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1. General Introduction 

 

 Diet-related chronic diseases such as coronary heart diseases, metabolic syndrome and 

cancer represent the single largest cause of morbidity and mortality in the United States and 

most of the Western countries (Cordain et al., 2005). Additionally, 60% of the 56.5 million 

deaths worldwide are caused by chronic diseases and half of the deaths are attributable to 

cardiovascular diseases (CVD) (Givens et al., 2006). Many studies are ongoing to investigate 

the dietary and lifestyle factors that are the reason for the development of the so-called 

Western diseases. In the last decades the consumption of animal products has increased, and 

consequently the fat intake and the energy density increased (Givens et al., 2006). A high 

intake of saturated fatty acids (SFA) is positively associated with coronary heart disease and 

mortality rate (Rioux and Legrand, 2007). In contrast to SFA, some unsaturated fatty acids are 

recognised as beneficial to health. A number of studies demonstrated hypo-cholesterolemic 

effects of monounsaturated fatty acids (MUFA) and some polyunsaturated fatty acids (PUFA) 

(Demaison and Moreau, 2002). The particular health benefit has been linked to n-3 PUFA 

which are essential for normal growth and development (Simopoulos, 1991). In addition to n-

3 PUFA, an increasing attention has been paid to another PUFA, namely conjugated linoleic 

acids (CLA). CLA have been demonstrated to enhance the immune system, to reduce body 

weight and to decrease the risk of cancer (Tricon et al., 2005; Bhattacharya et al., 2006). The 

main natural source of cis-9,trans-11 CLA is meat and milk of ruminants (Song and Kennelly, 

2003). According to national and international dietary guidelines, SFA contribution to dietary 

energy intake should be not more than 10% of total daily dietary energy, and the inclusion of 

MUFA into human diet should be up to 15% of total daily energy and to a maximum of 10% 

of total daily energy for PUFA (Wahrburg, 2004). The DACH-Association recommended a 

fat intake of 30% based on the total daily energy intake. Not more than 10% of these should 

be saturated fatty acids, approximately 7-10% should be PUFA and the remaining 10% are 

recommended to be monounsaturated fatty acids (Deutsche Gesellschaft für Ernährung, 

Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für 

Ernährungsforschung, und Schweizerische Vereinigung für Ernährung [DACH, 2008]). One 

way to achieve this is to decrease SFA and increase MUFA and PUFA content of food and of 

meat in particular.  

 Ruminant meat is higher in SFA when compared to pork or poultry meat (Valsta et al., 

2005) but beef is a high-quality product because it is a source of high biological value protein 
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and of a well-balanced ratio of essential amino acids. Furthermore, the essential minerals and 

trace elements such as iron, zinc and cooper are highly bioavailable (Biesalski, 2005). 

Moreover, beef is a source for the vitamins A, B6, B12, D, and E and for long-chain n-3 fatty 

acids (Nuernberg, 2009; Mahecha et al., 2009).  

 

 In this work, the focus is on the exogenous effect of different PUFA in terms of an 

animal diet supplementation (linoleic acid enriched vs. α-linolenic acid enriched diet) on the 

fatty acid distribution, and the effect on protein expression of selected lipogenic enzymes in 

different tissues of bulls.  

 

N-6 and n-3 fatty acids in human health and nutrition 

 It is well known that the amount and type of fat is closely related to human health. An 

intake of more than 15% SFA of the daily energy intake is positively associated with coronary 

heart disease (CHD), mortality rate, and reduced anti-inflammatory properties of the high-

density lipoprotein (Rioux and Legrand, 2007) as well as increased blood cholesterol 

concentrations (Williams, 2000). It should be noted, however, that new systematic reviews 

recommend further evaluation of the relationship between dietary pattern and CHD (Siri-

Tarino et al., 2010, Mente et al., 2009, Mozaffarian et al., 2010).  

 However, unsaturated fatty acids, monounsaturated and polyunsaturated, are recognized 

as beneficial to human health and, in the case of PUFA, as essential. Populations consuming 

the Mediterranean diet, known to be high in MUFA and low in SFA, have clearly lower 

incidences of CVD compared with populations that have high intakes in SFA (Lada and 

Rudel, 2003). The essential PUFA are linoleic acid (C18:2n-6, LA) and α-linolenic acid 

(C18:3n-3, ALA) (Figure 1). 

 

 

Figure 1: Chemical structure of linoleic acid and α-linolenic acid 
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 The essentiality of LA and ALA as precursors for the physiologically important long-

chain PUFAs is based on the lack among all mammals of enzyme systems to introduce a 

double bond in the fatty acid distal to C10 (Simopoulos, 2008; Palmquist, 2009). Figure 2 

demonstrates the pathway of ALA and LA to the long-chain products and the enzymes that 

are involved in this process. The same enzyme system is used for the conversion of LA and 

ALA. but it prefers n-3 compared to n-6 fatty acids. Otherwise, a high intake of LA affects the 

elongation and desaturation of ALA (Simopoulos, 2008). Furthermore, the essentiality of both 

precursors is confirmed by the fact that an inter-conversion of the products is not possible 

(Palmquist, 2009). 

          

     

Figure 2:  N-3 and n-6 pathway to form the physiologically important LC PUFAs (adapted from Palmquist, 

2009) 

 ALA-alpha-linolenic acid; SDA-stearidonic acid; EPA-eicosapentaenoic acid; DPA-docosapentaenoic 

acid (n-3); DHA-docosahexaenoic acid; LA-linoleic acid; DGLA-dihomo-γ-linolenic acid; AA-

arachidonic acid; DTA- docosatetraenoic acid; DPA-docosapentaenoic acid (n-6)  

 

 LC PUFA are primarily found in phospholipids at oil-water interfaces and are important 

components of cell membranes to determine the cell membrane fluidity, because of the 

unsaturation and therefore the influence on the transition temperature of a membrane. They 
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are mainly found on position two in membrane phospholipids, and the position-specific 

phospholipase PLA2 releases the LC PUFA for the conversion to eicosanoids, biologically 

active mediators with 20 carbon residues.  

 Three classes of enzymes, COX, LOX, and CytP450, catalyse the reaction of DGLA, 

AA, and EPA (as precursors for eicosanoids) to prostaglandins, thromboxanes, and 

prostacyclines. These bioactive molecules are involved in different physiological processes 

whereas the eicosanoids of the n-3 series have often an opposing effect, or are less intense 

than the eicosanoids of the n-6 family (Palmquist, 2009). The main processes where 

eicosanoids of the n-3 and n-6 series are involved are the immune and inflammatory response, 

cardiovascular disease, carcinogenesis, development and function of the brain and behaviour, 

and skeletal growth (Palmquist, 2009; Simopoulos, 2008).  

 The cytokines formed from AA (n-6) are inflammatory cytokines stimulating white 

blood cells (Simopoulos, 2008). An increased intake of EPA and DHA replaces AA, and 

more cytokines from the n-3 series with anti-inflammatory effects will be produced. The 

positive effects are mainly localized when the disease is present, such as in the case 

rheumatoid arthritis (Palmquist, 2009) and asthma (Simopoulos, 2008).   

 EPA and DHA have favourable effects on CVD through anti-atherosclerotic actions. 

With more distinct evidence of in vitro studies than in human studies, (probably due to 

transient endothelial activations) DHA and EPA reduce the concentrations of the pro-

inflammatory cytokines IL-1β, IL-6, and TNF-α as well as the mRNA concentrations of pro-

atherosclerotic growth factors and monocyte chemotactic protein-1 in mononuclear cells. 

Cardioprotective effects of the dose dependent application of DHA and EPA in human studies 

are on arrhythmias, endothelial function, inflammation, thrombosis as well as the modulation 

of both the fasting and postprandial blood lipid profile (Palmquist, 2009). As a novel risk 

factor for death from CVD the n-3 index is proposed. It is the sum of EPA+DHA in 

erythrocyte membranes. This sum has been demonstrated to reflect the human myocardial 

EPA and DHA content. 

 Anti-carcinogenic effects of n-3 FA, and especially DHA and EPA were found in 

animal and in vitro studies. The following molecular mechanisms seem to be included in 

these pathways: the inhibition of AA-derived eicosanoid biosynthesis; influences on 

transcription factor activity, gene expression, and signal transduction pathways; alteration of 

estrogen metabolism; increased or decreased production of free radicals and reactive oxygen 

species; and mechanisms involving insulin sensitivity and membrane fluidity. Colomer et al. 
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(2007) published a systematic review about n-3 fatty acid supplementation in patients with 

advanced cancer (tumours of the upper digestive tract and pancreas) and weight loss. They 

concluded that the supplementation of more than 1.5 g EPA per day over a prolonged time 

period (at least 8 weeks) has beneficial effects on clinical, biochemical and quality of life 

parameters. 

 More research is needed to clarify the effect of n-3 PUFA on the brain function and 

behaviour. From present research data a subcommittee of the American Psychiatric 

Association endorsed the recommendation from the American Heart Association to 

supplement 1 g/d of EPA+DHA to patients with depression and bipolar disorder, especially 

because of the high rate of co morbid CVD in psychiatric patients (Palmquist, 2009). 

 Osteoporosis is a disease with increasing incidence in the elderly population. 70% of 

bone mass is under the direct and indirect control of genetic factors. Other factors are 

nutrition, physical activity and the body mass index. Animal experiments have given evidence 

that n-3 LC PUFA influence bone formation and bone loss, and in studies with elderly people 

an inverse relationship between the ratio of LA to ALA and the bone mineral density were 

found. In conclusion, n-3 fatty acids and the ratio of n-6 to n-3 fatty acids play an important 

role in affecting the skeletal growth (Simopoulos, 2008).   

 This preceding explication emphasises the importance of n-3 and n-6 fatty acids, 

especially the n-3 fatty acids, in the physiology of humans to prevent diseases and for all 

domestic and commercially important food species to increase the concentration of n-3 PUFA 

in the compartments of these species, which are important for the human nutrition. Table 1 

represents recommendations of different institutions for human’s daily intake of ALA, LA 

and the main n-3 LC PUFA EPA and DHA.    

