [1987] and Higham [1995] state that the condition number of
computing the condition number is the condition number.
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For special classes of matrices it is possible to compute all, even tiny singular values
with high relative accuracy. For instance, special methods for the rank-revealing
decomposition with a subsequent SVD provide high relative accuracies of singular
values for graded, totally positive, and Cauchy matrices. An overview on this topic
give Demmel et al. [1999]. However, this is in general not possible for all matrices
and the costs of computing the SVD can increase significantly. As noted by Demmel
et al. [1999, page 27], the DGESVD is to date the most accurate LAPACK routine
for the SVD of general dense matrices, such as the kernel matrices of linear inverse
problems, which we are considering.

3.4. Ratio of Largest and Mean Singular Value as
Measure of Condition

To assess the condition of a matrix A, we introduce the measure ρ that quantifies
the ratio between largest and mean singular value of A. We define ρ by part 1 of

ρ(A) 1:= σ1(A)
1
n

∑n
i=1 σi(A)

2= nσ1(A)∑n
i=1 σi(A)

3=
(

1
n

n∑
i=1

σi(A)
σ1(A)

)−1

, (3.12)

with ρ(A) :=∞, if A = 0 . Part 1 of the definition (3.12) is equivalent to the ratio
of n-times the largest singular value divided by the sum of singular values (part 2).
Corresponding to part 3 of (3.12), ρ is a measure for the average decay of singular
values of A, too.

A visual evaluation of the decay of singular values has been used before by Nalbach
and Dössel [2002] to compare the information content of MCG and ECG (electrocar-
diography) sensor arrangements. Moreover, Engl et al. [1996, section 2.2] use this
decay to quantify the degree of ill-posedness1 of a linear inverse problem.
We use ρ as a qualitative measure of the matrix condition. However, it does not

directly reflect the distance to singularity or to a matrix of smaller rank. In particular,
ρ is an appropriate surrogate for κ when effects of numerical inaccuracies that occur
during the computation of κ should be avoided or when values of κ may exceed the
inverse of the relative floating point accuracy (refer previous section 3.3).
From the definition (3.12), we can conclude the following properties of ρ

ρ(A) ≥ 1 ,
∀l ∈ R? : ρ(l A) = ρ(A) ,
ρ(A) = 1 ⇐⇒ ∃ l ∈ R? : ATA = l I ∨ AAT = l I ,

ρ(A) = ρ
(
AT
)
.

1In the framework of this thesis, the terminology measure of condition is more appropriate than
measure of ill-posedness. We term corresponding to section 2.2.1 a problem as ill posed, if solutions
show numerical instabilities and if they may not exist or be unique. Ill-conditioned linear inverse
problems lead to instable solutions.
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Figure 3.1.: Semi-logarithmic plot of the singular values of two kernel matrices that
incorporate the PTB 304 channel SQUID sensor system and the source
grids 3 (blue solid lines) and 4 (red dashed lines) of the following section
4.3.2. The largest, mean, and smallest singular values are indicated by thin
horizontal lines.

Figure 3.1 shows as an example the semi-logarithmic plot of the singular values of
two lead field matrices related to linear inverse problems in magnetostatic applications.
The decay to zero without particular gaps and the roughly exponential slope are
characteristic for the distribution of the singular values in such applications. The
horizontal lines in Figure 3.1 indicate the largest, mean, and smallest singular values,
which represent the basis for the determination of κ and ρ.

3.5. Comparing the Condition for Different Sensor
Arrays

To reasonably compare the condition of linear inverse problems for different sensor
arrays by means of κ or ρ, the kernel matrices have to involve identical definitions
of the source space and exhibit identical numbers of singular values. Consequently,
the linear inverse problem is required to be overdetermined with fewer sources than
sensors or in case of underdetermined linear inverse problems the sensor arrays have
to deploy equal numbers of sensors.
In contrast, Figure 3.2 illustrates that comparing sensor arrays with different

numbers of sensors by κ and ρ is in general not meaningful for underdetermined
linear inverse problems. The PTB 304 channel sensor array provides higher and,
therefore, worse values of κ and ρ compared with its subset of the 114 lowest sensors.
To reduce the effects of noise and errors to solutions of linear inverse problems,
regularization methods are applied to improve the condition. In case of the TSVD
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Figure 3.2.: Semi-logarithmic plot of singular values of two lead field matrices, both us-
ing the source grid 4 with 3025 sources of the following section 4.3.2. One
example kernel matrix uses the PTB 304 channel sensor system including
all sensors (red dashed lines). The second kernel matrix implies the sub-
set of the lowest 114 SQUID sensors (blue lines). The largest, mean, and
smallest singular values are indicated by thin horizontal lines.

method (see section 2.3), the particular singular value related to the truncation
threshold k determines together with the largest singular value the condition of the
regularized linear inverse problem. Since the singular values 2–114 are larger for
the 304 channel configuration and because the largest singular values are almost
identical, the use of the 304 channel setup leads in practice to a better condition of
the regularized linear inverse problem and to more stable solutions.
To enable specific comparisons of sensor arrays with different numbers of sensors,

we can evaluate the condition relative to the kth singular value. We define κ and ρ
relative to the kth singular value of the kernel matrix, with 1 ≤ k ≤ rank(A), by

κ k(A) := σ1(A)
σk(A) (3.13)

and

ρ k(A) := σ1(A)
1
k

∑k
i=1 σi(A)

. (3.14)

Besides measuring the condition, further criteria to assess and compare sensor
arrangements with respect to linear inverse problems were proposed. Di Rienzo
and Haueisen [2007] used the projection method to compare mono-axial with three-
axial magnetometer arrays in the application of MCG. Furthermore, Di Rienzo
and Haueisen [2006] defined lower error bounds of TSVD solutions to assess the
performance of sensor arrangements. Curtis et al. [2004] determined average angles
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between the rows of the kernel matrix, which represent the receivers of a measurement
device, to quantify the the dependency in n-dimensional space. Davide et al. [1993]
deployed the sensitivity and resolution of a non-linear forward operator for the
evaluation of sensor arrays.

3.6. Sensitivity Analysis
By analysing the sensitivity of a lead field matrix L ∈ Rm×n, we are able to measure the
influence of electromagnetic dipoles at particular source positions on the measurement
system. We define the sensitivity of a magnetic sensor array relative to the source
with index i by

SLi :=
m∑
j=1
|L[j, i]| . (3.15)

In case that each source position i comprises three orthogonally directed dipoles with
row indices x(i), y(i), and z(i), we extend the definition (3.15) to

SL
3

i := SLx(i) + SLy(i) + SLz(i) (3.16)

to quantify the total sensitivity. In section 4.3, we evaluate the sensitivity of lead
field matrices to sources that are represented by point-like magnetostatic dipoles. In
this application, SL and SL3 solely depend on the sensor array, the source positions,
and the source directions. Units of SL and SL

3 are in TA−1m−2 (magnetometer
arrays, magnetic sources), TA−1m−3 (arrays of first-order gradiometers, magnetic
sources), TA−1m−1 (magnetometers, electrical sources), and TA−1m−2 (first-order
gradiometers, electrical sources), respectively.

Similarly, we define for MIT coil setups the sensitivity to changes of the electrical
conductivity in a volume element i by considering the Jacobian matrix J with

SJi :=
m∑
j=1
|J [j, i]| . (3.17)

The inherent dependency of SJ on the volumes of finite elements has to be considered
when evaluating the sensitivity in MIT. The quantities of SJ are given in units of
VmS−1.

To obtain scalar measures for the sensitivity, we use in section 4.5 the median of SJ .
Other formulations of the sensitivity were presented by Soleimani [2005], Soleimani
et al. [2006], and Pham and Peyton [2008].
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4
Improving Sensor and Source Configurations

4.1. Overview
This chapter focusses on improving the condition of linear inverse problems and on
evaluating the sensitivity in magnetic applications.
In section 4.2, we optimize sensor positions and directions for the application of

MCG. A newly developed tabu search algorithm is applied to find sensor arrangements
that result in lead field matrices with a minimum condition number. The presented
work is based on the publication [Lau et al. 2008b].

The objective of section 4.3 is to identify source grid parameters that provide
an improved condition of the magnetostatic linear inverse problem in magnetic
nanoparticle imaging. Thereby, we use ρ to measure the condition, as ρ provides a
higher numerical stability than κ. This part of the thesis is based on the publications
[Eichardt et al. 2010] and [Eichardt et al. Submitted].
In section 4.4, we investigate the influence of random variations in the sensor

directions on the condition. We show that the condition number κ can be considerably
reduced when the sensors directions are randomly varying compared with uniform
directions toward -Z. The original work on this topic was published in [Eichardt and
Haueisen 2009] and in [Eichardt and Haueisen 2010].

The fourth section of this chapter, 4.5, addresses the linear inverse problem in MIT.
By simulations we evaluate and compare the sensitivity and condition for exemplary
arrangements of measurements and excitation coils. This section is essentially based
on the work published in [Eichardt et al. 2009b], which focusses on the sensitivity
comparison for MIT systems in the application of stroke classification. In this thesis,
however, we use a more general volume of interest. Therefore, the methods, results,
and conclusions in this thesis differ slightly from the previous publication.

27
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4.2. Optimization of Sensors Arrangements

4.2.1. Introduction
The question of how to optimally arrange sensors arises in many applications, in
particular, if the number of sensors is limited by technical restrictions, the sensors
and the measurement equipment are expensive, and if sensors can be placed in a
spacious region without considerable limitations.
In this section, we present a general approach to optimize sensor configurations

with respect to linear inverse problems. As an exemplary application, we focus on
the optimization of the sensors positions and directions for MCG.

4.2.2. Principles of Tabu Search
Optimization Scheme

We address the optimization of the sensor positions and directions with respect to
the condition number κ of the lead field matrix L.

To optimize the arrangement of sensors, a lead field L incorporating the definition
of the source space and all possible sensor positions and directions is created first.
In this process, the source space contains a configuration of sources that cover the
considered application representatively. The row i of L ∈ Rm×n, with 1 ≤ i ≤ m,
describes the influence of the n defined sources on the sensor i. If the sensors are
not subject to structural dependencies, the rows of L can be handled individually.
For example, such dependencies typically arise when three-axial magnetometers are
modelled by three mono-axial sensors.
Within the process of optimization, we improve the condition by identifying the

subset of rows of L, which provides the minimum condition number κ for a predefined
number of sensors. A similar approach that uses a sequential selection algorithm
was presented by Lux et al. [1978] to reduce the number of leads in body surface
potential maps.

