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1. Introduction 
1.1 Aspergillus fumigatus and Aspergillosis 
Over the last three decades life-threatening human fungal infections have increased 

due to advances in medical therapies such as solid-organ and hematopoietic stem 

cell transplantations, an increasing geriatric population, and HIV infections, which 

resulted in a significant rise in susceptible patients (McNeil et al., 2001, Varkey & 

Perfect, 2008, Erjavec et al., 2009). In the course of this development, the mold 

Aspergillus fumigatus has become the most prevalent airborne fungal pathogen 

(McCormick et al., 2010). A. fumigatus is commonly found in soil and organic debris 

where it grows on dead or decaying matter recycling carbon and nitrogen (Millner et 

al., 1977, Wilson et al., 2002, Tekaia & Latge, 2005, Rhodes, 2006).  
 

Figure 1: Infectious life cycle of A. fumigatus. Aspergillus is ubiquitous in the environment, and 
asexual reproduction leads to the production of airborne conidia. Inhalation by specific 
immunosuppressed patient groups results in conidium establishment in the lung, germination, and 
either PMN-mediated fungal control with significant inflammation (corticosteroid therapy) or 
uncontrolled hyphal growth with a lack of PMN infiltrates and, in severe cases, dissemination 
(neutropenia). (Dagenais and Keller, 2009) 

Dissemination of A. fumigatus occurs through the release of small asexual 

conidia generated by a specialized structure, the conidiophore (Figure 1). 

Environmental reports indicate that several hundred A. fumigatus conidia are inhaled 

by humans each day (Chazalet et al., 1998, Goodley et al., 1994, Hospenthal et al., 

1998, Latge, 1999, Dagenais & Keller, 2009). With a size ranging from 2 to 3 μm, A. 

fumigatus conidia can infiltrate deep into the respiratory tract and reach the alveoli of 

the lung (Figure 1). In healthy individuals conidia are removed by the innate immune 

response where alveolar macrophages and neutrophils play a major role. Alveolar 
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macrophages engulf and kill A. fumigatus conidia as well as initiate a pro-

inflammatory response that recruits neutrophils to the site of infection. Neutrophils 

are the second line of defense for the clearance of conidia and they are also able to 

target germlings and fungal hyphae (Segal et al., 2010, Ibrahim-Granet et al., 2010, 

Brakhage et al., 2010). However, in patients with an impaired immune system A. 

fumigatus conidia can persist, form invasive hyphae, and cause disease (Figure 1). 

A. fumigatus is responsible for a number of clinically relevant diseases with 

allergic bronchopulmonary aspergillosis (ABPA), Aspergilloma, and invasive 

pulmonary aspergillosis (IPA) the most prevalent. Patients suffering from asthma or 

cystic fibrosis can develop ABPA, a hypersensitive response to fungal antigens 

(Patterson & Strek, 2010, Antunes et al., 2010, Moss, 2010, Riscili & Wood, 2009). 

Aspergilloma, which is sometimes also referred to as a “fungus ball”, describes a 

noninvasive Aspergillus infection that may occur in preexisting pulmonary cavities 

such as those that occur in tuberculosis patients (Riscili & Wood, 2009). IPA is the 

most lethal Aspergillus-related disease with mortality rates ranging from 30-90% 

depending on the patient population (Latge, 1999, Latge, 2001, Perfect et al., 2001, 

Morgan et al., 2005, Upton et al., 2007, Dagenais & Keller, 2009, Baddley et al., 

2010). Patients most at risk for this life-threatening disease are those with acute 

leukemia, solid-organ and hematopoietic stem cell transplantations, as well as 

patients receiving prolonged corticosteroid treatment to prevent graft-versus-host 

disease or patients undergoing chemotherapy (Denning et al., 1998, Patel & Paya, 

1997, Ribaud et al., 1999, Ribrag et al., 1993, von Eiff et al., 1994, Westney et al., 

1996, Marr et al., 2002, Mikulska et al., 2009, Post et al., 2007, Bodey et al., 1992, 

Latge, 1999, Dagenais & Keller, 2009). IPA is also a common infection in AIDS 

patients and individuals with genetic immunodeficiencies like chronic granulomatous 

disease (CGD) (Mylonakis et al., 1998, Nash et al., 1997, Denning et al., 1998, Rex 

et al., 1991, Latge, 1999).  

When treating invasive fungal infections, early and appropriate antifungal 

therapy is essential for a successful outcome of disease. Three main classes of 

antifungal drugs are available to treat these infections: polyenes, azoles, and 

echinocandins. Polyenes like amphotericin B represent the oldest family of antifungal 

drugs and have a broad spectrum of activity (Chandrasekar, 2011). The biological 

activity of amphotericin B is mediated by binding to ergosterol, an essential 

component of the fungal cytoplasmic membrane, which results in increased 

membrane permeability, and ultimately, cell death (Chandrasekar, 2011). However, 
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amphotericin B usage is associated with significant nephrotoxicity and hepatotoxicity 

(Chandrasekar, 2011). The biologic activity of Echinocandins, the newest class of 

antifungal agents, is mediated by interference with fungal cell wall synthesis through 

inhibition of β-1,3-glucan synthesis, ultimately resulting in cell lysis (Chandrasekar, 

2011). However, while echinocandins have a fungicidal effect on Candida spp., they 

only show static activity against Aspergillus spp. (Chandrasekar, 2011, Chen et al., 

2011). The antifungal class of triazoles is most commonly used in clinical practice 

with Voriconazole being the drug of choice for IPA treatment (Chandrasekar, 2011, 

Herbrecht et al., 2002). Like Polyenes, azoles target the fungal cell membrane by 

inhibition of the ergosterol biosynthetic pathway (Chandrasekar, 2011). 

However, over the last years in addition to the rising number of 

immunocompromised patients and increasing occurrence of fungal infections, 

emerging drug resistant A. fumigatus strains complicate successful treatment (Mayr 

& Lass-Florl, 2011, Snelders et al., 2011). As treatment outcomes remain 

unacceptably poor, there is an urgent need for further extensive studies on A. 

fumigatus biology and aspergillosis pathogenesis to enrich our understanding of how 

this human fungal pathogen adapts to the mammalian host environment and causes 

disease. Consequently, new insights into A. fumigatus and aspergillosis 

pathogenesis will help identify potential new drug targets and other new therapeutic 

approaches to improve patient outcomes.  

 

1.2 Hypoxia: An environmental stress faced in vivo 
Once inhaled into the lower respiratory tract, A. fumigatus has to face, adapt, and 

respond to a number of in vivo microenvironmental challenges to cause disease. 

However, our understanding of the dynamic microenvironments encountered by the 

fungus in the mammalian lung, and the mechanisms by which it grows in these 

microenvironments, are poorly understood. Known in vivo environmental factors 

encountered by A. fumigatus during infection include: high temperature, changes in 

pH, oxidative stress, and a restricted nutrient supply. It was found that A. fumigatus 

possesses multi-faceted and robust mechanisms to overcome these challenges, 

which, in all probability, is based on the fact that these stresses are similar to those 

the mold has to overcome in its ecological niche, compost (Beffa et al., 1998, 

Trautmann NM, 2003, van Heerden et al., 2002, Rhodes, 2006, Cooney & Klein, 

2008). As a member of the compost microflora, A. fumigatus also has to be able to 
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adapt to a wide range of oxygen levels, a characteristic that has largely been 

overlooked in the study of this pathogenic mold.  

Oxygen concentrations in compost piles rapidly change with the metabolic 

activity of the microflora and range from atmospheric (21% at sea level) to hypoxic 

(1.5% and lower) (Wang W, 2007). Thus, organisms such as A. fumigatus that thrive 

in such environments likely have evolved mechanisms to tolerate hypoxia. Although 

A. fumigatus is considered an obligate aerobe, it has been observed to tolerate 

oxygen levels as low as 0.1% (Park et al., 1992, Hall & Denning, 1994). In addition, 

studies have also suggested that A. fumigatus can grow in the complete absence of 

oxygen suggesting that it may actually be a facultative anaerobe (Tabak & Cooke, 

1968).  

In vivo, while it is unknown if A. fumigatus is exposed to hypoxic conditions, 

pathogens are often exposed to dynamic ranges of oxygen availability depending on 

their location in the mammalian body. In the alveoli of healthy lungs the oxygen levels 

are around 14%, substantially below atmospheric levels. Oxygen availability is also 

much lower in tissues with levels of 2-4% reported once oxygen reaches the 

capillaries and diffuses into surrounding tissues (Erecinska & Silver, 2001, Carlsson 

et al., 2001, Studer et al., 2000, West, 1984, Warn et al., 2004). Inflammation, 

thrombosis, and necrosis associated with microbial infections are thought to 

decrease available oxygen concentrations even further. In addition, it has been 

described that hypoxic areas (oxygen levels ≤1%) due to decreased tissue perfusion 

occur in tumors and wounds (Matherne et al., 1990, Van Belle et al., 1987, Dewhirst, 

1998, Arnold et al., 1987, Simmen et al., 1994, Nizet & Johnson, 2009).  

While oxygen has not been directly measured at sites of A. fumigatus 

infections, lung histopathology shows significant host tissue damage caused by 

invasive fungal hyphae and subsequent host responses. These pathologic lesions 

most likely represent areas of poor oxygen availability to the pathogen and the host. 

Recent studies (Brock et al., 2008, Ibrahim-Granet et al., 2010) suggested that 

hypoxia may occur in vivo in the lung during A. fumigatus infections. A luciferase-

producing A. fumigatus strain showed decreased luminescence after reaching a 

maximum intensity at day one post infection, despite an increase in fungal burden. 

The authors hypothesized that this observation may be due to severe tissue damage 

caused by the pulmonary lesions that decreased the oxygen availability in these lung 

areas. The lack of luminescence may be attributable to limited oxygen at the site of 

infection as oxygen is essential for the light-producing luciferase reaction. However, it 
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may also be possible that other unexplained mechanisms result in the decreased 

luminescence observed. Thus, whether hypoxia is an important component of the 

infection microenvironment during invasive pulmonary aspergillosis remains to be 

elucidated. Here, in this dissertation, I provide data that suggest hypoxia is an 

important component of invasive pulmonary aspergillosis pathophysiology.  

 

1.3 Sensing changes in oxygen levels 
To be able to respond and adapt to changes in oxygen tension, mechanisms for 

cellular oxygen sensing must be present. Different pathways involved in oxygen 

sensing and regulation of hypoxia adaptation have been identified in non-pathogenic 

and pathogenic fungi (Thiel et al., 2005, Grahl & Cramer, 2010). To regulate the 

hypoxic gene response, the model organism Saccharomyces cerevisiae senses 

oxygen availability through cellular heme levels involving the transcriptional 

repressors of hypoxic genes Rox1p and Mot3p (Zhang & Hach, 1999, Hon et al., 

2003), and recent studies have suggested that cellular sterol levels are also used by 

S. cerevisiae to sense oxygen via the transcriptional regulators Upc2p and Ecm22p 

(Davies & Rine, 2006). Also in the human fungal pathogen Candida albicans, an 

Upc2p ortholog has been identified and shown to be activated in hypoxic conditions 

and in response to lowered sterol levels (Hoot et al., 2008, Silver et al., 2004, White 

& Silver, 2005, Synnott et al., 2010). Upc2p null mutants display significant growth 

reductions in hypoxia and no longer filament, but Upc2p’s link with pathogenesis is 

currently unknown. 

An elegant model of oxygen sensing has been described in the fission yeast 

Schizosaccharomyces pombe whereby a transcriptional regulator in the sterol 

regulatory element binding protein family (SREBP) indirectly senses oxygen levels 

through monitoring cellular sterol levels (Hughes et al., 2005, Todd et al., 2006). 

SREBPs are conserved in a wide range of eukaryotes and are membrane bound 

transcription factors that sense oxygen dependent changes in sterol levels. In S. 

pombe, SREBP Sre1 was found to be a major regulator of the hypoxic response and 

essential for growth under these conditions (Hughes et al., 2005, Bien & 

Espenshade, 2010, Todd et al., 2006). Importantly, a functionally conserved SREBP 

pathway has been identified in the human fungal pathogen Cryptococcus 

neoformans (Chang et al., 2007, Chun et al., 2007, Bien et al., 2009). The respective 

SREBP ortholog (Sre1) is required for growth in hypoxia and subsequently a null 

mutant of sre1 is attenuated in virulence in murine models of cryptococcosis (Chang 
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et al., 2007, Chun et al., 2007, Bien et al., 2009). In addition, deletion of other 

components of the SREBP regulatory pathway in C. neoformans also resulted in 

hypoxia growth defects and attenuated virulence (Bien et al., 2009, Chang et al., 

2009). Altogether, the data suggests an important role of the SREBP pathway in 

hypoxia adaptation and adaptation to host tissue microenvironments. 

 

1.4 Hypoxia and in vivo energy metabolism 
To colonize the host and cause disease, pathogens have to adapt their metabolism 

to be able to generate energy from available nutrients to support growth, 

development, and responses to external stresses. Most eukaryotes, like A. 

fumigatus, utilize aerobic or oxidative respiration, the most efficient pathway to 

produce chemical energy in the form of ATP. However, oxidative respiration is 

dependent on the presence of oxygen as the terminal electron acceptor. As oxygen 

limited microenvironments can occur during infection, pathogens must be able to 

activate alternative pathways to generate energy and support growth. In fact, 

respiratory flexibility, switching from aerobic respiration to various forms of anaerobic 

energy generating pathways with alternative electron acceptors has been implicated 

as an important virulence attribute in prokaryotic pathogens like e.g. Mycobacterium 

tuberculosis (Smith, 2003, Richardson, 2000, Shi et al., 2005). However not much is 

known about how pathogenic fungi respond to low oxygen tensions. Recent 

transcriptional profiling studies of C. albicans, C. neoformans, and A. fumigatus found 

that hypoxia stimulates transcription of genes involved in glycolysis and fermentation, 

suggesting that these pathogens adapt to hypoxic conditions by switching to oxygen-

independent energy producing pathways (Setiadi et al., 2006, Synnott et al., 2010, 

Chun et al., 2007, Barker and Cramer personal communication). Interestingly, while 

genes of oxidative metabolism are repressed in C. albicans (Setiadi et al., 2006, 

Synnott et al., 2010), genes involved in oxidative respiration were increased in C. 

neoformans, indicating significant differences in hypoxia adaptation between these 

two fungal pathogens (Chun et al., 2007). Furthermore, a C. neoformans 

Agrobacterium tumefaciens forward genetics approach identified a key role for fungal 

mitochondria in hypoxia adaptation (Ingavale et al., 2008). However, it is unclear 

what the mechanisms are behind the respective mitochondrial mutant’s inability to 

grow in hypoxia or whether this impacts Cryptococcus virulence.  

Earlier work in the model yeast S. cerevisiae proposed that the fungal 

mitochondrial respiratory chain is involved in oxygen sensing, growth in hypoxia, 
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hypoxic signaling and hypoxic gene regulation through production of reactive oxygen 

and nitrogen species (Kwast et al., 1999, David & Poyton, 2005, Castello et al., 2006, 

Guzy et al., 2007, Ingavale et al., 2008, Poyton et al., 2009a, Poyton et al., 2009b). 

Furthermore, several studies have suggested that increased oxidative stress 

observed in hypoxia may act as a putative second messenger that activates redox-

sensitive transcription factors to enable hypoxia adaptation though these transcription 

factors are undefined (Dirmeier et al., 2002, Chandel & Budinger, 2007, Guzy et al., 

2007). 

Taken together, these studies suggest that mitochondria, oxidative respiration, 

and energy metabolism flexibility might also play an important role in Aspergillus 

adaptation to and growth in oxygen limiting conditions. In this dissertation, I explore 

mechanisms by which A. fumigatus adapts to hypoxia. 

 

1.5 Thesis 
Data and observations from the above discussed studies led to the following overall 

thesis of this dissertation: 

 

Hypoxia is a stress faced in vivo by A. fumigatus and the ability to sense, adapt to, 

and grow in hypoxic conditions is a virulence attribute of this human fungal pathogen. 

 

The above overall thesis was sub-divided into the following sub-objectives: 

 

1) To examine the involvement of the A. fumigatus sterol-regulatory element 

binding protein SrbA in oxygen-sensing, hypoxic adaptation, and fungal 

virulence. 

2) To investigate the occurrence of in vivo hypoxic microenvironments during IPA 

and the role of ethanol fermentation for hypoxia adaptation and virulence of A. 

fumigatus. 

3) To determine the importance of oxidative respiration as an energy producing 

pathway in hypoxia during A. fumigatus pathogenesis 
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2. Summary of Manuscripts 
 

2.1 Manuscript I 
Willger SD, Puttikamonkul S, Kim KH, Burritt JB, Grahl N, Metzler LJ, Barbuch R, 

Bard M, Lawrence CB, Cramer Jr. RA. (2008) A sterol-regulatory element binding 

protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and 

virulence in Aspergillus fumigatus. PLoS Pathogens, 4(11) e1000200. 

doi:10.1371/journal.ppat.1000200. 

 

Summary 
The manuscript describes the characterization of the sterol-regulatory element 

binding protein (SREBP), SrbA, in A. fumigatus. It was shown that SrbA is essential 

for growth under hypoxic conditions and virulence of A. fumigatus. Furthermore, SrbA 

plays a critical role in ergosterol biosynthesis, triazole drug resistance, and cell 

polarity. Importantly, this study presents a new function for SREBP proteins in 

filamentous fungi, and strongly suggests that hypoxia adaptation is an important 

virulence attribute of pathogenic molds. 

 

Author contribution 
My contribution to this manuscript included murine virulence and histopathology 

studies, which were designed, conducted, and analyzed by Srisombat Puttikamonkul 

and me. In addition, I also designed, performed, and analyzed the macrophage killing 

assay and composed the corresponding text passages. 
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2.2 Manuscript II 
Grahl N, and Cramer, RA. (2010) Regulation of hypoxia adaptation: An overlooked 

virulence attribute of pathogenic fungi? Medical Mycology, 22:1-16. 

 

Summary 
This manuscript is a review article focusing on the increasing evidence that 

pathogenic fungi have to adapt to rapidly changing oxygen levels during fungal 

infections. The review discusses in detail known oxygen-sensing mechanisms that 

non-pathogenic and pathogenic fungi utilize to adapt to hypoxic microenvironments 

and their possible relation to fungal virulence.  

 

Author contribution 
I undertook the literature search for this review article. I analyzed, described, and 

summarized the literature available and wrote the article in concert with Prof. Robert 

A. Cramer. 
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2.3 Manuscript III 
Grahl N, Puttikamonkul S, Macdonald JM, Gamcsik MP, Ngo LY, Hohl MH, Cramer 

RA. (2011) In vivo hypoxia and a fungal alcohol dehydrogenase influence the 

pathogenesis of invasive pulmonary aspergillosis. PLoS Pathogens, 7(7): e1002145. 

doi:10.1371/journal.ppat.1002145. 

 

Summary 
This manuscript describes for the first time that hypoxic microenvironments occur at 

the site of Aspergillus infection during invasive disease. In addition, ethanol 

fermentation was shown to be utilized by A. fumigatus in hypoxia, but this pathway 

emerged to be not essential for growth under hypoxic conditions. However, it was 

found that a fungal alcohol dehydrogenase influences fungal pathogenesis in the 

lung as loss of this gene resulted in a significant increase of neutrophils to the site of 

infection. Altogether, the results in this manuscript suggest that fungal metabolism 

changes due to dynamic in vivo environmental conditions influence host-pathogen 

interactions. 

 

Author contribution 
All experiments were conceived, designed, and performed by me, in concert with 

Prof. Robert A. Cramer, with the exception of the 1H-NMR metabolite profiling of 

broncheoalveolar lavage fluids which was done by Jeffrey M. Macdonald and Michael 

P. Gamcsik, the in vitro cytokine experiment with bone marrow derived macrophages 

which was done by Lisa Y. Ngo and Tobias M. Hohl, and the GCMS analysis of 

culture supernatants was done by the Montana State University Proteomics Core 

Facility. I wrote the article with Prof. Robert A. Cramer. 
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2.4 Manuscript IV 
Grahl N, Magnani Dinamarco T, Willger SD, Goldman GH, Cramer RA. (Submitted) 

Aspergillus fumigatus mitochondrial electron transport chain mediates oxidative 

stress homeostasis, hypoxia responses, and fungal pathogenesis (submitted to 

Molecular Microbiology). 

 

Summary 
In this study it was shown that the main cytochrome respiratory pathway is important 

for germination and growth in normoxic and hypoxic conditions of A. fumigatus. The 

conventional electron transport chain and the alternative oxidase were also found to 

be involved in susceptibility or resistance to oxidative stress and macrophage killing 

respectively. In addition, a possible connection between the fungal electron transport 

chain and hypoxic activation of ethanol fermentation was demonstrated and, for the 

first time, it was shown that the respiration chain plays an important role for A. 

fumigatus pathogenesis. 

 

Author contribution 
All experiments were conceived, designed, and performed by me, in concert with 

Prof. Robert A. Cramer, with the exception of oxygen consumption experiments and 

the protein oxidation detection that were done by Taisa Magnani Dinamarco and 

Prof. Gustavo H. Goldman. I wrote the article with Prof. Robert A. Cramer. 
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Introduction

Aspergillus fumigatus is a normally benign saprophytic fungus that

may cause an often lethal invasive disease in immunocompromised

patients, invasive pulmonary aspergillosis (IPA) [1,2]. Interestingly,

while IPA can be caused by several Aspergillus species, the majority

of IPA cases are caused by A. fumigatus. This may suggest that A.
fumigatus contains unique attributes that allow it to cause disease

[3]. Yet, the mechanisms utilized by A. fumigatus to survive and

cause disease in immunocompromised hosts are not fully

understood [4]. During infection, A. fumigatus causes significant

damage to host tissue through invasive growth by hyphae and

subsequent recruitment of immune effector cells. Thus, infection

generates significant inflammation and necrosis in lung tissue that

can be visualized by histopathology. These pathologic lesions also

likely represent areas of poor oxygen availability to the pathogen

and host.

At sites of Aspergillus infection, direct measurements of oxygen

tension have not been recorded, however, it is well established that

sites of inflammation contain significantly low levels of oxygen

(hypoxia) [5–7]. Moreover, low oxygen tension has been observed

in many compartments of inflamed as well as normal tissues [5–7].

In inflamed tissues, the blood supply is often interrupted because

the vessels are congested with phagocytes [8,9]. Indeed, immune

effector cells such as neutrophils often function effectively in

severely hypoxic microenvironments and have evolved distinct

mechanisms to deal with the absence of oxygen that are dependent

upon the transcription factor hypoxia inducible factor (HIF) 1.

HIF1 is a heterodimeric transcription factor that consists of a

constitutively expressed HIF1b subunit and an oxygen-tension-

regulated HIF1a subunit. [10]. Increased HIF1a protein stability

and activity of the HIF1 complex, in turn, regulate the

transcription of many hypoxia-responsive genes, including those

encoding many glycolytic enzymes, erythropoietin, adrenomedul-

lin, and growth factors [11,12]. Genetic evidence of the

importance of hypoxic environments in the regulation of immune

responses was recently provided by a study of neutrophil-mediated

lung inflammation [13]. Thus, since immune cells of the host have

evolved mechanisms to function in hypoxia, it follows that invasive

fungal pathogens like A. fumigatus are likely subjected to hypoxia

during fungal pathogenesis.

While hypoxic adaptation has not been studied in the context of

A. fumigatus pathogenesis, circumstantial evidence suggests that

hypoxia plays a key role in the pathophysiology of IPA. For

example, it has been postulated that the low rate of Aspergillus

recovery from clinical specimens is due to adaptation by the

fungus to hypoxic microenvironments found at sites of infection
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[14,15]. Furthermore, there are often significant differences in the

in vivo and in vitro test results of antifungal drug efficacies. These

differences have been postulated to be linked to the occurrence of

hypoxia in vivo as demonstrated by recent in vitro antifungal drug

efficacy tests conducted in hypoxia [16,17]. Consequently, it seems

probable that pathogenic molds such as A. fumigatus must possess

mechanisms to adapt to hypoxic microenvironments found in vivo

during infection.

In fact, switching from aerobic respiration to various forms of

anaerobic respiration to deal with low oxygen levels has been

implicated as an important virulence attribute in several

prokaryotic pathogens [18,19]. However, in eukaryotic pathogens,

mechanisms of how these organisms respond and adapt to hypoxia

are largely unknown. Most of our knowledge on how fungi

respond to hypoxia comes from studies in the model yeast

Saccharomyces cerevisiae. Under aerobic conditions, heme biosynthesis

activates the transcriptional regulator Hap1p [20]. Hap1p induces

genes involved in respiration and oxidative stress-responses, but

also activates the transcriptional repressors Rox1p and Mot3p,

that down-regulate genes required for hypoxia adaptation [21].

However, in hypoxic conditions, Rox1p and Mot3p are expressed

and this leads to transcriptional induction of genes involved in

hypoxia adaptation [22]. Thus, hypoxic gene expression in yeast

requires transcription factors that utilize Rox1p-binding sequenc-

es, low oxygen-response elements (LORE), and other regulatory

elements within promoters [23,24]. Since S. cerevisiae is a facultative
anaerobe, it is not surprising that homologs of these key hypoxia

gene regulators have not been found in obligate aerobic

filamentous fungi such as A. fumigatus.

Recently, a novel mechanism of hypoxia adaptation mediated

by a highly conserved family of transcription factors, sterol

regulatory element-binding proteins (SREBPs), was characterized

in fission yeast, Schizosaccharomyces pombe [25]. SREBPs are a unique

family of membrane bound transcription factors first identified in

mammals as regulators of cholesterol and lipid metabolism [26–

30]. Hughes et al. [25] proposed a model in S. pombe where

SREBP (Sre1) and a sterol cleavage activating protein (SCAP,

Scp1) monitor-oxygen dependent sterol synthesis as an indirect

measure of oxygen supply. Importantly, Sre1 was found to be

required for adaptation to hypoxia and regulated approximately

68% of the genes transcriptionally induced greater than 2-fold in

response to anaerobic conditions [31].

Orthologs of Sre1 and Scp1 were recently identified and

characterized in the human fungal pathogenic yeast, Cryptococcus

neoformans [32,33]. As in fission yeast, the SREBP pathway

mediated by Sre1 and Scp1 in C. neoformans was crucial for

adaptation to hypoxia and sterol biosynthesis. Importantly, these

mutants also failed to proliferate in host tissue, failed to cause fatal

meningoencephalitis, and displayed hypersensitivity to the azole

class of antifungal drugs [32,33]. In the yeast S. cerevisiae and

Candida albicans, orthologs of SREBPs do not appear to exist.

However, two similar genes, Upc2 and Ecm22, appear to serve

similar functions as SREBPs. Conserved functions of these genes

include their involvement in the ability of yeast to grow in hypoxia

as well as regulation of sterol biosynthesis and resistance to

antifungal drugs [34–40]. Taken together, these observations

demonstrate an important link between sterol biosynthesis,

hypoxia adaptation, azole drug resistance, and the virulence of

pathogenic yeasts.

In this study, we report the identification and first character-

ization of a Sre1 homolog, SrbA, in an opportunistic pathogenic

mold, A. fumigatus. Our results suggest that while certain aspects of

SREBP function are conserved in yeast and filamentous fungi,

significant differences exist that are unique to molds. Thus, our

results further expand the spectrum of important functions

mediated by SREBPs in eukaryotes, emphasize the importance

of this pathway in human fungal pathogenesis, and suggest

possible clinical significance of SREBPs related to antifungal drug

efficacy.

Results

Identification of srbA in Aspergillus fumigatus
In order to determine if hypoxia adaptation is an important

virulence attribute of filamentous fungi, we first conducted

transcriptional profiling experiments using a long-oligo A. fumigatus

microarray (version 3.0) of wild type A. fumigatus grown under

hypoxic (1% O2) conditions compared to fungus grown under

normal conditions (,21% O2). Analysis of this data revealed ten

putative transcription factors that were transcriptionally induced

more than 2-fold in response to hypoxia and thus could possibly

act as a regulators of genes required for hypoxic adaptation in A.

fumigatus (Willger and Cramer, unpublished data). Further

bioinformatic analyses of these genes revealed that only one,

AFUA_2g01260 (induced 5.02 fold in response to hypoxia), had

similarity with a functionally characterized protein, Sre1 from S.

pombe [25]. Sre1 shares similarity with mammalian SREBP

proteins that regulate lipid and cholesterol homeostasis (reviewed

in [29,30]). In addition, a Sre1 homolog has also recently been

described in the human pathogenic yeast, C. neoformans as a

regulator of hypoxia adaptation and fungal virulence [32,33].

AFUA_2g01260 contains 988 amino acid residues, which

displayed low sequence percent identity with Sre1 from S. pombe

(,13%) and C. neoformans (,10%). However, like Sre1 in both

yeasts, the amino terminus (amino acids 1–425) of

AFUA_2g01260 contains a basic helix-loop-helix (bHLH) leucine

zipper DNA binding domain. In addition, AFUA_2g01260 is

predicted to contain at least one, and likely two, transmembrane

domains. The carboxyl terminus of AFUA_2g01260 is also

predicted to contain a conserved domain of unknown function

(DUF2014) that is found in other SREBP homologs. Consequent-

ly, these results suggest that AFUA_2g01260 is likely the SREBP

homolog in A. fumigatus, and we consequently named this gene srbA

Author Summary

The incidence of potentially lethal infections caused by
normally benign molds has increased tremendously over
the last two decades. One disease in particular, invasive
pulmonary aspergillosis (IPA), caused by the common
mold Aspergillus fumigatus, has become the leading cause
of death due to invasive mycoses. Currently, we have a
limited understanding of how this opportunistic pathogen
causes disease in immunocompromised patients. In this
study, we discover a previously unexplored mechanism
required by this mold to cause disease, hypoxia (low
oxygen) adaptation. We report that hypoxia adaptation in
A. fumigatus is mediated in part by a highly conserved
transcription factor, SrbA, a protein in the sterol regulatory
element binding protein family. A null mutant of SrbA was
unable to grow in hypoxia, displayed increased suscepti-
bility to the azole class of antifungal drugs, and was
avirulent in two distinct murine models of IPA. Importantly,
we report the discovery of a novel function of SrbA in
molds related to maintenance of cell polarity. The finding
that SrbA regulates resistance to the azole class of
antifungal drugs presents an opportunity to uncover
new mechanisms of antifungal drug resistance in A.
fumigatus.
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(sreA is already in use in A. nidulans for an unrelated gene).

Additional BLAST analyses revealed that SrbA is highly conserved

amongst the filamentous fungi with putative orthologs found in

plant pathogens such as Magnaporthe grisea and Alternaria brassicicola

and saprophytic molds such as Neurospora crassa and Aspergillus

nidulans.

SrbA is required for hypoxia adaptation in Aspergillus
fumigatus
To determine whether SrbA is involved in hypoxia adaptation

and fungal virulence in filamentous fungi, we generated a null

mutant of the gene encoding SrbA by replacement of the srbA

coding sequence in A. fumigatus strain CEA17 with the auxotrophic

marker pyrG from A. parasiticus as previously described [41,42]

(Figure 1). The resulting DsrbA strain was named SDW1. Ectopic

re-introduction of the wild type srbA allele into SDW1 (resulting in

strain SDW2) allowed us to attribute all resulting phenotypes

specifically to the absence of srbA in SDW1. All strains were

rigorously confirmed with Southern blot (Figure 1) and PCR

analyses (data not shown). The re-introduced srbA allele in SDW2

displayed similar mRNA abundance in response to hypoxia as the

srbA allele in the wild type strain (data not shown). SDW1 and

SDW2 both displayed normal hyphal growth rates compared to

the wild type strain CEA10 in normoxic conditions on glucose

minimal medium (GMM) (Figure 2A) (P.0.01). However, no

hyphal growth of SDW1 was observed in hypoxic (1% O2, 5%

CO2, 94% N2) conditions whereas wild type strain CEA10 and

reconstituted strain SDW2 grew at a normal rate with visual

phenotypic differences in colony color and conidiation compared

to growth in normoxia (Figure 2A and 2B). In hypoxia, the wild

type strains displayed increased aerial hyphae, decreased conidia

production, and consequently exhibited a fluffy colony morphol-

ogy (Figure 2B). After 96 hours of incubation in hypoxia, SDW1

continued to display undetectable growth. However, upon transfer

back to normoxic conditions, wild type growth rate was restored

(data not shown). Addition of exogenous ergosterol or lanosterol

did not rescue the SDW1 growth defect or alter wild type growth

morphology in hypoxia (data not shown). These results indicate

that A. fumigatus can rapidly adapt to hypoxic microenvironments,

and that SrbA in A. fumigatus is involved in mediating this response

by an undefined mechanism.

Transcriptional profiling of SDW1 in response to hypoxia
Given the dramatic phenotype observed in strain SDW1 in

hypoxia and the sequence annotation that SrbA likely functions as

a transcription factor, we next sought to determine which genes

are regulated by SrbA under hypoxic conditions. Microarray

experiments comparing the transcriptional profiles of wild type

strain CEA10 and SDW1 exposed to hypoxia for 24 hours

revealed 87 significant genes possibly regulated by SrbA (Table 1).

Several genes previously shown to be involved in ergosterol

biosynthesis in fungi were found to be transcriptionally repressed

in the absence of SrbA including ERG25, ERG24, and ERG3

(Table 1). Interestingly, besides srbA itself, the gene with the highest

fold difference in expression in SDW1 is a non-ribosomal peptide

synthetase, AFUA_1g10380 (NRPS1 or pes1) [43,44]. In addition,

a significant number of genes involved in cell wall biosynthesis or

homeostasis were observed to be repressed in SDW1 compared to

wild type. These included genes known to be involved in cell wall

biosynthesis such as alpha-galactosidase, alpha-glucosidase B, and

genes involved in cell wall homeostasis such as chitinase. However,

no obvious defects in cell wall biosynthesis were observed in the

Figure 1. Generation and confirmation of a SrbA null mutant in Aspergillus fumigatus. (A) Schematic of wild type (CEA10) and SDW1 (SrbA
null mutant) genomic loci. (B) Southern blot analysis of wild type, SDW1, and SDW2 strains. Genomic DNA from the respective strains was isolated
and digested overnight with NcoI. An approximate 1 kb genomic region of the SrbA locus was utilized as a probe. The expected hybridization
patterns and sizes were observed for the wild type CEA10 (5721 bp) and SrbA mutant (SDW1) (3622 bp) strains. In addition, confirmation of ectopic
reconstitution of the SrbA null mutant was confirmed by the presence of the wild type srbA locus hybridization signal and persistence of the SrbA null
mutant locus (strain SDW2).
doi:10.1371/journal.ppat.1000200.g001
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Figure 2. SrbA is required for hyphal growth under hypoxic conditions. 16106 conidia of CEA10, SDW1=DsrbA, SDW2=DsrbA+srbA were
plated on GMM plates and incubated at 37uC under normoxic and hypoxic conditions. (A) The diameter of the colony was measured over 96 h every
24 h. Under normoxic conditions no significant difference in growth speed and colony size or morphology could be observed (P.0.01). (B) Under
hypoxic conditions the wild type CEA10 and the reconstituted strain SDW2 showed comparable growth (P.0.01) but the mutant strain SDW1 did not
demonstrate any detectable growth. Error bars represent standard error from the triplicate experiments.
doi:10.1371/journal.ppat.1000200.g002
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mutant strain, and thus the transcriptional profiling results are

likely indirect effects of the altered cell polarity of the mutant

(discussed below). Genes encoding several transporters were also

found to be regulated by SrbA. Overall, these results suggest some

similarities, such as with regard to ergosterol biosynthesis, with

Table 1. Genes with higher expression in wild type than in
the srbA null mutant in hypoxia.

