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Abstract

Mobile agents are an interesting approach to the development of distributed systems.

By moving freely accross the network, they allow for the distribution of computation

as well as gathering and filtering of information in an autonomous way. Over the

last decade, the agent research community has decidedly achieved tremendous results.

However, the community was not able to provide easy to use toolkits to make this

paradigm available to a broader audience.

By embracing simplicity during the creation of a formal model and a reference imple-

mentation to create and execute instances of that model, our aim is to enable a wide

audience – even non-experts – to create, adapt and use mobile agents. The proposed

model allows for the creation of agents by combining atomic, self-contained building

blocks and we provide an approachable, easy to use graphical editor for the creation

of model instances. In two evaluations, we could reinforce our believes that, with the

achieved results, we could reach our aims.
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Zusammenfassung

Mobile Agenten sind ein interessanter Ansatz für die Entwicklung von verteilten Sys-

temen. Mit ihrer Fähigkeit, sich autonom und frei im Netzwerk bewegen zu können,

eröffnen sie neue Möglichkeiten für die Verteilung von Rechenzeit sowie für das Sam-

meln und Filtern von Informationen. In den vergangene zehn Jahren hat die Agent

Community enorme Fortschritte und Ergebnisse erzielt. Allerdings ist es ihr bisher

nicht gelungen, einfach zu erlernende und benutzerfreundliche Frameworks und Toolk-

its zur Verfügung zu stellen, welche einem breiten Publikum den Zugang zu diesem

faszinierenden Paradigma ermöglichen.

Mit der Fokussierung auf Einfachheit und Zugänglichkeit wird in dieser Arbeit ein for-

males Modells zur Beschreibung mobiler Agenten und eine Referenzimplementierung

zur Ausführung von Modellinstanzen erstellt. Dabei ist es das erklärte Ziel, einer

größtmögliche Anzahl von Nutzern das Erstellen, Anpassen und Ausführen von Agen-

ten zu ermöglichen. Dies schließt Personen, welche keine Experten auf dem Gebiet

der Agentenforschung beziehungsweise Computerwissenschaften sind, explizit ein. Das

entwickelte Modell erlaubt die Erstellung von Agenten durch die Kombination von atom-

aren, wiederverwendbaren Bausteine. Als Teil der Referenzimplementierung bietet ein

grafischer Editor die Möglichkeit, Modelinstanzen für die anschließende Ausführung zu

erstellen. In zwei Evaluationen konnten wir zeigen, dass die Ergebnisse dieser Arbeit

einen wichtigen Schritt für die Erreichung der gesteckten Ziele darstellen.
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Chapter 1

Introduction

1.1 Motivation for this Thesis

Over the past two decades, the area of agent-based software systems has evolved from

niche research area into a mainstream paradigm for designing and developing software.

Alongside, agent research has spawned numerous subareas like agent communication

and coordination, multi-agent planning and interaction, negotiation protocols, agent

models and methodologies or mobile agents. Depending on the focus of those areas,

the definition of an agent as well as their aims differ slightly. Whereas agents in a

multi-agent environment are considered to solve complex tasks by coordinating joint

efforts of all available agents, other types of agents pursuit goals on their own and are

considered as personal assistants of their respective owners. Especially mobile agents,

e.g. agents that are capable to move between different execution platforms, aim at

providing asynchronous, unattended services for their owners.

Over the last decade, the department of software engineering at the Friedrich Schiller

University has been heavily engaged in mobile agent research thereby creating several

iterations of the mobile agent toolkit Tracy. Tracy is a highly modular system based

on a micro kernel architecture which is responsible for basic system operations such as

agent execution and scheduling. For any additional functionality like agent migration,

message exchange or security measurements, Tracy features so-called plugins. It served

as playground for conducting research on the migration process of mobile agents and

aspects of interoperability between different agent toolkits. Moreover, it was utilized

in teaching to familiarize students with this paradigm and inspire them to engage in

research.
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Chapter 1 Introduction

With regard to interoperability the agent model of the Tracy agent toolkit has been

extremely lightweight and did not provide any basic functionality like life cycle man-

agement to build upon. Therefore, creating new agents meant to start from scratch

or extract helpful parts from an existing agent. Whereas the first option imposes a

significant burden and a lot of tedious, repetitive work, the latter one usually leads

to subpar software quality. Furthermore, without any framework to depend on, the

learning curve was very steep and students who wanted to learn agent development

struggled heavily.

Over the years, many other agent toolkits have established frameworks and tools

to create various kinds of agents. However, most agent models as well as frameworks

require specific domain knowledge and familiarity with partly exotic languages. Such

expertise is not very widespread among software engineers thus imposing a huge entry

hurdle into agent-based systems and development.

1.2 Contribution of this Thesis

Considering the efforts necessary to develop mobile agents with the Tracy agent toolkit,

we aim at establishing a completely new way to create mobile agents by focusing on

simplicity and ease of use.

One of the ultimate goals of the personal assistant research community is to enable

non-expert users to configure and use agents as their representatives. So far, the

community has not been able to propose a capable, usable solution to this goal. In our

opinion, the most important aspect of such a solution is simplicity. By hiding nearly all

technical aspects and provide easy to use tools that actively prevent users from making

mistakes, we aim at achieving exactly this goal.

In unison with simplicity arises another aspect that is required to ensure a wider

adoption of the mobile agent concept: a very flat learning curve. New users need to

gain successes very fast to dig further into the provided frameworks and tools and, in

the long run, get to know them exhaustively, stick with them and create astonishing

results.

Looking at other agent systems, one reason that prevents agent-based software to

gain wider acceptance can be attributed to the need to be familiar with partly exotic

and uncommon languages and development environments. The proposed system does

only rely on wide-spread and well-known programming languages, frameworks and

environments to reach a very wide audience.
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1.3 Outline of this Thesis

Despite the strong focus on simplicity and ease of use, agents created with the frame-

work and tools presented in this thesis are by no means limited in their capabilities

when compared to agents that have been created using traditional techniques. They

are equally powerful and are able to use all services provided by an agent system as

well as utilize third party services.

To achieve these goals, we propose a development process that involves two indepen-

dent tasks where each one is carried out by a specific role. First, there are agent develop-

ers, that create atomic, reusable building blocks such as message exchange, web service

access or agent migration. Second, there are agent designers which, by combining the

available building blocks in the desired manner, create agents. With the proposed sep-

aration of agent developers and designers and the strict encapsulation of self-contained,

single purpose actions, we can significantly increase the technical quality of agents and

thus enable better reusability, adaptability and maintainability.

1.3 Outline of this Thesis

The following chapter gives a comprehensive overview on agent research, its core con-

cepts and current research areas as well as limitations and drawbacks. Thereafter, in

Chapter 3 we will outline our motivation in detail, evaluate current solutions and intro-

duce an example scenario that will serve as a reference point in the remainder of this

thesis. Chapter 4 introduces the TAMo model and its core properties and elements

followed by an in-depth presentation of its implementation in Chapter 6. The aforemen-

tioned tools, that allow for the creation of TAMo based agents are discussed next and

in Chapter 8 the results of our evaluations are presented. Chapter 9 and 10 close this

work with a discussion of the results and an outline of future research.
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Chapter 2

Scope, Technologies And Related Work

The proposed work intersects with several research areas and is related to numerous

technologies and concepts. The upcoming chapter will outline these connections and

describe everything that is involved to provide a comprehensive picture how all these

parts fit together. We will start with a general discussion on the structure of the

Internet and current techniques and trends concerning the development of distributed

application. During the course of this chapter, we will further drill down to more

specific areas which are closely related to the presented work. By the end of this

chapter, the reader should have a sound understanding of the ecosystem in which this

thesis is situated.

2.1 The Network

One cannot overestimate the changes that the Internet has brought to our society and

culture. The ability to access nearly any information at any time and to communicate

with the whole world in real time has not only changed our daily life but complete

cultures and civilizations. During its existence, the Internet itself has changed several

times; not so much in its underlying infrastructure which still suffers from former, pri-

marily military goals [Clark, 1988] but more in the kind of provided services and their

accessibility [Yoo, 2010]. Started as a rather small set of connected mainframes that

were accessed by time-shared terminals, it is now a network of hundreds of thousand

interconnected networks around the world. Over the last decade, the Internet has ex-

tended its capabilities. Formerly used only for communication and information access

by human beings, it has evolved into a network of distributed applications and machine

usable services [McIlraith et al., 2001]. In the following, we will look at software archi-
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tectures of networked applications as well as the kinds of services that are utilized

therein.

2.2 Software Architectures for Distributed Applications

In this section, we will outline some of the most common architectures for distributed

applications. Starting with the traditional client server approach, we will follow the

evolution of those architectures up to the modern cloud paradigm.

2.2.1 Client Server

The Client Server paradigm is nearly as old as the Internet itself. In the early day,

numerous terminals accessed data that was stored respectively calculated on few main-

frames. Despite the fact that this paradigm has several drawbacks, e.g. the server

being a single point of failure or load balancing problems if the number of clients varies

significantly, it is still the most widely applied approach for distributed applications.

Modern approaches, which we will discuss in the remainder of this section, overcome

those drawbacks, but in their core, most of them are just an adaptation of the client

server architecture.

As mentioned above, in the client server architecture, a large number of more or less

capable clients access resources and services provided by a much smaller number of

servers as depicted in figure 2.1. Clients will issue requests and receive a response with

the results which is afterwards processed by the client. Depending on the kind of client,

these results may need a different amount of processing. In a classical web application,

where a server delivers web pages, the client is just tasked with rendering and displaying

those pages. However, modern web application have a much more powerful client part

and the server merely delivers raw data which is afterwards processed by the client

and integrated into a browser-based UI [Paulson, 2005; Garrett, 2005; Lawton, 2008;

Marchetto et al., 2008]. The same applies for pure software clients, that access remote

services to combine the data provided by several servers [Tsai et al., 2009]. Here, the

amount of client computation is rather high, too.

2.2.2 Peer-To-Peer

The term Peer-to-Peer is well known outside of the computer engineering community as

it does not only denote an architectural style but it is also the common synonym for file

sharing networks that apply this architecture. As the name suggests, every participant
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Client Machine

Server

Service

Client

Client Machine

Client

Client Machine

Client

Figure 2.1: Client Server Paradigm

in such a network is an equal peer and data and information can be exchanged between

any two peers. Thus, each peer can act as server and client as shown in figure 2.2.

Joining a Peer-to-Peer network, a new peer must know at least a single other peer that

is already part of the network. Some approaches introduce so-called super peers which

never leave the system and act as entry point for new peers. Others use multicast like

routines to find other peers.

Peer Peer

ServiceClient

ClientService

Figure 2.2: Peer-to-Peer Paradigm

Peer-to-Peer approaches overcome some well-known drawbacks of client server archi-

tectures [Vu et al., 2010]. These include, for example, scalability, reliability and perfor-

mance issues in large scale applications. These drawbacks arise from the fact that the
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single server introduces a bottleneck and single point of failure. Although these prob-

lems can be overcome by spending more money on server hardware and infrastructure,

a peer-to-peer approach seems to be a more elegant way.

Recent research on peer-to-peer architectures includes authentication and trust man-

agement [Moalla et al., 2010; Chu et al., 2010; Bachrach et al., 2009; Rodriguez-Perez

et al., 2008; Mármol and Pérez, 2010] as well as tracking for so-called freeriders – peers

that don’t contribute to the system by only using resources without offering anything

themselves [Tseng and Chen, 2011; Le Blond et al., 2009]. Due to the fact that data

is spread across many peers, access to that data can be evenly distributed among all

peers. This advantage is utilized for the distribution of large scale service offerings like

Video-On-Demand [Lei et al., 2010b,a]. Peer-to-peer architectures are also widely used

in Cloud services [Xu et al., 2009; Drost et al., 2011], which we will cover next.

2.2.3 Cloud Computing

Over the last few years, a new trend for providing services and data on the Internet

evolved. It was started by large companies with huge data centers like Google or

Amazon that wanted to leverage the immense storage and computing power provided

by such centers. Cloud Computing [Armbrust et al., 2009; Hayes, 2008; Foster et al.,

2008] aims at providing storage and computation in a transparent manner with a pay-

per-use model. It allows for companies to extend their infrastructure very rapidly as

the need arises without the burden to establish their own data center that would be

capable to sustain peak load. This is even more interesting for small startups which

can neither predict the evolution of their system’s load nor can they finance setting

up a data center. The cloud model can be compared to the production time frames in

large scale fabs which allowed for smaller companies to develop microchips and move

the production to a third party. A general overview on Cloud Computing can be found

in [Chorafas, 2010].

The term Cloud Computing has been overused in recent years by labeling anything

that somehow happens in the Internet as Cloud Service. Therefore, the term lacks a

clear definition which led many to the question if
”
cloud computing is new wine or

just a new bottle“ [Voas and Zhang, 2009]. But the core idea, receiving computation

and storage power like electricity, is very appealing [Wang et al., 2010; Grossman, 2009;

Kloch et al., 2011; Stanoevska-Slabeva et al., 2010].

Current research on cloud computing covers several important issues like the obvious

security questions concerning one’s own data hosted by a third party which is especially
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critical for a companie’s intellectual properties or the personal data of any individual

[Carlin and Curran, 2011; Yang et al., 2011]. Other researchers aim at providing

an automated way to bring old legacy enterprise software into the cloud [Zhou et al.,

2010a] or provide high performance computing similar to a Grid [Ekanayake and Fox,

2010]. Leveraging the power of the cloud in SOA architectures is another pursued topic

[Shuang, 2010] [Rodŕıguez et al., 2010].

A topic, which is especially interesting to this work is the usage of mobile code as

well as mobile agents to establish cloud services [Li et al., 2009; Aversa et al., 2010].

Due to the fact that computation and storage is extended in a transparent manner,

services and data must be moved respectively distributed to other machines during

runtime. Having a system that is able to transparently spread code and data in a

cloud infrastructure is therefore a very appealing concept.

Concerning modern mobile devices like smartphones and tablets, the possibility to

move computation from the device into the cloud is fascinating, too. Several years ago,

this idea was spread due to low bandwidth and high cost of mobile data connections

which made downloading huge amounts of data onto the devices unfeasible. Today, data

connections are fast and cheap, however, the limiting property of current mobile devices

is battery power. Thus, it is again desirable to move as much computational burden

as possible into the cloud to preserve precious energy [Cuervo et al., 2010; Oberheide

et al., 2008; Klein et al., 2010; Chetan et al.].

2.2.4 Mobile Code

Another architectural principle is Mobile Code [Ghezzi and Vigna, 1997; Carzaniga

et al., 1997; Vigna, 1997]. It is not an alternative to the client server or peer-to-peer

model as a whole but to the way of handling computation and data exchange between

two communication partners. In the traditional model of accessing resources on a re-

mote machine the requesting partner triggers the execution of a method at the remote

machine or queries a remote database and receives the result data. In contrast, using

the Mobile Code paradigm, code instead of data is transferred between the two com-

munication partners to allow for a computation near the stored data. There are three

different flavors of mobile code depending on the movement directions of code and data

as presented in [Fuggetta et al., 1998]. In the Code on Demand model, software is send

from a server to a client upon request to provide additional functionality at the client

side. Probably the best know examples of this flavor are Java Applets and Ajax-based

applications. The reverse model is called Remote Evaluation. Here, code is send from
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a client to the server to be executed near the data that is stored remotely. The main

goal of this model is to avoid the transmission of large sets of data by moving the code

to the data and not vice versa. Compare figure 2.3 and 2.4.

Client Machine Server

ServiceClient

Code

Figure 2.3: Code on Demand Paradigm

Client Machine Server

ServiceClient

Code

Figure 2.4: Remote Evaluation Paradigm

The third flavor of mobile code, Mobile Agents combine both aforementioned models

and incorporate the autonomous agent metaphor. They are able to decide on their own,

when and where to move and execute. The Mobile Agent paradigm will be discussed

in detail on section 2.5. For a more comprehensive discussion on distributed systems

we refer to [Coulouris et al., 2005].

2.3 Services

In this section, we cover so called web services. Such services transformed the Internet

from a human usable network for information sharing into a network where the standard-

ized interaction between machines and applications allowed for completely new kinds

of distributed applications. A service can simply offer the current time of day but also

it can also be a large scale meta-service that combines numerous other services. In this

section, we will look at different service types as well as techniques to combine and

utilize such services.
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2.3.1 SOAP Web Services

So-called Web Services have been designed to allow for respectively ease machine-to-

machine interaction in a heterogeneous network and are based on a number of open

standards. A Web Service offers a certain functionality and has a machine-readable

interface description usually provided in Web Service Description Language1 (WSDL)

format. Applications as well as other services can invoke a Web Service by sending

messages as described in the services interface. Those messages are usually wrapped in

a Simple Object Access Protocol2 (SOAP) envelop and transferred using the Hypertext

Transfer Protocol3 (HTTP). To find appropriate services, one can look up a Universal

Description, Discovery and Integration4 (UDDI) service directory. Due to those open

standards, Web Services allow for sharing of data and functionality in heterogeneous en-

vironments, e.g. across applications written in different languages and across operating

system boundaries. Furthermore, services provided by different organizations can be

composed into complex processes leading to service-oriented architectures (SOA). Dis-

cussion of these open standards is beyond the scope of this work so we refer to the

literature [Erl, 2005; Krafzig et al., 2005].

2.3.2 RESTful Web Services

In his theses, Fielding [2000] proposed a new architecture for the description and usage

of services based on the well-known and widely accepted HTTP protocol. This new

architecture is termed Representational State Transfer (REST). In contrast to SOAP-

based web services, which use only a small set of the HTTP protocol features, REST-

based services fully leverage the power of HTTP thereby overcoming the need for a

second protocol like SOAP.

With REST services, any entity that resides on a host is considered as a resource

with a unique URI that can be used to access this resource. Using HTTP requests,

the basic CRUD operations can be performed on any resource. The mapping of these

operations to HTTP methods is straightforward with Create = POST, Read = GET,

Update = PUT and Delete = DELETE. A Resource can be any kind of entity, from

business model objects like customers or commodities to rather logical objects like the

controller of a checkout process. To create a new customer, one would execute a POST

1http://www.w3.org/TR/wsdl
2http://www.w3.org/TR/soap
3http://www.w3.org/Protocols
4http://www.uddi.org/pubs/uddi v3.htm
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request on the URI of the customer container with the customer data in the request

body. Or, to receive a list of all customers, a GET request could be performed on the

same URI. REST distinguishes strictly between a resource and its probably various

representations like XML, JSON, HTML or an Image. Clients can request a specific

kind of representation by supplying an appropriate Accept HTTP Header alongside

the request and the service is in charge to either deliver a corresponding result or reply

with an error message.

HTTP is a stateless protocol and therefore REST services are stateless too. This

leads to several interesting properties of this architecture. First, the server must not

maintain any client states making it easy to scale the server side components. Second,

clients are in charge to handle the application respectively session state. The proposed

strategy to cope with this burden is Hypermedia As The Engine Of Application State

(HATEOAS). Similar to links and references in an HTML document, the representation

of a resource should contain references to actions, e.g. URIs, which a client can perform

and which in the end will change the application state. For example, the representation

of a shopping basket could provide a URI to start the checkout process as well as an

URI to remove all items in the basket. This strategy provides two advantages: REST

clients are not in charge to maintain their application state and the server still has

control over the flow of actions without explicitly maintaining client sessions.

REST-based services were rapidly accepted by the industry and leading edge web ap-

plication frameworks like Django5 or Ruby on Rails6 as well as state-of-the-art NoSQL

databases like CouchDB7 rely heavily on REST.

2.3.3 Service Composition And Workflows

Workflows have been introduced in the mid-eighties as a way to describe all aspects

of office work [Bracchi and Pernici, 1984] including data, activities, employees and

common processes. They have been derived from formal models like Petri Nets [Petri,

1962], production rules and flow charts [Wayne, 1973]. These models have been used

to visualize and/or define processes. A workflow describes a business process including

how tasks are structured, who is responsible for a specific task, what is the tasks

execution order, the flow of information between tasks and how they are synchronized.

Later, development led to a closer relationship between modeling and the actual exe-

cution of workflows which resulted in complete Workflow Management Systems. With

5https://www.djangoproject.com
6http://rubyonrails.org/
7http://couchdb.apache.org/
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such systems, one could define complex workflows that are afterwards executed by the

system. For example, such a workflow could describe a billing process involving several

activities like bill creation, inform the accounting department and send the bill to cus-

tomer. For more information on workflows as means to describe business processes we

refer to [Leymann and Roller, 2000].

As the name suggests, a workflow represents a flow of execution and is composed

of several activities that are connected in their specific execution order. The flow of

execution can be controlled by conditions and loops as well as forks and joins for parallel

processing. Beside these, some workflow systems provide a way to handle exceptions

and offer rules to bring the workflow back to an operational state.

Along with the evolution of web services, new workflow engines have been developed.

These allow for the creation and execution of workflows, where activities are mapped

to concrete web services. Thus, they provide a way to model business processes which

are mapped to available services [Alonso and Mohan, 1997]. The current de-facto stan-

dard for describing processes based on Web Services is the Business Process Execution

Language 4 Web Services8 (BPEL4WS or short BPEL).

The drawback of such solutions is that the mapping between activities and Web

Services has to be made by a developer in advance. Changes are tedious and error-

prone and the execution of a workflow may fail if a single web service is unavailable.

A solution to this problem might be semantic service descriptions, which provide a

way to map an abstract service request to a concrete web service dynamically. Thus

it is possible to construct workflows without concrete service mappings but semantic

descriptions of the required services. During execution, the workflow engine would try

to find matching services for each activity. See figure 2.5.

With the ability to exchange concrete services, a workflow management system can

adapt to changes during runtime. If a currently used service changes an important pa-

rameter like pricing or provided information, the workflow management system is able

to find another equivalent service that operates in the anticipated way. As an example,

consider a service offering airline travel information and a workflow for booking flights.

The workflow relies on a booking service that delivers information like time schedules

and available seats on a concrete flight. Now, the service changes and does only provide

the number of available seats but not their position any more. As the workflow needs

more specific information, the workflow management system will search for another

travel information service, which still delivers the required information. Thus, with the

8http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel
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Figure 2.5: Structure of Workflow Systems. Binding of concrete services to abstract service

descriptions is performed during runtime.

help of semantic descriptions and dynamic service binding, the system is able to hold

and maybe increase Quality of Service (QoS) parameters.

2.4 Multi Agent Systems

The term agent has its origin in the Latin noun agens which means the actor. An agent

is commonly understood as a person or entity that acts on behalf someone else or a

representative for somebody. In some countries, the term agent denotes a person that

works for the secret service. In english speaking countries, where the term has a more

wider meaning, such an affiliation is better described by operative or spy. Agents are

usually domain experts and can solve domain-specific tasks better and faster than others.

For example, landlords can charge a real estate agent to find lodgers for their houses

and take care of them during the tenancy. Another kind of agent are managers of

artist or athletes who usually coordinate appointments and negotiate on new contracts.

Another meaning of the term agent can be found in the area of chemistry and biology,

where an agent is considered as a substance that initiates a process.

In computer science, software agents are – in general – programs that are able to

solve a given task autonomously. Software agents have evolved from traditional object-
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oriented modeling and programming languages and the following actor model, that

was introduced in 1973 by Hewitt et al.. The actor model introduced asynchronous

messages and real concurrent execution – two properties which are associated with

agent systems today.

Unfortunately, the agent community can still not agree on a single definition for

software agents and a lot of attempts and formulations can be found in literature. While

most definitions differ in certain aspects and details, nearly all agree on four main

properties of agenthood that have been stated by Wooldridge and Jennings in 1995:

autonomy After given a task, agents act on their own without permanent control or

intervention of their owner. They have control over their actions and their internal

state. Thus, agents are well suited for asynchronous, non-time critical activities.

social ability Agents interact with each other using some kind of agent communication

language. Moreover, they interact with their owner – usually by means of a

graphical user interface.

reactivity Agents perceive their environment and will react on changes that occur in it.

The environment may be a single agent platform, a network of several platforms

or the whole Internet. The agent itself decides whether, when and how to react

on such changes.

pro-activeness Despite their ability to react on changes in their environment, agents

are able to actively decide what to do while pursuing their goals. Wooldridge and

Jennings describe this with taking the initiative.

Several other attributes are often associated with software agents; however, they are

not necessarily required for agenthood. These attributes include mobility [White, 1997],

learning, and benevolence as well as rationality and veracity [Galliers, 1988]. We will

take a closer look at mobility in section 2.5. Learning denotes the ability of an agent to

acquire knowledge from its past experiences and executed actions. During its ongoing

lifetime the agent will take into account that knowledge when considering its next steps.

Learning should help agents become more efficient over time. Benevolence describes

the fact that an agent does not have conflicting goals and will always try to fulfill its

given tasks. A similar concept is meant by rationality, which indicates that an agent

will work towards the achievement of its goals and will not forcefully try to prevent one

or more goals from being achieved. That an agent will not knowingly distribute false

information is called veracity. Huhns and Singh [1999] developed a test for agenthood

15



Chapter 2 Scope, Technologies And Related Work

that treats a tested program as a black box and only considers its behavior and not

the internals. A more comprehensive discussion of agent attributes and the attempt

to formalize them can be found in [Goodwin, 1993]. For further discussions on agents

and agenthood, the reader may have a look at [Genesereth and Ketchpel, 1994; Luck

and d’Inverno, 1995, 2001].

2.4.1 Agent Models and Architectures

Agents are situated in an environment and usually have some kind of sensors to perceive

changes in that environment. Based on these inputs agents generate an output or

perform actions trying to affect the environment and achieve their goals. Figure 2.6

depicts this simple concept. Over the years, many refinements have been developed

including different kinds of sensors and actors to generate special input respectively

output. Others have focused on techniques to transform inputs to concrete actions

ranging from simple reactive models up to complex reasoning and planning. We will

discuss several techniques to handle that input-output cycle in section 2.4.1.1 and

2.4.1.2.

Agent

Environment

sensor
input

action
output

Figure 2.6: Agent and Environment Interaction. Adapted from [Wooldridge, 1999]

Possible environments may be a warehouse where softbots are ordered to organize

the commodities, another planet reached by a space probe, or a number of computer

systems in a network where software agents interact with each other. As for the used

sensors and actors, one may imagine a softbot ordering and stacking crates and tons

in a warehouse, who perceives its environment with visual, audio, and touch sensors

while altering this environment with robot arms, a lifter or simply by moving around.

Contrary, a software agent would perceive its environment by incoming messages and

information provided by an agency. It could try to affect the environment by sending

messages to other agents or users and use services provided by the agency. Regardless
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of the type of the environment, most of them will be huge, complex and heterogeneous,

populated with agents, obstacles and different other systems. So it is unlikely that a

single agent has complete knowledge of or control over its environment. At most, an

agent will be able to influence its environment what leads to some interesting properties

of agent systems. First, an agent will decide on its limited knowledge, which may be

outdated or simply incorrect. This may lead to actions that may by no means be perfect

in a given situation or produce the desired outcome. The agent should anticipate that

the same action can produce different outcomes in similar situations or can actually

fail. Thus, agents must cope with failures and uncertainties. In 1999, Wooldridge

stated that – in most cases – environments are non-deterministic. Russell and Norvig

[2010,p.46] describe a set of different dimensions to classify environments. As one

could guess, one dimension is deterministic vs. non-deterministic while a second one

is referred to as perceivable vs. non-perceivable. The second one describes, if an agent

is able to completely perceive its environment or if it has to cope with uncertainty or

incorrect information.

Due to the fact that an exhaustive discussion on software agents is beyond the scope

of this work, we refer to the literature. Good introductions into agents and agent system

as well a discussions on further aspects can be found in [Weiss, 1999; Wooldridge, 2009;

Jennings and Wooldridge, 1998; Bordini et al., 2009; Bradshaw, 1997]. In the next

sections, we will take a closer look on several aspects of software agents starting with

architectures followed by multi-agent Systems, applications and current research issues.

As mentioned in the introduction of Section 2.4, agents use sensors to receive input

from the environment and perform actions to influence the environment. In this chapter,

we will discuss the question How do agents transform inputs to outputs? Generally,

there are two different abstract architectures – reactive agents and state-based agents.

Purely reactive agents will not consider past experiences when choosing the next action.

They will solely consider the current input to derive their next step. Contrary, state-

based agents keep a kind of world model; knowledge about past experiences or changes

in the environment after performing a certain action. When choosing its next step, the

agent will consider the current input and its knowledge base. Using such an architecture,

agents are able to learn from past experiences and can better anticipate the outcome

of a possible action.