Tabu Search Algorithm

To find an optimal set of sensors, we utilize the heuristic tabu search optimization
procedure, presented by Glover [1990] and Glover and Laguna [1997]. When looking
for an optimal subset of w from m sensors with minimum condition number κ, the
search space is represented by(

m

w

)
= m!
w! (m− w)! (4.1)

possible combinations of sensors, if the selection is not restricted by constraints.
The proposed tabu search strategy we use to optimize the arrangement of sensors

is illustrated by Algorithm 1. The input of the algorithm mainly consists of the
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Algorithm 1 Tabu search algorithm to find w sensors that minimize κ.
Require: L ∈ Rm×n ∧ 1 ≤ w < m ∧ MaxIter > 1 ∧ NumNeighbours ≥ 1
Ensure: W ∗ ⊂ W with |W ∗| = w∧∀W ′ ∈ TabuList : κ(L[W ∗,∼] ) ≤ κ(L[W ′,∼] )
W ← {1, . . . ,m} /* indices of sensors */
W ∗ ← CreateRandomSubset(W,w) /* with W ∗ ⊂ W ∧ |W ∗| = w */
κ∗ ← κ(L[W ∗,∼] ) /* condition number as the optimization criterion */
TabuList← {W ∗ } /* insert W ∗ into tabu list */
for Iter = 1 to MaxIter do
NumExchange← SetExchangeNumber(Iter,MaxIter, w)
for i = 1 to NumNeighbours do
W ′ ← ExchangeSensors(W \W ∗,W ∗, NumExchange)
if W ′ /∈ TabuList then
κ′ ← κ(L[W ′,∼] ) /* condition number of new arrangement */
if κ′ ≤ κ∗ then
W ∗ ← W ′ /* update optimum */
κ∗ ← κ′

end if
TabuList← TabuList ∪ {W ′ } /* do not evaluate this W ′ again */

end if
end for

end for

lead field L ∈ Rm×n, which contains the information on all m possible sensors, and
the number of sensors to select, w. Further input parameters specify the number
of iterations (MaxIter) and the quantity of new neighbouring solutions created in
each of the iterations (NumNeighbours). The tabu search algorithm returns a set
of sensor indices W ∗, with |W ∗| = w, providing the minimum condition number
κ∗ = κ(L[W ∗,∼] ). The matrix L[W ∗,∼] denotes the lead field derived from the
input L that comprises only the rows with sensor indices in W ∗.

Besides the limitation of iterations byMaxIter, we do not apply more sophisticated
break criteria, such as an evaluation of the optimization progress. New solutions of
the optimization problem are generated by the ExchangeSensors() function. In each
iteration, NumNeighbours new candidate solutions W ′ are created from the current
optimum set of sensor indices W ∗ by exchanging NumExchange elements between
W ∗ and W \W ∗. The variable NumExchange is automatically set, depending on
the current iteration number, MaxIter, and w. The tabu search typically starts
with relatively large values of NumExchange to enable a globally oriented search.
During the process of optimization, this parameter is gradually decreased to improve
the local search ability. The ExchangeSensors() function and the initial lead field L
are designed such that violations of optimization constraints are fully avoided. In
particular, L contains only sensors that comply with the minimum distance criterion
and ExchangeSensors() does not select sensors with different directions at identical
positions. Therefore, the expensive clearance of conflicts is not required. By default,
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we do not apply practically relevant limitations to the size of the tabu list. However,
it is easily possible to set such a limit and to remove outdated list elements.

Notes on the Implementation

We implemented the tabu search algorithm in ANSI C++ using the GNU compiler
collection. Algorithms and data containers from the standard template library (STL)
were used as algorithmic foundations. The text book of Josuttis [1999] gives an
extensive overview on the STL in C++ .

To quantify upper bounds in terms of f for the complexity and the computational
costs g of an operation, we use corresponding Knuth [1976] the O-notation with

g(x) ∈ O(f(x)) ⇐⇒ ∃c, x0 : ∀x > x0 : |g(x)| ≤ c f(x) . (4.2)

The variable x specifies the dimension of the input data, such as the number of
elements or the matrix size. For instance, we term costs g as polynomial, if

g(x) ∈ O(f(x)) where f(x) = xa

and a is constant, or shorter, if

g(x) ∈ O(xa) .

To enable a simple notation, we use in the pseudocode of Algorithm 1 sets or fam-
ilies of sets as containers. For the efficient data handling, the C++ implementation
operates with vectors and maps (balanced trees) instead. The sensor indices W , W ∗,
and W ′ are represented by vector<unsigned int> containers. Sensor indices are
inserted into W at the beginning of the optimization procedure. The randomized
exchange of used and unused sensors indices is accomplished by the random_shuffle,
swap_ranges, and sort methods. The computational costs of creating a new config-
uration of sensors W ′ can be quantified with O(m+ w logw), where m is the total
number and w the number of used sensors.
To store already evaluated candidate solutions W ′ in the tabu list efficiently, we

utilize the map container by introducing a <-relation for vectors of sensor indices. The
STL maps are implemented as balanced red-black trees, which provide logarithmic
complexities for all elementary operations. Consequently, the location, insertion, and
deletion of sensor configurations within the tabu list result in computational costs of
O(log x), where x is the number of elements contained in the TabuList map.

The most expensive operation in Algorithm 1 is the computation of the optimization
criterion κ for a lead field submatrix of a given sensor configuration W ′. These costs
are dominated by the complexity of the SVD. The SVD results in costs of O(wn2) for
a matrix L[W ′,∼] ∈ Rw×n, in which without loss of generality w is greater or equal
n (otherwise, we transpose L and the SVD result).

In conclusion, the computational costs of tabu search for optimizing an array with
w of m sensors in MaxIter iterations is asymptotically bounded by

O(MaxIter (m+ w logw + log x) + xwn2) , (4.3)
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where n specifies the number of considered sources and x is the maximum number of
solutions in the tabu list.

4.2.3. Sensor Optimization in Magnetocardiography
Introduction

The proposed tabu search algorithm is applied for the optimization of sensor ar-
rangements in MCG. Newly emerging sensor technologies, such as optically pumped
magnetometers, work at room temperature and facilitate less restrictive arrangements
of sensors. Furthermore, we compare the performances of the tabu search algorithm
with a quasi-continuous particle swarm optimizer (PSO). Stephan Lau developed
this version of PSO and carried out the simulations for our joint publication [Lau
et al. 2008b]. I thank him for supplying simulation data and results, presented in
this section of my thesis.

Methods

We optimize sensor arrangements in a 20 cm × 20 cm sensor plane in front of the
human chest. The search space for the tabu search optimization is represented by
11× 11 potential sensor positions, in combination with 26 possible directions. The
compliance with the minimum sensor distance constraint of 2 cm is implicitly satisfied
by using any of these sensor positions. To search globally and locally, we linearly
reduce the number of sensors to be exchanged from w/2 to 1 over the first 2/3 of
iterations.

Although PSO is able to search in continuous space, a discretization of 2.5mm in
X/Y direction is applied to reduce the computational costs of generating the lead
field matrices. This results in 85× 85 possible sensor positions, combined with 62
possible sensor directions. The computational costs of tabu search and PSO are
limited to produce a maximum of 106 candidate solutions. For the optimization
of sensor arrangements, we consider arrays with w = 13 to 99 sensors. For both
optimizers, the best results out of ten runs are presented.
The source space model comprises 13 current dipoles, distributed around the left

ventricle of the heart with the positions {apex} ∪ {antero, latero, septo, infero} ×
{apical, medial, basal}. The volume conductor model is based on the magnetic
resonance imaging data from a healthy volunteer and on quasi-static formulations of
the Maxwell equations. To model the propagation of the electromagnetic field, we
use the boundary element method with linear approximations. The compartments
are represented by the surfaces of the lungs and the torso with transitions of the
conductivity corresponding Geddes and Baker [1967] from 0.04 to 0.2 Sm−1.

The data for the volume conductor and the source model were previously created
by Haueisen et al. [2002] and used by Di Rienzo et al. [2005]. The minimum distance
between the torso surface and the sensor plane is 2.7 cm. Lead field matrices that
contain all possible sensor positions and directions are created with the SimBio [2011]
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Figure 4.1.: Plane of the 11 × 11 possible sensors positions (•) and the surface of the
torso volume.

toolbox. Figure 4.1 illustrates the possible sensor positions in front of the torso
surface.

Results

The condition number κ of the optimized sensor arrangements using tabu search and
PSO are presented in Figure 4.2a for sensors numbers w between 13 and 99. The
condition numbers for regular, not optimized sensor arrangements lie between 765
and 1318. By optimizing the sensor positions and directions with tabu search, κ is
reduced to values between 103 and 203. A small growth of κ for increasing numbers
of sensors can be observed. The optimized condition numbers using tabu search
are in our simulations slightly lower compared with PSO. Also the increase of κ for
increasing numbers of sensors is less pronounced for tabu search than for PSO. One
example of an arrangement with 41 sensors optimized with tabu search is shown in
Figure 4.2b. The sensors are preferably positioned in regions with strong gradients
of the magnetic field. The distribution of sensors clearly deviates from a regular
arrangement.

4.2.4. Discussion
For the application of MCG, the condition number κ can be considerably reduced by
optimizing the arrangements of sensors. In our study, tabu search produces slightly
better results than the quasi-continous PSO method, which uses finer discretizations
of sensor positions and directions. The benefits of tabu search regarding PSO can be
explained by the combinatorial optimization, which avoids constrained solutions and
redundant determinations of the objective function values.
Furthermore, the number of combinatorially possible sensor arrangements cor-

responding equation (4.1) is in the majority of practical applications considerably
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Figure 4.2.: Results of the tabu search showing the optimized positions and directions
of the sensors.

smaller than the search space of quasi-continuous optimizers. This search space
consists of(∏

i

dim (xi)
)w

potential parameter sets that describe the positions and directions of sensors when
no constraints are applied. Thereby, dim(xi) denotes the quantity of possible values
of the optimization variable xi. The smaller search space of tabu search likely also
accounts for the minor growth of κ when the number of sensors to be optimized is
increasing.

The values of κ that are provided by tabu search are in our example comparatively
small. This indicates a relatively well conditioned linear inverse problem, which is
mainly caused by the relatively small number of sources. In addition, the small
distances between the sensors and the torso surface lead to a low condition number,
too. To substantiate the optimality of the resulting arrangements of sensors, further
optimizations with different application-related source and volume conductor models
are recommended. The presented study constitutes a first step in the optimization
of sensor arrangements for MCG. Since many sensors are positioned close to the
boundary of the predefined sensor plane (see Figure 4.2b), the increase of the area of
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possible sensor locations seems beneficial. In the subsequent publication of Lau et al.
[2008a], PSO is used to improve the arrangement of sensors for vest-like arrays.

Compared with other tabu search approaches as they are applied, for example for
schedule or graph optimizations, the presented algorithm appears relatively simple.
In particular, we realize just two basic features of tabu search algorithms. First,
we use an almost unlimited tabu list to prevent re-evaluations of known sensor
combinations. Second, we create new candidate solutions in the neighbourhood of
the currently best solution by exchanging sensors. The simplicity of this tabu search
strategy enables the control of the optimization by only few parameters: the number
of iterations (computational costs), the number of neighbours (costs per iteration),
and the number of sensors to be exchanged (locally and/or globally oriented search).
To further improve the tabu search strategy, two-level approaches with a subsequent
continuous optimization can be deployed.
The tabu search algorithm is designed as a generic tool to optimize sensor ar-

rangements with respect to linear inverse problems. Sensor arrays providing an
optimal figure of merit are obtained by directionally testing manifold combinations
of sensors. Besides the application in MCG, this tabu search strategy can be applied
in numerous fields to place multiple magnetometers, coils, or electrodes optimally.
Such fields are MIT [Eichardt et al. 2009b; Gürsoy and Scharfetter 2009], electrical
impedance tomography [Polydorides and McCann 2002; Graham and Adler 2007],
the transcranial stimulation of direct current [Im et al. 2008; Datta et al. 2008], and
the reconstruction of currents in superconducting cables [Bruzzone et al. 2002; Zhang
and Di Rienzo 2009].
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4.3. Effects of the Definition of Source Space Grids
on the Condition

4.3.1. Introduction
We focus in this section on the application of estimating magnetic nanoparticle
distributions from remanence measurements. Our objective is to evaluate the effects
of parameters that define the source space on the condition of the magnetostatic
linear inverse problem. The parameters we consider are the number of sources, the
extension of the source space grid, and the directions of sources. In particular, we
aim to identify parameter sets that lead to an improved condition of the related lead
field matrix.
Furthermore, we quantify the changes of the condition and sensitivity when the

distance between sensor and source spaces is increased. This quantification gives
relevant insight into the characteristics of the magnetostatic linear inverse problem.
For example, substantial differences in the sensitivity to sources can lead to overly
biased solutions when applying the TSVD or Tikhonov methods without lead field
weighting or normalization.