TRANSPORTERS

AFUA_4g01560 MFS myo-inositol transporter, putative 15.77

AFUA_1g10390 ABC multidrug transporter, putative 15.64

AFUA_3g01670 MFS hexose transporter, putative 14.12

AFUA_2g09450 carboxylic acid transport protein 12.18

AFUA_3g14170 high-affinity hexose transporter 11.31

AFUA_5g06720 MFS sugar transporter, putative 11.04

AFUA_7g06120 transmembrane transporter, putative 10.80

AFUA_3g12720 sugar transporter-like protein 9.08

AFUA_1g13350 transporter, putative 7.65

TRANSCRIPTION REGULATION

AFUA_2g01260 HLH transcription factor, putative (srbA) 38.59

AFUA_3g12910 MmcR, putative 10.49

AFUA_8g00200 CalO6, putative 8.05

AFUA_2g07900 APSES transcription factor (StuA), putative 7.79

AFUA_1g16590 C2H2 transcription factor (BrlA), putative 7.14

AFUA_8g05460 bZIP transcription factor, putative 6.09

STEROL BIOSYNTHESIS

AFUA_8g02440 c-4 methyl sterol oxidase (ERG25) 15.79

AFUA_2g00320 sterol delta 5,6-desaturase (ERG3) 13.57

AFUA_1g03150 c-14 sterol reductase (ERG24) 11.98

OXIDATIVE STRESS RESPONSE

AFUA_1g10380 nonribosomal peptide synthase (NRPS), putative 23.36

AFUA_7g05070 FAD dependent oxidoreductase, putative 13.68

AFUA_5g08830 HEX1 10.66

AFUA_4g08710 short chain dehydrogenase, putative 9.82

AFUA_3g02270 mycelial catalase Cat1 9.15

AFUA_4g14530 theta class glutathione S-transferase 8.45

AFUA_3g01580 GMC oxidoreductase 6.56

AFUA_1g03250 oxidoreductase, short chain dehydrogenase/
reductase family, putative

6.25

CELL WALL RELATED

AFUA_3g08110 cell wall protein, putative 21.29

AFUA_5g14740 fucose-specific lectin 15.00

AFUA_6g00430 IgE-binding protein 12.65

AFUA_5g00840 integral membrane protein 12.21

AFUA_5g03760 class III chitinase ChiA1 7.68

AFUA_4g09600 GPI anchored protein, putative 6.32

AFUA_2g05340 1,3-beta-glucanosyltransferase, putative 6.29

AFUA_1g05790 GPI anchored protein, putative 6.20

AFUA_5g07190 beta-glucosidase 6.04

SECONDARY METABOLISM

AFUA_8g01220 arthrofactin synthetase B 8.38

AFUA_2g17600 polyketide synthetase PksP 6.40

OTHER METABOLIC PROCESSES

AFUA_3g00810 cholestenol delta-isomerase, putative 18.48

AFUA_7g04930 alkaline serine protease (PR1), putative 13.09

AFUA_5g02130 alpha-galactosidase 12.92

AFUA_8g00190 cytochrome P450, putative 11.40

AFUA_1g16250 alpha-glucosidase B 9.95

AFUA_3g12960 cytochrome P450, putative 8.97

AFUA_3g07030 glutaminase A 8.24

AFUA_8g00620 dimethylallyl tryptophan synthase, putative 7.65

AFUA_4g09980 cytochrome P450 monooxygenase, putative 7.15

OTHER AND UNKNOWN GENES

AFUA_6g03680 hypothetical protein 13.55

AFUA_3g07870 conserved hypothetical protein 13.23

AFUA_8g04380 conserved hypothetical protein 12.96

AFUA_8g00710 antimicrobial peptide, putative 12.92

AFUA_3g13110 hypothetical protein 12.88

AFUA_7g01930 ESDC 12.14

AFUA_4g08400 hypothetical protein 11.16

AFUA_6g01870 hypothetical protein 10.71

AFUA_4g14060 conserved hypothetical protein 10.60

AFUA_6g12180 conserved hypothetical protein 10.20

AFUA_6g13980 prenyltransferase, putative 10.04

AFUA_2g00500 conserved hypothetical protein 9.61

AFUA_8g04310 conserved hypothetical protein 9.26

AFUA_1g02290 conserved hypothetical protein 9.13

AFUA_7g05450 SUN domain protein (Uth1), putative 9.02

AFUA_2g15200 conserved hypothetical protein 8.86

AFUA_7g04870 hypothetical protein 8.71

AFUA_5g00700 hypothetical protein 8.69

AFUA_3g07730 hypothetical protein 8.65

AFUA_4g12700 hypothetical protein 8.60

AFUA_5g14920 hypothetical protein 8.59

AFUA_3g07340 hypothetical protein 8.53

AFUA_7g04120 DUF636 domain protein 8.23

AFUA_1g14340 metalloreductase, putative 8.01

AFUA_3g08210 hypothetical protein 7.95

AFUA_5g14680 hypothetical protein 7.80

AFUA_6g11890 dynamin GTPase, putative 7.72

AFUA_2g09030 secreted dipeptidyl peptidase 7.70

AFUA_4g13630 hypothetical protein 7.51

AFUA_2g09680 PB1 domain protein, putative 7.09

AFUA_7g04740 hypothetical protein 6.84

AFUA_3g12230 hypothetical protein 6.81

AFUA_5g02330 major allergen Asp F1 6.81

AFUA_6g14340 related to berberine bridge enzyme (imported) 6.64

AFUA_2g17550 yellowish-green 1 6.56

AFUA_8g04620 hypothetical protein 6.37

AFUA_4g14040 Hsp70 family protein 6.30

AFUA_5g14410 cysteine dioxygenase 6.30

AFUA_2g08820 hypothetical protein 6.24

AFUA_1g13610 SH3 domain protein 5.97

AFUA_4g14050 hypothetical protein 5.73

doi:10.1371/journal.ppat.1000200.t001
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genes regulated by SREBPs in S. pombe and C. neoformans. However,

the overall set of genes putatively regulated by SrbA in A. fumigatus

is significantly different from data obtained from Sre1 mutants in

the yeast S. pombe and C. neoformans. Consequently, these results

strongly suggest that SrbA plays a distinct role in filamentous

fungal biology. These results subsequently directed experiments to

further characterize the role of SrbA in A. fumigatus biology.

SrbA mediates resistance to the azole class of antifungal
drugs
Given the number of ergosterol biosynthesis genes apparently

regulated by SrbA, we next asked the question whether SrbA

mediated resistance to the azole class of antifungal drugs that

target ergosterol biosynthesis. In a screen for susceptibility to

antifungal drugs using E-Test strips (AB Biodisk, kindly provided

by Dr. Theodore White, Seattle Biomedical Research Institute) we

found that SrbA is required for resistance to Fluconazole and

Voriconazole, but not Amphotericin B or Caspofungin. All 3

strains showed equivalent minimal inhibitory concentrations

(MIC) to Amphotericin B (0.25 mg/ml) and Caspofungin

(0.125 mg/ml). The lack of effect of Caspofungin provides support

for our hypothesis that the mutant is likely not directly affected in

cell wall biosynthesis as possibly suggested by the transcriptional

profiling data. However, while CEA10 and SDW2 showed

resistance to Fluconazole as expected, SDW1 growth was inhibited

at the surprisingly low MIC of 1 mg/ml (Figure 3). On the plates

with Voriconazole we could observe that CEA10 and SDW2 were

susceptible as expected (MIC of 0.125 mg/ml respectively). Similar

to the results with Fluconazole, SDW1 was significantly more

susceptible to Voriconazole and showed a MIC of only 0.012 mg/
ml (Figure 3). These clinically significant results suggest that SrbA

mediates resistance to the azole class of antifungal drugs by an

undefined mechanism.

SrbA is required for cell polarity and hyphal
morphogenesis
Visual inspection of SDW1 colony morphology in standard

laboratory conditions did not reveal any apparent morphological

phenotypes (Figure 2B). However, our transcriptional profiling

experiments suggested possible alterations in cell wall biosynthesis,

a critical component of hyphal morphology and growth, in the

absence of SrbA. Consequently, we performed a more in depth

analysis of SDW1 morphology. First, we utilized light microscopy

to examine the growing edges of SDW1 colonies in normoxia. We

observed a significant defect in hyphal tip branching in SDW1 that

is not apparent in strains CEA10 and SDW2 (Figure 4). SDW1

hyphal tips display hyper-branching and a ‘‘blunted’’ abnormal

morphological phenotype (Figure 4). This phenotype suggests that

SrbA is involved in maintaining cell polarity that directs hyphal

growth. Interestingly, this phenotype does not appear to alter the

growth rate of the colony, which was comparable to the wild type

under normoxic conditions (Figure 2A). Next, we utilized

transmission electron microscopy (TEM) to further examine the

cell wall and morphology of conidia and hyphae of SDW1.

Confirming our suspicions that the mutant was not directly

affected in cell wall biosynthesis we observed no clear cell wall

Figure 3. SrbA mediates resistance to Fluconazole (FL) and Voriconazole (VO) in Aspergillus fumigatus. A clear ellipse indicates the
susceptibility to the respective drug. As expected, Fluconazole has no effect on CEA10 and SDW2, but in the absence of SrbA, SDW1 is highly
susceptible to Fluconazole (MIC= 1.0 mg/ml). CEA10 and SDW2 are susceptible to Voriconazole (MIC for both = 0.125 mg/ml); however, SDW1 also
displays increased susceptibility (MIC = 0.012 mg/ml) to this important antifungal agent. The numbers on the scale correspond to the Fluconazole and
Voriconazole concentrations on the E-test strip (in micrograms per milliliter).
doi:10.1371/journal.ppat.1000200.g003
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defects. However, a general thickening of the intracellular space

between the cell wall and plasma membrane is observed in SDW1

conidia and hyphae compared with the wild type (Figure 5A and

5B and 5D and 5E). A striking phenotype was consequently

observed in conidia from SDW1 that suggested a significant defect

in the cell wall-plasma membrane interface occurs in the absence

of SrbA (Figure 5A and 5B). This defect is apparently exacerbated

by the electron beam, which causes a separation between the cell

wall and plasma membrane in SDW1 conidia (Figure 5C). This

phenotype was observed in over 80% of the SDW1 conidia

examined. However, the size and density of the mutant conidia

were comparable to the wild type strain as measured by flow

cytometry (data not shown). Since a defect in the cell wall plasma

membrane interface was suggested, we examined viability of the

SDW1 conidia by monitoring germination. These experiments

revealed that viability, as measured by conidia germination, was

not significantly different between the wild type, SDW1 and

SDW2 strains (Figure 6) (P.0.01). Similar cell wall-plasma

membrane defects were observed in the SDW1 hyphae compared

with the wild type hyphae (Figure 5D and 5E). Importantly, an

accumulation of electron dense objects was observed in the SDW1

hyphae. We hypothesize that these objects may be vesicles of the

Spitzenkörper, and their abnormal location in the SDW1 hyphae

may cause the observed altered cell polarity (Figure 5E and 5H).

This phenotype was observed in over 50% of the SDW1 hyphae

examined and never observed in the wild type strain. These results

suggest that SrbA is critical for maintaining the cell wall – plasma

membrane interface, and that SrbA is critical for normal hyphal

branching and cell polarity in filamentous fungi by an undefined

mechanism.

SrbA is required for normal sterol biosynthesis
Transcriptional profiling of SDW1 under hypoxia suggested

that SrbA was involved in both early and late steps of the sterol

Figure 4. Hyphal morphology and growth of wild type strain
CEA10 and SrbA null mutant SDW1. Strains were grown overnight
on slides coated with GMM. Brightfield microscopy pictures of wild type
CEA10 and SDW1 at 200-fold and 400-fold magnification. SDW1 showed
abnormal hyphal formation and apparent cell polarity defect with
multiple branches and unusual thick structures at the apical tips of the
hyphae. Bars = 100 mm.
doi:10.1371/journal.ppat.1000200.g004

Figure 5. Abnormal cell wall-plasma membrane interface and
hyphal morphology is evident in the absence of SrbA. (A–C)
Transmission electron micrographs showing sections of conidia of wild
type CEA10 (A) and SDW1 (B,C). Compared with the round wild type
conidia having clear boundaries between plasma membrane and cell
wall layers, most of the SDW1 conidia were distorted in shape and
possessed faint, somewhat shriveled boundaries. Note that frequent
‘‘tearing’’ took place mainly at the cell wall – plasma membrane
interface during microscopic examination of the SDW1 conidia (arrows).
This phenotype was observed in over 80% of SDW1 conidia examined.
Inset panels depict a 36magnified view of the conidial cell wall region.
Bars = 500 nm. (D–H). Transmission electron micrographs showing
longitudinal and transverse hyphal sections of wild type CEA10 (D,F)
and SDW1 (E,G,H). Close observation of the hyphal tips show
phenotypic differences between wild type and SDW1. Abnormal cell
wall – plasma membrane interfaces and apical swellings in SDW1
hyphae were frequently observed, while the wild type showed normal
round-shaped apexes. With respect to cell wall morphology around the
hyphal apex, SDW1 had an abnormally expanded cell wall (arrows)
containing numerous electron dense objects (arrowheads), which likely
resulted in hyphal tip bending (H). Inset panels depict a magnified view
of the boxed region. Bars = 1 mm, except for the inset panels of E and H
where they denote 500 nm.
doi:10.1371/journal.ppat.1000200.g005
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biosynthesis pathway. In addition, the abnormal conidial and

hyphal morphology observed via light microscopy and TEM

micrographs in SDW1 also suggested possible alterations in sterol

content in the absence of SrbA. Thus, we examined the sterol

profile of the SrbA null mutant SDW1 by GC-MS and compared

it with the wild type strain CEA10. The GC-MS profiles

demonstrated a significant accumulation of 4-methyl sterols in

the SrbA null mutant, SDW1, that was not observed in the wild

type strain CEA10 (Figure 7). Interestingly, both strains possessed

significant amounts of ergosterol (Figure 7). The ratio of C-4

methylated sterols to ergosterol in the absence of SrbA is 1.94

whereas no C-4 methylated sterols accumulated in the wild type.

Specifically, the accumulation of 4-methylfecosterol and 4,4-

dimethylergosta-8,24(28)-dien-3b-ol in the absence of SrbA

suggests a blockage at ERG25 in the sterol biosynthesis pathway

in SDW1. These alterations are supported by the transcriptional

profiling data, which suggests transcriptional regulation of ERG25

by SrbA in A. fumigatus (Table 1). Consequently, these results

suggest a blockage of C4 demethylation in the absence of SrbA in

A. fumigatus. In addition, these results suggest that ergosterol can

still be synthesized in the absence of SrbA in A. fumigatus.

SrbA is required for fungal virulence in two distinct
murine models
Next, we sought to determine whether SrbA was required for A.

fumigatus virulence. To answer this important question, we utilized

two distinct murine models of IPA. In the first model, outbred

CD1 neutropenic mice infected with SDW1 displayed no

symptoms associated with IPA (Figure 8A). This was in contrast

to mice infected with the wild type CEA10 and reconstituted strain

SDW2 that displayed well described symptoms of A. fumigatus

infection including hunched posture, ruffled fur, weight loss, and

increased respiration. Consequently, a significant difference in

mortality was observed between the mice infected with SDW1 and

mice infected with either SDW2 or CEA1O (P= 0.0002). Indeed,

in this murine model, the SDW1 strain was completely avirulent

(Figure 8A). We next asked the question whether mice infected

with SDW1 were able to clear the infection. After 28 days, SDW1

Figure 6. Conidia germination is not affected by loss of SrbA. Germination media was inoculated with approximately 106 conidia/ml of the A.
fumigatus strains CEA10, SDW1, and SDW2. After 7 hours the germination rate was determined by counting a total of 100 spores and noting the
number of germinated spores. Three replicates were performed. No significant difference in germination was observed between CEA10, SDW1, and
SDW2 (P.0.01).
doi:10.1371/journal.ppat.1000200.g006

Figure 7. C4-demethylation is altered in the absence of SrbA.
Representative GC-MS chromatograms of sterol extracts from wild type
(A) and SDW1 (B). Key: A- ergosta-5,8,22-trien-3b-ol, B- ergosterol, C-
ergosta-5,7,22,24(28)-tetraen-3b-ol, D- ergosta-5,7,24(28)-trien-3b-ol, E-
24-ethylcholesta-5,7,22-trien-3b-ol, F- 4-methylfecosterol, G- 4methyler-
gosta-5,8,24(28)-trien-3b-ol, H- 4,4-demethylergosta-8,24(28)-dien-3b-ol.
An accumulation of 4-methyl sterols is observed in the absence of SrbA,
suggesting a blockage in enzymes involved in sterol C-4 demethylation.
The ratio of C-4 methylated sterols to ergosterol in the absence of SrbA
was 1.94 whereas no C-4 methylated sterols accumulated in the wild
type.
doi:10.1371/journal.ppat.1000200.g007
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infected mice displayed no visible or microscopic signs of infection.

In particular, at days 14, 21, and 28 lung homogenates were taken

from SDW1 infected mice and with the exception of one mouse,

no fungal colonies were recoverable indicating that the mice had

cleared the infection. Histopathological analyses of mice on days

14, 21 and 28 in this neutropenic model also confirmed the lack of

fungal persistence and inflammation in mice infected with SDW1

(Figure 9).

Next, we examined the virulence of SDW1 in a murine model

of X-linked chronic granulomatous disease (X-CGD) utilizing

gp91phox2/2 mice. These mice are deficient in NADPH oxidase

activity and display hyper-susceptibility to Aspergillus species

without the need for immunosuppression with chemotherapeautic

agents [45,46]. Similar to the neutropenic mouse model, X-CGD

mice infected with strain SDW1 had significant differences in

survival compared with mice infected with wild type and

Figure 8. Role of SrbA in Aspergillus fumigatus virulence. (A) Outbred CD-1 mice (n = 12) were immunosuppressed by i.p. injection of
cyclophosphamide (150 mg/kg) 2 days prior to infection and s.c. injection of Kenalog (40 mg/kg) 1 day prior to infection and injection of 150 mg/kg
cyclophosphamide 3 days post-inoculation and 40 mg/kg Kenalog 6 days post-inoculation. Mice were inoculated intranasally with 106 conidia in a
volume of 40 ml of wild type CEA10, DsrbA mutant strain SDW1 and the srbA reconstituted strain SDW2. P value for comparison between SDW1 and
wild type CEA10, P = 0.0002. (B) gp91phox2/2 mice (n = 6) were challenged intratracheally with 106 conidia in a volume of 40 ml of wild type CEA10,
DsrbA mutant strain SDW1 and the srbA reconstituted strain SDW2. A log rank test was used for pair wise comparisons of survival levels among the
strain groups. P value for comparison between SDW1 and wild type CEA10, P = 0.0054. SDW1 is significantly less virulent than the wild type CEA10
and the reconstituted strain SDW2 in both murine models. All animal experiments were repeated in duplicate with similar results.
doi:10.1371/journal.ppat.1000200.g008
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reconstituted strains (Figure 8B) (P = 0.005). Unlike the neutrope-

nic mouse model, these mice all displayed symptoms of IPA during

the preliminary stages of infection. These symptoms, likely due to

the large inflammatory response characteristic of these mice when

exposed to fungal antigens, included ruffled fur, hunched posture,

and lethargic movement as early as 24 hours post-infection.

However, only one mouse infected with SDW1 succumbed to the

infection. In a repeat experiment, 3 additional X-CGD mice

infected with SDW1 also succumbed on day 4 to the infection.

Most likely, this was due to the hyper-inflammatory response that

occurs in X-CGD mice and not death due to invasive fungal

growth. Regardless, the majority of X-CGD mice infected with

SDW1 survived the infection and displayed no symptoms of IPA

by day 14. Histopathological analyses of these mice displayed

standard pathological findings associated with Aspergillus infections

in X-CGD mice including the development of granulomatous like

lesions, massive influx of inflammatory cells (primarily neutrophils)

to sites of infection, subsequent peribronchiolar and alveolar

inflammation, and substantial fungal growth in silver stained tissue

(Figures 10 and 11). On day 1 of the infection, fungal germination

and growth is observed in mice infected respectively with all 3

strains of the fungus. This observation confirms the viability of

SDW1 conidia in vivo (Figure 10). Semi-quantitative assessment of

the percent of the lung affected by the infection, measured by

inflammation and necrosis, of mice infected with the 3 strains

respectively revealed no difference at this early time point

(CEA10= 1.360.5, SDW1=1.360.5, SDW2=160.0). Histopa-

thology on day 4 of the infection, however, revealed extensive

growth and proliferation of the wild type and reconstituted SDW2

strain, but minimal fungal growth and proliferation in mice

infected with the SrbA null mutant SDW1 (Figure 11). Semi-

quantitative assessment of the inflammation and necrosis observed

in the lungs of mice infected with the 3 strains respectively at this

time point revealed significant differences in the percent of the

lung affected by the infection (CEA10= 3.360.5,

SDW1=2.360.5, SDW2=3.860.5). Lung homogenates from

these mice also revealed that viable SDW1 fungus was recoverable

from these mice at this time point. This data is consistent with the

observed in vitro phenotype of the SDW1 strain in hypoxia.

Histopathological analysis of SDW1 infected survivors in this

model revealed persistence of granuloma like structures and fungal

tissue (Figure 12). Lung homogenates from these animals revealed

that the observed fungal tissue was still viable. These results

indicate that despite normal growth rates in vitro in normoxic

conditions, the SDW1 strain is severely attenuated in its ability to

cause lethal disease in two distinct murine models of IPA.

Figure 9. Representative histopathology of CD-1 mouse model
SDW1 infected survivors. Hematoxylin and eosin (H&E) or Gom-
mori’s methenamine silver (GMS) stains at 100-fold magnification. No
sign of inflammation or fungal burden was observed in any surviving
animal on day +14, +21 and +28 of the infection. This result indicates
that in this murine model, the immune system is capable of clearing the
fungal infection in the absence of SrbA. Bar = 100 mm.
doi:10.1371/journal.ppat.1000200.g009

Figure 10. Histopathology of X-CGD mouse model 24 hours
after infection. Mock = 0.01% Tween inoculated, WT = CEA10,
SDW1=DsrbA, SDW2=DsrbA+srbA. Mice were inoculated with 16106

conidia intratracheally, euthanized on day +1 after inoculation, lungs
removed, fixed in formaldehyde, and stained with hematoxylin and
eosin (H&E) or Gommori’s methenamine silver (GMS) stain. On day 1 no
difference in size and state of lesions could be observed in the infected
mice. GMS staining revealed that fungal colonization and germination is
observed in all infected animals but not the mock control. This result
indicates that SDW1 conidia are viable in vivo during the early stages of
infection. Bar = 100 mm.
doi:10.1371/journal.ppat.1000200.g010
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SrbA is not required for oxidative stress resistance and
resistance to macrophage killing
One possible mechanism that could explain the virulence defect of

strain SDW1 is an increased susceptibility to oxidative stress as

suggested by transcriptional profiling and altered conidia morphol-

ogy. We examined the growth of CEA10, SDW1, and SDW2 in the

presence of 1 mM and 2.5 mM hydrogen peroxide on glucose

minimal media. After 48 hours, we observed no detectable

difference in growth morphology or colony diameter. In addition,

we next examined the ability of RAW264.7 macrophage-like cells to

kill SDW1 conidia (Figure 13). As presented in figure 13, no

significant difference in conidia killing was observed between

CEA10, SDW1, and SDW2 (P.0.01). We conclude that increased

susceptibility to oxidative stress and macrophage killing is not

responsible for the virulence defect observed in the absence of SrbA.

Discussion

In this manuscript we present the first characterization of a

SREBP in a filamentous fungus. In the yeasts S. pombe and C.

neoformans, SREBP homologs are crucial for sterol biosynthesis,

survival under hypoxic conditions, resistance to azole antifungal

agents, and fungal virulence [25,32,33]. Our results confirm that

some roles of SREBPs in filamentous fungi are conserved with

yeast including, the response to hypoxia, sterol biosynthesis, and

susceptibility to the azole class of antifungal drugs. However, our

results suggest additional functions of SREBPs in filamentous

fungi, most importantly a role in maintenance of cell polarity.

Similarities and differences between SrbA in A. fumigatus and

Sre1 in the yeast S. pombe and C. neoformans were apparent from

transcriptional profiles comparing the SREBP null mutants to

their respective wild type strains in response to hypoxia. Unlike C.

neoformans, we did not observe SrbA dependent genes involved in

iron or copper uptake in A. fumigatus [32]. This may, however, be a

reflection of the experimental conditions that did not place iron

stress on the fungus in these experiments. Similar to C. neoformans

and S. pombe, we observed SrbA dependent genes involved in

ergosterol biosynthesis including ERG25, ERG24, and ERG3

[31–33]. This result suggests that regulation of ergosterol

Figure 11. Histopathology of X-CGD mouse model day 4 after infection. Mock= 0.01% Tween inoculated, WT=CEA10, SDW1=DsrbA,
SDW2=DsrbA+srbA. Mice were inoculated with 16106 conidia intratracheally, euthanized on day +4 after inoculation, lungs removed, fixed in
formaldehyde, and stained with hematoxylin and eosin (H&E) or Gommori’s methenamine silver (GMS) stain. Significant inflammation, necrosis, and
an influx of immune effector cells (primarily neutrophils) is observed on day +4 in all infected animals but not the mock control. However, lesions are
more localized and not as extensive in mice infected with SDW1. Open alveoli and more localized inflammation are clearly observed in mice infected
with SDW1. Interestingly, GMS staining revealed that fungal growth is less extensive in SDW1 as well. This result indicates that as the infection
progresses, SDW1 is incapable of continued hyphal growth despite the absence of NADPH oxidase in this murine model. Bar = 500 mm for 406;
Bar = 100 mm for 2006.
doi:10.1371/journal.ppat.1000200.g011
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biosynthesis is a conserved function of SREBPs in fungi. In A.
fumigatus, the SrbA dependent regulation of ERG25 seems to be of

particular significance as sterol profiles of the SrbA mutant

indicated an accumulation of C-4 methyl sterols suggesting a block

in ERG25 function. The effects of decreased ERG3 and ERG24

transcription in the SrbA null mutant is less clear. The

accumulation of pathway intermediates may subsequently affect

the expression of these genes, and thus, their regulation by SrbA

may be indirect. Moreover, A. fumigatus is predicted to have 3

possible orthologs of ERG3 and two of ERG24, which likely

indicates a complex regulatory mechanism for ergosterol biosyn-

thesis in A. fumigatus that is mediated in part by SrbA under specific

conditions such as hypoxia [47,48]. Indeed, single mutants of erg3
genes result in no difference in their sterol profiles compared with

wild type strains [49].

Other differences with yeast in the transcriptional profile of the

SREBP mutant in A. fumigatus suggest important roles for SrbA in

filamentous fungal biology. For example, a non-ribosomal peptide

synthetase, NRPS1 (or pes1), had the highest change in expression

between wild type and the SrbA null mutant [43,44]. This NRPS

has been observed to mediate resistance to oxidative stress in A.
fumigatus and displayed an attenuated virulence phenotype in a

Galleria mellonella (wax moth) model of aspergillosis depending on

inoculum dose [44]. NRPSs are not generally found in most yeast

and are particularly abundant in filamentous fungi. Thus, this

result suggests that the uncharacterized peptide produced by this

NRPS may possibly be involved in hypoxia adaptation as

regulated by SrbA in filamentous fungi. Interestingly, we did not

observe any increased susceptibility to oxidative stress in the SrbA

null mutant. Overall, however, unlike C. neoformans and S. pombe,
we did not observe any genes with an annotation that would

clearly point to a role in allowing Aspergillus to adapt to hypoxia.

This result further illustrates that mechanisms of hypoxia

adaptation are almost certainly different in molds than yeast.

Our examination of the SrbA null mutant colony morphology

subsequently revealed abnormal branching at the hyphal tips in

normoxia and an inability of hyphal growth in hypoxia. Further

examination of the mutant with TEM suggested altered vesicle

Figure 12. Representative histopathology of X-CGD mouse
model SDW1 infected survivors. Hematoxylin and eosin (H&E) or
Gommori’s methenamine silver (GMS) stains. Resolution of inflamma-
tion and necrosis is observed in all surviving animals on day +14 of the
infection. However, lesions are still apparent as is common in these
mice, but necrosis and debris is significantly reduced. Fungal tissue
remains evident on GMS stains indicating that despite surviving the
infection, these mice have not entirely cleared the fungal infection. This
result confirms the importance of a functional NADPH oxidase in
resistance to Aspergillus infections, and suggests that increased hypoxia
prevents proliferation of fungal tissue in the absence of SrbA.
Bar = 500 mm for 406; Bars = 100 mm for 1006 and 2006.
doi:10.1371/journal.ppat.1000200.g012

Figure 13. Loss of SrbA does not affect susceptibility to conidia killing by RAW264.7 cells. RAW264.7 cells (macrophages) were infected
with a total of 1.256106 freshly harvested A. fumigatus conidia of strains CEA10, SDW1, and SDW2 to obtain a conidia:macrophage ratio of 5:1.
Conidia and macrophages were incubated together for 6 hours. After 6 hours, conidia were collected from the macrophages and plated onto
glucose minimal media. Shown is the percent of recovered conidia after 6 hours incubation of two biological replicates. No significant difference in
conidia killing was observed between CEA10, SDW1, and SDW2 (P.0.01).
doi:10.1371/journal.ppat.1000200.g013
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translocation or formation in the hyphae. It is unclear whether

these electron dense objects, which we hypothesize are vesicles,

comprise the actual Spitzenkörper. At the apex of hyphae in

filamentous fungi, the Spitzenkörper is an accumulation of vesicles

that is critical for growth directionality [50,51]. Interestingly,

Takeshita et al. (2008) recently observed that localization of key

deposition proteins involved in polarized growth at the hyphal tip

requires apical sterol-rich membranes [52]. Thus, we hypothesize

that the altered hyphal morphology and excessive branching at the

tips observed in the SrbA null mutant is due to the alteration in

sterol composition of the sterol-rich microdomains in the

membrane that are critical for localization of important vesicles

and landmark proteins [53]. The alteration in sterol content may

cause improper sorting of the vesicles to the apex of the hyphal tip.

It is also likely then that the inability of the mutant to grow in

hypoxia is related to the perturbation in sterol biosynthesis, a

highly oxygen dependent pathway reported to require at least 22

molecules of oxygen.

We could not rescue the SrbA phenotype in hypoxia with

addition of ergosterol or lanosterol (data not shown). Nor did

exogenous addition of these sterols alter growth of the wild type

strain in hypoxia as is the case for S. cerevisiae, which requires

exogenous sterols for anaerobic growth. These results may suggest

that A. fumigatus does not import exogenous sterols in hypoxic

conditions, that SrbA may be in part responsible for exogenous

sterol uptake, or that the defect is not due to loss of ergosterol or

lanosterol. We feel that the latter explanation is most likely as A.

fumigatus has been observed to take up and utilize exogenous

cholesterol [54]. We observed that the A. fumigatus SrbA null

mutant produced substantial levels of ergosterol even in the

absence of SrbA. Thus, even though the ergosterol biosynthesis

pathway appears blocked at ERG25 in the SrbA mutant,

alternative mechanisms exist for A. fumigatus to produce ergosterol

in the absence of SrbA and presumably ERG25 activity. This

finding is consistent with a recent report which suggested that A.

fumigatus likely possess at least three alternative pathways for

ergosterol biosynthesis [48]. Also, an analysis of the A. fumigatus

genome sequence revealed that A. fumigatus contains duplicate and
even triplicate copies of many of the ergosterol biosynthesis genes

[47,55]. Thus, it appears that A. fumigatus contains complex

regulatory mechanisms, of which SrbA is a part, for the

production of ergosterol that remain to be elucidated.

Based on our current knowledge of the pathophysiology of IPA,

the in vitro phenotypes observed in the SrbA mutant would not

predict a role for this protein in A. fumigatus virulence. However,

the SrbA null mutant was virtually avirulent in two distinct murine

models of IPA despite a normal growth rate of the fungus in

standard laboratory conditions. Consequently, we believe two

possible explanations exist for the observed avirulent phenotype of

the SrbA null mutant. First, and we believe most likely, the

inability of the SrbA null mutant to grow in hypoxia prevents

invasive disease from being established. Once hypoxia is generated

during Aspergillus infection, the mutant simply can no longer grow

and proliferate, allowing what immune effector cells that remain

functional the ability to ultimately clear the infection. An

alternative hypothesis is that the altered hyphal morphology and

excessive branching observed in the SrbA mutant in normoxic

conditions results in a strain incapable of invasive growth or a

strain more susceptible to clearance by the immune system. To

examine these alternatives, we employed the use of two distinct

murine models of IPA.

We first examined the SrbA mutant virulence phenotype in a

persistently neutropenic mouse model characterized by the use of

high doses of cyclophosphamide and Kenalog [42]. Currently, it is

unclear what specific components of the immune system are

affected in this model, but it is clear that differences in the

immunosuppression regimen can significantly affect the outcome

of infection [56,57]. In this model, significant inflammation and

tissue necrosis is observed in histopathological examinations. We

hypothesize that these sites of infection and inflammation in this

model are hypoxic. Thus, we believe that A. fumigatus must

overcome significant hypoxia during pulmonary infections, and

the inability of the SrbA null mutant to adapt to hypoxic

conditions results in rapid cessation of invasive growth and a lack

of lethal disease. Our histopathological findings with the SrbA

mutant strain revealed fungal growth in this model early in the

infection. However, by day 14, we were unable to recover viable

colonies from mice infected with the SrbA null mutant strain.

Indeed, by day 14 of the infection, little evidence of inflammation

or fungal burden was evident in mice infected with the SrbA null

mutant. These two results suggest that growth of the fungus was

halted and what immune effector cells present in the immuno-

suppressed mice were able to clear the infection. Furthermore, our

in vitro experiments revealed that the growth defect of the SrbA

mutant in hypoxia was not fungicidal but fungistatic. Thus, if

growth simply were halted in the animals without immune system

clearance, we would have expected to recover viable fungal

colonies from the infected mice.

To further examine the apparent virulence defect of the SrbA

null mutant, we utilized a mouse strain highly susceptible to

Aspergillus infections, the X-CGD gp91phox2/2 mice [45,46]. These

mice exhibit a hyper-inflammatory response when exposed to A.

fumigatus and other Aspergillus species. We chose this particular

animal model for our experiments given the very specific defect in

NADPH oxidase function in these mice, and with the hypothesis

that the hyper-inflammatory response would generate significant

hypoxia in the lung. Given the extreme susceptibility of these mice

to A. fumigatus, we hypothesized that if the SrbA null mutant could

grow and persist in vivo, even at a reduced rate, we should observe

significant mortality in these mice. However, in contrast, we

observed limited mortality in these mice when inoculated with the

SrbA null mutant, strongly suggesting that the mutant simply

cannot grow effectively in vivo to cause invasive disease. Unlike the

neutropenic mouse model, extensive signs of chronic inflammation

remained evident in the X-CGD mice post-day 14, consistent with

previously reported results in these animals [45]. Furthermore,

unlike the neutropenic mice, we could detect the persistence of

viable SDW1 in the lungs of these surviving mice out to day 14.

Consequently, we conclude that these observations strongly

suggest that the inability of the SrbA null mutant to grow in

hypoxic microenvironments is primarily responsible for the

avirulent phenotype of the mutant. Though the altered cell

polarity of the SrbA mutant may contribute to the virulence

defect, the fact that SrbA null mutant displayed normal growth

rates in vitro in standard laboratory growth conditions suggests to us

that the altered cell polarity did not significantly affect fungal

growth. Furthermore, we also have examined the susceptibility of

the SrbA null mutant conidia to macrophage (RAW264.7 cells)

killing and found no difference with the wild type strain. In

addition, the SrbA mutant did not display increased sensitivity to

hydrogen peroxide. Taken together, we feel these observations

strongly suggest that the virulence defect in the SrbA null mutant is

due to its inability to grow in hypoxia.

An additional observation of clinical significance was the finding

that SrbA mediates resistance to the azole class of antifungal drugs.

Interestingly, loss of SrbA resulted in a strain of A. fumigatus highly

susceptible to fluconazole, an azole that normally has minimal

activity against A. fumigatus [58,59]. The mechanism(s) behind this
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result are currently not known. Transcriptional profiling of the

SrbA mutant revealed numerous transporters possibly regulated

by SrbA. Thus, the mechanism behind the increased azole

susceptibility may be due to loss of transcription in specific

transporters in the SrbA mutant. This hypothesis is currently being

tested in our laboratory. Second, a relationship between

mitochondria function, sterol homeostasis, and azole drug

resistance has been observed in the yeast S. cerevisiae and Candida

glabrata [60,61]. Thus, the altered accumulation of sterol

intermediates in the SrbA mutant may alter the resulting

interaction with fluconazole and mitochondria. With a similar

increase in susceptibility to azoles in the SREBP mutant in C.

neoformans, it seems clear that further study of the SREBP pathway

and azole drug resistance in pathogenic fungi is highly warranted.

