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Summary 

Cancer has long been considered to be a genetic disease. However, it has recently been realised 

that epigenetic alterations also have a significant role in carcinogenesis. The most important 

epigenetic modifications are DNA methylation and histone acetylation. Dysregulation of these 

modifications can favour cancer growth. Therefore, targeting of aberrant epigenetic 

modifications may be a promising strategy for cancer treatment.  

In particular, histone deacetylase inhibitors (HDACi) are an emerging new class of anticancer 

agents. HDACi can exert antineoplastic activities through inducing growth arrest, apoptosis, 

cellular senescence, mitotic cell death, autophagic cell death, anticancer immune response and 

antiangiogenesis. The present study focuses on elucidating the mechanisms by which HDACi 

induce cell cycle arrest and cell death either as single agent or in combination with other 

anticancer agents. The work addresses four objectives: 

1) HDACi-induced G2/M arrest, 

2) Synergistic effects of HDACi in combination with the p53 activator nutlin-3, 

3) Anticancer effects of nutlin-3 in Ewing’s sarcoma cells, 

4) Role of serine proteases in HDACi-induced apoptosis. 

To achieve these objectives, cancer cells were treated with HDACi at various concentrations 

either alone or in combination with other anticancer agents and were analysed for their effects by 

flow cytometric analysis of cell cycle and different cell death parameters, by Alamar Blue assay, 

by determination of caspase-3 activity, by Western blot analysis and by real-time RT-PCR. 

Earlier, our group has demonstrated that HDACi were capable of inducing a significant G2/M 

arrest when their apoptosis-inducing activity was blocked by the pan-caspase inhibitor, z-VAD-

fmk. Hence, we hypothesised that caspase-3-deficient MCF-7 cells would respond to HDACi 

treatment by undergoing G2/M cell cycle arrest rather than apoptosis. Indeed, we found the 

HDACi vorinostat to cause a strong G2/M arrest in MCF-7 cells. On investigating the 

mechanism of vorinostat-induced G2/M arrest, we found that vorinostat induced phosphorylation 

of H2AX (γH2AX) at Ser139, a marker for DNA damage, suggesting that vorinostat treatment 

produces DNA damage. In addition, we found vorinostat to mediate phosphorylation of the 

protein kinase ATM (ataxia telangiectasia mutated), a master regulator of cellular responses to 

DNA damage. However, inhibition of ATM had no significant effect on vorinostat-induced cell 
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cycle arrest. Thus, the role of other factors involved in cell cycle regulation, i.e. the proteasome, 

NF-κB and p53, were studied. We noted that the proteasome inhibitor bortezomib, different NF-

κB inhibitors and the p53 activator nutlin-3 all had a significant impact on vorinostat-induced 

G2/M arrest. As an accessory finding of the experiments employing nutlin-3, we made the 

interesting observation that vorinostat and nutlin-3 cooperated in exerting anticancer activity. 

Nutlin-3 is a murine double minute-2 (MDM2) inhibitor, which restores p53 function and, thus, 

is considered an interesting candidate for the treatment of wild-type p53 (wt-p53) cancers. 

However, nutlin-3 alone may be insufficient for an effective cancer therapy. Thus, in the second 

part of this study, we investigated the anticancer activity of nutlin-3 in combination with HDACi 

in more depth. We observed that the combination of nutlin-3 with various HDACi [vorinostat, 

sodium butyrate (NaB), MS-275 and apicidin] synergistically induced cell death in wt-p53 cell 

lines (A549 and A2780), but not in a p53 null cell line (PC-3). In contrast, nutlin-3 antagonised 

the cytotoxicity of paclitaxel. On exploring the mechanism of the synergistic activity of nutlin-3 

and HDACi, we observed the induction of p53 acetylation and downregulation of MDM2 and 

MDM4 gene expression. These findings suggest that HDACi may enhance the antitumour action 

of nutlin-3 by inducing p53 hyperacetylation and/or downregulation of MDM2 and/or MDM4 

gene expression in wt-p53 cancer cells. Hence, this combination of drugs could be efficiently 

used for treating wt-p53 tumours. 

Ewing’s sarcoma (ES) is the second most common malignant bone tumour in childhood. p53 

mutations have been detected in only about 10 % of patients with ES. Thus, about 90 % of ES 

patients are potentially responsive to p53-based targeted therapies. Considering this, we 

hypothesised that administration of nutlin-3 could be a novel method for treating ES. Therefore, 

in the third part of this study, we explored the antitumour activity of nutlin-3 in wt-p53 and 

mutated p53 (mt-p53) ES cell lines. We observed that nutlin-3 treatment elevated p53 level and 

activated p53 target gene expression, such as MDM2, p21 and PUMA, in wt-p53 ES cells, but 

not in mt-p53 ES cells. In accordance, nutlin-3-induced apoptosis was found only in wt-p53 ES 

cells. Furthermore, we have shown that nutlin-3 stimulated cellular senescence, implicating that 

nutlin-3 produced pleiotropic antitumour effects in ES. In addition, we found nutlin-3 to 

synergise with a NF-κB inhibitor to induce antineoplastic activity in ES cells. These findings 

imply that the direct activation of p53 by nutlin-3 treatment may be an effective strategy for 

treating ES patients. 

Our earlier findings had pointed to an important role of serine proteases in HDACi-induced 

cytotoxicity. Here, in the fourth part of this study, we revisited the involvement of serine 
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proteases in HDACi-induced apoptosis. We observed that the serine protease inhibitor AEBSF 

prevented trichostatin A (TSA)- or vorinostat-induced apoptosis, whereas it had no effect on 

NaB-induced apoptosis. Further, TSA-mediated cytotoxic effect was strongly reduced by 

AEBSF as analysed by clonogenic assay. Therefore, the effect of AEBSF appeared too strong to 

be true and, thus, suggested that AEBSF may directly inactivate vorinostat and TSA. Hence, we 

measured HDAC activity and observed strong prevention of TSA- or vorinostat-mediated 

HDAC inhibition by AEBSF, whereas AEBSF left NaB action untouched. As well, we also 

found that AEBSF prevented TSA- or vorinostat-induced, but not NaB-induced, histone 4 

hyperacetylation. Taken together, our findings propose that AEBSF directly inactivates TSA and 

vorinostat, that way restraining these HDACi from inhibiting HDAC activity and from inducing 

apoptosis. 
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Zusammenfassung 

Krebs wurde lange Zeit als eine genetische Erkrankung angesehen. Inzwischen ist bekannt, dass 

auch epigenetische Veränderungen für die Krebsentstehung wesentlich sind. Die derzeit am 

besten verstandenen epigenetischen Modifikationen sind DNA-Methylierung und Histon-

Acetylierung, deren Fehlregulierung Krebswachstum stimulieren kann. Aberrante epigenetische 

Modifikationen und deren auslösende Mechanismen erscheinen daher als Angriffsziel in der 

Krebstherapie viel versprechend. 

Unter den epigenetisch modulierenden Substanzen besitzen besonders Histondeacetylase-

Inhibitoren (HDACi) als neue Klasse von Krebsmedikamenten ein hohes Potenzial für 

zukünftige Therapieverbesserungen. HDACi wirken gegen Tumorzellen, indem sie 

Wachstumsarrest, Apoptose, zelluläre Seneszenz, mitotischen und autophagischen Zelltod 

induzieren, immunstimulatorisch wirken und die Angiogenese hemmen. In der vorliegenden 

Arbeit wurden Mechanismen untersucht, mit denen HDACi als Monosubstanzen oder in 

Kombination mit anderen Wirkstoffen Zellzyklusarrest und Zelltod auslösen. Im Einzelnen ist 

die Arbeit in vier Abschnitte eingeteilt: 

a) HDAC-induzierter G2/M-Arrest, 

b) synergistische Effekte von HDACi in Kombination mit dem p53-Aktivator Nutlin-3, 

c) antineoplastische Wirkungen von Nutlin-3 auf Ewing-Sarkom-Zellen, 

d) Beteiligung von Serin-Proteasen an der HDACi-induzierten Aoptose. 

In den Untersuchungen wurden Krebszellen entweder mit HDACi allein, oder mit HDACi in 

Kombination mit anderen Wirkstoffen behandelt. Der Zelltod wurde durchflusszytometrisch 

durch Propidiumiodid-Aufnahme bestimmt, die Wirkung auf Mitochondrien durch Messung des 

mitochondrialen Membranpotenzials und die Arretierung im Zellzyklus durch 

Zellzyklusanalyse. Des Weiteren wurden Alamar Blue-Assays vorgenommen, Caspase-

Aktivitäten gemessen und Western-Blot- und "Real Time"-RT-PCR-Analysen durchgeführt. 

In früheren Untersuchungen hatte unsere Arbeitsgruppe festgestellt, dass HDACi einen 

signifikanten G2/M-Arrest induzierten, wenn ihre apoptotische Wirkung durch den pan-Caspase-

Inhibitor z-VAD-fmk gehemmt war. Wir stellten daher die Hypothese auf, dass Caspase 3-

defiziente MCF-7-Zellen auf die HDACi-Behandlung nicht mit Apoptose, sondern bevorzugt 

mit Ausbildung eines Zellzyklusarrests reagieren würden. In der Tat beobachteten wir, dass der 
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HDACi Vorinostat einen deutlichen G2/M-Arrest in MCF-7-Zellen auslöste. Die Analyse des 

zugrunde liegenden Mechanismus zeigte, dass Vorinostat die Phosphorylierung von H2AX 

(γH2AX) herbeiführt, einem Marker für DNA-Schädigung, was darauf hinweist, dass die 

Vorinostat-Behandlung zu DNA-Schäden führt. Zudem konnten wir zeigen, dass Vorinostat die 

Phosphorylierung der Proteinkinase ATM (ataxia telangiectasia mutated) bewirkt, einem 

Schlüsselenzym in der zellulären Reaktion auf DNA-Schäden. Die Hemmung von ATM hatte 

jedoch keine Wirkung auf den Vorinostat-ausgelösten G2/M-Arrest. Wir untersuchten daher 

weitere Faktoren, die typischerweise an der Regulierung des Zellzyklus beteiligt sind. Hierzu 

gehörten das Proteasom, NF-κB und p53. Wir konnten im Rahmen dieser Analysen beobachten, 

dass der Proteasom-Hemmstoff Bortezomib, verschiedene NF-κB-Inhibitoren wie auch der p53-

Aktivator Nutlin-3 den Vorinostat-induzierten G2/M-Arrest deutlich modulierten. Als 

zusätzliches Ergebnis dieser Analysen konnte gezeigt werden, dass Vorinostat und Nutlin-3 eine 

kooperative antineoplastische Wirkung ausübten. 

Nutlin-3, ein Inhibitor von mouse double minute-2 (MDM2), aktiviert p53 und wird daher als 

ein viel versprechender Wirkstoff zur Behandlung von Krebsformen mit Wildtyp-p53 (wt-p53) 

angesehen. Dabei erscheint Nutlin-3 jedoch als Monotherapeutikum möglicherweise nicht 

ausreichend effektiv. Im zweiten Abschnitt dieser Arbeit haben wir darum die Kombination von 

Nutlin-3 und HDACi untersucht und beobachtet, dass Nutlin-3 in Kombination mit 

verschiedenen HDACi (Vorinostat, Natriumbutyrat (NaB), MS-275 und Apicidin) in wt-p53-

Zelllinien (A549 und A2780), aber nicht in p53-Null-Zellen (PC-3) synergistisch Zelltod 

auslöste. Im Gegensatz dazu antagonisierte Nutlin-3 den Paclitaxel-induzierten Zelltod. Die 

Untersuchungen zum Mechanismus des Nutlin-3/HDACi-Synergismus zeigten, dass HDACi die 

p53-Acetylierung induzierten und die Genexpression von MDM2 und MDM4 reduzierten. Diese 

Befunde legen nahe, dass HDACi die antineoplastische Wirkung von Nutlin-3 verstärken, indem 

sie die p53-Hyperacetylierung und/oder die Genexpression von MDM2 und/oder MDM4 

herbeiführen, und dass die Nutlin-3/HDACi-Kombinationsbehandlung eine wirkungsvolle 

Strategie zur Therapie von wt-p53-Tumoren sein könnte. 

Das Ewing-Sarkom (ES) ist die zweithäufigste Knochenkrebsform bei Kindern. Bei Patienten 

mit ES wurde in nur zehn Prozent der Fälle p53-Mutationen gefunden, so dass potenziell 90 % 

auf p53-gerichtete Behandlungen ansprechen sollten. Wir stellten daher die Hypothese auf, dass 

Nutlin-3 ein sehr geeigneter Wirkstoff für die Therapie des Ewing-Sarkoms sein könnte. Im 

dritten Teil dieser Studie überprüften wir darum die Wirksamkeit von Nutlin-3 in Ewing-

Sarkom-Zelllinien mit wt-p53 und mutiertem p53 (mt-53). Wir beobachteten, dass Nutlin-3 in 
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wt-p53-, nicht aber in mt-p53-Zellen p53 stabilisierte und die Expression von p53-regulierten 

Genen (MDM2, p21, PUMA) induzierte. Im Einklang mit diesen Befunden löste Nutlin-3 nur in 

wt-p53-Zellen die Apoptose aus. Darüber hinaus fanden wir, dass Nutlin-3 die zelluläre 

Seneszenz induzierte, was darauf hinweist, dass Nutlin-3 pleiotrope antitumorale Effekte auf 

Ewing-Sarkom-Zellen ausübt. Zudem stellten wir eine synergistische Wirkung von Nutlin-3 in 

Kombination mit einem NF-κB-Inhibitor fest. Unsere Befunde legen nahe, dass die Aktivierung 

von p53 mittels Nutlin-3 ein effektives Behandlungsverfahren für Ewing-Sarkom-Patienten sein 

könnte. 

Frühere Untersuchungen unseres Labors hatten auf eine wichtige Rolle von Serin-Proteasen 

beim HDACi-vermittelten Zelltod hingewiesen. Im letzten Abschnitt dieser Arbeit wurde diese 

Beobachtung nochmals überprüft. Dabei stellten wir fest, dass der Serin-Protease-Hemmstoff 

AEBSF den Vorinostat- und Trichostatin A- (TSA), jedoch nicht den NaB-induzierten Zelltod 

inhibierte. Zudem unterband AEBSF vollständig den von TSA ausgelösten zytotoxischen Effekt 

in Langzeit-Messungen. Diese eklatant starke Wirkung von AEBSF erschien untypisch für rein 

biologische Effekte und legte den Verdacht nahe, dass es Vorinostat und TSA durch chemische 

Interaktion direkt inaktivieren könnte. Wir bestimmten daher die HDAC-Aktivität und stellten 

fest, dass AEBSF tatsächlich die Vorinostat- und TSA-vermittelte Hemmung der HDAC-

Aktivität deutlich verminderte, während es keine Wirkung auf die NaB-vermittelte Hemmung 

hatte. Damit übereinstimmend fanden wir, dass AEBSF die Vorinostat- und TSA-, nicht aber die 

NaB-induzierte Hyperacetylierung von Histon H4 verhinderte. Diese Ergebnisse deuten stark 

darauf hin, dass AEBSF Vorinostat und TSA durch direkte Interaktion inaktiviert und so daran 

hindert, die HDAC-Aktivität zu hemmen und den Zelltod auszulösen. 
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1 INTRODUCTION 

1.1 Cancer 

The unusual and uncontrolled proliferation of tissues is considered as ‘cancer’. This is due to the 

disturbance in the tissue homeostasis, which mainly because of the progression of self-derived or 

external derived factors over a highly regulated normal cell proliferation. The basis for cancer 

development is the instability of host genome by sequential mutations (Weinberg, 1996;Kinzler 

and Vogelstein, 1996a) of four classes of genes. They are growth-promoting oncogenes 

(Hanahan and Weinberg, 2000), growth-inhibiting tumour suppressor gene, genes that are 

responsible for regulating apoptosis and genes that are regulating DNA repair (Greenblatt et al., 

1994). Many external factors including exposure to virus, xenobiotics (foreign chemicals) and 

radiation can contribute to the mutation and induces the malignant transformation of cells 

(Yuspa, 2000).  

Generally, the malignant tumour has two kinds of characteristic growth 1. Benign tumour is an 

encapsulated abnormal tissue mass that never disseminates 2. Malignant tumour invades 

adjacent tissues by infiltrative destructive growth. Such invasive growth may progress to 

metastasis after spreading of cancer cells through blood circulatory system and establish a new 

growth at distance parts of the body (Tannock et al., 2005). 

1.1.1 Cell cycle 

The hallmark of eukaryotic cellular proliferation is the cell cycle through which a cell undergoes 

division to give two daughter cells. A cell division cycle comprises four precisely controlled 

sequential phases 1. G1 Phase: a gap follows on from M phase to S phase, and is a period when 

the cell is responsive to both positive and negative growth signals 2. S phase, during this period 

the cell undergoes replication and synthesises DNA 3. G2 phase: a gap session after S phase and 

prepares the cell to enter M phase and 4. M phase in which the cell divides into two complete 

cells. Most cells in normal tissue are in quiescent G0 state and eventually removed from G1 

phase. On exposure with mitogenic agents, cells in G0 or G1 are stimulated to progress to 

restriction point R beyond which cells are committed to enter S phase. The cells beyond R point 

do not require further stimulation and progress into S phase and M phase to complete the cycle 

(Garrett, 2001). 
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The fidelity of cell cycle is maintained by regulatory mechanisms also known as cell cycle 

checkpoint at three major positions. First cell cycle checkpoint arises at the G1/S phase transition 

to monitor DNA damage and also restrains S phase due to incomplete DNA replication. Next 

checkpoint activated at G2/M to prevent entry of incompletely replicated DNA into mitosis. 

Third check point evolves as checkpoint due to improper spindle formation during mitosis 

(Pietenpol and Stewart, 2002). Apart from these restraining mechanisms, cells also respond to 

DNA damage through activating apoptosis, a programmed cell death. In transformed cells, 

dysregulation of these controlling mechanisms allows the cells to behave independent of signals 

from growth activators or inhibitors for cell division and leading the cells to pass R point and 

progress into subsequent cell cycle phases. 

Numbers of studies demonstrated that the association between cell cycle controls and regulation 

of apoptosis is intrinsically established by players common to both processes. On double strand 

DNA damage, the halted replication forks activate evolutionarily conserved signalling pathways 

such as phosphoinositide 3-kinase (PI3K) that consist of damage-sensing complexes and the 

large protein-serine/threonine (Ser/Thr) kinases ataxia telangiectasia mutated (ATM) and ATM- 

and Rad3-related (ATR) (Bartek et al., 2004;Harper and Elledge, 2007). ATM and ATR in turn 

activate the CHK2 and CHK1 protein kinases, respectively. These proteins phosphorylate and 

inhibit CDC25 phosphatases, which have a main role in activating CDKs, essential players in the 

cell cycle (Bartek et al., 2004;Harper et al., 2007). They also stabilise p53 through 

phosphorylation. p53 can induce the transcription of both CDK inhibitors and proapoptotic 

proteins such as PUMA and Noxa (Vousden and Lu, 2002), and NF-ĸB, which at the same time 

represses the antiapoptotic protein Bcl-xL (Perkins, 2004;Perkins, 2007). Moreover, direct 

functional relationship between checkpoint components and regulators of the mitochondrial 

apoptotic pathway was put forward in a number of investigations (Pietenpol et al., 2002). 

Moreover, DNA damage-induced cell cycle arrest may also lead the cells into senescence in 

which the cell proliferation is irreversibly blocked (Jian-Hua Chen et al., 2007). Phenotypically, 

senescence is characterised by an increase in cytoplasmic volume and an accumulation of 

lysosomes, leading to increased granularity and elevated level of β-galactosidase expression 

(Dimri et al., 1995). In contrast to apoptosis, in which cytotoxic signals converge to a 

programmed death, senescence is typically a delayed stress response involving multiple effector 

mechanisms. These effector mechanisms include epigenetic regulation, the DNA damage 

response, and the senescence-associated secretion phenotype. 
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1.1.2 ATM 

Mammalian cells have evolved with cellular pathways as DNA damage response to protect DNA 

from DNA damages by ionising radiation like gamma rays and X-rays and genotoxic agents. 

ATM is a core sensor protein activated in response to DNA double strand breaks (DSBs), which 

acts in all phases of cell cycle (Liang et al., 2009). Activated ATM regulates cell cycle check 

points through phosphorylating downstream signalling molecules to control cell cycle and 

facilitate DNA repair or apoptosis. Biochemically, ATM is a Ser/Thr protein kinase, and is a 

member of phosphoinositide 3-kinase (PI3K)-related protein kinase (PIKK) family. ATM 

comprises a Fat domain, a protein kinase domain, FACT domain at C terminus and a substrate 

binding domain (SBS) for p53, NBS1, BRCA1 at N-terminus (Banin et al., 1998;Canman et al., 

1998;Khanna et al., 1998).  

The activated ATM-mediated DNA damage response is a complex process that initiates from the 

relaxation of chromatin as a consequence of a DBSs. In the DNA flanking regions, ATM is 

partially activated and phosphorylates p53 and possibly other substrates. ATM is then recruited 

to the site of the break by the MRE11-RAD50-NBS1 (MRN) complex and phosphorylates 

members of the complex and other downstream substrates. As result of activation, inactive ATM 

dimer is monomerised, and parallel transphosphorylation (autophosphorylation) occurs on at 

least three sites: Ser367, Ser1893 and Ser1981. However, the activation of ATM is controlled by 

phosphatases such as protein phosphatase-2A (PP2A), PP5 and WIP1. Acetylation (Ac) of ATM 

at Lys3016 within the C-terminal FATC domain by acetyltransferase TIP60 also brings the 

process of activation. 

It is noteworthy that in the G1/S checkpoint, ATM phosphorylates p53 on Ser15 and other sites; 

although this modification does not stabilise and activate p53, it is considered as a marker for 

that process. Indeed, stabilisation of p53 is also mediated by ATM phosphorylation of the 

checkpoint kinase CHK2, MDM2 and MDM4. Phosphorylation of MDM2 suppresses its affinity 

for p53, and prevents ubiquitylation (Ubl) and proteasomal degradation of p53 and contributes to 

its stabilisation. Furthermore, ATM phosphorylates MDM4 on Ser403 and mediates CHK2 

phosphorylation of MDM4 on Ser342 and Ser367. These phosphorylation events, together with 

ubiquitylation by MDM2 (stimulated by CHK2), lead to MDM4 degradation and to p53 

stabilisation. By this way, ATM control over G1/S check point as well as in intra-S phase and 

G2/M phase check point, DNA repair control (Figure 1). 
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Figure 1 Role of ATM in cell cycle arrest through DNA damage. 

Cell cycle checkpoints pathway induced in response to DNA damage. The two kinases ATM and ATR are 
activated in response to different types of DNA damage. ATM is mainly activated by the DSBs whereas 
ATR is activated by single stranded DNA and stalled forks. ATM and ATR phosphorylate different 
targets, including checkpoint kinase-1 (CHK1) and CHK2. The active form of CDK is a main player in 
governing cell cycle progression. This CDK activation depends on the level of the cyclins, which are 
controlled by the ubiquitin proteasome system. Phosphorylation of CDC25 by CHK1 and CHK2 activates 
SKP1-CUL1-F-box (SCF)ßTrCP and promotes its degradation. The activation of DNA damage-induced 
checkpoint leads to CDC25 degradation, low CDK activity and G2 arrest. However, completion of DNA 
repair restores CDK activity that allows G2-M transition. Arrows indicate activation and T-shaped lines 
indicate the inhibitory mechanism (modified from Branzei and Foiani, 2008). 

1.1.3 p53 

p53, a transcription factor, acts as a gatekeeper in normal cells by preventing abnormal 

proliferation of cells via complex cell cycle, DNA replication and repair and apoptosis 

regulatory mechanisms. By this way, p53 maintains tissue homeostasis of multicellular 

organisms (Kinzler and Vogelstein, 1996b). 