4.3.2. Methods
Forward Modelling

As sensor models, we use the layouts of two magnetometer arrays, which we typically
apply for magnetic nanoparticle measurements. The first array is the 304 channel
PTB vector magnetometer system (see section 2.1, Figure 2.1), which we test in 4
configurations: ‘PTB 304ch’ includes all 304 sensors, ‘PTB 114ch’ includes the lowest
114 sensors with Z < 0.5 cm, ‘PTB 190ch’ includes the sensor layers with Z < 3.5 cm,
and ‘PTB 247ch’ includes the sensors with Z < 7.5 cm. The AtB Argos 200 sensor
system is used with 195 sensors, ‘ATB 195ch’.

To model the source space, we use regular planar grids of magnetostatic dipoles. The
distance between the lowest sensor plane and the source grid is 6 cm, which represents
a typical distance between the sensor system and the magnetic nanoparticles in our
application.

If not stated otherwise, the default parameters for the number of sources is defined
to be 25 × 25 = 625 and the source grid area is configured with the dimensions
0.28m× 0.28m, including extensions of 2 cm beyond the sensor area in the positive
and negative X and Y directions. The standard direction of the source dipoles is +Z.
The centres of the source grids at X = Y = 0 are equivalent to the X/Y-centres of
the sensor arrays.

The magnetostatic lead field matrix is set up according section 2.2.2. To quantify
and to improve the condition, we use the measure ρ according section 3.4. In the
simulation V (see below), we additionally use κ to measure the condition with respect
to the 2-norm.
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Simulations to Evaluate the Effects of Source Grid Parameters on the
Condition

To optimally choose the parameters of the source space grids for our application, we
examine in four simulations the effects of the number of sources, the grid extension,
and the source dipole directions on the condition of the linear inverse problem. In a
fifth simulation, we quantify the relative improvements of TSVD solutions when us-
ing source grids that provide according to the simulations I–IV an improved condition.

The objective of simulation I is to investigate the influence of the number of
sources on ρ. The number is increased from 5 × 5 = 25 to 50 × 50 = 2500 while
keeping the grid extension and the dipole directions constant at their default values.
In simulation II, we vary the extensions of the source space grid with respect to the
sensor area, from −0.08m (smaller than the sensor area) to +0.12m (larger than the
sensor area) in positive and negative X and Y directions. Simulation III combines
the simulations I and II and evaluates simultaneously the effects of the number of
sources and the source grid extension on ρ. In simulation IV, we gradually change
the uniform directions of the dipolar sources in the grid from 0◦ (Z-direction) to 90◦
(X-direction).

Concrete effects of adapted source grids on the quality of linear inverse solutions
are studied in simulation V. TSVD solutions using four exemplary source space
grids, identified with 1–4, are compared. In this set, the two pairs 1 & 2 and 3 & 4
provide identical number of sources. To define the source grids 2 and 4, we use grid
extensions and source directions, which should improve the condition of the related
linear inverse problem. The parameters that define the source grids 1–4 are given in
Table 4.1.

We simulate one magnetostatic dipole with a magnetic moment of 1× 10−9 Am2

at the position P0 = (0.001, 0.001, 0.065). This dipole is directed toward +Z for
the source grids 2 and 4 and toward +X for the source grids 1 and 3. To simulate
the measurement data, the model of the sensor array ‘PTB 304ch’ is used. White
Gaussian noise with an SNR of 5 dB with respect to the signal level of the simulated
source directed toward +X is added. With each source grid, 100 simulations using
different random representations of noise are performed.
The quality of the resulting TSVD solutions are evaluated by testing all possible

truncation thresholds k, with 1 ≤ k ≤ 304. In this process, nD counts the quantity
of parameters k that result in solutions with a maximum dipolar moment located
at the grid position (0, 0, 0.6). This position represents for all four source grids the
minimum distance to the simulated dipole at P0 and, therefore, the lowest localization
error.
Furthermore, we compare the relative improvements (ri) of the solutions pkµ with

pkν , where µ ∈ {1, 3} and ν ∈ {2, 4} are the indices of the applied source space grids.
To determine ri, grids with the same number of sources are compared, that is, grid 1
with 2 and 3 with 4. To obtain a measure ri that not depends on a concrete choice
of the truncation threshold k, the individual relative improvements are averaged over
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Table 4.1.: Parameters that define the source space grids 1–4 for simulation V of sec-
tion 4.3.

Source Identified Number of X/Y grid size Source
grid by variable grid sources in m2 directions
1 µ 25× 25 = 625 0.2× 0.2 +X
2 ν 25× 25 = 625 0.28× 0.28 +Z
3 µ 55× 55 = 3025 0.2× 0.2 +X
4 ν 55× 55 = 3025 0.28× 0.28 +Z

k. The ri was evaluated with respect to the residual, riR, the distance between the
grid dipole with the highest estimated moment and P0, riD, and the 2-norm of the
solution, ri2. The residual and the 2-norm of the solution should both be small,
because their combined minimization is the objective of minimum 2-norm methods,
such as TSVD and Tikhonov.
To compare the TSVD solutions pkµ and pkν , we define the ri(ν, µ) quantities for

the residual, the distance to the optimum, and the 2-norm as follows:

riR(ν, µ) := 1
r

r∑
k=1

‖b− Lµ pkµ‖2

‖b− Lν pkν‖2
, (4.4)

riD(ν, µ) := 1
r

r∑
k=1

‖P0 − Pmax
(
pkµ
)
‖2

‖P0 − Pmax (pkν) ‖2
, (4.5)

ri2(ν, µ) := 1
r

r∑
k=1

‖pkµ‖2

‖pkν‖2
. (4.6)

The term Pmax(pk) ∈ R3×1 in definition (4.5) represents a 3-by-1 vector that
provides the source position with the maximum absolute value among all estimated
dipole moments in pk. Values of ri(ν, µ) > 1 indicate better solutions when a source
grid with index ν is used instead of µ.

Quantifying the Condition and Sensitivity for Increasing Sensor-Source
Distances

We quantify the influence of the distance between the source space and the sensor
arrays ‘PTB 304ch’ and ‘ATB 195ch’ on the condition and the sensitivity. The
source space is represented by a 2D planar grid with 25 × 25 = 625 regularly
arranged magnetostatic dipoles, directed toward +Z. The size of the source grid is
0.28m × 0.28m. We increase the distance between the source grid and the lowest
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layer of sensors at Z = 0 from 0.025 to 0.25m. The condition of the resulting lead
field matrices are measured by κ and ρ.
To quantify the increase of κ for increasing source-sensor distances, we fit the

parameters a and b of the exponential model function

fκab(x) := a eb x , (4.7)

to the values of κ(Li), where Li incorporates the source grid with the distance of xi
to the lowest layer of sensors. To quantify the increase of ρ, we fit the parameters a,
b, and c of the polynomial-exponential model function

fρabc(x) := a xb ec x . (4.8)

to the values of ρ(Li). The polynomial term in (4.8) has a pronounced effect on fρ
for relatively small x, whereas for larger x the function fρ resembles an exponential
function. To minimize the corresponding objective functions

∆κ (a, b) :=
 1
n

∑
i

(
fκab(xi) − κ(Li)

κ(Li)

)2
1/2

and (4.9)

∆ρ (a, b, c) :=
 1
n

∑
i

(
fρabc(xi) − ρ(Li)

ρ(Li)

)2
1/2

, (4.10)

we use the simplex method of Nelder and Mead [1965].
Furthermore, we visualize for the sensor arrays ‘PTB 304ch’ and ‘ATB 195ch’ the

decay of the sensitivity. The sensitivity values SL in the plane of X = 0 are computed
by using 100× 100 sources. The Z-coordinates of these sources are between 0.025
and −0.25m and the Y-coordinates are between −0.14 and 0.14m. At each source
position, one dipole pointing toward +Z is located.

To functionally quantify the decay of the sensitivity, we utilize 46 sources that are
positioned along the Z-axis with distances xi to the lowest layer of sensors between
−0.025 and −0.25m. To approximate the decay of the sensitivity SL according to
the distance x, we use the model function

fLabc(x) := a xb ec x . (4.11)

We fit fL to the sensitivity values SLi by minimizing the objective function

∆L(a, b, c) :=
 1
n

∑
i

(
fLabc(xi) − SLi

SLi

)2
1/2

, (4.12)

using the simplex method of Nelder and Mead [1965].
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4.3.3. Results
Evaluation of the Influence of Source Grid Parameters on the Condition

The results of simulation I indicate for overdetermined inverse problems a con-
siderable increase of ρ for increasing numbers of sources (Figure 4.3a). For the
underdetermined linear inverse problem, however, we can observe only a slight
increase of ρ when the number of sources is incremented further.

The Figure 4.3b shows the results of Simulation II. A source space with extensions
clearly smaller than the sensor area impairs the condition considerably. In contrast,
positive extensions of the grid beyond the area of sensors lead to a reduction of ρ.
In Figure 4.3c, the results of simulation III for the sensor array ‘PTB 304ch’

are shown. In this simulation, the influence of the number of sources and the grid
extension are evaluated simultaneously. The plots show almost no visual differences
for ρ when the grid extension is ≥ 2 cm and when the number of sources is equal
or larger than about two times the number of sensors. As already indicated by the
simulations I and II, ρ increases considerably when the extension of the source space
grid is clearly smaller than the area of the sensors. In contrast, ρ is particularly low
when fewer sources than sensors are used.

Figure 4.3d shows the results of simulation IV. Source space grids with dipoles
directed toward +Z result in relatively low values of ρ. Deviations of the source
directions of about ≥ 35◦ from Z lead to clearly worse values of ρ.