Identification of ways to inhibit this pathway in vivo may increase

the efficacy of current azole antifungal agents [32,33]. Thus,

further studies are needed to dissect this important pathway in

yeast and molds to identify conserved targets that may be

harnessed to treat patients with invasive mycoses.

Finally, in this study, we did not focus on elucidating the

molecular mechanism behind SrbA regulation and activation in

molds. However, several observations from our studies hint at

possible mechanisms. First, we identified SrbA in a transcriptional

profiling screen of A. fumigatus in response to hypoxia (induced .5
fold). This suggests that SrbA may be transcriptionally regulated in

molds. However, HIF1 in humans also responds transcriptionally

to hypoxia, but its activity is primarily post-translationally

regulated [62,63]. In the yeast S. pombe and C. neoformans, it seems

clear that Sre1 is regulated post-translationally in response to sterol

biosynthesis perturbation that occurs in low oxygen environments.

Indeed, Hughes et al. (2007) have identified 4-methyl sterols as the

primary activating agent of Sre1 in S. pombe [64]. Thus, our finding

that the SrbA null mutant in A. fumigatus accumulates 4-methyl

sterols may also suggest that these sterols are the trigger for SrbA

activation in A. fumigatus.

While many of the phenotypes we observed in the SrbA mutant

in A. fumigatus may suggest that SrbA is regulated in a similar

manner as Sre1 in yeast, our results may also suggest an alternative

model in molds. First, despite extensive bioinformatic analyses, we

were unable to identify a clear homolog of the sterol cleavage

activating protein (SCAP). SCAP is highly conserved in yeast,

mammals, and insects and thus it is surprising that bioinformatic

searches were unable to identify a clear homolog in any

filamentous fungi with genome sequences available. However,

some candidates with minimal sequence similarity are being

pursued in our laboratory. Second, the observation that sterol

biosynthesis was altered in normoxia, likely resulting in altered cell

polarity, suggests that in molds, SrbA plays a significant role in the

biology of filamentous fungi in normoxic conditions. Third,

though sequence identity was extremely low, generation of null

mutants in putative site-1 (S1P) and site-2 (S2P) protease homologs

in A. fumigatus did not demonstrate expected defects in hypoxic

growth (Willger and Cramer, unpublished data). Additional

proteases remain to be explored. We could, however, identify a

clear Insig1 homolog, which we have named InsA. In mammals,

Insig is a key regulator of SREBP function where it binds to SCAP

and prevents SREBP cleavage in the presence of sterols by

maintaining the SREBP-SCAP complex in the endoplasmic

reticulum membrane [65,66]. We are currently characterizing a

possible role for InsA in SREBP signalling in filamentous fungi.

Interestingly, C. neoformans lacks an apparent Insig homolog and

the Insig homolog in S. pombe does not appear to be required for

regulation of SREBP signalling [25,32]. Taken together, these

results suggest that while aspects of SrbA signalling in filamentous

fungi may be conserved in yeast and mammals, it is likely that

significant differences exist in molds that remain to be elucidated.

What is clear, however, is that SREBPs play critical roles in the

biology of fungi that have important implications for fungal

virulence and how we manage and treat invasive fungal infections.

Future studies on this pathway in A. fumigatus are likely to yield

important insights into sterol metabolism, hypoxia adaptation,

fungal growth, and mechanisms of azole drug resistance.

Materials and Methods

Strains and media
A. fumigatus strain CEA17 (a gift from Dr. J.P. Latgé, Institut

Pasteur) was used to generate the srbA null mutant strain, SDW1

(DsrbA::A. parasiticus pyrG pyrG1). A. fumigatus strain CEA17 is a

uracil-auxotrophic (pyrG1) mutant of A. fumigatus strain CEA10

[67,68]. In this study we used CEA10 (gift from Dr. Thomas

Patterson, University of Texas- San Antonio Health Sciences

Center) as the wild type, SDW1, and an ectopic complemented

control strain SDW2 (Dsrb::A. parasiticus pyrG+srbA). All strains were
stored as frozen stocks with 50% glycerol at 280uC. The strains

were routinely grown in glucose minimal medium (GMM) with

appropriate supplements as previously described [69] at 37uC. To
prepare solid media 1.5% agar was added before autoclaving.

Strain construction
Generation of a srbA null mutant in A. fumigatus strain CEA17

was accomplished by replacing an ,2.2-kb internal fragment of

the srbA coding region (,3.0 kb; GenBank accession

no. XM_744169) with A. parasiticus pyrG. The replacement

construct was generated by cloning a sequence homologous to

the srbA locus into plasmid pJW24 (donated by Dr. Nancy Keller,

University of Wisconsin—Madison). Homologous sequences, each

,1 kb in length and 59 and 39 of the srbA coding sequence, were

cloned to flank A. parasiticus pyrG in pJW24. The resulting plasmid,

pSRBAKO, was used as a template to amplify the ,5.1-kb

disruption construct for use in fungal transformation. To

complement the DsrbA strain SDW1 the srbA gene was amplified

using genomic DNA of CEA10 as template and the primers

59SrbAKOLF and 39SrbAKORF. The,5.9-kb PCR product was

used in a fungal transformation and selection was for colonies able

to grow under hypoxic conditions. The primers utilized in vector

construction are presented in Table S1.

Generation of fungal protoplasts and polyethylene glycol-

mediated transformation of A. fumigatus were performed as

previously described [70]. Briefly, 10 mg of the srbAKO PCR-

generated replacement construct was incubated on ice for 50 min

with 16107 fungal protoplasts in a total volume of 100 ml.
Transformants were initially screened by PCR to identify potential

homologous recombination events at the srbA locus. PCR was

performed with primers designed to amplify only the disrupted

srbA locus (59SrbAKOLF and 39PyrGKOLF; 59PyrGKORF and

39SrbAKORF) (Table S1). Homologous recombination was

confirmed by Southern analysis with the digoxigenin labeling

system (Roche Molecular Biochemicals, Mannheim, Germany) as

previously described [71]. To eliminate the chance of heterokary-

ons, each transformant was streaked with sterile toothpicks a

minimum of two times to obtain colonies from single conidia.

Hypoxic cultivation
Strains were grown on GMM plates at 37uC. Normoxic

conditions were considered general atmospheric levels within the

lab (,21% O2). For hypoxic conditions a Hypoxia Incuba-

tion Chamber (MIC-101; Billups-Rothenberg, http://www.
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hypoxiaincubator.com) was used. The chamber was maintained at

37uC and kept at ,1% oxygen level utilizing a gas mixture

containing 1% O2, 5% CO2 and 94% N2. In addition, hypoxia

experiments requiring shake-flask cultures were conducted in a

Biospherix C-Chamber with O2 levels controlled by a PRO-Ox

controller and CO2 levels controlled with PRO-CO2 controller

(Biospherix, Lacona, NY). For these experiments, O2 set point was

1% and CO2 set point was 5%.

Colony growth was quantified as previously described [72].

Briefly, 5-ml aliquots containing 16106 conidia from freshly

harvested GMM plates were placed in the center of GMM agar

plates. Plates were then cultured under normoxic or hypoxic

conditions. Diameters of three colonies per A. fumigatus strain and

condition were measured once daily over a period of 4 days. The

average change in colony diameter per 24 h of growth was

calculated from three independent cultures. Conidia were

harvested with 20 ml of sterile 0.01% Tween 80, filtered through

two layers of sterile miracloth (EMD Biosciences, La Jolla, CA),

and quantified.

Isolation of total RNA
Conidia from freshly harvested GMM plates were inoculated in

5 ml GMM in a 6-well plate to a concentration of 16107/ml.

Cultures were grown aerobically for 24 h. For normoxic growth,

cultures were maintained in atmospheric conditions. For hypoxic

growth, cultures were placed in the hypoxic chamber for 24 h.

Fungal mats were flash frozen in liquid nitrogen and lyophilized

prior to total RNA extraction using TRIsure Reagent (Bioline)

according to the manufacturer’s instructions. RNA was further

purified using the RNeasy Mini Kit (Qiagen) and re-suspended in

DEPC-treated water. RNA integrity was confirmed with an

Agilent Technologies Bioanalyzer.

Microarray-based transcriptional profiling
Total RNA was reverse transcribed by priming with oligo dT

and utilizing aminoallyl-dUTP. The resultant cDNA was then

coupled to Cy3- and Cy5-labeled probes (GE Healthcare), and

hybridized to Aspergillus fumigatus version 3 microarrays from the

pathogen functional resources center (PFGRC) as described in the

TIGR standard operating procedures found at http://atarray.tigr.

org. Labeled cDNA from wild type grown in hypoxic conditions

was hybridized against cDNA from SDW1 grown in hypoxic

conditions. Data for each strain represents six independent

experiments and includes three dye swaps. Arrays were scanned

on an Axon 4000B scanner with GenePix software at the Montana

State University Functional Genomics Core facility (Axon

Instruments). Array signals were bulk-normalized and filtered for

flagged spots using MIDAS (available at http://www.tm4.org/

midas.html). Data were log-transformed (base 2) and filtered for

genes that contained data for at least three out of four arrays from

each strain, and missing values were calculated through K-nearest

neighbor algorithm using Significance Analysis of Microarrays

(SAM) software [73] prior to statistical analysis by SAM.

Statistically significant genes identified by SAM with 2-fold or

greater changes in expression are listed in Table 1. A Delta cutoff

in SAM that captured the maximum number of significant genes

with a false discovery rate of zero was utilized. Microarray data

has been deposited in the Gene Expression Omnibus (GEO) at the

National Center for Biotechnology Information (NCBI) series

accession number GSE12376.

Susceptibility testing
E-test strips (AB Biodisk, N.J.) plastic strips impregnated with a

gradient of Fluconazole, Voriconazole, Caspofungin, or Ampho-

tericin B were used per manufacturers’ instructions. Each strip was

placed onto a RPMI-1640 (Sigma Aldrich) agar plate containing a

lawn of conidia and growth inhibition was measured after 24 and

48 h by direct observation of the plates at 37uC. No difference in

results was observed between 24 and 48 h.

Sterol analyses
Sterols were extracted following published protocols [74]. Gas-

chromatography-Mass spectrometry analyses were performed with

a HP6890 GC coupled to a HP5973 mass selective detector.

Electron impact MS (70 eV, scanning from 50 to 550amu, at 2.94

intervals/sec) was performed using the following conditions: HP-5

column (30 m60.25 mm i.d., 0.25 mm film thickness), Helium as

carrier gas (1 ml/min), detector temperature 180uC, column

temperature 100uC to 300uC (100uC for 1 min, 7uC/min to

300uC then held for 15 min). All injections were run in splitless

mode.

Electron microscopy
Conidia and mycelia of wild type and SDW1 were examined by

transmission electron microscopy (TEM). Conidia released in

sterile water from 5-day-old GMM plates and mycelia grown in

liquid GMM for two days were collected by centrifugation at

50006g for 10 min. The conidial and mycelial pellets were coated

with 0.8% agarose and fixed in modified Karnovsky’s fixative

containing 2% paraformaldehyde and 2% (v/v) glutaraldehyde in

0.05 M sodium cacodylate buffer (pH 7.2) overnight at 4uC. After
washing three times with 0.05 M sodium cacodylate buffer

(pH 7.2) for 10 min each, samples were post-fixed with 1% (w/

v) osmium tetraoxide in the same buffer for 2 hours at 4uC. The
post-fixative was removed by washing briefly twice with distilled

water at room temperature and the samples were en bloc stained

with 0.5% uranyl acetate overnight at 4uC. The samples were then

dehydrated in a graded ethanol series, rinsed with propylene

oxide, and embedded in Eppon resin (Fluka AG, Zürich, CH).

Ultrathin sections cut from the Eppon-embedded material with

ultramicrotome (MT-X, RMC, USA) were collected on carbon-

coated grids, stained with 2% uranyl acetate for 3 min, and with

Reynold’s lead solution [75] for 3 min. Examination was

conducted with a JEM-1010 (JEOL, Tokyo, Japan) electron

microscope operating at 60 kV.

Conidia Germination assay
For the conidia germination assay, A. fumigatus strains were

grown in 25 ml GMM with 2% yeast extract. Cultures were

inoculated with approximately 106 conidia/ml. After 7 hours the

germination rate was determined by counting a total of 100 spores

and noting the number of germinated spores. Counting was

repeated three times for each strain and the mean and standard

deviation are reported.

Murine virulence assays
In this study two different mouse models were used to assess the

role of the transcription factor SrbA in fungal virulence. For the

persistently neutropenic mouse model we used outbred CD1

(Charles River Laboratory, Raleigh, NC) male mice (26 to 28 g in

size, 6–8 weeks old), which were housed six per cage and had

access to food and water ad libitum. Mice were immunosup-

pressed with intraperitoneal (i.p.) injections of cyclophosphamide

at 150 mg/kg 2 days prior to infection and with Kenalog injected

subcutaneously (s.c.) at 40 mg/kg 1 days prior to infection. On day

3 post-infection (p.i.), repeat injections were given with cyclophos-

phamide (150 mg/kg i.p.) and on day 6 p.i. with Kenalog (40 mg/
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kg s.c.). Twelve mice per A. fumigatus strain (CEA10, srbA-deficient
mutant SDW1, or the reconstituted strain SDW2) were infected

intranasally. For an alternative mouse model, we used breeder

mice with a null allele corresponding to the X-linked gp91phox

component of NADPH oxidase (B6.129S6-Cybbtm1Din). Breeding

pairs of these mice were obtained from the Jackson Laboratory

(Bar Harbor, Maine) and reared in the Animal Resource Center at

Montana State University. All animals were kept in specific-

pathogen-free housing, and all manipulations were approved by

the institutional internal review board (IACUC). To avoid

exposing gp91phox2/2 mice to bacterial infections, they were

housed in microisolator cages in an environment of filtered air and

given autoclaved food ad libitum and prophylactic treatment with

sulfamethoxazole-trimethoprim in their sterile drinking water. The

animals were used at 8 to 13 weeks of age. The mice were

inoculated intratracheally following brief isoflurane inhalation,

returned to their cages, and monitored at least twice daily.

Infection inoculum was prepared by growing the A. fumigatus
isolates on GMM agar plates at 37uC for 3 days. Conidia were

harvested by washing the plate surface with sterile phosphate-

buffered saline-0.01% Tween 80. The resultant conidial suspen-

sion was adjusted to the desired concentration of 16106 conidia/

40 ml by hemacytometer count. Mice were observed for survival

for 14 days after A. fumigatus challenge. Any animals showing

distress were immediately sacrificed and recorded as deaths within

24 h. Mock mice were included in all experiments and inoculated

with sterile 0.01% Tween 80. Lungs from all mice sacrificed

during the experiment were removed for fungal burden assessment

and histopathology. Experiments were repeated in duplicates with

similar results. Survival was plotted on a Kaplan-Meier curve and

a log-rank test used to determine significance of pair-wise survival

(two-tailed P,0.01). No mock infected animals perished in either

murine model in all experiments.

Histopathology
For histopathology studies, additional gp91phox2/2 mice were

infected as described above, and sacrificed at set time points of day

1 and day 4 after A. fumigatus challenge. When mice were

sacrificed, lungs were removed on that day. Lung tissue was fixed

in 10% phosphate-buffered formalin, embedded in paraffin,

sectioned at 5 mm, and stained with hematoxylin and eosin

(H&E) or Grocott methenamine silver (GMS) by using standard

histological techniques. Microscopic examinations were performed

on a Zeiss Axioscope 2-plus microscope and imaging system using

Zeiss Axiovision version 4.4 software. Semi-quantitative analysis of

inflammation and necrosis were scored on a scale of 1 to 5. The

scale consisted of: 1 = 0 to 24% lung involvement, 2 = 25–49%,

3= 50–74%, 4= 75–99% 5=100%. H&E stained whole lungs

from 4 mice infected with each respective strain were assessed to

determine the percentage involvement and scored accordingly on

days 1 and 4 of the infection in consultation with a pulmonary

immunologist.

Macrophage assays
Macrophage killing of conidia was measured by serial dilution

as previously described with slight modifications [76–78]. Briefly,

2.56105 RAW264.7 cells in a volume of 500 ml were inoculated

into 24 well tissue culture treated cell culture plates (Corning

Incorporated, Corning, NY) in DMEM complete media and

incubated overnight at 37uC, 5% CO2. A total of 1.256106 freshly

harvested A. fumigatus conidia of the respective strains in DMEM

complete media were inoculated into each well to give a

conidia:macrophage ratio of 5:1. Co-incubation was performed

at 37uC, 5% CO2 for 1 hour, after which media was removed and

cells were gently washed with 16phosphate buffered saline (PBS)

to remove non-phagocytosed conidia. At this time point, conidia

from each strain were harvested from macrophages in one well to

establish the baseline number of conidia engulfed. DMEM

complete media was added back to the non-harvested wells and

incubation proceeded for an additional 5 hours. Lysis of

macrophages was performed by treating the cells with 200 ml of

a 0.5% SDS solution for 10 minutes followed by addition of

200 ml of 16PBS. The percentage of colony forming units (CFU)

from conidia:macrophage co-incubations was determined relative

to control conidia harvested at the one hour time point. Controls

were performed by lysing macrophages as described above after

phagocytosis of conidia for 1 hour and CFU counts were set to

100%. Experiments were performed with triplicate wells and

repeated two times for each A. fumigatus strain.

Oxidative stress assay
For the oxidative stress assay, the A. fumigatus strains were grown

on GMM plates with and without H2O2. GMM plates with 1 and

2.5 mM H2O2 were prepared. Plates were inoculated with

approximately 100,000 spores in 5 ml and incubated at 37uC.
Sensitivity to oxidative stress was determined by comparing the

colony radius of 2-day-old cultures on plates with H2O2. The assay

was repeated three times for each concentration. Growth of each

strain on each plate was visually examined.

Statistical analysis
The software program Prism 5 (GraphPad, San Diego, Calif.)

was used for all statistical tests of significance (to P values of

#0.01). Normally, a two-sided t test was used to compare two

groups of data, with Welch’s correction being used if the groups

had unequal variances. In cases in which a deviation from a

normal distribution was suspected, a nonparametric test (Mann-

Whitney test) was also applied. In those cases, we found that both

the t test and Mann-Whitney test indicated the same results (i.e.,

both indicated significance or insignificance); however, typically

one test gave a more conservative (larger, but still ,0.01) P value.

The P values we report are always the conservative values. Log-

rank tests were utilized to determine significance of survival in

animal studies.

Supporting Information

Table S1 Primers Used in This Study

Found at: doi:10.1371/journal.ppat.1000200.s001 (0.03 MB

DOC)
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Review Article

Regulation of hypoxia adaptation: an overlooked virulence

attribute of pathogenic fungi?

NORA GRAHL & ROBERT A. CRAMER JR.

Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, USA

Over the past two decades, the incidence of fungal infections has dramatically

increased. This is primarily due to increases in the population of immunocompro-

mised individuals attributed to the HIV/AIDS pandemic and immunosuppression

therapies associated with organ transplantation, cancer, and other diseases where

new immunomodulatory therapies are utilized. Significant advances have been

made in understanding how fungi cause disease, but clearly much remains to be

learned about the pathophysiology of these often lethal infections. Fungal

pathogens face numerous environmental challenges as they colonize and infect

mammalian hosts. Regardless of a pathogen’s complexity, its ability to adapt to

environmental changes is critical for its survival and ability to cause disease. For

example, at sites of fungal infections, the significant influx of immune effector cells

and the necrosis of tissue by the invading pathogen generate hypoxic microenvir-

onments to which both the pathogen and host cells must adapt in order to survive.

However, our current knowledge of how pathogenic fungi adapt to and survive in

hypoxic conditions during fungal pathogenesis is limited. Recent studies have

begun to observe that the ability to adapt to various levels of hypoxia is an

important component of the virulence arsenal of pathogenic fungi. In this review,

we focus on known oxygen sensing mechanisms that non-pathogenic and

pathogenic fungi utilize to adapt to hypoxic microenvironments and their possible

relation to fungal virulence.

Keywords Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans,

fungal virulence, hypoxia, sterols

Introduction � Significance of hypoxia during
fungal pathogenesis

Recent advances in medical therapies, organ trans-

plantation, HIV infections, and an increasing geriatric

population have generated rising populations of

immunocompromised patients. These events have all

resulted in a significant increase in life-threatening

human fungal infections over the last two decades [1].

The limited treatment options and high mortality rates

associated with these infections has consequently led

to a concerted effort to better understand mechanisms

of fungal pathogenesis in mammals. The general

rationale behind these studies is that a better under-

standing of how these organisms cause disease will

allow us to develop better technologies for the

treatment and prevention of these often lethal infec-

tions. One increasing area of fungal pathogenesis

research is related to identifying and understanding

the basic metabolic pathways utilized by these fungi to

survive in the harsh and highly variable mammalian

host environment.
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The three main fungal pathogens that cause human

mycoses, Aspergillus fumigatus, Cryptococcus neofor-

mans, and Candida albicans, are typically opportunistic

pathogens. These fungi are saprophytic organisms that

have evolved a unique combination of attributes to

survive in their natural environments. Aspergillus

fumigatus is typically found in soil and decaying

organic material such as compost heaps. Cryptococcus

neoformans is typically found in pigeon droppings, soil

and certain trees.
Unlike Aspergillus and Cryptococcus species, Can-

dida albicans is rarely found in the soil or external

environment. Instead, it is a normal inhabitant of the

human microflora. Thus, C. albicans is already highly

adapted to the host environment. C. albicans possess

the ability to survive in disparate host environments, as

illustrated by its ability to colonize diverse areas of the

host (oral, vaginal, gastrointestinal areas). Coinciden-
tally, many of these attributes, which allow fungal

survival in their natural ecological niches, appear to

also allow these fungi to cause disease in immunocom-

promised hosts. One overlooked environmental selec-

tion pressure found in natural environments of all three

of the most common fungal pathogens of humans is

low oxygen tension. Whether in the soil, a compost pile,

pigeon guano, or the gut of a mammal, these fungi
must deal with low levels of oxygen.

The focus of this review is on the increasing evidence

that pathogenic fungi must adapt to rapidly changing

oxygen levels during fungal infections. It is well

established that oxygen levels vary throughout the

mammalian body depending on numerous factors

including tissue type and presence or absence of an

inflammatory response. For example, oxygen levels in
most mammalian tissues are found to be considerably

below atmospheric levels (21%) [2�4]. Even in the

alveoli of healthy lungs, the most oxygen rich organ

and site of infection for many fungal pathogens, the

oxygen level is around 14%. By the time oxygen reaches

the capillaries and diffuses into surrounding tissues its

availability is much lower with levels of 2�4% reported

[5,6]. In addition, it is well established that at sites of
inflammation available oxygen is significantly reduced

compared to surrounding tissues [7�9]. Moreover, in

inflamed tissues, the blood supply is often interrupted

because the vessels are congested with phagocytes or

the pathogen itself [10,11]. Thus, it seems highly

probable that hypoxic microenvironments are gener-

ated during fungal infection.

Indeed, we can look no further than the host
response to observe that fungal pathogens are likely

exposed to severely low oxygen levels during infection.

Immune effector cells, such as neutrophils, function

effectively in severely hypoxic microenvironments.

These and other cells of the host have evolved distinct
mechanisms to deal with hypoxic microenvironments

generated during microbial infections. Many of these

host response mechanisms are dependent upon the

global transcription factor, hypoxia inducible factor

(HIF) 1.

HIF 1 is a heterodimeric transcription factor that

consists of one of three a-subunits (HIF-1a, HIF-2a,
and HIF-3a) and one b-subunit (HIF-1b), and is the
central regulator of hypoxic gene expression in mam-

mals (reviewed in [12,13]). Both the degradation and

activity of the HIF-1a subunit are regulated by oxygen-

dependent post-translational hydroxyl modifications.

Under hypoxic conditions HIF-1a is not hydroxylated,

leading to an accumulation of the HIF-1a subunit and

expression of hypoxia-responsive genes, including those

encoding many glycolytic enzymes, erythropoietin,
adrenomedullin, and growth factors [14,15].

In a recent study of Acute Respiratory Distress

Syndrome (ARDS) and acute inflammatory lung

injury, Thiel et al. [16] provided evidence for the

importance of hypoxic microenvironments in regula-

tion of host immune responses. ARDS patients are

normally treated with a life-saving oxygen therapy, but

this therapy may have a dangerous side effect in
patients with uncontrolled pulmonary inflammation.

Thiel et al. [16] identified a local tissue hypoxia-driven

and adenosin A2A receptor (A2AR)-mediated anti-

inflammatory mechanism. Their data suggest that

oxygenation may lead to elimination of the A2AR-

mediated lung tissue-protecting pathway and thereby

further exacerbate lung injury. Taken together, the

above observations and studies indicate that mamma-
lian immune system responses to microbial infection

and inflammation are critically tied to hypoxic micro-

environments.

While the role of hypoxia in the immune response to

fungal pathogens is relatively unknown, it follows that

since immune cells of the host have evolved mechan-

isms to function in hypoxia, mammalian fungal patho-

gens like A. fumigatus, C. neoformans and C. albicans

are likely exposed to hypoxic conditions during fungal

pathogenesis. Indeed, during A. fumigatus infection,

our laboratory has recently observed significant

increases in HIF-1a activity as the fungal infection

progresses and inflammation and edema increase in the

lung (Grahl and Cramer, unpublished data). In addi-

tion, a recent study by Brock et al. [17] demonstrated

that hypoxia likely occurs in vivo in the lung during
A. fumigatus infection. The authors constructed a

luciferase-producing bioluminescent A. fumigatus

strain, which was not attenuated in virulence in a

– 2009 ISHAM, Medical Mycology
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murine model of invasive aspergillosis. Interestingly,

luminescence from the lungs decreased after reaching a
maximum at one day post infection, despite the high

number of fungal hyphae present in histology examina-

tions. The authors hypothesize that this phenomenon

might be due to the severe tissue damage in and

through the pulmonary lesions, which likely decrease

the oxygen concentration in the lung tissue. Oxygen is

essential for the light-producing reaction, and thus the

lack of luminescence is likely attributable to the hypoxia
at the site of infection [17].

Additional evidence that hypoxia may be a key

component of the pathophysiology of invasive fungal

infections comes from the observation that there are

often significant differences in the in vivo and in vitro

test results of antifungal drug efficacies. These differ-

ences have recently been postulated to be related to

hypoxic conditions found in vivo as demonstrated by in

vitro antifungal drug efficacy tests conducted in

hypoxia [6,18]. Furthermore, recent studies have iden-

tified genes responsible for regulating fungal response

to hypoxia, and some of these pathways have been

observed to be essential for fungal virulence of

mammals. Consequently, it seems probable that patho-

genic fungi possess mechanisms to adapt to hypoxic

microenvironments found in vivo during infection.
The purpose of this review is to summarize recent

advances in our understanding of mechanisms that

human fungal pathogens use to adapt to hypoxic

conditions and to highlight the emerging importance

of this area of research in the pathogenic fungi. While

studies on hypoxia adaptation in these pathogenic fungi

are limited, increasing research attention to this im-

portant component of their virulence arsenal has
revealed similarities and differences with each other

and the model yeast S. cerevisiae and S. pombe.

Importantly, we should clarify the distinction between

mechanisms of hypoxia adaptation and mechanisms of

hypoxic growth. It seems clear that these are two

distinct biological processes requiring a distinct set of

genes and mechanisms. In our literature review, we did

not find detailed studies defining these two likely
different processes in the fungi. It is likely that periods

of adaptation are different for diverse fungi. A close

examination of the methodology used in the cited

studies indicated that most, if not all, studies are

focused on genes allowing the fungi to adapt to hypoxia

(i.e., genes expressed/required in the early phase of

exposure to hypoxia (within 48 hours of a switch to

hypoxia), rather than genes required for actual fungal
growth in these conditions. Where possible, we have

attempted to highlight these distinctions. Finally, we

have divided the manuscript into sections detailing

fungi with Upc2p orthologs and fungi with SREBP

orthologs given the emerging importance of these
pathways in oxygen sensing and hypoxia adaptation

in fungi.

Fungi with the SREBP analogue Upc2p

Saccharomyces cerevisiae

S. cerevisiae cells adapt to anaerobic conditions by

inducing expression of a large number of genes, called

‘hypoxic genes’ [19�25]. The hypoxic genes encode

oxygen-related functions in respiration, heme, and

membrane biosynthesis that are required at higher

levels when molecular oxygen is limited [20,26]. For
the regulation of hypoxic genes, the cell senses oxygen

availability through cellular heme levels [27,28], and

recent studies suggest that oxygen availability can also

be sensed through cellular sterol levels [29].

Oxygen sensing by heme

Molecular oxygen is required as a substrate in two

consecutive steps of heme biosynthesis catalyzed by the

enzymes coproporphyrinogen oxidase and protopor-

phyrinogen IX oxidase [30]. In the presence of oxygen

(aerobic growth), heme accumulates, binds to the
transcriptional activator Hap1p (Heme Activator Pro-

tein) and causes the formation of a Hap1p homodimer

specific for DNA binding to the cis-element. Hap1p is a

protein composed of a zinc-finger DNA binding

domain at the N-terminus, a dimerization domain, a

heme binding domain within the central region, a

heme-responsive motif 7 (HRM7), and a transcrip-

tional activation domain at the C-terminus [31�33]. The
heme-Hap1p-complex acts as a transcriptional activa-

tor of genes containing its recognition site

(5?CGGN6CGG) [34�36], such as genes involved in

respiration (reviewed in [20]).

In addition, the expression of the ROX1 (Repressor

Of hypoXic genes) gene is activated by the heme-

Hap1p complex and Rox1p accumulates in the cell

under aerobic conditions (reviewed in [26]). The Rox1p
repressor binds to its recognition site upstream of the

hypoxic genes to repress their transcription [37,38].

Rox1p binds to the DNA with its HMG domain and

recruits the general repression complex, Tup1/Ssn6,

which binds to the Rox1p repression domain (reviewed

in [26]). The repression through Rox1p varies between

hypoxic genes that do not have aerobic counterparts,

which are expressed at detectable levels at all oxygen
concentrations but their expression is higher when

oxygen decreases, like HEM13, OLE1, ERG11, and

the autorepressed ROX1 itself, and hypoxic genes that

– 2009 ISHAM, Medical Mycology
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have an aerobic homologue, like HMG1/HMG2,

COX5A/COX5B, AAC1, AAC2/AAC3, and TIF51A/

ANBI (the first gene is aerobic � last and underlined

anaerobic). The anaerobic gene is then completely

repressed until very low oxygen concentrations are

reached [38,39].

For some hypoxic genes, a second DNA binding

protein Mot3p enhances Rox1p repression through

helping recruit the Tup1p/Ssn6p complex. Two exam-

ples are the ANBI (ANaeroBically Induced) gene,
encoding a subunit of eukaryotic initiation factor 5

(eIF-5a), an essential translation factor [40], and the

HEM13 gene, encoding the enzyme coproporphyrino-

gen III oxidase, which catalyzes the rate-limiting step in

heme biosynthesis [41]. The hypoxic derepression of

HEM13 allows the cell to continue heme biosynthesis

under limited available oxygen. The strongly repressed

ANBI gene has one Mot3p and two Rox1p binding
sites in its promoter region, while the promoter of the

partially repressed HEM13 contains one Rox1p and

three Mot3p binding sites. The combination of binding

sites determines the strength of repression. Multiple

Mot3p binding sites plus a single Rox1p binding site

are much weaker than multiple Rox1p binding sites

plus a single Mot3p binding site [42]. Rox1p and

Mot3p both interact with Ssn6p of the general repres-
sion complex and Rox1p stabilizes Mot3p binding to

DNA through interactions with Tup1p/Ssn6p [42].

Under hypoxic or anaerobic growth conditions,

heme levels are reduced. Hap1p still binds to its cognate

site, but in the absence of heme, Hap1p forms a

biochemically distinct High-Molecular-weight Com-

plex, HMC, which contains Hap1p and four other

proteins including Hsp28p and Ydj1p. This complex
represses transcription [43]. Consequently, under

hypoxic conditions, ROX1 and MOT3 expression is

repressed resulting in the activation of hypoxic gene

expression [26].

During adaptation to anaerobic conditions, a com-

plex program of cell wall remodeling occurs in yeast.

Under anaerobic conditions, major aerobic cell wall

mannoproteins, encoded by CWP1 and CWP2, are
replaced by their anaerobic counterparts, encoded by

the DAN/TIR genes. The DAN/TIR genes encode a

group of eight cell wall mannoproteins that play a

significant role in cell wall permeability [23,44]. DAN/

TIR genes are regulated by heme, sterol levels, and

three DNA binding transcription factors. The heme-

dependent repressors Rox1p and Mot3p function

synergistically to efficiently repress DAN/TIR genes
under aerobic conditions [45]. In addition, the sterol

depletion-dependent activator Upc2p acts through a

consensus site termed AR1 to induce the expression of

DAN/TIR genes in anaerobic conditions [46]. Sertil

et al. [47] observed that the histone deacetylase and
global repressor Rpd3p is required for the expression of

all the DAN/TIR genes and the hypoxic gene ANBI.

Moreover, the authors propose that Rpd3p is recruited

to the DAN1 promoter under strict anaerobic condi-

tions. The presence of Rpd3p at the promoter counter-

acts the function of the repressor Mot3p, which leads

to stable binding of the activator Upc2p. Upc2p then

recruits the chromatin remodeling complex Swi/Snf to
reorganize chromatin, thereby facilitating the binding

of the transcriptional machinery that results in the

activation of gene expression [47]. Upc2p, together with

the transcription factor Ecm22p, is also responsible for

basal and induced expression of genes encoding

enzymes of ergosterol biosynthesis in yeast (ERG1,

ERG2, ERG3, ERG7, ERG25, ERG26, and ERG27),

and it has been implicated in the uptake of sterols
under hypoxic conditions [48�52].

Oxygen sensing by sterols

While heme has been thought to be the primary oxygen

sensor in S. cerevisiae, recent studies suggest that sterol

levels also play an important role. Upc2p and Ecm22p

are functionally related to human sterol regulatory
element binding protein (SREBP) with an N-terminal

transcription factor domain and a C-terminal trans-

membrane domain. Although S. cerevisiae lacks an

ortholog of SREBP, it seems that a potentially analo-

gous oxygen-sensing mechanism exists in budding yeast

regulated through Upc2p and Ecm22p. Marie et al. [53]

have observed that Upc2p and Ecm22p are localized

outside of the nucleus in sterol replete conditions, but
in conditions of sterol depletion localization shifts

toward the nucleus. The authors suggest that the

N-terminal transcription factor domain is separated

from the C-terminal transmembrane domain by pro-

teolytic cleavage and enters the nucleus to activate gene

expression, analogous to SREBP regulation of choles-

terol biosynthesis in mammals.

Upc2p and Ecm22p both bind a sequence motif
known as the sterol regulatory element (SRE)

[48,49,54]. Nearly one-third of hypoxically induced

genes in S. cerevisiae contain at least one potential

Upc2p/Ecm22p binding site, suggesting that these

transcription factors are major players in the adapta-

tion to hypoxia [55]. The activation of target genes by

Upc2p occurs in response to low sterol levels, which

can be caused by blocks in ergosterol biosynthesis or by
hypoxia. Davies and Rine [29] observed that both

Upc2p and Ecm22p require a functional version of

Hap1p for basal expression of ERG2, but when sterols
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are depleted Upc2p is independent of Hap1p, whereas

Ecm22p still depends upon Hap1p for ERG gene
activation. ERG2, ERG3, ERG10, DAN2, and DAN4

are activated by Upc2p solely in response to sterol

depletion whereas DAN1 and TIR1 respond to both

sterols and heme [46].

