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ABSTRACT 

The analog motion control of a microrobot with feedback requires a more complicated structure due to the 
corresponding sensors, microprocessors and actuators. Application of the digital control system allows the use of 
a control algorithm, such as the autopilot, without feedback, which allows us to simplify the system. We consider 
the stabilization of the motion of the microrobot on a horizontal surface along the given motion trajectory. 
Minimization of the deviation angle of the robot’s axis from the tangent to the motion trajectory is a criterion for 
quality control and can be implemented by the digital device with a hysteresis characteristic. 

Index Terms – micro robot, digital motion control 

1. ANALYTICAL MODEL  

Let’s assume, that the robot is in the 0-X-Y-plane in some initial state, whene at a certain period of time the 

coordinate system  has the values 0, 0, y0, and variables h , 
•
h have the initial values, like it is presented in 

Figure 1. cx - is the longitudinal axis of the robot and V  is the velocity vector of center c. 
  

Let’s mark h (t) as the distance from the center of masses of the robot  to the OY axis. Let the robot 
moves so, that the y-axis stays parallel to the Y axis, which helps to simplify the problem without considering the 
yaw angle.  

Figure 1:  The analytical model of the robot motion  
  

Equation (1) for the value h (t) can be written down in the form suitable for constructing the model of a 
digital control 
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Here h (t) – is the distance, m (t) – is the trajectory control of the robot approximation to the Y axis, r - is the 
parameter (function), which defines, in general,  the influence of ρ - the environmental density, in which the 

robot moves, V - is the velocity and the parameters 54321 ,,,, δδδδδ  - describe aero-hydrodynamic properties 
of the medium.  

  As initial conditions we take  

0(0)h h= , 0)0( =
•
h                                                                                  (2) 

 We consider the velocity V to be constant, V = const. We believe that the effect of the environment on 
the robot cannot be accurately described and therefore we suppose that parameter r  is random. We suppose that 
r  is a random value and it is distributed evenly on any interval NT /=τ , where T - is the time interval of the 
robot approaching with the Y axis, N  is a number of measurements of the parameter on interval T.  

We suppose that r  takes value 
+r  with probability p and value 

−r  with probability 1-p. Since the 
probability p is not known itself and must be calculated in the process of the control (a posteriori), then it is 
necessary to set some a priori probabilities. Let value p take value 1  with a priori probability and value 2

with a priori probability ξ−1 .  
  The criterion of control: it is required to determine an algorithm of the optimal control, minimizing the 
mean square velocity of approaching at the moment of the coincidence of axes y and Y.  

Denote γ=
dt
dh

, then (1) we write down in the form  

                                                         )()( trm
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td =γ
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 Let’s write down (3) in the finite form  

                                                       kkk mrτγγ +=+1                                                                                          (4)  

 where )(1 τγγ kk =+ ,  )( τkmmk =
 Thus, the problem of control of the final state is reduced to the determination of the control influence 
m , which minimizes the quality index  

                                               >>=<=< )()( 22 τγγ NTI                                                                              (5) 

where the angular brackets denote the operation of taking expectation  

To calculate the means in (5) it is necessary to know the a posteriori probabilities, which we denote,  

{ }+=== rrppP 1)(ζα ,  }{ 1
2)( −=== rrppPςβ . 

According to the Bayes’ theorem the calculation of a posteriori (after observation) probabilities is 
carried out according to the formulae  
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 We denote the minimum criteria  J through ),( 0 ζγNf , where )0(0 h=γ - is the initial velocity of the 

robot approaching to the Y axis. This minimum depends on the initial velocity 0γ  and a priori probability ζ
and is defined by the expression 
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 In an arbitrary k +1 sample from the observations value 1+kγ  can take two values   

                                                             kkk mr τγγ ++
+ +=1                                                                                (9) 

                                                              kkk mr τγγ −−
+ +=1                                                                               (10) 

 Let us suppose that in (9), (10) k = 0, then we obtain  

001 mr τγγ ++ += with probability 0                                                                  (11) 

                                                and 001 mrτγγ +=−  with probability 01 p−                                                  (12) 

where 0p - the expected value p , calculated by the formula 

                                                              210 )1( ppp ζζ −+=                                                                         (13) 

 Hence, for N = 1  
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 As a result of the first solution, the process can be transferred  into one of two possible states 
+

1γ and −
1γ with probabilities 0p  and 01 p−  respectively. If the process is transferred into state +γ , then the a 

posteriori probability )(ζα  is calculated, if the process is transferred into state γ , then the a posteriori 
probability )(ζβ   is calculated.  