In the next subsections, we will take a closer look on both architecture types and

discuss assets and drawbacks of existing systems.
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2.4.1.1 Reactive Architectures

As mentioned in the former paragraph, reactive agents select their next actions solely

on the last input from their sensors – thus they react on the last experience. They do

not keep a history of past inputs or actions to derive the next action from a chain of

past activities. See Figure 2.7. A simple reactive agent may have the task to oversee

a specific system parameter and, according to values of this parameter, perform some

actions. A good example for a simple reactive agent is an agent that controls the speed

of a chassis or CPU fan based on measured temperatures. Due to the fact that the fan

speed only depends on the actual system temperature, such an agent does not need

any history and as such a reactive architecture is well suited.

input output
sensor action

Figure 2.7: Agent and Environment Interaction in a Reactive Agent Architecture. Adapted

from [Wooldridge, 1999]

Reactive architectures apply a selection function that usually uses some kind of

lookup table to map important inputs to concrete actions. Every other input, that is

not related to the agents task, is disregarded.

While reactive agents are rather easy to implement, they have several shortcomings.

Reactive agents are considered to have a short time view as they only consider the

current state and are not able to reason about the environment and possible future

evolutions of the system. Furthermore, it is hard to imagine a purely reactive agent

that is able to learn form its actions and improves its performance over time. Supporter

of this architecture often argue that an overall system behavior somehow emerges from

the interactions of agents and components in a self-organized way. But emergence

is often attributed to complex systems where the relationship between components

is hardly, or even not at all, understandable. It seems that such systems, and thus
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agents making up such a system, are very hard to engineer and one has to use tedious

experimentation to create a systems that behaves in an anticipated way.

Kaelbling [1987] gives a good overview of the aspects concerning the development of

resource-bounded reactive agents. The best-known reactive architecture is the subsump-

tion architecture developed by Brooks 1986 that is mainly applied for mobile robots.

Discussions on alternatives can be found in [Maes, 1990] and [Agre and Rosenschein,

1996].

2.4.1.2 State-based Architectures

In contrast to the purely reactive agents described in the last section, state-based agents

determine their next action using past experience and actual input. State-based agents

maintain a world model that describes the environment and keeps track of their past

actions as well as the perceived outcome of those actions. Furthermore, they have a

set of possible actions and some kind of reasoning engine that allows for a mapping of

world state and input to a concrete action. By taking into account past experiences

during the reasoning process, they are able to learn from their history and can improve

their suitability and performance over time. Compare Figure 2.8.

input output
sensor action

Figure 2.8: Agent and Environment Interaction in a State-based Agent Architecture. Dashed

Lines indicate Access to the Agents State and Knowledge Base. Adapted from

[Wooldridge, 1999]

The most influential model for state-based agents is the belief-desire-intention (BDI)

architecture. Based on Bratmans work Intentions, Plans and Practical Reasoning [1999],

that covers aspects on human reasoning and goal-directed behavior, the BDI model was

introduced to the agent community by Rao and Georgeff in 1991. While most reasoning

architectures only consider beliefs and desires, e.g. goals, as the important building
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blocks of the system, Bratman [1999] argued that intentions play a crucial role in goal-

directed behavior. They act as partial plans, that are currently pursued and targeted

towards achieving one or more of an agent’s desires.

The general architecture as introduced by Rao and Georgeff [1991] is structured

in the following way. First, every agent has a believe base, that stores the agent’s

knowledge about its environment and the agent itself. Second, a set of desires or goals

is maintained, that contains states of the environment which the agent wants to achieve.

Third, as mentioned above, a number of intentions is generated respectively updated

during each execution cycle based on the current beliefs and desires. Intentions and

the associated plans are commitments to a specific desire. While holding a certain

intention, the agent commits to achieve the goals targeted by that intention. During

each execution cycle one intention is selected from the set of intentions and afterwards

executed. In a deliberation process, e.g. while updating its intention set, the agent can

decide to drop intentions and/or a complete desire if it becomes clear, that this desire

cannot be achieved anymore or that it has become obsolete.

Continuing his work on BDI agents, Rao developed a logic language named Agent-

Speak that is tailored to the description – and later to the programming – of BDI-based

agents. AgentSpeak was presented in [Rao, 1996]. Considerable research effort has been

devoted on AgentSpeak including a version for mobile devices [Rahwan et al., 2003] and

an extended version to allow for model-verification of multi-agent systems [Bordini et al.,

2003]. One of the latest implementations of AgentSpeak is Jason [Bordini and Hübner,

2004] which is implemented in Java and freely available. Beside its BDI underpinning,

Jason also allows for a transparent multi-agent distribution across the network, meaning

that agents residing on different hosts are able to act in concert. Other systems to

mention here are Jadex [Bordini et al., 2009] and JAM [Huber, 1999] whereas Collier

et al. [2000] and Busetta and Ramamohanarao [1998] describe systems for mobile

networks. We will take a closer look at these two systems in Section 2.5.3, where we

discuss architectures for mobile agent systems. Beside research on programming or

implementing BDI systems, Kinny et al. [1996] extended well-known object-oriented

paradigms to create a methodology and modeling technique for BDI-based systems.

A second architecture for cognitive modeling is SOAR [Lehman et al., 1998]. While

widely used in areas of social science and psychology, SOAR could not really gain

ground in the agent community in computer science, so we refer to the literature for

more information.
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2.4.2 Distributed AI, Communication and Cooperation

So far, we have mainly talked about agents as a single entity. However, agents are of-

ten embedded in a environment with many other agents – so-called multi-agent systems

(MAS) [Weiss, 1999], which are grounded in the field of distributed artificial intelligence

(DAI). Despite being a hot topic in computer science, this area also has roots in many

other research disciplines as for example artificial intelligence, sociology, economics, or-

ganization and management science, and philosophy.

MAS may be an answer to the increasing heterogeneity and complexity of modern

computer systems. While each agent is only responsible for a small aspect or task

of the whole system, the combination of a large number of interacting, moderately

intelligent agents may be able to solve distributed problems thereby showing some

kind of emergent behavior. There are several types of interaction between agents. The

basic distinction of interaction is cooperation or competition. The first one assumes

agents to be altruistic and to work together in pursue of a higher level goal that cannot

be achieved by a single agent. The latter one considers agents as entities that pursue

their own goals. The aim of the DAI community is to answer the question when and

how will agents interact with each other in order to achieve personal or shared goals.

Multi-agent systems are often attributed with terms like self-organization or emer-

gence. These attributes derive from the ideas that a large number of agents, where

each one is only responsible for a certain aspect of the system, is capable to solve more

complex tasks. It is assumed that agents in such a system are able to perform some

kind of distributed planning and negotiation on task assignments. But, as mentioned in

Section 2.4.1.1, emergence and self-organization are difficult to achieve and to control.

Research topics in the field of distributed artificial intelligence include cognitive model-

ing, social coalitions, collaboration and competition between single agents and societies

of agents as well as interaction protocols and agent communication languages [Kone

et al., 2000; Sun, 2006; Rooney et al., 2004].

2.4.3 Methodologies and Agent Oriented Software Engineering

Other scientist are concerned with design methodologies and engineering paradigms.

For example, some researchers claim, that object-oriented software engineering (OOSE)

is a good advance from older approaches but does not go far enough for agent-based

systems. In OOSE, everything is modeled as an object regardless of the kind of entity

that is modeled. In an object oriented system, one will thus find passive objects, that

are mere data closures, for example objects that model a contract or a database table.
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Contrary, there will be active objects that hold the actual flow of control and determine

the actual behavior of the system. This analysis led to the development of Agent-

oriented Software Engineering respectively Programming by Shoham in 1993, which

is still an area of active research [Huntbach and Ringwood, 1999; Bergenti et al., 2004;

Wooldridge et al., 1999]. To support AOSE, researchers have extend well-known OOSE

languages and tools like UML to allow for an easier modeling of agents and agent

systems [Odell et al., 2000; Bauer et al., 2001]. Critics of this so called Agent-based

Unified Modeling Language (AUML) argue, that the language is well suited for the

modeling of agent interactions but means for definition of agent properties and agent

models are rather limited [de V Peres and Bergmann, 2005]. Beside agent-oriented

modelling, [Shoham, 1993] and [Huntbach and Ringwood, 1999] have introduced new

programming concepts and languages that better suite for the implementation of agents

and agent systems.

A broader approach is taken by researchers, which work on whole engineering method-

ologies for agent systems. Such methodologies cover the complete specification and

design process and provide straight guidelines for engineers and developers. Several

methodologies have been developed; each one tailored to specific agent models like BDI.

The most notably methodologies for agent system engineering are Gaia [Zambonelli

et al., 2003], Tropos [Bresciani et al., 2004], MaSE [Wood and DeLoach, 2001] and

Prometheus [Padgham and Winikoff, 2004]. [Bernon et al., 2005a,b] give reviews on

existing methodologies and argue for a meta-model approach to create a unified method-

ology. The biggest drawback of nearly all methodologies is that they do not cover the

step from design to implementation. Thus, the mapping from model to code is com-

pletely up to the programmer and requires a high amount of knowledge about both –

the methodology and the target system. Current research tries to overcome this gap by

using a Model Driven Architecture (MDA) approach. A platform-independent model

is introduced that allows for the creation of agent implementations independent from

methodology and agent system. See for example [Amor et al., 2005]. For further in-

formation on methodologies we refer to the literature [Iglesias et al., 1999; Zambonelli

and Omicini, 2004; Henderson-Sellers and Giorgini, 2005].

The so called Agent Modeling Language [Trencansky and Cervenka, 2005] is an exten-

sion to the UML 2.0 meta-model and tries to combine the best of OOSE and AOSE. It

incorporates the most significant concepts of software agent engineering like methodolo-

gies (e.g. Gaia, Tropos, MaSE), agent models (e.g. BDI), modeling and specification

languages (e.g. AUML, UML, OCL, OWL) and agent platforms (e.g. Jade, FIPA-OS,

Jack) and is independent from any particular theory, technology or implementation
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environment. Due to is grounding in UML, AML can be further extended easily and

is supported by CASE tools. The authors tried to address deficiencies of current model-

ing languages like insufficient documentation, proprietary modeling constructs, tailored

at modeling of only a limited aspect of a system, applicable only in a specific domain,

theory, architecture or technology. But this huge aim leads to the major drawback of

AML: it has become very big and complex. It is doubtful if one can model every aspect

of a agent system where, for example, emergent behavior is desirable but cannot be

anticipated in advance. Furthermore, it is doubtful if such a complex framework, where

a single engineer would not be able to understand every detail of a huge model, can

really help to ease development.

2.4.4 Systems And Applications

This section covers systems and applications that apply agents in one or more aspects.

For several years now, the term agent has evolved to a buzzword widely used for all

kinds of applications. We are surrounded by mail agents that sort our emails, agents

looking like dogs or wizards that help us to write a letter or create a presentation. So

called user agents provide an interface to a (remote) system accepting requests and

instructions and display results. Auction agents take your part in overseeing an online

auction and bid until they reach a given limit or win the auction. Nevertheless, most

of these agents are rather simple or do not fully comply to our definition of agenthood.

Therefore, we will only take a look on systems, that fall into our concepts. Most of

these system, e.g. air traffic control or production coordination, apply a multi-agent

approach where agents work together and pursue a number of shared goals like reduce

number of crashed airplanes or maximize the number of goods produced per day. Kinny

et al. [1996] describe an air traffic control system supported by BDI agents. In [Van

Dyke Parunak, 1987], a multi-agent manufacturing system named YAMS is described

where agents collaborate using the Contract Net protocol [Smith, 1980]. As listed in

the introduction of [Weiss, 1999] or in [Fasli, 2007], other examples of multi-agent ap-

plications are electronic commerce and markets where buyer and seller agents trade

commodities on behalf of their owner. Further examples for agents in eCommerce

and supply chain management can be found in [Al-Jaljouli and Abawajy, 2010] and

[Zimmermann et al., 2006]. Real-time monitoring and management of telecommunica-

tion networks [Manvi and Venkataram, 2004] is another area where agent systems have

shown to be valuable. We refer to [Jennings and Wooldridge, 1998] for a more elaborate

discussion of multi-agent systems and applications.
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Bordini et al. [2009] classified available agent systems into two categories: Logic

or process algebra based systems and Java based systems. This distinction considers

the languages that are used to describe agents and not the language of the underlying

system that executes these agents – which is Java for all presented systems. Namely,

the systems that fall into the first category are Jason [Bordini and Hübner, 2004], 3APL

[Hindriks et al., 1999], IMPACT [Subrahmanian et al., 2000] and CLAIM/SyMPA. All

four systems have in common that they adapt BDI-like concepts, e.g. plans, beliefs

and goals, as well as a deliberation cycle to reason about future actions. Only Jason

implements an extended version of AgentSpeak [Rao, 1996], and thus the original BDI

model.

JADE [Bellifemine et al., 2007], Jadex [Bordini et al., 2009] and JACK [Bordini

et al., 2009] are the systems presented in the second category. Here the underlying

systems as well as agents are written in Java. JADE is one of the most widely used

agent platforms initially developed by TILAB9, which still holds the copyright. By

now, it is open source and in 2003, the JADE board was founded to supervise the

development of the project. Currently, the JADE board has three members, namely

TILAB, Motorola10 and Whitestein Technologies AG11. JADE is FIPA-compliant12

and offers a rather simple agent model that serves as the basis for the development of

more sophisticated agents. A retrospective on the Jade system and its achievements

can be found in [Bellifemine et al., 2008].

Jadex [Pokahr et al., 2005] is an extension that introduces the BDI model [Rao, 1996;

Walczak et al., 2007] for agent development into the Jade system. In contrary to the

systems in the first category, Jadex BDI agents are made up from an XML-based belief,

goal and plan descriptions accompanied by Java classes that implement plan behavior.

As Jade, Jadex is available as open source. Over the past years, Jadex has evolved

into the Jadex Active Components [Pokahr and Braubach, 2009; Pokahr et al., 2010]

middleware which provides a managed execution environment for active components.

In contrast to traditional (passive) components, active components exhibit a certain

amount of autonomy regarding their execution. Instead of just reacting to requests,

they can actively decide to perform some actions. With the evolution of the whole

platform into an active component middleware, the agent part became an extension

9http://jade.tilab.com
10http://www.motorola.com/
11http://www.whitestein.com/
12http://www.fipa.org
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to the new system. A second extension is Jadex Processes13 which provides execution

facilities for BPMN- and GPMN-based workflows [Leymann and Roller, 2000].

Another system, that integrates workflows in an agent system is WADE [Caire et al.,

2008b]. Similar to Jadex, WADE extends the JADE agent system with the ability to

execute workflows. Workflows can be created using an Eclipse-based graphical editor

called WOLF [Caire et al., 2008a] and are afterwards exported to Java code. There

are several kinds of actions that can be added to a workflow, e.g. to control the flow

of execution or access remote services. Even a container action that can be filled with

custom Java code is available. A single class file is created for every workflow and

is executed by special workflow agents. Due to the fact that the mapping between

workflow and code is rather complex and imposes various constraints, using the system

requires profound knowledge. Thus, it is clearly targeted at experts and not at end users.

Interesting to note, the authors claim that, with the mapping to Java classes, they have

introduced inheritance to the workflow metaphor as one could use an existing workflow

class and extent it to create a more specialized version.

In contrast to JADE, JACK [Padgham and Winikoff, 2004] is a commercial agent

system developed by the Agent Oriented Software Group. JACK is based on the BDI

model too and offers an agent-oriented language to describe agents using common BDI

constructs like goals, plans and beliefs. Other components provide standard agent

system functionality like message exchange support or a name server to find other

agents. Beside that, JACK comes with a number of tools like a graphical plan editor

to support the development of agent-based applications.

A third section in [Bordini et al., 2009] covers industry specific applications, namely

DEFACTO [Bondalapati et al., 1999; Schurr et al., 2005] and ARTIMIS [Sadek et al.,

1997], and we refer to the appropriate literature for further information.

Actual research on software agents or multi-agent systems is concerned with modeling

human cognition and social interaction and their mapping into multi-agent systems [Sun,

2006]. This research area is mainly grounded in cognitive and social science, but to

some extend depends on multi-agent systems to help in modeling and testing theories,

perform experiments or reassure real-live experiments. Another area of high activity are

interaction protocols for agents [Agre and Rosenschein, 1996; Labrou et al., 1999], that

describe the way, how agents should behave in a conversation with each other and how

they should share knowledge. There are several extends that are of interest depending

on the kind of relationship between conversation partners, e.g are they working together

13http://jadex-processes.informatik.uni-hamburg.de
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or is each one pursuing its own goals. Due to their heterogeneous and open nature, it is

hard to predict, how agent systems will behave, how fast agents are able to solve specific

tasks and if they will be stable in the long run. Thus, research and advancements

on reliability, stability and traceability of agent systems are important for a wider

acceptance of agent-based systems.

Over the past years, Grid and Cloud computing have gained reasonable attention

from research and industry. The agent community started to exploit the possibilities

when incorporating agent technology into Grid and Cloud systems. One hot topic is

the transparent reconfiguration of a cloud system regarding the location of data and

computation. In [Chaimontree et al., 2011], an approach to manage a large cluster

of machines is presented where agents represent single cluster entities to coordinate

the clusters runtime behavior. Dynamic resource reconfiguration of a Cloud system is

described in [Kim et al., 2011b,a] that allows for a better adaptability and Quality of

Service (QoS) of the whole system with respect to current runtime parameters like usage

load, number of different users and applications as well as data access schemes. [Hegazy

et al., 2010] are especially concerned with an agent-enhanced organization of storage

in a Cloud. Other topics which are tackled by agents are monitoring of cloud services

as well as ensuring the systems QoS parameters [Peregud et al., 2011; Liu et al., 2010;

Cao et al., 2001], service composition [Gutierrez-Garcia and Sim, 2010] and service

management [Zhou et al., 2010b; Lopez-Rodriguez and Hernandes-Tejera, 2011; Kim,

2006], information retrieval [Chang et al., 2011] and general system management [Tveit,

2002]. Further aspects on agents and Grids respectively Cloud systems can be found

in [Foster et al., 2004].

Supporting team workers in the field by letting agents coordinate their interactions

and provide a proper surrogate for negotiations if the actual team member is currently

unavailable is an interesting approach to ease the work of mobile workers. [Lee et al.,

2007] deployed such a system in the telecommunication industry whereas [Mercadal

et al., 2011] have targeted crisis management in emergency situations. An approach to

improve organ transplant management using interacting agents is described in [Calisti

et al., 2003].

A comprehensive overview on languages and platforms for agent development can

be found in [Bordini et al., 2006], whereas [O’Shea et al., 2011] gives a good overview

on current research topics. A review on industrial agent systems is presented in [Van

Dyke Parunak, 2000], and, with a special focus on traffic and transportation systems,

in [Chen and Cheng, 2010]. A simulation of production planning using agents was

executed in [Hod́ık et al., 2005].
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2.5 Mobile Agents

Mobile Agents have been introduced as a design paradigm for distributed applications.

They are, simply speaking, a combination of software agents and mobile code [Fuggetta

et al., 1998; Ghezzi and Vigna, 1997; Carzaniga et al., 1997]. Beside the characteristics

of a software agent, mobile agents are able to move freely across the network from one

execution platform to another. This process is called migration and it is initiated by

the agent itself. The agent decides where and when to move. In contrast to mobile code,

which is only transferred from one platform to another, mobile agents usually migrate

several times thus performing some kind of round-trip or star-shaped itinerary. This

ability is often referred to as multi-hop.

During a migration, the execution of an agent is stopped and its current state is

preserved. Afterwards, the agents code and state are transferred to the destination

platform where the state is restored and execution will continue.

What at first sounds like a kind of computer virus – an entity moving freely across

the network – is in most cases much more good-natured. There are several aspects in

the design of mobile agent toolkits that are targeted to prevent an ill-natured usage of

agents. First, every agent is executed inside a so-called agency which can be seen as a

sandbox. The agency controls an agents life cycle and limits its abilities while at the

same time providing services and access to legacy systems. Thus, mobile agents cannot

move freely between any different host. They are merely bound to migrate between

different agencies, whereas it is possible that a single, physical host runs more than one

agency.

Second, most mobile agent systems implement several security mechanisms to provide

fine-grained access to different aspects of the system. Some systems, like Semoa [Roth,

2001], are nearly exclusively focused on security and grouped all remaining system parts

around a complex security core. For example, mobile agent toolkits written in Java

– and that are currently the most – use a class loader hierarchy to control class and

object visibility thereby removing possible points for harmful actions. But with the

overwhelming power of an agency comes another security problem – that of a malicious

agency. Due to the fact that an agency controls the complete life cycle of an agent and

is in charge to load its code and instantiate its classes, an ill-natured agency is able to

alter an agent’s code or data, provide false information to an agent or contradict its

execution in some other way. As can be guessed, protecting an agent from a harmful

agency is a much more challenging task than to secure an agency against malicious

agents. We take a deeper look into mobile agent security in Section 2.5.2.
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According to [Lange, 1998; Chess et al., 1997] mobile agents offer several benefits:

They reduce network load. Distributed applications often suffer from unnecessary high

network load caused by communication protocols that are not well-suited for the

desired functionality of the remote client. A remote invocation may lead to multi-

ple requests and responses that get more and more specific during this interaction.

A second problem are huge replies due to unspecific requests where a large portion

of a reply is just thrown away after minimal examination. In summary, unneces-

sary network traffic is caused just to compensate the limitations, specifically the

generality, of the protocol. Instead, a mobile agent can encapsulate such an inter-

action and perform it locally at the remote system. And it is able to filter replies

at the remote host and will afterwards only transfer the useful data. Thus, it

will not produce any network load during the interaction with the legacy system

and will further reduce the network load due to the reduced size of the results

that are sent back to the home system. This concept is often described with code

shipping instead of data shipping.

They overcome network latency. Many systems, as for example industry production

processes, need real-time responses to changes in their environment. Especially in

larger networked architectures, this becomes a challenging issues due to network

latency which imposes a random delay to each remote communication. Using

mobile agents, which are able to operate on a remote host, these delays can be

omitted.

They encapsulate protocols. This point is somewhat related to the first. Due to their

ability to act as client representatives on the server side and perform all the

interaction, mobile agents encapsulate task or application specific protocols. A

distributed application, that is based on a mobile agent architecture, just needs

a single protocol for remote communication: the migration protocol for its agents.

Any other protocol can be encapsulated inside an agent. Beside the fact that the

network layer of such a system is relatively easy to implement, it is also very easy

to introduce new functionality by simply deploying new agents.

They execute asynchronously and autonomously. Due to their ability to change the

execution platform and act autonomously from the system where they have been

started, mobile agents are a natural choice for applications that operate in unre-

liable and throughput-constrained networks. As for example, mobile users often

use such network connections, which are, additionally, sometimes very expensive.
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Here, traditional applications that demand a permanent network connection are

all but optimal and mobile agents seem to be a good alternative.

They adapt dynamically. Mobile agents, as a special kind of software agents, are able

to sense their environment and react in a timely fashion to changes. For exam-

ple, a group of mobile agents can distribute itself among a number of platforms

to achieve an optimal configuration to solve a given problem. Or agents may

decide to change the current host due to performance issues like CPU or memory

overload.

They are naturally heterogeneous. Networked systems are naturally heterogeneous, both

in hardware and software. Mobile agents, which are independent from those differ-

ences due to their own, uniform execution environment, provide a good solution

to cope with this heterogeneity.

They are robust and fault-tolerant. Using their ability to move from host to host, mo-

bile agents can adapt to unforeseen evolutions like a host going down. Before

shutting down, the host could inform all agents running on this machine to leav-

ing the system and continue their execution on another host.

Another advantage, stated by Johansen et al. in 1995, is that with using mobile agents,

you do not need to maintain a distributed state as with a client server architecture.

Agent and state form a unit and the state is always at the same place where the agent is.

Thus one does not need to cope with several parts of a single state that are distributed

across the network, e.g. one part at a server and several parts on a number of clients

or vice versa.

Based on these advantages, a number of application scenarios seem to be well suited

for the adoption of the mobile agent paradigm. These include electronic commerce,

personal assistance, distributed information retrieval, information dissemination and

workflow applications and groupware, just to name a few. Nevertheless, critics often

ask for the killer application and so far, none could be found. All the above mentioned

applications can be realized using more traditional and well-known techniques like client

server. But compared to other industries, as for example automotive, many techniques

never delivered a killer application but are widely used today. We could still have our

cars pulled by one or two horses, but in times of petrol engines or hybrid electric power

trains, who would actually care about administering a horse. Those new engines did

not allow for a whole new type of movement. They just introduced a new way to handle

the movement.
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While other approaches may be better suited for a certain aspect of an application,

Chess et al. [1997] stated, that no other concept unifies the above mentioned benefits

better than mobile agents. Even if mobile agents do not introduce new application types,

they have theoretically proven to allow for more robust, scalable and simpler solutions

to a number of applications.

Unfortunately, research interest in mobile agents has dwindled over the last few years.

The reasons are manifold; the lack of a standard concerning agent or platform models

and architectures as well as open research issues like security made many researchers

skip that topic. For example, [Roth, 2004] described some obstacles, that prevent a

wider adoption of the mobile agent paradigm. Nevertheless, we believe that it is still

a very interesting and promising concept and the research community should rather

address open problems instead of skipping fascinating ideas. A good overview on the

general principals of mobile agents and applications based on this concept can be found

in [Genco, 2008].

In the next sections, we will take a closer look on several aspects of the mobile agent

paradigm. We will first look at the migration process in detail followed by a description

of architectures and systems. Afterwards, we outline some application scenarios and

take a survey on open research issues and the current research situation.

2.5.1 Migration Process

The ability to change their execution environment during runtime distinguishes mobile

agents from other kinds of software agents. Thus, the migration process is the most

interesting part for research and development and since the dawn of mobile agents, a

lot of work was conducted to increase migration performance. First, we will outline the

steps that make up a single migration and compare strong and weak agent migration.

Second, we will outline the evolution and current state of the art in agent migration.

In the following section, we will have a look at architectures, applications and current

research topics.

What sounds rather easy – move from host A to host B and continue execution –

involves several, partly complicated steps. Taking a closer look at the whole process,

we can identify the following steps (compare figure 2.9):

Capture execution state As soon as the agent decides to migrate to another host, the

underlying agent platform should stop the agent’s execution and capture the

agent’s execution state, e.g. runtime stack, values of local variables, and so on.
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Pack execution state and code After the state is preserved, the state and code must

be made ready to be send to the other host. This usually involves some compress-

ing and flattening code and state into a byte sequence.

Transfer over the network This byte sequence is afterwards transferred across the net-

work to the remote host. After a successful transmission, the above mentioned

states are executed in reverse order.

Unpack execution state and code On the remote host, the byte sequence is processed

and the agent’s state and code are restored.

Restart agent After having unpacked the agent and its code, the execution of the agent

is resumed.

Initialize Migration 
Process

Capture Data and 
State

Transfer the
Agent

Receive the
Agent

Deserialize the
Agent

Start Agent 
Execution

Network

Sender Receiver

Figure 2.9: Agent Migration Process.

The two most critical and complicated steps of the five presented above are capturing

and restoring the agent’s execution state. According to the implementation of these two

steps, weak and strong migration are distinguished. We will start with the discussion

of strong migration as the first mobile agent toolkits all supported this migration type.

With strong migration, the complete migration process is encapsulated in a single

command – usually a go statement. Using that command, the agent announces its

desire to migrate and specifies the destination. In doing so, the agent initiates the
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whole migration process and is transferred to the desired host. There, execution is

continued right after this go statement. Having an agent system that supports strong

migration, the development of mobile agents becomes rather easy as the migration

process is totally transparent to the programmer. However, this advantage also comes

at a cost. Due to the complete encapsulation of the migration process, the agent or

programmer has no way to influence the migration and how it is handled. One must rely

on the implementation provided by the underlying system. As mentioned above, most

of the first mobile agent toolkits supported strong migration as for example Telescript

[White, 1999], AgentTCL [Gray et al., 1996a] or ARA [Peine and Stolpmann, 1997].

One could say that weak migration is the opposite of strong migration as the advan-

tages and drawbacks are nearly exchanged. Using weak agent migration, the system

can only capture parts or nothing at all of an agent’s state. Instead, the agent respec-

tively agent programmer has to keep track of the agent’s internal state before initiating

a migration. After the migration was performed and the agent restarted, the execution

usually continues at a predefined point, where the previously saved state can be restored.