 Considering the fatty acid cluster of the daily intake of infants, children and adolescents, 

the amount of SFA is excessive and the amount of MUFA and PUFA is considerably lower 

than the recommendation (DGE, Ernährungsbericht, 2008). The ratio of LA/ALA in the 

German diet is with more than 7:1 clearly above the recommended ratio of ≤5:1 but the intake 

of EPA+DHA is for men approximately 250 mg/d and for women 150 mg/d (DGE, 

Ernährungsbericht, 2004).    
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Table 1:  Recommendations for the daily intake of LA, ALA and DHA+EPA of different 

institutions  

 LA ALA n-6/n-3 DHA+EPA 

DGE (2008) 2.5 E%  0.5 E%  5:1 - 

EFSA (2010) 4.0 E%  0.5 E%  8:1 250 mg/d 

Australia/New 

Zealand (2005) 

Men: 13 g/d 1.3 g/d 
10:1 

160 mg/d* 

Women: 8 g/d 0.8 g/d 90 mg/d* 

WHO (2003) 2.0 E%  ≥ 0.5 E%  4:1 0.25-2.0 g/d
#
 

ISSFAL (1999-2004) 

4.4 g/d (2.0 E%) 

Upper limit: 

 6.7 g/d (3.0 E%) 

1.7-2.4 g/d 

(0.7-1.0 E%) 
 220 mg/d

+
 

* DHA+EPA+DPA 
# 
for secondary prevention of CHD 

+
 DHA 

E% - percentage of daily energy intake 

   

 In the last decades the consumption of animal products, and consequently the fat and 

energy intake increased all over the world (Givens et al., 2006); whereas in Germany meat 

consumption (59.5 kg/head/year in 2006 and assumed 60.5 kg/head/year in 2009) has been 

relatively constant since 2006 (Bundesverband der Deutschen Fleischwarenindustrie). The 

daily consumption of meat, sausages and meat products in Germany is for men 103 g and for 

women 53 g (Max Rubner-Institut, Bundesforschungsinstitut für Ernährung und Lebensmittel, 

2008) and of fish only 15 g and 13 g, respectively. Therefore, it is important to enhance the 

beneficial fatty acids, n-3 PUFA and n-3 LC PUFA in meat, and to produce meat products 

and sausages without a loss of these beneficial fatty acids due to production processes.  

 

Trans fatty acids (TFA) and conjugated linoleic acids (CLA) in human health and 

nutrition 

 Two major sources of TFA are known. Firstly, the concentration of TFA arises when 

vegetable oil is partially hydrogenated. This is the case in the industrial production of 

margarine (Gebauer et al., 2007), snacks and fast food products (Bendsen et al., 2011), for 

example. In such products the amount of TFA ranges between 10 and 40% (Gebauer et al., 

2007). The second source of TFA is the ruminant fat, found in meat, milk and products. Due 

to the incomplete biohydrogenation of dietary PUFA the amount of TFA ranges between 3 

and 8% of total fat (Gebauer et al., 2007; Field et al., 2009; Brouwer et al., 2010). The 
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species of TFA in industrial and ruminant fats are similar and the majority of TFA are isomers 

of the C18:1trans fatty acid with approximately 80-90% (Brouwer et al., 2010; Gebauer et al., 

2007). The difference between industrial and ruminant TFA is found in the proportion of the 

isomers (Brouwer et al., 2010). The major TFA in partially hydrogenated oil is the elaidic 

acid (C18:1trans-9) and the C18:1trans-10. Furthermore, the isomers C18:1trans-8, 

C18:1trans-11 (trans-vaccenic acid, VA) and the trans isomers of ALA are contained in 

smaller amounts (Brouwer et al., 2010). The VA, positional and geometric isomer of the oleic 

acid, is with 50-80% the predominant TFA in ruminant fat. The conjugated linoleic acid cis-

9,trans-11 is contained in small amounts in meat and milk of ruminants and could be also 

formed from VA in tissues (Brouwer et al., 2010; Field et al., 2009; Gebauer et al., 2007).   

   

 

Figure 3:  Oleic acid and major trans isomers in partially hydrogenated oil and ruminant tissues (adapted from 

Gebauer et al., 2007 and Brouwer et al., 2010) 

  

 Two pathways are known for the production and enrichment of CLAcis-9,trans-11 in 

tissues (Figure 4). After biosynthesis by bacteria in the rumen it can be directly incorporated 

into tissues. The other way is the desaturation of TVA on position 9 in tissues by the enzyme 

Δ-9 desaturase (SCD) in ruminants, rodents and humans (Field et al.; 2009; Tanaka, 2005). 
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This endogenous synthesis of CLAcis-9,trans-11 in tissues by SCD is more pronounced than 

the direct incorporation from rumen to tissues (Griinari et al., 2000).   

 

     

Figure 4:  Formation and incorporation of VA and CLAcis-9,trans-11 outgoing from ALA and LA (adapted 

from Field, 2009; Tanaka, 2005; Collomb et al., 2004; Kraft et al., 2003) 

 

 The daily intake of trans fatty acids with the diet should be less than 1% of the energy 

intake (WHO/FAO, 2003; DGE, 2008). This recommendation is given based on unfavourable 

effects of TFA, but it should be differentiated between ruminant and industrial TFA. Varying 

results for the effects of industrial and ruminant TFA arise out of several studies. While 

Brouwer et al. (2010) concluded that, independent from the source, TFA raise the 

concentration of LDL and lower the concentration of HDL, resulting in a higher ratio of 

LDL:HDL and an increasing risk for the development of CHD. They also concluded that the 

effect of ruminant produced TFA is less compared to TFA industrial origins. Sanders (2009) 
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reviewed the metabolic effects of fatty acid intake in the human body. The results are 

supportive of TFA, showing with convincing evidence an increased risk for postprandial 

lipaemia and elevated concentrations of the coagulation factor VII (EC 3.4.21.21) as an 

endopeptidase, and an increased risk is possible for inflammation and an impaired endothelial 

function. Considering especially the ruminant TFA, in epidemiological, clinical, and rodent 

studies no relationship was found between VA or the sum of TFA and heart or cardiovascular 

disease, insulin resistance, inflammation (Field et al., 2009) , or the risk of coronary heart 

disease (Bendsen et al., 2011).    

 The effects of CLA should be considered in a separate way. They have been shown to 

have anti-inflammatory, anti-carcinogenic, anti-adipogenic, anti-atherogenic, and anti-

diabetogenic properties (Bhattacharya et al., 2006). Most of these effects were detected and 

investigated in animal models. Roy et al. (2007) found a decreased aortic lipid deposition in 

CLAcis-9,trans-11+TVA fed white rabbits, but also a significantly decreased concentration of 

HDL. This result is confirmed in humans by Steck et al. (2007) and Lambert et al. (2007). 

Ribot et al. (2007) investigated the effect of CLAtrans-10,cis-12 feeding in hamsters and 

found a significant decrease in white adipose tissue and a decreased leptin mRNA expression. 

In humans a decrease in the body fat mass and an increase in the lean body mass were found 

by Gaullier et al. (2007).     

 

Possibilities to alter the fatty acid composition in farm animal tissues by diet 

 The awareness of consumers considering the relationship between health and diet is 

increasing. Therefore the interest in the nutritional quality of food is becoming more 

important. Since n-3 PUFA have been demonstrated to have important roles in reducing 

health risks, such as for CHD and cancer, strategies are developed to increase the amount in 

beef as an important food source, because the consumption of fish and fish products as the 

main animal source for n-3 fatty acids is low (Scollan et al., 2006).  

 There are different sources of fat in beef: the membrane fat (as phospholipid), the 

intermuscular fat between the muscles, intramuscular fat (IMF) and subcutaneous adipose 

tissue (Scollan et al., 2006). The IMF content of meat is determined by the synthesis and 

degradation of fat within muscle, rather than from one specific energy metabolic pathway 

(Gondret et al., 2004). Meat with an intramuscular fat content between 1-5% is denoted as 

lean meat and is being accepted as ‘low in fat’ (Nuernberg, 2009). The IMF is determined by 

a high genetic variability (Scollan et al., 2006).  
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 Diet, species, fatness, age, weight, depot site, gender, breed, season and hormones can 

affect the fatty acid composition of adipose and muscle tissues but the most effective way to 

manipulate the lipid and its fatty acid composition is through the strategic use of forages and 

dietary lipids in the nutrition of farm animals (Nuernberg, 2009). Table 2 shows the fatty acid 

composition of muscle and fat tissues as normally consumed. The species differences are 

clearly demonstrated, especially for LA and ALA. Both fatty acids are found in higher 

concentrations in pig tissues because they pass unchanged through the pig’s stomach; whereas 

the biohydrogenation by bacteria in the rumen leads to an almost complete degradation of 

these fatty acids into saturated and monounsaturated fatty acids. Additionally, the 

biohydrogenation is with 85-100% for ALA higher than for LA with 70-95% (Wood et al., 

2008). It is obvious that the ratio of n-6/n-3 PUFA in pig muscle is higher than in cattle, 

despite the higher relative concentration of LA and ALA (Wood et al., 2008).   