Table 4.2 denotes the results of simulation V for ρ, κ, and the mean of nD when
using the source space grids 1–4. When the source grid 2 is used instead of 1 (both
with 625 sources) ρ drops by a value of about 12 and κ by a factor of 135. For grid 1,
only nD = 22 of 304 (7.2%) truncation thresholds k, on average, provide the lowest
achievable localization error. When using grid 2, 62 of 304 (20.5%) thresholds k,
on average, result in solutions with a minimum localization error. Considering the
denser source grids 3 and 4 with 3025 magnetostatic dipoles, the grid 4 shows similar
improvements of ρ and κ with respect to grid 3. For the source grid 3, the average
number of truncation thresholds that result in solutions with a minimum distance to
the simulated dipole is 8 (2.5%); with grid 4 it increases to 34 (11.3%).
The individual results of riR, riD, and ri2 using 100 different representations of

noise are shown in Figure 4.4. The averaged relative improvements when using source
grid 2 instead of 1 (subfigure 4.4a) are for riR at 1.4, for riD at 3.0, and for ri2 at
26.4. When comparing source grid 4 with 3 (subfigure 4.4b), the mean values of the
relative improvements are slightly lower with riR at 1.3, riD at 3.0, and ri2 at 23.0.
The variations of ri by using 100 different representations of noise are relatively small.
No representation results in values of ri smaller or equal 1.

Figure 4.5 shows for the source grids 1–4 and one representation of noise the best
TSVD solutions, which provide minimal localization errors, residuals, and artefacts.
The left column of Figure 4.5 presents the results for the source grids 1 and 3, which
both are obtained with a truncation threshold of k = 28. The right column shows
the best TSVD solution for the source grids 2 and 4, using a truncation threshold of
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Figure 4.3.: Results of the simulations I–IV, showing the effects of the number of
sources, the extension of the source space, and the source direction on
the measure of condition, ρ. Lower values of ρ indicate a better condition.

k = 40. Corresponding to the Figure 4.5, the linear inverse solutions provide clearly
less artefacts and the area of the highest source activity is more symmetric and focal
when the source grids 2 and 4 are used instead of 1 and 3. The differences between
the solutions for the source grids of 625 and 3025 sources are relatively small. For
grids 3 and 4 with 3025 magnetostatic dipoles, the TSVD method results in smoother
estimations with dipole moments that are by a factor of 5 smaller compared with the
source grids 1 and 2.

Quantification of the Condition and Sensitivity

Figure 4.6a shows the results of the fit of fκ to the increase of the condition number
κ for the sensor arrays ‘PTB 304ch’ and ‘ATB 195ch’. The increase of κ for increasing
source-sensor distances can be functionally described for the sensor system ‘PTB
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Table 4.2.: Results of ρ, κ, and nD for the source space grids 1–4 of simulation V.

Source grid ρ κ mean
(
nD
)

1 35.2 2.7× 1013 22±6.7
2 23.3 2.0× 1011 62±10.0
3 35.8 2.0× 1013 8±4.2
4 23.4 2.0× 1011 34±9.7

304ch’ by

fκ(x) = 6.72× 107 e131.7x

and for the ‘ATB 195ch’ by

fκ(x) = 1.27× 105 e90.6x .

Because the increase of κ for the ‘PTB 304ch’ changes considerably for indices i ≥ 30
with xi ≥ 17 cm, the fit was performed by using only the first 29 values of κ. All
values of κ for xi ≥ 17 cm are in the scale of 1× 1017.

The fitted functions that quantify the increase of ρ are shown in Figure 4.6b. For
the sensor array ‘PTB 304ch’, the optimization leads to

fρ(x) = 3464 x1.7 e−3.46x

and for the ‘ATB 195ch’ to

fρ(x) = 2134 x1.76 e−3.46x .

The logarithmic sensitivity distributions log10(SL) for the sensor arrays ‘PTB
304ch’ and ‘ATB 195ch’ are illustrated in Figure 4.7. Figure 4.8a shows the values
of SL in descending order. According to these figures, the sensitivity provided by
the sensor array ‘ATB 195ch’ is close to the sensors slightly higher compared with
the ‘PTB 304ch’. However, the sensitivity for the ‘ATB 195ch’ decays faster and is
lower for more distant sources. The sensitivity values for sources located along the
Z-axis and the fitted model functions fL are presented in Figure 4.8b. The fit of the
parameters a, b and c results for the ‘PTB 304ch’ sensor array in

fL(x) = 1.4× 10−7 x−0.93 e−7.68x

and for the ‘ATB 195ch’ in

fL(x) = 8.8× 10−8 x−1.05 e−7.6x .
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Figure 4.4.: Results of simulation V showing the relative improvements riR, riD, and
ri2 when the source space grids 3 and 4 are used instead of 1 and 2. The
mean values of ri are indicated by the horizontal lines. Higher ordinate
values represent higher improvements.

4.3.4. Discussion and Conclusions
The inverse problem in our application is typically underdetermined; therefore, the
number of sources produces a relatively small effect on the lead field condition.
However, the practical application of a sparse source grid with equal or fewer numbers
of sources than sensors can considerably improve the condition upon further reductions
in the number of sources. The area of the source grid should extend over the sensor
area. Brauer et al. [2000] concluded previously, based on a phantom experiment, that
a two-dimensional source space grid should extend over at least five times the area
of the distributed source. Accounting for the spatial resolution and the number of
dipoles within the grid, an extension of 1− 3 cm in each direction should be adequate,
in practice.
The orientations of the sources in our application and, therefore, the direction of

the magnetic field applied during excitation should not deviate more than 35◦ from
the Z-direction. In addition, sources oriented toward Z also provided for the given
sensor arrays higher signal levels and better SNRs.

All five sensor array configurations in simulations I–IV yield a qualitatively similar
behavior that depended on the number of sensors. The best results for ρ is obtained
for the sensor configuration ‘PTB 114ch’. However, the better values of ρ obtained
from the ‘PTB 114ch’, as compared with the values obtained from ‘PTB 304ch’,
results mainly from the reduced number of singular values of the lead field matrix. A
smaller number of sensors, as compared with the number of other arrays, introduces
a relatively small redundancy in the measurement values; however, the ‘PTB 114ch’
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(d) Source grid 4.

Figure 4.5.: Plots of the best TSVD solutions of simulation V showing the estimated
magnetic moments of the dipoles defined by the source grids 1–4. The
sources with the largest moment are indicated by �.

sensors pick up less information from the magnetic field.
As shown by the examples illustrated in simulation V, the quality of the inverse

solutions could be improved considerably using the source grid adaptations presented
in this paper. Solutions using the adapted grids provide fewer artifacts, smaller
L2-norms, and smaller residuals. In addition, a greater fraction of the possible TSVD
regularization parameters lead to optimal solutions in terms of the distance to the
simulated source. Therefore, the appropriate determination of these parameters,
for instance, using the Generalized-Cross-Validation [Wahba 1977] or the L-curve
[Hansen 1992] methods, should be easier and more reliable, in practice.
Some of our findings, including the specific recommendations for the source grid

extensions and the direction of the magnetic sources, are directly related to the
application of magnetic nanoparticle imaging. However, we expect that the basic
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Figure 4.6.: Values of κ and ρ for increasing distances between the source space and
the lowest level of sensors when using the sensor arrays ‘PTB 304ch’ and
‘ATB 195ch’. The fitted functions fκ (a) and fρ (b) are indicated by thin
red lines; the underlying data values are indicated by × and ◦ .

findings, such as the general influence of the number of grid sources and the extensions
of the source space on the lead field condition, are relevant to various linear inverse
problems in magnetic applications. The findings of this study were used, for example,
to detect ferromagnetic objects in geomagnetic measurements.

For the reconstruction of electromagnetic sources in EEG and MEG, the definition
of the source spaces differs considerably from the application of magnetic nanoparticle
imaging. The source space for EEG and MEG is typically determined by using
anatomical information of the cortex surface. In this process, the total number of
sources and the decision, whether to define one (to fix the directions of the sources) or
three dipoles (to enable arbitrary source directions) at each source position, represent
two obvious options to influence the condition by means of source space adaptations.
Thus, future studies that investigate the possibilities to improve the condition of
linear inverse problems in these applications are relevant.
The increase of κ and ρ for increasing distances between the source space and

the sensors arrays ‘PTB 304ch’ and ‘ATB 195ch’ can be well approximated by
using the model functions fκ and fρ. In this simulation, κ does not exceed values
of 1017 considerably. This behaviour can be explained by the limited numerical
accuracy, since κ is larger than the inverse of the relative machine accuracy, which
is ε ≈ 2.2× 10−16 (see section 3.3). Similar numerical effects were not observed
when computing ρ. However, this limitation of κ has for the imaging of magnetic
nanoparticles only a minor impact, because source-sensor distances of > 17 cm are
beyond the typical measurement distance.
The decay of the sensitivity for the sensors arrays ‘PTB 304ch’ and ‘ATB 195ch’

can be well described by a polynomial-exponential function. Compared with the
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(b) Sensor array ‘ATB 195ch’.

Figure 4.7.: Plots of the logarithmic sensitivity distributions of SL in the plane of
X = 0 for the sensor arrays ‘PTB 304ch’ and ‘ATB 195ch’. Dot and bar
markers denote the sensor positions and directions for 0 ≤ Z ≤ 15 cm.
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Figure 4.8.: Qualitative evaluation of the sensitivity for ‘PTB 304ch’ and ‘ATB 195ch’.

sensor array ‘PTB 304ch’, the array ‘ATB 195ch’ provides slightly higher sensitivities
close to the sensors and slightly lower sensitivities to more distant sources. For the
most applications, however, the differences in the sensitivities provided by the sensor
arrangements of both arrays are presumably small. Similar decays of the sensitivity
can also be expected for sensor systems with similar arrangements of magnetometers.



48 CHAPTER 4. IMPROVING SENSOR AND SOURCE CONFIGURATIONS



4.4. EFFECTS OF VARIATIONS IN MAGNETOMETER DIRECTIONS ON THE CONDITION 49

4.4. Effects of Variations in Magnetometer Directions
on the Condition

4.4.1. Introduction
Hidden ferromagnetic and paramagnetic objects cause deformations of the earth
magnetic field, which can be measured by magnetometers or gradiometers. In our
simulation study [Eichardt et al. 2009a], we investigated the localization of buried
magnetic objects using a weighted TSVD approach. Sensor positions and orientations
were taken from a real measurement data set. They were continuously changing, since
the vehicle carrying the sensor system was pulled by car over a very rough surface.
It turned out that the realistic sensor setups provided linear inverse solutions with
considerably increased stability compared with artificially generated setups that used
in parallel arranged sensors.
Therefore, the objective of this study is to systematically examine the influence

of random variations in the sensor directions on the condition of the magnetostatic
linear inverse problem. With simulations we evaluate, if the experimentally observed
effect for one specific setup of sensors holds for generic sensor arrays, too.

4.4.2. Methods
Source and Sensor Models

To set up the lead field matrix L, we use five examples of planar 2D (indicated by
1, 2, 5) and spatial 3D source grids (indicated by 3, 4). The parameters of these
source grids are given in Table 4.3. At each source position defined by the grids,
three orthogonal magnetostatic dipoles are located to enable arbitrary directions of
the sources.
Parameters that define the employed sensor arrays are give in Table 4.4. The

lowest layer of sensors is in each case located in the Z = 0 plane. The sensor array
A represents a three-axial arrangement magnetometers. The sensor arrays B–D are
mono-axial with sensors directed toward −Z by default. D exhibits two layers of
sensors at Z = 0 and Z = 0.05. This approach of multiple layers of sensors can be
found in many present sensor arrays; see, for example the section 2.1 and the Figures
2.1 and 2.2.