Other oxygen sensing mechanisms

An additional hypoxic regulatory pathway involving an

antagonistic interaction between the Ord1p repressor

and the Yap1p factor (a transcriptional activator

involved in oxidative stress response) has been discov-

ered in S. cerevisiae and regulates both TIR1 and

SRP1. The hypoxic response of TIR1/SRP1 (both

encode cell wall mannoproteins) depends on the

absence of heme but is Rox1p-independent. Under
aerobic conditions, Ord1p binds to the SRP1 promoter

and expression is repressed. When conditions change to

hypoxia, Yap1p also binds to the SRP1 promoter,

counteracts the Ord1p effect and SRP1 is expressed

[56].

Multiple pathways involved in regulating hypoxic

and anoxic gene expression in yeast may exist. Studies

of several other hypoxic/anaerobic genes including
SUT1, encoding a putative Zn[II]2Cys6-transcription

factor that facilitates the uptake and synthesis of sterols

under hypoxic conditions [57], GPD2, encoding an

isoenzyme of NAD-dependent glycerol 3-phosphate

dehydrogenase [58], and members of the seripauperine

(PAU) family, like TIR1 [59] have demonstrated

Rox1p-independent hypoxic/anaerobic induction, but

the mechanisms by which this occurs are not yet

understood.

Another recently described possible mechanism of
hypoxia signaling in yeast involves the mitochondrial

respiratory chain, the cytochrome c oxidase and

reactive oxygen species [60,61]. It has been shown

that mitochondria from yeast, rat liver, and plants are

capable of nitrite (NO2
- )-dependent nitric oxide (NO)

synthesis [60,62�66]. This pathway is induced when

cells experience hypoxia, and furthermore, Castello

et al. [60] suggest that mitochondrially produced NO

functions in a signaling pathway to the nucleus by

reacting with the superoxide produced by hypoxic

mitochondria [67] to form peroxynitrite (ONOO�)

that promotes protein tyrosine nitration of specific

proteins that may be involved in a signaling pathway to

the nucleus. Future research on this mechanism will

likely uncover its specific role in hypoxia adaptation.

It seems clear that adaptation to hypoxia is a

complex multi-faceted process regulated via the inter-

action of several different critical metabolic pathways

in the cell. The major regulatory pathways discussed

above are summarized in Fig. 1 and Table 1. We now

turn our attention to other fungi and discuss simila-

rities and differences with these hypoxia adaptation

mechanisms in S. cerevisiae. As many of the pathogenic

fungi employ different life-styles than S. cerevisiae, it is

still unclear which of these pathways involved in

regulating responses to hypoxia in baker’s yeast are

conserved in fungi that invade mammalian hosts.

Fig. 1 Schematic of the oxygen sensing

pathways in Saccharomyces cerevisiae and

Candida albicans. The proteins are defined in

the text.
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Candida albicans

Candida albicans is an important human fungal patho-

gen that causes superficial skin infections as well as

deep-seated infections, suggesting that its ability to

switch between normoxia and hypoxia is a major

determinant of its virulence [68]. In C. albicans little

is known about mechanisms utilized by this yeast to

adapt to hypoxic microenvironments. However, our

current knowledge suggests that the transcriptional

response to hypoxia differs significantly between C.

albicans and S. cerevisiae in important aspects.

Although both are generally referred to as facultative

anaerobes, genetics studies, conditions required for

anaerobic growth, and genome analyses seem to

suggest that these hemiascomycota yeast respond

differently to changes in oxygen levels.

First, a homologue (Rfg1p) of the S. cerevisiae

Rox1p has been identified in C. albicans, but Rfg1p

does not play a role in the regulation of hypoxic genes

in this pathogenic yeast as in S. cerevisiae (Table 1).

Instead, Rfg1p is a transcriptional regulator that

controls filamentous growth, and in that role, is critical

for C. albicans virulence [69].

Second, S. cerevisiae genes involved in glycolysis and

fermentation are not stimulated by hypoxia [25,70], but

hypoxia induces these genes and genes involved in

hyphal growth in C. albicans while genes of oxidative

metabolism are repressed [68]. During normoxic con-

ditions the global transcription factor Efg1p regulates

the expression of genes involved in glycolysis and

respiration, but it has no role in controlling the

expression of respiratory genes and is not required to

upregulate glycolytic gene expression in hypoxia

[68,71]. Efg1p also promotes filamentation under

normoxic conditions. Recently, it was observed that

under hypoxic conditions Efg1p promotes the synthesis

of unsaturated fatty acids, the up-regulation of genes

involved in the stress response (HSP12, DDR48, CTA1)

and represses filamentous growth in C. albicans. Thus,

the regulatory role of Efg1p in C. albicans strongly

depends on oxygen [68,72]. Transcriptional analyses

observed that Efg1p is required to allow hypoxic

regulation of about half of all genes that are normally

regulated by hypoxia in C. albicans. In an efg1 mutant,

hypoxic upregulation (e.g., CTA1) or downregulation

(e.g., RIP1) of several genes is abolished, and some

genes, like OLE1 encoding a fatty acid desaturase, are

ineffectively expressed in hypoxia. Another major

function of Efg1p is to prevent hypoxic regulation of

numerous genes that are not normally up- or down-

regulated under hypoxia [71]. Despite the fact that

Efg1p is a major regulator of the hypoxic response in

C. albicans, a homozygous efg1mutant shows no severe

change in virulence in comparison to the wild-type [73].
Another transcription factor in C. albicans affected

by hypoxia, Ace2p, is required for filamentation in

response to hypoxic conditions. Ace2p also induces

fermentative growth and represses respiration, but it is

possible that the effect of Ace2p on metabolism is

restricted to normal oxygen conditions. This remains to

be tested [74]. Interestingly, an ace2 null mutant is

almost avirulent in an immunocompetent mouse
model, while there is only a low degree of attenuation

in a neutropenic mouse model [75,76]. This may suggest

that different states of the immune system may affect

the development of hypoxia in vivo i.e. the lack of

neutrophils in the neutropenic model minimizes the

inflammatory response and hence hypoxic microenvir-

onments encountered by the invading fungus. This

remains to be examined and confirmed.
As in S. cerevisiae [23,44,46], the cell-wall proteome

of C. albicans is sensitive to changes in environmental

conditions which helps the cell to adjust to harsh

environments. For example, iron deprivation and

hypoxic conditions affect the expression of cell-wall

protein encoding genes, such as iron acquisition and

iron-uptake genes, i.e., RBT5 a gene encoding a

predicted GPI protein involved in iron acquisition
[68,77,78]. Numerous oxygen-dependent reactions in

the cell are carried out by iron-containing enzymes [79].

During hypoxic conditions, there may be competition

for iron by iron-containing enzymes, which might lead

to an increased expression of cell-wall protein encoding

genes involved in iron-acquisition and iron-uptake [80].

Oxygen sensing in Candida albicans

In S. cerevisiae it has been observed that the cell senses

oxygen availability through cellular heme and sterol

levels [27�29]. In C. albicans, no apparent homolog of

ScHAP1 exists, but in recent studies a close ortholog of

S. cerevisiae Upc2p and Ecm22p, both involved in

sensing sterol depletion, has been identified. Upc2p, a

transcription factor of the zinc cluster family, is an
important regulator of the sterol biosynthesis and azole

drug resistance in C. albicans [81,82] (Fig. 2). Hoot et

al. [83] showed that transcriptional regulation of UPC2

expression occurs through Upc2p-dependent as well as

a novel Upc2p-independent mechanism. Whether there

is also a post-translational control mechanism as

described for the mammalian sterol regulator SREBP

(discussed in detail below) or as suggested for the
ScUpc2p remains to be determined.

Upc2p binds in vivo to the promoters of several

ergosterol biosynthesis genes and other genes involved
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or predicted to be involved in lipid metabolism. Znaidi

et al. [84] observed that up-regulation of ERG11 during

hypoxia is strictly Upc2p dependent. Upc2p also binds

the promoters of four genes encoding transcription

factors (INO2, ACE2, SUT1, and UPC2 itself). One of

them, Sut1p, controls sterol uptake in S. cerevisiae

[57,85] suggesting that in C. albicans Upc2p and

Sut1p may interact in a sterol regulatory network [84].

Interestingly, Upc2p also binds to the promoter of

CBP1, which was shown to encode a corticosteroid

binding protein in C. albicans [86]. C. albicans appears

to take up steroids and possibly metabolic precursors

from the host, and Upc2p seems to play a role in

corticosteroid uptake from mammals and in adaptation

of C. albicans to hypoxic conditions in the host [84].

Thus, an emerging theme with studies in S. cerevisiae

and C. albicans is the role of sterol homeostasis in

adaptation to hypoxic microenvironments. This theme

will also be expanded on in additional fungi discussed
below with the discovery of SREBP orthologs. A

summary of the known hypoxia regulation mechanisms

in C. albicans is presented in Fig. 1 and Table 1.

Fungi with SREBP orthologs

Schizosaccharomyces pombe

Recently, a novel mechanism of hypoxia adaptation

mediated by a highly conserved family of transcription

factors, the SREBPs, was characterized in Schizosac-

charomyces pombe [87]. S. pombe, also called ‘fission

yeast’, is a non-pathogenic yeast that is used as a model

organism in molecular and cell biology. SREBPs are a
family of endoplasmic reticulum (ER) membrane

bound transcription factors first identified in mammals

as regulators of cholesterol and fatty acid synthesis

Fig. 2 Mutants in SREBP Pathway and

Tco1 are sensitive to hypoxia. Growth in

normoxic and hypoxic conditions. (A) Can-

dida albicans: a heterozygous UPC2/upc2D
and a homozygous upc2D/upc2D C. albicans

strain were serially diluted and spotted on

CSM plates and grown at 308C. The top

panel shows growth in aerobic conditions

after 48 h. The bottom panel shows growth

in hypoxic conditions after 96 h. Under

hypoxic conditions the wild-type (WT) and

the heterozygous strain showed comparable

growth but the homozygous deletion strain

did not demonstrate any detectable growth

(Courtesy Chelsea Samaniego and Dr Theo-

dore C. White); (B) Aspergillus fumigatus:

1 � 106 conidia were plated on GMM plates

and incubated at 378C under normoxic and

hypoxic conditions for 48 h. The wild-type

and the reconstituted strain grew compar-

ably under hypoxic conditions while no

growth was detectable for the mutant strain

(modified from Willger et al. [124]); (C)

Cryptococcus neoformans: C. neoformans

cultures diluted to OD600nm �0.6 were

diluted serially in 10-fold increments prior

to being spotted onto YPD plates. The

plates were incubated in normoxic or hy-

poxic conditions in the dark at 378C. Under

hypoxic conditions all mutants in the

SREBP pathway and the tco1D mutants

showed reduced growth compared to the

wild-type (modified from Chun et al. [100]).
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[88�92]. SREBPs contain two transmembrane segments

and are inserted into ER membranes in a hairpin

fashion such that the N- and C-terminal ends of the

protein are in the cytosol. SREBP is synthesized as an

inactive membrane-bound precursor that forms a

complex with SCAP (SREBP Cleavage-Acting Pro-

tein), a multispan membrane protein that is a compo-

nent of the sterol sensor [90]. Under conditions with

enough available sterols, the SREBP-SCAP complex is

retained in the ER membrane through binding of

SCAP to the resident ER protein Insig [93]. In sterol-

depleted cells, SCAP changes its confirmation, which

releases the SREBP-SCAP complex from Insig [94].

SCAP then escorts SREBP from the ER to the Golgi

apparatus where SREBP is activated by two sequential

proteolytic events catalyzed by site-1 and site-2 pro-

teases that release the N-terminal transcription factor

domain from the membrane, allowing the transcription

factor to enter the nucleus and direct the transcription

of target genes [90,95].

In S. pombe apparent orthologs of SREBP (SRE1),

SCAP (SCP1) and Insig (INS1) have been identified

and characterized. Sre1p is cleaved and activated in

response to sterol depletion and hypoxia, and stimu-

lates transcription of genes required for adaptation to

hypoxia such as genes involved in heme, sphingolipid,

ubiquinone, and ergosterol biosynthesis (Fig. 3 and

Table 1) [87,96]. Thus, in fission yeast, Sre1p and Scp1p

appear to monitor-oxygen dependent sterol synthesis as

an indirect measure of oxygen supply. Interestingly,

there does not appear to be an impact of Ins1p on the

SREBP pathway in fission yeast. In addition, Hughes

and Espenshade [97] recently identified another com-
ponent of this pathway, Ofd1p. Ofd1p is a prolyl

4-hydroxylase-like 2-oxoglutarate-Fe(II) dioxygenase

that accelerates Sre1p degradation in the presence of

oxygen. The N-terminal dioxygenase domain is an

oxygen sensor that regulates the activity of the

C-terminal degradation domain [97]. Altogether, the

SREBP pathway functions as an oxygen sensor and is

required for adaptation to hypoxia in fission yeast.
However, the critical function of Sre1 in allowing

hypoxic adaptation and subsequent growth is not

clearly defined. It seems likely that Sre1 is playing a

pleiotropic role in regulating many different genes

required for yeast cells to adapt and grow in hypoxia.

Orthologs of the SREBP pathway were recently

identified and characterized in the human fungal

pathogens C. neoformans and A. fumigatus. Yet, the
exact components and the mechanism behind SREBP

regulation largely remain to be determined in these

pathogenic fungi. Moreover, it appears that the SREBP

pathway is similar in function to the Upc2p mediated

pathway in S. cerevisiae and C. albicans, but the

mechanisms behind the similarities and differences

between these two pathways is currently not clear.

Cryptococcus neoformans

Unlike the Ascomycete yeast S. cerevisiae and C.

albicans, the Basidiomycete yeast Cryptococcus neofor-

mans is generally considered an obligate aerobe.

Cryptococcus species cause the disease Cryptococcosis

Fig. 3 Schematic of the oxygen sensing

pathways in Schizosaccharomyces pombe,

Cryptococcus neoformans and Aspergillus

fumigatus. The proteins are defined in the

text.
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in both immunocompromised and apparently healthy

hosts and are the most common cause of fungal
meningitis [98]. C. neoformans is primarily found in

pigeon droppings and soil contaminated with avian

guanos throughout the world [99]. One would speculate

that these environments are relatively oxygen poor

suggesting that C. neoformans likely has evolved me-

chanisms to adapt to low oxygen microenvironments.

In the laboratory, C. neoformans grows optimally under

atmospheric oxygen conditions (21%), but oxygen
concentrations in the human brain are drastically lower

than in the atmosphere and vary significantly among

anatomical sites [2]. Thus, in order to establish an

infection in the brain, it seems likely that C. neoformans

must adapt to reduced oxygen levels during infection.

Therefore, discovering the mechanisms utilized by

C. neoformans to sense and adapt to low-oxygen

conditions is an important area of research aimed
towards understanding the pathobiology of this patho-

genic yeast. Yet, until recently, the importance of

hypoxia adaptation in C. neoformans biology and

virulence has been largely unstudied.

Recent whole-genome microarray-based transcrip-

tional profiling of C. neoformans in a hypoxic micro-

environment has started to reveal genes and pathways

regulated in response to hypoxia. Among them are
genes involved in hexose uptake (sugar transporter and

hexose transporter), ethanol production (pyruvate

decarboxylase and alcohol dehydrogenases), and sterol

metabolism (ergosterol biosynthesis genes) [100]. The

possibility of fermentation being important for hypoxic

growth during infection is supported by another study,

where ethanol was found in cerebral tissue of rats

infected with C. neoformans [101]. Yet the importance
of fermentation pathways in this obligate aerobe’s

ability to cause disease and grow in hypoxic micro-

environments is unknown. However, as with other

yeasts we have discussed, and the filamentous mold

A. fumigatus, sterol biosynthesis and homeostasis

seems to be a common mechanism regulating adapta-

tion to low oxygen environments in fungi.

The SREBP pathway in Cryptococcus neoformans

Orthologs of SREBP (SRE1), SCAP (SCP1) and a

Site-2-protease (STP1) were identified and character-

ized in C. neoformans [100,102]. C. neoformans appears

to lack an identifiable homologue of Insig, the ER

retention-protein that controls ER-to-Golgi transport

of SREBP-SCAP complex in mammalian cells. This
finding is consistent with S. pombe data which suggests

that Insig is not required for sterol-dependent regula-

tion of Sre1p and Scp1p [87,102]. However, as in fission

yeast, the SREBP pathway mediated by Sre1p and

Scp1p in C. neoformans is crucial for adaptation to
hypoxia and sterol biosynthesis (Fig. 2). In addition,

unlike in S. pombe, Sre1p controls low-oxygen expres-

sion of genes required for two different pathways of

iron uptake (SIT1 and FRE7) [102], which might be

crucial for survival under hypoxic conditions. Impor-

tantly, sre1D mutants fail to proliferate in host tissue,

fail to cause fatal meningoencephalitis, and display

hypersensitivity to the azole class of antifungal drugs
(Table 1 and Fig. 3) [100,102]. It is unclear if the

virulence defect is due to deficiencies in iron home-

ostasis, a known virulence attribute of pathogenic

fungi, or the inability of C. neoformans to grow in low

oxygen microenvironments in the absence of Sre1p. The

two phenotypes are likely not mutually exclusive given

the importance of iron in ergosterol biosynthesis.

However, it is clear that C. neoformans needs Sre1p
activation to adapt to the host environment. Mechan-

isms linking ergosterol biosynthesis, iron homeostasis,

and fungal virulence in this pathogenic yeast remain

unknown. Identification and characterization of addi-

tional components of the SREBP pathway are likely to

yield important insights into how this pathogenic yeast

causes disease.

In order to identify novel Sre1p pathway components
in C. neoformans, Lee et al. [103] observed that

responses to cobalt chloride [CoCl2) in C. neoformans

mimic certain aspects of hypoxia by targeting enzymes

in the sterol biosynthesis pathway. CoCl2 has been

widely used as a hypoxia-mimicking agent in mamma-

lian systems [104�108], but the mechanisms by which it

induces hypoxia-mimicking responses are not fully

understood. However, Sre1p is required for adaptation
to CoCl2 in C. neoformans. Upon CoCl2 treatment,

Sre1p is likely activated in response to sterol defects

caused by the inhibition of several enzymatic steps in

the ergosterol biosynthetic pathway. CoCl2 treatment

leads to increased levels of sterol intermediates, includ-

ing the substrates of Erg25p, 4,4-dimethylfecosterol

and 4-methylfecosterol, demonstrating that Sre1p reg-

ulates sterol homeostasis in response to CoCl2. CoCl2-
induced sterol synthesis inhibition and Sre1p activation

has also been observed in S. pombe, suggesting a

conserved role for Sre1p in the adaptation to elevated

levels of transition metals [103,109].

Consequently, CoCl2 treatment has been used to

screen for pathways involved in oxygen sensing in

C. neoformans. In this context Ingavale et al. [109]

observed that CoCl2 sensitivity and/or oxygen sensing
and adaptation processes in C. neoformans have a

complex nature. Importantly they identified several

mutants with increased sensitivity to CoCl2 and they
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observed that most of the CoCl2 sensitive mutants are

also sensitive to low oxygen concentrations. Mutants
included genes involved in the sterol biosynthesis

pathway such as SCP1, SRE1, ERG5, mutants in genes

involved in mitochondrial function and energy meta-

bolism such as H� transporting ATP synthase, NAD-

H:ubiquinone oxidoreductase or ATP:ADP anitporter,

and various transporters and enzymes such as hexose

transport related protein, seroheme synthase, amino

acid transporter and myo-inositol oxygenase. The role
of these genes and pathways in fungal virulence has yet

to be explored, but the apparent role of the mitochon-

dia in hypoxia adaptation in C. neoformans echoes the

recent findings in S. cerevisiae discussed above.

The two-component like (Tco) system in Cryptococcus
neoformans

Additional studies observed that the Sre1p pathway

acts in parallel with a two-component signal transduc-

tion like pathway controlled by Tco1p in hypoxic

adaptation of C. neoformans [100]. Tco1p is a member

of a highly conserved family of fungal-specific histidine
kinases. Tco1p negatively regulates the expression of

melanin formation and, redundantly with Tco2p,

positively regulates the HOG MAPK pathway [which

is dispensable for virulence) [110]. Interestingly, it has

been shown that Tco1p is required for growth under

hypoxic conditions and for virulence of C. neoformans

(Fig. 2) [100,110]. However, it is unclear how this

pathway is involved in hypoxic adaptation and fungal
virulence (Fig. 3). In contrast to mutants in SRE1, the

tco1 mutant shows no detectable defects in the regula-

tion of any of the known hypoxic genes ([100],

unpublished data). As a result Chun et al. [100]

hypothesize that the Tco1p pathway might act post-

transcriptionally. However, this result may also indicate

that novel pathways or altered function of existing

known pathways regulated by Tco1p are involved in
hypoxia adaptation. Clearly, however, these data sug-

gest that oxygen sensing in C. neoformans is highly

complex, and likely important for virulence of this

organism.

Aspergillus fumigatus

A. fumigatus is a saprophytic, obligate aerobic filamen-

tous fungus commonly found in soil and compost piles.

Its primary ecological function is to recycle carbon and

nitrogen through the environment [111�113]. As with

most fungi, it seems self-evident that these microenviron-
ments would place significant oxygen related stress on

the mold. While A. fumigatus is responsible for a number

of clinically relevant diseases, invasive pulmonary

aspergillosis (IPA) is the most lethal with mortality rates

ranging from 60�90% [114�116]. Interestingly, while IPA
can be caused by several Aspergillus species, the majority

of IPA cases are caused by A. fumigatus. This may

suggest that A. fumigatus contains unique attributes

that allow it to cause disease [117].

Currently, we have a limited understanding of the in

vivo growth mechanisms of A. fumigatus during IPA

[118]. Given that the lung is the primary site of

infection for this mold, it may be counter-intuitive to
think that low oxygen levels would be a critical

component of the pathophysiology of IPA. However,

during infection, A. fumigatus causes significant

damage to host tissue through invasive growth by

hyphae and subsequent recruitment of immune effector

cells (depending on the immune system status of the

host). Thus, infection generates significant inflamma-

tion and necrosis in lung tissue that can be visualized
by histopathology. These pathologic lesions also likely

represent areas of poor oxygen availability to the

pathogen and host. Thus, it is likely that to cause

disease A. fumigatus must adapt to hypoxic conditions.

In general, mechanisms of hypoxia adaptation in

molds have gone largely unstudied. Tarrand et al.

[119,120] hypothesized that the low rate of Aspergillus

recovery from clinical material is due to adaptation by
the fungus to the physiologic temperature and hypoxic

milieu found in vivo. However, recent studies with

A. fumigatus suggest that it cannot grow in anaerobic

environments [121]. Interestingly, studies with the

relatively non-pathogenic model mold A. nidulans ob-

served that while the mold could not proliferate with-

out oxygen, ethanol fermentation was required for its

long-term survival in anaerobic conditions [122,123].
Indeed, analyses of Aspergillus genome sequences have

revealed numerous potential fermentation pathways in

these molds. Yet, as obligate aerobes, it remains unclear

what function these pathways may serve in hypoxia

adaptation and fungal virulence. Recent studies in our

laboratory have identified ethanol fermentation during

A. fumigatus infection in a murine model of IPA

indicating that fermentation may be a component of
the virulence arsenal of this mold (Grahl et al.

unpublished data). However, our knowledge about

the mechanisms by which A. fumigatus, an obligate

aerobe, adapts to hypoxic environments remains

extremely limited.

The SREBP pathway in Aspergillus fumigatus

Recently, our laboratory identified and characterized

an SREBP (Sre1p) ortholog, SrbA, in A. fumigatus

[124]. As in C. neoformans, SrbA is crucial for
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adaptation to hypoxia, mediates resistance to the azole

class of antifungal drugs and is involved in sterol
biosynthesis in A. fumigatus (Fig. 2 and Fig. 3). In

addition, unlike C. neoformans, but similar to S. pombe,

transcriptional profiling of the SrbA null mutant

suggested that SrbA does not appear to be involved

in iron uptake or homeostasis in A. fumigatus. How-

ever, these studies may have been limited by the type of

media utilized, and direct studies regarding the role of

SrbA in iron homeostasis in this pathogenic mold are
ongoing.

Importantly, srbA null mutants are almost avirulent

in two distinct murine models of IPA. While our results

strongly suggest that the virulence defect is due to the

inability of this mutant to grow in hypoxia due to the

loss of hypoxia adaptation mechanisms regulated by

SrbA, as with C. neoformans, other potential hypoth-

eses may explain the attenuation of virulence [124]. For
example, SrbA plays an important role in maintenance

of cell polarity in A. fumigatus [124]. We hypothesize

that the accumulation of sterol intermediates leads to

dysfunction in the formation or localization of sterol

microdomains known to be required for maintaining

cell polarity. Thus, the alteration of cell polarity may

inhibit the ability of the SrbA mutant to cause disease.

Yet, the mutant displays a normal growth rate in vitro

suggesting that the altered cell polarity does not alter

growth in these conditions. Altogether, these data

promote the hypothesis that hypoxia plays a key role

in the pathophysiology of IPA. At the least, it is

apparent that SREBPs are critical components of

fungal virulence in both pathogenic yeast and molds.

So far the molecular mechanism behind SrbA

regulation and activation in molds is unclear. In the
yeast S. pombe and C. neoformans, it seems evident that

Sre1p is regulated post-translationally in response to

sterol biosynthesis perturbation that occurs in low

oxygen environments. Indeed, Hughes et al. [125] have

identified 4-methyl sterols as the primary activating

agent of Sre1p in S. pombe and C. neoformans. Thus,

our finding that the SrbA null mutant in A. fumigatus

accumulates 4-methyl sterols may also suggest that
these sterols are the trigger for SrbA activation in

A. fumigatus [124].

While many of the phenotypes observed in the

A. fumigatus srbA mutant may suggest that SrbA is

regulated in a similar manner as Sre1p in yeast, our

results may also suggest an alternative model in molds.

For example, despite intense bioinformatic analyses, we

have been unable to identify clear homologs of SCAP
or the proteases required for Sre1p activation. We have,

however, identified a potential Insig1 homolog (insA)

and we are currently characterizing a possible role for

InsA in SREBP signaling in filamentous fungi. Yet,

given the conservation of SCAP across many organ-
isms, it is surprising that an ortholog does not appear

to be present in the Aspergilli. It may be that another

protein with a divergent sequence performs a similar

function as SCAP, or it may suggest that a novel

mechanism of SREBP regulation and activation exists

in molds. Studies to examine these potential mechan-

isms are ongoing in our laboratory.

Conclusion

In this review we have attempted to survey the known

mechanisms utilized by fungi to regulate adaptation to

hypoxic microenvironments. It is clear that we are just

beginning to understand the mechanisms human fungal
pathogens use to survive in vivo during infection. With

the possible exception of SREBPs, the molecular

mechanisms utilized by pathogenic fungi to adapt to

hypoxic microenvironments found at sites of infection

remain to be elucidated. A master regulator of hypoxia

adaptation, such as HIF1 found in mammals, has not

been identified in fungi. It remains to be seen whether

one exists, or, if as suggested by current data, fungi rely
on multiple mechanisms to sense oxygen levels and

adapt to low oxygen environments.

In any case, we feel that this area of pathogenic

fungal physiology has been ignored for too long.

Certainly, some mechanisms of hypoxia adaptation,

perhaps such as heme biosynthesis, are likely to be

conserved between S. cerevisiae and the human patho-

genic fungi. However, the different life-styles and
selection pressures on non-pathogenic and pathogenic

fungi likely have resulted in unique mechanisms of

hypoxia adaptation. Thus, solely relying on S. cer-

evisiae as a model for how pathogenic regulate adapta-

tion to hypoxic microenvironments is likely not

appropriate. Regardless, it seems clear that mechanisms

of hypoxia adaptation have important implications for

fungal virulence and how we manage and treat invasive
fungal infections. Therefore, future studies on discover-

ing the conserved and unique pathways utilized by the

major fungal pathogens of humans to adapt to hypoxia

are likely to yield important insights into sterol

metabolism, fungal growth, mechanisms of drug resis-

tance, and fungal virulence.
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Abstract

Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a
chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA) and 1H-NMR metabolomics, we detected ethanol
in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen
depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent,
pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and
corticosteroid). In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the
hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis.
Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of
mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in
the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a
reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic
microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase
influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may
result in substantial fungal metabolism changes that influence subsequent host immune responses.
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Introduction

The incidence of life-threatening human fungal infections has

increased during the last three decades as medical therapies, organ

transplantations, an increasing geriatric population, and HIV

infections have generated a significant rise in the number of

susceptible patients [1,2,3]. Aspergillus fumigatus, a commonly

encountered mold found in soil and organic debris [4,5], is

responsible for a number of clinically relevant diseases in

immunocompromised and immunocompetent individuals. Among

these, invasive pulmonary aspergillosis (IPA) is the most lethal with

mortality rates ranging from 30–90% depending on the patient

population [6,7,8,9,10,11].

To cause lethal disease, A. fumigatus must face and overcome a

number of in vivo microenvironment challenges once it is inhaled

into the lower respiratory tract. However, our understanding of

the dynamic microenvironments encountered by the fungus in the

mammalian lung, and the mechanisms by which it grows in these

microenvironments, are poorly understood. Arguably, under-

standing the mechanisms by which A. fumigatus is able to grow in

the mammalian host environment will lead to either improvement

of existing therapeutic options or development of novel treatments

through the identification of novel drug targets. Some of the

previously studied environmental factors encountered by A.
fumigatus during in vivo growth include: high temperature, changes

in pH, oxidative stress, and a restricted nutrient supply. In all

probability, these stresses are similar to those that the mold has to

overcome to be a highly competitive member of the compost

microflora, and subsequently it has evolved multi-faceted and

robust mechanisms to overcome these challenges [12,13,14,15,16].

An important characteristic of A. fumigatus’s saprophytic lifestyle
that has largely been overlooked is its ability to adapt to a wide

range of oxygen levels. Aspergillus species are generally considered

obligate aerobes, but A. fumigatus has been observed to tolerate

oxygen levels as low as 0.1% [17,18]. In compost piles, oxygen

concentrations range from atmospheric (21%) to hypoxic (1.5%

and lower) and rapidly change with the metabolic activity of the

compost microflora [19]. Thus, organisms such as A. fumigatus that
thrive in such environments likely have evolved mechanisms to

tolerate hypoxia. With regard to fungal-human interactions,

oxygen availability in mammalian tissues is also substantially

below atmospheric levels [20,21,22]. Even in the alveoli of healthy
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lungs, the most aerated organ and primary site of Aspergillus

deposition, the oxygen level is around 14%. By the time oxygen

reaches the capillaries and diffuses into surrounding tissues its

availability is much lower with levels of 2–4% reported [23,24].

Thus, microorganisms that colonize, inhabit and infect mamma-

lian hosts are subject to dynamic ranges of oxygen availability

depending on their location in the mammalian body. Moreover,

the collateral effects of microbial infections, inflammation,

thrombosis, and necrosis, are often thought to decrease available

oxygen concentrations even further [25,26,27,28]. However, the

occurrence and effects of hypoxia on the outcome of human fungal

infections, especially those that primarily occur in the lung, are

poorly understood [29,30].

Recent evidence supporting the hypothesis that hypoxia is a

significant component of fungal pathogenesis comes from studies

on the sterol-regulatory element binding protein (SREBP)

transcription factor in Cryptococcus neoformans and A. fumigatus. Null
mutants of the respective SREBP in each fungal pathogen were

incapable of growth in hypoxic conditions and subsequently were

also avirulent in murine models of cryptococcosis and IPA

[31,32,33]. Though the virulence defect in these SREBP mutants

may be caused by other pleiotropic factors, their ability to grow in

normoxic but not hypoxic conditions strongly suggests that

adaptation and growth in hypoxia are contributing factors to the

avirulence of these strains. Yet, as mentioned, whether hypoxia

occurs during an invasive fungal infection in commonly used

murine models of fungal disease is unknown.

In this study, we observe for the first time that hypoxic

microenvironments do occur in three immunologically distinct

murine models of IPA. We also observe that a key gene, which

encodes an enzyme required for the last step of ethanol

fermentation in response to hypoxia, influences IPA pathogenesis

through modulation of the inflammatory response. Thus, we

conclude that in vivo hypoxic microenvironments do occur during

IPA and that fungal responses to these conditions can influence

fungal pathogenesis. These results lay the foundation for further

studies to identify how human pathogenic fungi adapt to hypoxia

and how these adaptation mechanisms ultimately influence the

outcome of fungal pathogenesis in mammals.

Results

In vivo ethanol production by A. fumigatus in a murine
model of invasive pulmonary aspergillosis
In order to gain an understanding of the important metabolic

pathways utilized by Aspergillus fumigatus during growth in the

mammalian lung, we examined qualitative production of metab-

olites in a chemotherapeutic murine model of invasive pulmonary

aspergillosis (IPA) utilizing broncheoalveolar lavages (BAL) and
1H-NMR. Our chemotherapeutic model of IPA is characterized

by the use of cyclophosphamide and the corticosteroid triamcin-

olone to induce immunosuppression. Visual inspection of the BAL

sample spectra taken from uninfected control mice and mice

inoculated with A. fumigatus on day +3 post-inoculation revealed a

relatively small number of identifiable metabolites and few

differences. Identifiable metabolites in all samples included

taurine, choline, creatine, acetate, and lactate (Figure S1). Given

the low complexity of BAL samples that are predominately 0.7%

saline, this result is not surprising. Surprisingly, however, ethanol

was detected in 4 of the 10 mice infected with A. fumigatus, but in
none of the uninfected controls (Figure S1). Attempts to detect

ethanol at later time points during infection using BALs or lung

homogenates were not successful. Thus, the extent of ethanol

production in vivo during IPA remains to be determined.

However, to support the hypothesis that the ethanol production

was fungal in origin, we next tested whether A. fumigatus was

capable of fermenting glucose to ethanol in vitro in glucose minimal

media (1% glucose) under normoxic or hypoxic conditions. While

no ethanol was detectable after 24 h in either condition, we could

detect ethanol in the culture supernatants after 48, 72, and 96 h of

growth in hypoxia (1% oxygen, Figure 1). The glucose levels

expectedly dropped during the time course of the shake flask

cultures, from 55 mM at time zero to less than 4 mM at 96 h, and

this corresponded with a decrease in detectable ethanol (Figure 1).

Fermentation is associated with hypoxic or anoxic environments in

many organisms including plant pathogenic fungi, Crabtree

negative yeast, pathogenic bacteria, and even plants

[34,35,36,37,38,39,40]. We thus hypothesized that A. fumigatus
encounters hypoxic or anoxic microenvironments during IPA.

Hypoxia occurs in murine models of invasive pulmonary
aspergillosis
To test the hypothesis that A. fumigatus encounters hypoxia

during IPA, we used a hypoxia marker, pimonidazole hydrochlo-

ride, a nitroheterocyclic drug whose hypoxia-dependent activation

by cellular mammalian nitroreductases (severe hypoxia: 10 mmHg

partial oxygen pressure, #1% oxygen) leads to the formation of

covalent intracellular adducts with thiol groups on proteins,

peptides, amino acids, and the drug itself [41,42,43,44]. The

resulting protein adducts are effective immunogens and can be

used to ‘‘visualize’’ hypoxia in vivo with immunofluorescence.

We tested for the development of hypoxia in vivo in three

immunologically distinct murine models of IPA (chemotherapeu-

tic, corticosteroid, and X-CGD) (Figure 2). Each model represents

a different clinically relevant mechanism of immunosuppression.