 

Table 2:  Fatty acid composition (%) and content (% total fatty acids in adipose tissue and 

muscle) of loin steaks/chops in pigs and cattle (adapted from Wood et al., 2008) 

 Adipose tissue Muscle 

 Pigs Cattle Pigs Cattle 

C14:0 1.6
a
 3.7

b
 1.3

a
 2.7

b
 

C16:0 23.9
a
 26.1

b
 23.2

a
 25.0

b
 

C16:1cis-9 2.4
a
 6.2

b
 2.7

a
 4.5

b
 

C18:0 12.8 12.2 12.2
a
 13.4

b
 

C18:1cis-9 35.8 35.3 32.8
a
 36.1

b
 

C18:2n-6 14.3
a
 1.1

b
 14.2

a
 2.4

b
 

C18:3n-3 1.4
a
 0.5

b
 0.95

a
 0.70

b
 

C20:4n-6 0.2 ND 2.2
a
 0.63

b
 

C20:5n-3 ND ND 0.31
a
 0.28

b
 

Ratio of n-6/n-3 7.6 2.3 7.2 2.1 

Total  65.3 70.0 2.2 3.8 

a,b-Means with different superscripts are significantly different (P<0.05) 

 

 Different nutritional strategies are investigated to enhance the amount of beneficial n-3 

PUFA, the precursor ALA as well as the long-chain n-3 products, in tissues of cattle.  
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Fish oil and algae: 

 Fish oil and algae are good sources for n-3 LC PUFA because algaes are the primary 

producers of LC PUFA, and are the food for fish (Givens et al., 2006; Scollan et al., 2006). 

Feeding supplemented concentrates with fish oil or micro-algae to steers increased the content 

of EPA and DHA in muscle lipids (Nuernberg, 2009). Probably due to the lower 

biohydrogenation of LC PUFA descending from algae compared to fish oil, the 

supplementation of the diet with algae led to a higher deposition of EPA and DHA in tissues 

(Givens et al., 2006). The disadvantage of meat from animals that received diets enriched 

with fish oil and/or algae could be the lower shelf life based on the lower oxidative capacity, 

because of the high content of PUFA and the impaired flavour, and there is also a discussion 

about the sustainability of fish oil supplies (Givens et al., 2006).  

 

Fresh grass and grass silage: 

 In the terrestrial ecosystem, plants are the primary source of n-3 PUFA due to their 

ability to produce ALA de novo (Scollan et al., 2006). Fresh grass is an important feed for 

beef cattle in northern Europe. Compared to the grass silage, where 27-73% of the fatty acids 

are presented as free fatty acids in fresh grass, there are 98% available in esterified form 

(Nuernberg, 2009). The amount of ALA, the main fatty acid in grass, depends on several 

factors: species, cutting date, cutting interval, growth stage and conservation. The amount of 

ALA in young and fresh grass is very high in addition to the amount of protein, which leads 

to problems in the optimization of a balanced diet for cattle (Givens et al., 2006). A 

decreasing effect on the proportion of SFA and an increase of n-3 fatty acids in the muscle fat 

of steers is reached with a decreased amount of concentrate and an increased amount of grass 

intake with the diet. Heifers fed a diet with an increasing grazing phase before slaughter had a 

significantly decreased SFA concentration and increased n-3 PUFA proportion in muscle and 

subcutaneous fat (Nuernberg, 2009).     

 

Plant oil and oil seed supplements: 

 Different dietary lipid sources were used to influence the meat quality of pigs, for 

example soybean oil (high in LA), palm kernel oil (high in lauric and myristic acid), palm oil 

(high in palmitic and palmitoleic acid) and linseed/flaxseed as oil seed or plant oil supplement 

(Wood et al., 2008). The fatty acid composition of pig tissues can easily be manipulated, 

because in monogastric animals the dietary lipids pass unchanged through the digestive tract 



General Introduction 

13 

 

and, as a result, can be absorbed and deposited into tissues. Therefore, an intake of linseed oil, 

high in ALA, leads to an increased deposition in tissues of pigs (Wood et al., 2008). 

 In cattle it is unlikely to be more difficult to change the lipid profile in tissues due to the 

biohydrogenation by bacteria in the rumen. Nevertheless, many studies have investigated the 

supplementation of concentrates with plant oils, especially with linseed oil or seeds to 

enhance the concentration of n-3 PUFA despite the biohydrogenation, and the fact that these 

essential fatty acids are incorporated preferentially into muscle, rather than storing them in 

adipose tissue (Wood et al., 2008) is particularly advantageous to improve the nutritional 

quality of beef.   

 Linseed oil is the plant oil with the highest amount of ALA. Higher ALA level in tissues 

lead to an increase in de novo production of EPA, but the contribution is low because of the 

very low conversion rate (Givens et al., 2006). The deposition of ALA can be improved by 

additional concentrate supplementation with rapeseed oil or rapeseed cake because it contains 

approximately 8-10% ALA. A positive effect of enhancing the n-3 PUFA content in ruminant 

muscle is lowering the ratio of n-6/n-3 which is recommended for the human nutrition 

(Nuernberg, 2009).  

 

 In summary, there are different opportunities to accumulate ALA in ruminant tissues by 

feeding plants, like fresh grass or grass silage, and the supplementation of linseed and 

rapeseed in form of oil, seeds or cake. The de novo formation of n-3 LC PUFA proceeding 

from ALA to its accumulation in meat has been observed, despite the low conversion rate. A 

high intake of LA and ALA results in a higher production of trans fatty acids, especially VA 

and the CLAcis-9,trans-11. More research is needed on single trans fatty acid isomers to add 

clarity, considering the health impact of ruminant trans fatty acids. 

 

Feed restriction and compensatory growth: 

 Compensatory growth seems to have profound effects on the rate of growth and body 

composition of animals (Papstein et al., 1991; Hornick et al., 1998). Different factors 

influence the compensatory growth: the nature of restricted diet, the severity and duration of 

undernutrition, the stage of development of the animal body at the beginning of 

undernutrition, the genetic background, gender, and the pattern of realimentation. Studies 

have shown that changing the diet type as well as the amount of feed tends to result in a 

greater compensatory growth, especially in cattle (Lawrence and Fowler, 2002). 
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 Studies in pigs revealed that compensatory growth influences the deposition of adipose 

and lean tissue and by this, the carcass composition (Donker et al., 1986; Hornick et al., 

2000). An undernutrition in cattle caused an underexpression of genes encoding muscle 

structural proteins, extracellular matrix and muscle metabolic enzymes, which especially 

belong to the metabolic glycolytic pathway. After refeeding the animals, the expression of 

most of the investigated genes was restored (Hocquette et al., 2010). An increased 

intramuscular fat content is associated with an improved eating quality of meat (Wood et al., 

2008). Therefore, it is of interest to increase the IMF in beef meat and simultaneously the 

concentration of beneficial fatty acids, as n-3 PUFA. The aim of the short restriction time in 

the experiment with German Simmental bulls was to induce a higher deposition of 

intramuscular fat. 

 

Lipogenic enzymes and fatty acids  

 The tissue fatty acid biosynthesis is regulated by different lipogenic enzymes. The focus 

of the following section is given to three key enzymes in the tissue fatty acid synthesis.  

 

Acetyl-CoA carboxylase (ACC, EC 6.4.1.2):  

 ACC is the key enzyme controlling the de novo biosynthesis of SFA by catalyzing the 

first step from acetyl-CoA to malonyl-CoA (Hardie, 1989). It is a biotin-containing 

multifunctional enzyme with several subunits and contains the catalytic function of biotin 

carboxylase, transcarboxylase, biotin carboxyl carrier protein, and the regulatory allosteric 

site. ACC is regulated by phosphorylation, citrate and fatty acyl-CoA and is localized in the 

cell cytosol. Figure 5 illustrates major pathways of fatty acid and cholesterol synthesis in 

mammals. The connection between citrate cycles and the de novo formation of fatty acids is 

demonstrated. The ACC is next to the synthesis of fatty acids for the formation of 

triacylglycerol, also involved in the formation of cholesterol esters.   
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Figure 5:  Major pathways of fatty acid and cholesterol synthesis in mammals with special consideration to the 

ACC pathway (adapted from Hardie, 1989) 

 

Stearoyl-CoA desaturase (SCD, EC 1.14.19.1): 

 SCD as the key enzyme in the de novo synthesis of monounsaturated fatty acids is a 

microsomal enzyme which catalyses the insert of a cis-double bond in the Δ9 position 

between carbon C9 and C10 in a saturated fatty acid in tissues. The preferred substrate for SCD 

is palmitoyl-CoA and stearoyl-CoA, and they will be converted to palmitoleoyl-CoA and 

oleoyl-CoA (Ntambi and Miyazaki, 2003; Kim et al., 2002). Another substrate for the 

insertion of a cis-double bond in the Δ-9 position is the C18:1trans-11 (TVA), the product of 

bacterial biohydrogenation in the rumen. The product is the CLAcis-9,trans-11 (Smith et al., 

2009).  

 Four isoforms of SCD are known in mice with different tissue distributions. SCD-1 is 

regulated by dietary factors. The importance of SCD is founded in the physiological potential 

to affect a variety of key physiological variables such as insulin sensitivity, metabolic rate and 

adiposity due to the formation of MUFA in tissues. MUFA regulate the food intake in the 

brain, signal transduction, and cellular differentiation including neuronal differentiation 

(Ntambi and Miyazaki, 2003; Miyazaki et al., 2003). For cattle, two isoforms of SCD are 

identified (Chung et al., 2000; Lengi and Corl, 2007). Bovine SCD-1 was detected in adipose 

tissue with a threefold higher mRNA expression in female than in male animals (Chung et al., 

2000). The second isoform in cattle appears to be an ortholog of human SCD-5 rather than a 
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homolog of the other known SCD isoforms in different species and in cattle (Lengi and Corl, 

2007).  

 In previous studies PUFA, like LA and ALA, have shown an inhibitory effect on SCD. 

These studies were made with mice, and the inhibitory effect was the repression of SCD 

mRNA expression, especially of SCD-1 (predominantly expressed in lipogenic tissues 

(Ntambi et al., 1988) and the decrease of mRNA stability, especially for SCD-2 

(predominantly expressed in brain and neuronal tissues) (Ntambi et al., 1988; Clarke and 

Jump 1994, Jump and Clarke 1999, and Ntambi, 1999). Other FA such as SFA and MUFA 

did not show similar effects (Nakamura et al. 2004). It could be possible that n-3 is a more 

potent inhibitor of SCD compared to n-6. Waters et al. (2009) have shown that the ratio of n-

6/n-3 FA in diet and tissues has an important effect on SCD mRNA regulation via SREBP-1c, 

whereas n-3 fatty acids are the main inhibitors of SREBP-1c. 