Under cellular stress, DNA damage and oncogene activation, p53 level increases and in turn 

transactivates p53 target genes, such as p21, GADD 45, Bax, PUMA and Noxa, leading to cell 

cycle arrest and/or apoptosis (Vousden and Prives, 2009). Translocation of p53 to mitochondria 

induces apoptosis through transcriptional independent mechanism.  
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Furthermore, oncogene activation may also stimulate the expression of p14Arf protein which 

inhibit MDM2, leading to p53 accumulation. As a whole, both the cellular level and status of 

p53 play an important role in inducing cell cycle arrest or apoptosis in malignant cells. 

Therefore, p53 could be considered as an important clinical target, perhaps the reactivation of 

p53 by downregulating p53-MDM2 or MDM4 binding would be a novel therapeutic strategy for 

treating p53 wild-type cancers. 

1.1.4 MDM2 

The murine double minute 2 (mdm2) gene was originally identified by virtue of its amplification 

in a spontaneously transformed mouse BALB/c cell line (3T3-DM) (Cahilly-Snyder et al., 

1987). Later the MDM2 protein was identified as a binding partner of p53 inhibiting p53-

mediated transcription activation (Momand et al., 1992), indicating its potential role in 

neoplastic transformation.  

Human mdm2 gene (hdm2 gene) amplification was observed in one third of wt-p53 human 

sarcomas (Oliner et al., 1992), suggesting that induction of MDM2 protein expression is an 

molecular mechanism by which the cell can inhibit p53 and stimulate tumour formation. MDM2 

consists of several functional domains. The N-terminal region contains the p53-binding region 

(residues 26 ± 108) (Chen et al., 1993;Picksley et al., 1994). The central region contains a short 

highly acidic region, that regulates transcriptional activity (residues 211 ± 299) (Leveillard and 

Wasylyk, 1997;Thut et al., 1997) and the C-terminus contains a RING finger domain (residues 

442 ± 481) essential for E3 ligase activity and ubiquitin-mediated degradation of p53 (Fang et 

al., 2000;Honda and Yasuda, 2000;Brooks and Gu, 2006). It has also been shown to be modified 

by SUMO in the C-terminus of Mdm2 (Buschmann et al., 2000). MDM2 contains several 

cellular localisation sequences including a nuclear localisation sequence (NLS, residues 178 ± 

182) (Olson et al., 1993), a nuclear export sequence (NES, residues 183 ± 195) (Roth et al., 

1998) and a nucleolar localisation sequence (NoLS, residues) (Lohrum et al., 2000;Weber et al., 

2000). MDM2 negatively regulates both stability and activity of p53 by directly binding to p53 

within its N-terminal transactivation domain (residues 19 ± 26). Further targets it for ubiquitin-

mediated degradation by the proteasome. Under normal conditions, the mdm2 gene itself is 

transcriptionally activated by p53 and forms a regulatory feedback loop of two proteins 

(Freedman et al., 1999). However, under cellular stress conditions this feedback loop is 

disrupted, leading to rapid stabilisation and activation of p53 by a variety of mechanisms that are 

dependent on the particular type of stress. Many of these mechanisms converge on MDM2 itself 
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and involve regulation of mRNA expression, nucleolar sequestration, and posttranslational 

modification (Woods and Vousden, 2001). 

1.1.5 MDM4 

MDM4 (also known as MDMX) is a prominent regulator of MDM2 activity. MDM4 is also a 

critical negative regulator of p53 like MDM2 (Marine and Jochemsen, 2005). MDM2 and 

MDM4 interact with each other via their C-terminal RING domains. Interestingly, MDM4 

stabilises both MDM2 and p53 and also promotes the E3-ligase activity of MDM2 (Linares et 

al., 2003;Poyurovsky et al., 2007). Therefore, the MDM4 has the ability to promote MDM2 

function as well as its own direct impact on p53. This suggests that MDM4 may be a potential 

therapeutic target for the regulation of p53 activity (Shangary and Wang, 2009). 

1.1.6 Apoptosis 

Apoptosis or programmed cell death is a physiological mechanism through which most 

multicellular organisms attain their own cell death. Thereby they maintain the balance between 

senescence and cell proliferation and regulate overall tissue homeostasis. Dysregulation of 

apoptosis in a cell can manifest to cancer, autoimmune disease and degenerative disorders. The 

apoptotic cells have been identified with distinct morphological changes such as membrane 

blebbing, cytoplasmic shrinkage, alteration of asymmetrical distribution of membrane 

components and condensation of the nucleus (Reed et al., 2000) and later they become into 

apoptotic bodies that are eventually eliminated by phagocytic cells without triggering an 

inflammatory response.  

In general, apoptosis is triggered by endogenous stimuli like growth factor deprivation as well as 

exogenous stimuli like ultra violet (UV) or gamma radiation or other DNA damaging agents 

such as chemotherapeutic drugs. When the cells undergo apoptosis due to inadequate cellular 

matrix interaction it is known as anoikis (Frisch and Screaton, 2001). So far two major pathways 

have been demonstrated in relation to the governing the regulation of apoptosis. Those are 1. 

Extrinsic or death receptor pathway 2. Intrinsic or mitochondrial pathway.  

1.1.6.1 Extrinsic or death receptor pathway 

The mammalian death receptor (DR) apoptotic pathway is triggered by ligands which bind to the 

death receptor members of the TNF receptor family: Fas (also called DR2, CD95 or APO-1), 

TNF receptor type 1 (TNFR-1, also called DR1, p55, p60 or CD120a), DR3, TRAIL (TNF-
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related apoptosis-inducing ligand) receptors DR4, DR5, and DR6 (Nagata, 1999); (Suliman et 

al., 2001). For example, stimulation of Fas by FasL or TNFR-1 by TNF has been implicated in 

the elimination of unwanted lymphocytes and transformed cells 

Death receptors share the presence of a death domain in their cytoplasmic tails (Ashkenazi, 

2002). Death receptor signalling is amplified by the events that occur following engagement of 

Fas by its ligand FasL on the cell surface (Figure 2). Following Fas/FasL interaction, the Fas 

receptor proteins aggregate to form a trimer and recruit the adaptor protein FADD (Fas-

associated death domain protein) that contains two protein interaction domains, a death domain 

and a death effector domain (DED). Fas/FADD interaction allows the recruitment of DED-

containing initiator caspase such as caspase-8 or caspase-10 to the complex, resulting in their 

activation. Activated caspase-8 and caspase-10 in turn process downstream caspases such as 

caspase-3, thereby finalising the commitment of apoptosis.  

1.1.6.2 Intrinsic or mitochondrial pathway  

The hallmark of intrinsic pathway is in the activation of mitochondria which are structurally 

composed of outer membrane, inner membrane and inter membrane space (IMS). The IMS have 

membrane proteins such as cytochrome C (cyt C), apoptosis-inducing factors (AIF), Omi/HtrA2, 

EndoG and Smac/DIABLO. Apoptotic stimuli, such as deprivation of growth factors, DNA 

damage, oxidative stress, hypoxia, or chemotherapeutic drugs, induce the opening of membrane 

pores, loss of membrane potential and trigger the release of sequestrated proapoptotic proteins 

into cytosol, including cyt C. Indeed, release of cyt C is positively regulated by proapoptotic 

proteins BID and Bax and negatively regulated by antiapoptotic proteins Bcl-2 and Bcl-xL. The 

released cyt C stimulates formation of apoptosome by forming a complex with Apaf-1 

(Apoptosis protease activating factor-1) and caspase-9. The activated caspase-9 in turn activates 

other effector caspases like caspase-3, -6 and -7, which catalyse cleavage of various cellular 

substrates, resulting in cell death. The proapoptotic protein Smac/DIABLO and Omi/HtrA2, 

released from mitochondria along with cyt C, down regulate inhibitors of apoptosis proteins 

(IAP) such as XIAP, which directly inhibit the proteolytic function of caspase-3, -7 and -9 and 

suppress apoptosis. 

The DR and mitochondrial pathways are linked by caspase-8 cleavage of BID (a proapoptotic 

member of the Bcl-2 family) that generates a proteolytic fragment that cooperates with Bax and 

forms supramolecular openings in the outer mitochondrial membrane leading to release of 
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mitochondrial cyt C. Hence, BID may serve to amplify death signals initiated by engagement of 

the DR, as BID deficiency does not affect caspase-8 activation, but drastically diminishes 

 
Figure 2 Apoptotic pathways. 

A) Intrinsic apoptotic pathway is induced by DNA damage or endoplasmic reticulum (ER) stress, leading 
to mitochondrial outer membrane permeabilisation (MOMP) and cyt C release mediated by activated 
proapoptotic proteins Bax and Bak. cyt C complex with APAF-1 to form apoptosome to activate 
procaspase-9 into caspase-9 which in turn activates caspase-3, to execute apoptosis. B) Extrinsic 
apoptotic pathway is induced by binding of death receptors with their ligands, leading to the recruitment 
of adaptor molecules such as FAS-associated death domain protein (FADD) and then caspase-8. This 
causes dimerization and activation of caspase-8, which directly activates caspase-3 and caspase-7, 
leading to apoptosis. Crosstalk between the extrinsic and intrinsic pathways occurs through caspase-8 
cleavage and activation of the BH3-only protein BH3-interacting domain death agonist (BID), the 
product of which (truncated BID; tBID) is required in some cell types for death receptor-induced 
apoptosis. FASL, FAS ligand; TNF, tumour necrosis factor; TRAIL, TNF-related apoptosis-inducing 
Ligand (Tait and Green, 2010). 
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caspase-3 processing. Defective apoptosis has been observed in mice and cells deficient for Fas, 

FasL, caspase-8 or FADD (Ranger et al., 2001). 

1.1.7 Serine proteases 

Among the proteases, one group of proteolytic enzymes are serine proteases. These enzymes 

contain a serine residue at their active centre, which participates in the formation of an 

intermediate ester to transiently form an acyl-enzyme complex. The role of serine proteases in 

apoptosis has been mostly studied by observing whether particular apoptotic events can be 

prevented by inhibitors of these enzymes. Gorczyca et al. have shown that fragmentation of 

DNA in HL-60 cells treated with DNA topoisomerase inhibitors to induce apoptosis was 

prevented by irreversible inhibitors of serine proteases. But little is known about apoptosis-

specific serine proteases. Granzymes A and B are serine proteases, which are abundant in 

granules of cytotoxic T-lymphocytes (CTL) (Masson and Tschopp, 1987;Pardo et al., 

2004;Pardo et al., 2008) and natural killer (NK) (Ida et al., 2005) are the best characterised. 

Granzymes B can cleave procaspase-3, -6, -7, -8, -9 and -10 and most likely it activates 

endogenous caspases of the lymphocyte target cells, thereby inducing their apoptosis (Van de et 

al., 1997;Vandenabeele et al., 2005). But Granzyme A appears not to be associated with 

activation of caspases and it cleaves proteins independently of the latter (Martinvalet et al., 

2008). 

Compared to other class of non-caspase proteases, with the exception of Granzymes B, relatively 

little is known regarding the role of serine proteases in apoptotic signalling events (MacDonald 

et al., 1999;Zhao et al., 2007;Guo et al., 2008). 

 The limited number of apoptosis serine proteases characterised to date includes HtrA2/Omi and 

AP24 (Suzuki et al., 2001;Hegde et al., 2002;Seong et al., 2004). Omi can mediate apoptosis by 

interfering with inhibitor of apoptosis protein’s function or via an independent trypsin-like serine 

protease activity (Martins et al., 2002;Yang et al., 2003). AP24 represents an alastase-like serine 

protease activity capable of inducing endonuclease L-DNase II that translocates to the nucleus 

and activates DNA fragmentation (Altairac et al., 2003). 

1.1.8 NF-ĸB  

Nuclear factor-κB (NF-κB) are transcription factors, critically regulate the outcome of cellular 

effect in normal and neoplastic cells. It has multitude functions in various pathways, such as 

synthesis and release of cytokine, intracellular signal transduction, and the inflammatory 
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response in both normal and abnormal cells (Zhou et al., 2010). They consist of five homologous 

subunits, RelA/p65, c-Rel, RelB, p50/NF-κB1, and p52/NF-κB2 which dimerise and form 

inactive ternary complex with IκBs, the inhibitors of NF-κBs including IκBα in the cytoplasm. 

On activation, IκBα is phosphorylated and undergoes ubiquitin-proteasome mediated 

degradation and the released dimeric p65/p50 complex becomes active. The free NF-κB 

translocates to and accumulates within the nucleus where it is free to associate with cognate κB 

elements in target gene promoters (Karin and Ben Neriah, 2000;Naugler and Karin, 2008). 

It has long been known that NF-κB signalling promotes the development of cancer by inhibiting 

apoptosis. (Van Antwerp et al., 1996). Several target genes of NF-κB include Bcl-2 family 

members such as Bcl-xL, IAPs (inhibitors of apoptosis), and c-FLIP (Karin, 2006) prevent 

apoptosis. NF-κB also indirectly prevents mitochondria-mediated apoptosis through 

neutralisation of ROS (through induction of manganese superoxide dismutase or ferritin heavy 

chain). Many investigators have observed that resistance to apoptosis in human cancer cell lines 

may be dependent on activation of NF-κB because when NF-κB is inhibited, apoptosis can be 

triggered more readily (Bernal-Mizrachi et al., 2006;Chen et al., 2006;Mi et al., 2007;Singh et 

al., 2007). NF-κB-induced apoptosis resistance has been implicated in chemotherapeutic failures 

in cancer treatment, and thus inhibiting NF-κB activation could be a potential way of therapy to 

treat tumours. 

1.2 Epigenetics in cancer 

Formerly, cancer was considered to be a genetic disease, caused by mutations of genes in 

somatic cells by mutagens, chemicals that damage DNA, or viruses. As a matter of fact, 

manifestation of cancer has been thought to be a result of alteration in the genes of cell cycle 

check points, tumour suppressor genes and proto-oncogenes (Boveri, 2008), Later, epigenetic 

events, such as histone modification and DNA methylation of CpG islands located in the 

promoter regions of a number of tumour suppressor genes have also been correlated with 

aberrant gene expression. It has now been realised that dysregulation of epigenetics has also a 

significant contribution to the process of carcinogenesis (Jones and Baylin, 2007). 

Epigenetics is heritable changes in gene expression without changing the DNA sequence (Yoo 

and Jones, 2006;Goldberg et al., 2007). Epigenetic events play an important role in the initiation 

and progression of cancer. The most important epigenetic events are DNA methylation and 

histone tail modifications such as acetylation, methylation, phosphorylation and ubiquitination 

(Yoo et al., 2006). Alteration or dysregulation of these events can favour manifestation of cancer 
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growth. Therefore it has been now realised that the reactivation of epigenetically inactivated 

genes could be a novel strategy for cancer treatment. 

1.2.1 DNA methylation 

DNA methylation is a covalent chemical modification in which the addition of a methyl group to 

the carbon-5 position of cytosine residues occurs in DNA. Most cytosine methylation occurs in 

the sequence context 5’CG3’ (CpG dinucleotide). This reaction is catalysed by at least three 

DNA methyltransferases (DNMT): DNMT1, DNMT3a and 3b in mammals. (Ramsahoye et al., 

2000;Prokhortchouk and Defossez, 2008). Association of DNMT and establishment of newly 

methylated promoters were shown with proteins including Rb, E2F1, HDACs, histone 

methyltransferase and transcription repressor (Robertson et al., 2000;Fuks et al., 2003). 

Methylation of DNA may affect the transcription of genes in two ways: First, it involves direct 

interference with the binding of specific transcription factors to their recognition sites in their 

respective promoters which contain methyl-CpG residues (Singal and Ginder, 1999), and the 

second mode of repression involves a direct binding of specific transcriptional repressors to 

methylated DNA (Singal et al., 1997;Singal et al., 2001;Prokhortchouk and Hendrich, 2002). It 

can also affect histone modifications and chromatin structure (Das and Singal, 2004). DNA 

methylation is one of the most studied epigenetic mechanisms, it plays a crucial role in the 

development of nearly all kind of cancer (Jaenisch and Bird, 2003). Methylation changes have 

been implicated in various types of cancers such as colon cancer (Veigl et al., 1998), renal cell 

cancer (Morrissey et al., 2001), breast cancer and lung cancer (Virmani et al., 2001), GIT cancer 

(Kawakami et al., 2000) and lymphoma (Garcia et al., 2002). 

1.2.2 Histones  

Histones are among the most evolutionarily conserved and major proteins bound with DNA in 

chromatin in the nucleosome of eukaryotic cells (Kornberg and Lorch, 1999). Biochemically, 

they are small basic proteins with molecular weight of between 11 kDa and 20 kDa. They 

contain a high proportion of the positively charged amino acids lysine and arginine. They are 

classified into five classes, such as H1, H2A, H2B, H3, and H4, and further these proteins are 

categorised into two groups: core histones (H2A, H2B, H3 and H4) and linker histone (H1). 

Structurally, each core histone comprises a central fold domain, an N terminal and C terminal 

tails. The fold domain is involved in the formation of assembly of the histone octamer by 

association of an H3-H4 tetramer and two H2A-H2B dimers. The extending tails are responsible 
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for normal functioning of cellular process such as replication and transcription (Hadnagy et al., 

2008). H3 and H4 tails are the more susceptible region for various posttransitional 

modifications. Furthermore, each histone octamer with C terminal at core and N terminal 

domain extending out is wrapped with 147 base pairs of DNA to become a nucleosome which 

again is organised into repetitive units of nucleosomes linked by H1 to form a higher order 

complex as chromatin (Luger and Hansen, 2005;Luger, 2006;Mendez-Acuna et al., 2010). 

1.2.3 Histone posttranslational modifications 

Histones are the core proteins of nucleosomes. Posttranslational modification of histones occurs 

through the formation of reversible covalent modifications in amino acids such as serine and 

threonine phosphorylation, lysine acetylation, lysine and arginine methylation, lysine 

ubiquitylation, biotinylation and sumoylation, as well as poly-ADP-ribosylation in arginine and 

glutamate, and regulate in part gene expression by altering chromatin organization (Mendez-

Acuna et al., 2010). 

1.2.3.1 Histone methylation 

Methylation of histone H3 at lysine 79 (H3-K79-me) by HMT DOT1 is an important event for 

the localisation of 53BP1 at DSBs, implying an alternative strategy for recruitment of 53BP1 in 

DSBs. This lysine is constitutively methylated and changes in chromatin conformation after 

DSB induction to expose it, leading to 53BP1 recruitment (Huyen et al., 2004). 

In addition, methylation of histone H3 at lysines 4, 36 and 79 (H3-K4-me, H3-K36-me and H3-

K79-me) represents the transcription activation, whereas methylation of lysines 9, 27 from 

histone H3 and lysine 20 from histone H4 (H3-K9-me, H3-K27-me and H4-K20-me) is 

correlated with transcription repression (Kouzarides, 2007). H3-K79 and H4-K20 are also 

methylated in response to UV irradiation and are important for an efficient repair of UV-induced 

damage (Sanders et al., 2004;Bostelman et al., 2007). 

1.2.3.2 Histone phosphorylation 

Histone phosphorylation has a critical role in the regulation of mitosis, cell death, repair, 

replication and recombination (Ito, 2007). ATM kinase or ATR kinase or DNA-dependent 

protein kinase (DNA-PK) mediated serine 139 phosphorylation in H2AX, termed γH2AX, also 

occurs in response to DNA double-strand breaks for recruitment of DNA-damage-response 

proteins, including DNA damage checkpoint proteins (Fernandez-Capetillo et al., 2002;Unal et 
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al., 2004). In addition, histone H2B or H4 phosphorylation also have a key role in response to 

DNA double-strand breaks, apoptosis, meiosis and transcription activation events (Ito, 2007). 

However, the detailed mechanism is yet to be identified.  

1.2.3.3 Histone ubiquitylation  

Ubiquitin (Ub) is a 76 amino acid protein that is ubiquitously distributed and highly conserved 

throughout eukaryotic organisms. In histones, ubiquitylation is induced by ATR-dependent 

ubiquitylation on histone H2A and UV-damaged DNA-binding (DDB) complex and by the 

ubiquitin ligase (E3) CUL4A complex on temporary H3 and H4 due to UV irradiation (Bergink 

et al., 2006). Moreover, H3 and H4 are ubiquitylated early in the DDR than H2A ubiquitylation. 

It is important to note that ubiquitylated H3 and H4 can reduce nucleosomal stability, and the 

UV-DDB complex brings a chromatin environment that facilitates the assembly of the NER 

complex on damaged DNA (Wang et al., 2006). 

Furthermore, ubiquitylated lysines facilitate an environment that favours interaction of proteins 

containing ubiquitin-interacting motifs, and leads to accumulation of downstream DDR factors 

at sites of DNA damage (Yan et al., 2007). The recently identified ubiquitin ligase enzyme 

RNF8 (RING finger-containing nuclear factor 8) has shown to catalyse regulatory ubiquitylation 

at sites of DSBs (Panier and Durocher, 2009), that is later maintained by RNF168 (van Attikum 

and Gasser, 2009). Moreover, the RNF8-mediated ubiquitylation induce recruitment of 

downstream signalling molecules such as 53BP1 and BRCA1 (Huen et al., 2007;Mailand et al., 

2007;Wang et al., 2007). 

1.2.3.4 Histone acetylation 

Acetylation and deacetylation of ε-amino group of conserved lysine residue in histone tail is an 

important reversible biochemical reaction in which an acetyl moiety is enzymatically transferred 

by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Since this 

process has a key role in the alteration of chromatin or nucleosomal architecture that influences 

the accessibility of regulatory factors in the regulation of transcription and expression of genes, 

much attention has been paid, and it is now a well characterised posttranslational modification 

(Grant, 2001;Gregory et al., 2001;Ellis et al., 2009;Lane and Chabner, 2009a;Sawan and Herceg, 

2010). 
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1.2.3.5 Histone acetyltransferases (HATs) 

HATs are categorised into nuclear or A-type HAT proteins and cytoplasmic B-type HATs, and 

grouped into three major families: the MYST family containing MOZ, Ybf2/Sas3, Sas2, Tip60, 

the Gcn5 related N-acetyltransferase or GNAT/PCAF family, and the p300/CBF family (Sterner 

and Berger, 2000;Roth et al., 2001;Vetting et al., 2005;Hodawadekar and Marmorstein, 

2007;Allis et al., 2007). In addition, there are a number of putative acetyltransferases (i.e. 

Spt10), which contain motifs similar to those found in HATs but their acetyltransferase activity 

remains to be identified (Neuwald and Landsman, 1997). Though the nuclear HATs utilise 

common acetyl-CoA and acetyl-lysine as substrate, they were observed with diverged protein 

sequence and provide explanation for difference in the substrate specificity and biological 

activity. The Gcn5 and PCAF consist of three conserved sequence motifs (A, B and D) that are 

shared with other acetyltransferases, including serotonin acetyltransferase and spermidine 

acetyltransferase (Neuwald et al., 1997). Some of the other GNAT members contain another 

conserved C motif whereas the MYST proteins have sequence homology only with motif A of 

GNAT proteins. However, the p300/CBP family has no homology sequence with either of the 

Gcn5/PCAF or MYST HATs. Furthermore, several HATs within the Gcn5/PCAF and MYST 

family have been identified as multisubunit complexes in vivo and believed to act on 

nucleosomes (Marmorstein and Roth, 2001). HATs, such as PCAF and p300/CBP, have also a 

role in the acetylation of non-histone proteins, e.g. transcription factors such as p53 and MyoD 

(Glozak et al., 2005;Zhang and Dent, 2005). 