Constructing agents that rely on weak migration usually leads to state machines that

control the agent’s live cycle. Before a migration, the agent sets a new state and ac-

cording to this state, the execution is continued at the remote host. As mentioned

at the beginning of this paragraph, the advantage and disadvantages of strong and

weak migration are reversed. Due to the fact that agent migration is not enclosed in a

single statement, programming of mobile agents becomes a bit more difficult. Neverthe-

less, due to an increased control over the migration, the programmer can much more

influence the migration process what introduces new ways for optimizations. There

are at least two different reasons for the adoption of weak migration. First, one de-

cides actively for using weak migration to allow for better influence on the migration

process. Second, the underlying programming language makes it hard, if not impossi-

ble, to use strong migration. As Acharya et al. [1997] showed with their Sumatra

system, capturing the state of a thread in Java is impossible without changes to the

Java Virtual Machine. Due to the fact that Java has become the language of choice for

implementing mobile agent toolkits, many of them, like Aglets, Mole [Baumann et al.,

1998], Jade [Bellifemine et al., 2007] or Voyager [Kotz and Mattern, 2000], only support

weak migration.

In the last paragraph, we mentioned that, when using weak migration, the agent

respectively the programmer is able to customize the migration process. We now give

a short overview on actual migration strategies and outline the points, where one is able

to configure a migration. With the rise of Java and the amount of mobile agent system
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continuously rising, two main migration strategies evolved in the late 90s respectively

the beginning of the current millennium. These two are referred to as Push-All-To-Next-

Agency and Pull-From-Home-Agency ; the names roughly describe the main approaches

for migrating an agent’s state, code and data. The first strategy, Push, simply packs

agent state, code and data into a single container and sends it at once to the desired host.

There, everything is unpacked and execution is resumed. As one can see, this strategy

fits nicely with the autonomy property of software agents. As soon as the agent is

transferred to the remote host, no link back to the last agency is needed as all code and

date required by the agent has been transferred. A second advantage is the rather easy

implementation of this strategy. But all this comes with a price. There may be times

when not the complete code or data is needed at the destination agency and those

unused parts are transferred superfluously and network load is increased unnecessarily.

Using the second type, a Pull strategy, one can omit to transfer unused parts of the

agent’s code or data as this strategy only transfers the agent’s state to the destination

agency in the first step. There, the new agency tries to resume the execution of this

agent and will load all parts of the agent’s code and data on demand. What sounds like

an improvement over the simple Push strategy introduces a new point of failure. The

destination agency will need a constant uplink to the last host or at least a fast way to

reconnect. Only under those conditions the agency will be able to load code and data

as needed. If such a link is not present or cannot be established, the agent’s execution

will terminate as important parts are missing. This limits the autonomy of a mobile

agent in critical way. Nevertheless, a Pull strategy is the better choice if one tries to

keep the network load as small as possible.

Based on these strategies, Braun and Rossak [2004] developed a migration engine

that provides much more options to configure a migration. Braun and Rossak could

show that neither of these two strategies performs best in all cases and they argue

for adaptable migration strategies that can be configured by an agent during runtime.

This thesis led to the development of Kalong, a virtual machine for agent migration.

With Kalong, the agent respectively the programmer is able to configure a migration

in various aspects. For example, one can specify a set of classes that should be migrated

to the desired host in the first place while all the remaining classes will be loaded on

demand. The same can be done for data that accompanies an agent. Data can be

packed into well specified blocks and for each block one can defined when and how

it should migrate. Thus, Kalong provides a representation of nearly any migration

strategy that fits between the extreme Push and Pull strategies. Beside that, Kalong

provides some other ways to increase migration performance. First, Kalong comes with
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a class cache that is able to actively prevent class loading over the network if that is

unnecessary. Second, an agent is able to establish several code and a single mirror

server. Code servers allow for the agent to store code for later usage. For example, the

agent migrates into a subnet that has a very bad network connection to the outside

network. In such a case, it would be wise to install a code server inside this subnet.

Afterwards, the agent is able to load code from this server on demand and is not bound

to load code from its home agency using the slow and error-prone network connection.

Kern and Braun [2006] showed that with using code servers in subnets, the migration

performance can be increased significantly. We should mention here that an agent can

initiate as much code server as there are agencies inside the network14. In contrast to

code servers, an agent can only install a single mirror server. If the agent intends to

install a new mirror, then a probably existing old mirror server has to be released first.

On a mirror server, an agent cannot only store code but data too. Thus, the agent is

able to deposit currently unused data and decrease the size of data that migrates to

the next agencies. Later, if the agent will need that data again, it can load it from the

mirror server. It is even possible to up- and download data remotely to and from the

mirror server.

Even with the capabilities that Kalong provides, agent migration is still not optimal

in cases where the code granularity is not fine enough. When using standard Java

techniques for object serialization, the smallest code part, that can be transferred alone,

is a Java class. During our work on mobile agents, we found that the code of an

agent is often very coarse-grained and consist of only a single or a few classes. Thus,

most of Kalong’s features are useless – if only a single class is transferred, there is

not much room for fine-tuned migrations. Based on these experiences, we started to

work on a class splitting technique, similar to [Krintz et al., 1999], that allows for the

separation of existing Java classes on the Bytecode level. We were able to divide a single

classes into several new classes by moving methods from the original class into newly

created ones. The distribution of methods among the new classes was grounded on

execution probabilities derived from static code analysis and profiling runs. In [Kern

et al., 2004], we presented experimental results that show a significant increase of

migration performance when using the new fine-grained code set instead of the original

one. Further ideas to model the migration process of mobile agents can be found in

[Xu and Qi, 2006].

14We do not claim that this is a successful or even fast strategy. We only state, that the agent could

do so.
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2.5.2 Security

When compared to traditional paradigms, systems that rely on mobile code, that moves

across an open, potentially untrusted networks, introduce a set of new security issues

[Hohl, 2001]. [Chess, 1998] lists the main concerns that must be tackled in order to

secure a mobile code/mobile agent system. First, mobile code that entered a system

may come from an untrusted host. Thus, the current host, that is going to execute

the mobile code, should be protected against any harm that may be caused by the

foreign program. For example, the program may try to masquerade as a known and

trusted user in order to execute critical system commands or to access the file system.

It may even clone itself and distribute its siblings to other known machines (commonly

referred to as worm). The easiest solution would be to restrict the network to a set of

trusted hosts which would allow for executing code that comes from another trusted

host. And, in case of a harmful action, one could track down the originator of the

malicious program. But this scenario contradicts the general assumption of a world-

wide heterogeneous network where hosts and mobile code respectively agents enter

and leave at random. Thus, the originator of an agent is often unknown, so we need

techniques like digital signatures to build up a trust level.

A second issue, that is much harder to solve, is the protection of mobile agents from

malicious hosts. Consider an agent that roams the network in search for the cheapest

price of a product. On each host it visits, the agent gathers the actual price and moves

on to the next vendor. A malicious host could try to alter these so-far collected prices

or adapt its own offer in order to be the cheapest vendor. Such an attack is sometimes

describes as brainwashing. Another form of attack is called hijacking, where an agents

code is altered to influence the behavior of that agent. A vendor’s host could change

the price-search agent in so far that this agent will only consider the vendor’s offer.

Due to the fact that the host is in complete control of the executed program, many

researchers argue that this problem cannot be solved. [Sander and Tschudin, 1998]

describe a number of threats that can arise and suggests several techniques to handle

these threats. Shen and Tong could show in 2009 that the security level of a mobile

agent system can be improved significantly by introducing a trusted third party that

handles and controls interactions and data as well as agent exchange.

As stated above, we cannot rely on the underlying operation system (OS) to enforce

security policies due to the fact that mobile agents roam in heterogeneous networks

with different OS. Features of one OS may not be provided by another one and we can

only take a small set of features that any OS supports for granted. The most promising
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approach to tackle this issue is the usage of virtual machine language to write mobile

code and an interpreter for mobile code execution [Volpano and Smith, 1998]. The

interpreter sits on top of the OS and can enforce security. This is another important

reason why Java has become the language of choice for implementing mobile agent

systems. Beside being an interpreted language, Java comes packed with a great set of

security mechanisms [Oaks, 2001].

2.5.3 Systems and Applications

The first mobile agent system was Telescript, introduced in 1994 by White. Telescript

is an interpreted, object-oriented language with a collection of hierarchically organized

classes. It offered build-in autonomous process migration, which means that agent

execution after a migration continues with the next statement right after the migration

statement. From the programmers point of view, this is the most elegant way of writing

mobile agents as the system controls the whole migration process. With encapsulation

of the migration process into a single statement, the programmer is free to write agents

that move around the network without bothering about the details. Later systems, e.g.

those written in Java, demand a higher effort from agent developers as the migration

process is at least partly controlled by the agent itself. Telescript did not introduce

any build-in security mechanisms to protect agents or platforms. Thus, security is a

programmer issue that often leads to paranoia programming. Trying to secure every line

of code is tedious during writing a program and results in systems that are unnecessary

complicated, hard to maintain and error-prone. Further discussions on Telescript can

be found in [Tardo and Valente, 1996] and [White, 1999].

Another project that should be mentioned as one of the first focusing on mobile

agents is TACØMA [Johansen et al., 1995]. The main goal was to provide software

support for mobile agents and for about seven years, a number of prototypes have been

developed to tackle different research issues. None of these prototypes actually evolved

into a real application; the team rather focused on learning from experiences with one

prototype and then moved on to the next problems.

TACØMA introduced an interesting concept for an agent model and agent migration.

Each agent has its own briefcase, that contains the data and code associated with that

agent. Several so-called file cabinets exist on every host, which consist of a number

of folders. These folders can be used by agents to store and retrieve data, which is

not used at the moment. Even complete agents can be stored in a file cabinet as the

agent’s briefcase is just a special kind of folder. Early versions of TACØMA offered a
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taxi service for agent migration; a single agent carrying several briefcases moved from

host to host to deliver those agents to their desired destination. At the destination, a

briefcase is handed to gateway agents, which decide on next steps concerning the new

arrival. In later versions, each briefcase was directly transferred to the destination.

All TACØMA systems are consider as a kind of glue for composing programs and not

as a full-fledged environment to implement whole applications. The TACØMA workgroup

chose to implement weak migration in their systems to allow for complete control over

the migration process, i.e. what makes up the current state of the agent and what parts

need to be transferred. Beside agent migration, each new prototype provided one or

more new features like multiple language support, synchronization techniques between

agents, wrapper agents to encapsulate legacy systems and potentially malicious agents

or had a smaller footprint for execution on mobile devices. As an example, [Sudmann

and Johansen, 2000] could show that, by using agent wrappers, a WebCrawler, that

first migrates to the remote host can operate significantly faster than a Crawler work-

ing remote. For a complete overview on the whole project we refer to [Sudmann, 1996]

and [Johansen et al., 2002].

The first mobile agent systems where mostly based on scripting languages like Tcl

[Ousterhout, 1994]. Beside TACØMA, systems like Agent Tcl [Gray et al., 1996a,b],

D’Agents [Gray et al., 2002] or ARA [Peine and Stolpmann, 1997] were based on Tcl

or allowed for the execution of agents written in Tcl. A scripting language offers

several advantages; the most influential one is, without doubt, that agent migration

and platform independence can be easier achieved as with a compiled language like

C. Beside that, scripting languages are usually easy to learn and lead to faster results

due to a much shorter feedback and development cycle. Offering a library for GUI

programming named Tk, Tcl also allowed for rapid user interface development. Later,

as Java became more and more the language of choice for networked applications, Java-

based mobile agent toolkits like Mole [Baumann et al., 1998], Aglets [Lange et al., 1997],

Grasshopper [Magedanz et al., 1999], Jade [Bellifemine et al., 2001] or Tracy [Braun et al.,

2001, 2005] evolved. Java offered a number of advantages over the so far used scripting

languages. First of all, it is truly platform independent due to the application of a

virtual machine that is responsible for the execution of Java byte code. Thus, agents

as well as agent platforms written in Java can be executed on every host that provides

a Java Virtual Machine (JVM). Additionally, agent migration can be implemented

using language features like object serialization for state capturing and class loaders

for loading code from remote hosts. However, as mentioned in Section 2.5.1, using the
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standard JVM one is bound to weak migration as capturing the execution state of a

Java thread is impossible without changes to the JVM.

As described in 2.4.1.2, the BDI architecture is the most widely used architecture

for state-based agents. Therefore, it is not a surprisingly that several research groups

worked at developing mobile agents which are based on BDI. Aim of all those project

was merely to have the power of beliefs, desires and intentions in the mobile agent

world and thus, most of the groups just made BDI agents mobile while not taking into

account the specifics that only occur in the world of moving code. Many disregarded

the fact, that an agent’s code should be as small as possible to keep the migration

overhead low. Mobile BDI agents presented so far are merely ordinary BDI agents

transferred over the network.

Other systems to name here that support agent mobility are JAM [Huber, 1999],

JADE/Jadex [Bordini et al., 2009] or a mobility supporting AgentSpeak implementa-

tion [Rahwan et al., 2003]. Beside Jadex, mobility and BDI are also combine in [Collier

et al., 2000] and [Busetta and Ramamohanarao, 1998]. Other approaches, for example

process model based agents presented in [Paulino et al., 2003; Paulino and Lopes, 2006]

or XML-based agents [Steele et al., 2005], have been evaluated. For a good state-of-the-

art summary on mobile agents, we refer to [Gray et al., 2000].

Application domains that seem to ask for the usage of mobile agents are Information

Retrieval [Covaci et al., 1998; Brewington et al., 1999], Data Mining [Moemeng et al.,

2009; Yubao and Renyuan, 2009; Kulkarni et al., 2007; Chang et al., 2008] and Dis-

tributed Resource Information Management [Dale, 1998]. Information Retrieval and

Data Mining involves agents that roam the network to search information, filter it and de-

liver only the relevant results to their owners. The counterpart of Information Retrieval

is Information Dissemination, where agents spread information across the network by

moving from host to host. Both applications can be seen as the foundation of all other

scenarios, where agents collect or spread information among the network. For example,

[Brugali et al., 1998; Kern et al., 2006a] describe, how mobile agents can be utilized in

supply chain management to coordinate interactions across several partners that are

involved in the same business process. [Di Caro and Dorigo, 1998] describe a routing al-

gorithm for telecommunication networks that is based on mobile agents. [Lange, 1998]

lists several application scenarios that seem to be, or have proven to be, well-suited

for the mobile agent paradigm, for example electronic commerce [He and Leung, 2002;

Fasli, 2007; Pathak et al., 2009; Autran and Li, 2009; Kowatsch et al., 2008; Hou, 2009],

personal assistance [Kern et al., 2006b], workflow applications [Feng and Cai, 2008], e-

Learning [Wang et al., 2009], resource sharing [Suna et al., 2004], telecommunications
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[Van Thanh, 2001], image retrieval [Picard and Cord, 2006] as well as climate analysis

and prediction [Ioan and Liliana, 2008].

Like multi agent systems in general, mobile agents have been applied to the man-

agement and maintenance of Cloud and Grid structures as Foster et al. suggested in

2004. The available results range from full-fledged cloud and grid systems based solely

on mobile agent technology [Chen et al., 2010; Zhang and Zhang, 2009; Aversa et al.,

2009, 2006] to specific tasks like job coordination [Fukuda et al., 2006] and intrusion

detection [Dastjerdi et al., 2009]. Beside Cloud and Grid systems, others have focused

on providing a mobile agent based middleware for distributed and wireless applications

[González-Valenzuela et al., 2011; Aversa et al., 2003; Chang and Fan, 2010; Raza and

Shibli, 2007].

One of the largest application area for mobile agents is network management and

maintenance as well as establishing ad hoc and sensor networks. The ability to inject

new agents that are capable to freely roam the network, find their path across all nodes

and alter, for example, their configuration proved to be very valuable. Thus, a lot of

research effort has been devoted into different aspects of this topic. [Yamaya et al.,

2004] describe a system that is capable to establish ad hoc peer-to-peer network using

mobile agents whereas [Herrmann, 2003] focus on creating general logical networks

above the physical layer. Different means to spread data inside a network are covered

in [Chen et al., 2007b] and [Lu et al., 2009] and in [Massaguer et al., 2006] techniques

to explore wireless sensor networks using mobile agents are discussed. Such methods

are always governed by energy considerations [Arai and Sugiyanta, 2011] as well as

optimized routing algorithms [Chen and Zhang, 2009; Manvi and Venkataram, 2007;

Wu et al., 2010]. A huge amount of work has been devoted to the programming of

networks [Aiello et al., 2011; Chen et al., 2006; Szumel et al., 2005; Tong et al., 2003]

and to the creation of middleware concepts that easy the development and deployment

of networks [González-Valenzuela et al., 2010b,a; Shen et al., 2009]. Another important

issue in network maintenance is security and mobile agents are applied especially to

network intrusion detection [Wang et al., 2006; Xu and Li, 2009; Patil et al., 2008]

or trust management [Yeager and Chen, 2007]. A general overview on mobile agents

in network management is given in [Bieszczad et al., 1998; Ranganathan et al., 1997;

Chess et al., 1995]. Furthermore, special considerations for wireless sensor networks

can be found in [Dagdeviren et al., 2011] and [Chen et al., 2007a]. A survey on latests

application areas for mobile agents can be found in [Outtagarts, 2009].

As mentioned in the beginning of chapter 2.5, research interest in mobile agents

has dwindled over the last years due to several reasons. First of all, the absence of
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a killer application made researcher doubt the whole concept. Second, the lack of

standardization of agent models, toolkits and methodologies resulted in a wide variety

of systems that are unable to interact with each other. Moreover, research results

cannot transferred easily between different working groups. The FIPA standardization

efforts did not have the desired success. Only a handful of systems, like JADE, are FIPA-

compliant. The main reason is surely the complexity of the whole specification, which

makes the implementation of smaller systems or prototypes rather expensive. Last but

not least, most researchers doubt that mobile agents will ever become a secure technique.

As stated in section 2.5.2, no system will every be 100% secure and the same applies for

mobile agents. The risks of that paradigm may be higher than of other systems, but

can be handled as described in the last section.

Nevertheless, several groups continue their work on mobile agents or introduce the

concept into other areas. Still, work is conducted on improving the migration and

overall tour performance of mobile agents, for example by applying genetic algorithms

on tour planning [Cai et al., 2010; Schlegel et al., 2006], generating online network maps

[Erfurth, 2004] or creating content-specific itineraries [Ota et al., 2010]. Other topics

include tracing and controlling of mobile agents [Baumann, 2000], multi-task scheduling

[Liu et al., 2008] as well as the establishment of a reliable inter-agent communication

layer [Choi et al., 2010; Cao et al., 2004; Deugo, 2001].

Some groups argue for a special programming and modeling language as well as a devel-

opment methodology for mobile agent development that should provide constructs and

tools needed to ease the effort of system development [Ledoux and Bouraqadi-Saadani,

2000; Kendall et al., 1998; Kendall, 1999]. For example, UML does not provide useful

means to model code and data distribution among a network of hosts. However, others

object that it is to early for proposing such comprehensive things as we should first

target more low-level problems. Nevertheless, moving towards standardization is one

of the issues the agent community has to tackle in order to interest a wider audience

for this fascinating paradigm.

2.6 Tracy 2

This chapter will introduce the reader to the Tracy 2 Mobile Agent System actively

developed at the Friedrich Schiller University Jena (FSU), Germany [Braun et al., 2005]

and it is the successor of Tracy, the first mobile agent system created at the FSU in 1999.

Tracy featured a monolithic architecture and helped to experiment with and evaluate

agent technology, especially mobile agent migration, in the early year of agent research.
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The acquired experiences led to the development of Tracy 2 which is based on highly

modular architecture and and a very lightweight agent model. In the remainder of this

work, we will refereed to the Tracy 2 Mobile Agent System as Tracy. The following

sections describe the overall system architecture of Tracy as well as the enclosed agent

model.

2.6.1 Architecture And Components

The monolithic architecture of the first Tracy system presented some drawbacks that

made the complete redesign of the system a necessity. First, extending the system with

a feature required a single, specialized agent that acted as a proxy between Tracy and

the new module. This, combined with the second drawback, a very simple but difficult

to use agent model made the adaptation and utilization of the first Tracy system in

large-scale applications in heterogenous environments a tedious and error-prone task.

The redesign of the system clearly targeted this issue by introducing a lightweight,

modular architecture based on a micro kernel that is accompanied by feature-specific,

self-contained plugins and agents.

Java 2 Runtime

Tracy 2 

Plugins

Tracy 2 Kernel

Tracy 2 

Agents

Figure 2.10: Tracy 2 System Architecture

The micro kernel is responsible for the basic system operations such as agent execu-

tion and scheduling, hosting of an agency as well as loading and unloading of plugins.

Any other feature, like security, message exchange, agent migration or database or web

service access is implemented in plugins. Compared to the first Tracy system, plugins

can be considered as a feature module with the proxy agent included. Tracy distin-

guishes between plugin and service – a plugin provides a single service but a single

service may be provided by different plugins. This n:m relationship leads to a more
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fail-safe and robust environment by providing several independent and probably differ-

ent modules to handle the same task. Every plugin provides a specific context object

that acts as the interface to access a plugins functionality and access is controlled by

permissions issued to agents and plugins. Context objects are maintained by the cur-

rent agency and a context object can be requested by either supplying a service or

plugin name. To increase the systems flexibility, plugins can be loaded and unloaded

during runtime allowing for an easy system reconfiguration while maintaining a high

availability.

Tracy comes with a large set of plugins for various needs. Some of the more important

ones are the following ones:

Migration To enable agents to switch their execution environment during runtime, the

Migration plugin provides weak agent migration in the Tracy system. Due to

the fact that agent migration has been the main research focus at the FSU, the

Migration plugin provides a very sophisticated migration engine developed by

[Braun and Rossak, 2004] which has been described in section 2.5.1.

Messaging The message plugin offers a message exchange service that allows for asyn-

chronous inter-agent and agent-plugin communication. The Message plugin trans-

fers simple text messages between sender and receiver and it is up to the communi-

cation partners to exchange meaningful information, e.g by using ACL-compliant

messages.

Survival The survival plugin helps agents to reside on an agency in what can be call

sleep-mode.

After an agent’s execution is finished, the agent is stopped and destroyed and the

thread which hosted the agent is returned to the tread pool. But there are many

tasks an agent is faced with which require the agent to wait for a variable amount

of time until some event occurs or a time frame has closed. For example, an

agent may require a specific service that other agents can provide and therefore

makes a call to all the agents. After making this call, the agent has to wait until

it receives some answers or its time is running out and it has to continue its task.

To keep agents alive even after their current execution cycle has ended, the Sur-

vival plugin can be used. Agents simply request a context to this plugin before

their execution ends. The Survival will prevent the deletion of this agent and can

reactivate it at configurable times or intervals.
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Shell The Shell plugin provides a simple command shell to administrate a running

Tracy agency.

TAAS (Tracy Authentication And Authorization) The TAAS plugin provides sophis-

ticated security mechanisms that can be adapted during runtime to allow for a

fine-grained access control between agents and plugins.

Monitoring The Monitoring plugin provides statistical information about a running

agency, e.g. the number and types of running agents and their current life cycle

status like running, migrating, etc. An overview of installed and running plugins

is also provided.

Furthermore, the Monitoring plugin provides an interface for the Tracy Adminis-

tration GUI Wai Lin, which is described in detail in section 2.6.3.

NetMonitor The NetMonitor plugin allows for constant monitoring of a Tracy 2 agency

network, e.g. the number of available agencies, latency and bandwidth between

any two agencies. The collected information can be integrated into agent migra-

tion decisions.

NetworkManagement The NetworkManagement plugin provides a more sophisticated

and robust logical network overlay based on the JXTA15 peer-to-peer framework.

It allows for the discovery and access of Tracy agencies and provided services in

an otherwise unknown network. Compare figure 2.11.

Partitioner As mentioned above, the main research area of the Tracy team has been

the optimization of an agent’s migration process. Based on the flexible possibil-

ities to configure agent migration behavior as provided by the Migration plugin,

further optimizations have been evaluated [Kern et al., 2004; Kern and Braun,

2006; Braun and Kern, 2005].

One of them is available with the Partitioner plugin. The Migration plugin allows

for the selection of single classes that should be transferred during a migration.

However, many Tracy agents consist only of one or a few classes thus unnecessarily

limiting the power of this feature. The Partitioner plugin is able to split agent

classes into several smaller parts based on information gathered by static code and

runtime analysis as well as heuristics. Thus, an agent’s code is spread among a

fine-grained set of small classes and a migration can be configured in a satisfiable

and useful way.

15http://jxta.kenai.com
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Layered Peer-to-Peer

Node

SuperNode Layer One Connection

Layer Two Connection

Figure 2.11: Network Management based on JXTA.

For more details about this process we refer to [Kern et al., 2004].

AgentTrace The AgentTrace plugin can be used to run automated migration tests in

a network of agencies. The plugin is able to run several test cases in serial where

each case may consist of any number of agents that perform a given number of

tours among the available agencies. Each of those agencies must have the Agent-

Trace plugin running in order to gather statistic data like local agent execution

times or point of time for in- and outbound migration. After running a test case,

an agent will collect all the acquired data and return to the test running agency

to create a comprehensive report.

AgentPersistency The AgentPersistence Plugin serves two main purposes. First, it

enables agents to capture their current state to create a kind of checkpoint which

can later be used to return to exactly that state. Second, it allows for capturing

the state of all currently running agents and reestablish the whole agent environ-

ment at a later time. For example, this can be useful in case of a system restart

due to a scheduled maintenance event.

44



2.6 Tracy 2

Figure 2.12: Process of Partitioning an Agent during Startup.

After discussing the general system architecture of Tracy and several of the more

common plugins, the next section will take a closer look at Tracy’s agent model.

2.6.2 The Tracy Agent Model and its Shortcomings

The Tracy Agent System features a very lightweight agent model which provides only

the absolute necessary foundations for mobile agents to achieve a maximum of interop-

erability.

During the time when the conceptual work and initial prototype development have

been conducted many different mobile agents systems have been in the wild. All of them

claimed to run in heterogeneous environments, to interact and exchange agents with

other systems. Whereas many of them were able to deliver on the first two claims, most

of them failed concerning the third one. Which was, and still is, the most challenging

problem. But mobile agents have been considered as a paradigm, which is capable to

overcome the difficulties of a heterogenous environment, and therefore agent migration

between and execution of agents on different platforms is absolutely necessary.

One vision for the second version of Tracy has been to provide a lightweight agent

model that allows for agents, which can at least be executed on nearly every agent

system that was available at this time. Due to the fact that the language of choice for

mobile agent systems has been, and still is, Java, the Tracy team aimed for the smallest

set of properties that all Java-based mobile agents had in common. As it turned out,

this set was rather small. The only similarity between all mobile agents was their
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ability to be executed as a Java thread, e.g. they all featured a run method, and could

be serialized. Thus, the Tracy team decided to abandon any concepts of providing

a base agent class for Tracy agents, which could have delivered various frequently

used functionality like agent state handling or a sound way of handling aggregated

data. Instead, they made the existence of a simple run method and the ability to be

serializable the only conditions to qualify as a Tracy mobile agent. In following this trail,

Tracy agents can be transferred and executed between any Java-based agent system. In

2004, Braun et al. showed that the integration of the Tracy migration engine into the

Jade [Bellifemine et al., 2007] system allowed for agent migration between Tracy and

Jade agencies. Furthermore, it seemed to lower the entry hurdle for writing mobile

agents to manageable level for even novice Java programmers due to the fact that it

does not require the understanding of a complex agent model.

As consistent as this may seem, it did come – as we now know – with a large set

of concessions. But at first, it seemed like a great idea, having no limitations on how

to write a mobile agent. Each programmer could try out different ideas on what she

thought would by an ideal inner structure for an agent. However, most Tracy agent

programmers settled with a simple state machine that, depending on the complexity of

the agent, resulted in a confusingly long list of state constants and conditional statements.

These state machines were hard to understand and maintain. Moreover, most agent

programmers tended to copy such an already written state machine to every new agent

hoping to save time. While the time saving idea was always a false friend, this habit led

to the existence of countless agents sharing nearly the same code structure but doing

entirely different tasks.