 

Figure 6:  The pathway of electron transfer in the desaturation of fatty acids by SCD (Ntambi, 1999) 

 

Δ-6 Desaturase (Δ6d, EC 1.14.19.3): 

 The Δ6d is a membrane-bound enzyme that catalyses the first step and a later step in the 

synthesis of LC PUFA products from the precursors ALA and LA in tissues (Figure 2). This 

enzyme was cloned from different species, such as Synechocystis, Borago officinalis, 

Caenorhabditis elegans, human, mouse, and rat. It introduces a double-bond between the pre-

existing double bond and the carboxyl end of the fatty acid (Nakamuru and Nara, 2004). 

 Many studies found out that dietary and tissue related PUFA regulate lipogenic gene 

expression in several tissues, such as brain, liver, heart, and adipose tissue. Especially the 

fatty acids of the n-6 and n-3 series are in the focus of research because of their key role in the 

progression or prevention of human diseases. The regulation seems to occur at transcriptional 

level and the affected transcription factors are the sterol regulatory element binding proteins 

(SREBPs) (Nakamura et al., 2004; Sessler and Ntambi, 1998; Ntambi and Bené, 2001; 

Nakamura and Nara, 2004).   
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 A plethora of information is available about the activity and the gene expression of 

ACC, SCD and Δ6d; but not on the protein expression of these enzymes in muscle and 

adipose tissue of cattle. 

 

Importance of tissues considering the fatty acid synthesis in cattle 

 SAT represents the main tissue for de novo fatty acid and triacylglycerol synthesis in 

cattle. The amount of stored triacylglycerides in adipocytes is equilibrium between de novo 

FA synthesis, FA uptake, FA esterification, triglyceride hydrolysis, and reesterification of FA 

produced by lipolysis (Chilliard, 1993). The liver in ruminants has less effect on de novo 

synthesis (Bauchart et al., 1996) and disposal of lipids than adipose tissue or the lactating 

mammary gland (Bell, 1980). Availability of acetate partially depends on the uptake of LC 

PUFA in the liver, and is used for synthesis of glycerides, complex lipids, oxidation and a 

relative high rate of ketogenesis (Bell, 1980). Therefore, adipose tissue plays the major role in 

de novo synthesis of FA (Chilliard, 1993). Nevertheless, there is a low rate of de novo 

biosynthesis where acetate is the main carbon source. 

 Phospholipid composition of erythrocytes is a marker for long-term fat intake because 

of their lifespan of 120 days (Hodson et al., 2008). The enrichment of diet with C18:2n-6 

increased deposition of this fatty acid in erythrocytes, which demonstrates that the fatty acid 

composition of erythrocytes is dynamic and exchange occurs with other lipid pools (Hodson 

et al., 2008). While the lipids in serum reflect the current status in blood transported lipids, 

the membrane fluidity of erythrocytes must be maintained (Smith, 1987). 

 For human nutrition, the skeletal muscle of ruminants as source of meat is of major 

interest. Due to the deposition of PUFA mainly in phospholipids, where they maintain the 

permeability of cell membranes, the proportion of PUFA in muscle is higher compared to 

SAT, and the fatty acid composition can be affected by diet (Lorenz et al. (2002) and 

Dannenberger et al. [2004]). Additionally, analysis of triglyceride and phospholipid fraction 

of muscle afford a more exact answer to how muscle fatty acid composition responds to diet 

of ruminant animals (Aurousseau et al., 2007). 
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2. Questions To Answer 

 

 Two animal experiments, one with German Simmental bulls and the other with German 

Holstein bulls, were conducted to investigate the effects of diets supplemented with LA as n-6 

fatty acid and ALA as n-3 fatty acid. Arising from afore mentioned theoretical part the 

following questions will be answered: 

a. Is there a tissue specific effect of LA and ALA supplementation in ruminant diet 

on different tissues as muscle, subcutaneous adipose tissue, liver, erythrocytes, and 

serum?  

b. Is there an effect on lipid classes (triglycerides, phospholipids, and free fatty acids) 

of intramuscular fat? 

c. Does a short-time feed restriction at the beginning of the feeding experiment and 

the following compensatory growth have an effect on the intramuscular fat content 

and is this restriction able to enhance essential fatty acids (n-6 and n-3) in tissues? 

d. Does the supplemented diet have an effect on lipogenic enzyme protein expression 

(acetyl-CoA carboxylase, stearoyl-CoA desaturase and delta-6 desaturase) in 

subcutaneous adipose tissue and longissimus muscle? 

e. Is there a dietary effect especially on the stearoyl-CoA desaturase activity in 

subcutaneous adipose tissue and longissimus muscle? 

f. Are the effects of a PUFA enriched diet on the fatty acid composition of 

subcutaneous adipose tissue and longissimus muscle mediated by the regulation of 

lipogenic enzymes? 

g. Are there tissue specific effects of the protein expression of acetyl-CoA 

carboxylase, stearoyl-CoA desaturase and delta-6-desaturase in subcutaneous 

adipose tissue and longissimus muscle? 

h. Is there a loss of especially the n-3 PUFA and n-3 LC PUFA during the production 

process of beef products? 
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3. Animal Experiments 

 

Feeding experiment with German Simmental bulls (MPA Laage) – Experiment 1 

 In total, 25 animals at the age between 3 and 4 months were randomly assigned to 

different dietary treatments. The first group, henceforth referred to as control group, consisted 

of 9 German Simmental bulls. The animals were fed a diet composed of silage (70% maize 

silage and 30% grass silage) and concentrate. The concentrate was supplemented with 20% 

soybean meal and 2% soybean oil. The treatment diet contained only grass silage and the 

concentrate was supplemented with 32% rapeseed cake and 2% rapeseed oil (Table 3). The 

fatty acid composition of the total mixed rations (TMR) in % is represented in Table 4. 

 

Table 3: Composition of the concentrate for the animal experiment MPA Laage 

Concentrate 

compounds 

Control group (%) Treatment group (%) 

Soybean meal 20 - 

Triticale 63 39 

Barley 10 22 

Rapeseed cake - 32 

Soybean oil 2 - 

Rapeseed oil - 2 

Minerals 5 5 

 

 Furthermore, the treatment animals were divided into two groups. Either of these groups 

received a feed restriction over a period of 112 days directly at the beginning of the trial. 

During this time the animals received 50% less concentrate compared to the unrestricted 

group. The unrestricted group comprised 7 and the restricted group 9 German Simmental 

bulls. The duration of the trial was also subdivided into three sections. More details are shown 

in Table 5. 

 All bulls were kept indoor and were individually fed. The point of slaughter was defined 

at a weight of approximately 635 kg. They were slaughtered at the facilities of the Institute for 

the Biology of Farm Animals, Dummerstorf, Germany and were killed by captive bolt 

stunning followed by exsanguinations in accordance with EU regulations. 

 Tissue samples were taken immediately after slaughter from the right side of the 

carcass. MLD for analysing lipid classes were taken at 13
th

/14
th

 rib and stored at −80 °C, as 

well as erythrocytes and serum after separation from blood. The MLD for total fatty acid 

composition was collected at 9
th

/10
th

 rib of carcasses after 24 h cooling. Liver samples and 
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subcutaneous adipose tissue (SAT) for analysing the total fatty acid composition were frozen 

and stored at −20 °C.  

 

Table 4: Fatty acid composition of the total mixed ration in % 

 TMR of 

 Control group (%) Treatment group (%) 

C16:0 12.06 7.97 

C16:1cis-9 0.44 1.43 

C18:0 3.03 1.56 

C18:1cis-9 23.07 35.60 

C18:2n-6 46.58 29.96 

C18:3n-3 7.25 8.06 

Σ of SFA 17.18 12.04 

Σ of MUFA 28.72 52.65 

Σ of PUFA 54.10 35.31 

Σ of n-3 fatty acids 7.36 8.21 

Σ of n-6 fatty acids 46.66 27.02 

Ratio n-6/n-3 6.34 3.29 

 

  

Table 5: Periods and the amount of feed for the animal groups of the experiment  

 
 Control group 

n=9 

Restricted group 

n=9 

Unrestricted group 

n=7 

Amount of feed 
(kg/animal and 

day) 

(kg/animal and 

day) 

(kg/animal and 

day) 

First 

Period 

Concentrate 2.0 1.0 2.0 

Sugar beet pulp 1.0 1.0 1.0 

Maize silage ad libitum (70 %) - - 

Grass silage ad libitum (30 %) ad libitum ad libitum 

Hay/Straw 1.0 1.0 1.0 

     

Second 

Period 

Concentrate 2.5 2.5 2.5 

Sugar beet pulp 1.0 1.0 1.0 

Maize silage ad libitum (70 %) - - 

Grass silage ad libitum (30 %) ad libitum ad libitum 

Hay/Straw 1.0 1.0 1.0 

     

Third 

Period 

Concentrate 3.0 3.0 3.0 

Sugar beet pulp 1.0 1.0 1.0 

Maize silage ad libitum (70 %) - - 

Grass silage ad libitum (30 %) ad libitum ad libitum 

Hay/Straw 1.0 1.0 1.0 
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Feeding experiment with German Holstein bulls (ProSafeBeef) – Experiment 2 

 29 animals at the age between 8 and 9 months were assigned to two dietary treatments. 

The first treatment corresponds to a commercial diet for ruminant finishing in Germany. The 

animals received maize silage and a concentrate supplemented with soybean meal, resulting in 

a diet high in n-6 PUFA. The group fed the commercial diet is called “Control group” and is 

consisted of 15 German Holstein bulls. The second diet consisted of grass silage and 

concentrate supplemented with linseed oil and rapeseed cake, resulting in high n-3 PUFA 

content. The complete composition of the concentrate is shown in Table 6. 