1.2.3.6 Molecular mechanism of HATs 

Recent studies on the mechanism of HATs have supported the single step catalytic mechanism, 

in which lysine directly attacks the acetyl-CoA from the ternary complex enzyme acetyl-CoA 

histone-peptide (Berndsen et al., 2007) (Figure 3). In this mechanism, acetyl-CoA and the 

protein substrate bind the active site of HAT to form a ternary complex. Simultaneous 

deprotonation of the lysine by an active-site glutamate (base) allows nucleophilic attack on the 

carbonyl carbon of acetyl-CoA unstable tetrahedral intermediate forms, which then turn into 

CoA and the acetylated protein as the reaction products.  
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Figure 3 Enzymatic of HATs. 

The acetyl-CoA and peptide substrate bind on active site of HAT to form a ternary complex as acetyl-
CoA, peptide substrate and active site glutamate (e.g. Glu338 from Esa1). Deprotonation of the ε-amine 
of substrate lysine allows lysine attacks the carbonyl carbon of the acetyl moiety of acetyl-CoA forming a 
tetrahedral intermediate, which later forms CoA and acetylated product (Berndsen et al., 2007). 

1.2.3.7 Histone deacetylases (HDACs) 

HDACs are enzymes responsible for removal of the acetyl moiety from acetylated histones. 

Currently, eighteen HDACs have been identified in humans and grouped into four classes 

(Mariadason, 2008): Classes I, II and IV are zinc-dependent metalloproteins and class III are 

NAD+-dependent enzymes.  

i) Class I HDACs are HDAC 1, 2, 3 and 8, which are homologous to yeast Rpd3. They are 

ubiquitously expressed and mostly found in nucleus, smaller in size (350-500 amino acids). 

In the deacetylase domain, a small C-terminal region is often subject to posttranslational 

modifications, like phosphorylation, ubiquitination and sumoylation (de Ruijter et al., 

2003;Yang and Seto, 2008). 

ii) Class II has two subgroups. a) Class IIa is represented by HDAC4, 5, 7 and 9 and b) 

Class IIb consists of HDAC6 and 10. Class II enzymes are able to shuttle in and out of the 

nucleus in response to certain cellular signals, and they share domains similar with HDAC I 

(Verdin et al., 2003). 

iii) Class III HDACs consist of the large family of sirtuins (SIRs) from group SRIT 1 to 7 

that are evolutionarily distinct, with a unique enzymatic mechanism dependent on the 
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cofactor NAD+, and are not targeted by the currently available HDAC inhibitors under 

development (Finnin et al., 2001;Witt et al., 2009). 

iv) Class IV HDAC (HDAC 11) is found in the nucleus, and interacts with HDAC6 in vivo 

(Gao et al., 2002;Ledent and Vervoort, 2006). 

Table 1 Properties of zinc-dependent HDACs (Bertrand, 2010) 

Group Size (aa) Location Cellular  Complex  Role  

  chromosome  distribution 

 

Class I (type Rpd3) 

HDAC1 483 1p34 N  Sin3, NURD  TC 

HDAC2 488 6q21 N  Sin3, NURD  TC 

HDAC3 428 5q31 N  NCOR1/NCOR2- 

    GPS2-TBL1X  

HDAC8 377 Xq13 N  TC 

Class II (type Had1) 

IIa 

HDAC4 1084 q37.2 N, C NCOR1/NCOR2 TC 

HDAC5 1122 17q21 N, C TC 

HDAC7 855 12q13.1 N, C Sin3, NCOR2 TC 

HDAC9 1011 p21-p15 N, C 

IIb 

HDAC6 1215 Xp11.22–23 N, C   

HDAC10 669 22q13.31 N, C NCOR2 TC 

Class IV      

HDAC11 347 3p25.2 N 

Size is expressed in amino acid number, N: nuclear, C: cytoplasm, TC: transcription 
corepressor. 

The differences between the zinc-dependent classes I, II and IV HDACs (Gregoretti et al., 

2004;Ledent et al., 2006;Ocker and Schneider-Stock, 2007;Witt et al., 2009) are presented in 

Table 1 according to size (number of amino acids), cellular distribution and interactions with 

transcription factors.  
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1.2.3.8 Molecular mechanism of HDACs 

The mechanism of action of the HDAC enzymes involves removing of the acetyl group from the 

histones. Hypoacetylation results in DNA condensation leading to transcriptional repression. 

The catalytic domain of HDAC is formed by a stretch of around 390 amino acids consisting of a 

set of conserved amino acids. The active site consists of a gently curved tubular pocket with a 

wider bottom. Removal of an acetyl group occurs via a charge-relay system (Finnin et al., 1999). 

An essential component of the charge-relay system is the presence of a Zn2+ ion. This ion is 

bound to the zinc binding site on the bottom of the pocket. However, other cofactors are required 

for HDAC activity (Figure 4). 

 

Figure 4 Dynamic histone acetylation is catalysed by HATs and HDACs (Davie, 2003). 
HDAC enzymes deacetylase not only histone proteins, they also have the ability to deacetylase non-
histone proteins both in cytoplasm and nucleus. These non-histone proteins include transcription factors, 
e.g. p53, E2F1-3 (Mujtaba et al., 2004), transcriptional regulators Rb, CtBP2, signal transduction 
mediators STAT3 and viral proteins E1A (Yang et al., 2008;Ray et al., 2008). 

1.3 Histone deacetylase inhibitors (HDACi) 

Histone deacetylase inhibitors (HDACi) are a novel class of anticancer agents, initially identified 

by their ability to reverse the malignant phenotype of transformed cells (Kouraklis and 

Theocharis, 2002;Yoshida et al., 2003;Papeleu et al., 2005). It is now widely accepted that 

HDACi have broad spectrum anticancer activity in various cancer cells and animal model 

studies (Witt et al., 2009). Vorinostat or suberoyl anilide hydroxamic acid (SAHA) was the first 
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compound approved by the FDA for the treatment of refractory cutaneous T cell lymphoma 

(CTCL) (Lane et al., 2009;Tan et al., 2010). 

Studies have shown that HDACi like vorinostat can induce growth arrest in both normal and 

transformed cells in culture. However, HDACi proficiently induce cell death only in various 

cancer cells including neuroblastoma, melanoma, leukaemia, multiple myeloma and breast, 

prostate, lung, ovary, colon carcinoma and many others (Marks and Breslow, 2007). Indeed, 

normal cells are up to tenfold more resistant to vorinostat-induced cell death compared to 

transformed cells (Ungerstedt et al., 2005). Vorinostat can also cause growth arrest, caspase-

dependent apoptotic cell death and/or caspase-independent autophagic cell death (Rosato et al., 

2003;Shao et al., 2004;Guo et al., 2004;Marks and Jiang, 2005). Furthermore, vorinostat as well 

as other HDACi have been shown to augment the efficacy of other anticancer therapy 

modalities, such as radiation therapy and several anticancer agents, including anthracyclins, 

fludarabine (Fludara), flavopiridol, imatinib (Gleevec), proteasome inhibitor bortezomib 

(Velcade), antiangiogenic agents and nuclear receptor ligands, such as all-trans retinoic acid and 

APO2L/TRAIL (Fuino et al., 2003;Yoshida and Melo, 2004;Marks and Dokmanovic, 

2005;Bolden et al., 2006;Sonnemann et al., 2006). Trichostatin A (TSA) and valproic acid 

(VPA) have been shown to induce sensitisation of multidrug-resistant cancer cells to etoposide 
(Hajji et al., 2010). 

1.3.1 Mechanisms of HDACi 

The molecular mechanism of HDACi was determined in studies such as HDAC-like protein-

vorinostat interaction (Finnin et al., 1999), HDAC8-hydroxamate interaction (Somoza et al., 

2004;Vannini et al., 2004). These studies found that vorinostat binds in the active site pocket and 

chelates the zinc ion at the base of the catalytic pocket of HDAC. Since class I, II, and IV 

HDAC have zinc ion and highly conserved enzymatic pocket, majority of these compounds do 

not selectively inhibit individual HDACs. Except class III (sirtuins), all other HDACs or several 

members of HDAC family are simultaneously susceptible for HDACi-mediated inhibition (Witt 

et al., 2009;Lane and Chabner, 2009b). 

1.4 Biological effects of HDACi on cancer cells  

HDACi can mediate a diverse range of effects on cell growth and survival. HDACi have a global 

effect on gene expression through the activation and or repression of genes following 

hyperacetylation of histones and chromatin remodelling in transformed cells specifically than 
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normal cells (Lane et al., 2009). HDACi also have a profound inhibitory effect on many non-

histone protein substrates of HDAC such as DNA binding transcriptional factors, transcriptional 

regulators, signal transductional mediators, DNA repair enzymes, nuclear import regulators, 

hormone receptors, inflammation mediators, chaperone proteins and cytoskeleton proteins, 

which regulate cell proliferation, differentiation and cell death (Xu et al., 2007). Hence, HDACi 

induce transformed cell death through transcription-dependent and transcription-independent 

mechanisms such as induction of growth arrest, extrinsic and intrinsic apoptosis pathway, 

senescence, mitotic cell death, autophagic cell death and antiangiogenesis (Minucci and Pelicci, 

2006;Xu et al., 2007).The above magnitude of biological effects varied depending on the nature 

of HDACi, concentration, exposure time and cell context. 

1.4.1 Differentiation 

HDACi have drawn much attention because of their ability to induce differentiation of malignant 

cells in cultures. TSA, hexamethylene bisacetamide and their analogs have been shown to induce 

differentiation in vitro. Indeed, vorinostat was identified through its differentiation-inducing 

property, and later its inhibitory effect on HDAC was recognised (Marks et al., 2007).  

1.4.2 Cell cycle arrest  

HDACi are capable of inducing cell cycle arrest effectively in various malignant cells. At low 

concentration, HDACi favourably induce G1 arrest whereas at high concentration they induce 

both G1 and G2/M cell cycle arrest (Richon et al., 2000). The G1 and G2/M cell cycle arrest 

brought by inhibition or downregulation of HDAC which in turn favours the activation of 

cyclin-dependent kinase inhibitor 1A, (p21Waf1/cip1) (Richon et al., 1996;Rajgolikar et al., 

1998;Richon et al., 2000) which has been shown to be upregulated by almost all HDACi 

(Johnstone, 2002). The activation of p21 occurs in a p53-independent manner and is necessary 

for the inhibition of CDK4/6 regulating G1 progression, CDK2 regulating G1/S transition, 

proliferating cell nuclear antigen that is required for DNA replication (Vidal and Koff, 2000) and 

cdc2/CDK1 regulating G2/M transition (Xu et al., 2007). Moreover, TSA also promotes G1 cell 

cycle arrest in cells without p21 through the activation of p15 (INK 4b), a cyclin D-dependent 

kinase inhibitor. 
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1.4.3 Apoptosis 

HDACi have been accounted for inducing cell death through efficiently activating both extrinsic 

and intrinsic apoptotic pathways in many transformed cells in vitro as well as in vivo (Xu et al., 

2007). 

1.4.3.1 Activation of the extrinsic apoptotic pathway by HDACi 

A number of studies have demonstrated the ability of HDACi to activate the genes encoding 

both death receptors and cognate ligands and suppressing the genes responsible for inhibiting 

components of death receptor pathway (Insinga et al., 2005b;Frew et al., 2009) in transformed 

cells but not in normal cells. The Fas and FasL were activated by HDACi in neuroblastoma cells 

(Glick et al., 1999), osteosarcoma xenografted mice and mouse model of APL (Insinga et al., 

2005a). TRAIL, DR-5, and TNF-α have been shown to be upregulated in various cancer cells 

(Rosato et al., 2003). 

1.4.3.2 Activation of the intrinsic apoptotic pathway by HDACi 

Induction of intrinsic apoptotic pathways is crucial pathway through which HDACi mediate cell 

death in cancer cells. HDACi cause cancer cells to release cyt C from mitochondrial 

intermembrane space and activate caspase-9 (Bolden et al., 2006). Moreover, treatment with 

these compounds results in upregulation of a large number of Bcl-2 family proapoptotic genes 

such as Bim, Bmf, Bax, Bak, Noxa, PUMA and repression of antiapoptotic genes Bcl-2 and Bcl-

xL (Zhao et al., 2005;Xu et al., 2006). It has been reported that HDACi enhance Bim gene 

expression by activating E2F1 (Zhao et al., 2005). 

1.4.4 Antiangiogenesis  

HDACi are capable of inducing antiangiogenesis through repressing proangiogenesis factors 

genes such as HIF-1α and VEGF in various malignant cells (Bolden et al., 2006;Liang et al., 

2006). Moreover, these compounds can induce degradation of HIF-1α by VHL dependent and 

independent mechanism (Kong et al., 2006;Lane et al., 2009) and prevent endothelial cell from 

angiogenic stimulus generated by VEGF (Deroanne et al., 2002). Apart from the above 

biological effect, HDACi also mediate other antitumour effect through formation of reactive 

oxygen species (ROS), inducing autophagy, senescence, mitotic cell death, inactivation of 

chaperonin HSP90, and disruption of aggresome pathway. These diverse biological effects of 

HDACi contribute to their antineoplastic behaviour in cancer cells but not normal cells. 
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1.5 Structural classes of HDACi 

 Around 80 HDAC inhibitors have been purified as natural products or synthetically produced 

(Acharya et al., 2005) and these can be subdivided into six groups: Short-chain fatty acids: e.g.  

Table 2 Classification of HDACi (Bolden et al., 2006;Zhou and Zhu, 2009) 

 

Classes HDACi Tumours with clinical 
benefits 

(http://clinicaltrials.gov/) 

Clinical trial References 

Valproic acid (VPA) Acute myeloid leukaemia ( I/II) 

Phenylbutyrate (PB) Acute myeloid leukaemia (I/II) 

Sodium butyrate (NaB) 
(only in vitro) 

  

Class I 
Short chain 
fatty acids 

 

Phenylacetate (PA) AN-9   

(Bolden et al., 
2006) 

Suberoyl anilide 
hydroxamic acid 

(SAHA/vorinostat) 

Cutaneous T-cell lymphoma 
(approved), 

thyroid cancer, bladder 
cancer 

(I/II/III/IV) 
 
 

Trichostatin A (TSA), 
(only in vitro studies) 

  

(Marks et al., 
2007;Tan et al., 

2010) 

LBH589, LAQ824, 
 

Cutaneous T-cell lymphoma  LBH589 
(I/II/III) 

(Bhalla, 2005) 

Class II 
Hydroxamic 
acid derived 
compounds 

PXD101 and tubacin Chronic lymphocytic 
leukemia 

PXD101 (I/II) (Bhalla, 2005) 

MS-275 Acute myeloid leukemia, 
melanoma 

(I/II) (Bolden et al., 
2006) 

Class III 
Benzamides 

CI-994 Colon cancer, renal cancer (I)  

Trifluromethyl ketone Class IV 
Epoxyketones 

α-ketoamides 

  

Depsipeptide (romidepsin, 
FK228/FR901228) 

CHAPs, HC-toxin and 
trapoxin 

Cutaneous T-cell lymphoma, 
(approved) 

pancreatic cancer, prostate 
cancer 

FK228 
(I/II/III) 

Class V 
Cyclic peptide 

Apicidin Acute myeloid leukaemia  

(Grant et al., 
2010) 

Class VI 
Hybrid 

Molecules 

Depudecin  
and 

MGCD0103 

Acute myeloid leukaemia, 
colon cancer and  

chronic lymphocytic 
leukemia 

MGCD0103 
(I/II) 

(Blum et al., 
2009) 

 

VPA, phenylbutyrate, phenylacetate. (Newmark et al., 1994;Carducci et al., 2001). Hydroxamic 

acid derived compounds: e.g. trichostatin A (TSA) and vorinostat (Melnick and Licht, 

2002;Marks and Xu, 2009), Cyclic tetrapeptides containing a 2-amino-8-oxo-9, 10-epoxy-
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decanoyl (AOE) moiety: e.g. romidepsin, apicidin, CHAPs, trapoxin (Taunton et al., 1996), 

Ketones: trifluromethyl ketone, alpha-ketoamides and benzamides: CI-994, MS27-275 (Saito et 

al., 1999). Different structural classes of HDACi used are described with clinical benefits in the 

Table 2.                                     

1.6 Small molecule inhibitors 

1.6.1 ATM inhibitors 

Caffeine is a known inhihitor of both ATM and the related kinase, ATM and Rad3-related 

(ATR) protein kinase, and both are central components of the DNA damage response. ATM is 

activated by DNA DSBs, whereas ATR is preferentially activated by ssDNA regions, which can 

occur at stalled DNA replication forks (O'Driscoll et al., 2003). Caffeine is a relatively non-

specific inhibitor of ATM, but the small molecule inhibitor 2-morpholin-4-yl-6-thianthren-1-yl-

pyran-4-one (KU-55933) has been shown to specifically inhibit ATM in the low nanomolar 

range (IC50:12.9 nM). KU-55933 is a novel, specific, and potent inhibitor of the ATM kinase. It 

has been shown to sensitise cancer cells to both IR and chemotherapeutic agents but the impact 

of senescence suppression on this sensitising effect remains unclear (Hickson et al., 2004); 

(Cowell et al., 2005). A more recent study has shown that caffeine and KU-55933 induce cell 

death in prematurely senescent breast cancer cells (Crescenzi et al., 2008). 

1.6.2 Serine protease inhibitors 

Serine protease inhibitors are chemical substances that act by binding with serine residues of the 

active site of serine proteases and inhibit their proteolytic function. AEBSF (4-(2-aminoethyl)-

benzenesulfonylfluoride), also known as Pefabloc or ISP, is one of the potent irreversible 

inhibitor of serine proteases (Rideout et al., 2001;Garcia-Morales et al., 2005). It mainly acts by 

sulfonylating the serine residue of the active site of the enzyme (Powers et al., 2002), but it may 

also covalently modify other proteins (Conboy et al., 2008).  

In some apoptotic systems, the use of AEBSF has suggested that serine proteases participate in 

the activation of executioner caspases (de Bruin et al., 2003;King et al., 2004). Moreover, Egger 

et al., 2003 have utilised AEBSF to show indirect inhibitory effect on caspase-3 processing in 

FDC-P1 cell extracts and described endogenous serine protease requirement upstream of 

caspase-3 processing. 
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1.6.3 Nutlin-3 

Nutlin-3 is a small-molecule, chemically (±)-4-(4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-

methoxy-phenyl)-4,5-dihydro-imidazole-1-carbonyl)-piperazin-2-one (Figure 5). It is a MDM2 

inhibitor which restores p53 function and is, thus, an appealing candidate for the treatment of 

cancers retaining wt-p53. Nutlin-3 exerts antineoplastic effects in tumours retaining wt-p53 

(Shangary et al., 2009). The imidazoline compound nutlin-3 was the first reported to have 

anticancer activity in vivo (Vassilev et al., 2004). Subsequent analyses revealed that nutlin-3 was 

efficacious in several tumour models (Tovar et al., 2006), and it has recently entered phase I 

clinical trials with patients suffering from advanced solid cancers (Hoffmann-La Roche, 2007) 

or hematologic malignancies (Hoffmann-La Roche, 2008). 

 

Figure 5 Structure of nutlin-3 
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2 OBJECTIVE 

The objective of the current study was to elucidate the mechanisms by which HDACi induce cell 

cycle arrest and cell death either as single agent or in combination with other anticancer agents. 

The work deals with four parts: 

1. In addition to eliciting cell death, HDACi have been shown to induce G1 and/or G2/M 

cell cycle arrest. HDACi-induced G1 cell cycle arrest is accomplished by induction of p21WAF1 

expression, but little is known on the mechanism of HDACi-induced G2/M arrest. Hence, the 

first part of this study was to investigate the mechanism of HDACi-induced G2/M cell cycle 

arrest. 

2. Of the fifty percent of human tumours with wt-p53, many are thought to have 

compromised p53 function due to increased MDM2 levels, which is a negative regulator of p53. 

Activation of the p53 pathway by using nutlin-3, a MDM2 antagonist, might offer a new 

therapeutic approach for tumours with wild-type p53. HDACi have been observed to activate 

p53 through acetylation. Thus, the second part of this study was to explore whether the 

anticancer activity of nutlin-3 could be enhanced by combination with HDACi.  

3. Only about 10% of ES patients have been found with p53 alterations. Thus, the 90% of 

ES patients with wt-p53 are potentially amenable to nutlin-3 treatment, suggesting that targeting 

and activation of p53 may be an effective therapeutic strategy for ES. Hence, the third part of 

this study was to investigate the anticancer effects of nutlin-3 in ES cells. 

4. The aim of the last part of this work was to verify the involvement of serine proteases in 

HDACi-induced apoptosis by using serine protease inhibitor. 
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3 MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Cell lines used 

• WE-68, VH-64 are wt-p53 ES cell lines and SK-ES-1 cells are mt-p53 ES cell line, were 

provided by Dr. F. van Valen from Münster, Germany and CADO-ES-1 cells (wt-p53 ES 

cell line) were obtained from the DSMZ from Braunschweig, Germany, and were 

maintained in RPMI-1640. (PAA, Cölbe, Germany). 

• A549 cells are lung cancer cell line with p53 wild-type (O'Connor et al., 1997) were 

obtained from ATCC (Manassas, VA, USA), and cells were maintained in Ham's F12K 

(PAA). 

• PC-3 cells are prostate cancer cell line with p53 null type (O'Connor et al., 1997) were 

obtained from the DSMZ. Cells were maintained in RPMI-1640 (PAA). 

• A2780 cells were maintained in RPMI-1640 and SKOV-3 cells were maintained in 

McCoy’s 5A medium. (Dr. J. Braunger, Altana Pharma, Konstanz, Germany). Both cells 

are ovarian cancer cell lines.  

• MCF-7 cells are breast cancer cell line without caspase-3, were maintained in RPMI-

1640.  