Random Variations in the Sensor Directions

The default sensor directions d, which are [1, 0, 0]T for +X, [0, 1, 0]T for +Y, and
[0, 0, −1]T for −Z, are modified independently by using Gaussian distributed random
variations ∆d = (∆dx,∆dy,∆dz)T . The distributions of ∆d hold a mean value of 0◦
and standard deviations SD(∆d) of 0.05, 0.5, 1, 2.5, 5, 10, 15, 20, and 25◦. Variations
in the sensor directions are obtained by rotations of d, first, by ∆dx about the X-axis,
second, by ∆dy about the Y-axis and, third, by ∆dz about the Z-axis. For the array
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Figure 4.9.: Example configuration illustrating the source positions of grid 2 (◦) and
the sensor positions of array B (•). The sensors directions (small bars) are
randomly varied about −Z with SD(∆d) = 10◦.

A, the orthogonality in the three-axial sensors is preserved. The default lead field
matrices that use uniformly toward −Z (mono-axial sensor arrays B–D) or toward
(+X,+Y,−Z) (three-axial array A) oriented magnetometer sensors are indicated
by L0. The representations of the lead field matrices using randomly varied sensor
directions are denoted by Li, with index i > 0. Figure 4.9 shows one example of
randomly varied sensor directions for the array B together with the source positions
of grid 2.

Evaluation of the Sensor Arrays

To quantify the effects of non-uniformly oriented sensors on the condition, we compute
κ for the related lead field matrices. Relative changes of κ are denoted by

∆κ(Li) := κ(Li)
κ(L0) , (4.13)

where Li is the lead field matrix with respect to the ith representation of randomly
varied sensor directions; L0 is the matrix with identical definitions of the source space
and the sensor positions but with uniform directions of sensors. Values of ∆κ(Li) < 0
indicate improvements of the condition when Li is used instead of L0.

Table 4.3.: Parameters that define the source space grids 1–5 of section 4.4.

Source Source positions (X, Y, Z) Number of source
grid min max pos. (X × Y × Z)
1 −(0.02, 0.02, 0.09) (0.22, 0.22, −0.09) 10× 10× 1 = 100
2 −(0.02, 0.02, 0.09) (0.22, 0.22, −0.09) 15× 15× 1 = 225
3 −(0.02, 0.02, 0.15) (0.22, 0.22, −0.06) 8× 8× 3 = 192
4 −(0.02, 0.02, 0.21) (0.22, 0.22, −0.06) 15× 15× 6 = 1350
5 −(0.01, 0.01, 0.05) (0.21, 0.21, −0.05) 20× 20× 1 = 400
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Table 4.4.: Parameters of the simulated sensor arrays A–D of section 4.4.

Sensor Sensor positions (X, Y, Z) Sensor Number of
array min max directions sensors
A (0, 0, 0) (0.2, 0.2, 0) +X, +Y, -Z 3× 12× 12 = 432
B (0, 0, 0) (0.2, 0.2, 0) -Z 12× 12 = 144
C (0, 0, 0) (0.2, 0.2, 0) -Z 21× 21 = 441
D (0, 0, 0) (0.2, 0.2, 0.05) -Z 10× 10 + 9× 9 = 181

Simulation Studies

In simulation I, the influence of random variations ∆d in the sensor directions is
analysed. The different combinations of sensor arrays A–D and source space grids 1–5
are investigated. The mean values and the standard deviations for ∆κ are computed
by using 100 representations of randomly varied sensor directions, with SD(∆d)
between 0.05◦ and 25◦.
In simulation II, the effects of non-uniformly oriented sensors on the condition

are examined. The numbers of sensors in X- and Y-direction are incremented from
7 × 7 = 49 to 23 × 23 = 529. Other parameters of the sensor arrays, such as the
extension and distance to the source space, correspond to the sensor arrays B and C.
Furthermore, we use the source space of grid 2 and apply variations to the sensor
directions with SD(∆d) = 0.05◦, 1◦, 10◦, and 25◦ in 100 repeated runs each.
The objective of simulation III is to evaluate the influence of variations in the

sensor Z-positions in combination with variations in the sensor directions. We use the
source grid 2 and sensor arrays similarly defined to B but with sensor Z-positions that
are uniformly randomly distributed in (0, sZ), with 0 ≤ sZ ≤ 0.1. For each value of
sZ, 50 sensor arrays with random sensor Z-positions are generated. Subsequently,
the effects of variations in the sensor directions using these particular arrays are
analysed. We perform 50 repeated runs with variations in the sensor directions of
SD(∆d) = 0.05◦, 1◦, 10◦, and 25◦. The mean values of ∆κ are computed for each
value of sZ and SD(∆d) from altogether 50× 50 individual results.

In simulation IV, we examine for the configuration C2 the effects of variations
in the sensor directions on the TSVD solution of the linear inverse problem. In this
process, one dipole at position P0 = (0.996, 0.996, −0.1), directed to (1, 1, 1), and
with a magnetic moment of 1× 10−9 Am2 is simulated. The nearest source of the
grid 2 is located at (0.1, 0.1, −0.09). We compare the TSVD solutions when using
the sensor array C with randomly varying, SD(∆d) = 25◦, and with uniform sensor
directions. As in the previous section 4.3.2, the measures for the relative improvement
of linear inverse solutions are applied, in which riR specifies the improvements with
respect to the residual, riD the improvements with respect to the distance between
the strongest estimated dipole and the simulated source, and ri2 the improvements
of the 2-norm. Altogether, we conduct 100 runs using different representations of
white Gaussian noise with an SNR of 5 dB and randomly varied sensor directions. In
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Table 4.5.: Condition number κ for lead field matrices L0 with uniformly oriented
sensors.

Sensor Source grid
array 1 2 3 4 5
A 1.53× 108 2.12× 1011 2.23× 1012 5.13× 107 1.52× 106

B 1.9× 107 4.12× 106 1.23× 105 1.79× 104 1.81× 103

C 1.65× 109 2.41× 1014 2.3× 1015 8.45× 109 4.92× 108

D 6.81× 108 5.52× 108 2.83× 108 6.54× 106 1.04× 106

each run, the values of riR, riD, and ri2 are averaged over the r possible truncation
thresholds.
In addition, the TSVD solutions using uniform and one example of varied sensor

directions are visually compared. White Gaussian noise with SNRs of 5 dB and
30 dB is added to obtain two samples of the measurement data. The two solutions
that provide the minimum localization error and that are obtained with the largest
possible truncation threshold are compared.

4.4.3. Results
Simulation I: The effects of random sensor direction variations on the relative
condition number ∆κ are shown in Figure 4.10 for the different combinations of
sensor arrays and source space grids. The condition numbers κ(L0) for lead fields
without variations in the sensor directions are shown in Table 4.5. The mean values
of ∆κ(Li) for lead field matrices Li representing mono-axial sensor arrays B–D can
be clearly reduced even by small variations in the sensor directions. Larger variations
lead to higher reductions of ∆κ, in which the decay of ∆κ decreases for increasing
values of SD(∆d). As indicated by the dotted lines in Figure 4.10a, the standard
deviations of ∆κ are relatively small. Only for the combination D5, higher deviations
of ∆κ can be observed. This also leads to the minor non-monotonicity of mean(∆κ)
for the configuration D5 in Figure 4.10d, for 5◦ ≤ SD(∆d) ≤ 25◦. As expected,
random variations in the sensor directions have no effect on κ when the sensor array
A with three-axial sensors is used (Figure 4.10a, A2). The improvements of κ when
using mono-axial arrays in combination with different source grids varied relatively
widely: With SD(∆d) = 25◦, we obtain mean values of ∆κ between 0.6 (Figure 4.10d,
D5) and 3× 10−4 (Figure 4.10c, C2).

Simulation II: Figure 4.11 shows the mean values of ∆κ for random variations in
the sensor directions for an increasing number of sensors in the X- and Y-directions.
The results indicate an articulate reduction of mean(∆κ) by approximately three
orders of magnitude when the number of mono-axial sensors is incremented from
7× 7 = 49 to 19× 19 = 361. In this process, κ(L0) increases from 762 to 1.2× 1013

when the sensors are uniformly oriented. For the sensor arrays with 21×21 = 441 and
23× 23 = 529 sensors, κ(L0) is 2.4× 1014 and 1.6× 1016, respectively, which likely
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Figure 4.10.: Results of simulation I: mean values of ∆κ in logarithmic representation
using the sensor arrays A–D and the source grids 1–5. The standard
deviations for ∆κ are indicated in (a) by the dotted lines.

causes the small increase of mean ∆(κ) for > 361 sensors. Also in this simulation,
larger random variations in the directions lead to higher improvements of the condition.

Simulation III: The objective of this study is to investigate the influence of sensor
direction variations in combination with varying sensor Z-positions. Figure 4.12a
shows distinct improvements of κ when larger variations in the sensor directions with
SD(∆d) ≥ 10◦ are used and when the sensor Z-positions are 0 (planar arrangement)
or distributed in a small interval of (0, sZ), with 0.0002 ≥ sZ ≥ 0.005m. For values
of sZ between 0.01 and 0.03, the reduction of ∆κ is minimal, considering all the
tested intervals of (0, sZ). Figure 4.12b presents the results for κ(L0) when the
Z-positions of the sensors are uniformly randomly distributed in (0, sZ). The sensors
are constantly directed toward −Z. These values of κ(L0) are used to compute ∆κ
for varying sensor directions as shown in Figure 4.12a. The results of Figure 4.12b
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Figure 4.11.: Results of simulation II: mean values of ∆κ using the source grid 2 and
sensor arrays similar to B. The number of sensors is incremented from 49
to 529. The standard deviations of ∆κ are indicated by the dotted lines.

indicate that κ(L0) is reduced in all except two cases when the sensor Z-positions are
randomly distributed between 0.0002 and 0.02m. By varying the sensor Z-positions,
the sensors are not moved closer to the sources compared with the configuration B2
that uses Z-positions of the sensors equal to 0. An increase of sZ leads to higher
expected values for the distances between the sensors and the sources, which causes
the increase of κ(L0) for sZ > 0.01.

Simulation IV: Figure 4.13 shows clear relative improvements for the residual and
the 2-norm of solutions when the sensors of the array C are not uniformly oriented.
The distances between the position of the reconstructed dipole with the maximum
estimated moment and the simulated source at P0 improve only marginally. The
Figure 4.14 presents the singular values of the lead field for the configuration C2 when
using uniform and randomly varied sensor directions. With varied sensor directions,
the decay of the singular values is reduced. Particularly the smallest singular values
are larger compared with the corresponding lead fields that incorporate uniform
sensor directions. In Figure 4.15, two examples of TSVD solutions utilizing the
sensor array C with uniform and varying sensor directions are shown. Only marginal
differences can be observed when applying noise with an SNR of 5 dB: The artefacts
in subfigure 4.15a are slightly more pronounced compared with the results shown in
subfigure 4.15b. When using an SNR of 30 dB, however, clearly more distortions are
visible in the subfigure 4.15c (uniform sensor directions) compared with the subfigure
4.15d (randomly varied sensor directions). Figure 4.14 shows in this example for
randomly varied and for uniform sensor directions almost no differences for the first
30 singular values of the related lead field matrices. Beginning at index 30, the decay
of the singular values is clearly reduced when randomly varied instead of uniform
sensor directions are used.
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Figure 4.12.: Results for ∆κ and κ(L0) of simulation III. The effects of variations in
the sensor positions and directions are shown in (a). The × in (b) indic-
ate the condition of the arrays with varied sensor Z-position and direc-
tions toward −Z. The line in (b) indicates κ for configuration B2 without
variations.