 

Table 6: Composition of the concentrate for the animal experiment ProSafeBeef  

Concentrate compounds Control diet Experimental  diet 

Crushed wheat 40 58 

Crushed maize 10 20 

Soybean meal 41 - 

Rapeseed cake - 12 

Minerals 5 4.7 

Linseed oil - 3 

Molasses 2 2 

Straw 2 - 

Feed chalk (contained vitamin E) - 0.3 

 

 Table 7 presents the chemical composition of the TMR in % and Table 8 the fatty acid 

composition. The content of LA in the control group was 1.4-times higher compared to the 

experimental group whereas the concentration of ALA was 4-times higher in the experimental 

compared to the control group. 

 

Table 7: Chemical composition of the total mixed ration in % 

Chemical composition (%, DM) Control group Experimental  group 

Crude protein 15.3 14.9 

Crude fat 3.1 4.0 

Crude ash 7.0 12.3 
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Table 8: Fatty acid composition of the total mixed ration in % 

 TMR of 

 Control group (%) Treatment group (%) 

C12:0 0.24 0.17 

C14:0 0.84 0.42 

C14:1cis-9 0.01 0.00 

C16:0 20.51 16.67 

C16:1cis-9 0.26 0.28 

C18:0 2.55 2.57 

C18:1cis-9 19.14 15.69 

C18:2n-6 39.96 21.51 

C18:3n-3 10.79 35.48 

Σ of SFA 28.01 23.68 

Σ of MUFA 20.61 17.44 

Σ of PUFA 51.33 58.77 

Σ of n-3 fatty acids 11.08 36.47 

Σ of n-6 fatty acids 40.23 22.30 

Ratio n-6/n-3 3.68 0.61 

 

 The amount of concentrate and silage was fed according to age of the animals. The bulls 

were kept in groups. The animals were slaughtered weight dependent with approximately 625 

kg at the facilities of the Institute for the Biology of Farm Animals, Dummerstorf, Germany 

and were killed by captive bolt stunning followed by exsanguinations in accordance with EU 

regulations. 

 Samples of MLD and SAT for protein expression, SCD activity and fatty acid 

composition analyses (approximately 50 g) were collected from the right side of carcass, 

between the thirteenth and fourteenth rib, within 30 min after slaughter. All the samples were 

snap-frozen in liquid nitrogen and stored at -70°C until analysed. The carcasses have been 

transported after 48 h to Greifenfleisch GmbH (Greifswald, Germany). Three different 

sausages have been produced by using the beef from these experimental bulls. Samples from 

sausages, produced by Greifenfleisch GmbH, were taken after delivery by the company 

Greifenfleisch GmbH and stored at -20°C until the analysis of fatty acid composition.  
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Content 

The effect of n-3 and n-6 fatty acids in the diet of ruminants on the protein expression of 

lipogenic enzymes in tissues is not described in the literature. Therefore animals were fed 

diets high in ALA or LA for a long-time period. In longissimus muscle (MLD) and 

subcutaneous adipose tissue (SAT) of German Holstein bulls the protein expression of ACC, 

SCD and Δ-6 desaturase was analyzed. There was no effect on the protein expression of ACC. 

Furthermore, the n-3 feeding was related to a significantly decreased protein expression of 

SCD in MLD and SAT with a significantly lower amount of oleic acid in the SAT. The Δ-6 

desaturase protein expression was decreased in MLD associated with a lower n-6 PUFA level.    

 

 

Work Contribution 

Study accomplishment 90% 

Analyses (protein expression, fatty acids, diets) 70% 

Statistics 30% 

Preparation of the manuscript 100% 
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Content 

The present study investigated the effect of feeding n-3 and n-6 PUFA bulls on fatty acid 

profile of different tissues (MLD, SAT, liver, serum and erythrocytes) and lipid classes of 

IMF of German Simmental bulls. The n-3 feeding was combined with a short-time feed 

restriction period to increase the IMF resulting in an improved nutritional and sensory quality. 

N-3 PUFAs were enhanced in all tissues and n-3 LC PUFA were increased in erythrocytes, 

MLD and liver. Unfortunately, the feed restriction did not affect the IMF. It has been 

measured a tissue dependent synthesis and deposition of n-3 LC PUFA.    

 

  

Work Contribution 

Study accomplishment 0% 

Analyses (fatty acids, diets) 20% 

Statistics 20% 

Preparation of the manuscript 100% 
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Content 

The present study investigated the effect of LA and ALA feeding on meat quality, fatty acid 

composition and the SCD activity in MLD and SAT of German Holstein bulls. The diet 

increased the LA and the ALA content in the tissues. Feeding the diet supplemented with 

ALA resulted in a decreased SCD activity in MLD and SAT with a reduced relative 

concentration of oleic acid in muscle. According to the interest of increasing the dietary intake 

of n-3 PUFAs in the human diet the transfer of beneficial n-3 fatty acids from fresh muscle to 

the product German Corned Beef sausage was effective with no significant losses of 

beneficial fatty acids during the production process.  

 

 

Work Contribution 

Study accomplishment 90% 

Analyses (fatty acids, diets) 50% 

Statistics 20% 

Preparation of the manuscript 100% 
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7. General Discussion 

 

 Two different animal experiments (described in chapter 3) were conducted to find 

answers to the questions listed in chapter 2 considering the fatty acid composition of several 

tissues, the protein expression and activity of lipogenic enzymes, and the fatty acid 

composition of beef products.  

 German Holstein (GH) and German Simmental (GS) bulls are mostly used for beef 

production in Germany. Therefore, these breeds are used for the animal experiments. The beef 

production in Germany is based on fattening bulls instead of steers due to economic reasons 

and animal welfare arguments against castration. Based on the sum of cattle in Germany, 

(2008) approximately 41% were from German Holstein breed and 29% from German 

Simmental breed (Zentrale Datenbank für Rinder, 2008). The breed German Holstein is 

mainly known as a dairy cattle but the male calves of this breed were used for fattening. 

German Simmental are bred to use the male animals for fattening and the females to produce 

milk, or keeping them as mother cow keeping for the meat producing calves. 

 Based on the interest to enhance the n-3 fatty acids in meat and meat products the 

animals in the treatment groups of both experiments received diets enriched in ALA. 

Especially in the second trial the German Holstein bulls (Table 7) of the treatment group 

received approximately a 4-times higher concentration of ALA by the diet compared to the 

control group. The total PUFA concentration was 1.5-times higher. The diet of the control 

group was 1.4-time higher in LA compared to the experimental group. The relative proportion 

of n-3 fatty acids and n-6 fatty acids resulted in a decreased ratio of n-6/n-3 to approximately 

3 in the diets of all experimental groups of both experiments, but the ratio of the control group 

in the experiment with German Holstein bulls was with 3.68 approximately 2.7 lower than in 

the control group of the experiment with German Simmental bulls (Table 4).  

 The animals of both experiments were slaughtered at normal slaughter weight ranges 

for Germany [German Holstein bulls (ProSafeBeef) at approximately 625 kg live weight and 

German Simmental bulls (MPA) at 630 kg live weight]. However, the fattening period was 

different for both experiments because of the breed differences (dairy cattle and dual-purpose 

cattle). The German Holstein bulls received the diet for approximately 241-244 days, and the 

German Simmental bulls 274 days in the control and 334-368 days in the treatment groups. 

This distinction is attributed to the different total daily gains. The German Simmental bulls in 

the control group had nearly the same total daily gain (1.26 kg±0.03) as the control group of 
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the German Holstein bulls (1.23 kg±0.03). By contrast, the treatment groups of the MPA trial 

had only a total daily gain of 1.03 kg±0.03 for the unrestricted and 0.97 kg±0.03 for the feed 

restricted group, compared to a total daily gain of 1.16 kg±0.03 for the treatment group of 

German Holstein bulls. Reasons for these differences could be the breed, the lower feed 

intake of the German Simmental bulls in the treatment groups, the lower digestibility of the 

offered feed, or some combination of the three. 

 In summary, the two animal experiments take the same basic approach, which is 

modified for different breeds.  

 

Fatty acid composition, including trans-fatty acids and CLA, of muscle and SAT under 

LA and ALA feeding   

 The influence of the tissue fatty acid composition in monogastric animals is easier to 

quantify due to the more direct incorporation into tissues (Nuernberg et al., 2005a) than in 

ruminants because of their reliance on bacterial biohydrogenation. Nevertheless, a number of 

studies demonstrated the successful accumulation of n-6 and n-3 fatty acids in ruminants 

(Scollan et al., 2006; Wood et al., 2008). Notably, the feeding of grass silage in combination 

with concentrate supplemented with linseed, rapeseed, and algae or the natural grazing 

resulted in an accumulation of for human health beneficial n-3 PUFA and n-3 LC PUFA in 

ruminant’s tissues (Nuernberg et al., 2005b; Kraft et al., 2008; Wood et al., 2008; Warren et 

al., 2008).  

 Considering the expression of the data it is of relevance, which, absolute (mg/100 g) or 

relative (g/100 g) data, were used to represent the results of a study. In recent studies the most 

common method of data description for fatty acid composition is the use of normalized 

percentage of total fatty acids (relative proportion) to determine whether a quantitative change 

in IMF content would cause a qualitative change (Nuernberg et al., 1999; Chung et al., 2006; 

Padre et al., 2006). In the study of Hoehne et al. (2012), there were different relationships of 

several parameters to the IMF identified depending on the use of the absolute or relative fatty 

acid composition. Negative correlations between C18:0 concentration and IMF were found 

and are in contrast to the positive correlations for the proportion of FA to IMF. 

 In the present studies differences were also found between the relative and absolute 

concentration of fatty acids. In general, the supplementation of diets enriched with ALA 

induced an accumulation of ALA, n-3 PUFA and n-3 LC PUFA in tissues. The following 
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section addresses the fatty acid composition of muscle including discussion of the differences 

between the relative and absolute concentrations of n-3 and n-6 fatty acids. 