The optimal solution for one-step process is found by the differentiation of the function (14) according 
to 0m and equating of the partial derivative to zero. As a result we obtain 
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where 
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 Let’s denote  

                                             [ ]τ−+ −+= rprprD iii )1()( ,   2,1=i                                                             (18) 

 Then )(rD  is represented as  

                                                   )()1()()( 21 rDrDrD ςζ −+=                                                                   (19) 

Similarly, denoting  

                    [ ] 2222 ))(1()()( τ−+ −+= rprprD iii , 2,1=i                                               (20) 

we obtain that )( 2rD can be written down through ζ  as  
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 Taking into account  formulae (16) - (21) we can write down expression (14) in the form 
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where 1W  has the form 
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 From (23) taking into account (15) we obtain 

                                                                000 )( γζgm =                                                                                   (24) 

where )(0 ζg  has the form 
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 Let’s consider the case 2≥N , accepting the principle of optimality, we write  down 
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 We apply the method of mathematical induction to (22), we write down 
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 We obtain from (27) 
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 The minimum for )1( +k  step process is  
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 From this recurrent correlation we find the optimal solution in the form  
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 From equations (28), (29) we obtain 
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where 
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 Equations (9), (10) (23) (24) give recurrent algorithms for finding the minimum ),( 0 ζγNf  for N  - 
step control process.  

Let’s consider the control process of microrobots. In the initial state 0γ  with initial information ζ the 
first optimal solution will be  

                                                          010 )( γζ−= Ngm ,                                                                      (39) 

where )(1 ζ−Ng  we find from equations (30) – (34), (37) – (38) when 1−= Nk



 The second optimal solution is taken after observing the random variable at the first stage of the 
solution. If as a result of observations it is found that += rr , then a posteriori probability )(1 ζαζ =  and a 
new state  
                                                                      001 mr τγγ ++ +=                                                                        (40) 

are used as the initial information and the initial state for the remaining 1−N  steps. Then the second optimal 
solution is  
                                                                    [ ] −

−= 111 )( γζβNgm                                                                      (41) 

  Thus, in time interval τ  after the first sample the processor should calculate a posteriori probability 
)(ζα  or  )(ζβ  , a new state 1γ and adopt the second optimal solution 1m .  

 If the observed value of variable r  after the second solution is +r , then a posteriori probability 
)( 12 ζαζ =  and a new state  

                                                                       112 mr τγγ ++ +=                           (42) 

Are used as the initial information and the initial state for the remaining 2−N  steps. If in expression (42) 
+= 11 γγ , then )(1 ζαζ = and 1m  is defined by formula (41). If in expression (40) −= 11 γγ , then 

)(1 ζβζ = and 1m  should be expressed according to (41).  
The third optimal solution is similarly found by formula  

                                                     [ ] +
−= 2132 )( γζαNgm                                                                                   (43) 

 If observed value r  after the second solution is 1−r , then a posteriori probability )( 12 ζβζ =  and a 
new state  

                                                          112 mr τγγ −− +=                                                                                    (44) 

are used to find the third optimal solution, which is calculated by formula  
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 Thus, the optimal control strategy { }1210 ....,, −Nmmmm  for the problem of approaching of the robot 
to the Y axis is found through repeated observations and calculations according to recurrent algorithms 
mentioned above. Each optimal solution is calculated by the processor when using the new information from the 
observations of random variable r . In general, the relay characteristic depends on the angle, the angular velocity 
and the angular acceleration of the robot in the plane of parameters of the aerohydrodynamic damping medium 
and the ratio of the velocity control.  
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