4.4.4. Discussion and Conclusions
Our findings show that the condition of magnetostatic linear inverse problems can be
clearly improved when mono-axial sensors are directed non-uniformly.
The effects on the inverse solutions depend on the applied models of sensors

and sources, the inverse solver, the regularization model, the determination of the
regularization parameters, and the noise contained in the data. Simulation IV uses a
very simple approach but we can already observe considerable improvements of the
inverse solutions. The impact of noise and errors on the result shown in Figure 4.15c
can be reduced by using a smaller truncation threshold, which, however, increases
the residual and the error due to the regularization, respectively.

As a consequence of this study, mono-axial sensors should be directed non-uniformly
to support more stable linear inverse solutions. Considerable improvements of the
condition can be observed in cases with initially high values of the condition number
κ. In our examples, κ was reduced by random variations in sensor directions by
factors between 0.6 and 3× 10−4, depending on the combination of the source grid
and the sensor arrangement. Larger variations, in this study up to 25◦, lead to
higher improvements of the condition. Besides varying the sensor directions, also
small variations in the sensor Z-positions of planar mono-axial arrays, in our example
between 0.2mm and 2 cm, seem to be beneficial for the condition.

The results of this section are likely relevant for further magnetic applications, such
as the optimal placements of probes to reconstruct current profiles in superconducting
cables [Bruzzone et al. 2002; Formisano and Martone 2003]. Moreover, applications
in the fields of electrical engineering, geophysics, materials sciences, and mechanics
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Figure 4.13.: Results of simulation IV: logarithmic plots of the relative improvements
for configuration C2 when varying the sensor directions with SD(∆d) =
25◦; with respect to the residual (riR), the distance to the optimum (riD),
and the 2-norm (ri2).
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Figure 4.14.: Results of simulation IV: logarithmic plot of the sorted singular values for
C2 using uniform (solid line) and varied sensor directions (dashed line).

that focus on the measurement and the inverse analysis of vectorial quantities, such
as force, velocity, or acceleration, may benefit when sensor positions and directions
are varying.
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Figure 4.15.: Results of simulation IV: plots of the estimated magnetic moments of
TSVD solutions for configuration C2, using uniform (left images) and
randomly varied sensor directions with SD(∆d) = 25◦ (right images). The
source positions with the largest estimated moment are indicated by �.
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4.5. Sensitivity Evaluation for Coil Setups in MIT

4.5.1. Introduction
The sensitivity to conductivity changes of MIT systems is of crucial importance.
Owing to the decrease of the primary and secondary magnetic fields, the sensitivity
to conductivity changes decays substantially with increasing distances to the coils.
The absolute values and the decay of the sensitivity depend on the arrangement,
windings, cross sectional areas, and types of coils, as well as on the frequencies and
currents used to excite the primary magnetic fields.
In simulations, we compare the sensitivity to the changes of conductivity and

the condition of six exemplary MIT systems with cylindrical and hemispherical
arrangements of the coils. Two of these systems are models of existing MIT systems.
Prior evaluations of the sensitivity in the field of MIT were presented, for instance by
Soleimani [2005, section 3.5], Soleimani et al. [2006], and Pham and Peyton [2008].

4.5.2. Methods
To evaluate the sensitivity of different MIT coil setups, we use an EFEM model of
tetrahedral elements with volumes of 4/3 cm3 each. Thereby, six tetrahedra form
a cube with an length of 2 cm. The fundamentals on the applied electromagnetic
model and the linear inverse problem in MIT are described in section 2.2.4.
The sensitivity to conductivity changes SJ (see section 3.6) and the condition of

the Jacobian matrix J are analysed with respect to a spherical volume of interest
(VOI) with a radius of 0.11m. The centre of the VOI is equivalent to the centres
of the rings (cylindrical setups) and hemispheres that describe the positions of the
measurement and excitations coils. According to this approach, 672 nodal elements
form the VOI. To set up J , conductivities are predefined with 0.2 Sm−1 for nodes
inside the VOI and with 0 Sm−1 for outer nodes. An excitation current of 100mA is
used in these simulations.

We simulate six setups of coils in cylindrical (identified by A) and hemispherical ar-
rangement (B). The cylindrical arrangements allow versatile applications for different
types of measurements. In principle, the measurement regions can be accessed from
two sides. Hemispherical MIT systems are designed particularly for the measurement
of spherical and hemispherical objects, such as the human head.

The setups identified by A1 and B1 exist as hardware devices, developed by Philips
Research, Aachen, Germany. The cylindrical setup A1 contains one ring with 16
excitation and measurement coils. Setup A2 is in accordance with A1 but uses
larger excitation coils. Similarly, the setup A3 corresponds to A1 but uses larger
measurement coils. A detailed description of the MIT system represented by A1 is
given by Vauhkonen et al. [2008].
The setup B1 emulates a newer hemispherical MIT system that utilizes 31 pairs

of coils with smaller radii for the excitation and measurement. B2 describes a
hemispherical coil arrangements similar to B1 with 16 pairs of coils of the same size.
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Table 4.6.: Coil parameters for the cylindrical (A1–A3) and hemispherical (B1–B3)
MIT setups.

Setup Pairs of coils Radii of coils (in m) Areas of coils (in m2)
A1 16 0.025 0.0020
A2 16 excitation: 0.060 0.0113

measurement: 0.025 0.0020
A3 16 excitation: 0.025 0.0020

measurement: 0.060 0.0113
B1 31 0.016 0.0008
B2 16 0.016 0.0008
B3 30 0.03 0.0028

The setup B3 uses 30 pairs of larger coils, which cover the upper region of the VOI
almost completely.

For cylindrical setups, the distance between each measurement coil and the centre
of the tomography system at (0, 0, 0) is 15 cm. The excitation coils are placed in a
distance of 15.7 cm to the centre. For hemispherical setups, the distances between
the centre of the VOI and the coils are 14 cm and 14.5 cm, respectively. Details on
the parameters of coils are given in Table 4.6. The arrangement of the excitation
and measurement coils together with the VOI are illustrated in Figure 4.16.
Plots of logarithmic distributions log10 S

J
i for elements i within the X = 0 plane

of the VOI are used to illustrate the sensitivities of the MIT setups. Moreover, we
compute the median of SJ using all elements in the spherical VOI. The condition of J
is quantified by means of κ k(J) and ρ k(J), both are applied relatively to the singular
value with index k = 128 (see section 3.5). This particular selection of k is related to
truncation thresholds, which typically provide adequate TSVD and Tikhonov-Phillips
solutions of linear inverse problems using real measurement data of the MIT system
represented by A1.
In one example, we qualitatively characterize the decay of the sensitivity for the

setup A1 using finite elements with increasing distances to the coils. In this simulation,
we use an EFEM model with tetrahedral elements of homogeneous volume, in which
six nodal elements form a cube with an edge length of 1 cm. This results in tetrahedral
elements with volumes of 0.167 cm3, which is 1/8 of the element volumes we use
to plot the sensitivity distributions. The values of SJ are computed for n = 15
elements that are distributed along the Y-axis between the measurement coil at
(0, −0.1495, 0) and the centre of the tomography system. This leads to coil-element
distances between 2.5 and 14.5 cm. To model the decay of sensitivity, parameters a
and b are fitted to the exponential function

fJab(x) := a eb x , (4.14)
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Figure 4.16.: Illustration of the arrangement of excitation (outer green circles) and
measurement (inner red circles) coils of the emulated cylindrical (left
images) and hemispherical (right images) MIT setups. The VOIs are
indicated by the spheres.
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using the optimization method of Nelder and Mead [1965]. The objective function
for the optimization is defined with

∆J(a, b) :=
 1
n

∑
i

(
fJab(xi) − SJi

SJi

)2
1/2

, (4.15)

where xi is the coil-element distance and SJi is the sensitivity to conductivity changes
of the ith element.

4.5.3. Results

The plots of the logarithmic sensitivity distribution in the plane of Y = 0 are given
in Figure 4.17. All subfigures indicate a strong decay of the sensitivity by several
orders of magnitude from regions close to the coils towards the centre of the VOI.
The hemispherical setups provide in the upper part of the VOI considerably higher
sensitivities than cylindrical setups. However, the cylindrical coil arrangements show
better sensitivities in the lower and lower central parts of the VOI. In general, the
setups with larger coils provide higher absolute values and a reduced decay of the
sensitivity compared with similar setups using coils of smaller area.
Results for the median(SJ), κ128(J), and ρ128(J) are shown in Table 4.7. The

enlargement of the excitation coils in setup A2 compared with A1 results in small
improvements of the median of the sensitivity and the measures of condition, κ128 and
ρ128. By increasing the size of the measurement coils in A3, the median sensitivity
is considerably increased compared with A1 and A2. The condition of J for A3 is
similar to A2 and better than for A1. With the lower number of coils in B2 compared
with B1, a worse median sensitivity and a clear deterioration of the condition can
be observed. By using only 16 instead of 31 coils, the setup B2 shows the weakest
performance of all reviewed setups. In contrast, the setup B3 provides a superior
sensitivity and condition, in which the mean sensitivity is by two and κ is by three
orders of magnitude improved regarding the setup B1. Overall, the results for A1–B3
in Table 4.7 tally with the outcomes in Figure 4.17.
Figure 4.18 illustrates for setup A1 the decay of sensitivity together with the

fitted function fJ . The fit of sensitivity values SJ to fJab results in parameters
a = 4.6× 10−8 and b = −215.6 with

fJ(x) = 4.6× 10−8 e−215.6x ,

for element-coil distances x, where x is between 0.025 and 0.145m. The sensitivity
values are clearly smaller when using finite elements with volumes of 0.167 cm3 instead
of 1.333 cm3. For comparison, refer also the subfigure 4.17a, which illustrates the
sensitivity for the setup A1 in the X = 0 plane, using elements with volumes of
1.333 cm3.
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(a) MIT setup A1. (b) Setup B1.

(c) Setup A2. (d) Setup B2.

(e) Setup A3. (f) Setup B3.

Figure 4.17.: Plots of interpolated logarithmic sensitivity distributions in the plane of
X = 0 for cylindrical (A1–A3, left column) and hemispherical (B1–B3,
right column) MIT setups. Darker colours indicate higher sensitivities.
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Table 4.7.: Values of κ128, ρ128, and median(SJ) for cylindrical (A1–A3) and hemispher-
ical (B1–B3) MIT setups. Larger values of median(SJ) and smaller values
of κ and ρ indicate better results.

Setup median(SJ) κ128(J) ρ128(J)
A1 2.53× 10−10 7.1× 104 16.53
A2 3.32× 10−10 1.4× 104 13.62
A3 1.78× 10−9 1.2× 104 13.96
B1 5.88× 10−10 2.2× 103 24.86
B2 9.59× 10−11 2.1× 105 47.79
B3 4.16× 10−9 4.4× 102 10.63
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Figure 4.18.: Logarithmic plot of the sensitivity values SJ for nodal elements (◦) loc-
ated along the Y-axis for the setup A1. The fitted exponential function
fJ is indicated by the thin red line.