 

Longissimus muscle (Table 9): 

 The absolute concentration of ALA, the sum of n-3 PUFA and the sum of n-3 LC PUFA 

are significantly increased in the longissimus muscle of both experiments. By contrast the 

unrestricted group of the MPA study had a higher concentration than the restricted group 

because of the EPA content. Contrary to these results the relative concentration of n-3 LC 

PUFA in the MLD of MPA is equal between both treatment groups. This contrary result has 

also been found for the sum of n-6 fatty acids (%, mg/100 g).  

 The relative concentrations for ALA and n-3 PUFA of PSB are consistent according to 

the absolute concentration, but differences were revealed for n-6 fatty acids. The relative 

concentration of n-6 PUFA and n-6 LC PUFA are similar between control and treatment 

group but the absolute concentration is significantly higher in the control group. This is 

explained by the significantly lower total sum of fatty acids in the treatment group. The ratio 

of n-6/n-3 is significantly lower in the treatment groups of both experiments (MPA: 3.0±0.1 

for the restricted and 3.2±0.1 in the unrestricted group; PSB: 2.3±0.1). These ratios 

correspond to the recommendation of the German Nutrition Society of a ratio n-6/n-3 of 

≤5:1in human nutrition (DGE, 2008).  

 Despite the biohydrogenation of PUFA in the rumen (Wood et al., 2008) the n-3 LC 

PUFA EPA and DHA are significantly increased under ALA feeding in the absolute and 

relative concentration of the muscle from German Holstein and Simmental bulls (except EPA 

in % and DHA in % for restricted group). It seems that the concentration of n-3 LC PUFA in 

muscle is dependent upon the concentration of ALA in the diet. The higher the concentration 

of ALA in the diet the higher ALA amount bypasses the biohydrogenation, and it will be 

absorbed at a higher level in the digestive tract. Another fact is that there is a competition 

between n-3 and n-6 fatty acids for the desaturation system, especially the Δ6d. This 

desaturase prefers the fatty acids of the n-3 series but a high LA intake interferes with the 

ALA metabolism (Simopoulos, 2008) and this effect seems to be dose-dependent (Holman, 

1986).    

 In summary, a high ALA concentration and a low n-6/n-3 ratio (in the diet of the 

experimental group: 0.6:1) in the diet of bulls induced a significant increase in ALA, DHA, 

and EPA in absolute concentration (Exp. 1 and 2) and relative proportion (Exp. 1 except EPA 
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and Exp. 2) of muscle tissue. The high amount of LA in the diet of Exp. 2 control group 

resulted in a significantly increased absolute concentration in muscle tissue of this group but 

the relative proportion was similar between both groups. This gives evidence that fatty acids 

of the n-3 series are predominantly synthesised and incorporated into tissues. Interestingly, 

the relative concentration of LA is increased in the restricted and unrestricted compared to the 

control group despite the low LA amount in the diet. This could be attributed to the longer 

fattening period of the bulls fed the mix of grass/maize silage. 

 A diet generally high in ALA and PUFA is linked to high concentrations of CLA and 

C18:1trans-isomers in tissues (Givens, 2006). Trans fatty acids (TFA) are known as critical in 

human nutrition and the dietary intake is directly related to the TFA content in human adipose 

tissue (Chardigny et al., 2007; Kuhnt et al., 2007).     

 Two main sources, industrially produced by partial hydrogenation of vegetable oils and 

as products of the bacterial biohydrogenation in ruminants (Gebauer et al., 2007) generate the 

same TFA isomers, but in different amounts (Brouwer et al., 2010). Effects induced by TFA 

are the rise of LDL and plasma total cholesterol and reduction of HDL cholesterol (Sanders, 

2009). The main TFA isomer in ruminant tissue is the vaccenic acid (VA). It is a 

biohydrogenation product of LA and ALA and the precursor for the formation of CLAcis-

9,trans-11 in tissues (Scollan et al., 2006; Griinari et al., 2000). The proportion of VA (Table 

9) is increased in MLD of the experimental group in Exp. 2 but not the absolute 

concentration. This is related to the lower amount of fatty acids in this group. The absolute 

and relative concentrations in MLD of bulls from Exp. 1 are not different between groups. 

C18:2n-6 rich concentrate diets are known to have a small particle size, resulting in a shorter 

rumen transit time than fibrous forage diets (Wood et al., 2008). The treatment groups 

received also 30% maize silage with the diet. This proportion seems to be sufficient to prevent 

a higher VA amount in the treatment groups. Comparing the VA amounts of both 

experiments, it is nearly twice as high in MLD of Exp. 1 (1.16-1.63%) as in MLD from PSB 

bulls (0.6-0.8%). The expectation would be that the amount in tissues of PSB bulls is higher 

because of the greater amount of LA and ALA in the diet. The longer feeding durations of the 

German Simmental bulls (control: appr. 274 d; unrestricted: appr. 334 d; restricted: appr. 368 

d versus 241-244 d for German Holstein bulls) could be the reason for a higher accumulation 

of VA. Especially for VA further research is needed to assess the risk outgoing from this fatty 

acid for human health (Smith et al., 2009; Field et al., 2009).  
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Table 9:  Selected fatty acid composition of longissimus muscle of German Holstein and Simmental bulls 

 Experiment 2 – German Holstein bulls Experiment 1 – German Simmental bulls 

 Relative proportion (%) Absolute concentration 

(mg/100 g) 

Relative proportion (%) Absolute concentration (mg/100 g) 

 CG 

LSMSEM 

TG 

LSMSEM 

CG 

LSMSEM 

TG 

LSMSEM 

CG 

LSMSEM 

RG 

LSMSEM 

UG 

LSMSEM 

CG 

LSMSEM 

RG 

LSMSEM 

UG 

LSMSEM 

C18:2n-6 5.30.4 5.60.4 112.93.3
a
 95.23.4

b
 4.51.2

a
 7.21.2

a,b
 9.21.3

b
 95.44.0 96.94.0 92.14.6 

C18:3n-3 0.60.1
a
 2.00.1

b
 13.01.1

a
 33.41.1

b
 0.70.2

a
 1.60.2

b
 1.90.2

b
 14.61.6

a
 22.81.6

b
 21.01.8

b
 

C20:5n-3 (EPA) 0.20.03
a
 0.50.03

b
 3.90.3

a
 8.80.3

b
 0.20.1 0.60.1 0.70.1 3.90.3

a
 8.20.3

b
 6.50.4

c
 

C22:6n-3 (DHA) 0.050.0
a
 0.080.01

b
 1.00.05

a
 1.40.05

b
 0.10.04

a
 0.170.04

a,b
 0.230.04

b
 1.40.2

a
 2.30.2

b
 2.10.2

b
 

CLAcis-9,trans-11 0.260.01
a
 0.310.01

b
 6.310.65 5.410.68 0.310.02

a
 0.390.02

b
 0.350.02

a,b
 7.671.25 6.741.25 5.621.42 

C18:1trans-11 (TVA) 0.600.03
a
 0.790.04

b
 13.631.18 13.941.22 1.160.13 1.630.13 1.450.15 28.275.28 28.145.28 22.215.98 

Σn-3 FA 1.30.1
a
 3.30.1

b
 27.51.4

a
 56.51.4

b
 1.40.5

a
 3.40.5

b
 4.10.6

b
 29.11.6

a
 46.61.6

b
 41.21.8

b
 

Σn-6 FA 7.50.6 7.70.6 157.64.3
a
 131.54.4

b
 6.51.8

a
 10.41.8

a,b
 13.42.1

b
 133.24.6 138.44.6 131.35.2 

Σn-3 LC PUFA 0.60.1
a
 1.30.1

b
 13.20.6

a
 22.20.6

b
 0.70.3

a
 1.80.3

a,b
 2.20.4

b
 14.50.7

a
 23.80.7

b
 20.20.8

c
 

Σn-6 LC PUFA 1.70.1 1.70.1 34.61.0
a
 29.21.1

b
 1.60.5 2.60.5 3.40.6 31.81.2 33.81.2 32.11.3 

n-6/n-3 5.80.1
a
 2.30.1

b
 5.80.1

a
 2.30.1

b
 4.60.1

a
 3.00.1

b
 3.20.1

b
 4.60.1

a
 3.00.1

b
 3.20.1

b
 

Sum of FA 2366.9182.2
a
 1764.5188.6

b
   2450.7311.8 1660.9311.8 1497.3353.6    

CG-Control group TG-Treatment group RG-Restricted group UG-Unrestricted group 

LSM- least-square means, SEM-standard error of the mean a  

a, b- significant differences between groups at P≤0.05 

Σ SFA = C12:0+C14:0+C15:0+C16:0+C17:0+C18:0+C20:0+C21:0+C22:0+C23:0+C24:0 

Σ MUFA = C14:1+C15:1+C16:1+C17:1+C18:1trans-9+C18:1trans-10+C18:1trans-11+C18:1cis-9+C18:1cis-11+C22:1+C24:1 

Σ n-3 FA= C20:3n-3+C22:6n-3+C22:5n-3+C20:5n-3+C18:4n-3+C18:3n-3 

Σ n-6 FA= C22:2n-6+ C20:2n-6+ C18:3n-6+ C22:4n-6+ C20:3n-6+ C18:2n-6+ C20:4n-6 

Σ n-3 LC FA= C20:3n-3+C22:6n-3+C22:5n-3+C20:5n-3 

Σ n-6 LC FA= C22:2n-6+C20:2n-6+C22:4n-6+C20:3n-6+C20:4n-6  

Σ trans FA= C18:1trans-6+ C18:1trans-7+ C18:1trans-8+ C18:1trans-9+ C18:1trans-10+ C18:1trans-11 