As mentioned, the chemotherapeutic model attempts to reproduce

the immunological state of severely immunosuppressed patients

who have often undergone a bone marrow transplant. This model

is characterized by a severe depletion of neutrophils and other

important immune effector cells needed to prevent and control

Author Summary

Metabolic flexibility is important for human pathogens like
Aspergillus fumigatus as it allows adaptation to dynamic
infection induced microenvironments. Consequently, iden-
tification of fungal metabolic pathways critical for in vivo
growth may uncover novel virulence mechanisms and new
therapeutic opportunities. To date, the mechanisms used
by A. fumigatus to adapt to microenvironments in
immunosuppressed mammalian hosts are poorly under-
stood. In this study we discover that A. fumigatus is
exposed to oxygen limiting microenvironments during
invasive pulmonary aspergillosis (IPA). Thus, this result
builds on growing evidence that suggests hypoxia is a
significant in vivo stress encountered by human fungal
pathogens. We tested the hypothesis that genes encoding
enzymes involved in ethanol fermentation are important
for in vivo fungal responses to hypoxia. We consequently
observed a significant increase in the inflammatory
response that correlated with reduced fungal growth in
the lungs of mice inoculated with an alcohol dehydroge-
nase null mutant. Altogether, our study suggests that
fungal responses to in vivo hypoxic microenvironments
can directly affect host immune responses to the invading
fungal pathogen. A better understanding of these
mechanisms will increase our understanding of IPA and
other human diseases caused by fungi and could
potentially lead to improved therapeutic options.
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invasive fungal infections. Another patient population highly

susceptible to invasive fungal infections is those patients on high

doses of corticosteroids for treatment of graft versus host disease or

other autoimmune type diseases. In our model of this patient

population, we utilized a single high dose of the corticosteroid

triamcinolone. Unlike the chemotherapeutic model, this model is

not characterized by depletion of effector cells, but rather by a

suppression of their antifungal activity that leads to altered

inflammatory responses. Finally, we utilized transgenic mice that

are deficient in the gp91 Phox subunit of the NADPH oxidase.

These mice are a close model for the genetic disorder chronic

granulomatous disease (CGD), and are highly susceptible to

Aspergillus infection.

In the Triamcinolone model, histopathology of A. fumigatus

inoculated mice show lesions with a strong influx of immune cells

(blue) and strong growth of fungal hyphae (green) invading into the

lung parenchyma from the airways (Figure 2A, Figure S2). By day

3 p.i., hypoxia could readily be detected in the center of larger

lesions (red), and while the hypoxic areas of the lesions are

comparable on day 3.5 p.i., they are significantly expanded on day

4 p.i.. The isotype control staining of the same lesions in

subsequent tissue sections, as well as complete staining of tissue

sections from inoculated mice without hypoxyprobe injections,

demonstrate the specificity of the hypoxyprobe and antibodies

utilized (Figure 2A).

In contrast to the Triamcinolone model, lesions in the

chemotherapeutic model are dominated by massive fungal growth

causing significant tissue necrosis with minimal inflammation

(Figure 2B, Figure S2). Given the severe neutropenia associated

with this model, this result is expected. Despite the strong

reduction in the inflammatory response and extensive fungal

growth in this model, we were able to detect hypoxia in these

lesions at similar time points to the Triamcinolone model

(Figure 2A and B). However, it is clear that the amount and

extent of hypoxia is significantly reduced in this murine model.

In mice that lack the gp91phox component of NADPH oxidase (a

model of X-CGD) the lesion size gradually increased during the

time course of infection from day 3 to day 5, which was due to a

strong increase in the inflammatory response of the host [45].

Fungal growth in this model was strongly reduced in comparison

to the other two tested murine models (Figure 2C, Figure S2). On

day 3 p.i. minimal amounts of hypoxia were detected, but by day 4

p.i. significant levels of hypoxia were observed in the center of the

lesions. On day 5 p.i. hypoxia was abundantly present in the

center of the lesions, and throughout the surrounding tissue

indicating that significant parts of the lung experience hypoxia in

this murine model of IPA (Figure 2C). Indeed, in some animals in

this model almost the entire lung seemed hypoxic at later time

points just prior to mortality (data not shown). Taken together,

these data confirm that A. fumigatus encounters hypoxic microen-

vironments (oxygen concentrations #1%) and a dynamic range of

oxygen availability during murine models of IPA. The extent of

hypoxia, fungal growth, and host immune responses in the

different models suggests that the host inflammatory response

plays an important, but not exclusive, role in the generation of the

hypoxic microenvironment.

Generation and characterization of ethanol fermentation
deficient mutants
Given the evidence that A. fumigatus encounters hypoxia during

IPA and that production of ethanol occurs in vivo during infection

and is normally used by microbes to survive in low oxygen

environments [34,35,36,37,38,39], we next tested the hypothesis

that ethanol fermentation was a key mechanism for hypoxia

adaptation and fungal virulence.

To determine the effects of ethanol fermentation on IPA

pathogenesis, we searched the A. fumigatus genome sequence for

genes encoding enzymes known to be involved in ethanol

fermentation [46,47]. Using the A. nidulans pdcA (pyruvate

decarboxylase) (An_pdcA – AN4888) gene sequence for a BLASTX

search of the A. fumigatus genome (CADRE genome database) we

identified three potential candidates that may encode for pyruvate

decarboxylases and named them pdcA (AFUB_038070: 85%

identity to An_pdcA), pdcB (AFUB_096720: 39% identity to

An_pdcA), and pdcC (AFUB_062480: 33% identity to An_pdcA)

(Table 1). Protein sequence analysis (InterProScan Sequence

Search, http://www.ebi.ac.uk/Tools/InterProScan/) suggested

all three A. fumigatus proteins were pyruvate decarboxylases

Figure 1. Culture supernatants were used in a high performance liquid chromatography (HPLC) analysis to determine ethanol
production and glucose consumption. After 48 hours under hypoxic conditions, ethanol was detected along with a decrease in glucose
concentration. Ethanol concentrations decrease over time with a peak at 48 hours. Each value represents mean 6 standard error (n = 2 independent
cultures). *,**,#p,0.05.
doi:10.1371/journal.ppat.1002145.g001
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Figure 2. Identification of hypoxic microenvironments at the site of A. fumigatus infections in murine lungs. The following three distinct
mouse IPA models were utilized: (A) triamcinolone (corticosteroid) model, (B) chemotherapy model, and (C) X-CGD mouse model. Mice were
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(Table 1). In a similar manner, the known alcohol dehydrogenase

(Adh) gene sequences of A. nidulans (AdhI: An_alcA – AN8979,

AdhII: An_alcB – AN3741, and AdhIII: An_alcC – AN2286) were

used to identify the most likely genes encoding alcohol dehydro-

genases in A. fumigatus. However, as the Aspergillus fumigatus genome

contains several predicted alcohol dehydrogenases we restricted

our search to proteins with high identity and similarity to the A.
nidulans Adh proteins (alcA – AFUB_087590: 87% identity and

94% similarity to An_alcA, alcB – AFUB_089920: 79% identity and

89% similarity to An_alcB, and alcC – AFUB_053780: 80%

identity and 91% similarity to An_alcC) (Table 1).

Given the findings that A. fumigatus utilizes ethanol fermentation

in in vitro and possibly in vivo hypoxic environments and the

apparent gene redundancy in the predicted ethanol fermentation

pathway, we next sought to determine which of the genes

transcriptionally responds to hypoxia. Quantitative real-time PCR

comparing the mRNA abundance of the ethanol fermentation

genes under hypoxic and normoxic conditions revealed an

immediate increase in mRNA abundance of all three pdc genes

as well as the alcC gene to hypoxic growth conditions (Figure 3).

While mRNA abundance levels of pdcB and pdcC show a ,9-fold

higher normalized fold expression after 24 h in hypoxia, pdcA
mRNA showed a 64-fold increase compared to normoxic culture

conditions. This data suggest that PdcA is the primary pyruvate

decarboxylase that responds to hypoxia in A. fumigatus. With

regard to the alcohol dehydrogenase encoding genes, the mRNA

abundance of alcC significantly increased in response to hypoxia

while mRNA abundance of the other two alcohol dehydrogenase

encoding genes did not (Figure 3). These data suggest that alcC is

the primary gene encoding an alcohol dehydrogenase that

responds to hypoxia in A. fumigatus.

To determine whether these genes are involved in ethanol

fermentation, we generated null mutants of the genes encoding

PdcA, PdcB, PdcC, and AlcC by replacement of the coding

sequence in A. fumigatus strain CEA17 with the auxotrophic marker

pyrG from A. parasiticus (Figure 4 and data not shown). A pdcA/
pdcB double mutant was also generated. Ectopic re-introduction of

the wild type pdcA and alcC allele into DpdcA and DalcC (resulting in

strains pdcA recon and alcC recon) allowed us to attribute all

resulting phenotypes specifically to the absence of pdcA or alcC.
The genotype of all strains was confirmed with PCR analyses (data

not shown) and Southern blots (Figure 4 and data not shown).

Southern blot analysis of the alcC recon strain revealed a double

insertion of the alcC encoding sequence in the genome and the alcC
recon strain displayed a 10-fold higher mRNA abundance in

response to hypoxia as the alcC allele in the wild type strain (data

not shown). However, the double insertion had no detectable

phenotypic effect on the reconstituted strain, since the alcC recon

strain showed the same phenotype as the wild type in all further

experiments with only a slight but statistically insignificant increase

in ethanol production (Figure 5B).

Next, we examined the ability of the generated null mutant

strains to produce ethanol in response to in vitro hypoxic growth

conditions. The loss of pdcA decreases Pdc enzyme activity in

hypoxia by approximately 80% (Figure 5A) and the activity can be

restored to wild type levels in the pdcA recon strain. The DpdcB and

DpdcC, as well as the DalcC strain showed no significant decrease in

Pdc activity (data not shown), confirming the hypothesis that pdcA
is the most important pdc gene in A. fumigatus for production of

ethanol, at least in vitro. However there is still residual activity

detectable in the DpdcA and the DpdcA/DpdcB strains (0.0047 6
0.0041 in normoxia and 0.0039 6 0.0064 in hypoxia; data not

euthanized on indicated days after inoculation (mock control = 0.01% Tween inoculated, infected mice= inoculated with A. fumigatus strain CEA10).
Prior to sacrifice, Hypoxyprobe-1 (60 mg/kg) was intravenously injected into indicated mice (+hypoxyprobe) and allowed to circulate for 60 to
90 min. After tissue preparation specific antibodies were used to detect Hypoxyprobe-1 bound to proteins (red) and A. fumigatus hyphae (green).
Isotype controls were only stained with either one of the secondary antibodies to verify specific staining. Host cell nuclei were counterstained with
DAPI (blue). Merged pictures show co-localization of the fungal hyphae (green), surrounding immune cells (blue), and Hypoxyprobe-1 (red) in all
three IPA mouse models. Isotype controls and infected mice without Hypoxyprobe-1 injection show that no unspecific staining occurred.
Bar = 100 mm.
doi:10.1371/journal.ppat.1002145.g002

Table 1. Genes involved in A. fumigatus ethanol fermentation pathway.

Gene ID Gene Name Query Gene Similarity Identity Domains Enzyme

AFUB_038070 pdcA AN_pdcA 93% 85% C-terminal TPP-binding, central domain, N-terminal
TPP-binding domain

Pyruvate decarboxylase

AFUB_096720 pdcB AN_pdcA 57% 39% C-terminal TPP-binding, central domain, N-terminal
TPP-binding domain

Pyruvate decarboxylase

AFUB_062480 pdcC AN_pdcA 47% 33% TPP-binding enzyme conserved site, C-terminal
TPP-binding, central domain, N-terminal
TPP-binding domain

Pyruvate decarboxylase

AFUB_087590 alcA AN_alcA 94% 87% zinc-containing conserved site, GroES-like domain,
ADH C-terminal domain, ADH GroES-like domain,
NAD(P)-binding domain

Alcohol Dehydrogenase

AFUB_089920 alcB AN_alcB 89% 79% zinc-containing conserved site, GroES-like domain,
ADH C-terminal domain, ADH GroES-like domain,
NAD(P)-binding domain

Alcohol Dehydrogenase

AFUB_053780 alcC AN_alcC 91% 80% zinc-containing conserved site, GroES-like domain,
ADH C-terminal domain, ADH GroES-like domain,
NAD(P)-binding domain

Alcohol Dehydrogenase

AN=Aspergillus nidulans.
TPP = Thiamine pyrophosphate.
ADH= alcohol dehydrogenase.
doi:10.1371/journal.ppat.1002145.t001
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shown). A triple mutant of all three putative PDC encoding genes

would need to be generated to definitively answer whether the

observed residual activity from the cell free extracts is indeed real

Pdc activity.

Using the culture supernatants from the above experiments we

examined the amount of ethanol produced by the respective

fungal strains. The pdcB and pdcC null mutant strains show a slight

but statistically insignificant decrease in ethanol production that is

essentially similar to wild type levels (CEA10: 0.07160.035%;

DpdcB: 0.04760.002; DpdcC: 0.04060.006; P.0.4). Importantly,

no ethanol could be detected in DpdcA and DalcC culture

supernatants, while the wild type and respective reconstituted

strains produced ethanol (Figure 5B). These results support the

gene expression and Pdc enzyme activity assays that suggest PdcA

is the primary Pdc and that AlcC is the primary alcohol

dehydrogenase required for in vitro ethanol production in A.
fumigatus. The function of the remaining Pdc and Alc genes in A.
fumigatus thus is not currently clear.

To determine whether ethanol fermentation is important for

growth under hypoxic conditions, we examined radial growth on

solid media under normoxic and hypoxic conditions. As previously

described, A. fumigatus grows well under hypoxic conditions on the

fermentable carbon source glucose [18,31] (Figure 5C). Surpris-

ingly, the ethanol fermentation deficient mutants show no growth

defect on glucose containing media under hypoxic (1% or 0.2%

O2 (data not shown)) conditions compared to the wild type and the

reconstituted strains (Figure 5C). In addition, the wild type and

mutant strains are all also able to grow on the non-fermentable

carbon sources ethanol, lactate and glycerol, although the growth

rate is decreased compared to growth on glucose (data not shown).

Germination rates were the same for all strains utilized and no

defects in conidia viability were observed (data not shown). Liquid

biomass quantification with the respective mutant strains also

revealed no growth differences between wild type and ethanol

deficient strains in hypoxia (data not shown). Taken together, these

results suggest that PdcA and AlcC are the primary enzymes

involved in ethanol fermentation in A. fumigatus, but that other

unidentified mechanisms are utilized to grow under hypoxic

conditions on fermentable carbon sources when ethanol fermen-

tation is not possible.

Deletion of alcohol dehydrogenase III in A. fumigatus
alters the pathogenesis of invasive pulmonary
aspergillosis
Despite the general lack of a pathogenesis associated phenotype

of the in vitro ethanol production deficient strains, ethanol itself has

been observed to have significant immunomodulatory properties

[48,49,50,51,52]. In addition, utilizing quantitative real-time PCR

we found that alcC is expressed in vivo during fungal pathogenesis

on day 3 and 4 post inoculation in the triamcinolone model

(Figure 6) suggesting that this gene and the enzyme it encodes may

be important for in vivo growth. Therefore, we sought to determine

the effects of loss of PdcA and AlcC on the pathogenesis of IPA.

We first examined the virulence of the DpdcA and DalcC strains in

the chemotherapeutic and X-linked chronic granulomatous

disease (X-CGD, gp91phox2/2 mice) murine models of IPA

[45,53]. Irrespective of the fungal strain, A. fumigatus infected mice,

in both models, displayed well described symptoms of A. fumigatus

infection including hunched posture, ruffled fur, weight loss, and

increased respiration as early as day +2 of inoculation.

Subsequently, no difference in mortality was observed between

the null mutant (DalcC, DpdcA, and DpdcADpdcB) and wild type

strains (Figure 7 and data not shown).

To further examine the impact of the mutant strains on the

pathogenesis of IPA in these murine models, lung histopathology

was performed. Lungs from X-CGD mice displayed the expected

histopathology for this model including a large inflammatory

response with reduced fungal growth (Figure S3). In this model,

histopathology of wild type and DalcC inoculated mice looked

identical at all time points examined (Figure S3). In the

chemotherapy model, pulmonary lesions of wild type infected

Figure 3. Normalized fold expression of pdc genes and alc genes in A. fumigatus under normoxic and hypoxic conditions. (A) mRNA
levels of all three pdc genes increase in hypoxia with pdcA being the most responsive. mRNA levels of the pdc genes show a reduction in hypoxia over
time. (B) Of the three tested alc genes only mRNA from alcC is increased in response to hypoxia. Quantification of mRNA was achieved by
quantitative real-time PCR. Values are normalized to b–tubulin and shown relative to normoxia. Results are the mean and standard deviation of three
replicates.
doi:10.1371/journal.ppat.1002145.g003
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animals show substantial fungal growth and invasion of the lung

parenchyma with a minimal influx of immune cells but extensive

tissue necrosis, hemorrhaging, edema, and tissue damage

(Figure 8A). Importantly, mice inoculated with DalcC show lesions

with reduced fungal growth and more inflamed tissue compared to

wild type inoculated mice (despite the overall lesion sizes being

comparable between the two inoculation groups) (Figure 8A).

Taken together, this result suggests that AlcC plays a potential role

in the pathogenesis of IPA.

To explore this hypothesis further, we utilized the Triamcin-

olone (corticosteroid) model of IPA. IPA in mice treated with

corticosteroids have previously been observed to induce hyper-

inflammatory responses that are speculated to be the primary

cause of mortality in this model [54]. Thus, we rationalized that

any changes in the inflammatory response to A. fumigatus in the

absence of AlcC would be potentiated in this model. As in the

chemotherapeutic and X-CGD murine models, DalcC infected

animals displayed wild type levels of mortality in the Triamcin-

olone model (Figure 7C). A similar change in gross histopathology

of the Triamcinolone compared to the chemotherapeutic model

infected with the DalcC strain is also observed (Figure 8B).

Consistent with the observations in the chemotherapy model,

DalcC inoculated animals show less fungal growth but increased

levels of inflammation (Figure 8B).

Altogether these observations suggest that loss of AlcC results

in an increased inflammatory response to A. fumigatus. To

further characterize and quantify these histopathology observa-

tions, we analyzed the cellular infiltrates in BAL fluids of

Triamcinolone treated mice from 2 different inoculation

experiments using flow cytometry and differential cell counts.

On day 3 p.i., DalcC inoculated mice show an increased

quantity of F4/80+/CD11c+ cells and a significant increase in

GR-1+/CD11b+ cells in the BAL fluids compared to wild type

infected animals (Figure 9A and B, and Figure S4 and S5). F4/

80+/CD11c+ cells most likely represent macrophages while GR-

1+/CD11b+ cells are most likely neutrophils. As expected,

control mice BALs contained F4/80+/CD11c+ cells but nearly

no GR-1+/CD11b+ cells. Furthermore, differential cell counts of

BAL fluids revealed that macrophages, monocytes and partic-

ularly neutrophils were the dominant cell types found in the

BAL samples of A. fumigatus inoculated mice. Consistent with the

observed histopathology as well as the flow cytometry data,

differential cell count numbers of neutrophils were significantly

increased in DalcC inoculated mice (p,0.05; Figure 9C and D).

Figure 4. Generation and confirmation of PdcA and AlcC null mutants in A. fumigatus. Schematic of wild type (CEA10), PdcA (A), and AlcC
(B) null mutant genomic loci. (A) Southern blot analysis of wild type, DpdcA, and pdcA recon strains as well as (B) wild type, DalcC, and alcC recon
strains. Genomic DNA from the respective strains was isolated and digested overnight with SalI and NcoI in the case of PdcA and with only NcoI for
AlcC. An approximate 1 kb genomic region was utilized as a probe. The expected hybridization patterns and sizes were observed for all strains tested.
In addition, confirmation of ectopic reconstitution was confirmed by the presence of the wild type locus hybridization signal and persistence of the
null mutant locus. The alcC reconstituted strain showed a double re-insertion of the alcC locus.
doi:10.1371/journal.ppat.1002145.g004
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Taken together, these data support the histopathology observa-

tions that indicate an increased inflammatory response in mice

infected with DalcC.

To further quantify the differences in immune response to

DalcC, we examined the production of cytokines normally

associated with neutrophil recruitment in mice (murine IL-8

homologs, KC and MIP2). We observed that protein levels of the

two murine neutrophil chemo-attractants KC and MIP-2 were

significantly increased in BALs from DalcC inoculated animals

compared with wild type (Figure 10A and B; p,0.05). IL-6 was

also slightly elevated while TNF-a protein levels were reduced in

comparison to BAL fluids of mice inoculated with the wild type

(Figure 10C and D; p.0.05). Altogether, these results indicate that
loss of AlcC modulates the immune response of the host to A.

fumigatus causing increased recruitment of immune effector cells to

the site of infection, particularly neutrophils, and associated altered

cytokine responses.

The A. fumigatus DalcC strain shows reduced in vivo
fungal growth and causes wild type levels of tissue
damage
The comparison of histopathology between wild type and DalcC

inoculated mice suggested reduced fungal growth by the DalcC
strain in both the chemotherapy and the Triamcinolone murine

models (Figure 8). In order to confirm this important observation,

we quantified the pulmonary fungal burden on days 3 and 4 p.i. by

quantitative RT-PCR. Consistent with the GMS histopathology,

qRT-PCR confirmed a reduced pulmonary fungal burden in mice

inoculated with DalcC compared to wild type (Figure 11). In

addition, we examined LDH (lactate dehydrogenase) and Albumin

Figure 5. PdcA and AlcC are required for in vitro ethanol fermentation but not hypoxic growth of A. fumigatus. (A) After 48 hours in
hypoxia, mycelia were harvested and pyruvate decarboxylase activity (Pdc) of cell free extracts was determined. Compared to CEA10, the DpdcA
strain showed a ,80% reduction of Pdc activity under hypoxic conditions, which could be restored in the reconstituted strain (*,# p,0.01) (B)
Ethanol concentration in culture supernatants was determined with GCMS, showing that PdcA and AlcC are required for ethanol production of A.
fumigatus. Each value represents mean 6 standard error (n = 3 for each condition for each strain). (*,# p,0.01). (C) 1x106 conidia of CEA10, DpdcA,
pdcA recon, DalcC, and alcC recon were plated on GMM (glucose) plates and incubated at 37uC for 48 h under normoxic or hypoxic conditions. All
strains showed comparable growth and morphology in all tested conditions.
doi:10.1371/journal.ppat.1002145.g005
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release in BAL fluid to determine the degree of tissue damage

caused by DalcC and the wild type strain. Intriguingly, both strains

cause the same levels of LDH and Albumin release on day 3 and 4

post inoculation (Figure 12). Collectively, the lower fungal burden,

the increased host inflammatory response, and the wild type level

of tissue damage in response to DalcC strongly suggest the A.

fumigatus alcohol dehydrogenase, AlcC, plays an important role in

IPA.

The increased inflammatory response of the host to the
DalcC strain is not caused by changes in the cell wall
The observed altered host response and reduced fungal burden

in animals infected with DalcC led us to question the mechanism

behind these phenotypes. As inflammatory responses to fungal

pathogens are often mediated by the fungal cell wall, we tested

whether loss of AlcC resulted in unexpected changes to the cell

wall of this strain that could account for the in vivo phenotypes.

Figure 6. Normalized fold expression of the A. fumigatus alcC gene in vivo during fungal pathogenesis. Outbred CD1 mice were
immunosuppressed by single injection of Triamcinolone (40 mg/kg) 1 day prior to A. fumigatus intranasal inoculation. Lungs were harvested on
indicated days and whole RNA was prepared. Quantification of mRNA was achieved by quantitative real-time PCR using fungal specific primers.
Values are normalized to tefA and shown relative to mock control animals. Results are the mean and standard deviation of three replicates.
doi:10.1371/journal.ppat.1002145.g006

Figure 7. Loss of ethanol fermentation does not affect survival of A. fumigatus infected mice. (A) (B) Outbred CD-1 mice were
immunosuppressed by intraperitoneal (i.p.) injection of 175 mg/kg cyclophosphamide 2 days prior to infection and 150 mg/kg 3 days post-
inoculation, and subcutaneous (s.c.) injection of Triamcinolone (40 mg/kg) 1 day prior to infection and 6 days post-infection. Mice were inoculated
with ,104 conidia of the indicated strains by inhalation of an aerosol in a Hinner’s chamber. (C) For the triamcinolone model outbred CD-1 mice were
immunosuppressed on day -1 by s.c. injection of Kenalog (40 mg/kg), followed by inhalation-inoculation with 104 conidia on day 0. (D) gp91phox2/2

mice were challenged intranasally with 106 conidia in a volume of 25 ml of the indicated strains. The ethanol deficient mutant strains, DalcC and
DpdcA, showed no difference in mortality compared to the wild type or reconstituted strains in any of the tested IPA models (p.0.2, Log-Rank Test).
10 animals were inoculated per experiment per inoculation group and the experiments were repeated in duplicate.
doi:10.1371/journal.ppat.1002145.g007
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Conidia and ultraviolet (UV) irradiated germlings or hyphae from

A. fumigatus wild type or DalcC were co-incubated with bone

marrow-derived macrophages (BMMØ) and inflammatory cyto-

kine responses were measured (Figure 13). No differences in the

secretion of TNF-a or MIP-2 by BMMØ were observed to any of

the tested A. fumigatus growth stages with regard to DalcC or wild

type strains. Moreover, no difference in the response to chemical

cell wall perturbing agents (caspofungin and congo red) was

observed with DalcC (data not shown). Thus, our data suggest that

the increased inflammatory response observed in DalcC inoculated

mice is not caused by changes in the fungal cell wall. Thus, the

exact mechanism for the altered pathogenesis in mice inoculated

with DalcC remains to be determined.

Discussion

Metabolic adaptability and flexibility are important attributes

for pathogens to successfully colonize, infect, and cause disease in a

wide range of hosts. Importantly, these processes are dynamic, and

pathogen and host metabolism are likely to change as the result of

the host-pathogen interaction, which alters the localized microen-

vironment. In this study, we present new insights into the

pathogenesis of IPA in commonly used experimental murine

models. We present data that confirms previous circumstantial

data that suggested that hypoxia may be part of the pathogenesis

of IPA [55,56]. To our knowledge, this is the first confirmation of

the occurrence of in vivo hypoxic microenvironments in an invasive

fungal infection. Our results thereby add a ‘‘new’’ in vivo stress to

which human fungal pathogens must adapt to cause lethal disease,

and it will be intriguing to define the occurrence of hypoxia in

other models of human fungal disease.

To determine whether hypoxia actually occurs in the lung

during IPA, we used the hypoxia marker, pimonidazole hydro-

chloride, which is an investigational oncology probe used as a

hypoxia-imaging agent in clinical studies to detect reduced oxygen

concentrations in animal and human tumors [43,44,57,58,59]. In

our study, we observed that lesions in lungs of mice infected with

A. fumigatus are hypoxic, as evidenced by the formation of a stable

adduct between reduced pimonidazole and host proteins at sites of

A. fumigatus infection. However, the extent and timing of hypoxia

development differed between the immunologically distinct

murine models of infection. While hypoxia did occur to some

degree in all three models, the chemotherapy model exhibited the

least amount of hypoxia in terms of size of the hypoxic area in the

lung. This result suggests that the influx and activity of host cells is

a strong contributor to the development of hypoxia. However, the

persistence of hypoxia in this model, albeit not as extensive as in

the other models, also suggests that fungal activities/components

Figure 8. Representative histopathology of the chemotherapy and triamcinolone mouse models 3 and 4 days after inoculation.
Mice were inoculated with 1x104 conidia by inhalation (Control = 0.01% Tween inoculated), euthanized on indicated days, lungs removed, fixed, and
stained with hematoxylin and eosin (H&E) or Gommori’s methenamine silver (GMS) stain. (A) In the chemotherapy IPA model wild type inoculated
mice show substantial fungal growth and a strongly reduced influx of immune cells, while lesions of DalcC inoculated mice show reduced fungal
growth and an increased inflammatory response on day 3 and day 4 p.i.. (B) Lung histopathology of triamcinolone model mice showed reduced
fungal growth of the wild type with robust inflammation compared to (A) and an even further reduction in growth of DalcC with an apparent
increase in inflammation and cellular influx. Bar = 100 mm.
doi:10.1371/journal.ppat.1002145.g008
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contribute to hypoxic lesion. For example, a recent study has

observed that A. fumigatus can modulate host angiogenesis by

secretion of secondary metabolites such as gliotoxin, which may

further compromise tissue perfusion and ultimately contribute to

coagulative necrosis, and thus limit oxygen delivery to sites of

infection [60]. Importantly, though hypoxia was not detected on

day +1 or day +2 of infection in any of our models we cannot rule

out, and indeed would expect, that conidia and growing hyphal

tips experience low oxygen tensions as they are engulfed by various

host cells and ultimately penetrate the lung parenchyma and

invade into the vasculature. Thus, we conclude that during

colonization and subsequent infection, A. fumigatus is exposed to a

dynamic range of oxygen levels in the lung.

The significance of hypoxia, and the timing and extent to which

it occurs during IPA, remain important areas of investigation. One

important question that we have started to explore in this study is

related to the potential clinical significance of fungal mechanisms

of hypoxia adaptation. Previous studies in our and other

laboratories with fungal SREBPs have suggested that fungal

adaptation to hypoxia is critical for virulence. If true, these

mechanisms would become an attractive therapeutic target.

However, SREBPs are transcription factors that likely modulate

Figure 9. Characterization of cellular infiltrates in broncheoalveolar (BAL) fluids of triamcinolone immunosuppressed mice. Flow
cytometry was used to identify (A) F4/80+/CD11c+ and (B) GR-1+/CD11b+ cells. Figures S3 and S4 show the corresponding Dot plots. Both cell types
are elevated in DalcC inoculated mice. In agreement, differential cell counts demonstrate that macrophage and monocyte numbers were slightly
increased in mice inoculated with DalcC (C) while neutrophil numbers were significantly elevated (D). *p,0.05. Results are presented as mean and
standard error of N = 5 mice. The experiment was repeated in duplicate with similar results.
doi:10.1371/journal.ppat.1002145.g009
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numerous important mechanisms of fungal physiology, and thus it

is not currently possibly to attribute the avirulence phenotype of

these strains solely to their inability to grow in hypoxia. In general,

mechanisms of hypoxia adaptation in human fungal pathogens are

unexplored.

Most eukaryotic cells, like A. fumigatus, obligatorily use oxygen to

carry out many of their biochemical reactions. Oxygen is a key

component of energy production where it functions as a terminal

electron acceptor in the formation of ATP from glucose during

aerobic respiration. When exposed to microenvironments with

limited levels of oxygen, many microorganisms utilize fermenta-

tion as a potential metabolic mechanism for dealing with the lack

of oxygen [34,35,36,37,38,39,40]. Fermentation allows the fungus

to replenish sources of NAD+ and thus to generate ATP through

continued use of glycolysis. Importantly, our interest in hypoxia

and fungal pathogenesis began with the discovery of ethanol in

BAL samples from A. fumigatus infected mice immunosuppressed

with our chemotherapeutic model (Figure S1). Thus, in this study,

we explored the potential role of ethanol fermentation in A.

fumigatus hypoxia adaptation and fungal virulence by identifying

and characterizing the ethanol fermentation pathway genes in this

pathogen.

Our in vitro molecular genetic analyses strongly suggest that the

main route of ethanol fermentation in A. fumigatus is through the

pyruvate decarboxylase, PdcA, and subsequent alcohol dehydro-

genase, AlcC. Null mutants in both of these genes were unable to

Figure 10. Cytokine production in response to A. fumigatus wild type and DalcC inoculation. (A) KC, (B) MIP-2, (C) IL-6, and (D) TNF-a
concentrations were determined in BAL fluids on day 3 post inoculation. Significant differences between the two inoculation groups could be
observed for KC and MIP-2 protein levels. *p,0.05. Results are the mean and standard error of N = 5 mice.
doi:10.1371/journal.ppat.1002145.g010
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produce detectable ethanol in vitro under hypoxic conditions.

These results are in agreement with observations in Aspergillus

nidulans, where a pdcA deletion strain also fails to produce ethanol

[61] and alcC activity is induced by hypoxic conditions [62].

However, our results also suggest that ethanol fermentation per se

is not required for fungal growth in vitro as none of the ethanol

fermentation deficient strains displayed any growth differences in

in vitro normoxic or hypoxic growth conditions. We cannot

definitively rule out that a small amount of undetectable ethanol

fermentation still occurs in our mutant strains, however, we feel it

is more likely that other fermentation pathways exist and/or that

sufficient mitochondrial respiration still occurs under the condi-

tions examined to support robust growth.

Despite the persistent growth of the ethanol fermentation

deficient stains under hypoxia, the DalcC displayed a very different

phenotype in vivo in our murine models of IPA. In our three

immunologically distinct models of IPA, no difference in mortality

could be observed in mice infected with the wild type and ethanol

fermentation mutant strains. However, histopathology of the

chemotherapy and Triamcinolone models indicated an increased

influx of immune cells and reduced fungal growth in DalcC

inoculated mice. These observations were confirmed by flow

cytometry and differential cell counts as well as quantitative fungal

burden measurements by qRT-PCR. Although, we observed less

fungal burden in DalcC inoculated mice, the overall lesion size was

comparable to wild type caused lesions and both strains caused the

same level of tissue damage as measured by LDH and Albumin

assays. This result is probably due to the increased influx of

neutrophils and macrophages to sites of DalcC infection. It is

tempting to speculate then that DalcC inoculated mice might

succumb to the infection because of the increased host

Figure 11. Decreased fungal burden in DalcC inoculated mice.
Outbred CD1 mice were immunosuppressed by subcutaneous injection
of triamcinolone (40 mg/kg) 1 day prior to A. fumigatus inoculation in a
Hinner’s inhalation chamber. Fungal burden in the lungs was
determined by quantitative real-time PCR based on the 18S rRNA gene
of A. fumigatus. Data are presented as total fungal genomic DNA
normalized to input DNA. The mean and standard error are presented
(N= 3 mice for the control group and N=7 mice for both inoculation
groups). * p,0.01.
doi:10.1371/journal.ppat.1002145.g011

Figure 12. Wild type levels of tissue damage in DalcC inoculated mice. (A) BAL albumin and (B) BAL lactate dehydrogenase (LDH) levels in
Triamcinolone immunosuppressed CD1 mice (40 mg/kg 1 day prior to infection) were determined on day 3 and 4 p. i. in wild type (CEA10) and DalcC
inoculated mice demonstrating no significant differences between inoculation groups.
doi:10.1371/journal.ppat.1002145.g012

Hypoxia and Aspergillosis Pathogenesis

PLoS Pathogens | www.plospathogens.org 13 July 2011 | Volume 7 | Issue 7 | e1002145

Manuscripts

58



inflammatory response rather than by the invasive growth of the

mold. The decrease in fungal burden in mice infected with the

DalcC strain might suggest that this response is partially effective at

limiting fungal growth, but with collateral damage to the host that

results in mortality. Of note, Mehrad et al. recently observed that

an overproduction of KC results in a lower fungal burden and

higher levels of neutrophil recruitment in a murine model of IPA,

which leads to more resistance to A. fumigatus infections [63]. As we

observed increases in KC and MIP2 levels in response to DalcC

with a concomitant decrease in fungal burden, it may be possible

that the increased inflammatory response to DalcC is at least

partially antifungal.

The in vivo phenotype of DalcC raises some intriguing questions

about the mechanism behind the observed increase in host

inflammatory response and subsequent reduction in fungal

burden. Previous observations have indicated that ethanol is a

potent immunosuppressive agent, and thus it seems reasonable to

hypothesize that loss of ethanol production at the site of infection

Figure 13. Increased cytokine response is not caused by cell wall changes of the DalcC strain. Secretion of MIP-2 and TNF-a by bone
marrow-derived macrophages (cultured as described in Materials and Methods) incubated for 18 hours with A. fumigatus conidia (A), UV irradiated
germlings (B), or UV irradiated hyphae (C). Presented are the average concentration and standard deviation in 3 wells per condition of one
representative experiment. P.0.05 for all comparisons.
doi:10.1371/journal.ppat.1002145.g013
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at least partially explains the observations with DalcC
[48,49,52,64,65,66,67,68]. Acute and chronic ethanol exposures

have been shown to alter the immune response to both bacterial

and viral pathogens [69,70,71]. Ethanol decreases clearance of

pneumococci and Klebsiella species from the lungs of ethanol-fed

mice, which is mainly due to an impaired response of the

phagocytic cells [72]. With regard to fungal pathogens, Zuiable

et al. observed that human blood monocytes incubated with

ethanol have impaired killing of Candida albicans [51]. Along these

lines of thinking it may be possible that A. fumigatus is able to

partially suppress localized host immune responses by utilizing

ethanol fermentation in response to hypoxic microenvironments

during IPA. However, to confirm this hypothesis, more sensitive

detection methods for the localized and low levels of ethanol

produced at the site of A. fumigatus infection are needed.