Beside that, the non-existence of any basic foundation for an agent has led to various

concepts on how an agent should use Tracy plugins. Tracy plugins are extensions to

the Tracy micro kernel that provide additional functionality to the system. Plugins can

be installed, started and stopped during runtime and are accessed via a dynamically

created context. An agent needs to obtain a context object, which will act as a proxy

between the agent and the desired plugin. Some of the basic plugins described above,

like message exchange or migration, are needed by nearly every agent, but the code to

use these plugins was newly written – or copied – for each new agent. The resulting

problems are essentially the same as with the aforementioned state machine.

In conjunction with several shortcomings of the system as a whole, the lack of any

structure and guidelines for agent programming also lead to a reduced value of Tracy

2 for teaching purposes. During their first steps like initial installation or getting an
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agent migrate between two agencies, students stumbled far to often to raise a greater

interest in agent technology.

2.6.3 Tracy Administration

During the early stages of the MobiSoft project [Erfurth et al., 2008], it became ap-

parent that the command line provided by the Shell plugin isn’t suitable for larger

application scenarios and doesn’t appeal to normal users. Thus, combined with the in-

formation already gathered by the Monitoring plugin, the Tracy team decided to create

a graphical user interface to administrate a set of Tracy agencies. The new frontend

was named Wai Lin, after a fictional female, chinese secret service agent starring in

the James Bond film Tomorrow never dies16.

Figure 2.13: Wai Lin - Tracy 2 Administration Workbench.

The Eclipse Rich Client Programming Framework was chosen as the core for the

new plugin as it provides a widely distributed and and well-known, easy to use founda-

16http://www.imdb.com/title/tt0120347/
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tion. The plugin’s structure is similar to common database administration tools. It

offers means to connect to different agencies at the same time, access all the statistical

information about plugins, agents and users. Furthermore, plugins and agents can be

started or stopped. One especially nice feature is tracking of an agents tour among

the connected agencies. In detail information about single migration and roundtrip

times, delays and residence durations can be accessed thus allowing for a great system

overview and agent debugging. See figure 2.13.

To access all these information, the Monitoring plugin has been extended to provide

all its gathered information as a web service and to allow for the connection of clients,

for example the newly developed graphical Tracy frontend.
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Thesis And Structure of this Work

So far, we have outlined the current state of research along with the drawbacks of our

own agent programming model. We will now discuss the shortcomings of the most

prominent agent model – BDI – and present ideas, aims and reasons for our own

approach.

3.1 Drawbacks of BDI

At this point, we shortly recall the BDI architecture that was in detail described in

Section 2.4.1.2 and analyze several drawbacks of this agent model.

Core elements of the BDI model are beliefs, desires and intentions. Beliefs describe

an agent’s knowledge about its environment and itself, desires mark an agent’s goals

and intentions are commitments to achieve one or more goals at a specific time. During

each execution cycle, a BDI agent perceives changes in its environment and updates

its belief base. Based on these new beliefs, the desires are updated, e.g. it could turn

out that a single desire can no longer be achieved so the agent will drop it completely.

Afterwards, the set of currently hold intentions is updated and one of these intentions

is selected to be followed in this execution cycle. Intentions are usually mapped to

predefined plans which are executed to work towards the achievement of this intention

and thus the related desire. BDI systems have proven to work well in the field of

multi-agent systems that are applied in closed scenarios, for example air traffic control.

At this point, one could suggest we should simply select one of the available BDI or

reasoning architectures and integrate them into our agent system. However, there are

several aspects that discourage a simple adaptation of a BDI system, respectively the

BDI framework:
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BDI systems disregard mobility performance As stated in section 2.5.3, current BDI

systems are nearly solely focused on just the BDI part and the basic properties

of agenthood. Many of them completely ignore mobility as a possible agent prop-

erty while others allow for mobile agents but use rather simple implementations

for migration. The reasons may be that most of these systems evolved in the

traditional agent/multi-agent community. However, we start from the opposite

direction with mobile agents and a mobile agent system trying to move towards

this basic agent scheme.

BDI systems are barely suitable for typical mobile agent tasks As an example for a

industry-proven BDI system, we refer to JACK [Padgham and Winikoff, 2004].

To achieve a performance that is suitable for real world applications, the JACK

implementation disregards several aspects that make up a BDI system in theory.

These are ad-hoc planning and adaptation of plans; JACK merely uses predefined

plans that are just executed [Padgham and Winikoff, 2004]. Our aim is not to

implement just another BDI system, thereby dropping important aspects of this

model to make it applicable in real world scenarios. We rather want to learn

from the conducted research and achieved results and construct a system that is

applicable, usable, still flexible and maybe a bit BDI-like.

State-based/BDI systems are hard to understand and use This claim arises from the

fact that, in most BDI systems, agents and plans are described in a kind of first

order logic language. Despite the fact that logic should be common to every

computer scientist and engineer, most of them do not use them daily or write pro-

grams in such a language. Thus, introducing a system based on a logic language

into industry would at least be difficult. System architects and engineers would

have to learn a new programming style, learn to build programs with it and ac-

quire a base knowledge on this new kind of system. We believe that it would be

much easier if such a system is written in a well-know and widely used program-

ming language. Thus, one is not bothered with learning a complete new style of

system development, but can concentrate on the aspects of the new paradigm by

leveraging existing knowledge.

BDI systems have a fixed set of plans As mentioned before, most BDI systems use

a set of plans, that are applicable in certain situations respectively usable to

follow specific intentions. Thus, a pre-defined plan is mapped to an intention at

runtime and is afterwards executed. Such plans are usually a set of activities
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which are structured in a certain order. Agents will receive a number of plans

at start up and are meant to acquire new plans from other agents by means of

interaction, collaboration, and negotiation [Ancona and Mascardi, 2004; Ancona

et al., 2004; Jonker and Robu, 2004]. However, due to the fact that all plans

must be related to some beliefs that make up an agent’s world model, it seems

to be quite hard to integrate foreign plans into an agent’s world model at runtime.

Recently, the Jadex team extended their system with a planning engine that

is used in situations where no applicable plans can be found in the plan library.

Given a hard time limit, the planner tries to construct a plan that is applicable

in the current situation. If no complete plan can be derived inside the time frame,

the best one found so far will be used [Walczak et al., 2007].

Balance between Reasoning and Acting The most critical aspect of a BDI system is

to find a good balance between reconsideration and goal-directed behavior. On

the one hand, a BDI agent should often enough reconsider its current behavior and

reason about future steps to uphold its adaptability. On the other hand, if it does

this too often, the agent will be completely occupied with this reasoning process

and will not achieve anything because of ever-changing desires and intentions.

Evaluations could show that seldom reconsideration works well in slowly changing

environments whereas highly dynamic environments demand a more frequently

reasoning [Fasli, 2007].

3.2 Towards Modular, Plan-based Mobile Agents

In this section, we will outline the system and architecture that we have in mind. How-

ever, before going into detail, we need to define several terms that are essential to the

understanding of the upcoming paragraphs.

Task A task denotes user given goals that should be reached by the execution of an

appropriate plan.

Plan A plan is a combination of actions that form a step-by-step guideline for an agent

to solve a user-given task.

Action Atomic actions are the core building blocks of plans and, thus, agents. Each

action is related to an activity or function that can be performed by an agent, e.g.

send a message, migrate to a remote agency or query a directory service.
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After introducing these terms we can now start with the description of our ideas.

Instead of adapting a BDI agent model, where agents select plans and actions during

runtime for execution, we aim at providing agents with a complete, fault-tolerant script.

As such, the script is made up of one or more tasks and can be considered as the logical

evolution of our old state machine model, only without the various drawbacks. First,

handling of such a script should be as simple as possible to allow for easy creation and

maintenance. Second, a task description should provide mechanisms for flow control, e.g.

decisions and loops, and to handle runtime errors, e.g. the failure of a single action or

a complete plan. At last, agents should be able to execute any script that conforms to

a general model. Thus it would be possible to exchange scripts during runtime.

Further on, we will base our research on a real world scenario to keep track of the

important problems. Many agent models like BDI have proven to work well with rather

artificial examples like Blocks World [Bordini et al., 2009] or simple auctions [Bordini

and Hübner, 2004]. Even in such easy scenarios, current BDI agent descriptions tend

to be rather complex and hard to understand.

The main goal of our work is to ease the development process of mobile agents by in-

troducing a framework that allows for the creation of agents based on a set of high-level

building blocks. We aim at using the best of both worlds, e.g. the plan concept of BDI,

which abstracts from atomic actions an agent can perform and the straight forward

approach by programming agents in a widely used programming language, respectively

environment, that is well-known to the typical application developer. Domain-specific

plans that can be combined to larger scripts fulfilling more extensive tasks will help us de-

scribe reoccurring tasks in a generic, reusable way. Beside that, they abstract from the

low-level programming of state machines as well as the configuration of migration steps,

thus making the development cycle of mobile agents easier and faster. Furthermore,

scripts may contain parts that can be achieved in any order or in parallel. Having the

freedom to choose between these options, agents may exhibit a more proactive behavior

than agents that are bound to a fixed sequence of low-level statements.

3.3 A Unified Approach to the Development and Usage of Mobile

Agents

In the last sections as well as in chapter 2, we have described the drawbacks of current

planning architectures for agents as well as the shortcomings of our own agent program-

ming model. Further on, we have outlined our ideas concerning a new model that is
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easier to use for both, developers and end users, and that should satisfy current needs

of applications based on mobile agents. Beside that, our ideas presented so far still

rely on developers that design/describe an agent’s behavior in a rather fine-grained

way. With regard to the common understanding of an agent as an entity that works

completely autonomous in an unknown environment, our proposals are far away from

that optimum. But, taking a look at other current agent systems, non of them is

able to live up to that vision. Some of them offer hard-wired solutions like our own

Tracy 2 agent model whereas others have agents that are able to reason and plan –

but only in closed, well-described environments. Furthermore, most of these systems

incorporate several different languages to describe agents, making it a challenging task

to implement advanced behavior.

Regardless of the appealing vision of an autonomous agent, we are not sure if such

a high degree of autonomy is desirable or useful. There might be many cases where

an agent that follows a strict, given execution script will outperform such a free agent.

Taking this for granted, a flexible architecture that allows for agents to exhibit both

types of behavior – and everything in between – seems to be a promising step. For

example, when time is critical, an agent may skip planning completely and follow the

trail given by the plan. Contrary, if the agent is waiting for some events or a service, it

may start to reason about its current state and decide on its next steps. What we aim

for is to provide a sound, architectural basis for agents that will allow for the creation

of agents that use fixed plans as described in the last section.

3.4 Theses

In summary, we aim at reinforcing the following theses:

Thesis 1: It is possible to develop an agent model and a runtime

environment to execute predefined plans by using a well known, industry

proven programming language like Java

To allow for an easy and fast adaptation of a new agent model respectively agents in

general, it is highly desirable to use well known and widely used tools and programming

languages. Thus, we aim at creating an agent model and execution engine using the

Java programming language.
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Thesis 2: It is possible to create an agent development environment that

is easier to use than any of the currently available ones

Regarding the fact that sophisticated concepts for modularizing on the intra-agent

level are missing from most software agent frameworks and methodologies [Pokahr et al.,

2010], our goal is to separate the creation of atomic functionality, e.g. actions, and the

definition of execution scripts based on such actions. Whereas action creation should

be performed by programmers using the Java programming language, we clearly target

non-experts as the primary user group for the definition of agent scripts. Thus, making

the model as well as the tools as simple as possible is one of our aims.

Thesis 3: The proposed framework will allow for faster development and

execution cycles as well as provide better software quality

With an easy to use toolset that allows for the creation of agents out of existing atomic

actions, the time required to create new agents or adapt existing ones should be much

smaller than the efforts needed to perform the same task at code level. Furthermore,

with small, single purpose actions as building blocks for agents, the overall software qual-

ity in terms of maintainablity, reusablity and general code quality should be increased.

Figure 3.1 visualizes how this work should fit into the landscape of available agent

systems and their approachability by different user groups. Whereas nearly all current

agent systems and development frameworks target the agent expert group, we clearly

aim at the two other user groups that far less familiar with this technology. Additionally,

we intend to use standard tools and frameworks to create our new agent framework.

3.5 Structure of this Work

After having defined the goals for this thesis, we will outline the steps we aim to take

to achieve them. Please compare with Figure 3.2, which depicts these steps and their

ordering. In the following sections, we will outline each of them in detail.

3.5.1 Agent and Task Model

At first, we will have to create an agent model that describes a mobile agent in an

abstract, platform and programming language independent way. This includes how an

agent is internally structured, its set of generic, interchangeable capabilities, and so on.
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Figure 3.1: System Classification

Second, with the abstract agent model at hand, we can start to work on an abstract

task and plan model that allows for describing execution plans for our agents. With this

model, one should be able to describe typical tasks for a mobile agent like information

retrieval, network node maintenance or observation tasks. We currently perceive a

Petri Net like separation of states and transitions as a promising way. Transitions are

the actual actions performed by the agent whereas states will describe distinct agent

states and control the flow of actions by introducing transition selectors that allow for

loops, parallelism and error handlers.

3.5.2 Model Implementation and Integration into the Tracy 2 Mobile Agent

Toolkit

The second step of this thesis is concerned with the implementation of the proposed

agent model in a specific mobile agent system. We will use the Tracy 2 toolkit, presented

in section 2.6, for this purpose.

3.5.3 Implementation of a CASE Tool Prototype for Agent Creation

Due to the fact that we aim at easing the development effort for mobile agents, we will

implement a prototype of a graphical design tool that should allow for creating agent
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models and plans with a rich and intuitive GUI. This application should abstract from

programming languages and the mobile agent toolkit as far as possible and support the

combination of atomic, self-contained actions into complete plans and scripts.

3.5.4 Evaluation

The last part of this thesis will be the evaluation of this new development and execution

framework and a comparison with the current state of the art. We aim at showing that

our new framework is equally powerful and fast while at the same time decreasing the

development and maintenance effort for mobile agents, as well as reducing the number

of errors produced.

While performance issues can be compared after several tests, comparison of the

development effort is more complicated as this is a more subjective parameter. We

intend to let students program agents, some of them using the new framework while

others use the current agent model. Furthermore, we will check the approachability

and ease of use of the created tools with an evaluation that is targeted at non-experts.

Tracy 2
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Editor
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Implementation

Abstract Agent &

Task Model

Agent Execution 

Script

Reference

Implementation
Creation & 

Adaptation

Execution

Figure 3.2: Outline of Thesis Steps

3.6 Assumptions

For this thesis, we make the following assumptions, respectively restrictions.

First, we are not focused on AI techniques to improve agent design and behavior.

Our main intent is to ease the implementation effort for mobile agents which usually
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have rather straightforward, standalone tasks. Some of the possible extensions to this

work, like automated plan creation or dynamic decision for a network communication

paradigm, e.g. remote access or migration, may have a higher impact from AI. However,

these topics are not our main concern.

Second, we are not concerned with semantic service descriptions, dynamic service

orchestration, respectively composition or semantic matching of requests and offered

services. At those points, where our agents are meant to access a service, we will assume

that an appropriate service or a list of services can be found using straightforward

techniques like a directory service.

Third, we will not be able to provide a final stable implementation of the agent

development tools that allow for a creation of agents based on plans and actions. We

will merely implement a functional prototype that is able to show the general concepts

and strength of our approach.

Further on, we do not see our work as a direct competition to BDI-based approaches.

With BDI, the actions that an agent will perform are selected dynamically at runtime.

In our approach, we aim at providing a sound, optimal plan for a complete task in

advance. With extensions like automated plan creation or dynamic insertion, exchange

or deletion of actions, we would move a bit more towards a BDI-like approach. However,

in any case, we do not apply mental concepts like believes or desires.
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Problem Domain, Scenario and Roles

In this chapter, we will outline the problem domain that will be covered by this thesis.

At first, we will describe this domain in a general way followed by a specific application

scenario that should provide a more demonstrative picture. We go along with the pre-

sentation of participant roles, which we aim to introduce into the development process

and usage of mobile agents. Afterwards, the scenario and the problem domain will be

revisited by taking into account the newly introduced roles.

4.1 Problem Domain

The first ideas to this work arose during our work on migration optimization on code

level. Our attempt was to reduce the size of the transferred code as much as possible

by means of class splitting [Kern et al., 2004]. Further on, we implemented a simple

migration planner that was able to calculate an optimal sequence of migration steps for

a given tour and environment parameters [Kern and Braun, 2006]. During this research,

we realized how inflexible and programmer-dependent our mobile agents were. With

respect to a maximal compatibility to other agent systems, Tracy 2 agents are simple

Java classes that implement the Serializable and Runnable interfaces. Thus, the only

assumption one can make with respect to a Tracy 2 agent is that it contains a run

method. Further on, a programmer cannot rely on functionality that is provided by a

base class, which means that with every new agent one starts from scratch.

A typical Tracy 2 agent is based on a state machine, that is used to model the agent’s

task and its behavior. Actions that are performed by the agent, e.g. a migration or

sending a message, usually lead to a state change. Depending on the scenario, such
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state machines tend to become very complex and implementation soon gets tedious and

error-prone. Moreover, later changes or extensions become hard to nearly impossible.

What makes this state machine based architecture even worse is that the agent is

bound to its initial program, e.g. the state machine, which is given by the programmer.

During runtime, the agent acts according to the state transitions and will either succeed

or fail. There is no way to alter this state machine during runtime, for example by

exchanging some parts, or to introduce a completely new one. Nor can the agent adapt

to changes in the environment that have not been anticipated by the programmer in

advance.

4.2 Scenario

Research is often conducted without a concrete aim just investigating an interesting

idea by working in some direction and performing some experiments which in the end

would hopefully lead to interesting results or at least a specific research project. For

many researchers, this surely is the most interesting way to work; to have no time

or topic constraints while moving freely across different research areas. Unfortunately,

one may get lost in the depths of science without achieving anything. Thus, this thesis

will be conducted with a specific development and application scenario in mind. This

scenario should help us to evaluate the achieved results, keep us focused and provide a

stable base for discussions. We have chosen a well-known scenario, that of a traveling

researcher, for basically two reasons. First, this scenario is common to most people,

so going into productive dialogs with other researcher should be easy. Second, the

scenario has been widely discussed in literature, so we can learn from these experiences

and compare our results.

Consider the following situation. A researcher has successfully submitted a paper to

a conference and is now planning his attendance. This includes conference registration

as well as booking a hotel and organizing the journey. As usual, the researcher has to

keep an eye on several parameters like travel budget, distances, timing, and personal

preferences that can influence one or more of the three subtasks. For example, having

a tight budget, conference attendance may only be possible if the researcher can get

the reduced early registration fee. If not, the whole travel must be canceled.

In the following, we outline a possible flow of actions from the scientist’s point of view.

At first, the need for organizing a travel arises and, ideally, the scientist’s personal

agent would automatically derive an adequate task by combining information from

various sources like its owner’s calendar or mailbox. However, as such a step includes
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adequate semantic descriptions of information resources and advanced reasoning, it is

far more likely that the scientist himself assigns this tasks to the agent. This step

may be performed using a desktop PC, a Tablet or even a mobile phone. Thus, it is

desirable, that such a task delegation is as intuitive and easy as possible. After having

received the task, the agent should be able to work on its own, thereby moving around

the network in search for necessary services and information. The agent pursues its

task until one of three cases occurs: it has either finished its task, the task requires a

callback or some error arose. The first case is the most preferable one as it frees the

scientist from any further actions, but such a case is likely to occur only in the simplest

information retrieval tasks. In the second case, the agent may have acquired enough

information to present its owner a set of alternatives, for example, in our scenario a

number of hotels that all fit equally well into the given parameters. Here, the agent

cannot respectively should not make a decision on its own, so it will let its owner decide.

The third case, the error case, is not desired but must be taken into account as errors

and failures are likely to occur in an open scenario like the one under consideration. For

example, the agent may not be able to find an appropriate service that delivers hotel

information. In such a case, it should try to solve the other subtasks and present these

preliminary results to the user, who would decide on the next steps. Finally, if the

agent has successfully solved the given task, it would return to the scientist and deliver

the results. The scientist could now control the results and, in case of an indisposition,

charge the agent to provide a refinement or correction. At last, if the results are as

expected, the task is considered to be solved completely.

4.3 Roles

At this point, we will more clearly specify three roles and describe the way in which

we aim to use them throughout this work. First, by developer, we mean someone

writing code, e.g. the code that implements an action, without knowing much about

the context or application in which this piece of code will be used. Second, a designer

works on a higher level by actually designing agents and their behavior. The designer

will combine single actions into a bigger plan that is executed by the agent. Last, the

end user is the person who will actually use the created agents, i.e. the scientist in our

scenario.
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4.3.1 Developer

By developer, we mean programmers, who actually implement agent functionality using

a widely used programming language like Java. Our aim is that the developer is no

longer in charge of programming complete agents for each complex task. Instead, we

intend to let developers provide a set of core actions that can be performed by each agent

and that are highly generic and can be combined to complex tasks. Such plans should

be exchangeable during runtime meaning that an agent becomes a simple execution

engine for plans. Low-level actions are, for example, sending a message to another agent,

initiating a migration or query a service directory. Low-level actions should be very

generic and self-contained so that they can be combined in all possible and reasonable

ways. Actions should conform to a standard interface and provide input and output

sets that can be mapped to adjoining actions.

4.3.2 Designer

By looking at our problem and scenario description and the aforementioned roles, there

is an obvious gap between the low-level implementation work conducted by the devel-

oper and the usage of plan-based agents by the end user. To close this gap, we introduce

the designer. A designer is in charge of creating high-level plans that solve complex

tasks by combining low-level actions provided by a developer. The relationship between

developer and designer must not be strictly one-way. If a designer encounters the need

for a new action, then a developer can be charged to implement that functionality. More-

over, our ultimate aim is to merge the end user and designer roles. Using agents would

be more flexible, if an end user could not only select one of several plans for a given task,

but would be able to create new plans on its own. This process of creating new plans

could be supported by the application in various ways, i.e. by suggesting actions that

would make sense at a specific point in the edited plan. To further ease the plan creation,

we could hide the low-level actions from end users by introducing macros: collections of

actions that deliver a solution for smaller tasks respectively commonly used subtasks.

4.3.3 End User

Compared to our scenario, the scientist is an end user. As the name implies, this

role describes all people, who will use the final system respectively agents. From their

viewpoint, delegating a task to an agent should be as simple as possible. In our travel

example, the scientist should just have to submit the destination and a time frame
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to its agent. It would even be better, if the agent could derive the task by reasoning

about information it has about the user, for example entries in a calendar or emails.

After having acquired the task, the agent should solve it with as few user interactions

as possible. There may be incidents where the agent is not able to make a decision

and has to ask its owner. For example, if a condition given by the end user cannot

be guaranteed or an error has occurred. However, the perfect case would be that the

agent does not bother its owner at all and just delivers the final trip plan.

4.4 Scenario Revisited

With the roles defined in the last section, we will now come back to the scenario to

review it under this new perspective. In short, we intend to delegate the task for

organizing a conference attendance (or a travel in general) to a mobile software agent,

that will try to solve that task on its own by using a high-level plan. That plan was

created by a designer in advance using basic generic actions that can be performed by

each agent.

Before our scientist is able to assign the travel booking task to its agent, several steps

must have been performed by one or more developers respectively designers. Given that

the base system with an agent and plan model already exists, the developers would have

to implement actions that enable an agent to use services that provide for example hotel

information and reservation/booking functionality. Here, we think of atomic actions

that provide access to a service and other actions that are able to evaluate the results

of a previous service access according to given parameters.

These atomic actions would be weaved together by a designer to create a high-level

plan for arranging a travel. Such a plan could consist of three subtasks, namely Book

a Hotel, Arrange Travel and Register at Conference. Each of those subtasks may be

available as a macro and specifies its own properties which should be achieved by the

solution, e.g. price range, maximum distance between hotel and conference or means

of travel. Global properties that belong to the high-level plan and which affect all

subtasks are, for example, time and location of the conference and minimal overall price.

The designer has to take care that the final plan is robust, complete and fulfills its

aim. Beside that, the plan creation process should be performed in close collaboration

with the developers to satisfy the need for new required actions or to adapt existing

ones. This tight feedback cycle should help to improve the plan model implementation

and increase system reusability and robustness as well as improve and extend the set

of available actions.
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The scientist would, as in the scenario description at the beginning of this chapter,

assign the travel booking task to its agent. The agent would be configured with the

appropriate plan and the parameters specified by the scientist. Afterwards, the agent

would start to execute the plan, thereby solving the task step by step as intended by

the designer. From the end users point of view, everything works as in the first scenario

description. Either the agent comes back with the results of the solved task, with a

request or to report an error case.

A second addition is concerned with preparing the conference attendance. When

arriving at a conference, most of the other attendees will be strangers to the scientist.

At the end of the conference, he will have heard many talks and knows who works on

which topics. Now he could start interesting discussions with people working in the

same area as he does. But the conference is over and everybody is on its way back home.

So it would be nice if he had some of these information at the beginning of the conference.

Knowing who is doing similar research would help to find interesting colleagues right

from the start. So this could be a task for an agent; gathering information about other

conference attendees and filtering out those which are in some way related to its owners

research area. The agent could even collect papers published by those scientist which

the scientist can read during his travel. Thus, he would not only know who might be

interesting, but would also be well prepared for a lively discussion.

4.5 Problem Domain Revisited

To develop such application as described above with our current Tracy 2 state machine

based model, one would end up with a very complicated state machine containing

an awful number of states and many ambiguous interconnections. First, the developer

would have to model the agent’s different tasks thereby anticipating possible migrations

during the execution of a single task. Further on, a great number of states and inter-

connection would be necessary out of robustness reasons, i.e. to recover from failed

migrations or handle cases where a service is unavailable.

A slightly better solution would be the introduction of several state machines; each

one covering a single task that can be executed on its own. Such a solution seems to

be possible with subtasks that do not intersect. However, in usual application scenarios,

subtasks are not autonomous but depend on each other in one or more ways. For

example, in our scenario, the gross price of a conference attendance may have an upper

limit, so the sum of costs for travel, hotel and registration should be less or equal

to this given bound. So, when having related subtasks, one would have to connect
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the different state machines, which brings us back to the original huge one. Or, when

applying communicating state machines [Brand and Zafiropulo, 1983], we end up with a

huge set of interconnected state machines that are difficult to understand and maintain.

Based on these facts, we intend to create an architecture that makes Tracy 2 agents

more easy to use, flexible and error-resistant. One could say that we want to move from

our state machine based agent model towards a state-based architecture as described

in Section 2.4.1.2. Here, it seems reasonable to stress the differences between these two

architectures. The first one, our current state machine architecture, is rather simple –

agents are controlled by a state machine with fixed state transitions. In the latter one,

the state-based architecture, an agent explicitly maintains a state, which has links to

previous, incoming transitions and a number of outbound transitions to possible future

states. Beside that, the state holds information about the environment and the current

internal status of the agent. Thus, the agent has much more information to decide

on its upcoming steps. Beside having our agents use a state-based model, we would

like them to better satisfy the properties of software agents given in section 2.4. They

should be able to adapt to changes in the environment and alter their flow of execution

in order to achieve their given goals.

Our defined roles and their corresponding scope of duties allow for a clean separation

of concerns and introduce modularity of application components that reduce coupling

and increase reuse. These roles already render the outline of the approach we aim to

take. We argue for a separation of concerns similar to that used in web application

development today. First, there are real programmers who implement business logic in

an industry accepted and widely used programming language like Java. Second, there

are designers, who create an appealing user interface on top of the business logic without

knowing much about the underlying implementation. They use their own languages

like HTML (Hypertext Markup Language), JavaScript or a combination of these like

Ajax.

In our case, we would like to separate the development of plans that fulfill a specific

task from the creation of agents which are mere execution entities for such plans. De-

velopers simply implement business functionality and each of those core plan elements

is a single component with a small interface and several constraints, that describe the

context in which this element may be used. In contrast, designers would model the

overall use case by combining these elements into high-level plans. Ideally, they would

use a graphical editor that allows for an easy creation of those plans by aiding the

designer in a variety of ways. For example by providing a list of applicable actions at

a certain point or showing the violation of a constraint.

65



Chapter 4 Problem Domain, Scenario and Roles

In the first place, our idea may sound similar to recent service oriented approaches:

applications, that use various services and that orchestrate those services into more

complex workflows. However, there are several differences. Our plans aim at a higher

level of abstraction which in the end should even enable end users to create plans for

agents. Our plan elements will partly consist of elements that access services or activate

complete workflows. But these element should abstract from the underlying technical

details. Especially, these details are the main concerns in SOA research communities.