Σ FA= sum of all identified  fatty acids 
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 Trans fatty acids with beneficial effects are conjugated linoleic acid isomers. They are 

known to have anti-inflammatory, anti-carcinogenic, anti-atherogenic, and anti-diabetogenic 

properties among animal models (Bhattacharya et al., 2006; Kuhnt et al., 2007). Two 

different methods were used to detect CLA isomers in tissues, the gas chromatography (GC) 

method and silver ion high performance liquid chromatography (Ag
+
 HPLC). The analysis 

with GC is limited on the detection of the main CLA isomer in ruminants, CLAcis-9,trans-11, 

but mostly with coelution of CLAtrans-7,cis-9 and CLAtrans-8,cis-10. With the Ag
+
 HPLC 

method the detection of 17 CLA isomers (trans,trans; cis,trans; trans,cis; and cis,cis) is 

possible. For both experiments the CLA isomers were detected and analysed with both 

methods. Diets enriched in PUFA have been shown to increase the level of CLAcis-9,trans-

11 in tissues (Griinari et al., 2000; Mosley et al., 2006; Scollan et al., 2006). In both 

experiments no differences of the absolute concentration were found between groups for the 

main CLA isomer (Table 9). The relative proportion of CLAcis-9,trans-11 is higher in 

treatment groups fed the grass silage diets. As in the case of TVA the amount of CLAcis-

9,trans-11 is nearly twice as high in the muscle of German Simmental bulls compared to 

German Holstein bulls. This difference could be explained by the longer feeding duration of 

the German Simmental bulls or by the genetic difference in the SCD activity which is 

responsible for the formation of CLAcis-9,trans-11 from the precursor TVA in tissues. Breed 

differences were found for SCD activity and gene expression in Angus and Wagyu steers fed 

corn- or hay-based diets (Chung et al., 2007). The second important CLA isomer in ruminants 

is CLAtrans-10,cis-12. It is known to have a particular influence on fat metabolism. It 

prevents the development of adiposity (Park et al., 1997; Park et al., 1999; Ostrowska et al., 

1999), inhibits the differentiation of human adipocytes and reduces the TG content of mature 

or newly differentiated human adipocytes (Brown et al., 2001, 2003, and 2004). CLAtrans-

10,cis-12 has been shown to block the conversion of TVA to CLAcis-9,trans-11 via inhibition 

of SCD gene expression (Smith et al., 2009). While no significant differences for this CLA 

isomer in MLD of German Simmental bulls were found, the muscle of German Holstein bulls 

and the control group that were fed the maize silage contained a significantly higher amount 

in both absolute (0.25±0.02 vs. 0.17±0.02 mg/100 g), and relative (3.21±0.18 vs. 2.36±0.19 

%) terms. Feeding maize silage to goats (Bernard et al., 2009) and late lactating British 

Holstein Friesian (Shingfield et al., 2005) provided similar results to those of the Exp. 2, in an 

increased amount of CLAtrans-10,cis-12 in muscle and in milk compared to feeding 

grassland hay or grass silage.  
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 Analysis of the triglyceride, free fatty acid (FFA) and phospholipid fraction of muscle 

gives a more exact answer how the dietary fatty acid composition influences the fatty acid 

composition in animal muscle (Aurousseau et al., 2007). All animals of Exp. 1 were fasted 

one day before slaughter resulting in an increased lipolysis and an increase of FFA 

concentration in the serum to act as energy source for most tissues including skeletal muscle 

(Coppack et al., 1994). The FFA composition has not shown any differences between groups 

of Exp. 1. However, PUFA are predominantly located in the phospholipids where they 

maintain the permeability of cell membranes (Martonosi, 1975). Many studies have shown 

that the phospholipid fraction is affected by the diet. The PL fraction of MLD in pasture-fed 

bulls in the study of Lorenz et al. (2002) presented increased amounts of ALA. This result is 

confirmed by the higher concentration of ALA in the MLD PL fraction of German Simmental 

bulls fed with grass silage and concentrate supplemented with rapeseed. The accumulation of 

all single n-3 FA by pasture feeding was also observed in all single PL classes (Dannenberger 

et al., 2007). Additionally, in Exp. 1 the relative concentration of n-3 LC PUFA was 

significantly increased in the restricted and unrestricted group. The concentration of LA in the 

PL fraction of MLD was not different between groups and is in line with results found by 

Dannenberger et al. (2004). In conclusion, despite the biohydrogenation of n-3 PUFA in the 

rumen by bacteria, the transfer of these FA contained in grass silage and concentrates 

supplemented with rapeseed cake and oil is sufficient to result in a greater absorption and 

deposition of ALA into PL. Also the de novo synthesis and deposition of n-3 LC PUFA into 

the PL fraction of MLD in German Simmental bulls was higher in treatment groups. 

 The TG fraction is also affected by the grass silage diet, because the relative proportion 

of ALA and the sum of n-3 PUFA is significantly increased, whereas LA and the sum of n-6 

fatty acids is unchanged between groups. These results are in line with a feeding experiment 

made with lambs by Aurousseau et al. (2007).             

 

Subcutaneous adipose tissue:  

 In ruminants, SAT represents the main tissue for de novo fatty acid and TG synthesis 

but the fatty acid composition is influenced by the diet. In both experiments the grass silage 

feeding enhanced the amount of ALA and the sum of n-3 PUFA resulting in a lower n-6/n-3 

ratio. Considering the n-6 fatty acids, the sum of n-6 and LC n-6 PUFA and the LA 

concentration was greater in SAT of the Exp. 2 control group. However, no differences were 

shown for n-6 fatty acids, except the n-6 LC PUFA, between animal groups in Exp. 1. It 
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seems that a particular ratio of LA and ALA in the diet is needed to receive a result as in Exp. 

2. The n-3 fatty acids EPA and DHA were not detectable in SAT samples from German 

Simmental, but in SAT samples from German Holstein bulls. In ruminants the long-chain C20 

and C22 are mainly deposited in the phospholipid fraction of muscle and SAT but not in 

triacylglycerols and neutral lipids (Ashes et al., 1992). The phospholipid fraction in SAT is 

very low. Therefore, a low amount of LC PUFA is difficult to detect.  

 Fincham et al. (2009) observed an increase of TVA and ALA and a decrease of LA in 

the ruminal fluid and SAT of pasture-finished cattle compared to feedlot-finished. Scollan et 

al. (2001) found out that a diet with whole linseeds fed to steers increased the TVA and ALA 

concentration in SAT. In the unrestricted and restricted group of the Exp. 1 the concentration 

of LA was not lower in SAT of these groups as well as in muscle. Barton et al. (2007) 

investigated the effect of a diet supplemented with extruded linseed, and an n-6/n-3 ratio in 

the animal diet of 1.9:1, to heifers. The feeding resulted in an increased amount of LA and 

CLA. Barton et al. (2007) did not find an explanation for this result; but in the studies of 

Maddock et al. (2006) and Kim et al. (2004) the tissue concentrations of LA were also higher 

despite the feeding of linseed. It seems, as in muscle, that the amount of ALA should be 

higher than the amount of LA to achieve a reduction of LA in tissue. A high intake of corn 

and a consequent high LA and starch concentration lowers the pH in the rumen and this leads 

to a lower biohydrogenation of fatty acids by microbial organisms. Subsequently, the 

concentration of LA and CLA increases in the duodenal flow and results in an increased 

incorporation into tissues (Smith, 2009). Additionally, the particle size of LA enriched 

concentrate diets is small compared to fibrous diets, and this leads to a shorter rumen transit 

time with a limiting effect on ruminal biohydrogenation (Wood et al., 2008). 

 

Short-time feeding restriction 

 One of the two experimental groups of Exp. 1 (grass silage/rapeseed cake and oil) had 

been exposed for a short time feeding restriction at the beginning of the feeding trial. To 

improve the meat tenderness in gilts it is useful to induce compensatory growth (Kristensen et 

al., 2004). Compensatory growth causes high plasma levels of growth hormone (GH) which 

could be responsible for deposition of lean tissue in this period of growth (Hornick et al., 

2000). In the recent Exp. 1 the short time restriction period induced a reduced daily gain (1.26 

kg/day in control; 0.97 kg/day in restricted fed animals; Mahecha et al., 2009) but not a 

significantly higher intramuscular fat deposition as expected. It also seems that in general no 
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compensatory growth occurred because the total daily gain was nearly the same for restricted 

and unrestricted animals (1.03 kg/day vs 0.97 kg/d ) over the whole feeding period (Mahecha 

et al., 2009). It is expected, that the feeding restriction was, with 1 kg concentrate per day 

instead of 2 kg, not far reaching enough. 

 

 

Comparison of the incorporation of n-6 and n-3 fatty acids in several tissues 

 Based on the two animal experiments one question should be answered: Is there a tissue 

specific effect of LA and ALA in the diet of these animals? Figure 7 shows the comparison of 

the proportion of n-6, n-3, and n-3 LC PUFA for subcutaneous adipose tissue and longissimus 

muscle of German Holstein bulls and for subcutaneous adipose tissue, liver, longissimus 

muscle, erythrocytes, and serum of German Simmental bulls.  

 Serum as a transport medium for lipids had the highest proportion of PUFA, and 

especially of n-6 PUFA, compared to all other tissues. The relative concentration of n-3 

PUFA is comparable with that of the liver. Grass silage/rapeseed supplemented concentrate 

feeding (Experiment 1) resulted in a significant increase of LA in both tissues (serum and 

liver). While the subcutaneous adipose tissue represents the main source in ruminants for de 

novo fatty acid and triacylglycerol synthesis, the liver has less effect on de novo synthesis 

(Bauchart et al., 1996) and disposal of lipids in ruminants (Bell, 1980). The higher intake of 

n-3 PUFA in the experimental groups was associated with a higher accumulation of these 

fatty acids and also led to a higher de novo synthesis of n-3 LC PUFA in the liver.  