Currently, ethanol detection in our murine models is inconsis-

tent as exhibited by our initial experiment with BALs and 1H-

NMR. BALs only sample the airway and do not sample localized

infection sites located in the lung parenchyma so it is potentially

not surprising that this method may not consistently detect a small

molecule in the lung such as ethanol. To overcome this potential

limitation, we attempted to utilize whole lung homogenates and

two different ethanol detection methods including an enzymatic

based approach and a GC-MS approach. Unfortunately, either

the complexity of the samples, the chemical nature of ethanol

itself, or the metabolism at the site of infection prevented

reproducible detection of ethanol. Thus, currently, we cannot

directly attribute the increased inflammatory response observed

with DalcC to loss of ethanol production. However, development of

more sensitive detection methods is underway in our laboratory.

It is intriguing to note that the possibility of fermentation being

important for hypoxic growth during fungal infections is further

supported by the finding of ethanol in cerebral tissue of rats

infected with C. neoformans [73]. Moreover, in support of the

hypothesis that it is at least a secreted factor that is affecting the

host response to DalcC, UV killed wild type and DalcC strains at 3

distinct growth phases do not exhibit a difference in pro-

inflammatory responses ex vivo with bone marrow derived

macrophages (Figure 13). Thus, the most likely culprit for an

altered inflammatory response, the fungal cell wall, appears to not

be altered in DalcC. Future studies will continue to probe the

mechanism behind the reduced fungal growth and increased

inflammatory response of DalcC.

Altogether, in this study we present the first in vivo observations
of hypoxic microenvironments during an invasive pulmonary

fungal infection and shed light on how the mold A. fumigatus adapts

to low oxygen environments to cause disease. These results, along

with other published data from our laboratory, continue to

support the hypothesis that hypoxia adaptation and growth is an

important component of the pathogenesis of IPA [29,31,74]. Our

results further emphasize the dynamic and complex interactions

that occur between fungi and their hosts during an invasive

pulmonary fungal infection. Future studies will continue to explore

the effects of infection localized microenvironment stresses on

invasive pulmonary aspergillosis pathogenesis. It will be intriguing

to learn if other human fungal pathosystems also involve

significant levels of hypoxia at sites of infection and whether

ethanol fermentation pathway mutants also alter the host response.

Materials and Methods

Strains and media
A. fumigatus strain CEA17 (gift from Dr. J.P. Latgé, Institut

Pasteur, Paris, France) was used to generate the pdcA (AFUB_

038070; DpdcA::A. parasiticus pyrG pyrG1), pdcB (AFUB_096720;

DpdcB::A. parasiticus pyrG pyrG1), pdcC (AFUB_062480; DpdcC::A.

parasiticus pyrG pyrG1), and alcC (AFUB_053780; DalcC::A. parasiticus

pyrG pyrG1) null mutant strains. A. fumigatus strain CEA17 is a

uracil-auxotrophic (pyrG1) mutant of A. fumigatus strain CEA10

[75,76]. In this study, we used CEA10 (CBS144.89) (gift from Dr.

J.P. Latgé, Institut Pasteur, Paris, France) as the wild type strain in

all experiments except the 1H-NMR metabolite profiling exper-

iment which utilized strain AF293, DpdcA, DpdcB, DpdcC, DalcC,

and the ectopic complemented control strains, pdcA recon

(DpdcA::A. parasiticus pyrG + pdcA) and alcC recon (DalcC::A.

parasiticus pyrG + alcC). All strains were routinely grown in glucose

minimal medium (GMM) with appropriate supplements as

previously described [77] at 37uC. To prepare solid media 1.5%

agar was added before autoclaving.

Strain generation
Generation of the pdc null mutants and the alcC null mutant in

A. fumigatus strain CEA17 were accomplished by replacing the

ORF of the target genes with A. parasiticus pyrG. The replacement

construct was generated by cloning a sequence homologous to the

gene locus into plasmid pJW24 (donated by Dr. Nancy Keller,

University of Wisconsin – Madison). Homologous sequences, each

,1 kb in length and 59 and 39 of the gene coding sequence, were
cloned to flank A. parasiticus pyrG in pJW24. The resulting plasmids,

pPDCAKO, pPDCBKO, pPDCCKO, and pALCCKO, were

used as templates to amplify a disruption construct (3.6–4.7 kb) for

use in fungal transformation.

To complement the DpdcA and DalcC strains the genes were

amplified using genomic DNA of CEA10 as template and primers

,1 kb 59 and ,500 bp 39 of the gene coding sequence. The PCR
products were cloned in front of the hygromycin B resistance gene

into plasmid pBC-hygro (Silar 1995, obtained from the Fungal

Genetics Stock Center, Dr. Kevin McCluskey) using SpeI and

NotI restriction sites [78,79]. The resulting plasmids, pBC-hyrgo-

PDCA and pBC-hygro-ALCC, were used as template to amplify

complementation constructs (,7.4 kb), which were used in a

fungal transformation and selection was for colonies able to grow

on media containing 150 mg/ml hygromycin B. The primers

utilized in vector construction are presented in Table S1.

Standard fungal protoplast transformation was used to generate

mutant and reconstituted strains as previously described [31].

Transformants were initially screened by PCR to identify potential

homologous recombination events at the gene locus using primers

designed to amplify only the mutated gene locus (Table S1). Single

conidia of each transformant were prepared and screened by PCR

to eliminate the chance of heterokaryons. Homologous recombi-

nation was confirmed by Southern analysis with the digoxigenin

labeling system (Roche Molecular Biochemicals, Mannheim,

Germany) as previously described [80].

Hypoxic cultivation
Strains were grown on or in GMM at 37uC. Normoxic

conditions were considered general atmospheric levels within the

lab (,21%). For hypoxic conditions two different devices were

used, a Biospherix C-Chamber with O2 levels controlled by a

PRO-Ox controller and CO2 levels controlled with PRO-CO2

controller (Biospherix, Lacona, NY, USA) and an INVIVO2 400

Hypoxia Workstation (Ruskinn Technology Limited, Bridgend,

UK). For these experiments, the O2 set point was 1% and the CO2

set point was 5%. Oxygen levels were maintained with 94% N2

and a gas regulator. Colony growth was quantified as previously

described [31].
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Pyruvate decarboxylase activity assay
For normoxic samples, strains were grown in GMM with 1x106

conidia/ml, 300 rpm, at 37uC for 16 hrs. 25 ml of the normoxic

culture were mixed with 15 ml of fresh GMM and incubated for

an additional 24 hrs under hypoxic conditions (130 rpm, 37uC).
Mycelia of normoxic and hypoxic cultures were harvested, rinsed

twice with distilled water, transferred to 2 ml screw cap tubes with

0.1 mm glass beats, immediately frozen in liquid nitrogen and

weighed. After adding 1 ml of extraction buffer (100 mM

KH2PO4, 2 mM MgCl2, and 1 mM DTT), the samples were

twice placed in a mini beadbeater (Biospec products, Bartlesville,

OK, USA) for 30 sec with 5 min on ice in between. After

centrifugation (13,000 rpm, 20 min, 4uC) the cell free extracts

were transferred to new, cold reaction tubes and kept on ice until

use. The protein concentration of the cell free extracts was defined

by using the Coomassie Plus – The Better Bradford Assay Kit

(Pierce, Rockford, IL, USA) following the method recommended

by supplier.

Enzyme activity was determined using a method adapted from

Lockington et al. 1997 [61]. The assay volume was adjusted to

200 ml for use in 96-well plates. 25 ml cell free extract (sample and

control) or 25 ml extraction buffer (blank) were added to wells in

duplicates and then 175 ml of the sample mix (50 mM histidine-

HCl, 0.35 mM MgCl2, 0.35 mM TPP, 67 mM pyruvate, 6 U

yeast ADH, 0.5 mM fresh NADH, added up with water to 175 ml)
were added to the samples and the blank, and 175 ml of the control
mix (sample mix without pyruvate) were added to the cell free

extract as controls. The rate of decrease in absorbance at 340 nm

was followed in a Spectramax Plus (Molecular Devices, Sunnyvale,

CA, USA), measuring every 10 sec, at 37uC over 5 min after

mixing for 1 sec.

The pyruvate decarboxylase activity was calculated as described

by http://cmbe.engr.uga.edu/assays/pyruvatedecarboxylase.pdf.

The calculation had to be adjusted to the reduced length of the

light path in the 96-well plate by multiplying the molar extinction

coefficient for NADH (6.22 L/mmol for a path length of 1 cm)

with 0.788. Experiments were done in three separate biological

replicates and the mean and standard error calculated with Prism

software version 5.0b (GraphPad Software Inc.).

Ethanol detection
To detect ethanol in the culture supernatant of in vitro fungal

cultures, high performance liquid chromatography (HPLC) was

performed using a Shimadzu system (Kyoto, Japan), consisting of a

solvent delivery module, a low pressure gradient pump unit, a

degasser, an autoinjector, a column oven and a refractive index.

The column used for the analytical separation was the Aminex

Fermentation Monitoring column (150 mm67.8 mm, BioRad,

Hercules, CA). The mobile phase consisted of 0.001 M H2SO4,

the flow rate was 0.8 ml/min, the column temperature was 60uC,
and the sample injection volume was 25 ml. As external standard
ethanol solutions with known concentration (2, 1, 0.5, 0.1, 0.05,

0.01 (v/v) %) were used in every experiment and a standard curve

was generated and used to determine concentration. Data was

normalized to mycelial dry weight.

In addition, a Shimadzu (Kyoto, Japan) QP2010 GC/MS with

an electron ionization (EI) source was used for metabolite

separation and identification. A 30 m 0.25 mm id 0.25 um film

thickness, RTX-5MS (5% Diphenyl - 95% dimethyl polysiloxane)

fused silica capillary column from Restek (Bellefonte, PA) was used

for all separations. The GC column was temperature programmed

as follows: 5 min isothermal at 100uC, then raised at 20uC/minute

to 120uC, and held for 30 seconds. Helium gas served as the

carrier gas at a flow rate of 0.73 ml/min. Split injections were

performed at a 1 to 20 ratio. The injection port was held constant

at 200uC. The interface temperature was set at 200uC and the ion

source at 200uC. EI fragmentation was performed scanning from

40 to 400 at 0.2 seconds/scan. The instrument was calibrated with

Perfluorotributylamine (PFTBA) prior to analysis. Standards of

ethanol were analyzed for rention time and a response curve using

a 3 point serial dilution. These response curves were used to

calculate detected compounds in each sample. One micro-liter of

each sample and standard was used for analysis. Identification was

matched to NIST 21 and NIST 107 libraries commercially

purchased as well as secondary confirmation with standards,

previously mention, purchased from Sigma (Saint Louis, MO).

For the culture samples, strains were grown as described above

in the pyruvate decarboxylase assay description. After 24/48/72/

96 hrs 2 ml of the culture supernatant were transferred into sterile

reaction tubes on ice, and filtered through a Millipore membrane

filter (0.45 mm, Millipore, Yonezawa, Japan) into HPLC vials (Sun

Sri, Rockwood, TN). Experiments were done in three biological

replications.

Isolation of total RNA and transcriptional profiling
Conidia from freshly harvested GMM plates were inoculated in

5 ml GMM in a 6-well plate to a concentration of 16107 conidia/

ml. Cultures were grown aerobically for 24 h. For normoxic

growth, cultures were maintained in atmospheric conditions. For

hypoxic growth, cultures were placed in the hypoxic chamber for

24 h. Fungal mats were flash frozen in liquid nitrogen and

lyophilized prior to disruption using a bead beater. To assess

fungal gene expression in vivo, the triamcinolone immunosuppres-

sion model was utilized as described below. Mice were sacrificed

on day 3 and 4 post inoculation, and lungs were harvested and

immediately frozen in liquid nitrogen. Samples were freeze-dried

and homogenized with glass beads on a Mini-Beadbeater (BioSpec

Products, Inc., Bartlesville, OK, USA). Total RNA was extracted

using TRIsure Reagent (Bioline, Tauton, MA, USA) according to

the manufacturer’s instructions. After treatment with DNase I

(Ambion, Austin, TX, USA), 500 ng of total RNA were used to

generate first-strand cDNA with the reverse transcriptase kit

(Qiagen, Hilden, Germany). Real-time PCR assays were per-

formed with 20 ml reaction volumes that contained 1x iQ SYBR

green master mix (Biorad, Hercules, CA, USA), 0.2 mM of each

primer (Table S1), and 2 ml of a 1:5 dilution of the cDNA using a

Bio-Rad MyiQ single Color real-time PCR detection System with

iCycler. No-RT controls for each primer set were also assayed to

confirm that no DNA contamination was present, respectively.

Real-time PCRs were performed in triplicates, and the expression

levels of all genes of interest were normalized to ß–tubulin levels or

tefA (translation elongation factor alpha subunit) levels for in vivo
experiments. The thermal cycling parameters consisted of a 3-min

Taq polymerase hot start at 95uC, followed by template

amplification of 40 cycles of 95uC for 10 sec, 58uC for 30 sec.

Fluorescence was measured during the annealing/extension step

(58uC) and a disassociation analysis (melting curve) was performed

to confirm that a single amplified product was present. Following

amplification, data was analyzed with the Bio-Rad iQ5 2.0

Standard Edition Optical System Software. The DDCt method of

analysis was used to determine fold changes of gene expression in

the mutants relative to the wild type CEA10 strain.

Murine models of invasive pulmonary aspergillosis
The virulence of the A. fumigatus strains was tested in three

immunologically distinct murine models of invasive pulmonary

aspergillosis. All animals were housed five per cage in an

environment with HEPA filtered air, autoclaved food at libitum,

Hypoxia and Aspergillosis Pathogenesis

PLoS Pathogens | www.plospathogens.org 16 July 2011 | Volume 7 | Issue 7 | e1002145

Manuscripts

61



and prophylactic treatment with antibiotic water containing

clindamycin (150 mg/ml), vancomycin (1 mg/L) and gentamicin

(100 mg/ml). CD1 male and female mice, 6–8 weeks old were

used in all experiments for the triamcinolone and chemother-

apeuatc murine models. Mice were obtained from Charles River

Laboratories (Raleigh, NC) or from a breeding colony located in

the Animal Resources Center (ARC) at Montana State University.

For the Chronic Granulomatous Disease murine model, 6–8 week

old mice with a null allele corresponding to the X-linked gp91phox

component of NADPH oxidase (B6.129S6-Cybbtm1Din) were bred

in the ARC at Montana State University [45].

For the triamcinolone (corticosteroid) model mice were

immunosuppressed with a single dose of Kenalog (Bristol-Myers

Squibb Company, Princeton, NJ, USA) injected subcutaneously

(s.c.) at 40 mg/kg 1 day prior to inoculation. For the chemother-

apy model mice were immunosuppressed with intraperitoneal (i.p.)

injections of cyclophosphamide (Baxter Healthcare Corporation,

Deerfield, IL, USA) at 175 mg/kg 2 days prior to inoculation and

with Kenalog injected subcutaneously (s.c.) at 40 mg/kg 1 day

prior to inoculation. On day 3 post-inoculation (p.i.), repeat

injections were given with cyclophosphamide (150 mg/kg i.p.) and

on day 6 p.i. with Kenalog (40 mg/kg s.c.).

For the detection of hypoxia in vivo, 15 unanesthetized mice

inhaled 40 ml of an aerosolized suspension of 16109 conidia/ml

of A. fumigatus strain CEA10. 6 uninfected control mice inhaled

40 ml of aerosolized 0.01% Tween 80 in a Hinners inhalational

chamber for 45 min as previously described [81]. One A. fumigatus
infected mouse was sacrificed immediately after infection, lungs

were removed, homogenized and the number of CFU was

determined (,16104 conidia per mouse). After hypoxyprobe

injection (see below), mice were sacrificed at set time points after A.
fumigatus challenge and lungs were processed for hypoxyprobe

immunohistochemistry.

For survival studies and histopathology, 10 mice per A. fumigatus
strain (CEA10, DpdcA, pdcA recon., DalcC) either inhaled 40 ml of

an aerosolized suspensions of 1x109 conidia/ml (control mice

inhaled 40 ml of aerosolized 0.01% Tween 80) or the animals

were inoculated intranasally with 16106 conidia in 25 ml and
monitored twice a day. Infection inoculum was prepared by

growing the A. fumigatus isolates on GMM agar plates at 37uC for 3

days. Conidia were harvested by washing the plate surface with

sterile phosphate-buffered saline 0.01% Tween 80. The resultant

conidial suspension was adjusted to the desired concentration by

hemacytometer count.

Mice were observed for 14 days after A. fumigatus challenge. Any
animals showing distress were immediately sacrificed and recorded

as deaths within 24 hrs. No mock infected animals perished in

either murine model in all experiments. Lungs from all mice

sacrificed on different time points during the experiment were

removed for fungal burden assessment, infiltrate and cytokine

analysis as well as histopathology. Animal experiments were all

repeated in duplicate.

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

animal experimental protocol was approved by the Institutional

Animal Care and Use Committee (IACUC) at Montana State

University (Federal-Wide Assurance Number: A3637-01).

Histopathology
For histopathology, CD1 mice were inoculated as described

above, and sacrificed at set time points after A. fumigatus challenge.

When mice were sacrificed, lungs were removed on that day. Lung

tissue was fixed in 10% phosphate-buffered formalin, embedded in

paraffin, sectioned at 5 mm, and stained with hematoxylin and

eosin (H&E) or Gomori methenamine silver (GMS) by using

standard histological techniques. Microscopic examinations were

performed on a Nikon Eclipse 80i microscope and imaging system

(Nikon Instruments Inc., Melville, NY, USA). A total of 3 mice

were examined at each respective time point.

1H-NMR metabolite profiling of broncheoalveolar lavage
fluid
The chemotherapeutic murine model of IPA was utilized in

these experiments. Mice were inoculated in the Hinner’s chamber

with either 0.01% Tween 80 or A. fumigatus wild type strain AF293.

A total of 10 mice were used in each treatment group. On day +3
post infection, BALs were performed with each BAL a final total

volume of ,1.5 ml. Deuterated water was added to 600 mL of

each BAL to provide a field frequency lock and an internal

standard of 0.03% 3-(Trimethylsilyl)-Propionic acid-D4 sodium

salt (TSP) was added to each sample to provide a chemical shift

reference at 0 ppm. For 1H-NMR, a one-pulse sequence was used

with a 2-second pre-saturation pulse and 7-second repetition time.

The resulting one-dimensional spectra were compared using

MestReC NMR analysis software (Mestrelab Research) to monitor

the presence and absence of identifiable metabolites.

Hypoxyprobe – treatment, staining and
immunohistological identification
Mice were intravenously injected with hypoxyprobe at a dose of

60 mg/kg weight of the mouse (Hypoxyprobe Inc., Burlington,

MA, USA). After 60 to 90 min, mice were sacrificed by

pentobarbital anesthesia (100 mg/g body weight) followed by

exsanguination. The left lung of each mouse was filled with OCT

(frozen tissue matrix) and after embedding in OCT immediately

frozen in liquid nitrogen. The lungs were cryosectioned into 5 mm
sections and stored at 280uC until stained. After thawing, the

sections are fixed in cold acetone (4uC) for 15 min, followed by

washing the sections (PBS, 265 min) and blocking with normal

serum block (NSB: PBS +10% goat serum +1.25% mouse serum)

at RT. After 30 min, sections were washed and incubated

overnight at 4uC with the mouse monoclonal antibody FITC-

Mab1 (Hypoxyprobe-1 Plus Kit, Hypoxyprobe Inc., Burlington,

MA, USA) diluted 1:400 in NSB and with a rabbit polyclonal

antibody to Aspergillus (Abcam Inc., Cambridge, MA, USA).

Aspergillus isotype control slides were incubated only with FITC-

Mab1 and hypoxyprobe isotype control slides only with the

Aspergillus antibody. Isotype controls are a measure of unspecific

staining of the secondary antibody. After another wash, sections

were incubated for 60 min at room temperature with DyLight

594-conjugated mouse Anti-FITC (Jackson ImmunoResearch

Laboratories, West Grove, PA) and AlexaFluor488-conjugated

goat Anti-rabbit (Invitrogen, Carlsbad, CA, USA) diluted 1:400.

After another washing step, prolong Gold antifade reagent with

DAPI (Invitrogen, Carlsbad, CA, USA) was added to each section.

Microscopic examinations were performed on a Zeiss Axioscope

2-plus microscope and imaging system (Zeiss, Jena, Germany). For

each time point, a total of 2 to 4 mice were examined and

experiments were repeated in triplicate.

Evaluation of pulmonary infiltrate by flow cytometry and
cell differentiation
Broncheoalveolar lavages (BALs) were performed by intratra-

cheal instillation and extraction of 3 ml 1x PBS. Total lung lavage
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cell numbers were determined by hemacytometer count, spun

onto glass slides, and stained with Diff-Quick (Fisher Scientific,

Pittsburgh, PA, USA) for differential counting. For flow cytometry,

BAL cells were centrifuged and resuspended in phosphate-

buffered saline with 2% calf serum and an anti-mouse Fc receptor

antibody (Trudeau Institute, Saranac Lake, NY, USA) to a

concentration of approximately 107 cells/ml. The cells were then

stained with a mixture of fluorophore-conjugated antibodies

against mouse GR-1 (APC-Cy7) (BD Pharmingen, San Diego,

CA, USA), F4/80 (PE-Cy7) (eBioscience, San Diego, CA, USA),

CD11b (AlexaFluor700) (BioLegend, San Diego, CA, USA), and

CD11c (APC) (purified from the hamster cell line N418 (ATCC,

Manassas, VA, USA) and fluorophore-conjugated using the

AlexaFluor633 protein labeling kit (Invitrogen, Carlsbad, CA,

USA)) and then examined on a BD LSR flow cytometer (BD

Biosciences, San Jose, CA, USA). Analysis of cytometry data was

performed with FlowJo software Version 8.8.7 DMG and numbers

of relevant cell types were determined by combining flow

cytometry data (percentage of a given cell type) with BAL cell

counts. Data presented are the mean and standard error of N= 5

mice at each time point.

Detection of cytokines, chemokines and other signal
proteins in BAL fluids
The BD Cytometric Bead Array Mouse Inflammation Kit (BD

Biosciences, San Jose, CA, USA) was used according to the

manufacturers instructions to quantitatively measure IL-6, IL-10,

MCP-1, IFN-c, TNF-a, and IL-12p70 protein levels in mouse

BAL fluids utilizing a FACSCalibur flow cytometer (Becton

Dickinson, Mountain View, CA, USA). IL-17, MIP-2, KC, and

VEGF levels in mouse BAL samples were determined using the

mouse cytokine/chemokine Milliplex Map Kit (Millipore Corpo-

ration, Billerica, MA, USA) according to the manufacturers

instructions and then examined and analyzed on the BioPlex 200

System (Bio-Rad, Hercules, CA, USA). Data presented are the

mean and standard error of N= 5 mice at each time point.

Determination of LDH and Albumin levels in BAL fluids
In vivo lung tissue damage was determined by measurement of

LDH and Albumin levels in mouse BAL samples by using a LDH

assay (CytoTox 96 Non-Radioactive Cytotoxicity Assay, Promega,

Madison, WI, USA) and an albumin assay (Albumin (BCG)

Reagent Set, Eagle Diagnostics, Cedar Hill, TX, USA) according

to the manufacturers’ instructions.

Determination of in vivo fungal burden
To assess fungal burden in lungs, the triamcinolone immuno-

suppression model was utilized as described above. Mice were

sacrificed on day 3 and 4 post inoculation, and lungs were

harvested and immediately frozen in liquid nitrogen. Samples

were freeze-dried, homogenized with glass beads on a Mini-

Beadbeater (BioSpec Products, Inc., Bartlesville, OK, USA), and

DNA extracted with the E.N.Z.A. fungal DNA kit (Omega Bio-

Tek, Norcross, GA, USA). Quantitative PCR was performed as

described previously [82].

In vitro cytokine response
Bone marrow cells were eluted from the tibias and femurs of 8–

12 week old C57BL/6 mice, lysed of red blood cells, and cultured

in RP20 (RPMI, 20% FCS, 5 mM HEPES buffer, 1.1 mM L-

glutamine, 0.5 U/ml penicillin, and 50 mg/ml streptomycin)

supplemented with 30% (v/v) L929 cell supernatant (source of

M-CSF). Bone marrow cells were plated in a volume of 20 ml at a

density of 2.56106 cells/ml in 10 ml Petri dishes. The medium

was exchanged on day 3. Adherent bone marrow-derived

macrophages (BMMØs) were harvested on day 6. Cells were

washed and plated in 0.2 ml RP10 at a density of 56105 cells/ml

in 96 well plates and stimulated for 18 hours with conidia (56105

per well), UV irradiated germlings (105/well), or UV irradiated

hyphae (26104/well) prepared as described before [83]. After

18 hours co-culture supernatants were collected for ELISA.

Commercially available ELISA kits for TNF (BD Biosciences,

San Jose, CA, USA) and MIP-2 (R&D Systems, Minneapolis, MN,

USA) were used according to the manufacturers’ instructions.

Supporting Information

Figure S1 Representative 400 MHz 1H-NMR spectra of

broncheoalveolar lavage (BAL) fluid from a mouse with a day

+3 A. fumigatus pulmonary infection (top spectra) or an uninfected

mouse (bottom spectra). Known metabolites are labeled on the

infected mouse spectra. Substantial amounts of ethanol are seen in

the infected mouse samples.

(TIF)

Figure S2 Hypoxic microenvironments at the site of A. fumigatus
infection. Single color channel pictures were merged to show

overlapping localization of fungal tissue (green), hypoxia (red), and

inflammation (DAPI stained nuclei).

(TIF)

Figure S3 Representative histopathology of X-CGD mice

inoculated with wild type (CEA10) or DalcC conidia using a

Hinner’s inhalational chamber. Mice were euthanized on

indicated days p.i., lungs removed, fixed, and stained with

hematoxylin and eosin (H&E) or Gommori’s methenamine silver

(GMS) stain. Lung histopathology showed strongly reduced fungal

growth of both strains with simultaneous massive inflammation.

No difference could be observed between infection groups.

Bar = 100 mm.

(TIF)

Figure S4 Flow cytometry Dot plot for F4/80 and CD11c.

(TIF)

Figure S5 Flow cytometry Dot plot for GR-1 and CD11b.

(TIF)

Table S1 Nucleotide sequences of primers used for deletion and

complementation strain constructions as well as real-time PCR.

(XLS)
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 2 

Abstract 1 

We previously observed that hypoxia is an important component of host 2 

microenvironments during pulmonary fungal infections. However, mechanisms of 3 

fungal growth in these in vivo hypoxic conditions are poorly understood. Here, we 4 

report that oxidative respiration is active in hypoxia (1% oxygen) and critical for fungal 5 

pathogenesis. An Aspergillus fumigatus alternative oxidase (aoxA) null mutant 6 

displays increases in total cellular protein damage by oxidation, susceptibility to 7 

reactive oxygen species, and killing by macrophages but no loss in virulence. In 8 

contrast, a cytochrome C (cycA) mutant was found to be significantly impaired in 9 

germination, and growth in normoxia and hypoxia and displayed attenuated 10 

virulence. Intriguingly, the loss of cycA results in increased levels of AoxA activity, 11 

which results in increased resistance to oxidative stress, macrophage killing, and 12 

persistence in murine lungs. Our results demonstrate a previously unidentified role 13 

for fungal mitochondrial respiration in the pathogenesis of Aspergillosis. 14 

15 
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 3 

Introduction 1 

Aspergillus fumigatus is commonly found in soil and organic debris where it 2 

plays an essential role in carbon and nitrogen recycling (Millner et al., 1977, Tekaia & 3 

Latge, 2005, Rhodes, 2006). In addition to its role as an environmental composter, A. 4 

fumigatus is considered an important pathogen of avian species (Beernaert et al., 5 

2010). Over the last three decades this ubiquitous mold has become one of the main 6 

causes of invasive fungal infections in humans with immunodeficiency (Singh & 7 

Paterson, 2005, Tekaia & Latge, 2005). 8 

To colonize, infect, and invade a host to cause disease A. fumigatus has to 9 

adapt its metabolism to generate energy in diverse host microenvironments. Most 10 

eukaryotic organisms utilize aerobic or oxidative respiration for energy generation, 11 

which is the most efficient pathway to produce energy in form of adenosine 12 

triphosphate (ATP). In the mitochondrial respiratory chain, electrons are transported 13 

over several complexes to the final electron acceptor, molecular oxygen, which is 14 

coupled to proton translocation (Figure S1). The resultant proton gradient over the 15 

inner mitochondrial membrane is used for ATP synthesis. 16 

The conventional respiratory chain consists of 4 main large protein complexes. 17 

Complex I (NADH:ubiquinone oxidoreductase) transfers electrons from NADH to 18 

ubiquinone coupled with the translocation of protons across the inner mitochondrial 19 

membrane (Figure S1) (Joseph-Horne et al., 2001). Electrons from succinate, which 20 

is produced by the TCA cycle, reach ubiquinone via Complex II (Succinate-21 

Ubiquinone oxidoreductase) and this step is not coupled with proton transfer over the 22 

membrane (Figure S1). From the ubiquinone pool electrons are transferred through 23 

complex III (ubiquinol:cytochrome C oxidoreductase), cytochrome C, and complex IV 24 

(cytochrome C oxidase) to oxygen, resulting in the generation of water. Protons are 25 
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 4 

pumped over the inner mitochondrial membrane by both, complex III and IV, during 1 

electron transfer and the resulting proton gradient is used by complex V (ATP 2 

synthase) to generate ATP (Figure S1) (Joseph-Horne et al., 2001). In addition to this 3 

linear respiratory chain, it has been observed that several plants and fungi possess a 4 

branched electron transport chain including alternative NADH:ubiquinone 5 

oxidoreductases, that act in parallel with complex I, and an alternative oxidase 6 

catalyzing the electron transfer from reduced ubiquinone directly to oxygen, 7 

bypassing the main cytochrome respiratory pathway (Figure S1) (Johnson et al., 8 

2003, Kirimura et al., 1999, Moore & Siedow, 1991, Sakajo et al., 1993, Akhter et al., 9 

2003, Martins et al., 2011, Avila-Adame & Koller, 2002, Carneiro et al., 2007, Joseph-10 

Horne et al., 2001). 11 

For A. fumigatus the presence of a functional conventional respiratory chain, 12 

containing complex I to IV, has been suggested (Tudella et al., 2004). In addition, a 13 

gene encoding a functional alternative oxidase was identified in A. fumigatus and 14 

evidence for an alternative NADH:ubiquinone oxidoreductase has been found 15 

(Tudella et al., 2004, Magnani et al., 2007, Magnani et al., 2008). However, the role 16 

of the alternative oxidase and mitochondrial respiratory chain in A. fumigatus 17 

virulence has not been explored. 18 

In a recent study we observed that A. fumigatus is exposed to 19 

microenvironments with limited oxygen levels (hypoxia) in vivo during invasive 20 

pulmonary aspergillosis (Grahl et al., 2011). We found that A. fumigatus adapts its 21 

metabolism to hypoxic environments by activating ethanol (EtOH) fermentation. 22 

However, loss of EtOH fermentation had no effect on growth in hypoxic conditions, 23 

and furthermore, A. fumigatus showed growth on non-fermentable carbon sources 24 

suggesting that the mold is able to generate energy by respiration in hypoxia (Grahl 25 
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 5 

et al., 2011). In support of these observations, a recent A. fumigatus proteomics 1 

study showed that glycolysis, TCA cycle, and respiratory related proteins were 2 

increased in response to hypoxic growth conditions (Vodisch et al., 2011). 3 

Furthermore, for Saccharomyces cerevisiae it has been suggested that the electron 4 

transport chain (ETC) is involved in oxygen sensing, hypoxic signaling, and hypoxic 5 

gene induction (Guzy et al., 2007, Poyton et al., 2009a, Poyton et al., 2009b, Kwast 6 

et al., 1999). In the human fungal pathogen Cryptococcus neoformans, an 7 

Agrobacterium tumefaciens mediated mutagenesis forward genetics approach 8 

identified a key role for fungal mitochondria in hypoxia adaptation (Ingavale et al., 9 

2008). However, it is unclear if loss of the identified genes attenuates virulence of this 10 

important pathogen. Altogether, these findings indicate that oxidative respiration 11 

might play an important role for adaptation to oxygen limiting conditions and 12 

potentially the virulence of A. fumigatus and other human fungal pathogens. 13 

In this study we observe that the main mitochondrial respiratory pathway via 14 

cytochrome C is important for A. fumigatus germination and growth in normoxia and 15 

hypoxia. We also observe that the conventional ETC and the alternative oxidase are 16 

involved in susceptibility and resistance to oxidative stress and macrophage killing 17 

respectively. Importantly, we show for the first time that the respiration chain plays an 18 

important role in A. fumigatus pathogenesis. 19 

20 
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 6 

Results 1 

A functional mitochondrial respiration chain with increased alternative oxidase 2 

activity is present in A. fumigatus under hypoxic conditions 3 

In order to answer the question whether A. fumigatus is able to utilize oxidative 4 

respiration to generate energy under hypoxic conditions, we performed an oxygen 5 

consumption assay with wild-type A. fumigatus grown in normoxia and hypoxia. 6 

Oxygen uptake confirmed the presence of a functional conventional respiration chain, 7 

and suggested active forms of an external alternative NADH:ubiquinone 8 

oxidoreductase and an alternative oxidase (AOX) (Figure 1). Expectedly, the overall 9 

oxygen consumption is lower in hypoxia. However, the respiration chain is less 10 

susceptible to complex IV inhibitor KCN under hypoxic conditions with a decrease of 11 

oxygen consumption of only 37.3% compared to 65.7% in normoxia. In addition, 4-12 

times as much SHAM had to be added to A. fumigatus in hypoxic conditions to reach 13 

the same oxygen consumption rate as in normoxia indicating increased activity of 14 

AOX in hypoxia (Figure 1). Altogether, these results show that a functional 15 

mitochondrial ETC with increased AOX activity is present under hypoxic growth 16 

conditions. 17 

Given that mitochondria and the ETC are associated with oxygen sensing, 18 

hypoxic signaling, and hypoxia adaptation in other organisms (Guzy et al., 2007, 19 

Poyton et al., 2009a, Poyton et al., 2009b, Ingavale et al., 2008), we hypothesized 20 

that respiration and especially the AOX might play an important role for A. fumigatus 21 

adaptation to hypoxic environments that occur in vivo during fungal pathogenesis. 22 

 23 

 24 

 25 
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 7 

Generation of alternative oxidase and cytochrome C null mutant strains 1 

To test our hypothesis we generated null mutants of the AOX (AoxA) and 2 

cytochrome C (CycA) by replacement of the coding sequence in A. fumigatus strain 3 

CEA17 with the auxotrophic marker pyrG from A. parasiticus (Figure S2). To be able 4 

to attribute all resulting phenotypes specifically to the absence of aoxA or cycA we 5 

ectopically re-introduced the respective wild type (WT) alleles into ΔaoxA and ΔcycA 6 

(resulting in aoxA recon and cycA recon). Successful gene replacement and 7 

reconstitution were verified by PCR analyses (data not shown) and Southern blot 8 

(Figure S2). 9 

Next, we examined mRNA abundance changes of cycA and aoxA in the null 10 

mutants compared to the WT over a time course of hypoxia exposure to determine if 11 

the loss of either gene impacts the expression of the other. In WT and ΔaoxA, cycA 12 

mRNA abundance increased as an early response to hypoxia, while cycA transcript 13 

decreased after 4 and 12h (Figure S3A). Overall the normalized fold expression of 14 

cycA is the same in WT and ΔaoxA indicating that loss of AOX might not have an 15 

impact on conventional respiration. However in ΔcycA, the normalized fold 16 

expression of aoxA is significantly increased compared to the WT, suggesting an 17 

important role for the AOX in this null mutant (Figure S3B). 18 

In a previous A. nidulans study it was found that a CycA mutant produces high 19 

levels of EtOH in the presence of a fermentable carbon source (Bradshaw et al., 20 