At this point, one could argue that we may end up with the same problems as with

the state machine – having a single, fixed plan seems to be equally inflexible as a fixed

state machine. However, introducing sophisticated error handling techniques into a

modular plan is a relatively straightforward task. Far more convincing is the fact that

creation and maintenance of plans is much easier than programming state machines

from scratch. As said above, we even aim at merging the roles of end user and designer

to allow for a more flexible usage of agents. But this depends on a very intuitive and

powerful plan model and our work is clearly focused in that direction.
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Chapter 5

Specification of the TAMo Model

5.1 Introduction

The aim of this chapter is the introduction of the general concepts and aims of the new

modeling language for the Tracy 2 agent toolkit. We will call it Tracy Agent Model

or shortly TAMo (pronounced like the italian ti amo). Beside the general overview, a

comprehensive description of its elements will be given. Due to the fact that TAMo

evolved in two iterations, the chapter’s structure reflects this evolution.

5.2 Aims

In this section, the main goals for the development of a new modeling language for

mobile agents are outlined. Despite the fact that there are a lot of modeling languages

and methodologies for the description and creation of agent as well as agent based

systems, we belief that all of them fall short when it comes to sheer simplicity. And in

our opinion, simplicity of the available tools and toolkits is the sole lacking property of

agent-focused development tools to allow for a wider adoption of the concept.

Specifically, all of the available tools require a profound knowledge of agent based

systems and their special properties. The approachability of these tools for non-experts

is very low and thus prevents a large audience from creating and using agents. Looking

into history, one main goal of the agent community was to establish agents as personal

assistants to normal users who could just use such agents to accomplish tedious or

long-lasting tasks. However, research moved into another direction – in creating agent

based systems that are able to model and solve highly complex tasks which involve a

society of numerous agents that cooperate to achieve a higher goal. While this is a
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tremendous achievement, it simply neglects the normal user that is just in need of a

personal assistant. Such an assistant should be able to solve the given task nearly on

its own by accessing legacy systems such as a database or a web service. If necessary, a

personal assistant should also be able to communicate with other agents, but its main

focus remains to solve a single task for a single user, at least in our scenario.

5.2.1 Simplicity

The ultimate aim of TAMo is to offer an approachable and easy to use solution to the

creation, adaptation and execution of mobile agents. Creating new agents should be a

matter of minutes and not hours or days whereas altering an existing agent should not

involve the examination of hundreds of lines of code. The tools should be coupled to

the Tracy 2 agent toolkit to allow for a fast execution of created agents and thus offer

good development turnaround times. Furthermore, simplicity of the whole concept

as well as the provided tools is a mandatory requirement to make TAMo usable by

non-experts.

5.2.2 Approachable by Non-Experts

The idea of a personal assistant that is able to solve specific tasks behind the scenes is

very appealing, especially to non-experts respectively normal users. However, exactly

this huge audience was not able to use such assistants because the available tools and

frameworks required a degree in computer science to achieve any result at all. With its

foremost aim to be as simple as possible, TAMo should be the first environment that

allows for the usage of mobile agents by non-experts.

5.2.3 Using only Common, Well-known Technologies

Among the available agent systems and toolkits, it is very common to leverage the

power of rather unusual programming languages and frameworks. For example, BDI

based agents are usually created using a logical or declarative programming language.

Furthermore, several systems introduce custom languages to design agents or extensions

to the core system. While these specialized methods provide powerful means for experts,

they present a huge entry hurdle for any non-expert. Thus, we decided to create our

agent development framework solely by using well known, industry accepted languages

like Java and its offered APIs. Moreover, the creation of new functionality for an agent
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should require no, or just a minimal amount, of expert knowledge of agent systems.

Thus, we believe to reach anyone that is familiar with the Java programming language.

5.2.4 Improve Software Quality

As mentioned before, the general software quality of Tracy 2 agents has been rather

low. Due to the fact of no given base framework or reference structure, developers

usually started to create new agents by recycling old ones and adapting them to the

new needs. However, altering complex state machines of old agents is very error prone.

Moreover, most developers settled with creating just a single Java class for an agent

thus increasing the coupling and making it very hard to reuse parts of an agent.

By introducing a model that describes an agents tasks as a sequence of self-contained,

atomic actions, we aim at achieving much better code quality and allow for easier reuse

and maintainability.

5.3 Core Concepts

The main goals outlined in the last section lead to several requirements which TAMo

should fulfill. Foremost, TAMo should be as simple as possible because we believe that

simplicity is the foremost property required for a wider adoption of a new technology

or concept. Other requirements include for example a high degree of reusability of

existing parts, fast and easy combination of those parts and sophisticated means to

cope with error cases. In this section, we will describe the general ideas and building

blocks of the TAMo model as well as the development framework and tools. But before,

we will take a look at similar available systems and stress the need for a simpler and

more approachable model and toolkit.

5.3.1 Related Work and its Implications

In this section, we will introduce several systems and research efforts that are directed

in a similar direction than our proposal. We will highlight the differences and explain,

why these systems are not sufficient for our needs.

The first system is the Jadex Active Components [Pokahr and Braubach, 2009; Pokahr

et al., 2010] middleware which provides a managed execution environment for active com-

ponents. In contrast to traditional (passive) components, active components exhibit

a certain amount of autonomy regarding their execution. Instead of just reacting to

requests, they can actively decide to perform some actions. Originally, Jadex [Pokahr
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et al., 2005] started as an extension to the JADE agent system that provided support for

cognitive BDI agents [Rao, 1996; Walczak et al., 2007]. With the evolution of the whole

platform into an active component middleware, the agent part became an extension

to the new system. A second extension is Jadex Processes1 which provides execution

facilities for BPMN- and GPMN-based workflows [Leymann and Roller, 2000]. Similar

to our proposal, they provide a graphical editor to create workflows and execute them

on the middleware. However, both extensions are independent of each other and the

level of interaction between them remains unclear. Can workflows be used to model

agent behavior or will workflows integrate agents as part of their execution?

Another system, that integrates workflows in an agent system is WADE [Caire et al.,

2008b]. WADE extends the JADE agent system with the ability to execute workflows.

Workflows can be created using an Eclipse-based graphical editor called WOLF [Caire

et al., 2008a] and are afterwards exported to Java code. There are several kinds of

actions that can be added to a workflow, e.g. to control the flow of execution or access

remote services. Even a container action that can be filled with custom Java code is

available. A single class file is created for every workflow and is executed by special

workflow agents. Due to the fact that the mapping between workflow and code is rather

complex and imposes various constraints, using the system requires profound knowledge.

Thus, it is clearly targeted at experts and not at end users. Interesting to note, the

authors claim that, with the mapping to Java classes, they have introduced inheritance

to the workflow metaphor as one could use an existing workflow class and extent it

to create a more specialized version. This inheritance is completely backed up by the

Java language respectively virtual machine and, curiously, no information is given on

how this mechanism is introduced to the whole workflow creation process. For example,

how are both workflows, the original and the inheriting one, linked and represented in

the editor and how are changes to the parent workflow propagated to child workflows?

Whereas both presented systems introduce the workflow metaphor into agent-based

systems with an accompanied graphical editor to define such execution flows, there a

several differences when compared to TAMo. For example, both systems are clearly

targeted at agent experts and therefore posses a rather steep learning curve. Having

non-experts create agents using these systems seems to be nearly impossible. Another

aspect is the coupling between the script engine and the agent system. Whereas TAMo

can be used as a standalone engine to execute any kinds of scripts, the systems presented

above are highly coupled with the underlying agent toolkit. Furthermore, there is no

1http://jadex-processes.informatik.uni-hamburg.de
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strict separation of code and graphical workflow definition. Both systems offer a kind of

container action that can be filled with arbitrary code during the design process. From

a bird eye view, this provides the same functionality as TAMo with its predefined actions.

But it does, by no means, offer the same level of reusability for single actions that are

part of a script. Considering the kind of transitions between atomic actions, both

systems use two kinds of transitions, successful and failed, with conditions described in

the graphical editor. We believe that our concept of actions defining the number and

kind of outgoing connections thereby hiding the internal conditions that lead to one or

the other connection is more flexible and easier to use and understand.

Ultimately, we aim for a lightweight model, respectively toolkit, with a minimal set of

elements that is easy to understand and use but that provides means for aggregation to

structure model instances and, thus, increase maintainability and reusablity of software

agents. In the following sections, we will outline the core concepts behind the proposed

model followed by a description of the implementation that was carried out in two

iterations.

5.3.2 State Machine

As mentioned in section 2.6.2, nearly all agents that have been developed for the Tracy 2

agent toolkit where backed up by an internal state machine which captured the different

execution states and, in case of mobile agent, locations of an agent during runtime. As

simple and straightforward as this concept is, the approach becomes nearly unusable

for any but the most simplest agents. Any moderately complex agent will feature an

enormous amount of states with countless transition between them. Trying to handle

such a state machine by hand without any tool support is extremely tedious and error

prone.

However, due to its general simplicity regarding the core concepts, we decided to

use a state machine as the starting point for the TAMo model. Moreover, in its first

version, the TAMo model itself was very similar to a state machine with elements such

as States and Transitions. While working with the first version of TAMo, it became

apparent that this direct approach is to technical and complex. These insights led

to the simplification of the TAMo model and the creation of the second version of

the framework. While still being backed up by a state machine under the hood, the

creation of plans for agent has been simplified. States and Transition are gone and an

agent designer will only connect Action elements in a meaningful way. In section 5.5,

we will outline the transition of the first to the second TAMo version in more detail.
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5.3.3 General Execution Engine and an Extented Version for Tracy

At first, TAMo was clearly aimed as a framework to ease the development of agents

for the Tracy 2 toolkit. However, during the adaptation that were made for the second

version of TAMo, we decided to separate the core parts from those which are tightly

coupled to the agent system. Thus, TAMo can be used as a standalone model and

engine to create arbitrary execution flows as well as a framework to create agents for

the Tracy 2 agent toolkit. The core model respectively framework can also serve as

starting point for an integration of TAMo into other agent systems.

5.3.4 Actions

As mentioned several times before, TAMo is based around the idea of small, self-

contained, atomic building blocks that, properly connected, make up the execution

flow an agent. We are calling those building blocks Actions. Every action fulfills a

single specific purpose like accessing a database or web service, sending a message to

another agent or performing the migration to another agency. The requirements of an

action to be added to an agent should be as low as possible, e.g. actions should by

no means rely directly on other actions. Interchanging data between several actions

is achieved by the usage of a shared associative memory space where every action can

read and write. Beside a success and error connection, every action can furthermore de-

fine any number and kind of outgoing connections depending on the possible outcomes

of this action.

5.3.5 Task and Plan Layers

Beside the atomic actions, we aim at providing several other layers of reusability. There-

fore, we introduce the notation of Task and Plan. Tasks are high-level building blocks

of an agent and are connected with each other in the required execution order, e.g. a

Task that determines the possible travel locations should be executed before the Task

which will select and book the best of those locations. Each Task is just a container

for a number of Plans, whereas each Plan is able to solve the Task it is contained in.

Using several Plans in a single Task increases robustness and error protection, as a

Task can select and execute another plan, if the previous one fails. See figure 5.1 for

an illustration of this concept.
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Plan A-1 Plan A-2 Plan B-1

Task A Task B

Input: Configuration

Output: Output of A

Input: Output of A

Output: Final Result
Task Layer

Plan Layer

Start Point Atomic Action End Point Connection

Figure 5.1: Task and Plan Layer

5.3.6 Separation of Development and Design

As described in chapter 4, we aim for providing a conceptual model that allows for the

separation of development task between a core developer and an agent designer whereas

the latter one doesn’t need to write code but can use a given set of basic building blocks

to create new agents.

5.4 First Version of TAMo

In this section, we will describe the first TAMo model starting with the main building

blocks followed by the necessary glue elements. Thereafter, the presentation of the

graphical notation for the different TAMo elements is given.

5.4.1 Model Elements

5.4.1.1 Main Elements

Script A script is the outer shell for everything that is relevant for the current objective.

Every other TAMo element must be contained in a script or in an element therein.

Every TAMo-based program respectively agent will be initialized with a single

script that will be analyzed and executed by the engine.

Task To be of any use to an agent, a script needs to contain at least one task element.

A single task is considered a set of plans to achieve one or more goals or obtain
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a specific result. For example, a task might be to access a set for RSS feeds

and filter all items for some given keywords. The result would be a list of RSS

items that match those given keywords. Another example could be to traverse

a set of agencies and execute the same actions on each agency, like collecting

performance measurements or installing a new plugin. A script may contain more

then one task in which case these tasks can be structured hierarchically. This

hierarchy describes the potential dependencies between tasks, e.g. to perform

task B another task A must have been completed successfully. The separation of

an agents objective into different, interchangeable tasks leads to a better, easier

to understand script structure and better reuse of functionality by integrating

already created tasks into new scripts.

Plan Every task element must contain at least one plan which describes a concrete flow

of actions that will accomplish the single task. However, more than one plan can

be present in a single task. All these plans should be able deliver the same results

to achieve the task, but they may use different strategies, enact different services

or use a different flow of actions. The introduction of multiple plans for a single

task fulfills two purposes. First, robustness is increased significantly, if we allow

for an agent to have alternatives to fulfill its tasks. Second, performance can

be measured during various executions of the same task with different plans, so

we can gradually increase an agent’s performance over time by analyzing former

executions. A set of plans adds flexibility to the system that would not be present,

if a single task could only be achieved by a fixed, single set of actions. Despite the

fact that we do not integrate AI techniques that would enable an agent to adapt

a given plan in case of a failure, we believe that our approach provides enough

robustness and flexibility and at the same maintains high execution performance

and ease of use. Which plan is used when can be configured by the designer. So,

for example, one can imagine that an agent should use different plans depending

on various environment parameters like time of day, available network connections,

time to complete the task, or desired quality of the results.

Action Actions are the core functional elements of TAMo. It is a single execution

step towards the fulfillment of the enclosing task. An action may be as simple

as writing a message to the agencies terminal but can be as complex as accessing

a web service or a remote database follow by extensive filtering of the returned

results. However, the simpler an action is, the higher is its reuse value. Moreover,

more atomic actions generally offer a higher robustness and produce lesser errors.
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State A state element captures a specific agent respectively world state during the

execution of an agent workflow. State elements are linked with each other by

executing a specific action which transforms the first state into the second. A state

can hold any number of key-value-pairs that describe current agent properties

or available resources. For example, after having acquired a list of data items

from a web service by executing an action, the following state could hold a key-

value-pair like ws-data-items:=[List of Elements] which depicts the successful

execution. Other entries to think of are the current execution platform/host, a

list of know hosts to migrate to, or some credentials to access specific services. The

introduction of states into the model serves several purposes. First, by explicitly

modeling an agent state at a specific point in a plan forces the workflow designer

to think exhaustively about the current process and to explicitly capture relevant

execution and agent state information. Second, having concrete state elements,

we can check if the current agent state matches the ones present in a plan and,

in case they don’t match, deduct errors as well as create proper error messages.

One could even think of introducing planning at a later stage of the project to

build a new sub-plan in order to align the current agent state with the required

state models in the overall plan.

Migration Despite the fact that, seen from a bird’s view, a migration is a simple action,

but we consider it as a first class element of the TAMo model as it is a vital part

to any mobile agent system. And, seen from a closer perspective, it is much more

complex than a normal action. The agent itself will initiate the migration and

specify the destination as well as the used migration strategy.

5.4.1.2 Subordinate Elements

The main model elements of TAMo described in the previous subsection are comple-

mented by a number of other elements that allow for connections, decisions, loops and

error handling. This section will introduce these elements.

Transition A transition is a directed connection between two specific model elements.

For example, in a script, several task elements can be connected to create a

hierarchy and thus relationship between tasks. Or in a plan, transitions are used

to connect actions and states and vice versa. An element can have any number

of inbound and outbound transitions. To distinguish between different outbound

transitions, preconditions can be added which have to be match to follow a specific
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transitions. This allows for complex task hierarchies in a script or different flows

of actions in a plan, thus enabling the designer to cope with different environment

and agent states.

Start and End State A script as well as a plan need to have well-defined entry and exit

points that depict the beginning and end of a script respectively a plan. While

only a single start state can exist, several – but at least one – end states may

exist.

Decision A decision element can be used to describe alternate flows of execution. If

control reaches a decision element, the element’s condition is evaluated and the

corresponding path is selected and executed. Only one path is executed at a time

but successive execution of the same decision element, e.g. in a Loop, may yield

to different executed paths. Decision elements merely duplicate the feature of

states to have several outbound paths that are selected based on path constraints.

However, decision elements have been added to TAMo to make the graphical

representation of script and plans more descriptive and easier to read.

Loop Obviously, any flow oriented model needs to support some kind of loop element

that allows for the repetitive execution of certain parts of a given flow. A loop

block may contain a flow of actions and states, beginning and ending with a state.

Furthermore, a loop element must contains a constraint that describes when and

how often the loop needs to be executed. This may be a simple boolean condition

as well as a kind of loop counter that is incremented or decremented by the flow

contained in the loop.

Error The introduction of special error elements into the TAMo model serves several

purposes. First, it allows for concrete modeling of error cases, e.g. a failed mi-

gration, in a plan. Second, it makes it easy to distinguish between flow parts

concerned with application logic and parts that handle error cases. TAMo sepa-

rates between two general kinds of errors – common errors and migration errors.

The former category contains all errors that may arise during the execution of

an agent, e.g. during the execution of an action or a plan. The latter category

encapsulates all errors that can occur during a migration from host to host. For

each error, a flow of actions or a complete plan may be specified to cope with

the occurred error and restore a world state that can serve as a sound base for

further actions.
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5.4.2 Graphical Notation

After having introduced all model elements, we will have a look at the graphical rep-

resentation of those elements. We provide a graphical notation for TAMo out of two

reasons: first, to allow for fast and easy sketching of agent scripts or plans using pen

and paper, and second, as basis for the TAMo graphical editor that provides editing

and export facilities for TAMo models. The graphical editor is covered in detail in

chapter 7. For now, we will present the graphical notation for each TAMo element as

well as introducing some new elements which do not alter the general TAMo model

and are specific to the graphical notation.

The graphical notation is divided into two main parts: diagrams for the Task level

and diagrams for the Plan level. We will start with describing all elements that occur

in both types of diagrams followed by elements that are specific to either one. For each

element, a figure is given that accompanies the textual specification.

5.4.2.1 Common Elements Notation

Start and End State TAMo uses the common UML representation of start and end

states – a single black circle for start states and a white circle with a smaller

black circle in the middle for end states.

Figure 5.2: Start and End State Element

Transition A transition, that connects two other model elements, is depicted by a

single directed arrow. An arrow’s direction runs from the source element to the

destination element.

Figure 5.3: Transition Element

Constraint A constraint describes a set of conditions that must be matched in order

to execute an action or follow a transition. Usually, constraints are added to

transitions to allow for control during the execution of a script or to a loop block
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to control the execution of that loop. They are described using the well-known

Object Constraint Language2 (OCL).

Decisions There are two kinds of decisions. First, explicitly modeled decisions using

the common diamond shape with a single incoming transitions and up to three

outgoing transitions. Each transition is labeled with the constraint that needs

to be matched in order to follow this transition. The second kind of decision is

modeled more indirectly. For example, a single action may have several outgoing

transitions each of them with its own constraint. If modeled this way, is is clear

that the decision is made by the action itself whereas in the the former case, the

decision depends on the actual outcome of an action and the given constraints at

the following Decision element.

Figure 5.4: Decision Element

Loops Similar to decisions, loops can be modeled in several ways. First, one can group

a set of actions inside a rectangular box to depict a recurring execution of this

block. Each loop block must contain a constraint, which is shown in the upper

left corner of the block, to control loop execution. A second way to model loops

is to actually connect actions and transitions in a way so that the workflow’s

execution forms the cycle. Thus, there would be no explicit loop conditions but

rather a set of states and transitions that allow for the script’s circulation.

Error At various points in a script, errors may arise that can at least be named during

the design process. To denote the existence of a possible erroneous outcome of

an action, a yellow with a flash is used. The error case can be described using

one or more constraints. The error element can be connected to two different

model elements. First, it can be connected to single action to depict an error

2http://www.omg.org/technology/documents/modeling spec catalog.htm#OCL
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<Loop Condition>

Figure 5.5: Loop Element

case that may arise during the execution of that specific action. Second, the

error element can be connected to a migration element to depict an error case

that occurs during agent migration.

Figure 5.6: Error Element

5.4.2.2 Task Level Diagram Notation

Script There is no special representation of a script – your empty sheet of paper is

simply your container for everything that makes up a script. It will contain

several connected Task elements accompanied by a single start element and one

or more end elements.

Task A task element is depicted by a white ellipsis with a rectangular shape containing

the common name of the task at the upper left side. The ellipsis itself contains at

least one square; each of those squares representing a single plan that can solve

the task. Tasks may be connected with each other by transitions to depict a

certain hierarchy of tasks, e.g. task A must be finished in order to attempt task

B or that an agent may choose to execute task C or D because both may lead to

similar outcomes.
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Task

Plan 

B

Plan 

A

Plan 

C

Figure 5.7: Task Element

Plan As mentioned above, a plan in a script diagram is always contained in a task

element and depicted by a square with the plan’s name centered inside the square.

Due to the fact that a plan is rather complex and including a complete plan inside

a task element is anything but feasible, we introduce a second kind of diagram

to model single plans – the Plan diagram.

5.4.2.3 Plan Level Diagram Notation

State A single agent state is depicted by a rounded rectangle with a centered state name.

A more elongated version of this element contains a second rounded rectangle

beneath the first one which contains a formal description of the state, e.g. specific

values for environment or agent parameters.

var1 := abc

var2 := def

StateState

Figure 5.8: State Element

Action A single action denotes an atomic execution step and is depicted by a single

rectangle with the action’s name centered inside the rectangle. An action element

can be connected to state elements using transition elements. Action elements

may – if appropriate – also be connected to a third party module, e.g. an external

database or web service to depict the usage of such an external component during

an action’s execution.
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Action

Figure 5.9: Action Element

Migration Due to the fact that agent migration is such a basic behavior of mobile

agents, we decided to establish a separate graphical migration element. Visually

the element is a simple dotted line that runs across at least two swim lanes and

connects two states. Additionally, a migration’s dotted line can be connected to

an Error element to handle possible error cases.

Figure 5.10: Migration Element

Swim lanes Swim lanes have been added to the graphical notation to allow for a sep-

aration of different execution hosts, e.g. agencies an agent may visit during its

runtime. Similar to the UML, swim lanes are depicted as vertical rectangles with

the corresponding host name centered at the top. Except for the migration ele-

ment that runs across two swim lanes, each element of a plan must be contained

in one single swim lane.

System 1 System 2 System 3

Swimlanes

Figure 5.11: Swim Lane Element
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Interfaces Some actions an agent will execute need access to third party systems like

databases or web services. Therefore, we introduce a special element to model

interfaces to such legacy systems and allow for their configuration by adding

constraints and meta data to a connection between an action and a third party

component. Such elements are depicted by the commonly know UML component

element.

Interface

Figure 5.12: Interface Element

Comments Comments are an addition to the graphical notation of TAMo. They can be

used to provide notes or hints for any TAMo model element to ease understanding

of a model.

Comment

Figure 5.13: Comment Element

5.5 TAMo Revisited

After working some time with prototypes of the engine and the graphical editor, several

drawbacks became apparent, which led to an adaptation and refinement of the created

model. As mentioned before, TAMo Plans feature States, Transitions and Actions in

whereas States and Actions are connected via Transitions in an alternating fashion

to model an agent’s execution flow. The separation of Actions and States was highly

influenced by the Petri Net notation and seemed to be a good first step to describe an

agent’s plan. States should capture a distinct configuration of an agent’s world state

whereas Actions should be used to move from one world state to the next. However, this

separation proved to be too complex and ultimately too burdensome for an easy usage
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of the development tools. Consider a rather simple agent that executed several actions,

e.g. retrieve the URL of a remote service, access that service, evaluate the results and

finally present them to the user. In the proposed model one had to create five states

(a Start State, after getting the URL, after having accessed the service, after parsing

the result and after delivering the final results) and four Actions with Transitions in

between. So, instead of just configuring four actions, an agent designer had to create

and configure 13 elements – most of them close to useless.

Thus, we decided to rethink the complete model, drop everything that seemed redun-

dant or just remotely useless to come up with the bare minimum of elements needed

to create mobile agents.

5.5.1 It’s all about Actions

First of all, we removed States and Transitions; Actions are now added directly to a

plan and connected with each other. Each Action is still a single, self-contained unit

of work that alters the environment in a predefined way. We do, however, by no means

restrict the amount of work a single Action performs. It could be a single statement

of the underlying programming language like a logging message. But it could also

be several hundred lines of code that access a database, filter and alter the received

results and writing them back to second database. One could even move the state

machine of a normal Tracy 2 agent into a single Action. An Action can define any

number of outgoing connections to other Actions. Such connections represent possible

outcomes and every Action has at least two of them: one for successful execution and

one that should be triggered in case of an error. However, it is completely up to the

programmer of an Action to provide a much more fine-grained interface to an Action,

e.g. by creating one connection for each possible error case. As for incoming connections,

any number of such connections may point to a single Action, e.g. we do not restrict

the number of paths in a plan that end up at a specific action.

5.5.2 Implicit States

By removing State elements, we also removed the explicit notion of an agent’s world

state. We now have a sort of implicit States defined by an Action’s input requirements

and its number and kind of outgoing connections. First, an Action can only be exe-

cuted if all required input values are present, thus, the moment an Action is chosen for

execution marks a very specific State in an agent as the world state. Second, having an

Action decide which of its many outgoing Connections is chosen seems to be a much
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better way of handling the flow of Actions than adding constraints to the graphical no-

tation. Therefore, at the point where an Action decides on selecting a specific outgoing

Connection, we again have a very precisely described world state.

Removing states from the model had a very welcomed effect of cutting the number

of elements a user has to maintain in order to create a running plan in the editor nearly

in half which should lead to a much faster creation of plans as well as visually simpler

plans that are therefore easier to understand. We will come to this aspect later in

chapter 7 when we cover the graphical editor.

5.5.3 Decisions, Loops, Error and Migration

The first version of TAMo featured a number of additional elements that where tailored

to control the flow of a script. Namely, these were Decision, Loop and Error elements.

We dropped them too. All their functionality is now provided by normal Actions. For

example, TAMo comes with a Loop Action that can be configured with parameters

like number of loops or a list with elements to iterate over. It also possesses, beside

the Error Connection, two outgoing Connections: one that is selected while continuing

with the loop and a second one that will be selected after the loop is finished. Thus, it

is rather easy to integrate reoccurring sub-flows into a plan.

Compared to the old Loop Element, similar ideas have led to the removal of the

Decision Element. First, every Action can provide outgoing connections for any possible

outcome of this action’s execution which makes it obsolete to add a cascade to decision

elements to the flow after a specific Action to decide on the next steps. Second, we

also provide a Decision Action that completely replaces the old Decision Element.

As for the Error element, we consider an outgoing Error Connection not as something

special – it should be treated like any other Connection and we, therefore, removed the

special Error element. Error Cases can be handled by the same means as anything else,

e.g. one can provide a complete flow of actions that is able to compensate the negative

effects of the error that occurred.

In the first installment of TAMo, a migration was handled by an interruptible Tran-

sition that contained a number of Actions for performing a migration. As mentioned

above, we removed Transitions and Interruptible Transitions and were therefore in

need for a compensation to provide agent migration in the new version of TAMo. We

made use of the Suspended state for Actions to handle the local and remote part of a

migration in two subsequent cycles of an agent’s execution.

84



5.6 Final Version of TAMo

5.5.4 Standalone Engine

Originated as an execution engine for Tracy agents, the second version of the TAMo

engine moved into a much more general direction. The base engine does not have a

single reference to Tracy. Moreover, it does not have a single reference to software

agents at all. One could use the engine to execute standalone scripts or programs that

have been created by connecting some reusable actions. So, one could use the TAMo

editor to create arbitrary programs. A version that is tailored to the specific needs

of software agents as well as the Tracy agent system in particular was derived from

the standalone version. It includes Actions that access Tracy features and make use

of provided plugins. Furthermore, it comes with a closure agent that acts as a simple

engine for TAMo model instances.

5.5.5 Other Dropped Elements

Beside the elements mentioned above, we also removed the Module and Swimlane

elements because they where used for the graphical representation only and had no

grounding in the TAMo engine.