4.5.4. Discussion and Conclusions
Owing to the spatial distribution of the coils and the definition of the spherical VOI,
hemispherical setups provide higher sensitivities than cylindrical setups in the upper
VOI, whereas the cylindrical coil setups show better values of the sensitivity in the
lower regions. The question whether coils should be arranged in a hemispherical or
cylindrical shape basically depends on the considered application and on the typical
shape and size of the measurement objects. For stroke classification and the meas-
urement of spherical objects, such as the human head, hemispherical arrangements
are advantageous. For general applications and the examination of arbitrary objects,
cylindrical setups provide a higher degree of flexibility.
An increase of the total coil area of an MIT system, taking the number and the

area of coils into account, leads to considerable enhancements of the sensitivity
and the condition. The benefits when enlarging the measurement coils are clearly
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higher compared with the enlarging of the excitation coils, which can be explained
by the weakness of the secondary magnetic fields. When coils are arranged in pairs
the measurement coils should be placed closer to the measurement object than the
excitation coils. As indicated by these simulations, the measurement part of MIT
systems is more critical to the sensitivity than the excitation part.
This study evaluates only some variations of the parameters for the areas and

numbers of coils by considering two typical schemes of cylindrical and hemispherical
arrangements. Further parameters, such as the excitation current, the frequency, the
number of coil windings, and the distance between coils and the VOI were not in the
focus of this section but influence the sensitivity and condition as well.
Adaptations to improve the sensitivity of MIT setups often underlie technical

restrictions or require further adjustments to the system, which can result in a
significant increase of the costs. Since the large coils of the MIT systems A2 and
A3 are each pairwise intersecting, a practical realization of both systems need minor
adaptations. One possibility consists in shifting every second pair of coils several
millimetre inwards to avoid the intersection of coil loops, which slightly affects the
sensitivity, too.
The decay of the sensitivity SJ , which we quantified for setup A1, can be well

approximated by an exponential function. The non-continuity of SJ for every second
element (see Figure 4.18) can be explained by the particular EFEM model with
asymmetrically distributed edge elements and coils. The exponential decay of the
sensitivity and the high absolute value of the exponential factor b can lead to
fundamental difficulties in practice. Such difficulties can arise within the development
of MIT systems, when performing measurements by magnetic induction, and when
estimating conductivity changes by solving the linear inverse problem. As shown by
the plots of the logarithmic sensitivities in Figure 4.17, the decay of sensitivity can be
reduced, for example by using measurement coils of larger area. Since we use volume
elements to model the VOI, the sensitivity also depends on the respective element
volume. In general, finite elements with larger volumes improve the sensitivity but
decrease the spatial accuracy and increase numerical errors. Further investigation
that focus on the effects of the size, the shape, and the distribution of finite elements
on the sensitivity are important.
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5
Conclusions

We aim to reduce the effects of noise and errors on the linear inverse solution by
improving the condition of the problem and to increase the sensitivity of measurement
setups. Different methodologies to assess the condition and sensitivity are presented.
We propose a new measure of condition ρ that quantifies the ratio of the largest
and the mean singular value of kernel matrices. In our examinations, the principal
outcomes for ρ and the standard condition number κ agree or differ only inconsiderably.
By assessing the differences in the scale of singular values, both measures indicate a
potential amplification of noise and errors in the inverse solutions.
The condition number κ can be considerably affected by numerical errors that

arise during its computation. The resulting values of κ may not exceed the inverse
of the floating-point relative accuracy significantly, even if the true values of κ are
much larger. However, if we minimize κ in an optimization process or if we focus
on relatively small values, then numerical errors in κ are also small and likely to
be negligible. Furthermore, the strong dependency of κ on the smallest singular
value should be taken into account, when evaluating the condition. Since ρ includes
information on all singular values of the kernel matrix, the influence of the smallest
singular value is reduced; in addition, the numerical stability of the computation
is increased. When solving linear inverse problems, the utilization of regularization
methods is typically required to improve the condition by eliminating or attenuating
the influence of small singular values on the solution. To consider a specific TSVD
truncation threshold, the condition can be evaluated with respect to the corresponding
singular value.

The proposed tabu search algorithm improves the condition of sensor arrangements
by selecting an optimal subset of sensors with minimum condition number. To reduce
the search space for the tabu search optimization, the sensor directions can also be set
directly. For example, the directions can be set perpendicularly to the surface of the
measurement object, aligned to the closest source, or oriented toward the strongest
gradient.
To improve the condition of linear inverse problems in magnetic nanoparticle

imaging, we adapt the parameters that define the source space grid. The results
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of this study suggest that the area of sources should slightly extend the sensor
area. If more sensors than sources are considered in the corresponding linear inverse
problems, then the defined number of sources has a significant influence on the
condition. Because EEG and MEG use considerably different arrangements of sensors
and spatial distributions of sources, further investigations are relevant for these
applications.

Furthermore, we show for generic examples of planar mono-axial sensor arrays that
random variations in the sensor directions provide a better condition compared with
uniformly oriented sensors. So far, all tested configurations representing typical 2D or
3D arrangements of sources and arrays with one or more planes of mono-axial sensor
layers indicate benefits of direction variations for the condition. Ongoing research
tries to show general benefits of non-uniform sensor orientations for typical arrays of
mono-axial sensors. The study also indicates improvements of the condition when
the sensor Z-positions are varying in a small range. Further examinations of the
effects of variations in the sensor direction and positions could focus on axial and
planar gradiometers, on sensors that integrate magnetometers and gradiometers [see,
for example Ahonen et al. 1993], and on non-planar arrangements of sensors.
By using simple examples of linear inverse problems, we demonstrate the effects

of an improved condition on the quality of inverse solutions. The examples attest
that solutions are less affected by errors and noise when the condition is improved in
terms of κ and ρ. To evaluate the benefits of an improved condition in a particular
application, more realistic examples and representations of noise are recommended.
Moreover, we evaluate the sensitivity of MIT systems as a first step towards the

optimization of coil arrangements with respect to the sensitivity and condition. To
optimally place coils for measuring electrical conductivity changes in particular regions,
the proposed tabu search algorithm can prospectively be applied. The challenges of
such improvements of MIT systems are the substantial practical restrictions, which are
in particular caused by the high frequency currents and magnetic fields. The described
approach, although simple, already provides important insights into the features and
limitations regarding the sensitivity of MIT systems. In further works, the assessment
of the sensitivity is used for the evaluation of single excitation and measurement coils.
Simulation studies using one excitation coil were presented, for example by Rosell
et al. [2001] and Scharfetter et al. [2005] by deploying slightly different definitions
of the sensitivity. To the best of my knowledge, no other publications that focuses
on the comprehensive evaluation of the sensitivity for multi-channel MIT systems
exist to date, besides our study [Eichardt et al. 2009b]. Because of the observed
rapid decay of the sensitivity in MIT, further research supporting its improvement
are crucially important.
The presented methods and strategies facilitate substantial improvements of the

condition in magnetic applications. The arrangement of sensors relative to the
measurement object is particularly critical to the condition of linear inverse problems
and to the quality of inverse solutions. Configurable sensor arrays would have great
utility, especially in biomedical applications. Moreover, the methods of this thesis
can be applied to improve the condition and the sensitivity in various fields.
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A
Effects of Predefining Source Directions on the

Condition

A.1. Introduction
We consider linear inverse problems in applications, where the directions of dipolar
sources are known in advance. For example, when estimating the distribution of
nanoparticles from magnetic remanence measurements, only the particles that exhibit
magnetization patterns in direction of the previously applied excitation field are of
interest, since relaxed particles do not significantly contribute to the measurement
signal. By predefining the directions of sources contained in the lead field L, the
number of columns of L and unknowns in p are reduced by a factor of 2/3.

By speculation, a smaller amount of unknown sources could improve the condition
when the number of measurements is constant. Therefore, our objective is to compare
the condition of lead field matrices L3 providing arbitrary source directions (three
dipoles per source position) with lead fields L1 providing predefined source directions
(one dipole per position).

A.2. Methods
We examine five examples of source space grids with source positions corresponding
to Table A.1. Moreover, we use the PTB sensor system in configurations with 114,
190, 247, and 304 SQUID sensors and the AtB Argos 200 system with 195 sensors.
The sensor arrays correspond to section 4.3; the applied source space grids are similar
to section 4.4.

Magnetostatic lead field matrices are created for each combination of source space
grid and sensor system. First, three orthogonally oriented dipoles are placed at each
of the source positions to create a lead field L3 that allows arbitrary source directions.
Second, a lead field L1 is created, which contains at each source position one dipole
directed toward +Z . Corresponding to the results of section 4.3, the +Z direction
provides an optimal condition of L1. Lead fields L3 and L1 exhibit identical number

71



72 APPENDIX A. EFFECTS OF PREDEFINING SOURCE DIRECTIONS ON THE CONDITION

Table A.1.: Parameters that define the positions of the sources for appendix A.

Source Source positions (X, Y, Z) Number of source
grid min max pos. (X × Y × Z)
1 −(0.14, 0.14, 0.06) (0.14, 0.14, −0.06) 10× 10× 1 = 100
2 −(0.14, 0.14, 0.06) (0.14, 0.14, −0.06) 15× 15× 1 = 225
3 −(0.14, 0.14, 0.15) (0.14, 0.14, −0.06) 8× 8× 3 = 192
4 −(0.14, 0.14, 0.21) (0.14, 0.14, −0.06) 15× 15× 6 = 1350
5 −(0.14, 0.14, 0.05) (0.14, 0.14, −0.05) 20× 20× 1 = 400

of rows but L3 has three times the number of columns compared with L1.
We evaluate the condition of L in terms of κ and ρ. To measure the degree of

determination of a linear inverse problem, we define the relative determination of
L ∈ Rm×n by

rd(L) := m− n
m+ n

. (A.1)

Values of −1 < rd(L) < 0 imply underdetermined and 0 < rd(L) < 1 overdetermined
linear inverse problems (see section 2.2.2).

A.3. Results
The individual results of κ, ρ, and the corresponding values of rd are shown in Table
A.2. Improvements of κ when applying L1 instead of L3 can only be observed for
6 of 25 combinations of sensor arrays and source grids. In these cases, the linear
inverse problem related to L1 is clearly overdetermined with rd(L1) ≥ 0.15, whereas
the inverse problem related to L3 is only slightly overdetermined with rd(L3) = 0.01
or underdetermined with rd(L3) ≤ −0.1. Thereby, κ is improved by factors between
10 to 107 when using L1 instead of L3

For the 19 further tested combinations, κ(L1) is slightly (source grids 3 and 4) or
even articulately elevated (by a factor of 1011 using the source grid 3 and the sensor
array ‘ATB 195ch’) compared with κ(L3).
The measure ρ(L1) is distinctly smaller than ρ(L3) for the six combinations that

show improvements of κ, too. For all configurations using the source grids 1, 2, 5
and for the source grid 3 in combination with sensor arrays of ≥ 247 sensors, ρ(L1) is
only marginally smaller compared with ρ(L3). For the remaining eight combinations,
ρ(L1) is slightly larger than ρ(L3).