2001). To test if A. fumigatus also switches to EtOH fermentation in response to a 21 

blockage in traditional respiration, we examined the mRNA abundance of the 22 

pyruvate decarboxylase PdcA and the alcohol dehydrogenase AlcC. Previously, both 23 

have been shown to be required for EtOH fermentation in A. fumigatus under hypoxic 24 

conditions (Grahl et al., 2011). The WT and Δ aoxA showed a strong induction of 25 
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 8 

pdcA and alcC transcript especially after 2h of hypoxia exposure. Δ cycA showed 1 

mostly WT levels of normalized fold expression for both transcripts, however, this 2 

mutant lacks the strong spike in mRNA abundance at the 2h time point (Figure S3 A 3 

and B). In contrast to the WT and cycA recon no increase in PDC activity and no 4 

EtOH production could be detected for ΔcycA in response to hypoxic conditions (data 5 

not shown). Altogether, these results suggest that A. fumigatus does not switch to 6 

EtOH fermentation like A. nidulans after loss of cytochrome C function. 7 

To verify that loss of aoxA and cycA resulted in functional AOX and CycA 8 

mutants, we examined the oxygen consumption of both strains after treatment with 9 

different inhibitors (Figure 2). As expected for an AOX mutant, ΔaoxA showed loss of 10 

cyanide resistant respiration compared to the WT in normoxia and hypoxia (Figure 2 11 

and S4). In contrast, the oxygen consumption of Δ cycA is not impaired by the 12 

addition of KCN or Antimycin A, but by the AOX inhibitor SHAM (Figure 2 and S5). In 13 

addition, inhibition of the oxygen uptake by SHAM is decreased in Δ cycA in 14 

comparison to the WT and reconstituted strain, which, together with the mRNA 15 

abundance data, strongly suggest that more AOX activity is present in the absence of 16 

CycA. 17 

 18 

Loss of the conventional ETC results in delayed germination and strongly 19 

reduced hyphal growth 20 

Next, we examined the role of cycA and aoxA in germination and hyphal 21 

growth of A. fumigatus. ΔcycA showed a delay in germination as evidenced by a 50% 22 

germination rate at 10h of incubation, while the corresponding WT and reconstituted 23 

strain reach 50% germination after 5-6h. In addition, for WT and cycA recon 24 

germination occurs over a time period of 3h compared to 4.5h for the mutant. In 25 
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 9 

contrast, no change in germination rate was found for ΔaoxA. Radial growth was not 1 

impaired in the aoxA mutant, while loss of cycA resulted in reduced growth on the 2 

fermentable carbon source glucose (after 96h WT 7.87 ± 0.12 cm; ΔcycA 3.70 ± 0.26 3 

cm) and growth was nearly abandoned on the non-fermentable carbon sources 4 

glycerol and EtOH (data not shown). Hypoxic growth conditions further reduced 5 

growth of Δ cycA (after 96h WT 7.53 ± 0.06; ΔcycA 2.37 ± 0.15 cm). Overall, our 6 

results show that conventional oxidative respiration is important for WT rates of 7 

germination and hyphal growth of A. fumigatus in both normoxic and hypoxic 8 

conditions. 9 

 10 

Alternative oxidase is critical for resistance to oxidative stress and 11 

macrophage killing 12 

As it has been previously reported that AOX plays a role in resistance to 13 

oxidative stress (Akhter et al., 2003, Avila-Adame & Koller, 2002, Magnani et al., 14 

2008, Martins et al., 2011), we determined if loss of AoxA results in higher 15 

intracellular levels of reactive oxygen species (ROS). Proteins are one of the major 16 

targets of oxygen free radicals and can be used as an indirect measurement of 17 

intracellular ROS. Utilizing the OxyBlot protein oxidation detection method we found 18 

that exposure to hypoxia increased levels of oxidized proteins in A. fumigatus and 19 

that loss of AoxA function results in even further increases in protein oxidation 20 

(Figure 3). This result suggests that intracellular ROS levels are elevated in hypoxia 21 

and by loss of AoxA. In further support of these findings, we found that ΔaoxA is 22 

significantly more susceptible to external ROS (Figure 4A). We also examined the 23 

ability of macrophage-like cells to kill Δ aoxA conidia (Figure 4B). As presented in 24 

figure 4B, a significant increase in conidia killing was observed between the WT and 25 
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ΔaoxA. We conclude that AOX is involved in resistance to oxidative stress and 1 

macrophage killing of A. fumigatus. 2 

 3 

ΔcycA is less susceptible to ROS and macrophage killing 4 

As oxygen consumption assays and real-time PCR results suggest an 5 

increase in AoxA activity in ΔcycA, we next examined the resistance of this mutant to 6 

ROS and killing by macrophages. Interestingly, ΔcycA is significantly more resistant 7 

to ROS compared to the WT and reconstituted strain (Figure 4C). For the 8 

macrophage-killing assay, we performed a 5 and 9h co-incubation to account for the 9 

germination defect of ΔcycA (see Figure 4 D and E). After 5h of co-incubation, over 10 

80% of Δ cycA conidia survived compared to less than 20% for the WT and 11 

reconstituted strain. After a 9h co-incubation the survival of ΔcycA conidia was still 12 

more than 80% and significantly higher than WT and cycA recon (Figure 4E). Taken 13 

together, these results suggest that loss of cycA results in increased resistance to 14 

macrophage killing of A. fumigatus. 15 

 16 

Mitochondrial ETC via cytochrome C is important for fungal virulence 17 

Next, we sought to determine whether CycA and AoxA were required for A. 18 

fumigatus virulence. To answer this question we utilized three immunologically 19 

distinct murine models of invasive pulmonary aspergillosis (IPA) as previously 20 

described (Grahl et al. 2011). Despite the increased susceptibility to oxidative stress 21 

and macrophage killing, Δ aoxA showed no difference in virulence to the WT and 22 

reconstituted strain (data not shown). Given the different, yet severe, forms of 23 

immunosuppression in murine models of IPA, this result is not surprising. In contrast, 24 

the loss of CycA resulted in a significant attenuation in virulence in a Galleria 25 
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mellonella insect model (data not shown) and all three murine IPA models (Figure 5). 1 

Given the in vitro growth attenuation of Δ cycA in both normoxia and hypoxia, we 2 

anticipated that the virulence attenuation was due to a severe reduction in in vivo 3 

fungal growth. However, surprisingly, histopathology revealed significant hyphal 4 

growth of ΔcycA in the murine lung (Figure 6A). Consistent with the germination 5 

defect seen in vitro, ΔcycA exhibits delayed growth in vivo on day 2 post inoculation 6 

(p.i.). By day 4, however, the mutant grows extended hyphae comparable to the WT 7 

(Figure 6A). Histology of WT inoculated corticosteroid treated mice, show expected 8 

fungal growth, strong inflammation, and recruitment of immune cells, while lung 9 

histopathology of mice inoculated with ΔcycA show a reduced influx of immune cells 10 

(Figure 6B). 11 

Given the significant amount of fungal growth observed in Δ cycA inoculated 12 

mice, we elected to follow the survivors for an additional period of time. In the 13 

chemotherapy model, 40% of ΔcycA-inoculated mice were still alive on day 21 p.i., 14 

while in the corticosteroid model 50% of mice survived until day 14 p.i. No mice 15 

perished in the X-CGD mouse model up to day 29 p.i. (Figure 5). Survivors showed 16 

no obvious symptoms of IPA. 17 

However, surprisingly, histopathology analysis of cycA inoculated survivors in 18 

the chemotherapy and X-CGD mouse model revealed persistence of fungal hyphae 19 

in granuloma-like structures on day 21 and day 29 respectively (Figure 7). The lungs 20 

of mice treated only with a corticosteroid also showed persistence of cycA hyphae, 21 

but no granuloma-like lesions up to day 28 p.i. (data not shown). Granuloma-like 22 

lesions occurred in all survivors of the chemotherapy model and 80% of the CGD 23 

survivors. Chemotherapy model survivor lesions are characterized by substantial 24 

fungal hyphae in the center of the lesions together with macrophages and neutrophils 25 
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(Figure 7D to F). In the smaller lesions a ring of macrophages (Figure 7A, arrow) is 1 

surrounding the lesion center, while in bigger lesions a ring of neutrophils is present 2 

(Figure 7B and C, arrows). On the outside of these rings of immune cells is a layer of 3 

epithelial-like cells (Figure 7C, arrowhead). GMS staining revealed a layer of fungal 4 

debris, which appears to be located directly outside of the neutrophil-ring (Figure 7 E 5 

and F, arrow). Culture of the lungs of these surviving mice revealed that live fungus 6 

persists in these lesions. 7 

Granuloma-like lesions in the X-CGD mice appear more organized and are 8 

more localized than the lesions in the chemotherapy model. The center of the lesions 9 

consists of mainly neutrophils and some fungal hyphae, surrounded by a ring of 10 

macrophages (Figure 7 G to K, arrow). Some of these macrophages are multi-nuclei 11 

giant cells that started moving into the center of the lesions (Figure 7 I). In addition, 12 

eosinophils can be seen at the site of infection (Figure 7 I and L, blue arrows). As 13 

also seen in the chemotherapy model, the outside most layer of the lesions seems to 14 

consist of epithelial-like cells (Figure 7 I, arrowhead) suggesting that the immune 15 

system tries to wall off these lesions to prevent further tissue damage and 16 

dissemination of the fungus. Taken together, these results suggest that the 17 

mitochondrial ETC of A. fumigatus plays a critical role in the pathogenesis of IPA. 18 

19 
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Discussion 1 

In a recent study we showed that the oxygen supply is limited in murine 2 

models of IPA (Grahl et al., 2011). In addition, data from this study also suggest that 3 

A. fumigatus is able to utilize alternative energy producing pathways like fermentation 4 

in response to in vivo hypoxic conditions, which can subsequently alter the host 5 

immune response. However, the switch to fermentation based metabolism was found 6 

to not be essential for growth under oxygen-limitation, suggesting that A. fumigatus is 7 

able to generate energy independent of fermentation (Grahl et al., 2011). In this study 8 

we continue our research on how A. fumigatus adapts to oxygen limiting 9 

environments. We observed that fungal mitochondrial respiration is highly active 10 

under hypoxic conditions and is involved in mediating resistance to oxidative stress. 11 

Importantly, we show for the first time that oxidative respiration plays an important 12 

role in IPA pathogenesis. 13 

Oxygen consumption assays indicated an increased role for an alternative 14 

oxidase (AOX) when A. fumigatus is exposed to hypoxia. Thus, the occurrence of an 15 

active mitochondrial respiratory chain and substantial AOX activity under hypoxia led 16 

us to hypothesize that these components were critical for A. fumigatus to adapt to 17 

hypoxia and cause disease. While loss of AoxA had no effect on germination and 18 

growth of A. fumigatus, a cycA null mutant displayed delayed and slower germination 19 

and showed a significant growth defect. These results are in agreement with 20 

observations in A. nidulans and Neurospora crassa, where a cycA null mutant strain 21 

was also characterized by delayed germination and slow growth (Bradshaw et al., 22 

2001, Bottorff et al., 1994). However, in A. nidulans the loss of CycA resulted in 23 

complete growth inhibition on non-fermentable carbon sources and in increased 24 

production of EtOH in normoxia (Bradshaw et al., 2001). 25 
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In contrast, the A. fumigatus ΔcycA showed growth on non-fermentable carbon 1 

sources and surprisingly no EtOH production could be detected. Furthermore, ΔcycA 2 

showed decreased growth in hypoxia and lost the ability to induce EtOH fermentation 3 

in response to hypoxic conditions compared to WT and the reconstituted strain, 4 

suggesting that the fungal ETC is involved in activation of this process in A. 5 

fumigatus. In addition, our data suggest that A. fumigatus can still use the remaining 6 

components of the ETC to produce energy. In the plant pathogenic fungus Botrytis 7 

cinerea it has been shown that this organism switches the electron flow from the 8 

main cytochrome pathway to an alternative pathway utilizing complex I, UBQ, and the 9 

AOX after 48h of growth in liquid media. The complex I-AOX pathway can drive ATP 10 

synthesis without any observable loss of cell viability (Tamura, 1999). In addition, 11 

early studies on A. nidulans and Aspergillus niger showed that young cultures 12 

predominantly utilize the main cytochrome respiration pathway, while respiration via 13 

AOX increased at later stages of growth (Tudella et al., 2004, Kirimura, 1987). 14 

Together with the fact that we observed increased AoxA levels, no EtOH production, 15 

and growth on non-fermentable carbon sources, this indicates that the cycA deletion 16 

mutant likely utilizes the alternative complex I-AoxA pathway to generate energy. 17 

In previous studies in the model yeast Saccharomyces cerevisiae, it has been 18 

proposed that the fungal ETC is involved in oxygen sensing, growth in hypoxia, and 19 

hypoxic gene regulation via production of reactive oxygen and nitrogen species 20 

(ROS, RNS) (Guzy et al., 2007, Ingavale et al., 2008, Poyton et al., 2009a, Poyton et 21 

al., 2009b). ROS are generated during normal cellular metabolism by the 22 

mitochondrial ETC and the cellular redox system (Richter et al., 1988). In general, it 23 

is believed that the two sites of ROS production in the mitochondrial ETC are at 24 

complex I and III (Poyton et al., 2009b). Several studies have reported that exposure 25 
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to hypoxia results in an increase in oxidative stress suggesting that the generated 1 

ROS may act as a putative second messenger that activates redox-sensitive 2 

transcription factors to enable hypoxia adaptation (Dirmeier et al., 2002, Chandel & 3 

Budinger, 2007, Guzy et al., 2007). In agreement with these findings, we observed an 4 

increase in oxidative protein damage in WT A. fumigatus after exposure to hypoxia. 5 

Beside ROS, RNS, produced by complex IV of the ETC have been suggested 6 

to play an important role in oxygen sensing and hypoxic signaling (Castello et al., 7 

2006, Poyton et al., 2009a, Poyton et al., 2009b). Thus, in the cycA deletion mutant 8 

ROS can probably still be produced via complex I, while RNS cannot be produced by 9 

complex IV, suggesting that loss of this signal might result in loss of EtOH 10 

fermentation activation. However, further experiments are needed to support this 11 

hypothesis. 12 

ROS and RNS cause damage to cellular components like nucleic acids, lipids, 13 

and proteins and, if unregulated, will result in apoptosis. Because of this, cells have 14 

developed various antioxidant defenses like superoxide dismutase and catalase 15 

(Lambou et al., 2010, Paris et al., 2003). In addition, the AOX has been found to play 16 

a role in limiting mitochondrial ROS formation and oxidative stress in general in 17 

different organisms (Akhter et al., 2003, Avila-Adame & Koller, 2002, Magnani et al., 18 

2008, Martins et al., 2011, Purvis, 1997, Wagner & Moore, 1997). In agreement with 19 

this, we observed increased oxidative damage of proteins, indicating raised 20 

intracellular ROS, in ΔaoxA and a decreased resistance to exogenous ROS. In 21 

contrast, ΔcycA displayed a significant increase in resistance against exogenous 22 

ROS, which is in accordance with the finding that normalized fold expression of aoxA 23 

was significantly increased and that this mutant showed increased AOX activity in the 24 
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oxygen consumption assays. Increased resistance to the AOX inhibitor SHAM has 1 

also been reported for an A. nidulans CycA mutant (Bradshaw et al., 2001). 2 

During infection A. fumigatus is attacked in part by ROS produced by 3 

phagocytic cells, and in agreement with the oxidative stress data, we observed an 4 

increase in susceptibility of ΔaoxA to macrophage killing, while ΔcycA showed 5 

increased resistance. Utilizing RNAi, Magnani et al. silenced the A. fumigatus aoxA 6 

gene and also found an increase in macrophage killing of the fungus (Magnani et al., 7 

2008). Altogether, the in vitro data suggest an important role for AOX in the defense 8 

against ROS and resistance to killing by macrophages. 9 

In C. neoformans an AOX mutant was found to be significantly less virulent 10 

than the WT (Akhter et al., 2003). However, surprisingly in a mouse model of IPA 11 

loss of AoxA did not result in any changes in mortality, which might be based on the 12 

fact that A. fumigatus possess multiple genes encoding for superoxide dismutases 13 

(SODs) and catalases to fight oxidative stress in vivo (Lambou et al., 2010, Paris et 14 

al., 2003). In contrast, the more oxidative stress resistant cytochrome C null mutant is 15 

attenuated in virulence in all mouse models tested. However, it is unclear as to the 16 

impact of host derived ROS on the virulence of A. fumigatus. Null mutants in the key 17 

ROS homeostasis transcriptional regulator Yap1 are also not attenuated in virulence 18 

and as are null mutants in catalases and SODs (Lambou et al., 2010, Lessing et al., 19 

2007, Qiao et al., 2008). These results may be influenced by the suppressed activity 20 

of macrophages and other innate effector cells in murine models of IPA which all use 21 

some form of chemical mediated immunosuppression. However, the clinical 22 

observation that individuals with the genetic disease CGD are highly susceptible to 23 

Aspergillus infections still supports the hypothesis that ROS production is required for 24 

full resistance to fungal infection. 25 
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It is likely that the attenuation in virulence of ΔcycA is due to the delay in 1 

germination and reduced growth rate of this mutant, as well as its increased 2 

resistance to oxidative stress and innate effector cell killing. Still, the amount of in 3 

vivo growth of ΔcycA was surprising considering the in vitro phenotypes. Accordingly, 4 

lung histology of the chemotherapy model show extended hyphae of ΔcycA 5 

compared to significantly shorter hyphae in the corticosteroid model. The difference 6 

between the two models lies in the inflammatory response. While the inflammatory 7 

response is nearly absent in the chemotherapy model, the corticosteroid model is 8 

characterized by a hyper-inflammatory response and increased hypoxia (Grahl et al. 9 

2011). As a result of this, in the corticosteroid model the ΔcycA strain is surrounded 10 

by immune cells, which contribute to the hypoxic microenvironment, and growth of 11 

the ΔcycA strain is even further reduced in hypoxic conditions. 12 

One of the most surprising and potentially significant findings of our study was 13 

that mice are not able to clear ΔcycA as nearly all survivors in the 3 mouse models 14 

still show fungal hyphae in the lungs after 14, 21, and 29 days respectively. Fungal 15 

growth even increased during the time course of infection and hyphae that were 16 

recovered from mice at the end of the experiment were still viable. To contain the 17 

area of fungal infection and tissue destruction, the immune system of the host started 18 

building granuloma-like lesions observed in the chemotherapy model on day 21 p.i. 19 

and in the CGD model on day 29 p.i.. The granuloma-like lesions consist mainly of 20 

neutrophils and macrophages, cells that are known to be critical for defense against 21 

A. fumigatus. 22 

Granuloma-like lesions in X-CGD mice seem to be more highly organized 23 

structures. In addition to neutrophils and macrophages, giant cells and eosinophils 24 

are present. Giant cells are a union of several distinct cells, which are usually 25 
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macrophages. The nuclei of the giant cells observed in the X-CGD mice on day 29 1 

have their nuclei in the cell periphery, which is a characteristic for Langhans giant 2 

cells that are usually found in granulomatous conditions (Litvinov & Ariel, 2005). In 3 

addition, the occurrence of giant cells has been described for granulomas of CGD 4 

patients (Hotchi et al., 1980). Eosinophils are usually present during allergic reactions 5 

to A. fumigatus like allergic bronchopulmonary aspergillosis or aspergillomas 6 

(Patterson & Strek, 2010, Jelihovsky, 1983), indicating that extended exposure to A. 7 

fumigatus antigens might result in Th2 mediated type disease. As an animal model of 8 

chronic Aspergillus colonization, which is characteristic of ABPA and aspergillomas is 9 

currently lacking, it is intriguing to speculate that Δ cycA can be utilized to develop 10 

such an important model. This line of inquiry is currently being pursued in our 11 

laboratory. 12 

Altogether, we conclude that the combination of slow growth and oxidative 13 

stress resistance is the reason why ΔcycA virulence is attenuated and the immune 14 

system is unable to clear the fungal material. However, because of the slow growth 15 

the host immune system is able to form granuloma-like lesions to contain the fungal 16 

infection. Taken together, our results suggest a critical role for the mitochondrial 17 

respiration chain in Aspergillus pathogenesis, and beg intriguing questions about how 18 

this system contributes to hypoxia signaling and in vivo fungal growth. 19 

20 
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Experimental Procedures 1 

Strains and Media 2 

A. fumigatus strain CEA17 (gift from Dr. J.P. Latgé, Institut Pasteur, Paris, France) 3 

was used to generate the aoxA (AFUB_022090; ∆aoxA::A. parasiticus pyrG pyrG1), 4 

and cycA (AFUB_028740; ∆cycA::A. parasiticus pyrG pyrG1) null mutants. A. 5 

fumigatus strain CEA17 is a uracil-auxotrophic (pyrG1) mutant of A. fumigatus strain 6 

CBS144.89 (d'Enfert, 1996, D'Enfert et al., 1996). All mutant and reconstituted strains 7 

were generated and confirmed following methods as we have previously described 8 

(Willger et al. 2008, Grahl et al. 2011). In this study, we used CBS144.89 (gift from 9 

Dr. J.P. Latgé, Institut Pasteur, Paris, France) as the wild type strain (WT) in all 10 

experiments, ∆aoxA, ∆cycA, and the ectopic complemented controls, aoxA recon 11 

(∆aoxA::A. parasiticus pyrG + aoxA) and cycA recon (∆cycA::A. parasiticus pyrG + 12 

cycA). All strains were routinely grown in glucose minimal medium (GMM) with 13 

appropriate supplements as previously described (Shimizu & Keller, 2001) at 37ºC. 14 

An addition of 1.2M sorbitol to GMM (SMM) had to be used to promote conidiation of 15 

the ΔcycA strain on solid media. Growth tests were performed on GMM containing 16 

1% glucose or GlyMM with 2% glycerol and EMM containing 2% ethanol as the sole 17 

carbon source. 18 

 19 

Oxygen consumption assay 20 

Germlings were obtained by growing 1x108 conidia of each respective strain in 50 ml 21 

of GMM medium for 24h at 37°C, in normoxic or hypoxic conditions. They were 22 

harvested by centrifugation and incubated for 5h (90 rpm) in a standard solution used 23 

for A. fumigatus protoplasting (Osmani et al., 1987) at 30°C to partially disrupt the cell 24 

wall. After incubation, germlings were washed three times with and resuspended in 25 
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buffer containing 0.7mM sorbitol, 10mM HEPES-KOH pH7.2, and kept in this buffer 1 

on ice during the measurements Oxygen uptake was measured with a Clark-type 2 

electrode fitted to a Gilson oxygraph (Gilson Medical Electronics Inc., Middleton, WI, 3 

USA) (Tudella et al., 2004) in 1.8 ml of standard incubation medium containing 4 

0.7mM sorbitol, 10mM HEPES-KOH ph 7.2, 5mM MgCl2, 0.5mM EGTA, 0.5% w/v 5 

BSA, and 2.5mM KH2PO4, 5µM Digitonin, and an appropriate substrate, at 30°C 6 

(Tudella et al., 2004). The initial solubility of oxygen in the reaction buffer was 7 

considered to be 445 ng atoms of O/ml (Helmerhorst et al., 2002). Further additions 8 

are indicated in the figure legends. Respiratory parameters were determined as 9 

previously described (Chance & Williams, 1956, Tudella et al., 2004). 10 

 11 

Hypoxic cultivation 12 

If not indicated otherwise, strains were routinely grown on or in GMM at 37ºC. 13 

Normoxic conditions were considered general atmospheric levels within the lab 14 

(~21%). For hypoxic conditions an INVIVO2 400 Hypoxia Workstation (Ruskinn 15 

Technology Limited, Bridgend, UK) was used. For these experiments, the O2 set 16 

point was 1% and the CO2 set point was 5%. Oxygen levels were maintained with 17 

94% N2 and a gas regulator. Colony growth was quantified as previously described 18 

(Willger et al., 2008). 19 

 20 

Isolation of total RNA and transcriptional profiling 21 

Cultures were grown aerobically over night. For normoxic growth, 50 ml of GMM 22 

were inoculated with 100 µl of the over night culture and incubated in atmospheric 23 

conditions. For hypoxic growth, 15 ml of the overnight culture and 15 ml fresh media 24 

were placed in the hypoxic chamber. Cultures were incubated for an additional 24h at 25 
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37°C, 120 rpm. RNA extraction and real-time PCR assays were performed as 1 

previously described (Grahl et al., 2011). Data was analyzed with the Bio-Rad iQ5 2 

2.0 Standard Edition Optical System Software. The ∆∆Ct method of analysis was 3 

used to determine fold changes of gene expression in the mutants relative to the WT 4 

CBS144.89 strain. 5 

 6 

Germination assay 7 

To determine germination rates, 10 ml GMM were inoculated with 1x107 conidia/ml of 8 

each respective strain and incubated at 37°C, 300 rpm. Starting after 3h of 9 

incubation, 500 µl of each culture are transferred to screw capped tubes containing 10 

0.1 mm glass beads, placed in a bead beater (BioSpec Products, Inc., Bartlesville, 11 

OK, USA) and beat for 20 s to break up clumps. The number of conidia and 12 

germlings is determined by microscopic analyses. After germination started, culture 13 

samples are taken every 30 minutes until a stable germination rate is reached. 14 

Experiments were done in three biological replicates. 15 

 16 

Detection of protein oxidation 17 

Oxidative modification of proteins by oxygen free radicals was monitored by 18 

immunoblot analysis of carbonyl groups using the OxyBlot Protein Oxidation 19 

Detection Kit according to the manufacturers instructions (Chemicon International 20 

Inc., now Millipore, Billerica, MA, USA). Immunoblotting was used for detection 21 

according to the kit instructions. The oxidative status of proteins was analyzed 22 

quantitatively by densitometry analysis using the Image J program (available at 23 

http://rsbweb.nih.gov/ij/download.html). 24 

 25 
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ROS sensitivity 1 

200 conidia in 100 μl 0.01% tween 80 were plated on GMM plates and 2 

incubated at 30°C until microscopic germlings appeared. Plates were overlayed with 3 

10 ml of a 1.25mM H2O2 solution or sterile water as a control. After 10 min incubation 4 

at 37°C, the 10 ml were aspirated and the plates were washed 2x with sterile water. 5 

Following an overnight incubation at 37°C colonies were counted and the percentage 6 

of surviving colonies versus the control was calculated. For the menadione growth 7 

inhibition assay 1x106 conidia were plated on GMM plates, a small circular filter 8 

paper place in the center, and 5 μl of a 16 mg/ml menadione solution or, as a control, 9 

96% ethanol were dropped directly on the filter paper. Plates were incubated for 72h 10 

at 37°C and the growth inhibition zone was determined. Experiments were done in 3 11 

biological repetitions. 12 

 13 

Macrophage assay 14 

Macrophage killing of conidia was measured as previously described with 15 

minor modification (Willger et al., 2008). The percentage of colony forming units 16 

(CFU) from conidia:marcophage co-incubation was determined relative to control 17 

conidia harvested at the 1h time point (set to 100%). Experiments were performed in 18 

triplicate for each A. fumigatus strain. 19 

 20 

Murine models 21 

The virulence of the A. fumigatus strains was tested in three immunologically 22 

distinct murine models of invasive pulmonary aspergillosis as we have previously 23 

described (Grahl et al. 2011). CD1 male and female mice, 6-8 weeks old were used 24 

in all experiments for the corticosteroid and chemotherapeutic murine models. For 25 
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the Chronic Granulomatous Disease (CGD) murine model, 8-10 week old mice with a 1 

null allele corresponding to the X-linked gp91phox component of NADPH oxidase 2 

(B6.129S6-Cybbtm1Din) were bred in the ARC at Montana State University 3 

(Morgenstern et al., 1997). 4 

For survival studies and histopathology, 10 mice per A. fumigatus strain 5 

(CBS144.89, ∆aoxA, aoxA recon, ∆cycA, cycA recon) were inoculated intranasally 6 

with 1x106 conidia in 40 μl for the corticosteroid and chemotherapeutic model and 7 

1x105 in 40 µl for the CGD mouse model. Mock control mice were inoculated with 40 8 

µl of 0.01% Tween 80. Mice were observed for up to 29 days after A. fumigatus 9 

challenge. Any animals showing distress were immediately sacrificed and recorded 10 

as deaths within 24h. No mock infected animals perished in any murine model in all 11 

experiments. Lungs from all mice sacrificed on different time points during the 12 

experiment were removed for histopathology. All animal experiments were repeated 13 

in duplicate. 14 

 15 

Ethics Statement 16 

This study was carried out in strict accordance with the recommendations in 17 

the Guide for the Care and Use of Laboratory Animals of the National Institutes of 18 

Health. The animal experimental protocol was approved by the Institutional Animal 19 

Care and Use Program (IACUC) at Montana State University (Federal-Wide 20 

Assurance Number: A3637-01). 21 

 22 

Histopathology 23 

For histopathology, mice were inoculated as described above, and sacrificed 24 

at set time points after A. fumigatus challenge and hematoxylin and eosin (H&E) or 25 
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Gomori methenamine silver (GMS) stains were performed as previously described 1 

(Willger et al. 2008, Grahl et al. 2011). 2 

 3 

Statistical analysis 4 

 Data were analyzed using two-tailed Student’s t-tests (GraphPad Prism 5.0) to 5 

compare two groups of data, and considered significant as indicated in the figure 6 

legends. Log-rank tests were utilized to determine significance of survival in animal 7 

studies. 8 

 9 
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Figure legends: 1 

 2 

Figure 1: Oxygen Consumption in normoxic and hypoxic conditions. The 3 

following components were added to the spheroblasts in 1.8mL respiration medium 4 

(10mM Hepes–KOH, 0.7mM Sorbitol pH 7.2, 5mM MgCl2, 2.5mM KH2PO4, 0.5mM 5 

EGTA, 0.5% (w/v) BSA, 5mmol Digitonin): substrate cocktail (10mM glutamate, 6 

10mM malate, 10mM pyruvate, 10mM α-ketoglutarate) (activates respiration via 7 

complex I); 10mM succinate (complex II); 2mM NADH (stimulates external 8 

NADH:ubiquinone oxidoreductases); 400nmol ADP (switch to actively respiring 9 

state); 2μg Oligomycin (complex V inhibitor); 5μM FCCP (disconnects electron 10 

transport and phosphorylation system); 1mM KCN (complex IV inhibitor); 2.5mM 11 

SHAM (alternative oxidase inhibitor). The oxygen uptake showed an active 12 

mitochondrial ETC and also an increased alternative oxidase activity under hypoxic 13 

conditions. 14 

 15 

Figure 2: Oxygen consumption in ΔΔaoxA and ΔcycA. The following components 16 

were added to the spheroblasts: substrate cocktail (10mM glutamate, 10mM malate, 17 

10mM pyruvate, 10mM α-ketoglutarate) (activate respiration via complex I); 0.5mM 18 

Flavone (alternative NADH:ubiquinone oxidoreductase inhibitor); 10mM Malonate 19 

(complex II inhibitor); 1mM KCN (complex IV inhibitor); 0.5µM Antimycin A (complex 20 

III inhibitor); 2.5mM SHAM (alternative oxidase inhibitor). Functional null mutants 21 

were verified by the addition of KCN, which resulted in complete inhibition of 22 

respiration in ΔaoxA and respiration of ΔcycA was Antimycin A or KCN resistant. In 23 

addition, AOX activity is increased in ΔcycA compared to WT. 24 
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Figure 3: Loss of aoxA results in increased protein damage by ROS. (A) 1 

Western blot analysis of carbonyl groups and (B) quantitative densitometry analysis 2 

show an increase in oxidative protein modification in response to hypoxia in the WT 3 

and an even further increase in ΔaoxA. SDS-PAGE gel is shown as a protein loading 4 

control. 5 

 6 

Figure 4: ROS and Macrophage susceptibility altered in ΔΔaoxA and ΔcycA. (A) 7 

ROS susceptibility assay. Data is expressed as percentage of surviving colonies. A 8 

significant increase in sensitivity could be observed for ΔaoxA. (B) RAW264.7 cells 9 

were inoculated with 1x106 conidia of WT, ΔaoxA, and aoxA recon. Shown is the 10 

percent of recovered conidia after 4h compared to 1h incubation. Conidia survival of 11 

ΔaoxA is significantly reduced compared to WT. (C) 1x106 conidia were spread on 12 

GMM plates, a circular filter paper placed in the center with menadione or EtOH 13 

(control). After 72h the inhibition zone was measured. (D) J774 cells and conidia of 14 

WT, ΔcycA, and cycA recon were co-incubated for 1h, followed by an additional 4 or 15 

8h. Shown is the percent of recovered conidia after 5 or 9h compared to 1h 16 

incubation. Each value represents mean and standard error of three biological 17 

replicates. (*p < 0.05). 18 

 19 

Figure 5: Cytochrome C is required for A. fumigatus virulence. (A) Outbred CD-1 20 

mice (n = 10) and chemotherapy model of IPA. Mice were inoculated intranasally (IN) 21 

with 1x106 conidia in 40 μl of WT, ΔcycA, and cycA recon strain. (B) Outbred CD-1 22 

mice (n = 10) and corticosteroid model of IPA. Mice were inoculated IN with 1x106 23 

conidia of WT and ΔcycA. (C) gp91phox-/- mice (n = 10) were challenged IN with 1x105 24 

conidia of the indicated strains. A log rank test was used for pair wise comparison of 25 

Manuscripts

94



 30 

survival levels among the different strain groups. ΔcycA is significantly less virulent 1 

than the WT and reconstituted strain in all mouse models tested. (*p < 0.05). 2 

 3 

Figure 6: Histopathology of chemotherapy and corticosteroid models. 4 

Hematoxylin and eosin (H&E) or Gommori’s methenamine silver (GMS) stains are 5 

shown. (A) In the chemotherapy IPA model WT inoculated mice show substantial 6 

fungal growth and influx of immune cells as early as day 2 p.i., while ΔcycA growth is 7 

reduced compared to the WT on day 2 p.i.. On day 4 and 5 p.i. ΔcycA inoculated 8 

mice show fungal growth comparable to the WT. (B) Lung histopathology of 9 

corticosteroid model mice showed reduced fungal growth and influx of immune cells 10 

in ΔcycA inoculated mice compared to the WT. Bar = 100 μm. 11 

 12 

Figure 7: Representative histopathology of ΔΔcycA inoculated survivors. 13 

Hematoxylin and eosin (H&E) or Gommori’s methenamine silver (GMS) stains of 14 

lungs showed localized inflammation, necrosis, and fungal growth in granuloma-like 15 

lesions. Chemotherapy model survivor histopathology showed substantial fungal 16 

growth within the lesions (D to F) and rings of macrophages (A, arrow) or neutrophils 17 

(B, arrow) surrounding the fungal tissue, with epithelial-like cells representing the 18 

most outside cell layer (C, arrowhead). Fungal growth in granuloma-like lesions of 19 

CGD mouse model survivors was greatly reduced (J and K). The structure of lesions 20 

was highly conserved with neutrophils in the center surrounded by macrophages 21 

(arrows) and epithelial-like cells (arrowhead) (G and H). Giant cells (black arrow) 22 

and eosinophils (blue arrow) could be observed in or at the periphery of the lesions 23 

(J). (L) represents a close up of the eosinophils (blue arrows) in (J). (A) to (K) Bar = 24 

200 μm; (L) Bar = 10 μm. 25 

26 
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Supplemental information: 1 

 2 

Figure S1: Schematic of the fungal mitochondrial ETC. Electrons are transported to 3 

the ubiquinone pool (UBQ) from NADH by complex I (I) or internal (int1) and external 4 

(ext1, ext2) alternative NADH:ubiquinone oxidoreductase, and from succinate by 5 

complex II (II). From the UBQ electrons are channeled through complex III (III), 6 

cytochrome C (c), and complex IV (IV) or directly by the alternative oxidase (AOX) to 7 

oxygen as the terminal electron acceptor. Simultaneous to the electron transport, 8 

protons are pumped over the inner mitochondrial membrane by complex I, III, and IV. 9 

This proton gradient is used by the ATP synthase (complex V) to generate ATP. 10 

 11 

Figure S2: Generation and confirmation of CycA and AoxA null mutants in A. 12 

fumigatus. Schematic of WT, CycA (A), and AoxA (B) null mutant genomic loci. (A) 13 

Southern blot analysis of WT, ΔcycA, and cycA recon strains as well as (B) WT, 14 