5.5.6 Storage

Finally, we also made some changes to the underlying storage module. The storage

is a simple associative storage that maps keys to values. In our case, keys and values

are usually Strings. Every Action, Plan and Task may possess its own storage. The

storage of an Action is configured by the Plan that initializes the Action. Similarly, the

storage of a Plan is configured by the surrounding Task during Plan initialization. Per

default, a Task respectively Plan will just hand its own storage to the newly initialized

element, e.g. the Plan or Action. Thus, all elements, regardless of their abstraction

level, will share the same storage which allows for easy data transfer between Actions,

Plans and even Tasks. However, if security requires it, any element can hold its own,

unshared storage.

5.6 Final Version of TAMo

This section will describe the elements of the final version of TAMo similar to section

5.3. Elements that haven’t changed will be mentioned shortly and we will refer to

their respective description in the previous section. Similarly, we will mention all
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elements that have been dropped and refer to their new substitutes. There may be

some repetitions in the description of elements that have actually changed, but we will

stress the differences to their former counterparts.

5.6.1 General Elements

Most of the general elements remained unchanged, namely the Comment, and Start

and End elements. They still allow for marking other model elements with additional

notes and, respectively, denote the beginning and end of a Task or Plan. However,

the last element in the general group, Connection, changed significantly. Due to the

fact that we dropped the State and Transition elements, the set of allowed endpoints

of the Connection element has changed in the Plan diagram. In the Task Overview

diagram, the definition of the Connection element did not change. It still allows for the

connection of Task elements with each other and respectively Start and End elements.

5.6.2 Task Level Elements

The elements at the Task Level, namely the Task and Plan elements, remained un-

changed. Still, Tasks can be combined using Connection elements and several Plans

can be added to a specific Task element.

5.6.3 Plan Level Elements

The largest changes between the first and second version of TAMo occur at the Plan

Level resulting in a much simpler model to speed up the definition of single Plans. As

noted before, the State and Transition elements have been removed completely. The

State of an agent is implicitly given by the current execution state of the Plan respec-

tively Task. Furthermore, there are a no Loop or Decision elements anymore.

Instead, Actions are now the core building blocks of a TAMo Plan. They are self-

contained elements that achieve a single purpose. Actions are connected with each

other to define the flow(s) through a Plan. Any number of Connections may lead to a

single Actions. However, each Action defines the number of outgoing connections and

is responsible to select the appropriate outgoing connection during its execution. This

differs from the usual connection handling found in workflow systems today. In todays

workflow systems, the workflow designer defines the number of outgoing connections

for any activity and for each connection he defines the conditon that must be matched

in order to follow that connection. We have chosen to let an Action programmer define
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all possible outcomes because we wanted to encapsulate as much logic as possible

into Actions themselves and not to expose its internals. Moreover, we overcome two

problems of todays workflow approach. First, the problem of overlapping conditions

where it is not exactly defined which connection should be select. Second, having

an Actions outcome that cannot be matched to any given condition of all outgoing

connections. Above all, we would rather not confront non-developers with the need

to create boolean expressions while building an agent. They should just define, what

should be done if an Action ends up in an Error or No Result state.

5.6.4 Relationship Constraints

As mentioned in several element descriptions in the previous sections, TAMo imposes

a number of constraints on the relationships between different model elements. For

example, it is possible to directly connect two Actions in a Plan. However, one cannot

directly connect a Start to an End state which would resulting in an empty, and thus

meaningless, plan.

Tables 5.1 and 5.2 depict the valid connections between any two TAMo elements as

well as the possible parent-child relationships.

Element 

Connections

Task 

Overview
Task Plan Action

Start- & 

Endpoint
Comment

Task Overview

Task

Plan

Action

Start- & 

Endpoint

Comment

- - - - - -

-

- - -

- -

-

Table 5.1: Element Connections

5.6.5 Formalization

After the introduction to the TAMo elements in a rather informal way, this section

focuses on providing a sound basis for the complete model by mapping it to the notion

of a nondeterministic finite automaton.
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Contains 

Element Type

Contains 

Element Type

ContainerContainer

Task Overview Task Plan

Task Overview

Task

Plan

Start- & Endpoint

Action

Comment

- - -

- -

- -

-

- -

Table 5.2: Element Containment

5.6.5.1 General Definitions

D is a dictionary

Dx is a dictionary entry

SD is the State of Dictionary D based on the number and and kind of

its entries

5.6.5.2 Action Definitions

A is an atomic action

CA is a set of actions that are connected to the outgoing connections

of A, if A is the end action of a plan, then |CA| = 0

SA is the state of action A with SA ∈

{Created, Initialized, Executing, Suspended, F inished,Error, Unknown}

fA (SA, SD) a function of A such that fA (SA, SD) → S′

A
× S′

D
, e.g. it trans-

forms the state of action A and of the global dictionary

gA (SA, SD) a function of A such that gA (SA, SD) → A′with A′ ∈ CA, e.g.

the function selects the next action that should be executed, if A

is one of the end actions, then A′ = ε

5.6.5.3 Plan Definitions

We define a Plan P as

P = (AP , SP , A0, EA, D,Ac, p(Ac))

with
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AP a set of actions belonging to plan P

SP the state of plan P with

SP =































Initialized if Ac = A0

Finished if SAC
= Finished ∧ AC ∈ EP

Error if SAC
= Error ∧ AC ∈ EP

SAC
if AC /∈ EP

A0 the start action of plan P

EP a set of end actions of plan P , e.g. if the execution reaches any of

these actions, the plan execution is finished after executing that

very action

Ac denotes the currently active action of plan P

hP (Ac) a function of plan P that executes fAc
and afterwards gAc

executed

repeatedly as long as Ac 6= ε

5.6.5.4 Task Definition

We define a Task T as

T = (PT , Pc, ST , iT (SD, SPc
), jT (Pc), D)

with
PT a set of plans belonging to task T

Pc the currently selected plan with Pc ∈ PT

ST the state of task T with

T =







Error if ∀Px (Px ∈ PT ∧ SPx
= Error)

SPC
otherwise

iT (SD, SPC
) a function of task T such that iT (SD, SPC

) → PNext with PNext ∈

PT e.g. a function that, depending on the state of the dictionary

and currently selected plan, selects the next plan for execution,

PNext becomes Pc

jT (Pc) a function of task T that executes hPc

5.6.5.5 Agent Script Definition

We define a TAMo Agent Script as

A = (TA, T0, ET , Tc, SA, kA, lAD)
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such that
TA is a set of task that make up the scipt A

T0 is the start task of the script A

ET is a set of end tasks for script A

Tc denotes the currently selected task

SA the state of script A with

SA =



















Success Tc ∈ ET ∧ STc
= Success

Error Tc ∈ ET ∧ STc
= Failed

Executing STc
= Executing

kA a function that executes iTc
and jTc

repeatedly

lA a function of script A such that lA(Tc) → Tnext with TNext ∈ TA e.g.

a function that selects the next task for execution, TNext becomes

Tc

5.7 Example

The final section in this chapter presents a TAMo example that is based on the scenario

described in section 4.2 where an agent is in charge to determine travel options for a

conference. We assume that the following information is available at the beginning of

the script:

Traveller Information General information about the person who is going to visit the

conference. For example hometown, preferred means of travel and time con-

straints derived from calendar. Furthermore, the agent should have access to

several methods to contact its owner, e.g. via email, direct message or Twitter.

Conference Information The agent needs information about the conference that is

going to be visited like location, date, venue notes and costs.

Budget Information Information about the overall available budget for this journey is

needed to find a travel plan that fits all needs.

We further assume that the following external services exist:

Service Directory We assume that the agent has access to a general service directory

where it can lookup various web services.
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Hotel Booking Services We assume that the service directory provides access to web

services for booking hotels. More specifically, we expect the directory to offer a

worldwide booking services as well as a local service that offers accommodation

options at the conference location.

Travel Option Services Similarly to the hotel booking services, we require the exis-

tence of two different services to provide options for traveling from the agent

owner’s hometown to the conference location, e.g. by car, train or airplane. One

service could offered by a worldwide travel portal and the second one could be

provided by small travel agency that is located at the owner’s hometown.

Agent Hosting For all the services described above, we presume that all machines that

offer these services also host an agent system that is capable to execute TAMo

based agents.

Figure 5.14 shows the task layer of the TAMo script for this scenario. We have

divided the agent’s overall goal into four tasks and one task to handle all error cases.

The first task will determine accommodation options at the conference location using

one of two plans – the first one using a hotel booking service of the target city’s tourist

information whereas the second one uses a general worldwide booking service. The

second task will determine means of travel from the agent owner’s hometown to the

conference and back again. Similar to the first task, the second one is backed up by two

plans where each one uses a different service to determine those travel options. The

third task features just a single plan which tries to match accommodation and travel

options and filter them with regard to budget and possibly colliding appointments of

the traveller. Task 4 is the last task in a successful execution of this TAMo script. It

tries to deliver the acquired information to the agent owner either by migration to the

owner’s machine and present the data directly or, if migration is not an option or it

simply failed, by sending it via email.

We should note that, if the third task fails, this will not lead to a failed overall script.

If the agent is not able to match and filter all the available travel information, it will

simply submit all the data as is to its owner. This is in contrast to the first two tasks.

If one of these tasks fails, the overall script has failed. In that case, task number 5 is

executed which is used to inform the owner about the current status of execution and

the reasons for failure.

In figure 5.15 plan T1.1 for accessing a service, in this case a hotel booking service, is

shown. The agent will first migrate to the service directory and acquire the information
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about the booking service. It will afterwards migrate to that very service and use it to

gather some accommodation options that will be reformatted into an internal format.

We omit the figures for plans T1.2, T2.1 and T2.2 because they are very similar

to plan T1.1. They all use the service directory to find a required service which is

afterwards enacted and the results are processed.

Migration
Target: Service Directory

Determine Hotel 
Booking Service

Success

Success

Migration
Target: Booking Service

Acquire Hotel 
Options

Unify and Filter 
Hotel Results

Error Error Error

Success

Success

Error Error

Figure 5.15: Example Plan T1.1

Plan T3.1 defines how the matching of accommodation and travel options as well

as checking them against constraints is performed. For example, the action Check

Distances will verify the distance between the hotel and the conference site complies

to the owner’s desires, e.g walking distance.

Both plans of task 4 are rather simple. The first one tries to migrate to the owner’s

home agency and present the results whereas the second one will just send an email

with all the acquired information. Compare figure 5.17 and 5.18.

We also omit the figure for plan T5.1 as it is nearly equal to T4.2 - it simply sends

an email to the owner detailing the reasons for failure.

5.8 Regarding the Completeness and Power of TAMo

So far, we have presented the TAMo model as well as its implementation. As we will

show in Chapter 8, the created toolkit allows for easy creation and adaptation of mobile

agents. Even more, with its simplicity and approachability, the framework increases

the target audience for agent development and usage significantly. With these aspects
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Figure 5.16: Example Plan T3.1
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Figure 5.17: Example Plan T4.1
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Figure 5.18: Example Plan T4.2
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being the main focus of this thesis, we consider TAMo as a valuable addition to software

agent research.

However, from a theoretical point of view, the presented model lacks a sound formal

grounding, for example by mapping it to an existing formalisim like Petri Nets. Without

such a mapping, we cannot provide more sophisticated features like validy checks, e.g.

for unreachable actions or subplans, or prove the completeness of the model itself. But

these aspects have not been focus of this work and we leave it to future research. And,

concerning the computation power and completeness of TAMo, we regard the fact that

the implemented framework is grounded on the Java programming language and allows

for the usage of all language features as sufficent enough for our aims.
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Chapter 6

Implementation of the TAMo Runtime

Engine

This chapter covers the implementation of the TAMo engine. We will start with a

general overview of the goals and constraints that guided the development of the TAMo

execution environment and how the model described in the last chapter was changed

to allow for a better implementation. Thereafter, we take deeper looks at the various

parts that make up the final system. Afterwards, in chapter 7, the graphical editor

which accompanies the core system and allows for an easy creation of tasks and plans

will be discussed.

6.1 Overview

With the final model described in the last chapter, we started to conceive a flexible

and easy to understand implementation. In a simple 1:1 fashion, we first translated

every model element into a concrete element in our implementation and afterwards

tried to fill in the gaps and holes as well as to remove one or the other element out of

convenience or sheer optimization.

We will first outline the implementation of the general TAMo engine that has no

references to the Tracy 2 agent toolkit and that is able to run standalone execution

scripts. Afterwards, the integration of TAMo as the new agent model and execution

engine for Tracy 2 is described.
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6.2 The Standalone Engine

The core TAMo engine, that is based on the TAMo model, was implemented as a

standalone runtime for the execution of TAMo based scripts. One of the main goals of

the implementation was to restrict the number of dependencies to other frameworks or

libraries to a bare minimum. Fortunately, we were able to ground the core engine solely

on the standard libraries provided by the Java programming languages that was used

for the implementation and have no other dependencies to third party frameworks or

APIs. Thus, it is possible to easily integrate the core TAMo engine into any software

that is based on the Java runtime environment. And, with the integration into the

Tracy 2 agent toolkit, we were the first to benefit from these minimal requirements.

The implementation is based around the four core parts of the TAMo model: Tasks,

Plans, Actions and the shared Data Storage. Therefore, for each of these elements an

interface as well as a default implementation respectively an abstract base class are

provided. In the following subsections, we will have a closer look at these parts.

6.2.1 Shared Elements

In this section, we will describe those parts of the TAMo engine that are shared among

the other elements.

ExecutableState We have provided an Java Enum that captured the different states

that can be adopted by Tasks, Plans, Actions and a TAMo script as a whole.

The possible states are CREATED, INITIALIZED, EXECUTING, SUSPENDED,

FINISHED, ERROR and UNKNOWN. Figure 6.1 shows the possible state transi-

tions.

CoreEngine This class represents the outer wrapping around any TAMo script and

serves as the starting point for any execution. The CoreEngine is given a set of

interconnected Tasks and will execute them in the defined order by successively

calling the corresponding run method of a Task.

TAMoLogger To capture how the execution of a TAMo script performs, we created a

simple logger that writes status updates to a console. We are aware that there are

a lot of sophisticated Logging frameworks available, but due to the fact that we

wanted to have a minimal set of dependencies, we decided to create a small one

especially for TAMo. And, with a logger having such a small footprint, the burden
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Initialized Running

Finished

Suspended

Finished
with Error

Start

Run

Completed Error 

Suspend

Execution
Resumed

Figure 6.1: States Transitions as implemented for Tasks, Plans and Actions

of carrying this logger during a migration is negligible. Moreover, extending the

TAMoLogger to wrap a more sophisticated Logging framework is straightforward.

6.2.2 Task Implementation

6.2.2.1 Interfaces

ITask The ITask interface defines the structure and external functionality of a TAMo

Task. Beside five methods to handle state transitions, for example execute or

suspend, it offers methods to add and remove plans and to set a storage, plan

selector and delegate implementation.

ITaskDelegate During the execution of a task, several state transitions take place and

to allow for tracking those changes, we have implemented the Delegate pattern

[Buck and Yacktman, 2009]. The ITaskDelegate interface defines a set of methods

that a task delegate must support in order to follow the execution of a task. In

general, for each state transition, the delegate is informed two times. First, before

the task will initiate this transition and second, after the transition took place.

Moreover, the delegate will be informed when the currently executed plan has

failed and when a new plan will be and was selected.
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+ getID() : String
+ setID( String id )
+ getState() : ExecutableState
+ initialize()
+ execute()
+ suspend()
+ finish()
+ handleError()
+ setSuccessfulConnection( ITask task )
+ getSuccessfulConnection() : ITask
+ setErrorConnection( ITask task )
+ getErrorConnection() : ITask
+ addPlan( IPlan plan )
+ getPlans() : List<IPlan>
+ removePlan( IPlan plan )
+ getDelegate() :  ITaskDelegate
+ setDelegate( ITaskDelegate delegate ) 
+ getStorage() : IDataStorage
+ setStorage( IDataStorage storage )
+ getPlanSelector() : IPlanSelector
+ setPlanSelector( IPlanSelector selector )

<<interface, Runnable, Serializable>>

ITask

Figure 6.2: ITask Class Diagram

+ run()
+ getID() : String
+ setID( String id )
+ getState() : ExecutableState
+ initialize()
+ execute()
+ suspend()
+ finish()
+ handleError()
+ setSuccessfulConnection( ITask task )
+ getSuccessfulConnection() : ITask
+ setErrorConnection( ITask task )
+ getErrorConnection() : ITask
+ addPlan( IPlan plan )
+ getPlans() : List<IPlan>
+ removePlan( IPlan plan )
+ getDelegate() :  ITaskDelegate
+ setDelegate( ITaskDelegate delegate ) 
+ getStorage() : IDataStorage
+ setStorage( IDataStorage storage )
+ getPlanSelector() : IPlanSelector
+ setPlanSelector( IPlanSelector selector )
- initializeInternal()
- executeInternal()
- suspendInternal()
- finishInternal()
- handleErrorInternal()

- id : String
- plans : ArrayList<IPlan>
- currentPlan : IPlan
- storage : IDataStorage
- delegate : ITaskDelegate
- planSelector : IPlanSelector
- wasInitialized : boolean

TaskImpl 

implements ITask

Figure 6.3: TaskImpl Class Diagram

IPlanSelector In order to provide different means to handle the selection of one of

the provided plans that are associated with a single task, we decided to apply

the Strategy pattern [Gamma et al., 1994] and move the selection process into

separate classes. The IPlanSelector interface defines the required functionality

that a plan selector must provide. To keep things simple, there are just two

methods. A first method that determines if there are any executable plans left,

e.g. at least one plan with a state other than Failed. And a second method that

returns the next plan that should be executed.
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6.2.2.2 Classes

TaskImpl This class represents a straightforward implementation of the ITask inter-

face. It handles a task’s states and transitions, plan selection, configuration and

execution as well as informing an optional delegate about its execution. This

implementation should be sufficient enough for nearly any usage of the TAMo

engine and altering the behavior of this class should only be necessary in extreme

border cases. Using a different plan selector or providing a delegate that hooks

into the execution should provide enough options to alter the behavior of this

implementation.

+ taskWillInitialize( ITask task )
+ taskDidInitialize( ITask task )
+ taskWillStartExecution( ITask task )
+ taskDidStartExecution( ITask task )
+ taskWillSuspendExecution( ITask task)
+ taskDidSuspendExecution( ITask task)
+ taskWillResumeExectution( ITask task )
+ taskDidResumeExectution( ITask task )
+ taskDidFinish( ITask task )
+ taskDidFinishWithError( ITask task )
+ taskCurrentPlanDidFailed( ITask task )
+ taskWillSelectNewPlan( ITask task )
+ taskDidSelectNewPlan( ITask task )

<<interface, Serializable>>

ITaskDelegate

Figure 6.4: ITaskDelegate Class Diagram

+ getPlan( ITask task ) : IPlan
+ hasMorePlans( ITask task ) : boolean

<<interface, Serializable>>

IPlanSelector

Figure 6.5: IPlanSelector Class Diagram

SimplePlanSelector For our testing purposes, we created a very simple plan selector.

Without considering any environment parameters, this selector will simply select

the next unfinished plan for execution.

LoggerTaskDelegate To track the execution of TAMo scripts and measure runtimes,

we created a simple task delegate that captures timestamps for all state transitions

and uses the TAMoLogger to print these values.

6.2.3 Plan Implementation

6.2.3.1 Interfaces

IPlan The IPlan interface defines the structure of a TAMo plan implementation. Sim-

ilar to the ITask interface, it offers methods to handle state transitions and a

storage. Furthermore, it provides means to set and get the start action of the
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plan as well as get the currently executed action. To monitor plan execution, we

also applied the Delegate pattern. Analog to the task delegate, the plan delegate

is informed of any upcoming and executed state transition.

+ getID() : String
+ setID( String id )
+ initialize()
+ execute()
+ suspend()
+ finish()
+ handleError()
+ getState() : ExecutableState
+ getDelegate() : IPlanDelegate
+ setDelegate( IPlanDelegate delegate ) 
+ getStartAction() : IAction
+ setStartAction( IAction action )
+ getCurrentAction() : IAction
+ getStorage() : IDataStorage 
+ setStorage( IDataStorage storage )

<<interface, Runnable, Serializable>>

IPlan

Figure 6.6: IPlan Class Diagram

+ run()
+ getID() : String
+ setID( String id )
+ initialize()
+ execute()
+ suspend()
+ finish()
+ handleError()
+ getState() : ExecutableState
+ getDelegate() : IPlanDelegate
+ setDelegate( IPlanDelegate delegate ) 
+ getStartAction() : IAction
+ setStartAction( IAction action )
+ getCurrentAction() : IAction
+ getStorage() : IDataStorage 
+ setStorage( IDataStorage storage )
- initializeInternal()
- executeInternal()
- suspendInternal()
- finishInternal()
- handleErrorInternal()

- id : String
- delegate : IPlanDelegate
- storage : IDataStorage
- startAction : IAction
- currentAction : IAction 

PlanImpl

implements IPlan

Figure 6.7: PlanImpl Class Diagram

IPlanDelegate Similar to the ITaskDelegate interface, the IPlanDelegate interface de-

fines the methods that a class must implement to act as a plan delegate and

monitor a plan’s execution.

6.2.3.2 Classes

PlanImpl The PlanImpl class provides a straightforward implementation of the IPlan

interface and should be sufficient enough for most application scenarios. Similar

to our standard task implementation, it handles a plan’s states and the correspond-

ing transitions, action configuration and execution as well as keeping an optional

delegate informed on its current execution status.

102



6.2 The Standalone Engine

+ planWillInitialize( IPlan plan )
+ planDidInitialize( IPlan plan )
+ planWillStartExecution( IPlan plan )
+ planDidStartExecution( IPlan plan )
+ planWillSuspendExecution( IPlan plan)
+ planDidSuspendExecution( IPlan plan)
+ planWillResumeExectution( IPlan plan )
+ planDidResumeExectution( IPlan plan )
+ planDidFinish( IPlan plan )
+ planDidFinishWithError( IPlan plan )

<<interface, Serializable>>

IPlanDelegate

Figure 6.8: IPlanDelegate Class Diagram

LoggerPlanDelegate To track the execution of plans and perform runtime measure-

ments, we created a simple plan delegate which captures timestamps for all of a

plan’s state transitions and submits them to the global TAMoLogger.

6.2.4 Action Implementation

6.2.4.1 Interfaces

IAction The IAction interface defines the structure of a valid TAMo action implemen-

tation. Similar to the ITask and IPlan interfaces, it features the same methods

to handle state transitions as well as defining a delegate; in this case an object of

type IActionDelegate. Due to the fact that a single TAMo action can offer any

number of outgoing connections, the interface defines methods to link follow up

actions to these connections and to retrieve such linked actions. A rather large

set of methods of the IAction interface is concerned with the manipulation of the

data storage. There are two different options to handle data storage access: by

value or by reference. The first one is used for entries that are specific to that

action, for example action configuration. In this case, the action uses a dictionary

key to access the concrete value of a parameter. The latter type, by reference, can

be used to exchange data between different actions. Here, the action uses a key

to access the data storage and acquire a second key. With the second key, the

action can access the actual value of the parameter. Thus, it is possible to have

several actions access the same data in the data storage without linking them

during the implementation. The definition of shared keys is thus postponed until

the actual creation of a TAMo script.
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+ getID() : String 
+ setID( String id )
+ initialize()
+ execute()
+ suspend()
+ finish()
+ handleError();
+ shouldExecute() : boolean
+ readyForNextAction() : boolean
+ getState() : ExecutableState 
+ setState( ExecutableState state ) 
+ getDelegate() : IActionDelegate
+ setDelegate( IActionDelegate delegate ) 
+ getNextAction() : IAction
+ getActionConnections() : List<String>
+ setAction( String connectionName, IAction action )
+ getAction( String connectionName ) : IAction
+ getStorage() : IDataStorage
+ setStorage( IDataStorage storage )
+ getDictionaryParameterNames() : List<String>
+ getDictionaryParameterValues() : Map<String, Serializable>
+ getValueParameterNames() : List<String>
+ getValueParameterValues() : Map<String, Serializable>
+ setKeyForParameter( String parameter, String dictionaryKey )
+ getKeyForParameter( String parameter ) : String
+ getValueForParameter( String parameter ) : Serializable
+ setValueForParameter( String parameter, Serializable value )

<<interface, Runnable, Serializable>>

IAction

Figure 6.9: IAction Class Diagram

+ run();
+ getID() : String 
+ setID( String id )
+ initialize()
+ execute()
+ suspend()
+ finish()
+ handleError();
+ shouldExecute() : boolean
+ readyForNextAction() : boolean
+ getState() : ExecutableState 
+ setState( ExecutableState state ) 
+ getDelegate() : IActionDelegate
+ setDelegate( IActionDelegate delegate ) 
+ getNextAction() : IAction
+ getActionConnections() : List<String>
+ setAction( String connectionName, IAction action )
+ getAction( String connectionName ) : IAction
+ getStorage() : IDataStorage
+ setStorage( IDataStorage storage )
+ getDictionaryParameterNames() : List<String>
+ getDictionaryParameterValues() : Map<String, Serializable>
+ getValueParameterNames() : List<String>
+ getValueParameterValues() : Map<String, Serializable>
+ setKeyForParameter( String parameter, String dictionaryKey )
+ getKeyForParameter( String parameter ) : String
+ getValueForParameter( String parameter ) : Serializable
+ setValueForParameter( String parameter, Serializable value )
- initializeInternal()
- executeInternal()
- suspendInternal()
- finishInternal()
- handleErrorInternal()

- id : String
- state : ExecutableState
- delegate : IActionDelegate
- storage : IDataStorage
- localStorage : IDataStorage
- parameterToKeyMap : Map<String, String>
- actionsMap : Map<String, IAction>

<<abstract>>

AbstractAction

implements IAction

Figure 6.10: AbstractAction Class Dia-

gram

IActionDelegate The IActionDelegate provides the same functionality as the delegates

for Tasks and Plans. It allows for monitoring the state transitions that take place

during an actions execution.

6.2.4.2 Classes

AbstractAction This class is an abstract implementation of the IAction interface that

provides all the basic functionality any TAMo action should offer, e.g. state

handling, data storage access and notifying the delegate. It should serve as

the base class for any concrete TAMo action. By inheriting from this class, all

an action developer needs to do is provide an implementation of the execute()

method and define necessary parameters and outgoing connections. By default,
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+ actionWillInitialize( IAction action )
+ actionDidInitialize( IAction action )
+ actionWillStartExecution( IAction action )
+ actionDidStartExecution( IAction action )
+ actionWillSuspendExecution( IAction action)
+ actionDidSuspendExecution( IAction action)
+ actionWillResumeExectution( IAction action )
+ actionDidResumeExectution( IAction action )
+ actionDidFinish( IAction action )
+ actionDidFinishWithError( IAction action )

<<interface, Serializable>>

IActionDelegate

Figure 6.11: IActionDelegate Class Diagram

AbstractAction already offers two outgoing connections for the success and error

cases.

LoggerActionDelegate Similar to the logger delegates for tasks and plans, we created

a delegate for actions that would capture state transitions and provide runtime

measurements.

6.2.5 Data Storage Implementation

6.2.5.1 Interfaces

IDataStorage The data storage that is associated with any TAMo script is a straight-

forward key-value based data structure. Therefore, the IDataStorage interface

defines the common methods to access such a kind of storage.

+ getValue( String key ) : Serializable
+ setValue( String key, Serializable value )
+ getValues( List<String> keys ) : Map<String, Serializable>
+ setValues( Map<String, Serializable> data );

<<interface, Serializable>>

IDataStorage

Figure 6.12: IDataStorage Class Diagram

6.2.5.2 Classes

DataStorageImpl The DataStorageImpl class provides a default implementation of the

IDataStorage interface which is backed up by a standard Java Map data structure.
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6.2.6 Component Interaction

Diagram 6.13 displays the interactions that take place between the parts which make

up the core TAMo engine and it should serve as a reference for anyone who is going to

use and alter the framework.

Plan
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Script
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Task

Delegate

Task

Delegate

notify
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Figure 6.13: TAMo Component Interaction

6.3 Integration of TAMo into Tracy 2

In this section, we will take a look at the integration of the TAMo engine into the Tracy

2 agent toolkit to serve as the new agent execution environment. As stated above, due

to its minimal dependencies, this process was simple. Basically, we transformed the

CoreEngine into a normal Tracy 2 agent. Thus, we got a generic agent that is able

to execute any TAMo script. Beside that, we create some additional classes to handle

access to specific Tracy functions and extended the interfaces and classes described

in the last chapter with regard to agent related properties. The general structure of

a Tracy 2 agent system with an integrated TAMo engine can be seen in figure 6.14
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whereas in figure 6.15, usage and dependency relations between the core parts of Tracy

and the new TAMo elements are displayed.