Figure A.1a illustrates the differences between log10 κ(L1) and log10 κ(L3) plotted
against the differences in the relative determination. Significant improvements of
κ(L1) compared with κ(L3) can only be observed, if rd(L1)− rd(L3) is in the range
of 0.5 or higher. However, differences of rd in this scale lead for two combinations
also to better values for κ(L3).
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Table A.2.: Results for κ, ρ, and rd for the tested 25 combinations of source grids and
sensor configurations. Superior results (better condition of L1 or L3) for
each combination are indicated by grey backgrounds.

Sensor
array κ(L3) κ(L1) ρ(L3) ρ(L1) rd(L3) rd(L1)

Source grid 1, 100 source positions
PTB 304ch 3.49× 1011 2.34× 104 22.67 7.62 0.01 0.50

114ch 6.62× 103 1.01× 105 8.35 7.34 −0.45 0.07
190ch 7.70× 105 3.14× 104 14.27 7.56 −0.22 0.31
247ch 1.91× 108 2.56× 104 18.66 7.61 −0.10 0.42

ATB 195ch 5.70× 106 5.90× 103 12.04 6.22 −0.21 0.32

Source grid 2, 225 source positions
PTB 304ch 3.93× 1010 3.74× 107 23.12 17.08 −0.38 0.15

114ch 3.95× 103 6.98× 103 8.39 8.33 −0.71 −0.33
190ch 6.04× 105 5.18× 106 14.36 14.30 −0.56 −0.08
247ch 1.16× 108 1.44× 108 18.78 17.07 −0.46 0.05

ATB 195ch 4.36× 106 1.66× 108 12.15 12.01 −0.55 −0.07

Source grid 3, 192 source positions
PTB 304ch 2.83× 1011 3.13× 109 24.76 16.43 −0.31 0.23

114ch 3.04× 104 1.14× 106 8.99 9.40 −0.67 −0.25
190ch 3.94× 106 2.17× 1011 15.37 16.10 −0.50 −0.01
247ch 6.10× 108 4.29× 109 20.12 16.42 −0.40 0.13

ATB 195ch 6.87× 106 8.62× 1017 12.83 13.24 −0.49 0.01

Source grid 4, 1350 source positions
PTB 304ch 2.41× 1010 2.54× 1011 26.50 26.97 −0.86 −0.63

114ch 4.71× 103 7.80× 103 9.61 9.70 −0.95 −0.84
190ch 5.54× 105 2.89× 106 16.43 16.64 −0.91 −0.75
247ch 1.11× 108 4.95× 108 21.53 21.88 −0.89 −0.69

ATB 195ch 3.50× 106 2.18× 107 13.71 13.72 −0.91 −0.75

Source grid 5, 400 source positions
PTB 304ch 1.11× 1010 7.49× 1010 17.58 17.48 −0.60 −0.14

114ch 1.17× 103 1.24× 103 6.37 6.32 −0.83 −0.56
190ch 2.84× 105 4.52× 105 10.93 10.85 −0.73 −0.36
247ch 3.19× 107 5.90× 107 14.28 14.20 −0.66 −0.24

ATB 195ch 1.95× 106 1.36× 107 9.13 9.03 −0.72 −0.34
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Figure A.1.: Effects on κ and ρ, when lead field matrices L1 instead of L3 are used.
Markers below the horizontal lines indicate a better condition of L1 com-
pared with L3.

Similarly, Figure A.1b shows the differences of ρ(L1) − ρ(L3) plotted against
rd(L1)− rd(L3). When rd(L1)− rd(L3) is larger 0.5, then ρ(L1) is superior to ρ(L3),
too. For smaller differences of rd we observe a similar condition with ρ(L1) ≈ ρ(L3).

A.4. Discussion and Conclusions
The predefinition of the source directions does not improve the condition of lead
field matrices in general. Improvements of κ(L1) and ρ(L1) compared with κ(L3)
and ρ(L3) are observed when L3 is underdetermined or marginally overdetermined
and when L1 is at the same time notably overdetermined. This finding is in the line
with the simulation I of section 4.3, which indicates a considerable dependency of the
condition on the number of sources solely for overdetermined problems.
Furthermore, the condition number κ(L1) is in 2 of 25 tested combinations of

sensor arrays and source grids substantially higher than κ(L3). For the majority of
combinations, the differences between ρ and κ are relatively small when using lead
fields L1 instead of L3.
This evaluation also indicates that the condition number κ can be improved by

increasing the number of dipoles in the source model. Prospective investigations
could involve evaluations of the condition for lead fields with predefined and arbitrary
source directions in EEG and MEG. In these applications, electrical current dipoles
normal to the cortex surface can be assumed to reduce the number of unknown
sources to be estimated.

By using correctly posed constraints for the positions and directions of the sources,
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the solutions of linear inverse problems provide typically higher localization accuracies
[Dale and Sereno 1993]. However, incorrect assumptions introduce model errors,
which can lead to deteriorated localization results. With respect to our example,
the localization errors can be considerably higher for incorrectly predefined source
directions compared with source spaces that facilitate arbitrary directions. A compre-
hensive study on this issue for MEG beamformers was presented by Hillebrand and
Barnes [2003]. The influence of inaccuracies in the source model on the localization
error for magnetic nanoparticle imaging should be investigated in a further study.
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B
Linear Algebra Adjunct

B.1. General Remarks

This chapter collects general facts from linear algebra that are helpful when dealing
with linear inverse problems. Comprehensive information can be found for the most
part in the textbooks of Golub and van Loan [1996] and Hogben [2007]. Further facts
and proofs on matrix theory are given by Bernstein [2009].

B.2. Singular Value Decomposition

The SVD of a matrix A ∈ Rm×n is given by [Golub and Kahan 1965]

A = UΣV T (B.1)

with

U = (u1, . . . , um) ∈ Rm×m , (B.2)
V = (v1, . . . , vn) ∈ Rn×n , (B.3)
UT = U−1 and V T = V −1 , (B.4)
Σ = diag (σ1, . . . , σs) ∈ Rm×n , (B.5)
∞ > σi ≥ σi+1 ≥ 0 . (B.6)

The index s := min(m,n) denotes the total number of singular values σ of A, also
including values of 0. The rank r is determined by the number of singular values
with σi > 0.
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B.3. Moore-Penrose Inverse
The Moore-Penrose inverse of A is defined corresponding Penrose [1955] by the unique
matrix A+ that satisfies the four Moore-Penrose conditions

AA+A = A , (B.7)
A+AA+ = A+ , (B.8)(
AA+

)T
= AA+ , (B.9)(

A+A
)T

= A+A (B.10)

The term pseudo-inverse is often used synonymously for Moore-Penrose inverse.
According to Golub and Kahan [1965] and Golub and Reinsch [1970], the SVD of A
can be used to compute A+ ∈ Rn×m by

A+ =
(
UΣV T

)+
= V Σ+UT with

Σ+ := diag (1/σ1, . . . , 1/σr, 0, . . . 0) ∈ Rn×m , (B.11)

where r = rank(A). Relevant properties of A+ are corresponding Penrose [1955],
Bernstein [2009, sections 6.1.6, 6.4.12], and Björck [1996, section 1.2.5]

rank(A) = m = n =⇒ A+ = A−1 , (B.12)
A = 0 ⇐⇒ A+ = 0 , (B.13)
rank(A) = rank(A+) = rank(AA+) = rank(A+A) , (B.14)(
A+

)+
= A , (B.15)

rank(A1) = rank(A2) = n =⇒ (A1 A2)+ = A+
2 A

+
1 , (B.16)

UT = U−1 ∧ V T = V −1 =⇒
(
UAV T

)+
= V A+UT . (B.17)

B.4. Matrix Norms
The Frobenius norm ‖A‖F and the p-norm ‖A‖p, with p ≥ 1, for a matrix A ∈ Rm×n

are given by

‖A‖F :=
 m∑
i=1

n∑
j=1
|A[i, j]|2

1/2

and (B.18)

‖A‖p := sup
x 6=0

‖Ax‖p
‖x‖p

, (B.19)

with the vector norm

‖x‖p =
(∑

i

|x[i]|p
)1/p

. (B.20)
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According Golub and van Loan [1996, section 2.3] and Bernstein [2009, section 9.2],
the following properties hold for Frobenius and p-norms

‖A‖ = 0 ⇐⇒ A = 0 , (B.21)
‖A‖ > 0 ⇐⇒ A 6= 0 , (B.22)
∀l ∈ R : ‖lA‖ = |l| ‖A‖ , (B.23)
‖A1 + A2‖ ≤ ‖A1‖ + ‖A2‖ , (B.24)
‖A‖2 ≤ ‖A‖F ≤ r1/2 ‖A‖2 , (B.25)
‖A‖2 = σ1(A) , (B.26)
‖A+‖2 = σs(A)−1 , (B.27)

‖A‖F =
(

s∑
i=1

σi(A)2
)1/2

, (B.28)

‖A+‖F =
(

s∑
i=1

σi(A)−2
)1/2

, (B.29)

‖A‖∞ = max
1≤i≤m

n∑
j=1
|A[i, j]| . (B.30)

In this context, ‖ · ‖ represents the norms ‖ · ‖p or ‖ · ‖F , σs is the smallest singular
value, and r is the rank of A.
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Theses
1. Considering the linear inverse problem related to y = Ax and the condition

numbers

κ(A) = ‖A‖2 ‖A+‖2 and κ(A, y) = κ(A) + ‖A+‖2‖y‖2/‖A+y‖2 .

The matrix condition number κ(A) is also an adequate measure for the condition
number of the inverse problem κ(A, y), for any y, with the limitation

κ(A) ≤ κ(A, y) ≤ 2κ(A) .

2. With respect to the floating-point relative accuracy ε, the values of κ are
potentially inaccurate even in the order of magnitude, if κ ≥ ε−1.

3. The newly proposed measure

ρ(A) = σ1(A)
1
n

∑n
i=1 σi(A)

enables a numerically robust determination of the condition.

4. To take regularization into account and to compare the condition for matrices
with different numbers of singular values, κk and ρk can be used to determine
the condition relative to the kth singular value.

5. By using tabu search for the optimization of sensor arrangements, the condi-
tion of the linear inverse problem in magnetocardiography can be improved
considerably.

6. The reduction of the number of sources, particularly for underdetermined linear
inverse problems, the extension of the source space beyond the sensor area, and
the direction of sources toward the sensors are beneficial for the condition of
the linear inverse problem in magnetic nanoparticle imaging.

7. Variations in mono-axial sensor directions and small variations in sensor pos-
itions of planar arrays lead to a better condition of the magnetostatic linear
inverse problem.

8. The sensitivity to conductivity changes in MIT exponentially decays by several
orders of magnitude within a range of a few centimetres. Measurement setups
with relatively large coils that cover the measurement region almost completely
improve the sensitivity clearly.

9. The predefinition of source directions in the lead field matrix is not improving
the condition in general, although the number of unknown source parameters
is reduced by a factor of 2/3. Benefits for the condition mainly arise when
by predefining the source directions the linear inverse problem is considerably
overdetermined.
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