ΔaoxA, aoxA recon strains. Genomic DNA form the respective strains was isolated 15 

and digested overnight with HindIII. An approximate 1 kb genomic region was utilized 16 

as a probe. The expected hybridization patterns and sizes were observed for all 17 

strains tested. In addition, confirmation of ectopic reconstitution was confirmed by the 18 

presence of the WT locus hybridization signal and persistence of the null mutant 19 

locus. 20 

 21 

Figure S3: Normalized fold expression of cycA, aoxA, pdcA, and alcC in A. 22 

fumigatus WT, ΔcycA, and ΔaoxA strains after exposure to normoxia or different 23 

periods of hypoxia. Each strain was grown for 12h at 37°C under normoxic 24 

conditions. After time point 0h samples were harvested, the remaining cultures were 25 
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incubated for an additional 1, 2, 4, or 12h under hypoxic conditions before harvest. 1 

Quantification of mRNA was achieved by quantitative real-time PCR. Values are 2 

normalized to tefA and shown relative to WT 0h. Results are shown for one 3 

representative biological repetition. 4 

 5 

Figure S4: Oxygen consumption of WT and ΔaoxA strains under hypoxic conditions. 6 

A functional alternative oxidase mutant was verified by the addition of 1 mM KCN, 7 

resulted in complete inhibition of respiration in the ΔaoxA strain. 8 

 9 

Figure S5: Oxygen consumption of WT and ΔcycA strains under hypoxic conditions. 10 

A functional cytochrome C mutant was verified since respiration of the ΔcycA strains 11 

was Antimycin (AA) or KCN resistant. In addition, an increased alternative oxidase 12 

activity is detectable in the mutant strain. 13 

 14 

Table S1: Oligonucleotides utilized in this study 15 

16 
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Tables: 1 

Table S1: 2 

Name Sequence 
cycA_RT_fw ACTCTACCATGGTTGGCATTGCAG 
cycA_RT_rev GCGACAAAGTTTCCCAGACAAGGT 
aoxA_RT_fw TTCATGCGACTCATGGTTCTCGGA 
aoxA_RT_rev TTTGATGGCCCGAGTGTAGGTGAT 
pdcA_RT_fw TCACTTTGCAGGAGATCAGCACCA 
pdcA_RT_rev TCATTGTAGCTCGCATCCCATCCA 
alcC_RT_fw AGCAAGCTACGGATTATGTCCGCT 
alcC_RT_refv TGGTGATCATCTTGACGACGGTGT 
tefA_RT_fw (house 
keeping gene) GTGACTCCAAGAACGATCCC 
tefA_RT_rev (house 
keeping gene) AGAACTTGCAAGCAATGTGG  
cycA_KO_left flank_fw CGTGACTACGTAGAACACAGTAGC 
cycA_KO_left flank_rev CCAACTTAATCGCCTTGCAGCACAAGAGCCTGGAGAATCAATTGGG 
pyrG_cycA_overlap_fw CCCAATTGATTCTCCAGGCTCTTGTGCTGCAAGGCGATTAAGTTGG 
pyrG_cycA_overlap_re
v AGGACAATGGACAATTCTGCACGCTCCGGCTCGTATGTTGTGTGGAAT 
cycA_KO_right 
flank_fw ATTCCACACAACATACGAGCCGGAGCGTGCAGAATTGTCCATTGTCCT 
cycA_KO_right 
flank_rev CTTGCATCAAACGGACCAGCACAT 
cycA_nested_fw GGGGACAAGTTTGTACAAAAAAGCAGGCTAGATGTTCCGCCACTGATAGGT 

cycA_nested_rev 
GGGGACCACTTTGTACAAGAAAGCTGGGTAGAAGCACCCACGTTAGTTAGCA
G  

cycA_KO_check_fw TATATGGCAGGCGTAAGTGAGGGT 
cycA_KO_check_rev ACGGGAAGATGCAAGACATGGGAA 
cycA_recon_fw CTGCGGCCGCATGCCTCATGTCCGCTACATTT CC 
cycA_recon_rev CAACTAGTTGCTGATTGGTCCATCACGAGGAT 
cycA_recon_check_fw TCGCATCTCGTCGTCACAGTTCAA 
cycA_recon_check_rev ACGTGATCAGGTCGTTCCTTTCCT 
aoxA_KO_left flank_fw CAGTCGACCGTGCAGTTGAATACGGGCTGAAA 
aoxA_KO_left flank_rev CTGAATTCGAACCAGCGGGCTGAATCCAATTT 
aoxA_KO_right 
flank_fw TCCCGCGGTACATGCCAGCGCTTCTCTTCTCT 
aoxA_KO_right 
flank_rev GAGAGCTCACCGAGCATTAGGTGTCAACAGGA 
aoxA_KO_check_fw AAAGCTGCGGAGAGAAGAGGACAA 
aoxA_KO_check_rev ATAGTAAACCTTGGCCGCTCGGAT 
aoxA_recon_fw GCACTAGTCGTGCAGTTGAATACGGGCTGAAA 
aoxA_recon_rev AAGCGGCCGCTGTCTCACTTCGATCGCTGTTGGT 
aoxA_recon_check_fw AAGGCTCCTCACATCAAGGAGGTT 
aoxA_recon_check_rev ATGCATGCGCTCATTGTATGCCTC 
recon_construct_ 
amplification_fw ATCCTTGAAGCTGTCCCTGATGGT 
recon_construct_ 
amplification_rev TCCGGCTCGTATGTTGTGTGGAAT 
  
bold = pyrG sequence  
underlinded = attB sites 
gateway cloning  
bold italic = added 
restriction sites  
 3 
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4. Discussion 
 

To successfully colonize a host and cause disease A. fumigatus has to be able to 

adapt to a variety of in vivo environmental challenges. In this dissertation, I provide 

evidence that hypoxia is an important clinically relevant stress in murine models of 

IPA. During pathogenesis, growth of the fungus and subsequent influx of recruited 

immune effector cells cause significant host tissue damage and decreased tissue 

perfusion that limits infection site oxygen availability (Matherne et al., 1990, Van Belle 

et al., 1987, Rustad et al., 2009). To determine whether hypoxia actually occurs in 

the lung during IPA, the hypoxia marker pimonidazole hydrochloride was used in 

three clinically relevant murine models of IPA. Pimonidazole hydrochloride is an 

investigational oncology probe used as a hypoxia-imaging agent in clinical studies to 

detect reduced oxygen concentrations in animal and human tumors (Raleigh et al., 

1998, Ljungkvist et al., 2000, Raleigh et al., 2001, Raleigh et al., 2000, Kizaka-

Kondoh & Konse-Nagasawa, 2009). Furthermore, it has been used to demonstrate 

that hypoxic regions occur in tuberculosis granulomas (Via et al., 2008). Staining with 

pimonidazole hydrochloride identifies hypoxic regions (O2 ≤ 1.5%), but does not 

determine exact oxygen concentrations. 

In three immunologically distinct murine models of invasive pulmonary 

aspergillosis (chemotherapeutic, corticosteroid, and X-CGD) hypoxic 

microenvironments could be found, as evidenced by the formation of a stable adduct 

between reduced pimonidazole and host proteins at sites of A. fumigatus infection 

(Grahl et al., 2011). In addition, the results suggest that the influx and activity of host 

cells are strong contributors to the development of hypoxia, and that fungal activities 

or components also contribute to hypoxic lesions (Grahl et al., 2011). From these 

studies, it is clear that the underlying host immune response is a critical factor in 

hypoxia development. Altogether, this is the first confirmation that in vivo hypoxic 

microenvironments occur during an invasive fungal infection and adds another in vivo 

stress to the list of environmental challenges human fungal pathogens must adapt to 

cause lethal disease. In the future it will be intriguing to test whether hypoxia occurs 

in other models of fungal infection. These studies await to be undertaken. 

Furthermore, the relative contributions of pathogen and host cells to the generation of 

hypoxia at the site of infection are likely to be pathogen-host specific, which 

represents an important line of future inquiry for a diverse array of pathosystems. 
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As A. fumigatus has to face hypoxic environments in vivo as well as in its 

ecological niche, the compost microflora (Grahl et al., 2011, Wang W, 2007), it is 

more than likely that this mold possesses mechanisms to sense, adapt to, and grow 

in these oxygen-limiting conditions. Indeed multiple oxygen sensing pathways have 

been described in fungi. However, it seems that these organisms mainly sense 

oxygen through intracellular heme and sterol levels, although some other sterol- and 

heme-independent pathways have been described (reviewed in: (Grahl & Cramer, 

2010). Heme and sterol are important cellular components that are essential for the 

survival of eukaryotic organisms. Environmental oxygen concentrations directly affect 

cellular heme and sterol levels, as the biosynthesis of both molecules requires 

oxygen, making it possible for the cell to indirectly sense oxygen through changes in 

heme and sterol levels (Labbe-Bois, 1990, Hughes et al., 2007).  

A heme-sensing pathway involving the heme-Hap1p complex and the hypoxic 

gene repressors Rox1p and Mot3p has been described in the baker’s yeast S. 

cerevisiae. However, so far no heme-sensing pathway has been identified in any of 

the major human fungal pathogens, while sterol-sensing mechanisms involving 

SREBP analogs or orthologs have been found and studied (reviewed in: (Grahl & 

Cramer, 2010, Bien & Espenshade, 2010). In this context, the SREBP ortholog, 

SrbA, has been recently identified and characterized in A. fumigatus and it was found 

that SrbA is crucial for sterol biosynthesis, growth under hypoxic conditions, and 

resistance to azole antifungal agents (Figure 2) (Willger et al., 2008). The same 

characteristics had also been shown for the SREBP null mutants in the yeasts S. 

pombe and C. neoformans suggesting that some roles of SREBPs are conserved 

between yeasts and filamentous fungi (Hughes et al., 2005, Chang et al., 2007, Chun 

et al., 2007, Willger et al., 2008, Grahl & Cramer, 2010). Interestingly, the finding that 

SrbA plays an important role in fungal morphology suggests additional functions of 

SREBPs in filamentous fungi (Willger et al., 2008). 

However, to date the mechanisms arresting A. fumigatus growth, in response 

to hypoxia, after loss of SrbA are not fully understood. Analysis of transmission 

electron micrographs suggested a defect in vesicle translocation and formation, 

which may be due to altered sterol levels. It is likely that the inability of the mutant to 

grow in hypoxia is related to the perturbation in sterol biosynthesis, as hypoxia 

probably potentiates the alterations in sterol levels seen in normoxia (Willger et al., 

2008). However, further studies have to be done to verify this hypothesis. 
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Significantly, it was shown that the SREBP pathway is important for virulence of the 

human fungal pathogens A. fumigatus and C. neoformans (Chang et al., 2007, Chun 

et al., 2007, Willger et al., 2008). While loss of SREBP was found to be unnecessary 

to initiate an infection, they were required for normal disease progression, which 

suggests an important role of the fungal SREBP pathway in adaptation to the host 

environment (Figure 2) (Willger et al., 2008, Bien et al., 2009, Chang et al., 2009). 

Furthermore, the finding that hypoxia occurs at the site of A. fumigatus infection 

(Grahl et al., 2011) strongly suggests that the inability of the SrbA null mutant to grow 

in hypoxic microenvironments is primarily responsible for the nearly avirulent 

phenotype of the mutant (Willger et al., 2008). In addition, also in the mammalian 

brain, one of the primary sites of C. neoformans infection, oxygen levels are low with 

~1 to 5% (Sharp & Bernaudin, 2004) and, consequently, a C. neoformans Sre1 

mutant failed to cause fatal meningoencephalitis (Chang et al., 2009). However, 

despite this evidence, it is not yet possible to conclude that the virulence defects of 

the A. fumigatus and C. neoformans SREBP mutants is solely due to low oxygen 

concentrations found in vivo at the site of infection. Fungal SREBPs transcriptionally 

regulate a significant number of genes in the respective fungal genomes, suggesting 

that other SREBP-mediated pathways like maintenance of cell polarity or response to 

low iron availability may also be important for virulence (Figure 2). In fact, a recent 

study in A. fumigatus showed that SrbA is critical for regulation of iron acquisition, 

particularly through regulation of siderophore production and iron uptake (Blatzer et 

al., in press). As A. fumigatus iron uptake mutants are also attenuated in virulence, 

this study suggests a potential role for SrbA mediated iron regulation in fungal 

virulence (Blatzer et al., in press). 

However, which SREBP transcriptional targets are required for growth in 

hypoxia and in the host remains to be elucidated. In addition, to be able to completely 

understand the role of the SREBP pathway in A. fumigatus hypoxia adaptation and 

pathogenesis, future studies will need to define the exact mechanism of how SrbA is 

activated in response to hypoxic conditions. Despite extensive bioinformatics 

analyses, no functional homologs of other known SREBP pathway components can 

be found in A. fumigatus (Willger et al., 2008, Willger and Cramer personal 

communication), indicating that while some aspects of SREBP signaling may be 

conserved, the composition of the pathway seems to be significantly different in A. 

fumigatus and awaits to be elucidated. 
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Figure 2: Schematic of known and probable A. fumigatus hypoxia adaptation mechanisms. In 
hypoxic conditions decreasing ergosterol biosynthesis results in increased sterol element binding 
protein (SrbA) levels and leads to cleavage of SrbA and the release of the N-terminal transcription 
factor domain, SrbA-N. SrbA-N translocates to the nucleus and activates transcription of genes 
involved in multiple pathways important for hypoxia adaptation and virulence. In addition, hypoxia 
causes increased production of reactive oxygen (ROS) and nitrogen (RNS) species, probably 
produced by the mitochondrial electron transport chain. This results in increased presence of the 
alternative oxidase (AoxA). AoxA decreases ROS production and mediates resistance to extracellular 
ROS and killing by macrophages (MΦ). Additionally, hypoxic conditions induce ethanol fermentation. 
This activation is possibly mediated by RNS produced by the electron transport chain. Ethanol 
fermentation is also involved in the modulation of the host immune response by decreasing the influx 
of neutrophils to the site of infection. 

In addition to the ability to sense changes in oxygen concentrations, metabolic 

adaptability and flexibility are important attributes of pathogens to survive and grow in 

hypoxic microenvironments. Our current knowledge of metabolic pathways used by 

A. fumigatus and other pathogenic fungi under hypoxic conditions and in vivo during 

fungal pathogenesis is limited. Interestingly, a global in vivo metabolite screen 

utilizing 1H-NMR of broncheoalveolar lavage fluid identified ethanol in the lungs of 

mice inoculated with A. fumigatus indicating that fermentation may be a mechanism 

by which this mold adapts to the host environment (Grahl et al., 2011). Further 

supporting a role of fermentation during fungal pathogenesis is the finding of ethanol 

in cerebral tissue of rats infected with C. neoformans (Himmelreich et al., 2001). 

Most eukaryotic cells, like A. fumigatus, obligatorily use oxygen to carry out 

many of their biochemical reactions. Molecular oxygen is critical for several 
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biosynthetic pathways like biosynthesis of sterols, heme, mono- and poly-

unsaturated fatty acids, or nicotinamide adenine dinucleotide (NAD+) (Raymond & 

Segre, 2006, Goldfine, 1965, Summons et al., 2006, Labbe-Bois, 1990, Hughes et 

al., 2007). In addition, oxygen is a key component of energy production where it 

functions as a terminal electron acceptor in the formation of ATP from glucose during 

aerobic respiration. When exposed to microenvironments with limited levels of 

oxygen, many microorganisms utilize fermentation as a potential metabolic 

mechanism for dealing with the lack of oxygen (Zhou et al., 2010, Panagiotou et al., 

2005, Kiers et al., 1998, Merico et al., 2009, van Dijken et al., 1986, Lara et al., 2009, 

Ismond et al., 2003). Fermentation allows the cell to replenish sources of NAD+ and 

thus generate ATP through continued use of glycolysis.  

In the human fungal pathogens A. fumigatus, C. neoformans, and C. albicans, 

it has been observed that hypoxia induces expression of genes involved in ethanol 

fermentation (Grahl et al., 2011, Chun et al., 2007, Setiadi et al., 2006). In addition, 

A. nidulans, A. parasiticus, and A. fumigatus produce ethanol in response to in vitro 

hypoxic conditions (Grahl et al., 2011, Kelly et al., 1990, Lockington et al., 1997, 

Sanchis et al., 1994). Altogether, this data suggests an important role for ethanol 

fermentation in fungal adaptation and growth under oxygen limited conditions (Figure 

2). However, while A. fumigatus appears to utilize ethanol fermentation in vivo, this 

mechanism of energy generation is not essential for in vitro hypoxic growth, 

suggesting that other fermentation pathways exist and/or that sufficient mitochondrial 

respiration still occurs under the examined conditions. 

Loss of ethanol fermentation via genetic mutation of either pyruvate 

decarboxylase or alcohol dehydrogenase did not affect the ability of A. fumigatus to 

cause lethal disease in any of our murine models. However, the loss of the alcohol 

dehydrogenase (AlcC), involved in ethanol fermentation in response to hypoxia, 

significantly altered the host immune response to the fungus as evidenced by 

increased neutrophil recruitment and alteration in cytokine production in mice 

inoculated with an alcC null mutant (Grahl et al., 2011). This suggests that A. 

fumigatus is able to partially suppress localized immune responses by utilizing 

ethanol fermentation in response to hypoxic microenvironments during IPA (Figure 

2). However, to confirm this hypothesis more sensitive and reliable ethanol detection 

methods need to be developed. Overall, these results suggest that fungal responses 

to hypoxia in vivo may not only affect fungal growth directly, but also affect the 

production of fungal metabolites that can subsequently alter host immune responses. 
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Thus, the effects of hypoxia on fungal pathogenesis are likely to be more complex 

than simply altering rates of fungal growth. Consequently, in future studies it will be 

intriguing to elucidate how different fungal metabolites produced in response to 

oxygen-limited conditions influence host-pathogen interactions. 

As mentioned above, the fact that loss of ethanol fermentation had no effect 

on growth in hypoxic conditions, together with the finding that A. fumigatus showed 

growth on non-fermentable carbon sources suggests that the mold is able to 

generate energy by respiration in hypoxia (Grahl et al., 2011). Indeed further studies 

on respiration in hypoxia found that the fungal respiration chain is active under 

hypoxic conditions and is most likely used to support A. fumigatus growth (Grahl et 

al., 2011, Grahl et al. submitted). 

The eukaryotic respiration chain consists of a conventional linear electron 

transport chain involving core respiration complexes I, II, III, and IV, as well as the 

ubiquinone pool and the ATP synthase also referred to as complex V. In addition, 

fungi possess alternative NADH:ubiquinone oxidoreductases and an alternative 

oxidase (Joseph-Horne et al., 2001). Utilizing oxygen consumption assays, all 

components of the mitochondrial electron transport chain can be found in A. 

fumigatus in normoxic and hypoxic conditions. Importantly, alternative oxidase 

activity is significantly elevated after growth in hypoxia indicating an increased role of 

this enzyme under these conditions (Figure 2) (Grahl et al. submitted). 

The alternative oxidase has been shown to play a role in limiting mitochondrial 

reactive oxygen species (ROS) formation and oxidative stress in A. fumigatus (Figure 

2) and other organisms (Purvis, 1997, Wagner & Moore, 1997, Avila-Adame & Koller, 

2002, Akhter et al., 2003, Magnani et al., 2007, Magnani et al., 2008, Martins et al., 

2011, Grahl et al. submitted). In addition, several studies have reported that 

exposure to hypoxia results in an increase of oxidative stress, which is also observed 

in A. fumigatus (Figure 2) (Dirmeier et al., 2002, Chandel & Budinger, 2007, Guzy et 

al., 2007, Grahl et al. submitted). Taken together, these data indicate that the 

increased alternative oxidase activity in hypoxia might be a result of elevated 

intracellular ROS production from mitochondrial respiration (Figure 2). Furthermore, 

during infection, pathogens like A. fumigatus and C. neoformans are attacked by 

ROS produced by phagocytic cells and the alternative oxidase is also involved in 

resistance to this extracellular oxidative stress (Figure 2) (Magnani et al., 2008, 

Akhter et al., 2003, Grahl et al. submitted). In agreement, a cytochrome C null mutant 

of A. fumigatus displaying increased levels of alternative oxidase activity was found 
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to be hyper-resistant to oxidative stress and killing by macrophages (Grahl et al. 

submitted). The same cytochrome C mutant showed delayed germination and a 

significant growth defect, which had also been observed in Neurospora crassa and A. 

nidulans (Bradshaw et al., 2001, Bottorff et al., 1994, Grahl et al. submitted). 

In contrast to A. nidulans loss of cytochrome C did not result in complete 

growth inhibition on non-fermentable carbon sources and no ethanol production on 

the fermentable carbon source glucose could be observed in A. fumigatus. 

Furthermore, the cycA mutant showed decreased growth in hypoxia and lost the 

ability to induce ethanol fermentation in response to hypoxic conditions, suggesting 

an involvement of the fungal electron transport chain in this process in A. fumigatus 

(Figure 2) (Grahl et al. submitted). In previous studies in yeast, it has been proposed 

that the fungal respiratory chain is involved in oxygen sensing, growth in hypoxia, 

and hypoxic gene regulation, and that ROS and reactive nitrogen species (RNS) 

produced by the respiration chain are involved in this process (Kwast et al., 1999, 

David & Poyton, 2005, Castello et al., 2006, Guzy et al., 2007, Ingavale et al., 2008, 

Poyton et al., 2009a, Poyton et al., 2009b).  

In general, it is believed that the two sites of ROS production in the 

mitochondrial respiratory chain are at complex I and III (Poyton et al., 2009b), and in 

addition, several studies have suggested that increased oxidative stress observed in 

hypoxia may act as a putative second messenger that activates redox-sensitive 

transcription factors to enable hypoxia adaptation (Dirmeier et al., 2002, Chandel & 

Budinger, 2007, Guzy et al., 2007). Beside ROS, RNS produced by complex IV of the 

electron transport chain have been suggested to play an important role in oxygen 

sensing and hypoxic signaling (Castello et al., 2006, Poyton et al., 2009a, Poyton et 

al., 2009b). Thus, as a cytochrome C mutant of A. fumigatus seems to be able to 

utilize the alternative complex I - alternative oxidase pathway to generate energy, this 

mutant probably still produces ROS via complex I (Grahl et al. submitted) However, 

loss of cytochrome C blocks the conventional electron transport chain after complex 

III and with that loses the ability to produce RNS by complex IV. Altogether, this 

suggests that loss of the RNS signal via complex IV might be the reason for loss of 

ethanol fermentation activation in the cytochrome C mutant in response to hypoxic 

conditions (Figure 2).  

Surprisingly, the more oxidative stress resistant cytochrome C mutant is 

attenuated in virulence, while the loss of alternative oxidase did not result in any 

mortality changes, which is in contrast to findings in C. neoformans (Akhter et al., 
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2003, Grahl et al. submitted). The missing virulence defect of the alternative oxidase 

mutant might be based on the fact that A. fumigatus possesses multiple genes 

encoding for superoxide dismutase and catalase to fight oxidative stress in vivo 

(Lambou et al., 2010, Paris et al., 2003) or that, C. neoformans cannot generate 

energy in the absence of a functional alternative oxidase. As C. neoformans also has 

multiple SODs and catalases, this latter hypothesis is most likely (Cox et al., 2003, 

Giles et al., 2005, Giles et al., 2006). Overall, the data indicate that mitochondria are 

involved in hypoxia adaptation of A. fumigatus and future studies will determine 

whether the respiration chain and ROS/RNS are involved in oxygen sensing, hypoxic 

signaling, and hypoxic gene regulation as it has been suggested for S. cerevisiae. 

Interestingly, histopathology analysis of mice inoculated with the A. fumigatus 

cytochrome C mutant led to the hypothesis that the combination of slow growth and 

oxidative stress resistance is the reason why the virulence is attenuated and the 

immune system is unable to clear the fungus. However, because of the slow growth 

the host immune system is able to form granuloma-like lesions to contain the fungal 

infection. These lesions are most likely regions of limited oxygen supply, which would 

even further decrease hyphal growth of the cytochrome C mutant. In agreement with 

this hypothesis the mutant seems to be unable to grow out of these lesions (Grahl et 

al. submitted). Significantly, an influx of eosinophils, which is connected with two 

other A. fumigatus diseases, ABPA and aspergilloma, could be observed. Future 

experiments will show whether infections with this deletion mutant can be used as a 

potential mouse model to study these Th2 type diseases and/or chronic aspergillosis 

(Grahl et al. submitted). 

Taken together, the aforementioned studies suggest an important link 

between hypoxia adaptation and fungal pathogenesis for A. fumigatus and other 

human fungal pathogens. However, our understanding of fungal hypoxia adaptation 

mechanisms and their link to pathogenesis is still limited. Importantly, while 

adaptation to oxygen-limited conditions is likely to be critical for in vivo growth of the 

fungal pathogen, other subtle effects of hypoxia on fungal metabolism are likely to 

influence the host-fungal interaction. Furthermore, occurrence of hypoxia at the site 

of infection most likely affects the immune response of the host and with that 

probably influences the course of fungal infection. In fact, a link between host hypoxic 

responses and bactericidal activities of phagocytic cells has been shown and 

suggests that such responses are also critical for fungal infections (Nizet & Johnson, 
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2009, Cramer et al., 2003, Peyssonnaux et al., 2005, Peyssonnaux et al., 2007, Rius 

et al., 2008). 

In summary, data from this dissertation and other seminal studies to date 

largely support the hypothesis that the ability to sense, adapt to, and grow in hypoxic 

conditions is a virulence attribute of A. fumigatus and other human fungal pathogens. 

A significant take home message from this work is that it might be of great interest to 

conduct future in vitro experiments on fungal mutants and/or host cell responses to 

fungal pathogens in hypoxic environments to attempt to simulate in vivo 

microenvironments. Traditionally, most fungal-host interaction studies are conducted 

in normoxic conditions, which may miss some important nuances of these 

interactions that occur in vivo. In addition, hypoxia adaptation mechanisms and their 

potential influence on host-pathogen interaction should be considered, not only for 

fungal infections, but for all microbial pathogens.  

For example, many important bacterial human pathogens are obligate (i.e. 

Clostridium spp.) or facultative (i.e. Staphylococcus spp.) anaerobes and exhibit 

remarkable adaptability to diverse oxygen concentrations. Furthermore, all major 

pathogens of the human lower gastrointestinal tract are facultative anaerobes 

(Marteyn et al., 2011). In addition, different oxygen sensing mechanisms in bacteria 

have been described, as well as changes in pathogen-host cell interactions (Marteyn 

et al., 2011). Other human prokaryotic pathogens such as Pseudomonas aeruginosa 

and Mycobacterium tuberculosis are obligate aerobes and generally are thought to 

require hypoxia adaptation mechanisms as part of their ability to persist in the lung 

and cause disease (Rustad et al., 2009, Hassett et al., 2009). Altogether, one could 

hypothesize that the ability to adapt to and prevail in oxygen-limited conditions is a 

global virulence attribute/factor of microbial pathogens like for example the ability to 

grow at 37°C. However, more research needs to be done to test this hypothesis. 

Finally, from a translational perspective, it is highly probable that an increased 

understanding of hypoxia and its impact on fungal pathogenesis could lead to 

improved therapeutic options for these often lethal infections. The SREBP pathway in 

fungal pathogens represents a promising target for antifungal therapy development. 

SREBP orthologs, analogs, and SREBP-like proteins have been identified in several 

pathogenic fungi, indicating an important and most likely conserved role of SREBPs 

(Grahl & Cramer, 2010, Bien & Espenshade, 2010). Importantly, studies of the 

human fungal pathogens C. neoformans and A. fumigatus showed that mutants of 

the respective SREBP are hypersensitive to the triazole class of antifungals which 
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are commonly prescribed to treat fungal infections (Chang et al., 2007, Chun et al., 

2007, Willger et al., 2008). In addition, a homozygous deletion of the SREBP analog 

Upc2p in C. albicans also resulted in hypersensitivity to triazoles (Silver et al., 2004). 

Furthermore, it is interesting to note that disruption of the SREBP pathway in C. 

neoformans converts the fungistatic activity of the triazole class of antifungals to 

fungicidal, meaning that instead of only blocking fungal cell growth these cells can be 

directly killed (Bien et al., 2009). As immunocompromised patients are more or less 

unable to clear fungal cells and have to under go long-term antifungal treatment 

when an infection is diagnosed, the fact that inhibitors of fungal SREBPs may act 

synergistically with current antifungal drugs to more effectively and rapidly clear 

fungal infections is of great interest and should be explored in future studies. 
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5. Summary 
 

Aspergillus fumigatus is a ubiquitous mold found in soil and organic debris that is 

currently the most frequent cause of airborne invasive fungal infections in 

immunocompromised individuals. The high mortality rate of invasive pulmonary 

aspergillosis indicates that increased efforts to disclose the principles of A. fumigatus 

pathogenicity are necessary. However, to date no sophisticated virulence factor has 

been identified for A. fumigatus. In contrast, it has been proposed that this human 

fungal pathogen is able to establish infection due to its robustness and ability to 

adapt to a wide range of environmental conditions. Those mechanisms involved in 

adaptation to host environments and allowing onset of an infection, we call virulence 

attributes. Importantly, over the last years increasing evidence has been found that 

oxygen-limited conditions occur during fungal pathogenesis in which both the 

pathogen and host cells must survive. In this study the hypothesis that hypoxia is a 

stress faced in vivo by A. fumigatus and that the ability to sense, adapt to, and grow 

in hypoxic conditions is a virulence attribute of this human fungal pathogen was 

tested and largely supported by our data. 

Utilizing pimonidazole hydrochloride staining in three immunologically distinct 

and clinically relevant IPA murine models, it was shown for the first time that hypoxic 

microenvironments occur at sites of A. fumigatus infection. In addition, the results 

suggest that both the influx and activity of host cells and the pathogen contribute to 

these hypoxic lesions. Thus, A. fumigatus has to be able to adapt to these oxygen-

limited conditions in order to cause disease. In this context, a SREBP ortholog was 

identified and characterized in A. fumigatus. Importantly, a null mutant of this SREBP 

was shown to be unable to grow in hypoxia and virtually avirulent. However, further 

studies need to be done to be absolutely certain that the inability of this mutant to 

cause disease is solely based on the hypoxic growth defect and not on other 

pleiotropic factors. Importantly, oxygen sensing and hypoxia adaptation mechanisms 

like the SREBP pathway can be identified in the model yeasts Saccharomyces 

cerevisiae and Schizosaccharomyces pombe as well as in human fungal pathogens 

Cryptococcus neoformans, Candida albicans, and A. fumigatus suggesting an 

important role for these mechanisms for fungal biology and virulence. 

In addition, it was found that A. fumigatus utilizes ethanol fermentation in vivo 

and that ethanol fermentation is induced under hypoxic conditions in vitro. While 
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fermentation was shown to not be essential for growth of A. fumigatus in hypoxia and 

fungal virulence, it was found that loss of the alcohol dehydrogenase involved in 

ethanol fermentation under hypoxic conditions resulted in significant changes in the 

host immune response as evidenced by increased neutrophil recruitment and 

alteration in cytokine production. Thus, the effects of hypoxia on fungal pathogenesis 

are likely to be more complex than simply altering rates of fungal growth. 

Lastly, it was found that the conventional mitochondrial electron transport 

chain of A. fumigatus seems to be involved in hypoxic signaling as a deletion of 

cytochrome C resulted in a loss of ethanol fermentation activation in response to 

hypoxia. Furthermore, the electron transport chain plays a role in growth under 

hypoxic conditions, as well as the oxidative stress response, and is important for A. 

fumigatus pathogenesis.  

Overall, the presented data shows that hypoxia occurs at the site of A. 

fumigatus infection and it suggests an important previously unidentified link between 

hypoxia adaptation and fungal pathogenesis of A. fumigatus. 
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6. Zusammenfassung 
 

Aspergillus fumigatus ist ein Schimmelpilz, der normalerweise im Erdreich zu finden 

ist und an der Mineralisierung biologischem Materials beteiligt ist. Daneben ist A. 

fumigatus allerdings in der Lage, den Menschen zu besiedeln und zurzeit 

verantwortlich für die meisten invasiven Pilzinfektionen in Patienten mit 

geschwächtem Immunsystem. Diese Infektionen sind schwer zu behandeln und 

verlaufen häufig tödlich. Die Grundlagen der Pathogenität von A. fumigatus sind nicht 

geklärt und es ist bisher nicht gelungen traditionelle Virulenzfaktoren für A. fumigatus 

zu identifizieren. Vielmehr wird vermutet, dass Fitness und Anpassungsfähigkeit an 

verschiedenste Umweltbedingungen dem Pilz eine Infektion des Wirts ermöglichen. 

In diesem Zusammenhang wurden in den letzten Jahren vermehrt Beweise dafür 

gefunden, dass sauerstoffarme Bedingungen während der Infektion auftreten, an die 

sich Pathogen und Immunzellen anpassen müssen. In der vorliegenden Arbeit wurde 

die Hypothese getestet, ob A. fumigatus während der Infektion hypoxischen 

Bedingungen ausgesetzt ist und ob die Fähigkeiten zu Wahrnehmung, Adaptation, 

und des Wachstums in sauerstoffarmer Umgebung ein Virulenzmerkmal von A. 

fumigatus darstellen könnte. 

Mit Hilfe des Hypoxiamarkers Pimonidazol-Hydrochlorid wurde gezeigt, dass 

sauerstoffarme Bedingungen während einer Infektionen mit A. fumigatus in drei 

immunologisch verschiedenen Mausmodellen auftreten. Diese hypoxischen 

Bedingungen scheinen vor allem aus dem Zustrom und der Aktivität der Immunzellen 

zu resultieren, aber auch Wachstum und Ausschüttung von Metaboliten des Pilzes 

tragen dazu bei. Demzufolge muss A. fumigatus über Mechanismen verfügen sich an 

sauerstoffarme Bedingungen anzupassen, um eine Erkrankung auslösen zu können. 

In diesem Zusammenhang wurde in A. fumigatus ein Protein, SrbA, identifiziert und 

charakterisiert. SrbA ist ein Ortholog von SREBP, das als Transkriptionsfaktor in 

höheren Eukaryonten die genetische Antwort auf Sterolmangel reguliert. Es wurde 

gezeigt, dass eine srbA-Deletionsmutante unfähig ist unter sauerstoffarmen 

Bedingungen zu wachsen und damit fast vollständig avirulent ist. 

Mechanismen der Sauerstoffdetektion und Hypoxiaanpassung sowie der 

SREBP Signalweg konnten in den Modellorganismen Saccharomyces cerevisiae und 

Schizosaccharomyces pombe, ebenso wie in den pathogenen Pilzen C. neoformans, 
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C. albicans und A. fumigatus identifiziert werden. Dies suggeriert, dass diese 

Mechanismen eine wichtige Rolle für die Biologie und Virulenz der Pilze spielen. 

Des Weiteren wurde gezeigt, dass A. fumigatus Ethanolfermentation in vivo 

nutzt und dass in vitro unter sauerstoffarmen Bedingungen die ethanolische Gärung 

induziert wird. Während dieser Stoffwechsel für das Wachstum unter hypoxischen 

Bedingungen und für die Virulenz von A. fumigatus nicht essentiell ist, konnte gezeigt 

werden, dass der Verlust der Alkoholdehydrogenase C, die in der 

Ethanolfermentation unter hypoxischen Bedingungen eine Rolle spielt, signifikante 

Veränderungen der Immunantwort hervorruft. Demzufolge sind Auswirkungen der 

Sauerstoffarmut auf die Krankheitsentstehung wahrscheinlich viel komplexer, als 

bloße Modifizierungen des Wachstumverhaltens. 

Abschließend konnte gezeigt werden, dass die konventionelle mitochondriale 

Elektronentransportkette von A. fumigatus eine wichtige Rolle für das Wachstum in 

Hypoxia und für die Pathogenität spielt. Außerdem scheint die Elektrontransportkette 

in hypoxische Signalwege involviert zu sein, da die Deletion von Cytochrom C zum 

Verlust der Aktivierung der Ethanolfermentation unter hypoxischen Bedingungen 

führte. 

Zusammenfassend zeigen die hier präsentierten Daten, dass Hypoxia während 

einer Infektion mit A. fumigatus auftritt und dass eine Verbindung zwischen 

Anpassung an hypoxische Bedingungen und der Pathogenität des 

humanpathogenen Pilzes besteht. 
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