3.1.2 Reagents for cell culture  

Reagent        Source 

Dulbecco’s PBS 1x (without Ca2+ and Mg2+)    PAA, Cölbe 

Fetal calf serum (FCS)      PAA, Cölbe 

Ham’s F-12 (without L-Glutamin)     PAA, Cölbe  

Collagen solution       Roche, Darmstadt 

Penicillin        PAA, Cölbe 

PCR mycoplasma test kit      Applichem, Darmstadt 

RPMI-1640 (with stable Glutamine)     PAA, Cölbe 

Stable glutamine       PAA, Cölbe  

Streptomycin        PAA, Cölbe  
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Trypan blue        Biochrom AG, Berlin 

Trypsin/ Ethylene diamine tetra acetate (EDTA) (1x)  PAA, Cölbe  

3.1.3 Agents for functional test 

Cytostatics agent     Source 

Doxorubicin      Alexis, Grünberg 

Paclitaxel      Teva, Mörfelden-Walldorf 

Histone deacetylase inhibitors  

Apicidin      Alexis, Grünberg 

MS-275      Alexis, Grünberg 

NaB       Sigma, Deisenhofen 

TSA       Alexis, Grünberg 

Vorinostat      Alexis, Grünberg 

NF-ĸB inhibitors  

BAY 11-7082      Alexis, Grünberg 

Caffeic acid phenylethyl ester    Alexis, Grünberg 

Flavopiridol (indirect)     Alexis, Grünberg 

LY294002 (indirect)     Alexis, Grünberg 

Roscovitin (indirect)     Alexis, Grünberg 

Other inhibitors  

AEBSF (Serine protease inhibitor)   Alexis, Grünberg  

Bortezomib (Proteasome inhibitor)   LC Laboratories, Woburn, MA, USA 

Caffeine (ATM/ATR inhibitor)   Alexis, Grünberg  

CHK2 inhibitor II     Calbiochem, Canada, US 

KU-55933 (ATM inhibitor)    KuDOS pharmaceuticals,   

       Cambridge, UK 

Nutlin-3 (MDM2 inhibitor)    Alexis, Grünberg 

3.1.4 Reagent for cell viability assay 

Alamar Blue       Invitrogen, Darmstadt 

Trypan Blue in 0.5 % PBS    Biochrom AG, Berlin 
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3.1.5 Agent for mitochondrial membrane potential loss measurement 

3,3’-dihexyloxacarbocyanine iodide (DiOC6(3))   Molecular Probes, Eugene, OR, USA 

3.1.6 Reagents for the caspase-3 activity test  

Reagent   Chemical  Concentration Source 

Lysis buffer   Tris-HCl  10 mM   Roth, Karlsruhe 

    NaH2PO4/NaHPO4 10 mM   Merck, Darmstadt 

    Triton X-100  1%   Sigma, Deisenhofen 

    NaCl   130 mM  Roth 

    Na4P2O7  10 mM   Sigma 

Caspase-AFC- buffer  HEPES (pH 7.5) 20 mM   Sigma 

    Glycerol  10%   Merck 

    DTT   2 mM   Sigma 

    Caspase-3 substrate 25 μg/ml  Sigma 

3.1.7 Caspase substrate and inhibitors 

   Reagent   Concentration Source 

Caspase-3-substrate Ac-DEVD-AFC in PBS 0.5 mg/ml  Bachem, Heidelberg 

Caspases inhibitor z-VAD-fmk pan-  20 µg/ml  Alexis, Grünberg 

caspase inhibitor 

3.1.8 Reagents for flow cytometry analysis  

   Chemical  Concentration  Source 

Cell cycle analysis PBS with 1% glucose      PAA, Cölbe 

   RNase A    50 μg/ml  Roche, Mannheim 

    Propidium iodide  50 μg/ml  Sigma, Deisenhofen  

Cell death analysis  Propidium iodide  2 μg/ml   Sigma  

   in PBS 
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3.1.9 Reagents for Western blot analysis  

Reagent  Chemical   Concentration Source 

Lysis buffer  PBS       PAA 

   Tris-HCL (pH-7.4)  40 mM   Sigma 

   NaCl    150 mM  Roth  

   Triton X-100   1%   Sigma 

   Na-desoxycholate  0.5%   Sigma  

   SDS    0.1%   Roth 

 

Protease inhibitor Serine and cysteine     Roche 

(Complete, Mini,  proteases inhibitor cocktail 

EDTA-free) 

 

Stacking gel  Acrylamide/Bisacrylamide 5%    Roth   

   (37.5/1) (Rotiphorese ® Gel 30) 

   Tris-HCl (pH 6.8)  0.125 mM  Sigma  

   SDS    10%   Roth  

   H2O       Braun 

   APS    10%   Sigma  

   TEMED      Bio-Rad  

 

Running gel    

High percentage Acrylamide/Bisacrylamide 15%    Roth   

gel   (37.5/1)  

   Tris-HCl (pH 8.8)  0.38 mM  Sigma  

   SDS    10%   Roth  

   H2O       Braun 

   APS    10%   Sigma  

   TEMED      Bio-Rad 

 

Low percentage Acrylamide/Bisacrylamide 8%   Roth  

gel   (80/1)  

   Tris-HCl (pH 6.8)  0.125 mM  Sigma  

   SDS    10%   Roth  
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   H2O       Braun 

   APS    10%   Sigma  

   TEMED      Bio-Rad 

 

Loading buffer Tris-HCl (pH 6.8)   0.625 M  Sigma  

   Glycerol   5 ml   Merck   

   SDS    10%   Roth  

   β-Mercaptoethanol  0.5 ml   Sigma  

   Bromophenolblue (w/v) 1%   Sigma  

   Ethanol      Roth  

   H2O       Braun 

 

Electrophoresis Tris-HCl (pH 8.3)  25 mM   Sigma  

buffer (10x)  Glycine   192 mM  MP Biomedicals,

          Illkrich, France 

   SDS    0.2%   Roth 

  

Electro transfer Tris-HCl (pH 8.3)  5 mM   Sigma 

buffer   Glycine   38 mM   MP Biomedicals 

   SDS    0.2%   Roth  

   Methanol (w/v)  20%   J. T. Baker, Deventer,

          The Netherlands 

Wash buffer  Tris-HCl (pH 6.7)  62.5 mM  Sigma  

   β-Mercaptoethanol  100 mM  Sigma  

 

TBST buffer  Tris-HCl (pH 7.5)  4 mM   Sigma  

   NaCl    100 mM  Roth  

   Tween 20 (v/v)   0.05%   Merck  

 

Blocking buffer Non fat dry milk, 5%        

   in TBST buffer   

 

Incubation buffer Non fat dry milk, 5%        

   in TBST buffer   
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Miscellaneous  Acid sodium salt dihydrate    Roth   

   99 % Glucose (C6H12O6) 

   Albumin fraction V (Bovine serum albumin)  Roth   

   B Rotiphorese gel 2% gel     Roth 

   BCATM protein assay kit     Thermo Scientific  

   Calcium chloride (CaCl2)     Fluka Analytica  

    Disodium hydrogen phosphate (Na2HPO4)  Merck   

   Distilled water      Braun  

   Dithiothreithol (DTT)     Sigma  

   Ethylenediaminetetraacetic    Sigma  

   H2O2       Sigma  

   HCl       Sigma  

   HEPES       Sigma  

   (2 - [4 - (2-hydroxyethyl)-      

   1-piperazinyl]-ethanesulfonic acid)  

   Isopropanol      Merck  

   Luminol      Sigma  

   Milk powder      Roth 

   p-Coumaric acid     Sigma  

   Sodium dihydrogen phosphate   Merck   

   monohydrate (NaH2PO x H2O)     

   Tris (tris [hydroxymethyl] aminomethane)  Roth   

   Hyper filmTM      Amersham, 

          Braunschweig 

   PVDF membrane      Amersham  

3.1.10 Antibodies for Western blot 

Antibody   Type  Dilution Source   Cat.No 

Primary antibodies          

Anti-acetyl-p53  Rabbit  1:500  Upstate  06-758 

 (Lys373/382)  polyclonal   Temecula, CA, USA 
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Anti-acetyl histone-H3 Rabbit  1:25,000 Upstate  06-599 

    polyclonal    

p53 (DO-2)   Mouse  1:500  Santa Cruz  sc-43394

    monoclonal   Heidelberg  

Anti-GAPDH   Mouse  1:100,000 Biodesign  H86504M

    monoclonal   International 

Anti-phospho-ATM  Mouse  1:1000  Upstate  05-740

 (Ser1981)  monoclonal      

Anti-phospho-H2AX  Rabbit  1:1000  Upstate  07-164

 (Ser139)  polyclonal   

Phospho-p53 (Ser15)  Mouse  1:1000  Cell Signaling  9286 

    monoclonal 

pBRCA1 (Ser1524)  Rabbit  1:1000  Cell Signaling  9009S  

polyclonal       

pFANCD2 (Ser222)  Rabbit  1:1000  Cell Signaling  4945S 

    polyclonal 

p95/NBS1 (Ser343)  Rabbit  1:1000  Cell Signaling  3001S 

    polyclonal 

pCHK1 (Ser345)  Rabbit  1:1000  Cell Signaling  2348 

    monoclonal    

pCHK2 (Thr68)  Rabbit  1:1000  Cell Signaling  2661 

    polyclonal 

pAkt (Ser473)   Rabbit  1:1000  Cell Signaling  4058 

    monoclonal 

pMDM2 (Ser166)  Rabbit  1:1000  Cell Signaling  3521 

    polyclonal 

pRad-17 (Ser645)  Rabbit  1:1000  Cell Signaling  3421 

    polyclonal 

 

Secondary antibodies   

Peroxidase-conjugated goat anti-rabbit IgG  1:25,000 Dianova, Hamburg 

Peroxidase-conjugated goat anti-mouse IgG  1:25,000  Bio-Rad, München 
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3.1.11 List of qRT-PCR primers for amplification of the genes used 

Gene      Source    

MDM2: Hs99999008_m1   Applied Biosystem, Darmstadt 

MDM4: Hs00159092_m1   Applied Biosystem  

p21: Hs00355782_m1    Applied Biosystem  

PUMA: Hs00248075_m1   Applied Biosystem  

β-2-microglobulin: Hs00187842_m1  Applied Biosystem 

3.1.12 HDAC activity assay 

Reagent    Chemical   Concentration 
Lysis/    Tris-HCl, pH 8.0  50 mM 
developing buffer  
   NaCl    137 mM 

   KCl    2.7 mM 

   MgCl2    1 mM 

   Triton X-100    1 % 

   Trypsine   2 mg/ml  

Activity buffer   Tris-HCl, pH 8.0,   50 mM 

NaCl    137 mM 

   KCl    2.7 mM 

   MgCl2    1 mM 

BSA     BSA    1 mg/ml 

3.1.13 Experiment kits 

Kit     Source     Cat.No 

Protein assay kit   Pierce, Rockford, IL, USA  23225  
Bicinchonic assay (BCA) 

Mycoplasma detection kit  Applichem, Darmstadt  A3744, 0020 
Mycoplasma PCR ELISA 

Total RNA kit    Peqlab, Erlangen   12-6834-01  
Peqgold total RNA isolation  

cDNA kit    Qiagen, Hilden   205113 
Omniscript 
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3.1.14 List of equipments used 

Equipment      Source 

Water bath / circulating MP-1    Julabo Labortechnik, Seelbach  

Bio-Rad Mini-Protean system   Bio-Rad, München  

CELL STAR culture flask (5, 20 ml)   Greiner, Frickenhausen 

CELL STAR sterile pipettes (1, 2, 5, 10, 25 ml) Greiner, Frickenhausen 

Heraeus CO2 incubator BBD® 6220   Kendro Laboratory products, Hanau 

FACS Canto II® flow cytometer   Becton Dickinson, Heidelberg 

TRA-14 automatic freezer    Cryoson, Schöllkrippen 

Fiber pads      Bio-Rad, München 

Gel electrophoresis chambers    Bio-Rad, München 

Culture plate 6, 12, 96 well    Greiner, Frickenhausen  

Phase contrast microscope CKX41   Olympus, Hamburg 

Magnetic stirrer     Hei-Mix S Heidolph, Schwalbach 

Carl Zeiss microscope     Carl Zeiss, Jena 

Mini Trans-Blot electrophoresis    Bio-Rad, München 

Multipette ® plus     Eppendorf, Hamburg 

Neubauer counting chamber (Improved)  Fine Optics, Bad Blankenburg 

Pasteur pipettes, sterile    COPAN, Murrieta, CA, USA 

pH meter      Mettler -Toledo, Giessen 

Accu-jet® pro pipette     Brand, Wertheim 

Power supply      Bio-Rad, München 

Spectrophotometer SLT spectra   Tecan, Männedorf, Switzerland 

Spectrophotometer FLUROstar Omega  BMG Labtech, Offenburg 

Clean bench Heraeus® Herasafe    Kendro Laboratory products, Hanau 

Thermo compact mixer    Eppendorf, Hamburg 

Centrifuge 5415 R     Eppendorf, Hamburg 

Emmi® ultrasonic cleaner 20 HC  EMAG Technologies,  Mörfelden-Walldorf 

Scientific Industries vortex     Genie 2, NY, USA 

Weighing balance     Sartorius, Göttingen 

Hettich-centrifuge     Rotanta /TR-4400, Tuttlingen 

7900 HT Fast Real-Time PCR system  Applied Biosystems, Darmstadt 

All the unspecified reagents were purchased from Germany. 
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 3.2 Methods 

3.2.1 Cell lines and culture conditions 

A549 cells (1.5 x 106) were cultured in Ham’s F-12 medium and SKOV-3 cells were cultured (2 

x 106) in McCoy’s 5A medium. A2780 (1.5 x 106), MCF-7, PC-3 cells and Ewing’s sarcoma 

cells (WE-68, VH-64, CADO-ES-1 and SK-ES-1) (1.5 x 106) were all cultured in RPMI-1640 

medium, supplemented with 10 % foetal calf serum, 100 unit/ml penicillin G sodium, 100 µg/ml 

streptomycin sulphate and 2 mM L- glutamine. All cells were cultivated at 37oC in a humidified 

5% CO2 incubator. For ES cells collagen coated culture flask were used. The cells were allowed 

to grow a confluence of 70% to 80% and subsequently split by trypsination. Trypsin-EDTA 

treatment was performed by removing the medium from the cells, followed by washing the cells 

once with PBS and adding adequate amount of trypsin-EDTA. After 5 to10 min incubation at 

37oC, cells were resuspended in fresh medium and centrifuged at 2500 rpm for 5 min (to remove 

trypsin-EDTA), and reseeded with fresh medium at the required density. The cells were 

routinely passaged. Cell viability was determined by the trypan blue dye exclusion test or by 

Alamar Blue assay. Cells were regularly inspected to be free of mycoplasma with mycoplasma 

detection reagents. To prepare cells for long time storage, logarithmically growing cells were 

trypsinised, harvested by addition of medium, and centrifuged at 2500 rpm for 5 min. The cell 

pellet was washed once with PBS at 2500 rpm for 5 min, the cells were resuspended in 75% 

Medium, 20% FCS and 5% DMSO and transferred in to cryo-vials. Cells were transferred into 

vials and freezed using TRA-14 automatic freezer before finally being stored in liquid nitrogen. 

To revive the cells, the cryo-vials were removed from the liquid nitrogen and thawed at 37oC. 

The cells were then mixed with 15 ml of fresh medium, centrifuged at 1500 rpm (to remove 

DMSO), and seeded in a culture flask with fresh medium. 

3.2.2 Treatment of cells  

Cells were seeded at a density of 1.5 x 105 or 2 x 105 cells/well in 6-well plates or 2000 cells/well 

in 96-well plates for 24 h prior to starting an experiment. Cells were treated either with the 

inhibitors caffeine, KU-55933, bortezomib, NF-κB inhibitors, CHK1, CHK2 inhibitor II, nutlin-3, 

AEBSF, z-VAD-fmk as indicated concentration for 1 h or left untreated before application of 

HDACi or paclitaxel or doxorubicin. The latter were added directly to the culture medium containing 

inhibitor without a medium change. Cells were then exposed to HDACi or paclitaxel for additional 

24 h (caspase-3 activity, immunoblotting, quantitative PCR), 48 h (flow cytometric analyses) or 72 h 

(Alamar Blue assay).  
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3.2.3 Inhibitor experiments 

3.2.3.1 Caspase inhibitor 

For inhibition of caspase activity, approximately 2 x 105 cells were incubated with the 

irreversible, cell permeable pan caspase inhibitor z-VAD-fmk (20 µM) for an hour before 

treatment with the agents. 

3.2.3.2 Serine protease inhibitor  

For inhibition of serine protease activity, approximately 2 x 105 cells were incubated with serine 

protease inhibitor AEBSF for an hour before treatment with the agents. Different concentrations 

50 µM, 100 µM and 200 µM of AEBSF were used. 

3.2.3.3 MDM2 inhibitor  

For inhibition of MDM2, cells were incubated with the MDM2 inhibitor nutlin-3 for an hour 

before treatment with the agents. Three different concentrations 2 µM, 3 µM and 10 µM of 

nutlin-3 were used. 

3.2.4 Cytofluorometric analysis of cell death 

To determine the cell death induced by HDACi in A549, MCF-7, A2780, PC-3 and ES cells, 

cytofluorometric analysis of propidium iodide (PI) uptake was used in this study; PI crosses the 

plasma membrane only after loss of its integrity (Bezvenyuk et al., 2000). Cells were seeded at 1 

x 105 to 2 x 105 cells/well in 2 ml medium in 6 well culture dishes. After allowing cells to attach 

for 24 h, cells were treated with the indicated concentrations of HDACi (vorinostat, MS-275, 

NaB and apicidin). To determine cell death, cells were harvested using trypsin-EDTA and 

centrifuged for 10 min at 3000 rpm. Briefly after discarding the medium the cells were 

resuspended in 300 µl phosphate buffered saline (PBS), followed by 5 min incubation in 2 µg/ml 

PI at 4oC. PI uptake was assessed by flow cytometry analysis on a FACS Canto II using DIVA 

software. 10,000 cells were analysed in each sample; data were gated to exclude debris. Each 

experiment was performed a minimum of three times.  
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3.2.5 Quantification of apoptotic cells 

3.2.5.1 Cell cycle analysis 

The effect of chemotherapeutic agents on cell proliferation was evaluated by measuring the 

distribution of cells in different phases of the cell cycle by flow cytometry. This determination 

was based on the measurement of the DNA content of nuclei labeled with PI (Vindelov and 

Christensen, 1990). Internucleosomal DNA fragmentation is a typical sign of apoptotic cell 

death. A549, MCF-7, A2780 and PC-3 cells were seeded at 1 x 105 to 2 x 105 cells/well in 2 ml 

medium in 6-well culture plates. After growing cells for 24 h, cells were treated with the 

indicated concentrations of HDACi (vorinostat or MS-275 or NaB or apicidin), or cytostatics. 

After treatment the cells were harvested using trypsin-EDTA and centrifuged for 10 min at 3000 

rpm. Cells were washed twice with PBS to remove left over culture medium. Briefly after 

discarding the washing solution the cell pellet was resuspended in the left over PBS. Ice-cold 

70% ethanol was added dropwise while vortexing, in order to avoid cell clumping. Cells were 

fixed overnight at 4oC. After fixing, the cells were centrifuged for 10 min at 3000 rpm and 

ethanol was removed completely. Cells were resuspended in 500 µl assay buffer containing 

phosphate buffered saline with 1% glucose, 50 µg/ml RNase A, and 50 µg/ml PI. The cells were 

incubated for 30 min at room temperature. The DNA content of the cells was determined on a 

FACS Canto II flow cytometer. Data were accumulated by the DIVA software from BD 

Biosciences. Percentage of cells in different phases of the cell cycle was calculated as area under 

the distribution curve. Percentage of hypo-diploid cells, the cells which are undergoing death 

was assessed by quantitating the sub-G1 peak. In all experiments, 20,000 cells were collected; 

data were gated to exclude debris. Each experiment was performed a minimum of three times. 

3.2.5.2 Caspase activity 

In addition to internucleosomal DNA fragementation, other characteristic events typical of 

apoptosis can be used as end points. Activation of caspases is an early marker of the cells 

undergoing apoptosis. Measurement of caspase activity is one of the crucial parameters in 

analysis of apoptotic cell death. Here we chose to study caspase-3 activities. All known caspases 

possess an active site cysteine and cleave a specific amino acid sequence after aspartic acid 

residues (D). The synthetic substrates used for caspase assay were Ac-DEVD-AFC 

Trifluoromethylcoumarin (AFC) is a fluorescent compound, but fluorescence is blocked until the 

compound is cleaved off from the rest of the substrate. Cleavage of this substrate is cleaved 

mainly by the specific caspases. 
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Caspase-3 activities were measured 24 or 48 h after treatment with agents using the synthetic 

fluorogenic substrate Ac-DEVD-AFC for determining caspase-3 activities. A549, MCF-7, 

A2780 and PC-3 cells were seeded at 1.5 x 105 to 2 x 105 cells/well in 2 ml medium in 6-well 

culture plates. After 24 h, cells were treated with the indicated concentrations of HDACi 

(vorinostat or MS-275 or NaB or apicidin), or cytostatics. After 24 h or 48 h treatment the cells 

were harvested using trypin-EDTA and centrifuged for 10 min at 3000 rpm. Cells were washed 

twice with PBS to remove left over culture medium. Once medium was completely removed, the 

cell pellet was lysed in 100 µl of ice cold lysis buffer on ice for 30 min. Once the cells were 

completely lysed, the activity of caspase in cytosolic extracts was assayed in the caspase buffer. 

After incubation at 37oC for 2 h, the released AFC was analysed on Omega fluorometer using an 

excitation and emission wavelength of 390/510 nm. Relative caspase activities were calculated 

as a ratio of emission of treated cells to untreated cells. 

3.2.5.3 Cytofluorometric analysis of mitochondrial membrane potential loss 

Mitochondrial membrane potential (Δψm) loss was determined by assessing the accumulation of 

the cationic lipohilic flurochrome 3, 3’-dihexyloxacarbocyanine-iodide (DiOC6(3)) in the 

mitochondrial matrix. DiOC6(3) is a positively charged molecule that permeates through the 

plasma membrane. At low concentrations, it accumulates in mitochondria due to their large 

negative membrane potential and is retained inside the mitochondria. If the mitochondrial 

membrane is disrupted it can no longer retain DiOC6(3).  

The cells were seeded at 1 x 105 or 2 x 105 cells/well in 2 ml medium in 6-well culture dishes. 

After 48 h of treatment the cells were incubated with 10 µg/ml DiOC6(3) in complete medium 

for 30 min at 37oC in a humidified atmosphere of 5% CO2 in the dark. At the end of the 

incubation period the cells were harvested and centrifuged for 10 min at 3000 rpm. Cells were 

resuspended in 400 µl ice-cold PBS and analysed immediately by flow cytometry. Data were 

collected on a FACS Canto II and quantification was performed using the DIVA software. In all 

experiments, 20,000 cells were analysed; data were gated to exclude debris. Each experiment 

was performed a minimum of three times. 

3.2.6 Western blot analysis 

Cell fractionation and Western blotting 

Cells were treated with respective agents in a cell culture flask and harvested after indicated 

period of incubation. In all the experiments presented, cell lysates were prepared from floating 
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dead cells and adherent cells harvested together. Cells were centrifuged at 3000 rpm for 10 min, 

and washed twice with PBS. After washing, cell lysis was achieved by addition of lysis buffer, 

incubated for 15 min on ice, and then subjected to vigorous vortexing followed by brief 

sonication. Debris was spun down at 13,000 rpm for 10 min and the supernatant was collected 

and stored at -20oC. The obtained supernatant was considered as crude cell lysate. The cell 

pellets and protein solutions were handled at 4oC to avoid protein degradation during the protein 

preparation. Protein concentration was determined using the BCA assay kit according to the 

manufacturer’s instructions. 5 µl samples were diluted in 200 µl BCA solution in an ELISA 

plate and incubated for 30 min at 37oC in the dark. Absorption was measured using an ELISA 

reader at 590 nm. BSA was used as standard and the protein concentration was calculated on the 

basis of the derived standard curve. 

Proteins were denatured by heating at 90oC for 4 min immediately prior to loading. For 

immunoblotting, 30 µg to 60 µg of total cellular protein per lane were separated by standard 

SDS-PAGE on 8% to 15% gel (% of the gel used based on size of the proteins) and 

electrophoretically transferred to PVDF (polyvinylidine difluoride) membranes. To reduce non 

specific binding of antibodies, PVDF sheets were saturated for 1 hour in TBST blocking buffer 

containing 5% dry milk, and 0.05% Tween 20. After one hour, membranes were washed three 

times for 10 min each with TBST buffer. All washing steps were performed at room 

temperature. After washing, membranes were incubated overnight at 4oC with p53 (DO-2), 

phospho-p53 (Ser15), pATM (Ser1981), pH2AX (Ser139), pBRCA1 (Ser1524), p95/NBS1 

(Ser343), pRad-17 (Ser645), pFANCD2 (Ser222), pAkt (Ser473), pMDM2 (ser166) and anti-

actyl-p53 (Lys373/382). 

At the end of incubation, membranes were washed 3 times for 10 min each with TBST buffer. 

The membranes were then incubated for 3 h at room temperature with peroxidase-conjugated 

goat anti-rabbit or anti-mouse IgGs (dilution 1:25,000) in TBST buffer containing 5% milk. 

Once again membranes were washed 3 times (10 min each) with TBST buffer. The specific 

protein signals were visualised using chemiluminescent peroxidase substrate for 5 min and 

exposing the membranes to the high performance chemiluminescene film for detection. Protein 

loading was verified by detection of GAPDH using mouse anti-GAPDH monoclonal antibody. 
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3.2.7 Cell proliferation assay 

3.2.7.1 Alamar Blue assay 

2000 cells/well were seeded in triplicate in 96-well plates. At the end of the treatment period, 

1/10 volume of Alamar Blue (Biosource, Solingen, Germany) solution was added and cells 

incubated at 37°C for an additional 3 h. The fluorescence was measured on a fluorescence 

spectrophotometer, BMG Labtech (Offenburg, Germany) FLUOstar Omega using an 

excitation/emission wave length of 544/590 nm. Results are expressed as a percentage of 

fluorescence of untreated control cells. 