Java 2 Runtime

TAMo Agent

Runtime
Tracy 2 

Plugins

Tracy 2 Kernel

Tracy 2 

Agents

Tracy 2 Agent Runtime

Figure 6.14: TAMo and Tracy 2

Agent 
Scheduling

Migration 
Plugin

Tracy 2 
Agent 

Runtime

Survival 
Plugin

TAMo Execution 
Engine

Runs on
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Figure 6.15: Usage and Dependencies

In the following subsections, we will have a closer look at the updated and new parts

of TAMo which have been developed during the integration into the Tracy 2 agent

system. Figure 6.16 presents the complete class diagram of the TAMo version for the

Tracy 2 agent toolkit and can serve as reference for the upcoming sections.

6.3.1 Agent and Agency

In this section, we describe interfaces and classes that have been created to integrate

the TAMo framework as an execution engine into the Tracy 2 agent toolkit alongside

the traditional agent programming environment.

6.3.1.1 Interfaces

IAgent The IAgent interface has been created to enable a Task, Plan or Action to

access agent and agency specific features. So far, it offers access to the Plugin-

ContextHandler, migration functionality as well as requesting a relaunch of the

agent. In section 6.3.2 and 6.3.3, we outline the changes that have been made

to the ITask, IPlan and IAction interfaces as well as their respective implementa-

tions to integrate a reference to an IAgent implementation.
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<<interface>>

ITask
<<interface>>

ITracyTask

<<interface>>

IPlan
<<interface>>

ITracyPlan

<<interface>>

IAction
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Figure 6.16: Tracy and TAMo Class Diagram

108



6.3 Integration of TAMo into Tracy 2

6.3.1.2 Classes

CoreAgent The CoreAgent is a standard Tracy 2 agent which serves as a wrapper

around the core TAMo engine. Thus, it is able to execute any TAMo script inside

of Tracy 2. By choosing this approach, we could introduce TAMo into the Tracy

2 agent system without altering the standard agent programming approach or

breaking any existing agent respectively agent application. The CoreAgent class

implements the IAgent interface and will take care of loading a given TAMo

script, initialize its components, provide access to agency specific plugins as well

as offering a simple access to agent migration. Furthermore, it will control the life

cycle of a TAMo script and reschedule the agent for another execution of there

are still tasks to do by using the Survival plugin offered by Tracy.

+ getPluginContextHandler() : PluginContextHandler
+ prepareMigration( String destinationHost )
+ wasMigrationSuccessful() : boolean
+ scheduleRelaunch( int seconds )

<<interface, Serializable>>

IAgent

Figure 6.17: IAgent Class Diagram

+ run()
+ getPluginContextHandler() : PluginContextHandler
+ prepareMigration( String destinationHost )
+ wasMigrationSuccessful() : boolean
+ scheduleRelaunch( int seconds )
+ setDataStorage( IDataStorage storage )
+ getDataStorage() : IDataStorage
+ setStartTask( ITracyTask task)
+ getStartTask() : ITracyTask
+ getCurrentTask() : ITracyTask

- logger : TAMoLogger
- migHandler : MigrationHandler
- plugins : PluginContextHandler
- dataStorage : IDataStorage
- startTask : ITracyTask
- currentTask : ITracyTask

<<Runnable, Serializable>>
CoreAgent

implements IAgent

Figure 6.18: CoreAgent Class Diagram

MigrationHandler The MigrationHandler was introduced into the TAMo framework

to allow for an easy usage of agent migration and take care of releasing plugin

contexts and, because it would otherwise prevent a migration, signing out of

the Survival plugin. By offering such a simple access to the migration engine,

we are hiding many of the more sophisticated features. However, our approach

offers an easy and fast start into applying migration in TAMo scripts and, by

implementing additional Actions that can be used in a TAMo script, the usage

of advanced migration options like strategies or code and mirror servers is still

possible.
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PluginContextHandler As described in section 2.6, most high-level functionality in

Tracy 2 is provided by plugins that offer plugin-specific context object to access

their services. Those context objects can be acquired by using a static method of

the Context class, which works well for agents that consist of only a single class

and can hold references to contexts they need to access several times. However,

in TAMo, functionality and thus access to plugins is distributed among a number

of actions. To prevent the TAMo model from requesting plugin contexts over and

over again during execution, we established a PluginContextHandler class that

acts as mediator between a TAMo instance and a Tracy context object. Beside

decreasing the coupling between Tracy 2 and TAMo, the PluginContextHandler

will also cache requested context objects for faster succeeding access.

+ initMigration( String destination, String migrationStrategy )
+ getMigrationContext() : IAgentMigrationContext
+ getAgent() : IAgent
- setAgent( IAgent agent )
- resetPluginContextHandler()

- agent : IAgent

<<Serializable>>

MigrationHandler

Figure 6.19: MigrationHandler Class Di-

agram

+ getPluginContext( String service ) : IContext
+ reset()
+ getMigrationCxt() : IAgentMigrationContext
+ getSurvivalCxt() : ISurvivalContext
- getPluginCxts() : Map<String, IContext>

- pluginCxts : Map<String, IContext>

<<Serializable>>

PluginContextHandler

Figure 6.20: PluginContextHandler

Class Diagram

6.3.2 Tracy Actions

Based on the basic interface and implementation for a TAMo action, specialized versions

for the Tracy 2 integration have been created to ease the usage of agent and agency

specific features. After outlining these changes, we describe a set of different actions

that have been created for the utilization in a Tracy 2 TAMo script.

6.3.2.1 Interfaces

ITracyAction Extending the IAction interface, the ITracyAction adds a single method

to submit an IAgent reference to an action. Thus, such an action is able to access

the features provided by an agent as describes in section 6.3.1.2.
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6.3.2.2 Classes

AbstractTracyAction The AbstractTracyAction extends from AbstractAction and im-

plements the ITracyAction interface thereby adding a reference to an IAgent

implementation. Similar to its parent class, this class should serve as the base

class for all Tracy 2 TAMo actions.

+ getAgent() : IAgent
- setAgent( IAgent agent )

<<interface, Serializable>>

ITracyAction
extends IAction

Figure 6.21: ITracyAction Class Dia-

gram

+ getAgent() : IAgent
- setAgent( IAgent agent )

- agent : IAgent

<<Runnable, Serializable>>
AbstractTracyAction

extends AbstractAction
implements ITracyAgent

Figure 6.22: AbstractTracyAction Class

Diagram

6.3.2.3 Available Actions

GetServiceNamesAction This action can be used by an agent to acquire a list of

services that are currently available at the platform. Given such a list, an agent

can select an appropriate service for the task at hand which can afterwards be

enacted.

SetPersistencyCheckpointAction As part of the MobiSoft project, the Tracy team

developed a plugin for Tracy 2 agencies that enabled agents to save their current

state, shut down and resume execution at some point in the future. Saving and

restoring is handled by the plugin; an agent just needs to register at this plugin.

The Persistence plugin was mainly targeted to allow for a gentle agency shutdown

and restart without losing running agents during this process. This TAMo action

allows for agents to easily use this service.

RESTServiceAccessAction This is a generic action that enables agents to access a

RESTful web service (compare section 2.3.2) by providing easy to use abstractions

for setting an HTTP method, header parameter or the body of such a request.

The reply is handed directly to the agent for any further usage.
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WriteToUserAction A very simple action used mainly for debugging purposes. It

allows for sending a messages to the user that is currently logged in at the Tracy

2 shell.

LoopAction In our move from the first to the second, final version of TAMo, we re-

moved several special elements like the loop construct. To compensate for this

loss, we created an action that serves the same purpose. It is possible to config-

ure a LoopAction with a fixed number of iterations or supply a list based data

structure for iteration. Beside the default outgoing success and error connections,

it offers a loop connection which is chosen if the iteration should continue.

SuspendAction Due to their asynchronous nature, agents will often wait for some

external event like an incoming message or a reconnection of their current agency

to a network. Therefore, we created an action that will pause an agent for a

specific amount of time.

TracyMigrationAction TheTracyMigrationAction triggers a simple Push migration by

using the functionality offered by the CoreAgent. Everything that belongs to the

agent, e.g. code, data, and state, will be send to the destination agency. The

destination can be submitted with the actions configuration or it is acquired from

the data storage during runtime.

6.3.3 Tracy Tasks and Plans

Similar to the IAction and ITracyAction interfaces, the ITask and IPlan interfaces have

been extended to allow for supplying an IAgent reference to a task or plan. Further,

the TaskImpl and PlanImpl have been extended in a similar manner to integrate the

new interface. Beside that, no changes to these implementations have been made.

6.3.4 Agent Lifecycle

This section will describe the general lifecycle of a TAMo based agent. As depicted in

figure 6.23, the agent’s execution starts with a standard initialization procedures and

the first task of the given script is selected for execution. The plan selector is issued to

select the most appropriate plan for the actual task. Afterwards the execution of the

chosen plan is started and the first action contained in the plan is executed. After this

execution, the CoreAgent decides on the next step – if there are still actions to perform

or tasks to complete, the agent will schedule a reenactment of the agent at the Survival
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plugin. At this point, the first invocation of the agent’s run method ends. Depending

on the parameters given to the Survival plugin, the agent will rerun instantly or after

some given delay. This second invocation will not be bothered with any initialization

task as these have already been conducted during the first cycle. The second invocation

will simply continue the execution of the currently active task or plan respectively select

a new task or plan if the previous ones where finished. The execution of the next action

concludes the second invocation of the agent’s run method. Again, the CoreAgent will

decide on a rescheduling of the agent.
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Figure 6.23: TAMo Agent Life Cycle
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Implementation of a Graphical Model

Editor for TAMo

Beside creating a new, easy to use development and execution framework for mobile

agents in terms of a formal notation and a reference implementation, we also aimed

at providing easy to use tools that allow for the creation of agent execution scripts for

programmers, designers and, ideally, end users. With TAMo incorporating concepts

of workflow systems, the kind of tool to help in the development of TAMo models

should be similar to graphical editors used in workflow system to create workflows by

simply adding activities to a sketch-board and connecting those activities in the proper

execution order. Editors like these have been used for years and are easy to understand

and utilize, making the core concept a good starting point for graphical TAMo model

editor. Furthermore, it should be possible to use the editor as a standalone program

– the preferred way for an agent designer or end user – but also in conjunction with

a development tools, where an agent programmer can create new activities and test

them without switching her well-known environment. The standalone version could

also be used in discussions with customers to explain and adapt a model to their needs

as a graphical notation can greatly help non-experts to understand the innards of the

software. To enable the creation and usage of a standalone version of the editor, the

coupling between the TAMo model framework and the editor should be as weak as

possible with only a handful of dependencies.

The editor itself must provide the following functionality:

• Create, edit, save and delete Task diagrams

• Create, edit, save and delete Plan diagrams
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• Dynamically load Actions

• Configure Actions

• Configure/Pre-fill the Data Storage

• Export final models in an interchangeable format that can be read by the TAMo

engine

7.1 Foundation

We decided to implement the TAMo Editor as a plugin for the Eclipse Platform1.

Eclipse is a widely used, Open Source Integrated Development Environment (IDE)

for a large number of languages and it is the predominant IDE for Java development.

But Eclipse is more than just a development environment. Based on an OSGi2 architec-

ture, Eclipse features a core runtime that can be adapted to any imaginable requirement

by the addition respectively extension of plugins. The OSGi specification defines an

architecture that is capable of Hot Plugging, a technique to dynamically load and up-

date software modules at runtime. The OSGi specification calls such software modules

bundles and every Eclipse plugin conforms to the OSGi bundle specification. For more

information on the OSGi specification we refer to the literature [McAffer et al., 2010].

The core Eclipse system as well as its plugins provide Extension Points which can

be used to hook plugins into the system. A plugin can extend the core functionality

of Eclipse in various ways, for example by integrating new programming languages,

adding new kinds of editors like the one we have in mind or adding access to remote

systems and external tools. Interestingly, all functions that make up the Eclipse IDE

are provided by plugins which run on the core OSGi platform.

Due to its wide spread among developers, using the Eclipse platform for our editor

is the natural choice for the agent programmer part. Beside that, the Eclipse platform

allows for the creation of standalone applications that consist of the core OSGi platform

and a selected set of plugins which make up an application. So, by using the Eclipse

platform, creating a standalone Editor application for agent designers and end users

can be accomplished as well. Furthermore, in the long term, we aim at integrating the

TAMo editor into the Tracy 2 Administration Wai Lin (see section 2.6.3).

1http://www.eclipse.org
2http://www.osgi.org
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7.1.1 Editors and Views

An Eclipse plugin has two general types of elements – Editors and Views. Editors allow

for the manipulation of the underlying data whereas Views provide additional informa-

tion. Compared to the Eclipse-based Java Development Environment, Editors allow

for the direct manipulation of program code and provide features like code coloring or

code completion. Furthermore, they provide a sound handling for a saved and unsaved

status of the manipulated model element. Views however display additional data for

the currently edited file, like to outline of the structure of a class, or the complete

project, like the list of all files that belong to it. But the separation between these two

elements is not as strict as it seems – the so called Properties View allows for the ma-

nipulation of (meta) data of the currently edited model. Depending on the underlying

model, an editor can take every shape – from a simple text editor for code manipula-

tion to a form-based representation of complex configuration files up to a sophisticated

graphical representation of an underlying model.

7.1.2 Graphical Editing Framework

The TAMo Editor uses several third-party plugins that are available and which provide

a sound starting point for creating a graphical editor. The first of those plugins is the

Graphical Editing Framework (GEF)3 plugins which supports the creation of graphical

editors following a strictly Model-View-Controller Paradigm (MVC):

Model A GEF model contains and maintains all data that is manipulated by the user

and has no references to any other part of the editor. Changes to the model will

be propagated to one or more controllers, which then update the views accordingly.

It is highly advisable to create a sound model implementation before starting with

any other part of the editor. In case of TAMo, the model implementation of the

engine was used as basis and extended when necessary. GEF imposes several

constraints on a valid model; most of them are targeted to establish a solid

notification mechanism for all parts of the editor which have been incorporated

into the TAMo engine model. During runtime, the creation of model elements

is accomplished via Factory objects [Gamma et al., 1994] which link the new

element to all its dependencies.

Controller A GEF controller links exactly one model element with one view element.

Changes to the model element will be propagated to the view and vice versa.

3http://www.eclipse.org/gef
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For example, the TAMo model contains a Task element which has a graphical

representation, e.g. its view. Both of them are linked by a Task controller that is

able to react on user interactions with Tasks view or changes to the Task model

element.

Naturally, a controller is the most complex part in the MVC paradigm as it is re-

sponsible to keep all parts in sync. The controller layer of GEF is divided into two

general components: EditParts and EditPolicies. An EditPart is always linked to

one kind of view as well as one kind of model element and it handles the creation

of views, of EditParts for child views and connections between view elements. Fur-

thermore, they are responsible for refreshing the view in case of a model change.

During the creation of an editor window, a concrete EditPartFactory is assigned;

thus implementing a single model with different visual representations can be ac-

complished by providing several EditPartFactories with corresponding EditParts.

While EditParts are responsible for the creation of elements, the second part of

a GEF controller, EditPolicies, cover the editing aspect of the editor like moving,

scaling or deleting views. Every kind of action is represented by a single EditPol-

icy and all desired Policies must be added to an EditPart element to allow for

using these actions with the EditPart-view-model triple. To propagate changes,

Policies use the Command pattern [Gamma et al., 1994] which enables the whole

framework to provide nearly limitless Undo and Redo functionality.

View A GEF View is a graphical representation of a single model element. The view

itself does not contain any data or logic. All information that is necessary to draw

the view is received from the corresponding controller. Similar to the other two

MVC components in the GEF framework, the view hierarchy corresponds to the

model respectively the EditPart hierarchy. View elements are created alongside

the corresponding EditPart and its graphical representation relies heavily on the

Draw2D framework which is described in section 7.1.3.

7.1.3 Draw2D

The GEF plugin itself uses the Draw2D4 plugin for drawing primitive shapes like rect-

angles, connections or simple labels. In contrast to simple drawing libraries, Draw2D

features the notation of a Figure and a complex graphic is represented by a hierarchy

of Figures. Similar to a classic Composite Pattern [Gamma et al., 1994], every Figure

4http://www.eclipse.org/gef/draw2d
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may contain other Figures and is responsible to draw itself and its children. Thus, by

combining drawing primitives like rectangles, lines and labels, creating and handling

complex graphical representations of a model is straightforward.

7.2 Editor Elements and Functionality

After having described several general properties of Eclipse-based editors, we will have

a detailed look at the TAMo editor and its parts in this section. The TAMo editor

showing a Plan model is presented in figure 7.1.

Figure 7.1: TAMo Plan Editor

7.2.1 Model

As mentioned in section 7.1.2, we started with the model of the TAMo engine and

extended it to incorporate all the requirements imposed by the Eclipse respectively

GEF framework. To propagate different types of functionality to several or all model

objects, a hierarchy with four layers was created. Upper layers provide basic functions
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like allowing for the connection of model elements and giving them a location on a two

dimensional plane. Lower layers offer more specialized features like the publication of

attributes to a Properties view or the ability to handle a parent-child relationship. The

leaf elements in this hierarchy represent the actual model elements that are manipulated

in the editor. In the following, we will outline each of the classes which represent the

different layers in detail.

Class AbstractElement The base class of the whole hierarchy is AbstractElement. It

provides basic features to all elements of the model like the ability to clone an

element by implementing the java.lang.Clonable interface – a requirement to sup-

port copy&paste. To use the save and load functionality offered by the Eclipse

framework, the java.io.Serializable interface is implemented, too. Beside that,

it incorporates the Observer pattern [Gamma et al., 1994] to enable all model

elements to react on changes propagated by their corresponding controller. Ab-

stractElement is defined as an abstract Java class so no instances can be created.

The only model element that is a direct subclass of AbstractElement is the Con-

nection class which is only responsible to connect other model elements with each

other.

Class AbstractChartElement All attributes, which are shared by all but the Connec-

tion model element, are established in the AbstractChartElement class. Notably,

these include an element name, the position of the element in the plane, the di-

mension of the element, an optional parent element and two lists for incoming

respectively outgoing connections. The complete handling of adding and remov-

ing connections can also be found here. Furthermore, AbstractChartElement pro-

vides all means to publish an element’s properties to the Properties View and

handle the changes which occur there by implementing the IPropertySource inter-

face. Direct subclasses are Action, StartPoint, EndPoint and Comment.

Class AbstractContainerElement The class AbstractContainerElement extendsAbstract-

ChartElement and adds support to handle parent-child relationships. For example,

a Plan element as parent contains a number of Action elements as children. Direct

subclasses are TaskOverview, Task and Plan.

Concrete Model Element Classes The leaf elements in the model hierarchy represent

the only elements that can be instantiated and used in the editor. Based on their

common parent classes, each of them offers similar properties that can be edited

directly using the editor or by changing values through the Properties View.
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7.2.2 Action Class Loading

A special kind of model elements are Actions. Due to the fact that each concrete

Action is implemented by its own class in the TAMo engine, the Action element offers

an additional property to select the concrete Action class which is represented by it.

After such a selection, the editor creates an instance of this concrete Action class and

accesses the property methods described in section 6.2.4 to acquire the concrete set of

dictionary parameters and outgoing connection types. This information is afterwards

added to the Properties View of the selected Action.

To achieve a loose coupling between the editor and the concrete action classes, the

editor only refers to the IAction interface which all actions must implement. During

runtime of the editor, the user can select a folder or JAR file that contains action class

files. Out of this container, any files with a name that ends with Action is added to the

list of available actions. Thus, there is no need to adapt the editor in any way when

new action classes have been implemented. All new classes with their unique set of

parameters and connections are fully support right away.

7.2.3 Editor

A single script for a new agent respectively an agents tasks is represented by a single file

in the Project Explorer in Eclipse. When double clicking a TAMo file, a Multipage Ed-

itor window opens. On the left side of the editor window appears the so-called Palette

which offers all actions and tools the user can utilize to create an agent. Namely, the

Palette includes a Selection tool and several tools to create all model elements. When

first opened, the editor will show the Task overview. The Task overview represents the

first layer of the TAMo model and allows for the definition of Tasks and their intercon-

nections. Furthermore, the user is able to add Plans to a Task. By double clicking a

Plan element, an additional page is opened in the editor window revealing the editing

view for this particular Plan. Combined, all Plan editing pages make up the second

layer of the TAMo model. In the Plan overview, the user can combine Actions to

create the flow of execution. Common UI metaphors like drag&drop or cut&paste are

supported.

7.2.4 Properties View

Mentioned before, the Properties View acts as a complement to the editor windows by

providing context aware configuration options for the currently selected element. The
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Properties View will acquire its contents from the selected editor element if this element

implements the IPropertySource interface, which all TAMo model elements do.

7.2.5 Outline View

The outline view is a kind of supporting view to make the usage of the editor faster

and more convenient. It offers two different modes – a bird eye view on the complete

diagram the user is working on and a hierarchy list which represents all the model

elements in their corresponding relationship. While the first mode makes navigation in

large diagrams easy – simply by moving the bounding box that represents the current

viewport – the second mode offers a fast way to find and select a desired model element.

See figures 7.2 and 7.3 for examples of both modes.

Figure 7.2: Editor Outline View in

Overview Mode

Figure 7.3: Editor Outline View in

List Mode

7.3 Linking Engine and Editor

After having created nearly all of the above described parts, the last remaining question

was How do we link the editor model to the engine?. The underlying model structure of

the editor is nearly identical to the one used by the engine; but not the same. So, simply

serializing Java objects was not an option. We decided to introduce an intermediate

XML format for transferring the created execution script between these two parts of

TAMo. Creating an XML representation of an object hierarchy can be accomplished

122



7.4 Extensions

easily by using the JAXB5 framework. JAXB is shipped with the Java SDK and allows

for binding of Java objects to XML and vice versa. It even allows for the creation of Java

classes using an XML schema description and the other way around. The configuration

of such a binding is performed be adding code annotations to the class files.

Having a valid XML description of an execution script provides several advantages.

First, import it into the TAMo engine was very straightforward by using JAXB again.

Second, one can imaging the usage of such a description in other programs or tools, e.g.

by running it through an optimization process or a test suite.

Beside exchanging the created execution flows, editor and engine are link on a ad-

ditional level by using the same class files that represent the available Actions. As

described in section 7.2.2, the editors only reference to the engine model is the IAction

interface which defined all methods needed to introspect an Action. During runtime,

the editor is able to load JAR files or traverse file system folders for new Actions, thus

making them available to editor users as soon as the programmer has implemented them.

Furthermore, this loose coupling allows for the distribution of the editor as a standalone

program in a precompiled package. There is no need to recompile and redistribute the

editor when new Actions become available.

7.4 Extensions

In its current state, the editor offers all means necessary to create execution scripts for

the TAMo engine in a fast and easy way. However, there is always room for improve-

ment and we will outline several ideas which come to mind.

First of all, we could improve the process how Actions are added to a Plan and

linked with each other. As a first step, we could for example aid the script designer by

suggesting follow-up Actions based on the values a previous Action has produced. The

same applies for linking Tasks with each other or adding Plans to a Task. This would

require some sort of semantic descriptions for those parameter to allow for a runtime

evaluation and selection process. Having such a description would also allow for the

runtime adaption during plan execution. Such a feature would move TAMo into the

direction of state-based, planning agents similar to the BDI model.

A second improvement to the editor would be the integration of it into the Wai

Lin Administration UI thereby allowing for the creation of agents and controlling of

agencies under one hood. With this integration, it should be possible for the user to

5http://jaxb.java.net
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send the final execution script directly to a remote agency and start an agent with it.

An even better feature would be the realtime tracking of the execution of a TAMo script

thereby highlighting the currently executed parts in the editor window and displaying

the current contents of the data storage alongside with some data about the agent itself.

To achieve such a functionality, delegates for Tasks, Plans and Actions could be used.

Further improving the editor itself could involve some sort of validity check, like issu-

ing warnings for Actions with no incoming connections as these will never be executed.
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Evaluation

During the last steps of the implementation of the TAMo engine and associated editor

we started to prepare two evaluations to test and hopefully reinforce our claims concern-

ing the developed system. This chapter will introduce those evaluations, outline the

complete process that was conducted and discuss and judge the achieved results.

8.1 Evaluation Types

Due to the varying type of our theses, we have chosen different approaches to evaluate

each of them. First, one evaluation aimed at comparing the development and usage

of agents using the traditional Tracy 2 agent programming to the new TAMo agent

framework. Here, we wanted to measure not only the runtime performance of agents

that have been developed using either way but also the time required to get used to

the tools and frameworks and the time to implement them. This first evaluation is

described in detail in section 8.2.

The second evaluation was aimed at reinforcing the claim that non-experts would be

able to create agents using the TAMo framework. Due to the rather soft nature of this

claim, we conducted a qualitative evaluation with a five persons, who had no computer

science or programming experience at all. Non of them had previous experiences with

agent systems or agent programming; moreover, half of them did not know the whole

concept at all. This second evaluation is discussed in section 8.3.
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8.2 Expert Evaluation

As mentioned in the first section, the first conducted evaluation aimed at comparing

development efforts and runtime performance of Tracy 2 and TAMo agents. In the

following, we will outline the structure and goals, describe the conceptual scenario

which was implemented as well as the steps that have been carried out during this

process. Finally, we will present and discuss the results.

8.2.1 Structure and Goals

The evaluation was divided into the two different paths with each one consisting of

two phases; namely the implementation of an agent based application and the runtime

measurements. To prevent the results from being biased, we employed two computer

science students with no prior knowledge of agent system development. Each student

was responsible for one path and they had to work independently. Both were given the

same scenario and description of the agent which had to be developed. We used a mod-

erately complex real world scenario similar to the conference booking agent described

in section 4.2. The scenario will be outlined shortly in the next section.

As a prerequisite task, both students had to install and configure the required Tracy

2 agent system and, in case of one student, the TAMo framework composed of engine

and editor. Both students worked with the same version of the Tracy 2 agent system

and, while implementation was done on different machines, all runtime measurements

were performed on the same infrastructure, e.g. hardware, network, operating systems,

and Tracy respectively TAMo versions.

For the scenario, several required third party services were implemented, e.g. a

service offering travel options like hotels and flights. These services where created

before the evaluation and the cost for implementing them was not included in the

evaluation figures.

Some of the key figures that we wanted to track during the implementation phase

were somewhat hard to capture respectively express in numbers. However, in such

cases, we will describe and justify the results in the best possible way. During the

implementation phase, we tracked the following key figures:

Learning Curve One of our claims is that using TAMo, it is much easier for developers

and even end users to create agents – even without previous knowledge. Thus,

the time someone needs to understand the given tools and frameworks and use

them to create value will be considered as Learning Curve. However, this value
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is a bit hard to grab because one has to define a moment, where the learning

is completed – and such a point is probably not specifiable, as everybody will

improve its knowledge about tools while using them. Therefore, we defined this

moment as The user is confident that she can use the tools and frameworks to

create something valuable and non-trivial. In our case, this meant the point in

time where the students stopped to experiment with the tools and started to

implement the scenario and we captured the time up to this point.

Implementation Time The time it took to implement the scenario using either tech-

nique. Of all tracked figures this one is the easiest to measure.

Maintenance Effort A rather soft figure, which denoted the perceived effort that was

required to alter and adapt an existing agent respectively TAMo script to comply

to changed requirements. The important aspect of this figure was how fast can

someone, who has general knowledge of the technology but did not implement

the previous version, perform changes.

Reuse Prospects Again, a soft figure. It captured the prospects of reusing existing

parts of an agent or TAMo script in future implementations. It depended mainly

on the coupling between different parts and the generality of a parts function.

For the runtime measurements, probes had been added to the created agents to

track their runtime performance in a very fine-grained way. Naturally, we were most

interested in the overall running times as well as overall and single migration times.

Other values, like the times spend on different agencies or calculating results, have

been captured, too.