3.2.7.2 Viable cell count 

Approximately 1 x 105 to 2 x 105 cells/well were seeded in 6-well plates. After the treatment 

period, cells were harvested and counted under a microscope. Cell viability was assessed by 

trypan blue dye exclusion. 

3.2.8 Quantitative real-time RT-PCR  

3.2.8.1 RNA and cDNA preparation 

1.5 x 105 cells were harvested from a 6-well growing culture plates and centrifuged at 3000 rpm 

for 5 minutes to pellet the cells. The supernatant was discarded and cell pellet was used for RNA 

preparation using the Peqgold total RNA kit including DNase digestion (Peqlab, Erlangen, 

Germany). Total RNA was prepared according to the manufacturer’s protocol. 

RNA was quantified and checked for quality based on 260:280 ratios and 260:230 ratios. 0.5 μg 

RNA was used directly for preparation for cDNA. RNA was transcribed into cDNA using 

Omniscript (Qiagen, Hilden, Germany) according to manufacturer’s instructions. The cDNA 

sample obtained after the preparation was diluted and a final amount of 5 ng of cDNA was used 

for the real-time PCR.  

3.2.8.2 Real-time PCR 

The primers for amplification of the genes MDM2, MDM4, p21 and PUMA were purchased 

from Qiagen (QuantiTect® Primer assay). Quantitative PCR for MDM2, MDM4, p21 and 

PUMA was performed using the 7900HT Fast Real-Time PCR system (Applied Biosystems, 

Darmstadt, Germany). Expression levels were normalised to β-2-microglobulin. Reactions were 
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done in duplicate using Applied Biosystems Taqman Gene Expression Assays (MDM2: 

Hs99999008_m1; MDM4: Hs00159092_m1; p21: Hs00355782_m1; PUMA: Hs00248075_m1; 

β-2-microglobulin: Hs00187842_m1) and Universal PCR Master Mix. All procedures were 

carried out according to the manufacturer’s protocol. The relative MDM2, p21 and PUMA 

expression was calculated by the 2(-ΔΔCt) method (Schmittgen and Livak, 2008). 

3.2.9 Cellular senescence assay 

Cellular senescence was determined by assessing senescence-associated β-galactosidase (SA-β-

Gal) activity at pH 6.0. At the end of the treatment period, cells were washed with PBS, fixed for 

5 min with 1% glutaraldehyde, washed with PBS, and incubated at 37°C for 18 h in fresh 

staining solution containing 1 mg/ml 5-bromo-4-chloro-3-indolyl-β-D- galactopyranoside 

[Peqlab], 0.5 mM K3Fe[CN]6, 0.5 mM K4Fe[CN]6, 150 mM NaCl and 2 mM MgCl2 in 40 mM 

citric acid/sodium phosphate at pH 6.0. After washing with PBS, cells were viewed with an 

Olympus (Hamburg, Germany) CKX41 phase contrast microscope. 

3.2.10 HDAC activity assay 

HDAC activity using Boc-Lys(Ac)-AMC 

Approximately 2 x 105 cells in 90 µl per well were seeded in 96-well plates and were incubated 

overnight at 37oC. Cells were treated with TSA, vorinostat and NaB with or without AEBSF and 

incubated for an hour. Then 10 µl of 2 mM Boc-Lys(Ac)-AMC (Bachem AG, Switzerland) per 

well were added and further incubated for 3 h. Furthermore, cells were incubated for 3 h with 

100 µl lysis/developing buffer per well. Finally, the fluorescence was measured on a 

fluorescence spectrophotometer, BMG Labtech FLUOstar Omega using an excitation/emission 

wave length of 355/460 nm. Results are expressed as a percentage of fluorescence of untreated 

control cells. 

Recombinant HDAC1 activity using Boc-Lys(Ac)-AMC 

Forty microlitres of activity buffer were used per reaction and TSA or AEBSF or TSA/AEBSF 

was added to the activity buffer in the corresponding reactions. Then, 5 µl of HDAC1 solution 

(0.1 µg/µl) and 5 µl of Boc-Lys(Ac)-AMC (2 mM) solution were added per reaction and 

incubated for an hour. One reaction without HDAC1 solution was used for blank sample. 

Further, 50 µl of trypsin solution (2 mg/ml) per reaction were added and incubated for an hour. 

Lastly, the fluorescence was measured on a fluorescence spectrophotometer, BMG Labtech 

FLUOstar Omega using an excitation/emission wave length of 355/460 nm. 
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3.2.11 Synergistic effect 

Around 1.5 x 105 to 2 x 105 cells were plated in 6-well plates and incubated for 24 h as described 

in the cell culture section. Cells were pretreated with 3 µM or 10 µM nutlin-3 for 1 h and 

cotreated further with HDACi for 48 h. The cells were then incubated for appropriate time 

period in order to determine the cell viability, cell cycle, cell death, mitochondrial membrane 

potential loss and caspase activities. 

3.2.12 Combination index method 

Cells were pretreated with 3 µM or 10 µM nutlin-3 for 1 h and cotreated further with different 

concentration of HDACi or paclitaxel for 48 h in A549 cells. Likewise, 10 µM or 25 µM CAPE 

was administrated to VH-64 cells, and cells were exposed to various concentration of nutlin-3 for 

another 48 h. Cell death was determined by flow cytometric analyses of PI uptake. Cell death data were 

used to study the combination index (CI) values. CI theorem of Chou-Talalay offers quantitative 

definition for additive effect (CI = 1), synergism (CI < 1), and antagonism (CI > 1) in drug 

combinations. CI values for nutlin-3 plus HDACi vorinostat or MS-275 or apicidin or NaB or 

paclitaxel in A549 cells and nutlin-3 plus CAPE in VH-64 cells were calculated using the Chou-

Talalay method (Chou, 2010). 
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4 RESULTS 

4.1 HDACi-induced effect on cell cycle in cancer cells 

4.1.1 Vorinostat induces cell cycle arrest in the presence of the pan-caspase 

inhibitor z-VAD-fmk in A549 cells  

As mentioned in the earlier studies, the induction of apoptosis by vorinostat in A549 and PC-3 

cells was observed (Sonnemann et al., 2006a). On treatment with the broad-spectrum irreversible 

pan-caspase inhibitor z-VAD-fmk, vorinostat-induced apoptosis was considerably reduced, as 

assessed by determining the sub-G1 population of cells. Interestingly, a G2/M cell cycle arrest 

was observed in parallel (Figure 6C). These results lead to the idea that HDACi could induce 

cell cycle arrest in the absence of caspase activity. In the current study, we confirmed the result 

in A549 cells. Apoptosis was determined through quantifying DNA fragmentation during cell 

cycle progression by staining the nuclei of ethanol-fixed cells with PI and quantifying the 

percentage of each cell cycle phase by flow cytometry. A time course analysis revealed that 20 

μM of vorinostat showed a strong increase in the percentage of apoptotic cells (sub-G1 phase) 

and at the same time cells in the G1 and G2/M phase decreased (Figure 6). When the cells were 

pretreated with 20 μM z-VAD-fmk prior to the addition of vorinostat, vorinostat-induced 

apoptosis was prevented in a highly significant manner. After inhibition of caspases by z-VAD-

fmk, a G2/M arrest, previously concealed after exposure to vorinostat alone, became clearly 

visible (Figure 6C). This confirmed the previous findings from our group (Sonnemann et al., 

2006) and provided evidence that vorinostat is capable of eliciting tumour growth arrest when its 

apoptosis-inducing activity is blocked. 

4.1.2 Vorinostat induces cell cycle arrest in MCF-7 cells  

This finding prompted us to investigate how HDACi induce a G2/M arrest. To facilitate these 

investigations, we employed MCF-7 breast cancer cells, a cell line deficient in caspase-3 

expression where we could study HDACi-induced cell cycle arrest without z-VAD-fmk 

treatment (Janicke et al., 1998). We hypothesised that MCF-7 cells would respond to HDACi 

treatment by undergoing a G2/M arrest rather than apoptosis due to the lack of caspase-3 

activity.
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Progression of cell cycle in A) sub-G1 cells B) G1 cells C) G2/M cells treated with only vorinostat and 
vorinostat along with z-VAD-fmk: 20 μM z-VAD-fmk was applied 1 h before treatment with 20 μM 
vorinostat, and then incubated for 48 h. Cell cycle profiles were analysed by flow cytometry. Means of 3 
separate experiments are shown. 
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 Figure 6 z-VAD-fmk inhibits HDACi-induced apoptosis in A549 cells.  
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Cell cycle analysis was performed as described in the previous section 4.1.1 to assess the effect 

of vorinostat on MCF-7 cells. Briefly, cell cycle distribution was determined by staining the 

nuclei of ethanol-fixed cells with PI and quantifying the percentage of cells in each cell cycle 

phase by flow cytometry. This method can be used to determine the percentage of cells present 

in the particular stage of cell cycle. MCF-7 cells were treated with two different concentrations 

of vorinostat (1 µM and 10 µM) for 48 h. A time course analysis revealed that 1 µM and 10 µM 

of vorinostat showed strong increase of cells in the G1 and G2/M phase, respectively (Figure 7). 

Surprisingly, low and high concentrations of vorinostat induced two different effects on cell 

cycle progression. The cells treated with a low concentration of 1 µM of vorinostat showed G1 

cell cycle arrest (Figure 7A). At the high concentration of 10 µM, vorinostat caused a G2/M cell 

cycle arrest (Figure 7B). We did not observe any marked increase in the sub-G1 population of 

cells, probably due to the lack of caspase-3 in MCF-7 cells (data not shown). 

  
 

Cell cycle progression in A) G1 cells B) G2/M cells were analysed by flow cytometry. Cells were treated 
with 1 μM and 10 μM of vorinostat, and then incubated for 48 h. Means of 3 separate experiments are 
shown.  

4.1.3 HDACi (vorinostat, MS-275) induce phosphorylation of ATM at Ser1981 

in MCF-7 cells 

Typically, DNA damage leads to cell cycle arrest through activation of ATM kinase by 

autophosphorylation at serine 1981 (Ser1981). This is considered to be an important biochemical 

event during the DNA damage response (Bakkenist and Kastan, 2003). Since, vorinostat had 

shown to elicit cell cycle arrest in MCF-7 cells, further insight into the underlying mechanisms 
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Figure 7 Vorinostat induces cell cycle arrest in MCF-7 cells. 

44 
 



  Results                   

might be given by answering the question, if the vorinostat-induced cell cycle arrest is generated 

by the activation of ATM. For this, MCF-7 cells were exposed to 10 µM of vorinostat for the 

 

Figure 8 Effect of vorinostat and MS-275 on pATM in MCF-7 cells. 

Cells were treated with A) 10 μM vorinostat or B) 10 μM MS-275 or C) 1 μM doxorubicin and D) 2 mM 
caffeine 1 h prior to the treatment of vorinostat and harvested at the indicated times, followed by cells 
were subjected to Western blot analysis using special gradient resolving gel (upper - 8% with an 
acrylamid/bisacrylamid ratio 80:1; lower - 15% with an acrylamid/bisacrylamid ratio 37.5:1). pATM 
was observed after 1 h and 48 h by vorinostat (A) and MS-275 (B) treatment. Caffeine inhibits vorinostat-
induced pATM (D). Doxorubicin used as a positive control for pATM (C). 

indicated time points as shown in Figure 8A, and Western blot was performed with a phospho-

specific ATM-Ser1981 antibody. Exposure to 10 µM of vorinostat resulted in the induction of a 

marked phosphorylation of ATM (pATM) at Ser1981 in a time-dependent manner. Treatment 

with vorinostat resulted in moderate pATM after 1 h and strong pATM after 48 h. Similar ATM 

phosphorylation was also observed by another class of HDACi, MS-275 (Figure 8B), in MCF-7 

cells. Further, to assess whether the HDACi effect on pATM at Ser1981 is a general effect, 

another cell line, ovarian cancer SKOV-3 cells which in contrast to MCF-7 cells expresses 
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caspase-3, was used (Figure 9). Therefore, MS-275-induced phosphorylation of ATM at 

Ser1981 was investigated in SKOV-3 cells. When SKOV-3 cells were incubated with 20 µM of 

MS-275, phosphorylation of ATM was observed after 30 min. Doxorubicin, an established DNA 

damage-inducing agent, served as positive control for ATM phosphorylation (Figure 8C) (Lai et 

al., 2009). To further substantiate this finding, MCF-7 cells were pretreated with 2 mM caffeine, 

an inhibitor of ATM. Caffeine abolished vorinostat-induced ATM phosphorylation (Figure 8D). 

These findings suggest that both vorinostat and MS-275 could inhibit cell cycle progression 

through activation of ATM. 

 

Figure 9 Effect of MS-275 on pATM in SKOV-3 cells.  

Cells were incubated with 20 µM MS-275 for various times (0, 10, 30, 60, 120 min) followed by cells 
were harvested and subjected to Western blot analysis using anti-ATM phospho Ser1981 and anti-
GAPDH antibodies. For doxorubicin the incubation time was 120 min. 

4.1.4 HDACi (vorinostat, MS-275) induce phosphorylation of H2AX in MCF-

7 and SKOV-3 cells 

Phosphorylated H2AX is a marker of DNA damage, it is phosphorylated at the Ser139 residue in 

response to DNA double-strand breaks (DSB) (Burma et al., 2001). It is known as gamma 

H2AX (γH2AX). PI3K (Phosphatidyl-inositol-3-kinase) family of proteins, ATM, DNA-protein 

kinase and ATR (ATM and RAD3-related) are the responsible kinases to mediate this 

phosphorylation event (Tang et al., 2010). To examine whether vorinostat induces H2AX 

phosphorylation in MCF-7 cells, cells were treated with 10 μM of vorinostat and harvested after 

the indicated time points, and H2AX phosphorylation was analysed by Western blotting with 

anti-γH2AX antibody. Figure 10 shows significant and modest H2AX phosphorylation after 

treatment with vorinostat at 45 and 75 min, respectively. Pretreament with 2mM caffeine 

inhibited vorinostat-induced H2AX phosphorylation. Significant phosphorylation of H2AX was 

also observed after 2 h treatment of cells with the DNA damage-inducing agent doxorubicin, 

used as positive control. This finding suggests that vorinostat induces DNA damage. 
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Figure 10 Effect of vorinostat on γH2AX in MCF-7 cells. 

One hour prior the cells were treated with 2 mM caffeine and cotreated with 5 µM vorinostat at various 
time point, followed by cells were subjected to Western blot analysis using anti-GAPDH and anti-γH2AX 
antibodies. For doxorubicin the incubation time was 120 min. 

To assess whether the HDACi effect on γH2AX is a general one, vorinostat-induced γH2AX 

was investigated in another cancer cell line, SKOV-3. SKOV-3 cells were treated with 5 μM of 

vorinostat and Western blot analysis showed minor phosphorylation of γH2AX at 60 min 

 
 
Figure 11 Effect of vorinostat and MS-275 on γH2AX in SKOV-3 cells. 

Cells were incubated with A) 5 µM vorinostat B) 5 µM MS-275 at various time point (0, 15, 30, 45, 60, 
75 min) and 1 µM doxorubicin for 120 min, followed by cells were harvested and subjected to Western 
blot analysis using anti-γH2AX and anti-GAPDH antibodies. 

(Figure 11A). SKOV-3 cells treated with 5 μM of MS-275 showed modest γH2AX at 75 min 

(Figure 11B). Doxorubicin, a positive control, induced γH2AX at 2 h. These results indicate that 

HDACi induce phosphorylation of H2AX through DNA damage in both MCF-7 and SKOV-3 

cells. 
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4.1.5 Effect of vorinostat on phosphorylation of ATM substrate proteins in 

MCF-7 cells 

Several proteins such as p53, p95/NBS1, MDM2, CHK2, BRCA1, CtIP, 4E-BP1 and CHK1 

have been identified as substrates for ATM (Kastan and Lim, 2000;Zhao and Piwnica-Worms, 

2001). These proteins play important roles in the regulation of apoptosis and cell cycle 

progression. Therefore, we investigated the effect of vorinostat on the phosphorylation of some 

of the ATM substrate proteins, such as phospho-BRCA1, -FANCD2, -p53, -Akt, -p95/NBS1, -

RAD17, -CHK1, -CHK2. The MCF-7 cells were treated with vorinostat for the same time points 

as in the previous experiments. 

The phosphorylation of different ATM substrate proteins were determined by immunoblot using 

specific antibodies of phospho-BRCA1, -FANCD2, -p53, -Akt, -NBSC1, -RAD17, -CHK1, -

CHK2.  

 

Figure 12 Effect of vorinostat on pBRCA1 in MCF-7 cells. 

Cells were incubated with 10 µM vorinostat at various time points (0, 10, 30, 60, 120 min), followed by 
cells were harvested and subjected to Western blot analysis using phospho-BRCA1 and GAPDH 
antibodies.  

None of these ATM substrate proteins showed phosphorylation by vorinostat in the earlier time 

points. For example, in Figure 12, immunoblot analysis revealed that the ATM substrate BRCA1 

was not phosphorylated after treatment with vorinostat. Similar effects were observed for other 

ATM substrate proteins (data not shown). 
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4.1.6 Effect of ATM kinase inhibitors on vorinostat-induced cell cycle arrest 

in MCF-7 cells 

As caffeine inhibited HDACi-induced ATM phosphorylation in MCF-7 cells, caffeine and the 

specific ATM inhibitor KU-55933 were used to evaluate the role of ATM in vorinostat-induced  

 

 

Cells were treated either with vorinostat alone or vorinostat and caffeine (A and B) or vorinostat and 
KU-55933 (C and D), both caffeine or KU-55933 were applied 1 h prior to the treatment with vorinostat 
and cells were then incubated for 48 h, followed by cell cycle progression in G1 cells (A and C) G2/M 
cells (B and D) were analysed by flow cytometry. Means of 3 separate experiments are shown. 
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Figure 13 Effect of ATM inhibitors on vorinostat-induced cell cycle arrest in MCF-7 cells. 
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Cells were treated either with vorinostat alone or vorinostat and CHK1 inhibitor (A and B) or vorinostat 
and CHK2 inhibitor II (C and D), both inhibitors were applied 1 h prior to the treatment with vorinostat 
and cells were then incubated for 48 h, followed by cell cycle progression in G1 cells (A and C) G2/M 
cells (B and D) were analysed by flow cytometry. Means of 3 separate experiments are shown. 

cell cycle arrest in MCF-7 cells. Cells were preincubated with 2 mM caffeine for 1 h, and 

incubated with various concentrations of vorinostat for 48 h and analysed by flow cytometry. As 

shown in Figure 13, pretreatment of cells with either caffeine or KU-55933 did not show any 

significant inhibitory effect on vorinostat-induced cell cycle arrest (Figure 13). 

In addition, the role of CHK1 and CHK2 in cell cycle progression was evaluated using CHK1 

and CHK2 inhibitors. CHK1 and CHK2 are activated by pATM in response to double-strand  
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Figure 14 Effect of CHK1 and CHK2 inhibitors on vorinostat-induced cell cycle arrest in MCF-7 
cells. 
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DNA breaks (DSBs). CHK1 and CHK2 regulate fundamental cellular functions such as DNA 

replication, cell cycle progression, chromatin reformation, and apoptosis (Bartek et al., 2004). 

For this reason, we examined the effect of CHK1 inhibitor and CHK2 inhibitor II on vorinostat 

in MCF-7 cells by cell cycle analysis. As shown in Figure 14, both 30 nM of CHK1 inhibitor 

and 10 µM of CHK2 inhibitor II had no effect on vorinostat-induced G1 and G2/M arrest. This 

indicates that CHK1 and CHK2 do not have any significant effect in vorinostat-induced cell 

cycle arrest. 

4.1.7 Effect of bortezomib on vorinostat-induced cell cycle arrest in MCF-7 

cells 

The degradation of regulatory proteins by the proteasome has an important role in the DNA 

damage response in tumour and normal cells. Proteasome’s target proteins such as: p21WAF, 

p27KIP, p53, RAD51, cyclins (D, E, B), PARP, and nuclear-factor kappa B (NF-ĸB), regulate 

cell-cycle progression, DNA repair, and cell death (Choudhury et al., 2008). Cyclins are 

important regulatory proteins for cell cycle progression, activated by CDK-mediated 

phosphorylation. The level of cyclins is critically controlled by the ubiquitin-proteasome system 

(Fasanaro et al., 2010). Thus, the proteasome could be a specific target by chemical inhibitors to 

halt cell cycle progression and induce cell cycle arrest along with ATM activation in cancer 

cells. Bortezomib (PS-341, VelcadeTM) is a prominent proteasome inhibitor. It has been 

approved by the FDA for the treatment of multiple myeloma and is now under clinical trials for 

other types of cancer (Adams, 2002;Voorhees et al., 2003;Adams, 2004). 

To elucidate whether the proteasome is involved in HDACi-induced G2/M arrest, the effect of 

bortezomib on vorinostat-induced cell cycle arrest was examined. MCF-7 cells were pretreated 

with two different concentrations of bortezomib (10 nM and 100 nM) and incubated for 48 h 

with different concentrations of vorinostat. The cells were analysed by flow cytometry. The cells 

pretreated with 10 nM bortezomib significantly increased G2/M arrest induced by vorinostat. As 

shown in Figure 15, it is observed that the cell cycle arrest starts at a concentration as low as 1 

µM and further increases as the vorinostat concentration increases. In parallel, the G1 arrest 

induced by low concentrations of vorinostat was abrogated when the cells were pretreated with 

bortezomib (Figure 15A). The result further substantiates that the proteasome has a role in 

vorinostat-induced cell cycle arrest in MCF-7 cells. 
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Cells were pretreated for 1 h with 10 nM or 100 nM bortezomib and cotreated with different 
concentrations of vorinostat, were then incubated for 48 h, followed by cell cycle progression in A) G1 
cells B) G2/M cells were analysed by flow cytometry. Means of 3 separate experiments are shown. 

4.1.8 Effect of NF-ĸB inhibitors on vorinostat-induced cell cycle arrest in 

MCF-7 cells  

NF-ĸB is a substrate of the proteasome and is activated by proteasome-mediated IĸB 

degradation (Sethi and Tergaonkar, 2009). The inhibition of the proteasome by bortezomib leads 

to NF-ĸB inhibition, promoting antitumoural effects (Dolcet et al., 2006). It has been shown that 

NF-ĸB is activated by HDACi (Denlinger et al., 2004). Thus, we were interested to know 

whether the effect observed by bortezomib is brought through NF-ĸB inhibition. For this, 

specific NF-ĸB inhibitors were used to determine the role of NF-ĸB in HDACi-induced G2/M 

arrest. 

4.1.8.1 Effect of the NF-ĸB inhibitor CAPE on vorinostat-induced cell cycle 

arrest  

Caffeic acid phenethyl ester (CAPE) is a potent inhibitor of activation of nuclear transcription 

factor NF-ĸB (Natarajan et al., 1996). We determined the effect of CAPE on vorinostat-induced 

cell cycle arrest in MCF-7 cells. Cells were pretreated 1 h before with 10 µM and 50 µM  
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Figure 15 Effect of bortezomib on vorinostat-induced cell cycle arrest in MCF-7 cells. 

52 
 



  Results                   

 
 

Cells were pretreated for 1 h with 10 μM or 50 μM CAPE and cotreated with different concentrations of 
vorinostat, were then incubated for 48 h, followed by cell cycle progression in A) G1 cells B) G2/M cells 
were assessed by flow cytometry. Means of 3 separate experiments are shown. 

CAPE, respectively, further incubated with vorinostat for 48 h and cell cycle distribution was 

assessed by using flow cytometry. Interestingly, the effects of CAPE mimicked the effects of the 

proteasome inhibitor bortezomib. Combination of 10 µM of CAPE with vorinostat showed an 

increased G2/M arrest. However combination of 50 µM of CAPE with vorinostat neutralised the 

effect attained by the vorinostat (Figure 16). This result suggests that the effect of the 

proteasome inhibition on vorinostat-induced cell cycle arrest is the result of NF-ĸB inhibition. 

4.1.8.2 Effect of other NF-ĸB inhibitors BAY 11-7082, flavopiridol and 

roscovitin on vorinostat-induced cell cycle arrest  

To confirm the results of CAPE on vorinostat-induced G2/M arrest, other NF-ĸB inhibitors, such 

as BAY 11-7082, flavopiridol and roscovitin, with different modes of action were used: BAY 

11-7082 is a synthetic NF-ĸB inhibitor that downregulates IĸBα phosphorylation and leads to 

the inhibition of NF-ĸB activation. It has been found that BAY 11-7082 inhibits constitutive 

activity of NF-ĸB, leading to cell cycle arrest in G1 phase and rapid induction of apoptosis in 

multidrug-resistant cancers (Garcia et al., 2005;Kim et al., 2005). The semisynthetic flavone 

flavopiridol (NSC 649890) and roscovitin inhibit the activation of NF-κB (Takada and 

Aggarwal, 2004). Therefore, we investigated the effect of BAY 11-7082, flavopiridol and 

roscovitin on vorinostat-induced G2/M arrest in MCF-7 cells. 
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Figure 16 Effect of CAPE on vorinostat-induced cell cycle arrest in MCF-7 cells. 
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Cells were pretreated with 10 µM BAY 11-7082 for 1 h prior to the treatment with different 
concentrations of vorinostat. Cells were then incubated for 48 h, followed by cell cycle progression in A) 
G1 cells B) G2/M cells were assessed by flow cytometry. Means of 3 separate experiments are shown. 

For this, MCF-7 cells were preincubated with NF-ĸB inhibitors, and further incubated with 

various concentrations of vorinostat for 48 h and analysed by using flow cytometry. As shown in 

Figure 17, Figure 18 (AB) and Figure 18 (CD), BAY 11-7082, roscovitin and flavopiridol had 

similar effects on vorinostat-induced G2/M arrest as CAPE, indicating that indeed NF-ĸB has a 

role in HDACi-induced G2/M arrest. 
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Figure 17 Effect of BAY 11-7082 on vorinostat-induced cell cycle arrest in MCF-7 cells. 
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Cells were treated either with vorinostat alone or vorinostat and roscovitin (A and B) or vorinostat and 
flavopiridol (C and D), inhibitors were applied 1 h prior to the treatment of vorinostat and cells were 
then incubated for 48 h, followed by cell cycle progression in G1 cells (A and C) G2/M cells (B and D) 
were analysed by flow cytometry. Means of 3 separate experiments are shown.  

4.1.9 Effect of LY294002 on vorinostat-induced cell cycle arrest in MCF-7 

cells 

HDACi have been shown to activate NF-ĸB through activating PI3K/Akt pathway (Denlinger et 

al., 2005). Thus we analysed whether inhibition of PI3K could mimic NF-ĸB inhibition. The 

PI3K inhibitor LY294002 strongly inhibits both PI3K activation and NF-ĸB-dependent gene 

expression (Shah et al., 2001). To address the hypothesis of pharmacologic inhibition of the 

PI3K/Akt pathway could inhibit NF-ĸB and sensitise cancer cells to cell cycle arrest by HDAC 
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Figure 18 Effect of roscovitin and flavopiridol on vorinostat-induced cell arrest in MCF-7 cells. 
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inhibition, effect of LY294002 on vorinostat was analysed in MCF-7 cells. For this, cells were 

preincubated with 25 µM of LY294002 and cotreated with vorinostat for 48 h and then cell cycle 

analysis was done by flow cytometry. Combined treatment with vorinostat and LY294002 

abolished G1 arrest and increased G2/M arrest at lower concentrations of vorinostat (1 µM and 2 

µM) (Figure 19). 

 
Cells were pretreated with 25 µM LY294002 for 1 h prior to the treatment with different concentrations 
of vorinostat. Cells were then incubated for 48 h, followed by cell cycle progression in A) G1 cells B) 
G2/M cells were assessed by flow cytometry. Means of 3 separate experiments are shown. 

4.1.10 Effect of nutlin-3 on vorinostat-induced cell cycle arrest  

The results presented suggest that CHK1 and CHK2 do not contribute to HDACi-induced cell 

cycle arrest, whereas the use of NF-ĸB inhibitors indicates that NF-ĸB has a role in HDACi-

induced G2/M arrest in MCF-7 cells. Since p53 is an ATM substrate and plays an important role 

in the regulation of cell cycle progression, we investigated whether p53 participates in 

vorinostat-induced G2/M arrest in MCF-7 cells. For this, nutlin-3, a small molecule inhibitor 

which restores p53 function by inhibiting the p53 suppressor protein murine double minute 2 

(MDM2), was used in combination with vorinostat in MCF-7 cells. As shown in Figure 20C, 

nutlin-3 treatment prevented the vorinostat-induced G2/M arrest. This shows that p53 has a role 

in vorinostat-induced G2/M arrest in MCF-7 cells. To assess whether the nutlin-3 effect on 

vorinostat is a general one, the effect of nutlin-3 on vorinostat-induced G2/M arrest was also 
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Figure 19 Effect of LY294002 on vorinostat-induced cell cycle arrest in MCF-7 cells. 
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A     MCF-7     D       A549 

 

 
 

Progression of cell cycle in cells treated with either vorinostat or vorinostat and nutlin-3. Cells were 
pretreated with 10 μM nutlin-3 for 1 h to the treatment with different concentrations of vorinostat, and 
further incubated for 48 h. Cell cycle profiles were analysed by flow cytometry. A) sub-G1 cells B) G1 

cells C) G2/M cells in MCF-7 cells, D) sub-G1 cells E) G1 cells F) G2/M cells in A549 cells. Means of 3 
separate experiments are shown. 
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Figure 20 Effect of nutlin-3 on vorinostat-induced cell cycle arrest and apoptosis in MCF-7 and A549 
cells. 
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analysed in p53 wild-type A549 cancer cells (Figure 20F). When vorinostat was combined with 

nutlin-3 in A549 cells, we observed enhanced apoptosis (Figure 20D). This interesting effect 

stimulated us to study the combination of nutlin-3 with HDACi in more detail. 

4.2 Synergistic activity of HDACi with nutlin-3 in p53 wild-type 

cancer cell lines 

Of the fifty percent of human tumours with wt-p53, many are thought to have compromised p53 

function due to increased MDM2 levels (Brown et al., 2009). Hence, restoration of p53 function 

through blocking the p53-MDM2 interaction appears to be an attractive strategy for the 

treatment of p53 wild-type cancers. Therefore, activation of the p53 pathway by antagonising its 

negative regulator MDM2 might offer a new therapeutic strategy for the great majority of 

tumour malignancies. 

The combination of nutlin-3 and HDACi had not shown significant apoptosis in MCF-7 cells, 

likely due to the lack of caspase-3 activity (Figure 20A). However, the apoptotic effect was 

synergistically enhanced when vorinostat was combined with nutlin-3 in A549 cells (Figure 

20D). Hence, similar investigations were conducted to determine the effect of nutlin-3 in 

combination with HDACi belonging to four different structural classes - vorinostat, MS-275, 

sodium butyrate (NaB) and apicidin - in p53 wild-type A549 and A2780 cells and p53 null PC-3 

cells. 

4.2.1 Nutlin-3 and HDACi synergise to induce cell death in p53 wild-type 

A549 cells 

To assess a possible favourable interaction between nutlin-3 and HDACi, we initially monitored 

cell viability in the p53 wild-type lung cancer cell line A549 using Alamar Blue assay. Figure 21 

shows that the four HDACi tested (vorinostat, NaB, MS-275, apicidin) reduced cell viability in a 

concentration-dependent manner. In contrast, cells were only marginally sensitive to nutlin-3 

alone, in concordance with previous reports on its effects on A549 cells (Tovar et al., 

2006;Tokalov and Abolmaali, 2010). However, in conjunction with HDACi, nutlin-3 caused a 

marked additional decrease in cell viability. For example, 5 µM vorinostat reduced cell viability 

by 41% and 10 µM nutlin-3 reduced cell viability by 10%, while the combination of both 

compounds reduced cell viability by 74% (Figure 21A). 

58 
 



  Results                   

 

 C                                D 
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One hour after administration of nutlin-3, cells were further exposed to HDACi A) vorinostat, B) NaB 
(sodium butyrate), C) MS-275, and D) apicidin, for 72 h. Cell viability was determined by Alamar Blue 
assay. Means ± SEM of 3 separate experiments are shown. 

0

20

40

60

80

100

1 mM 2 mM

MS-275
10 mM5 mMcontrol

C
el

l v
ia

bi
lit

y 
(%

 o
f n

on
-p

re
tre

at
ed

 c
on

tro
l)  control

 3 µM nutlin-3
 10 µM nutlin-3

0

20

40

60

80

100

1 µM 2 µM

apicidin
10 µM5 µMcontrol

C
el

l v
ia

bi
lit

y 
(%

 o
f n

on
-p

re
tre

at
ed

 c
on

tro
l)  control

 3 µM nutlin-3
 10 µM nutlin-3

0

20

40

60

80

100

1 µM 2 µM
vorinostat

10 µM5 µMcontrol

C
el

l v
ia

bi
lit

y 
(%

 o
f n

on
-p

re
tre

at
ed

 c
on

tro
l)  control

 3 µM nutlin-3
 10 µM nutlin-3

0

20

40

60

80

100

1 mM 2 mM

NaB
10 mM5 mMcontrol

C
el

l v
ia

bi
lit

y 
(%

 o
f n

on
-p

re
tre

at
ed

 c
on

tro
l)  control

 3 µM nutlin-3
 10 µM nutlin-3

Figure 21 Nutlin-3 and HDACi cooperate in affecting cell viability in A549 cells. 
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The Alamar Blue assay is a convenient method to indirectly measure the number of viable cells, 

but it is not capable of distinguishing between effects on proliferation and cell death. Thus, to 

establish whether nutlin-3 and HDACi cooperated in eliciting cell death, we determined the 

latter by flow cytometric analysis of PI uptake. These measurements revealed a cooperative 

induction of cell death after combined treatment with nutlin-3 and HDACi (Figure 22). For 

example, when administered individually, 10 µM nutlin-3 and 5 µM vorinostat elicited cell 

death in 15% or 19% of cells, respectively. When applied together, the agents evoked cell death 

in 49% of cells. To test for synergy, we analysed these data by the combination index (CI) 

method (CI < 1 is indicative for a synergistic interaction (Chou, 2010)). The calculated CI values 

indicate synergism for the combinations of nutlin-3 with vorinostat or apicidin at most 

concentrations, and for the combinations of nutlin-3 with NaB or MS-275 at all concentrations 

applied (Table 3 to Table 6). 

p53 is a potent inducer of apoptosis and as such it predominantly triggers the mitochondrial 

pathway of apoptosis (Vousden and Lane, 2007). The latter is also the major pathway for 

HDACi to elicit cell death (Xu et al., 2007). We therefore assessed whether nutlin-3 and HDACi 

could interact at the mitochondrial level. Since this apoptotic pathway involves a perturbation of 

mitochondrial potential loss (Δψm), we determined Δψm dissipation by flow cytometric analysis 

of DiOC6(3) staining. As presented in Figure 23, the results reflect those of the cell death assay: 

nutlin-3 cooperated with all HDACi applied to induce decay of Δψm. 
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One hour after administration of nutlin-3, cells were exposed to HDACi A) vorinostat, B) NaB, C) MS-
275, and D) apicidin, for another 48 h. Cell death was determined by flow cytometric analysis of PI 
uptake. Means ± SEM of 3 separate experiments are shown. 

Figure 22 Nutlin-3 and HDACi cooperate in inducing cell death in A549 cells. 
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One hour after administration of nutlin-3, cells were exposed to HDACi A) vorinostat, B) NaB, C) MS-
275, and D) apicidin for another 48 h. Δψm was assessed by flow cytometric analysis of DiOC6(3) 
staining. Means ± SEM of 3 separate experiments are shown. 

0

20

40

60

80

0

1 µM 2 µM

vorinostat
10 µM5 µMcontrol

Δ
ψ

m
 lo

ss
 (%

 o
f c

el
ls

)

 control
 3 µM nutlin-3
 10 µM nutlin-3

0

20

40

60

80

100

1 mM 2 mM
NaB

10 mM5 mMcontrol

Δ
ψ

m
 lo

ss
 (%

 o
f c

el
ls

)

 control
 3 µM nutlin-3
 10 µM nutlin-3

0

20

40

60

80

100

0.5 µM 1 µM
MS-275

5 µM2 µMcontrol

Δ
ψ

m
 lo

ss
 (%

 o
f c

el
ls

)

 control
 3 µM nutlin-3
 10 µM nutlin-3

0

20

40

60

80

100

1 µM 2 µM

apicidin
10 µM5 µMcontrol

Δ
ψ

m
 lo

ss
 (%

 o
f c

el
ls

)

 control
 3 µM nutlin-3
 10 µM nutlin-3

  A                                 B

  C                                 D

Figure 23 Nutlin-3 and HDACi cooperate in inducing Δψm loss in A549 cells. 
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Table 3 Combination index values for nutlin-3 plus vorinostat in A549 cells. 

Nutlin-3 (μM) Vorinostat (μM) CI 

3 1 1.030 

3 2 0.858 

3 5 1.045 

3 10 0.509 

10 1 0.956 

10 2 0.968 

10 5 0.295 

10 10 0.212 

Based on data from Figure 22, CI values were calculated using the Chou-Talalay method. 

Table 4 Combination index values for nutlin-3 plus NaB in A549 cells. 

Nutlin-3 (μM) NaB (mM) CI 

3 1 0.344 

3 2 0.357 

3 5 0.279 

3 10 0.236 

10 1 0.267 

10 2 0.114 

10 5 0.086 

10 10 0.046 

Based on data from Figure 22, CI values were calculated using the Chou-Talalay method. 
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Table 5 Combination index values for nutlin-3 plus MS-275 in A549 cells. 

Nutlin-3 (μM) MS-275 (μM) CI 

3 0.5 0.178 

3 1 0.030 

3 2 0.028 

3 5 0.009 

10 0.5 0.052 

10 1 0.020 

10 2 0.009 

10 5 0.003 

Based on data from Figure 22, CI values were calculated using the Chou-Talalay method. 

Table 6 Combination index values for nutlin-3 plus apicidin in A549 cells. 

Nutlin-3 (μM) Apicidin (μM) CI 

3 1 0.484 

3 2 0.615 

3 5 1.087 

3 10 0.079 

10 1 0.854 

10 2 0.682 

10 5 0.301 

10 10 0.022 

Based on data from Figure 22, CI values were calculated using the Chou-Talalay method. 
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4.2.2 Nutlin-3 and vorinostat synergise to induce cell death in p53 wild-type 

A2780 cells  

To confirm the synergistic activity of nutlin-3 and HDACi in another cell line with wt-p53, we 

  A                               B

One hour after administration of nutlin-3, cells were exposed to vorinostat for another 24 h (caspase-3 
assay) or 48 h (flow cytometric analyses). A) Cell death was determined by flow cytometric analysis of PI 
uptake, B) Δψm was assessed by flow cytometric analysis of DiOC6(3) staining. C) Caspase-3 activity was 
measured using the fluorogenic substrate Ac-DEVD-AFC; relative caspase-3 activities are the ratio of 
treated cells to untreated cells. D) Cell death was assessed by flow cytometric analysis, z-VAD-fmk was 
applied 1 h before treatment with nutlin-3. Means ± SEM of 3 separate experiments are shown (***p < 
0.005). 
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Figure 24 Nutlin-3 and vorinostat cooperate in inducing cell death, Δψm loss and caspase-3 activity in 
A2780 cells. 
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engaged A2780 ovarian cancer cells. Figure 24A and B shows that nutlin-3 and the HDACi 

representatively used, vorinostat, also exerted a cooperative cytotoxic activity in A2780 cells, as 

judged by assessing cell death and Δψm dissipation. The cell death data were analysed by the CI 

method, evidencing a synergistic effect at all concentrations except one (Table 7). To explore 

whether the synergistic action of nutlin-3 and HDACi involved caspases, we determined the 

activity of caspase-3 and we applied the pan-caspase inhibitor z-VAD-fmk in the PI uptake 

analysis. As presented in Figure 24C, nutlin-3 and vorinostat cooperated in triggering caspase-3 

activity. In line with this result, z-VAD-fmk reduced cell death induced by the combination of 

nutlin-3 and vorinostat (Figure 24D). 

Table 7 Combination index values for nutlin-3 plus vorinostat in A2780 cells. 

 

Nutlin-3 (μM) Vorinostat (μM) CI 

3 1 1.254 

3 2 0.656 

3 5 0.395 

3 10 0.375 

10 1 0.338 

10 2 0.170 

10 5 0.155 

10 10 0.231 

 Based on data from Figure 24A, CI values were calculated using the Chou-Talalay method. 

4.2.3 Nutlin-3 and vorinostat do not synergise in p53 null PC-3 cells  

Moreover, to validate the observed synergistic effect of the nutlin-3/HDACi combination was 

p53-dependent, we employed p53 null PC-3 prostate cancer cells. Figure 25A and B shows that 

vorinostat-induced both cell death and Δψm decay in a dose-dependent fashion. In contrast, 

nutlin-3 had no effect, and the cytotoxicity of vorinostat in combination with nutlin-3 did not 

exceed that of vorinostat alone. 
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Figure 25 Nutlin-3 and vorinostat do not cooperate in PC-3 cells. 
One hour after administration of nutlin-3, cells were exposed to vorinostat for another 48 h. A) Cell 
death was determined by flow cytometric analysis of PI uptake, and B) Δψm was assessed by flow 
cytometric analysis of DiOC6(3) staining. Means ± SEM of 3 separate experiments are shown.  

4.2.4 Nutlin-3 protects A549 cells from paclitaxel-induced cytotoxic effects  

Nutlin-3 has been reported to confer protection against paclitaxel (Carvajal et al., 2005;Tokalov 

et al., 2010). For comparison to the observed synergistic interaction of nutlin-3 and HDACi, we 

thus examined the combination of nutlin-3 and paclitaxel in A549 cells and determined cell 

death by PI uptake and Δψm loss by DiOC6(3) staining. Both cell death and mitochondrial 

membrane potential loss assays revealed that nutlin-3 indeed protected the cells from the 

cytotoxicity of paclitaxel (Figure 26). The CI analysis of the cell death results demonstrated a 

strong antagonism for this drug combination (Table 8). 
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 Figure 26 Nutlin-3 protects A549 cells from cytotoxicity of paclitaxel. 

One hour after administration of nutlin-3, cells were exposed to paclitaxel for another 48 h. A) Cell 
death was determined by flow cytometric analysis of PI uptake, and B) Δψm was assessed by flow 
cytometric analysis of DiOC6(3) staining. Means ± SEM of 3 separate experiments are shown. 

Table 8 Combination index values for nutlin-3 plus paclitaxel in A549 cells. 

 

Nutlin-3 (μM) Paclitaxel (nM) CI 

3 3 242 

3 10 227,000 

3 30 1701 

3 100 77 

10 3 33 

10 10 40 

10 30 33 

10 100 136 

Based on data from Figure 26A, CI values were calculated using the Chou-Talalay method. 
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4.2.5 Vorinostat induces p53 hyperacetylation  

Because HDACi have been observed to activate p53 by acetylation (Luo et al., 2000;Terui et al., 

2003;Zhao et al., 2006;Carlisi et al., 2008;Condorelli et al., 2008), we tested whether the 

synergistic activity of nutlin-3/HDACi was associated with an increase in acetyl-p53. To 

determine the acetylation status of p53, we used an antibody specific for p53 acetylation at 

lysine residues 373 and 382. For comparison, we also assessed the abundance of total p53. As 

expected, nutlin-3 treatment raised total p53, both in the absence and in the presence of 

vorinostat (Figure 27A). With respect to acetyl-p53 in A549 cells, we made the remarkable 

observation that nutlin-3 treatment - though enhancing total p53 - did not alter the abundance of 
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Figure 27 Vorinostat induces p53 hyperacetylation.  

One hour after administration of nutlin-3, cells were exposed to vorinostat for another 24 h. A) The 
expression of total p53 was determined using the anti-p53 (DO-2) antibody. B) The acetylation status of 
p53 was analysed by immunoblotting using an anti-acetyl-p53 (Lys373/382) antibody. 
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acetylated p53. However, cotreatment with vorinostat resulted in a considerable increase in 

acetyl-p53 (Figure 27B). In A2780 cells, nutlin-3 enhanced acetyl-p53, which was further 

enhanced by cotreatment with vorinostat. 

4.2.6 Vorinostat induces downregulation of MDM2 and MDM4 gene 

expression  

MDM2 and MDM4 (also known as MDMX) are the main negative regulators of p53 function 

(Brown et al., 2009). We thus wondered whether the enhancement of nutlin-3-induced apoptosis 

by HDACi could be correlated with an effect of HDACi on MDM2 and/or MDM4 gene 

expression. The regulation of MDM2 and MDM4 expression differs in that the former is induced 

by p53 - that way producing a negative-feedback loop - while the latter is not (Brown et al., 

2009). In consistence, we found nutlin-3 to induce the gene expression of MDM2, but not of 

MDM4, as determined by real-time RT-PCR (Figure 28). Interestingly, vorinostat significantly 

reduced the constitutive gene expression of both MDM2 and MDM4 as well as the nutlin-3-

elevated gene expression of MDM2. These results suggest that vorinostat could block both the 

MDM2 and MDM4 expression as well nutlin-3 induced MDM2 expression. 

 
 
 
One hour after administration of nutlin-3, cells were exposed to vorinostat for another 24 h. A) MDM2 
and B) MDM4 mRNA expression levels were determined by real-time RT-PCR and normalised to β-2-
microglobulin mRNA levels. Means ± SEM of 3 separate experiments are shown (nutlin-3- or vorinostat-
treated vs. untreated: *p < 0.05, **p < 0.01, ***p < 0.005; nutlin-3/vorinostat-treated vs. nutlin-3-
treated: #p < 0.05, ###p < 0.005). 
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Figure 28 Vorinostat induces downregulation of MDM2 and MDM4 gene expression. 
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4.3 Anticancer effects of the p53 activator nutlin-3 in Ewing's 

sarcoma cells 

Fifty percent of adult patients have tumours with mt-p53 and are, thus, unlikely to benefit from 

nutlin-3 therapy. However, alterations in the p53 gene are much less common in childhood 

malignancies. For instance, among children with Ewing's sarcoma (ES), only about 10% have 

been found with p53 alterations (Kovar et al., 1993;Huang et al., 2005), suggesting that targeting 

and activation of p53 may be an effective therapeutic strategy for ES.  

Nutlin-3 has already been shown to exert anticancer effects in childhood tumour models with 

wt-p53, e.g. in neuroblastoma (Barbieri et al., 2006;Van Maerken et al., 2006;Van Maerken et 

al., 2009), in retinoblastoma (Elison et al., 2006;Laurie et al., 2006), in acute lymphoblastic 

leukaemia (Gu et al., 2008) and in rhabdomyosarcoma (Miyachi et al., 2009). Although 90% of 

ES patients with wt-p53 are potentially amenable to nutlin-3 treatment, however, it has not yet 

been tested for antineoplastic activity against ES. 

Initially, ES cells were employed to investigate the combination effect of HDACi and nutlin-3. 