8.2.2 Scenario

the scenario used during this evaluation was an adapted version of the scenario pre-

sented in section 4.2. We made some slight adjustments to keep the overall efforts of

the evaluation within acceptable bounds. We decided to use a single travel service in-

stead of different services for accommodation, flight and car booking because accessing

different services and evaluating their results would be very similar from the modeling

respectively programming point of view and we would not gain any further insights by

doing the same thing several times. Due to the fact that by using just a single service

for all travel informations, we lost the final evaluation and matching task the agent

had to fulfill. To compensate for this loss, we introduced optinal travel companions
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that would alter the travel requirements and change the way the agent would select

a journey offering. To summarize, the used scenario was as follows. The developed

agent was considered as a personal assistant to a researcher. Its task was to overlook

the researchers calendar and, in case a new appointment, like an offsite conference, was

added, to collect all required information for the University accountancy to book the

journey. After starting its search, the agent contacts the personal assistants from other

researchers to determine if these researchers will attend the conference, too. If so, it

would widen the travel options, like sharing a car, or the agent could request discounts.

Afterwards, it would acquire a list of travel services it could use to gather the required

information. Finally, after having visited those travel services, the agent would calcu-

late the best offer respectively the best combination of offers and, before returning to

its owner’s machine and deliver them to the University accountancy.

The scenario contained a number of hosts respectively agencies that fulfilled different

tasks. Namely, these where

Scientist Workstation We had two machines running as the workstations of our scenar-

ios scientists. On each machine, the agency hosted the scenario agent, which was

waiting to start its travel search and order tour based on an external event, e.g.

the scientist who added the conference to his calendar.

Travel Service Discovery This host offered a list of agencies which provided travel

information, e.g. offering accommodations, flights or rentable cars. The agent

visited this host at the beginning of its itinerary.

Travel Services Agencies that ran Travel Services provided offers according to the

agents request like the overall price for a hotel room or the scheduled flight times.

We used ten different Travel Service agencies/hosts during our evaluation.

8.2.3 Evaluation Execution

This section gives a complete summary of the evaluation process. It starts with a

description of the general prerequisites that where necessary to start with the individual

parts. Thereafter, the two implementation paths and the runtime measurements will

be outlined.

8.2.3.1 Prerequisites

Before starting with the development of the agent, several preparations had to be

made. First, Tracy 2 was installed on several machines and configured. To increase
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the number of available agencies, Tracy 2 was adapted so that several instances could

run on the same machine. Furthermore, several small web services that mimicked the

third party offerings where implemented as well as the personal assistant agent of the

other researchers. Finally, to allow for the development of TAMo agents, the TAMo

engine and editor where installed and configured for one of the two students. All in all,

these preparation took roundabout 30 hours.

8.2.3.2 Tracy 2 Implementation Path

This track was targeted at the implementation of the scenario in Tracy 2 using only

traditional Java programming. Here, a single class was created that contained the

complete agents code. As mentioned in section 2.6.2, Tracy 2 agents are usually backed

up by a state machine and so was the agent that was developed for the evaluation

scenario. The different states were as follows:

State 1 The agent resides at the researchers machine and waits for an external event

to trigger its tour. To keep things simple, we did not connect the agent to an

actual calendar; the event was triggered by changing values in a file that was

stored at the machine’s hard drive.

State 2 The agent traverses the other researcher’s machines and contacts the local

agents to determine if one or more travel companions are available. The list of

those machines was hard wired and not acquired during runtime.

State 3 This state describes the actions necessary to get a list of travel services. It

involves a migration to an agency that hosts a designated service directory. From

the local service, the agent receives a list of agencies which provide travel services

like renting a car or booking a hotel.

State 4 In a roundtrip, the agent would traverse all travel service agencies and gather

the different offers. To simplify things, each travel services provided the complete

set of services: each one offered hotel, cars, flights and so on. So, at each travel

service agency, the agent received a grand total price for the journey.

State 5 In the final state, the agent migrated back to the University and deliver the

best offer to the local accountancy to execute the order. Afterwards, it returned

to its owner’s machine and waited for upcoming external events.

The development of this agent using traditional Tracy 2 methods took roundabout

30 hours.

129



Chapter 8 Evaluation

8.2.3.3 TAMo Implementation Path

Creating the TAMo agent version required more steps than the other version because

the specific Action classes for our scenario had to be created. We will first outline this

implementation part and afterwards look at the script creation using the editor.

Due to the fact that all our services used in the scenario just mimicked real web

services and used rather proprietary interfaces, several Action classes were created to

access them.

WatchCalendar The first action was rather simple – it just checked the file that mimics

the researcher’s calendar in regular intervals. If a change occured, this action was

completed and execution moved on.

SearchTravelCompanions The second action interacted with the other researcher’s

agents to check if they will visit the same conference. This action used the Tracy

Message Plugin to communicate with these agents.

AcquireTravelServicesList This action accessed the travel service directory to get a

list of available travel service agencies. The list consisted of a number of host

respectively agency addresses which constituted the upcoming itinerary.

AccessTravelService For each travel service the agent visited, this action was executed

to acquire an offer.

SubmitResults Finally, the last created action selected the best offer and submitted it

to the accountancy.

SendEmail If the migration to the owner’s host at the end of the tour was not successful,

the agent sent the results via email.

Creating these Action classes required roughly 27 hours.

The second step was the creation of the TAMo execution script using the newly

created actions as well as several available action classes for migration, loops or dic-

tionary access. The script contained a single Tasks with two plans – the first one

straightforward without much error handling whereas the second one did cope with

failed migrations. For example, a failed migration to a travel service did not break the

execution flow; instead the agent just continued the loop and tried to migrate to the

next travel service. See figures 8.1 and 8.2. Both plans were created in 4 hours using

the TAMo editor.
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Figure 8.1: First TAMo Script for Evaluation
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Figure 8.2: Second TAMo Script for Evaluation
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8.2.3.4 Runtime Measurements

For our runtime measurements, we used two researcher agencies; one with our scenario

agent and a second one running the agent that answered travel companion requests. A

third agency was used to host the travel service directory. Ten additional agencies func-

tioned as travel services. Delivering the final result took place at the scenario agent’s

home agency, e.g. the researcher’s machine. Each of the two agents was executed 100

times and the top 2.5 percent of the fastest and slowest times where removed. The

mean value was afterwards calculated from the remaining results. All times have been

measured in nanoseconds.

To ease the analysis of the migration times, the complete code for the traditional

agent as well as for the TAMo agent was already deployed at all agencies. Thus, mi-

gration did not involve transferring code but only the packaging and transmission of

state and data information. This enabled us to better compare the migration times

because the amount of code between the two paths was very different. It could be

argued, that such a constraint limits the significance of the results with regard to real

world scenarios. However, in [Kern et al., 2004; Kern and Braun, 2006] we conducted

experiments to increase the migration performance with special consideration of an

agent’s code. Techniques like altering an agents Java code on Bytecode level could

be used to create equal code bases for both agents which would remove the impact of

code transmission completely. Therefore, intentionally avoiding the effect of code size

during the evaluation did not limit the relevance of the results.

8.2.4 Results

This section delivers the complete measurements of the evaluation. Starting with the

development times, table 8.1 displays the efforts that were necessary to create both

agent versions. At a first glance, both paths seem to be fairly equal. However, it must

be noted that the efforts for the TAMo agent include the creation of all proprietary

Action classes which were required in our test scenario. The creation of the execution

script itself was a magnitude faster than writing the agent from scratch. Assuming

that over time, the number of generic Actions which can be used in a variety of cases

increases significantly, building a TAMo based agent should be quite fast compared to

the traditional methods. Moreover, even if most of the actions must be written from

scratch, the concept of small, single-focused code fragments should lead to better code

quality, easier maintenance and easier reuse. Comparing only the development times

for the traditional agent and the action classes shows that creating the latter ones was
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a bit faster – probably because the code does not involve the complete state machine

handling which is all hidden inside the TAMo framework. Thus, the developer can

concentrate on the core functionality without writing tedious boilerplate code.

Table 8.2 shows the runtime measurements of the two agent versions. We have

tried to match the states of the traditional agent with the Action classes used by

the TAMo agent to ease the comparison. Due to the rather small amount of actual

work, both agents spent most of their running time during migrations. As can be

seen from these values, the TAMo agent was roughly two and a half times slower than

the traditional agent – 1.9 versus 0.7 seconds. This difference is solely produced by

agent migration as a comparison of the remaining time values shows; with 256 and 205

ms, both agents performed the actual work nearly equally fast and the difference can

certainly be attributed to implementation differences.

Time in Hours

Tracy 2 Agent 30

TAMo Actions 24

TAMo Script 4

Table 8.1: Implementation Efforts

Tracy 2 TAMo

Migration 433 1779

Work 256 205

Total 689 1984

Table 8.2: Runtime Results (in ms)

So, the question, why did the TAMo agent perform so bad during its migrations

remains. As stated in section 8.2.3.4, we did not transfer code during an agents trip so

the bigger code base of the TAMo agent could not be the reason. However, during a

migration, all objects that belong to an agent are serialized and transmitted. So, even

removing the effect of the code base, the significantly higher amount of involved classes

and thus object leads to significantly bigger migration times. The traditional Tracy

2 agent was just a single class and during a migration, a single instance of that class

was serialized and transferred. Moreover, the state of that instance captured not only

the agent’s current status but also held all the data the agent had collected so far. In

contrast, a TAMo agent is made up of several objects that are instances of the core

TAMo framework classes like Plan as well as an instance for every Action the agent

uses. Beside that, the data which a TAMo agent has collected during its itinerary is

stored in an external dictionary which is serialized as well. To make things even worse,

during its startup phase, a TAMo agent initializes all Tasks, Plans and Actions which

are found in its execution script. So, regardless the fact if a specific plan is ever used,

the agent will carry it around during the whole tour. In our evaluations, the TAMo

agent consisted of roughly 25 class instances during runtime and this, compared to the
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single instance of the traditional agent, explains the huge difference for the migration

times.

8.2.5 Discussion

The following paragraphs will discuss the achieved results of our evaluation. With a

first look at the sheer numbers, the traditional Tracy 2 version of the agent seems

to be the winner as there are nearly no differences in the development time and its

runtime performance is way better. However, as stated in the beginning of this chapter,

several figures we wanted to track during the evaluation can be hardly expressed in

sheer numbers. Taking these figures like maintainability into consideration, this first

impression changes significantly.

8.2.5.1 Development

Comparing the numbers, both agents could be created in roughly 30 hours and both

of them where capable to fulfill the given tasks. It must be noted that the TAMo

version involved a very high amount of ordinary programming to create the different

Action classes required to access the proprietary travel services. Due to the lack of

existing actions, our idea of TAMo, as a fast way to create agents from a large toolbox

of existing actions, could not show its strength in this evaluation. If one imagines that

these Action classes had existed, we could remove 27 hours of implementation time. In

that case, the creation of a TAMo agent had been much faster – with just four instead

of thirty hours. Even if one or two actions had to be implemented, creating them would

have surely been faster than creating a whole agent.

But even if we do not remove the implementation time for all Action classes, the

TAMo path has, in the same time, lead to much better results in terms of software

quality, maintainability and ease of reuse. The Tracy 2 agent is a single, large Java

class that performs a variety of tasks with a custom state machine to switch between

them. Such an implementation is usually hard to understand and therefore hard to

maintain. Moreover, it is probably difficult to reuse any of the written code because

the different parts are likely entangled in a strong way, cannot be removed easily and

used in another context. In contrast, the TAMo implementation efforts have lead to

five, single-purpose actions, that can be used by any TAMo script. They define a clear

interface and anyone, who has seen or programmed a TAMo action, should be able to

maintain and adapt these classes. Using the editor, one can even make changes to the

agent without touching any code – something which is impossible to achieve with the
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Tracy 2 agent. Last but not least, any written action increases the number of available

actions and thus the powerfulness of the complete framework.

8.2.5.2 Runtime

With the development result showing equal efforts for the creation of both agent versions,

the runtime results depict a clear advantage of the Tracy 2 agent which was 2.5 times

faster. In section 8.2.4, we analyzed these differences and found several reasons for the

worse performance of the TAMo agent. Now, we will describe several techniques to

address them, decrease their impact and thus narrow the performance gap.

Essentially, we identified two aspects that lead to the comparatively large running

times. First, the TAMo agent is made up of a lot more classes, and thus objects,

than the traditional agent. Beside the fact that we removed the impact of class file

transmission during migration, the sheer number of objects which are transferred during

each hop increase the migration times significantly. There are several options available

on how we could decrease the number of classes used by the TAMo agent:

Bytecode Modifications As mentioned before, the modification of Java Bytecode can

be used to alter the size and structure of an agents code base. In our past research,

we used this technique to create a more fine-grained code base for agents which,

similar to the Tracy 2 agent in our evaluation, consist of only one or a handful of

classes. By altering the Bytecode and moving parts of the code into new classes,

we could achieve a much better migration performance [Kern et al., 2004; Kern

and Braun, 2006]. We are confident, that a similar approach can be used here

– only in the reverse direction. By joining different classes into a single one, the

fragmentation of an agents code can be reduced.

However, our past efforts to increase the granularity of an agents code base where

clearly directed at utilizing the power of the Kalong migration engine [Braun and

Rossak, 2004] and thus improving the migration performance of mobile agents.

So, moving in the reverse direction is a bit odd. One could even question the

representativity of Tracy 2 agent used in this evaluation. How likely is it, that

more complex, real-world agents consist of only a single class? Maybe we should

not aim at creating single class agents using Bytecode modifications but instead

try to optimize the fragmentation of an agent’s code based on various conditions,

like network throughput, number of migrations and hosts visited, ratio between

data and code size or timing constraints imposed by the agents owner.
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Code and Mirror Servers As described in section 2.5.1, it could be shown that the us-

age of Code and Mirror Servers could greatly increase the migration performance

of mobile agents. Thus, the TAMo agent could store unused classes and objects to

decrease its overall migration size. To hide these aspects from the agent designer

respectively non-expert, the TAMo framework itself could internally optimize an

agent’s size during runtime. This would free an agent’s execution scripts from

such task-independent parts and would allow for all scripts to benefit from these

optimizations. Such an automated usage of code or mirror servers could try to

store unused entries of the dictionary. Due to the fact that every action exposes

its used dictionary entries, it would be easy for the framework to decide which

entries will be required or not by analyzing the currently executed plan and up-

coming actions. During the same analysis, the framework could determine classes

and instances which are not required right now or which have been used before

and will never be required again. These parts of an agent’s code and state could

be moved to a mirror server as well.

Framework/Engine Modifications Beside the other two options which are essentially

extensions, the third option aims at altering the new framework directly. For

example, we could try to alter the general structure of the base classes to reduce

their overall number. For example, moving the handling for Plans into the Task

and further add the complete dictionary. There are surely several options to

reduce the footprint of the core classes. However, we are somewhat reluctant

to decrease the quality of the implementation out of pure performance reasons –

even more when there are other options available.

The second aspect that causes the higher migration times is the manner in which a

TAMo agent is initialized. The process itself is straightforward, but it imposes a huge

burden on the running times. Currently, the XML file that was exported from the

editor is parsed in a single step and all contained elements are created and initialized

at the same time during the agent’s startup phase. This means that, regardless of usage,

every Task, Plan and Action that is contained in the script is created upfront. The

script for the example agent contained a single task with two plans and, if everything

ran as expected the second plan was never used. However, in the current implementation,

all elements, e.g. actions and interrelationships, are created during the startup phase.

Thus, the agent carried around a Plan and all its elements during its whole runtime

even if those parts were never used.
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Having identified this drawback, we will alter the complete process. We aim at cre-

ating required elements on demand and thus reduce the number of transferred objects

significantly. This change involves an adaptation to the XML structure which, in its

current format, cannot easily describe a Plan as we use it. For example, the XML

file contains all Actions and their interrelationships but to discover loops and similar

constructs, one has to parse and analyze the XML file as a whole. Therefore, we aim

at adapting the XML as well as the process to initialize the agent itself. The overall

goal is that we can create Plan and Action class instances on demand. Thus, we will

have to establish a structure, which describes a Plan but where concrete parts are only

instantiated, if needed. Creating this structure will probably involve adaptations to

the core agent as well as the core classes that make up the TAMo framework. However,

removing respectively avoiding the instantiation of unused parts of an agent script will,

without doubt, reduce migration times.

To summarize, we could identify and qualify the two main aspects that lead to the

rather poor runtime respectively migration performance of the TAMo agent when com-

pared to the traditional implementation. Several options to eliminate these reasons

have been presented and discusses and with regard to all other aspects, like maintain-

ability and reusability, that make up a framework, we are confident to improve our

TAMo engine to stand up against existing techniques – not only with respect to ease

of use but also performance-wise. Overall, we could show that the gap between the tra-

ditional and the TAMo agent is identifiable and addressable and that there are various

options to narrow this gap.

8.3 Non-Expert Evaluation

The second evaluation aimed at verifying our claim that TAMo has a flat learning

curve and is usable by non-experts. This claim is rather difficult to check as it is

hard to express a flat learning curve and usable in numbers. We therefore conducted a

qualitative study with non-expert participants which had to create several agents using

the TAMo framework and monitored their performance during the evaluation.

8.3.1 Participants

For this evaluation, we needed participants with no background in agent technology

and programming in general. Thus, we selected five participants with an education in

social science or business administration. All of them had general knowledge regarding
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the usage of computers, but non of them had any prior experiences with software

development, development tools like Eclipse or agent software engineering.

8.3.2 Evaluation Execution

The evaluation started with an introduction into the concepts of mobile software agents

as well as the core ideas behind the TAMo framework. Afterwards, the graphical editor

was demonstrated and the agents, that should be developed during the evaluation, were

presented. All in all, the briefing took roundabout 15 minutes.

During the evaluation, each participant had to create three different agents. The first

one was a simple Hello World agent that would just greet the user. It was meant to

teach the participant the general handling of the graphical editor as well as the usage of

model elements like Tasks, Plans and Actions. The second was an extension to the first

agent and involved the migration to another agency. At the remote agency, the agent

should greet the user again. This task was meant to familiarize the participants with

the concept of agent migration and how it is modeled. The third, most complex agent

should synchronize data between two agencies. Here, the participants should learn

how to use the global dictionary that is associated with every agent and exchange

information with local databases. Figures 8.3, 8.4 and 8.5 show the final plans for all

three agents. All necessary actions to build those agents were given.

8.3.3 Results

During the evaluation, the biggest hurdle for all participants was to get used to formal

thinking any computer scientist is familiar with. Connecting Actions in a meaningful

order by matching input and output proved to be more difficult than understanding the

concepts of agents or agent migration. Beside that, all participants had no problems

using the graphical editor and some of them came up with useful suggestions to improve

the editor’s usablitiy in several ways. For example, being forced to give any Action

used in a Plan a speaking name would greatly help to distinguish different Actions of

the same kind. Furthermore, one participant suggested that it would help to give all

Actions of the same kind the same color, e.g. all Migration Actions could be blue, but

differnt kinds should have different colors, e.g. blue for Migration Actions blue and

green for Loop Actions. Currently, the editor allows for setting the background color

of Action elements by hand but defining default colors for different kinds of Actions

would be a helpful addition.

138



8.3 Non-Expert Evaluation

Write Message 
to User

Success

Figure 8.3: Script for

Agent 1

Write Message 
to User

Success

Migration
Target: Remote Agency

Write Message 
to User

Success

Success

Figure 8.4: Script for

Agent 2

Read Data A 
from Home DB

Success

Migration
Target: Remote Agency

Write Data A to 
Remote DB

Success

Success

Write Data B to 
Home DB

Migration
Target: Home Agency

Read Data B 
from Remote DB

Success

Success

Figure 8.5: Script for Agent 3

Summarizing, all participants were able to successfully create the three agents which

have been verified by a runtime test afterwards. Developing these agents took between

25 and 45 minutes. Thus, including the introduction, getting started with TAMo took

not longer than one hour. As stated before, the number of participants does not qualify

this study as statistically significant. However, we consider the results as very promising

and reassuring.
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Discussion and Future Work

In this chapter, we will critically revise the conducted work, recount our aims and

thesis and compare them to the achieved results. We will start by revisiting our theses

and and examine if the results reflect them. Afterwards, we will present some ideas for

improvements of the presented work.

9.1 Theses Revisited

Thesis 1: It is possible to develop an agent model and a runtime

environment to execute predefined plans by using a well known, industry

proven programming language like Java

The first theses can be verified very easily because it is a fact that the complete TAMo

framework is implemented in Java and allows for the creation of new functionality in

terms of actions by using the Java programming language and common IDEs. Further-

more, the graphical editor was implemented on top of Eclipse, the most widely used

Java IDE. The editor can be used as a plugin in an existing Eclipse instance but also

as a standalone application. The first option is targeted at programmers that already

use Eclipse and want to create and test TAMo actions. The second option is meant

for non-experts who just want to create TAMo agent scripts based on an available set

of actions. Thus, we believe that the TAMo framework fits very well into the general

environment and toolset of many developers as well as providing an easy and fast entry

into the framework for non-experts.
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Thesis 2: It is possible to create an agent development environment that

is easier to use than any of the currently available ones

The second thesis is rather hard to verify. How does one define easier? However, the

similar frameworks, which where already presented in section 2.4.4 and 5.3.1, are clearly

targeted at agent experts and require a profound knowledge of agent systems. However,

we could show that our approach to separate the programming of actions and the

definition of agent scripts enabled non-expert users with no background knowledge

to create agents. We are aware that the number of participants in our non-expert

evaluation was far to small to refer to the results as a proof. But we believe that

these results reinforce our claim that TAMo is very easy to use and probably the

easiest agent development framework present today. Furthermore, with the concept of

atomic, reusable actions, we could introducing a more sophisticated level of reuse and

maintainability.

Theses 3: The proposed framework will allow for faster development and

execution cycles as well as provide better software quality

Creating and changing agents using the graphical editor is fast and, due to the fact that

all actions are precompiled, executing and testing does not require a compilation step.

The user simply saves the script and starts an instance of the CoreAgent to execute

it. And, using the editor to exchange actions or adapt their order, altering an agent is

easier and faster than doing the same at code level. Given the fact that, with a large

set of available actions, agent creation will primarily performed using the editor, this

speedup in development time is significant.

For the creation and adaptation of actions, compilation is still necessary. However,

it is usually much faster to compile a single action than a complete agent. Moreover,

because the action will show up in the graphical editor immediately after compilation,

running and testing them is very fast.

9.2 Future Work

Looking at the TAMo framework in its current installment, several useful extensions

come to mind. First, the process of selecting one of the possible numerous plans of

a task for execution could be made more sophisticated. As stated in chapter 6, the

current plan selector implementation simply selects the next plan in the given list of

plans. This process could be enhanced by introducing some kind of learning behavior
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that incorporates statistics of past executions as well as information on the environment

during these executions. For example, services used in a plan could be overwhelmed

by requests during certain times of the day or week. Having such information, the

selection process could skip such a plan during those times and rather select one that

has proven to be more reliably. Or, considering the overall running time of a plan, in

certain situations, a plan might just not be fast enough and knowing this in advance

would prevent the agent to fail on the complete task by missing a critical timeframe.

Further research could also focus on optimizing agent performance with regard to the

communication strategy, e.g. remote access or agent migration, by selecting the most

appropriate plan for execution.

A second extension could be the addition of pre- and postconditions to actions, plans

and tasks. At best only to actions because conditions for plans and tasks could be de-

rived from the contained actions. This addition would allow for two new functionalities.

First, during the design process, the editor could support the user by suggesting compat-

ible actions by matching post- and preconditions of two different actions. This would

make script creation even more easier for non-experts, because connecting actions in

a non-useful manner would be impossible. Beside the editor enhancement, the TAMo

engine could be adapted to allow for more flexibility during runtime. For example, one

could image a plan selector that is able to search for plans that would match the current

task but that where not available during the design process of the currently executed

script. Or the engine could adapt an executed plan by exchanging actions with new

ones which have been developed after the creation of the script and that offer better

results or performance.

Beside its usage as an agent execution engine, TAMo can be used as a standalone

runtime for scripts. We would like to use it in various environments and applications

and evaluate its applicability and usefulness. For example, it could be integrated into

application server infrastructures to run reoccurring background maintenance tasks. It

should even be possible to apply it in a web server to serve requests with TAMo scripts.

But the most desired extension to the TAMo framework are simply more actions to

increase the flexibility and usefulness of the whole framework. Our hope is that, over

time, the set of reusable actions reaches a size that allows for the creation of agents by

only using the graphical editor and to employ a programmer for a new action only if

required in a few border cases.
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Conclusion

Mobile agents are a fascinating concept to design distributed systems. The field has

evolved from a mere scientific topic to a technology that is used in a variety of appli-

cations like sensor network management or cloud computing. Beside their usage for

autonomic maintenance tasks, mobile agents have always been regarded as personal

assistants to their human users. However, the utilization of such assistants is still re-

served for agent experts because the currently available methods and tools to create

and adapt mobile agents are far to complex and specialized to suite normal users and,

sometimes, even experts.

The aim of this thesis was to establish an approachable method and easy to use

tools to model, create and use mobile agents. The ultimate goal for all techniques

and frameworks to be developed was simplicity to allow for simple access and rapid

successes with this fascinating paradigm.

In a first step, we defined three different types of targeted users ranging from non-

experts to experienced developers. Based on these roles, we developed the concept of

agents that are created by combining a set of basic, atomic actions in a useful manner.

The main idea behind this approach is the strict separation of creating code and defining

what a single agent should actually do. Whereas creating code is clearly a duty for a

programmer, specifying the actual task of an agent should be possible for non-experts.

Around this basic idea, we established an agent model named TAMo and a graph-

ical notation to specify instances of TAMo. Whereas the first version of this model

introduced the concept of a Task and a Plan layer to allow for structuring an agent’s

task as well as easier reuse of agent parts, it was still to complex. During the evolution

into the second, final version of TAMo, many elements where dropped to even more

embrace the idea of atomic actions. At its core, an agent consists of a set of Tasks
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that are backed up by Plans. Every Plan is thereby a collection of Actions that are

connected in a useful manner.

During the next step, we developed an engine that is capable to execute TAMo

model instances. Although we started with mobile agents in mind, the core engine is a

standalone framework that can be integrated into any kind of application to run TAMo

instances. Afterwards, this core engine was extended and integrated into the Tracy 2

agent toolkit as an agent execution environment. Due to its sleek set of dependencies,

this integration was very straightforward and, thus, serves as a great reference on how

easily the integration of the core engine into another application can be achieved.

To allow for the definition of TAMo models that are based on the established notation

and that can be executed by the developed engine, we created a graphical editor. As

with any other element of the TAMo framework, simplicity, ease of use and approach-

ability where the primary goals. We selected the Eclipse workbench with its plugin

concept as technological foundation out of two reasons. First, Eclipse is a widely used

development environment among programmers. As such, it offers a large possible user

base for TAMo. Second, it allows for creating standalone applications based on the core

workbench and a set of plugins. We can, therefore, provide an application specifically

for the creation of TAMo models to all non-expert users. The developed editor offers

an easy mechanism to export TAMo models and execute them in an instance of the

TAMo engine.

After the implementation of the TAMo framework and tools, the final part of this

thesis where two evaluations to verify if our aims could be achieved. The first evaluation

was targeted at experts and should compare agent development using TAMo versus

the traditional approach available for the Tracy 2 agent toolkit, e.g. writing an agent’s

code by hand. The results showed that, given an extensive set of Actions to use, the

creation of agents using TAMo can be significantly faster. Moreover, using established

and tested Actions, the general code quality should be better whereas the graphical

editor provides an easy and fast way to alter and adapt available agents. However,

the runtime results showed some drawbacks of the current implementation of the core

TAMo engine, for example much larger migration times when compared to traditional

agents. By analyzing these areas of subpar performance, we could offer ideas for several

enhancements that should yield significant improvements on the runtime performance

of TAMo based agents.

The second evaluation aimed at testing the approachability and ease of use of the

TAMo framework. After a short introduction into the general concepts and tools, a

number of non-experts was given the task to build three different agents. Each partici-
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pant was able to solve this task and successfully design mobile agents in less than an

hour. We are aware that the number of participants was to small to consider these

results as an evidence. However, we nevertheless believe that the results are a good

indicator that TAMo offers a very approachable and easy to use way to create, adapt

and use mobile agents and that it opens the door to this fascinating concept to a much

larger audience.
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Sara Rodŕıguez, Dante I. Tapia, Eladio Sanz, Carolina Zato, Fernando de la Prieta,

and Oscar Gil. Cloud Computing Integrated into Service-Oriented Multi-Agent Ar-

chitecture. Balanced Automation Systems for Future Manufacturing Networks, IFIP

Advances in Information and Communication Technology, 322:251–259, 2010.

Manuel Rodriguez-Perez, Oscar Esparza, and Jose L. Muñoz. Surework: a super-peer
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