However no significant effect was observed in combination of HDACi with nutlin-3. But 

interestingly, we observed an effect of nutlin-3 as a single agent at the low concentration of 0.5 

µM (Figure 29). This observation prompted us to investigate the potential anticancer action of 

nutlin-3 on ES cells in more depth. 

4.3.1 Nutlin-3-induced effects on p53 in ES cells 

To establish that the action of nutlin-3 is dependent on the p53 gene status in ES cells, we 

studied its effects in three ES cell lines with wt-p53 (WE-68, VH-64 and CADO-ES-1) and in 

one ES cell line with mt-p53 (SK-ES-1) (Kovar et al., 1993;Ottaviano et al., 2010). Initially, we 

assessed the impact of nutlin-3 on p53 abundance. ES cells were treated with 2 µM or 10 µM 

nutlin-3, and p53 abundance was determined by immunoblot analysis using the anti-p53 (DO-2) 

antibody.  
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Cells were pretreated with 0.5 µM of nutlin-3 for 1 h, and then incubated with various concentrations of 
vorinostat for A) 24 h, B) 48 h and C) 72 h. Cell viability was determined by Alamar Blue assay.
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Figure 29 Effect of nutlin-3 on vorinostat-affected cell viability in WE-68 cells. 
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Immunoblot detection revealed a rise of p53 after nutlin-3 exposure in the ES cell lines with wt-

p53 ( Figure 30). In consistence with the high expression of mt-p53 observed in a wide range of 

tumours (Bartek et al., 1991), mt-p53 SK-ES-1 cells displayed a much stronger constitutive 

expression of p53, which, however, was not enhanced by nutlin-3 treatment. 

 
 

 Figure 30 Nutlin-3 increases p53 level in ES cells with wt-p53. 
Cells were exposed to nutlin-3 for 24 h. The abundance of p53 was determined by immunoblotting using 
the anti-p53 (DO-2) antibody and anti-GAPDH. 

4.3.2 Nutlin-3-induced effects on p53 targets in ES cells 

MDM2, p21 and PUMA are three key transcriptional targets of p53 (Vousden et al., 2009). To 

confirm the effect of nutlin-3 on p53, we determined the expression of these three genes by 

using quantitative real-time RT-PCR. As shown in Figure 31, nutlin-3-induced the mRNA levels 

of MDM2, p21 and PUMA in a concentration-dependent manner in the wt-p53 (WE-68, VH-64 

and CADO-ES-1) cell lines, However, nutlin-3 did not induce mRNA levels of MDM2, p21 and 

PUMA in the mt-p53 SK-ES-1 cell line. 
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Figure 31 Nutlin-3 induces expression of p53 target genes in ES cells with wt-p53, but not in cells with 
mt-p53. 
Cells were exposed to nutlin-3 for 24 h. A) MDM2, B) p21 and C) PUMA mRNA expression levels were 
determined by real-time RT-PCR and normalised to β-2-microglobulin mRNA levels. Means ± SEM of 2 
separate measurements are shown. 
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4.3.3 Nutlin-3-induced antineoplastic effects in ES cells 

4.3.3.1  Nutlin-3 affects cell viability in wt-p53 ES cells 

To investigate the effect of nutlin-3 on cell growth and cell death in wt-p53 ES cells, we 

determined differential cell counts of total and viable cells. Figure 32 shows that nutlin-3 

affected cell growth in a dose-dependent manner. At 72 h after treatment with 10 µM nutlin-3, 

the total number of cells (open symbols) was reduced by 77% to 87% in the wt-p53 cells and by 

35% in the mt-p53 cells. More significantly, the number of viable cells (solid symbols), as 

determined by trypan blue exclusion cell count, was decreased by 93% to 95% in the wt-p53 

cells and by 42% in the mt-p53 cells. The calculation of fractions of viable cells at each drug 

concentration revealed a decline in cell viability of 60% to 75% in the wt-p53 cells and of 11% 

in the mt-53 cells (inset diagrams). These findings show that nutlin-3 inhibits cell growth to a 

greater extent in wt-p53 cells and lesser extent in mt-p53 cells, but induces significant cell death 

only in wt-p53 cells. 

4.3.3.2  Nutlin-3 induces cell death through apoptosis in wt-p53 ES cells 

To gain further insight into nutlin-3-elicited cell death and, more specifically, apoptosis, we 

analysed the effects of nutlin-3 by a number of read-outs. To begin with, cell death was assessed 

by flow cytometric analysis of PI uptake. As shown in Figure 33A, treatment with nutlin-3 

resulted in a concentration-dependent induction of cell death in cells with wt-p53, but not in 

cells with mt-p53.  

p53 is a potent inducer of apoptosis and as such it predominantly triggers the mitochondrial 

pathway of apoptosis (Vousden et al., 2009). We therefore examined whether nutlin-3-mediated 

cell death involved apoptosis. The same was evaluated by measuring Δψm dissipation, caspase-3 

activity and DNA fragmentation. First, we determined Δψm loss by flow cytometric analysis of 

DiOC6(3) staining. As shown in Figure 33B, the results reflect those of the cell death assay: 

nutlin-3 induced decay of Δψm in the wt-p53 cells, but not in the mt-p53 cells. Second, we 

measured caspase-3 activity. In consistence with the other read-outs, nutlin-3 caused caspase-3 

activation in the wt-p53 cells, but not in the mt-p53 cells (Figure 34A). Third, we assessed cells 

harbouring wt-p53 for apoptosis by staining the nuclei of ethanol-fixed cells with PI and 

determining the DNA content by flow cytometry. Figure 34B demonstrates that nutlin-3 

promoted DNA fragmentation in a dose-dependent fashion in the three wt-p53 cell lines. 
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Exponentially growing cells were exposed to nutlin-3 for 72 h and cell growth and viability were 
determined by trypan blue exclusion cell count. The insets show the percentage of viable cells at each 
drug concentration. A) WE-68, B) VH-64, C) CADO-ES-1, and D) SK-ES-1 cells. Means ± SEM of 2 
separate measurements are shown. 
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Figure 32 Nutlin-3 inhibits cell growth and induces cell death in ES cells. 
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A             Cell death                  B               Δψm loss 
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 Figure 33 Nutlin-3 induces apoptosis in ES cells with wt-p53, but not in cells with mt-p53.  
Cells were exposed to nutlin-3 for 48 h. A) Cell death was determined by flow cytometric analysis of PI 
uptake. B) Δψm loss was determined by flow cytometric analysis of DiOC6(3) staining. 
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  A             Caspase-3                      B      sub-G1 

 
 
 
Cells were exposed to nutlin-3 for 24 h (A) or 48 h (B). A) Caspase-3 activity was determined using the 
fluorogenic substrate Ac-DEVD-AFC; relative caspase-3 activities are the ratio of treated cells to 
untreated cells. B) DNA fragmentation was determined by flow cytometric cell cycle analysis; apoptotic 
cells were detected as sub-G1 fraction. Means ± SEM of 3 separate measurements are shown.
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Figure 34 Nutlin-3 induces apoptosis in ES cells with wt-p53. 
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4.3.4 Induction of cellular senescence by nutlin-3  

In addition to apoptosis, p53 can also trigger cellular senescence (Vazquez et al., 2008). 

Accordingly, nutlin-3 has been reported to induce a senescence response (Van Maerken et al., 

2006). We thus addressed the question of whether nutlin-3 could promote cellular senescence in 

ES cells. CADO-ES-1 cells were treated with nutlin-3 at a non-toxic dose (2 µM). After a 4-day 

exposure to nutlin-3, cells were analysed for SA-β-Gal activity by staining with 5-bromo-4-

chloro-3-indolyl-β-D-galactopyranoside, the most widely used marker for cellular senescence. 

Nutlin-3-treated cells showed clear signs of senescence, whereas untreated cells did not show 

senescence (Figure 35).  

2 µM nutlin-3 control 

 

 Figure 35 Nutlin-3 induces cellular senescence in CADO-ES-1 cells. 
After a 96 h exposure to nutlin-3 or vehicle control, cellular senescence was detected by staining for SA-
β-Gal activity.  

4.3.5 Synergistic effect of nutlin-3 with the NF-κB inhibitor CAPE 

The combination of nutlin-3 with other anticancer agents has been shown in vitro to have 

synergistic effects on tumour cells (Shangary et al., 2009). However, though the simultaneous 

targeting of p53 and NF-κB is considered a promising antineoplastic strategy (Dey et al., 2008), 

a possible favourable interaction between nutlin-3 and NF-κB inhibitors has not yet been 

studied. To explore this issue, we examined whether nutlin-3 and the NF-κB inhibitor CAPE 

would cooperate in exerting antitumour activity against wt-p53 ES cells. For this purpose, VH-

64 cells were chosen because they had exhibited the weakest response to nutlin-3 treatment, as 

judged by PI uptake and DiOC6(3) staining analyses (see Figure 33A and B). As shown in 

Figure 36, nutlin-3 and CAPE cooperated both in eliciting cell death and mitochondrial 

depolarisation. To test for synergy, we analysed the cell death data by the CI method (CI < 1 is 

indicative for a synergistic interaction; (Chou, 2010)). The calculated CI values indicated 
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synergism for the combinations of 10 µM CAPE with 5 µM or 10 µM nutlin-3 and for 25 µM 

CAPE with nutlin-3 at all concentrations (Table 9). 
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Figure 36 Nutlin-3 and the NF-κB inhibitor CAPE cooperate in inducing cell death and Δψm loss in 
VH-64 cells. 
One hour after administration of CAPE, cells were exposed to nutlin-3 for another 48 h. A) Cell death 
and B) Δψm were determined by flow cytometric analyses of PI uptake and DiOC6(3) staining, 
respectively. Means ± SEM of 3 separate measurements are shown. 

Table 9 Combination index values for CAPE plus nutlin-3 in VH-64 cells. 

CAPE (μM) Nutlin-3 (µM) CI 

10 1 1.251 

10 2 1.372 

10 5 0.761 

10 10 0.419 

25 1 0.829 

25 2 0.598 

25 5 0.514 

25 10 0.356 

Based on data from Figure 36A, CI values were calculated using the Chou-Talalay method.
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4.4 Involvement of serine proteases in HDACi-induced cell death 

Results from initial experiments employing the serine protease inhibitor AEBSF (4-(2-

aminoethyl) benzenesulfonyl fluoride hydrochloride) suggested a role for serine protease activity 

in HDACi-induced apoptosis in MCF-7 cells. This was initially found by Michael Sigler from 

our group. To reproduce this finding, cells were treated with AEBSF and cotreated with varying 

concentrations of vorinostat, and cells were analysed by cell cycle analysis. It was again 

observed that the vorinostat-induced apoptosis was reduced by AEBSF (Figure 37). 
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 Figure 37 Effect of z-VAD-fmk and AEBSF on vorinostat in MCF-7 cells. 
Cells were pretreated with 20 µM of z-VAD-fmk or 50 µM of AEBSF one hour prior to the application of 
vorinostat, then incubated for 168 h. Cell cycle analysis was assessed by using flow cytometry. Means of 
3 separate experiments are shown. 

4.4.1 AEBSF prevents HDACi-mediated apoptosis in SKOV-3 cells 

To extend this finding, we also employed SKOV-3 cells to assess serine protease involvement in 

HDACi-elicited apoptosis by using AEBSF. Cells were pretreated for 1 h with AEBSF or z-

VAD-fmk and further incubated with HDACi (TSA, vorinostat, NaB and MS-275) for 48 h. Cell 

death was determined by PI uptake using flow cytometry. TSA- and vorinostat-induced cell 

death was 45% and 37%, respectively. In the presence of AEBSF, TSA- and vorinostat-induced 

cell death was reduced to 3% and 5%, respectively. In contrast, AEBSF had no effect on cell 

death triggered by NaB and MS-275. For comparison, the pan-caspase inhibitor z-VAD-fmk 

reduced cell death mediated by all four HDACi (Figure 38). 
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Figure 38 AEBSF protects against HDACi-mediated cell death in SKOV-3 cells. 

An hour after administration of AEBSF, cells were further incubated with HDACi for 48 h. Cell death 
was determined by PI uptake using flow cytometry. Means of 3 separate experiments are shown. 

4.4.2 AEBSF reduces TSA-mediated cytotoxic effect in SKOV-3 cells 

To validate the protecting effect of AEBSF on TSA-induced cytotoxicity, cells were pretreated 

with AEBSF and cotreated with 1 µM of TSA for 10 days, and clonogenic assay was performed. 

Figure 39 shows that the cyctotoxic effect of TSA was fully suppressed by AEBSF under these 
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Figure 39 AEBSF protects against TSA-mediated cytotoxic effect in SKOV-3 cells. 

An hour after administration of AEBSF, cells were treated with TSA and incubated for 10 days, after 
which a clonogenic assay was performed. Means of 3 separate experiments are shown. 

82 
 



  Results                   

extremely toxic conditions. This effect of AEBSF seemed too strong to be due to a specific 

inhibition of proteases and, thus, prompted speculation that it was, rather, due to a direct 

inactivation of TSA by AEBSF. 

4.4.3 AEBSF prevents TSA-mediated HDAC inhibition in both SKOV-3 and 

A549 cells 

To verify this speculation, it was tested whether AEBSF could impede the effect of TSA on 

HDAC enzymatic activity in SKOV-3 cells. HDAC activity was measured in cells pretreated 

with various concentration of AEBSF and cotreated with TSA, vorinostat and NaB. HDAC 
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 Figure 40 HDAC activity was measured using Boc-K(Ac)-AMC in cells. 

A549 

A) SKOV-3 cells, B) A549 cells. HDAC activity was measured using Boc-K(Ac)-AMC. Means ± SEM of 3 
separate experiments are shown. 
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activity was measured in intact cells as described by Beckers and coworkers (Ciossek et al., 

2008). AEBSF potently impaired the HDAC inhibitory effect of TSA and vorinostat, but it left 

NaB action unscathed (Figure 40A). For comparison, the pan-caspase inhibitor z-VAD-fmk did 

not affect the inhibitory action of TSA. To confirm the effect of AEBSF on TSA-mediated 

HDAC inhibition, AEBSF effect on TSA was investigated in another cancer cell line, A549, 

yielding similar results (Figure 40B).  

4.4.4 AEBSF prevents TSA-mediated HDAC inhibition in a cell-free system 

As well, recombinant HDAC1 activity was measured using a cell-free assay. Figure 41 shows 

that 50 µM, 100 µM, and 200 µM of AEBSF also impaired the recombinant HDAC1 inhibitory 

effect of TSA in this system. 
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 Figure 41 Recombinant HDAC1 activity was measured using Boc-K(Ac)-AMC. 
Means ± SEM of 3 separate experiments are shown. 

4.4.5 AEBSF reduces HDACi-induced acetylation of histone H4 in both 

SKOV-3 and A549 cells 

In addition, SKOV-3 and A549 cell lines were used to examine AEBSF effect on HDACi-

induced acetylation of histone H4 by analysing the acetylation status of H4. Cells were 

pretreated with AEBSF for an hour and cotreated with TSA, vorinostat and NaB, and further 

incubated for 24 h. Total protein was prepared and subjected to Western blot analysis (Figure 

42). 

Treatment with TSA and vorinostat resulted in marked accumulation of acetylated histone H4 

after 24 h in both SKOV-3 and A549 cells. Pretreatment with AEBSF reduced accumulation of 

acetylated histone H4 in both SKOV-3 and A549 cells. 
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Figure 42 AEBSF prevents HDACi-induced acetylation of histone H4. 

A) SKOV cells and B) A549 cells. Cells were pretreated with AEBSF and cotreated with HDACi, further 
incubated for 24 h. Cells were harvested and Western blot analysis carried out using anti-Acetyl-histone 
H4 and GAPDH antibodies.  
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5 DISCUSSION 

5.1 HDACi vorinostat-induced G2/M arrest in MCF-7 breast 

cancer cells 

HDACi are potent anti cancer agents, which exert a diverse range of effects on cell growth and 

survival in neoplastic cells. They have been shown to induce transformed cell death by inducing 

growth arrest, extrinsic and intrinsic apoptosis pathway, senescence, mitotic cell death, 

autophagic cell death and anti angiogenesis through transcription-dependent and transcription-

independent mechanisms (Minucci et al., 2006;Xu et al., 2007). As well, studies have revealed 

that HDACi-induced G1 and G2/M cell cycle arrest, cell differentiation and cell death are more 

pronounced in cancer cells than in normal cells (Ruefli et al., 2001;Minucci et al., 2006;Oh et 

al., 2010). 

HDACi-induced G1 cell cycle arrest is accomplished by induction of p21WAF1 expression in 

different cancers (Richon et al., 2000;Huang et al., 2000;Gui et al., 2004;Ocker et al., 2007;Noro 

et al., 2010;Hrzenjak et al., 2010). HDACi-induced G2/M cell cycle arrest has been reported in a 

few studies (Qiu et al., 2000;Roy et al., 2005;Strait et al., 2005;Takai et al., 2006;Yang et al., 

2009). However, little is known how the G2/M arrest is brought about. Therefore, in the present 

study we investigated the mechanism of HDACi-induced G2/M cell cycle arrest. In an earlier 

study, we demonstrated that HDACi require activated caspases to induce apoptosis in A549 and 

PC-3 cells. Concomitantly, we found that HDACi induced a strong G2/M cell cycle arrest in both 

the cell lines, when apoptosis was blocked through the inhibition of caspase activity 

(Sonnemann et al., 2006).  

To facilitate this study, we employed caspase-3-deficient MCF-7 breast cancer cells, a cell line 

which responds to HDACi treatment by undergoing cell cycle arrest rather than apoptosis. 

Hence, it allows studying HDACi-induced cell cycle effects without inhibiting caspase activity. 

The data presented here indeed show that HDACi inhibited cell proliferation through inducing 

cell cycle arrest in G2/M phase in MCF-7 cells. In addition, this study also shows the 

involvement of the proteasome and NF-ĸB signalling in HDACi-induced cell cycle arrest. 

Vorinostat is a main member of HDACi and a potent inhibitor of tumour cell growth both in 

culture (Richon et al., 1998) and in tumour-bearing animal models (Cohen et al., 1999;Butler et 

al., 2000). It has been shown to induce cell cycle arrest in several human transformed cell lines, 

86 
 



                                                                                                                                                        Discussion                     

 
including prostate carcinoma, bladder carcinoma, myeloma, breast carcinoma, and murine 

erythroleukemia cells (Richon et al., 1996;Huang and Pardee, 2000;Richon et al., 2000;Butler et 

al., 2000;Butler et al., 2002). In this study, we found vorinostat to inhibit cell proliferation in a 

dose-dependent manner by inducing a weak G1 arrest at low concentrations and a strong G2/M 

arrest at higher concentrations. By which mechanism may HDACi induce G2/M arrest? 

Typically, DNA damage leads to cell cycle arrest (Bunz et al., 1998;Xiao et al., 2006;Wei et al., 

2010;Nam et al., 2010). We, thus, hypothesised that HDACi treatment induces a DNA damage 

response. In fact, HDACi have been reported to cause DNA damage (Gaymes et al., 

2006;Munshi et al., 2006;Zhang et al., 2006;Lee et al., 2010). In order to evaluate whether 

HDACi induce DNA damage in tumour cells, we analysed proteins typically involved in the 

DNA damage response. We found that vorinostat induced phosphorylation of H2AX (γH2AX) 

at Ser139, which is a marker for DNA damage (Burma et al., 2001), suggesting that HDACi 

treatment indeed produces DNA damage. 

In addition, we checked for phosphorylation of ATM in vorinostat-treated MCF-7 cells. DNA 

damage, particularly induction of DNA double-strand breaks (DSBs), has been reported to 

activate ATM through auto- or trans-phosphorylation of Ser1981. It has also been shown that 

DNA damage leads to cell cycle arrest through the activation of ATM (Bakkenist et al., 2003). 

In accordance with the data published, we observed that vorinostat induced ATM 

phosphorylation. Vorinostat-induced ATM phosphorylation could be inhibited by caffeine (an 

inhibitor of ATM and ATR), indicating that ATM phosphorylation is brought about by 

autophosphorylation. These data are in line with the hypothesis that the vorinostat-induced G2/M 

cell cycle arrest is the result of DNA damage and mediated by ATM. These results are also 

concordant with previous studies that reported a TSA- and NaB-induced DNA damage response 

(Ju and Muller, 2003;Kim et al., 2009). Other HDACi have also been shown to induce ATM 

phosphorylation in various cancer cells (Gaymes et al., 2006;Rosato et al., 2010). 

As our findings indicated that vorinostat triggered cell cycle arrest by inducing DNA damage, 

we examined other proteins involved in the DNA damage response and/or cell cycle 

progression, i.e. phospho-CHK1, -CHK2, -p53, -BRCA1, -p95/NBS1, -RAD-17, -Akt (Kastan et 

al., 2000;Zhao et al., 2001). However, we could not detect the phophorylation of any of these 

proteins mediated by vorinostat treatment. 

To establish the involvement of ATM in vorinostat-induced G2/M arrest, we employed caffeine 

and the ATM specific inhibitor KU-55933 in the cell cycle analyses. However, although caffeine 

had been found to prevent vorinostat-induced ATM phosphorylation, both inhibitors had no 
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effect on vorinostat-induced G2/M arrest. This finding suggests that ATM is not necessary for 

the G2/M arrest mediated by vorinostat. This conclusion is further corroborated by experiments 

which addressed the involvement of CHK1 and CHK2 in vorinostat-induced G2/M arrest. CHK1 

and CHK2 are major effectors of ATM, linking DNA damage to cell cycle arrest (Branzei et al., 

2008). As shown in Figure 14, pretreatment with inhibitors of CHK1 and CHK2 had no 

significant effect on vorinostat-induced G2/M arrest. Taken together, these results suggest that 

the vorinostat-induced G2/M arrest is caused by other mechanisms than activation of the ATM-

CHK2 pathway. 

To gain additional insight into the mechanism of vorinostat-induced G2/M arrest, other 

components involved in cell cycle regulation were studied. One component with an important 

role in cell cycle regulation is the proteasome (Mu et al., 2007). The proteasome inhibitor 

bortezomib is known to disrupt this process (Murakawa et al., 2007). Bortezomib (also called 

PS-341, VelcadeTM) has been approved by the FDA for the treatment of multiple myeloma and 

is now undergoing clinical trials for many other types of cancer (Adams, 2002;Voorhees et al., 

2003;Adams, 2004). Thus, as the proteasome is involved in cell cycle regulation (Richardson 

and Anderson, 2003;Jackson et al., 2005;Sterz et al., 2008), we studied its role in vorinostat-

induced G2/M arrest in MCF-7 cells by using bortezomib. Our result shows that the vorinostat-

induced G1 arrest was abrogated by pretreatment with bortezomib at lower concentration. A low 

dose of bortezomib turned the vorinostat-induced G1 arrest to a G2/M arrest and a high dose of 

bortezomib neutralised vorinostat-induced G2/M arrest, suggesting that the proteasome has a role 

in vorinostat-induced cell cycle arrest. These data are in agreement with the findings in colon 

cancer cell lines (Pitts et al., 2009). According to this observation, we found that both vorinostat 

and a lower concentration of bortezomib resulted in a synergistic inhibition of proliferation in 

MCF-7 cells.  

Bortezomib has been shown to suppress NF-κB activity by blocking IkBα degradation 

(Hideshima et al., 2003). We, thus, tested whether the observed effects of bortezomib on 

vorinostat-induced G2/M arrest could be due to the inhibition of NF-κB activity. Therefore, we 

employed the NF-κB inhibitor CAPE. The results obtained by using CAPE revealed that the 

vorinostat-induced G2/M arrest was increased by cotreatment with CAPE at lower concentration 

(10 µM), but neutralised at higher concentration (50 µM). This result perfectly reflects the one 

obtained with the proteasome inhibitor and suggests that NF-κB is involved in the G2/M arrest 

brought about by vorinostat. In addition, another specific NF-κB inhibitor, BAY 11-7082, 
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reduced the vorinostat-induced G2/M arrest, which is in concordance with the result obtained by 

vorinostat in combination with CAPE. 

Further, we also analysed the involvement of NF-κB in vorinostat-induced G2/M arrest using 

indirect NF-κB inhibitors such as flavopiridol and roscovitin. We observed similar effects as 

with CAPE on cell cycle arrest, confirming the involvement of NF-κB in vorinostat-induced 

G2/M arrest. It has been reported that HDACi mediated the activation of NF-κB through the 

PI3K/Akt pathway (Denlinger et al., 2005). Therefore, we assessed whether the PI3K/Akt 

inhibitor LY294002 could mimic the inhibition of NF-κB. We found that the inhibition of 

vorinostat-induced cell cycle arrest by PI3K/Akt inhibitor LY294002 mimicked the NF-κB 

inhibition. This finding is compatible with the notion that vorinostat induces NF-κB through 

activating PI3K/Akt pathway and further confirms the contribution of NF-κB in HDACi-induced 

cell cycle arrest. 

Summing up, our experimental data demonstrate that vorinostat inhibits cell proliferation by 

inducing G2/M cell cycle arrest in MCF-7 cells. We present novel data on the mechanism of 

vorinostat-induced G2/M cell cycle arrest in MCF-7 cells. Vorinostat was able to induce 

phosphorylation of ATM at Ser1981 and γH2AX at Ser139. Though these two proteins were not 

found to be directly involved in vorinostat-induced cell cycle arrest, the induced 

phosphorylations of these proteins provide evidence that vorinostat-induced a DNA damage 

response. Vorinostat-induced G2/M cell cycle arrest is affected by the proteasome and NF-κB 

pathway.  

Since p53, a powerful tumour suppressor protein protecting cells from neoplastic transformation 

by mediating apoptosis and cell cycle arrest (Vousden et al., 2007), is a target of ATM, we 

wondered whether p53 might have a role in the observed vorinostat-induced G2/M arrest. 

Therefore, we employed the MDM2 inhibitor nutlin-3 to determine the role of p53 in vorinostat-

induced G2/M arrest in MCF-7 cells. Nutlin-3 functions by restoring the p53 protein by 

interrupting the p53 and MDM2 protein complex. The obtained result shows that nutlin-3 

prevented the vorinostat-induced G2/M arrest, suggesting that p53 has a role in vorinostat-

induced G2/M arrest in MCF-7 cells. 

To confirm this observation in another cell line, we tested the combination of nutlin-3 and 

vorinostat in p53 wild-type A549 cancer cells. Interestingly, in A549 cells we observed 

enhanced apoptosis by combination treatment with vorinostat and nutlin-3. Hence, the 

combination effects of vorinostat and nutlin-3 were further investigated in detail. 
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5.2 Synergistic activity of HDACi with nutlin-3 in p53 wild-type 

cancer cells 

The second part of our study was to explore the combined effect of nutlin-3 and HDACi on 

cancer cells. We noted that nutlin-3 synergistically acted with four compounds representative for 

four different structural classes of HDACi to produce cytotoxic effects in p53 wild-type (wt) 

A549 and A2780, but not in p53 null PC-3 carcinoma cells. We found that nutlin-3 and HDACi 

cooperated to trigger cell death, and combination index (CI) analysis revealed that this 

interaction was synergistic. These findings are in good agreement with a study on the 

cooperative induction of p53 target genes by the treatment of nutlin-3 in combination with 

knockdown of HDAC2 (Harms and Chen, 2007). 

Similar to the majority of anticancer agents, nutlin-3 and HDACi cause cell death by eliciting 

apoptosis (Xu et al., 2007;Brown et al., 2009). Our results indicate that the combined treatment 

of nutlin-3 and HDACi produced a cooperative induction of apoptosis. We found that nutlin-3 in 

combination with HDACi cooperatively provoked loss of Δψm and caspase-3 activation, both 

indicative for apoptosis (Figure 23 and 24). In addition, the use of the pan-caspase inhibitor z-

VAD-fmk showed that caspase activity was required to some extent for nutlin-3/HDACi-

induced cell death. Nutlin-3 has been shown to trigger cell cycle arrest rather than apoptosis in 

ten randomly selected cancer cell lines (Tovar et al., 2006). Nutlin-3 was observed to mediate G1 

and/or G2/M arrest in all the cell lines, but apoptosis in only a few cell lines, with A549 being 

hardly apoptotically responsive. In agreement with this finding, we also noted that nutlin-3 

treatment alone was not effective in A549 as well as in A2780 cells. Thus, our findings suggest 

that the cotreatment of HDACi converts the nutlin-3 effect from cell cycle arrest into apoptosis. 

To throw light on the mechanism of the observed synergistic activity of nutlin-3 and HDACi, we 

determined the acetylation of p53 and the gene expression of MDM2 and MDM4. Our findings 

revealed that i) HDACi may act together synergistically with nutlin-3 by stimulating p53 

hyperacetylation. It has been reported that the acetylation of p53 is required for p53 activation 

(Tang et al., 2008). As expected, the abundance of total p53 was enhanced by nutlin-3 treatment 

but we failed to observe an increase in acetylated p53 after nutlin-3 treatment in A549 cells. 

Nevertheless, nutlin-3 in combination with vorinostat resulted in a strong increase of acetyl-p53 

(Figure 27). These observations suggest the explanation that nutlin-3 treatment could induce 

total, nonacetylated and biologically low active p53; HDACi treatment subsequently induces 
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acetylation and hyperactivation of p53. - ii) HDACi may enhance the antitumour activity of 

nutlin-3 through the suppression of nutlin-3-mediated MDM2 expression. Activation of p53 is 

required for the upregulation of MDM2, which in turn downregulates p53 (Vousden et al., 

2007). Hence, by activating the p53 target MDM2, nutlin-3 could probably limit its own 

efficacy. Here, we have shown that nutlin-3-induced MDM2 gene expression was reduced by 

vorinostat (Figure 28A). - iii) HDACi may enhance nutlin-3-induced tumour cell death by 

downregulating the gene expression of MDM4. MDM4 is the second main p53 negative 

regulator; it is structurally homologues but functionally not redundant to MDM2. Unluckily, 

nutlin-3 and other MDM2-targeting agents fail to successfully target MDM4 (Brown et al., 

2009). Rather, overexpression of MDM4 renders tumour cells resistant to nutlin-3 (Hu et al., 

2006;Patton et al., 2006;Wade et al., 2006). It has been reported that concurrent targeting of 

MDM2 and MDM4 produced effective apoptosis in tumour cells overexpressing MDM2 and 

MDM4 (Hu et al., 2007). In this study, we have found that MDM4 gene expression was reduced 

by vorinostat (Figure 28B).  

The above explanations are not mutually exclusive, but they require that HDACi augment 

nutlin-3-induced apoptosis by exerting p53-dependent and p53-independent effects. It has also 

been observed that HDACi increase the acetylation of p53, which in turn promotes p53 to induce 

its target genes (Luo et al., 2000). Further, we found HDACi reduced MDM2 gene expression, 

indicating that HDACi may exert p53-independent effects on p53 targets. Consistently, HDACi 

have indeed been reported to increase the expression of the p53 target p21 in a p53-independent 

manner (Nakano et al., 1997;Vrana et al., 1999). Therefore, it is also possible that HDACi have 

a p53-independent effect on the regulation of p53 targets such as proapoptotic proteins, thus 

lowering the threshold for nutlin-3-mediated apoptosis. 

In a clinical point of view, two main aspects should be considered when implementing the nutlin-

3 combination therapy. Firstly, nutlin-3 has to clearly collaborate with the agent it is combined 

with. Studies have shown that nutlin-3 synergises with other agents e.g. the genotoxic cytostatics 

doxorubicin, chlorambucil, cisplatin, etoposide and topotecan (Barbieri et al., 2006;Coll-Mulet 

et al., 2006;Laurie et al., 2006), the apoptosis-inducing cytokine TRAIL (Secchiero et al., 

2007a), the proteasome inhibitor bortezomib (Ooi et al., 2009) and the BCR/ABL kinase 

inhibitor imatinib (Kurosu et al., 2010), but nutlin-3 has also been shown to protect against 

paclitaxel-induced cytotoxicity (Carvajal et al., 2005;Tokalov et al., 2010), the antimetabolites 

gemcitabine and cytarabine (Kranz and Dobbelstein, 2006), and the polo-like kinase 1 inhibitor 

BI-2536 (Sur et al., 2009). Therefore, potential combination therapies of nutlin-3 have to be 
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cautiously assessed to ensure a successful application [of note, the protecting effect of nutlin-3 

may be exploited for the treatment of patients with p53 mutant tumours, a concept known as 

cyclotherapy (Brown et al., 2009)]. In this study, we have shown that HDACi are a class of 

drugs that synergise with nutlin-3, on the other hand, it confirms that nutlin-3 prevents 

paclitaxel-induced cytotoxic effects. Secondly, nutlin-3 may best be combined with agents that 

induce tumour cell death through independent effect of p53. It has been shown that nutlin-3 is an 

effective p53 activator and, therefore, may put heavy selection pressure on tumour cells for loss 

of p53 function to generate treatment resistance. The development of nutlin-3 resistance could 

be prevented by cotargeting p53-independent of pathways. HDACi have been reported both in 

vitro and in vivo to mediate apoptosis independently of p53 (Vrana et al., 1999;Ruefli et al., 

2001;Insinga et al., 2005b;Lindemann et al., 2007), and our findings presented here also reveal 

the susceptibility of p53 null PC-3 cells to vorinostat-mediated cell death. Recently, it has been 

reported that cotreatment of HDACi abolished the development of resistance against cisplatin, 

the EGFR kinase inhibitor erlotinib and the RAF kinase inhibitor AZ628 (Sharma et al., 2010), 

providing support for the general utility of HDACi in overcoming drug resistance.  

Nutlin-3 is a promising agent for antitumour treatment. However, nutlin-3 treatment alone may 

be inadequate to produce the antitumour effect. In a report on an orthotopic retinoblastoma 

model, nutlin-3 failed to reduce tumour growth as a single agent, whereas in combination with 

topotecan delivered a significant antitumour effect (Laurie et al., 2006). Therefore, nutlin-3 may 

have to be combined with other treatment regimens to accomplish a successful result. In this 

study, we have illustrated that the antitumour efficacy of nutlin-3 can be significantly enhanced 

by the cotreatment of HDACi. This effect was noted with all four structurally different 

compounds assessed, indicating an HDACi class effect. These in vitro study results provide a 

support for an in vivo investigation into the therapeutic potential for this combination of drugs. 

5.3 Anticancer effects of the p53 activator nutlin-3 in Ewing's 

sarcoma cells  

Ewing's sarcoma (ES) is the second most common malignant bone tumour after osteosarcoma 

(one to three cases per million people/year). It mainly affects paediatric or young adult patients, 

and arises from mesenchymal tissues. (Bernstein et al., 2006;Ordonez et al., 2009). Since 1970, 

the survival of patients with ES has increased substantially. At present, the 5-year overall 

survival rate for localised ES is about 75% (Granowetter et al., 2009). As these tumours are 
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aggressive, multimodality therapy involving chemotherapy and local therapy like surgery and/or 

radiation is always essential. 

Approximately half of all tumours have p53 mutations (Vogelstein et al., 2000). In contrast, p53 

mutations are infrequent in ES (Park et al., 2001;Huang et al., 2005;Iwamoto, 2007;Schaefer et 

al., 2008). In consequence, the majority of ES patients are potentially amenable to p53-based 

targeted therapeutic strategies. Considering this, pharmacological activation of p53 was 

investigated using nutlin-3 as a novel approach for the treatment of ES. The direct and specific 

targeting of p53 provides an attractive therapeutic option for ES in view of the low prevalence of 

p53 mutations in this type of tumour.  

Several preclinical studies have demonstrated the therapeutic potential of nutlin-3 in a variety of 

childhood tumours with wt-p53, i.e. in rhabdomyosarcoma (Miyachi et al., 2009), in 

osteosarcoma (Vassilev et al., 2004;Muller et al., 2007), in synovial sarcoma (D'Arcy et al., 

2009), in neuroblastoma (Van Maerken et al., 2006), in retinoblastoma (Laurie et al., 2006), and 

in acute lymphoblastic leukaemia (Gu et al., 2008). 

In the third part of this study, we have investigated the effects of nutlin-3 in ES cells and found 

nutlin-3 treatment to increase p53 protein (Figure 30) and to induce expression of p53 target 

genes (P21, MDM2, PUMA) in ES cells with wt-p53 (Figure 31), but not in ES cells with mt-

p53. In addition, we have found that nutlin-3 elicited significant cell death only in wt-p53 ES 

cells (Figure 33). These results are consistent with the previous study that the functional effects 

of nutlin-3 treatment primarily depend on the presence of wt-p53 (Shangary et al., 2009). 

However, we also observed nutlin-3 to reduce cell growth in mt-p53 cells (Figure 32). This is 

perhaps explained by residual activity of the point-mutated [C176F (Kovar et al., 1993)] p53 in 

SK-ES-1 cells or by p53-independent effects of nutlin-3. The former explanation is not 

considered likely due to the lack of nutlin-3 effect on p53 abundance and p53 target gene 

expression in SK-ES-1 cells. The latter, nevertheless, is supported by recent articles in which 

nutlin-3 was demonstrated to reduce cell viability in mt-p53 cells (Van Maerken et al., 2006), to 

induce cell cycle arrest in p53-deficient cells (VanderBorght et al., 2006), and to enhance 

chemotherapy-mediated apoptosis in mt-p53 cells (Ambrosini et al., 2007). p53-independent 

nutlin-3 effects were explained by nutlin-3-mediated activation of other MDM2 binding 

partners, such as the transcription factor E2F1 and the p53 homologue p73 (Ambrosini et al., 

2007;Secchiero et al., 2007b;Lau et al., 2008;Peirce and Findley, 2009;Tabe et al., 2009). From 

these observations, it is now understood that the anticancer activity of nutlin-3 does not solely 

depend on the existence of wt-p53. On the other hand, it should be noted that nutlin-3 treatment 
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does not produce a strong effect in mt-p53 SK-ES-1 cells, in accordance with the relatively 

lower efficacy of nutlin-3 in mt-p53 and p53-deficient cells found in the previous studies (Van 

Maerken et al., 2006;VanderBorght et al., 2006;Ambrosini et al., 2007;Lau et al., 

2008;Michaelis et al., 2009;Tabe et al., 2009). 

p53 suppresses the development and the progression of tumour by mediating cell cycle arrest 

and, importantly, apoptosis, but it is not fully understood how the decision is made between 

these outcomes in response to p53 activation (Vousden et al., 2009). Nutlin-3 treatment was 

found to promote cell cycle arrest rather than apoptosis in a study engaging ten randomly 

selected cancer cell lines (Tovar et al., 2006). In contrast, our results suggest that nutlin-3 

treatment leads to the initiation of apoptosis in wt-p53 ES cells. We noted that nutlin-3 induced 

Δψm dissipation, caspase-3 activation and DNA fragmentation, three common features of 

apoptosis (Figure 33 and 34). In addition, nutlin-3 also induced gene expression of PUMA, 

which is an important mediator of p53-induced apoptosis (Yu and Zhang, 2008) in wt-p53 cells. 

However, we also observed that SK-ES-1 cells were resistant against nutlin-3-induced apoptosis, 

demonstrating that the observed anticancer effects of nutlin-3 in mt-p53 ES cells were mainly 

the result by cell growth inhibition. Very recently, a similar set of findings was published by 

Pishas et al. Both the results and implications of this study are in good agreement with our data 

(Pishas et al., 2011). 

As an additional finding of the apoptosis determinations, nutlin-3-mediated apoptosis appeared 

to occur independent of caspase-8. We have found that nutlin-3 mediated an apoptotic response 

in CADO-ES-1 cells, a caspase-8-deficient cell line (Fulda et al., 2001). Caspase-8 has been 

shown to be necessary for p53-induced apoptosis in ES cells (Kovar et al., 2000). Yet, this was 

concluded from the apoptosis-inhibitory effect of the putative caspase-8-specific inhibitor z-

IETD-fmk, which has recently been found to unselectively suppress the proteolytic activity of 

several caspases, including the effector caspases-3 and -7 (McStay et al., 2008;Pereira and Song, 

2008). 

In addition to eliciting apoptosis, we have noted that nutlin-3 was also capable of inducing 

cellular senescence in ES cells (Figure 35). The chemotherapy-mediated regression of cancers 

has long been ascribed to the drug's ability to mediate apoptosis, but recently it has been 

recognised that the induction of cellular senescence, an irreversible cell cycle arrest, can 

contribute to the therapeutic efficacy of anticancer agents (Ewald et al., 2010). In particular, 

restoration of p53 activity has been revealed to produce tumour regression by inducing 

senescence rather than apoptosis in a mouse liver carcinoma model (Xue et al., 2007). Our result 

94 
 



                                                                                                                                                        Discussion                     

 
shows that nutlin-3 activates pleiotropic antineoplastic mechanisms in ES, indicating that nutlin-

3 may be effective in the treatment of tumours with reduced apoptotic responsiveness. 

A number of studies have been shown that nutlin-3 can synergistically act with other anticancer 

agents, e.g. various cytostatics (Barbieri et al., 2006;Coll-Mulet et al., 2006;Laurie et al., 

2006;Ambrosini et al., 2007;Miyachi et al., 2009;Peirce et al., 2009;Tabe et al., 2009), the 

apoptosis-inducing cytokine TRAIL (Secchiero et al., 2007a), the proteasome inhibitor 

bortezomib (Ooi et al., 2009) and histone deacetylase inhibitors (this thesis, see Results part 2). 

However, nutlin-3 in combination with inhibitors of NF-κB has not been investigated until now. 

It has been reported that aberrant NF-κB activity is involved in cancer development and 

progression (Baud and Karin, 2009). Consequently, NF-κB inhibitors have been shown to be 

active against cancer cells as single agents and in combination with other antitumour therapies. 

Studies have been reported that NF-κB inhibition enhances the apoptotic activity of TNF-α 

(Javelaud et al., 2000) and HDACi (Sonnemann et al., 2007) in ES cells. In Figure 36, we found 

NF-κB inhibitor CAPE enhanced nutlin-3-mediated cell death. Therefore, this finding supports 

the idea of simultaneous targeting of p53 and NF-κB as anticancer strategy (Dey et al., 2008).  

From a clinical point of view, nutlin-3 has the advantage that it is capable of activating p53 in a 

nongenotoxic manner, hence avoiding the DNA damage which is major disadvantage of 

cytotoxic antineoplastic agents. By this way, nutlin-3 may be particularly advantageous for the 

treatment of childhood cancers. Currently, the implementation of intensive chemotherapy has 

helped in controlling neoplasias in childhood, however, the severe long-term adverse effects of 

the existing genotoxic treatment regimens are major problems for survivors of childhood cancer 

(Armstrong et al., 2009). Specifically, survivors of ES are vulnerable to long-term posttherapy 

complications, mainly second primary malignancies and cardiac dysfunction (Ginsberg et al., 

2010). Therefore, anticancer therapeutic strategies with less genotoxic drugs are of high priority 

and, thus, our findings presented here establish the potential application of nutlin-3 for treating 

patients with ES. 

5.4 Involvement of serine proteases in HDACi-induced cell death 

The aim of the last part of this thesis was to verify the involvement of serine proteases in 

HDACi-induced apoptosis. Previous experiments had shown that an inhibitor of serine 

proteases, AEBSF, protected MCF-7 cells from HDACi-induced cell death. This observation 

(Dissertation of Michael Sigler) suggested that serine proteases have a role in HDACi-induced 

apoptosis. 
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In line with this observation, a recent study has been shown that the hydroxamic acid HDACi 

TSA induces caspase-independent, but serine protease-dependent apoptosis in pancreatic cancer 

cells (Garcia-Morales et al., 2005). In keeping, we observed that TSA-induced apoptosis was 

inhibited by the treatment with AEBSF (Figure 38). In serine proteases, the serine residue in the 

active site is sulfonylated by AEBSF (Powers et al., 2002); in addition, AEBSF may also 

covalently modify other proteins (Conboy et al., 2008). 

Our data show that TSA- and vorinostat-induced apoptosis was not completely blocked by the 

caspase inhibitor z-VAD-fmk in SKOV-3 cells. Interestingly, the serine protease inhibitor 

AEBSF was able to fully block apoptosis induced by TSA and vorinostat. In contrast, NaB- and 

MS-275-induced apoptosis, which could be inhibited by z-VAD-fmk, was not affected by 

AEBSF (Figure 38). These results suggested that all HDACi induce apoptosis through a caspase-

dependent mechanism, but TSA and vorinostat induce apoptosis also through a serine protease-

dependent mechanism. Similar results were obtained in A549 cells (data are not shown). 

Furthermore, the effect of AEBSF on HDACi-mediated cell death was validated by performing 

clonogenic assays, that is, cells were continuously exposed to 1 µM TSA for 10 days. Even 

under this extremely toxic condition, we observed the complete suppression of the cytotoxic 

effect of TSA by AEBSF treatment (Figure 39). This AEBSF effect appeared too strong to us to 

believe that it may be due to a specific inhibition of proteases and, therefore, provoked the 

assumption that it was due to a direct inactivation of TSA by AEBSF. 

If AEBSF directly inactivates the action of TSA, the HDAC inhibitory effect of TSA should be 

impeded by AEBSF. First, based on this hypothesis, we determined the HDAC activity in intact 

cells (Ciossek et al., 2008). As shown in Figure 40A, we noted that the HDAC inhibitory effect 

of TSA and vorinostat was strongly blocked, while the inhibitory effect of NaB remained 

untouched by AEBSF in SKOV-3 cells. In contrast, the effect of TSA was not affected by the 

treatment with the pan-caspase inhibitor z-VAD-fmk (Figure 40). Similar results were also 

obtained in A549 cells (Figure 40B), indicating a general effect. In connection with these 

findings, we also determined acetylated histone H4 by using Western blots analysis. We found 

that AEBSF treatment was able to block TSA- and vorinostat-induced, but not NaB-induced, 

histone hyperacetylation in both SKOV-3 and A549 cells (Figure 42). Second, using a cell-free 

assay, the recombinant HDAC1 activity was measured. Also, in this system, the effect of TSA 

was prevented by AEBSF treatment. Thus, our results indicate that AEBSF directly inactivates 

TSA and vorinostat, by this way restraining these HDACi from inhibiting HDAC activity, and, 
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consecutively, from inducing apoptosis. Herein, our finding not only lifts up the concern about 

the effect of AEBSF on HDACi, it also suggests that AEBSF might directly modify other 

compounds. Therefore, it puts the relevance of serine proteases for cellular processes into 

question, particularly in those cases in which the participation of serine proteases was concluded 

from the use of AEBSF as sole serine protease inhibitor, as for instance in a study that has 

shown that serine proteases have a significant function in etoposide-induced apoptosis (de Bruin 

et al., 2003). Therefore, a possible direct effect of AEBSF on small molecule compounds should 

be considered in future studies on serine proteases. 

In conclusion, we have analysed the cell cycle-inhibitory effect of HDACi in MCF-7 breast 

cancer cells, and defined mechanisms involved in HDACi-induced G2/M arrest. Subsequently, 

we have investigated the effects of HDACi in combination with the p53 activator nutlin-3, and 

we have observed that HDACi and nutlin-3 synergised to induce cell death in wt-p53 cells. In 

connection with this finding, we have also found that HDACi induced downregulation of 

MDM2 and MDM4 gene expression as well as hyperacetylation of p53. Further, we have 

evaluated the anticancer effect of nutlin-3 in Ewing’s sarcoma cells, and found that nutlin-3 

killed Ewing’s sarcoma cells as a single agent. Finally, we have demonstrated that AEBSF 

directly inactivated TSA and vorinostat and, in this way, prevented HDACi-induced cell death.  
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