 The fatty acid distribution of serum and erythrocytes of German Simmental bulls has 

shown differences. The proportion of n-6 and n-3 PUFA is lower in erythrocytes than in 

serum. Erythrocyte phospholipid composition helps maintain membrane fluidity and is a 

marker for the long-term fat intake because of its 120 day lifespan (Hodson et al., 2008). 

Meanwhile, serum reflects the current status of lipids transported with the blood (Smith, 

1987) and this difference explains the differences in fatty acid composition.   

 The fatty acid proportions in SAT and MLD of the PSB experiment are in the same 

range as in the same tissues in Exp. 1 but the proportions for n-6 in SAT and n-6, n-3 and  n-3 

LC PUFA in MLD of Exp. 2 are lower compared to the corresponding tissues from animals of 

the MPA experiment. This is caused by the shorter feeding duration of the German Holstein 

bulls. Interestingly, the relative proportion of n-3 and n-3 LC PUFA in SAT is nearly the 

same. This supports the finding from Wood et al. (2008) that ruminants, especially bulls, 
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preferentially incorporate essential fatty acids in muscle rather than in SAT. This is consistent 

with the relative proportions but not for the absolute concentration.  

 In summary, there is a tissue specific incorporation and deposition depending on the 

function of the respective tissue. Despite the low contribution of liver to fatty acid synthesis in 

ruminants, the relative concentration of n-3 LC PUFA is the highest compared to MLD, SAT, 

serum and erythrocytes.   

 

        

Figure 7:  Proportion of n-6, n-3 and n-3 LC PUFA for subcutaneous adipose tissue and longissimus muscle 

of German Holstein bulls and for subcutaneous adipose tissue, liver, longissimus muscle, 

erythrocytes, and serum of German Simmental bulls   

 

C16:1cis-9 as a signalling molecule in longissimus muscle 

 Figure 8 shows correlations between palmitoleate (C16:1cis-9) and de novo synthesised 

fatty acids (C10:0, C12:0, C14:0, C16:0) in the longissimus muscle and the phospholipid 

fraction of the longissimus muscle in German Simmental (black box) and German Holstein 

bulls (red box). Palmitoleate is postulated to be a signalling hormone, produced by adipose 

tissue, which acts as mediator between adipose and muscle and liver tissues in mice. 

Additionally, palmitoleate contributes to the regulation (suppression) of SCD-1 expression 

and it is a unique fatty acid as a marker for de novo lipogenesis with a strong correlation 
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between C16:1cis-9 in plasma, muscle and liver tissue of mice. Lipid chaperones, like 

FABPs, regulate the lipokine palmitoleate in a negative way. In absence of FABPs the flux of 

palmitoleate from adipose tissue to muscle and liver increases severely and this cause an 

improved metabolic response, which is of interest for further research of the metabolic 

syndrome (Cao et al., 2008).  

 In the present animal experiments strong correlations were found for palmitoleate and 

de novo synthesised fatty acids in MLD of German Simmental bulls (r²=0.93) and in MLD 

and in the phospholipid fraction of MLD of German Holstein bulls (r²=0.92). Why the 

correlation is with r²=0.54 low between the phospholipid fraction of MLD and palmitoleate in 

German Simmental bulls is unclear. Nonetheless, the within variation in German Simmental 

bulls is higher than that in German Holstein bulls.   

  

 

Figure 8:  (a) Correlation between the sum of de novo synthesised fatty acids (C10:0, C12:0, C14:0, C16:0) 

and C16:1cis-9 as a signalling molecule in MLD of German Simmental bulls. (b) Correlation 

between the sum of de novo synthesised fatty acids (C10:0, C12:0, C14:0, C16:0) and C16:1cis-9 as 

a signalling molecule in PL fraction of MLD of German Simmental bulls. (c) Correlation between 

the sum of de novo synthesised fatty acids (C10:0, C12:0, C14:0, C16:0) and C16:1cis-9 as a 

signalling molecule in MLD of German Holstein bulls. (d) Correlation between the sum of de novo 

synthesised fatty acids (C10:0, C12:0, C14:0, C16:0) and C16:1cis-9 as a signalling molecule in PL 

fraction of MLD of German Holstein bulls. 
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 Interestingly, a strong correlation in muscle of German Holstein (r=0.94) and 

Simmental bulls (r=0.95) between the sum of saturated fatty acids and oleic acid was found as 

shown in Figure 9. It seems that oleic acid as the predominant fatty acid in cattle tissue alyo 

has a signalling function on de novo synthesis of fatty acids in muscle tissue, such as 

palmitoleate.  

 

Figure 9: Correlation between the sum of saturated fatty acids and oleic acid (C18:1cis-9) in MLD of German 

Holstein and Simmental bulls 

 

 Figure 10 displays the correlations between the intramuscular fat content and the 

concentration of C16:1cis-9 on the left and C18:1cis-9 on the right side of the figure of the 

longissimus muscle of German Holstein bulls. The absolute concentrations of both fatty acids 

are highly correlated to the IMF in MLD. This result confirms that C18:1cis-9 is the 

predominant fatty acid in beef muscle. The relation between C16:1cis-9 and IMF supports the 

result of a signalling connection between this fatty acid and the fat content of beef muscle.    

 In SAT, which is the main tissue for synthesis of fatty acids, no relationship was found 

for C16:1cis-9 and de novo synthesised fatty acids nor between serum, plasma, de novo 

synthesised fatty acids in muscle tissue, or the muscle fatty acid fractions (PL, TG). 
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Figure 10:  Correlation between the intramuscular fat content and C16:1cis-9 or C18:1cis-9 in MLD of 

German Holstein bulls 

 

 

Influence of LA and ALA supplemented diet on lipogenic enzyme protein expression 

and activity 

 The protein expression of ACC, SCD and Δ6D was measured in a subgroup of 14 

German Holstein bulls (control group: n=8; experimental group: n=6) from the PSB 

experiment. The results are shown in Figure 10 and 11(a).  

 Studies in pigs have shown that PUFA supplemented diets can trigger changes in the 

expression of lipogenic enzymes in muscle and SAT, and these changes are related to 

variations in the fatty acid profile (Doran et al., 2006; Misotten et al., 2009). That dietary 

fatty acids have regulatory effects on enzyme expression was shown in laboratory animals 

and human (Jump and Clarke, 1999; Ntambi, 1999), but less information is available about 

the distribution and regulation of lipogenic enzymes in ruminant tissues.  

 The protein expression of ACC as the key enzyme in the control and regulation of de 

novo synthesised SFA (Hardie, 1989) was not affected by dietary ALA despite the lower 

amount of saturated fatty acids in the experimental group. ACC is diversely regulated in 

different tissues as shown in rats (Xiao et al., 2006). Therefore, despite no obvious alterations 

of the protein expression of ALA, it cannot be ruled out that the ACC activity may be altered 

by dietary PUFA. 

 The study of Theil and Lauridsen (2007) has shown inhibitory effects of dietary n-3 

PUFA on the gene expression of Δ6D, involved in the biosynthesis of longer chain n-3 and n-

6 PUFA (Stoffel et al., 2008), in weaning pigs. Inhibitory effects of the ALA supplemented 

diet of the PSB experiment on the protein expression of Δ6D were shown only for MLD of 

German Holstein bulls. A number of lipogenic enzymes are regulated via SREBP and the 
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expression of SREBP is tissue specific (Felder et al., 2005). In bulls an inhibitory effect of n-

3 PUFA on SREBP-1c was found (Waters et al., 2009); therefore, a relationship between the 

tissue specific effect, the tissue specific distribution and regulation of the relevant 

transcription factor is possible. Two closely positioned immunoreactive bands were detected 

for Δ6D in SAT and MLD. This gives evidence for more than one isoform in cattle tissues as 

shown in Mucor rouxii (Na-Ranong et al., 2006) and rats (Skrzypski et al., 2009).     

   

 

Figure 11:  Lipogenic protein enzyme expression of acetyl-CoA carboxylase (ACC) and Δ-6desaturase (Δ6D) 

in longissimus muscle (MLD) and subcutaneous adipose tissue (SAT) of German Holstein bulls 

(control group: n=8; experimental group: n=6; a,b-significant different between groups at P≤0.05) 

 

 The SCD is responsible for the biosynthesis of MUFA with an insertion of a double 

bond in a SFA between carbon 9 and 10. This enzyme also catalyses the conversion of TVA 

to CLAcis-9,trans-11 in ruminant tissues (Enoch et al., 1976). As for the Δ6D two 

immunoreactive bands for SCD were found in muscle and SAT which gives evidence that in 

ruminant tissues exists more than one isoform (Lengi and Corl, 2007). Thiede et al. (1986) 

and Miyazaki et al. (2003) found a tissue-specific distribution and regulation of SCD in mice 

and rats. Feeding grass silage with concentrate supplemented with linseed oil and rapeseed 

cake resulted in a significant decrease of SCD protein expression and SCD activity (Figure 

11b) in MLD and SAT of German Holstein bulls. Feeding PUFA to other species resulted in 

an inhibition of SCD expression (Flowers and Ntambi, 2008). The balance between n-6 and n-

3 fatty acids was shown to be important for the regulation of SCD via the transcription factor 

SREBP in muscle of cattle (Waters et al., 2009). The regulation of Δ6D is also controlled by 

SREBP but the tissue-specific effect of the Δ6D protein expression was not confirmed for 

SCD protein expression and activity. These results imply that the mechanisms and the 
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expression of the transcription factor are possibly tissue-specific. The analysis of the fatty 

acid composition of the 14 animals (subgroup) resulted in a significantly decreased 

concentration of oleic acid, a product of SCD, in SAT of the grass silage fed group and in 

MLD a tendency for a decrease was revealed, as well as the MUFA concentration in both 

tissues. Reasons for no significant differences in the subgroup could be the large individual 

variations and the small number of animals. Using all German Holstein bulls (n=29) the 

absolute concentration of oleic acid and the sum of MUFA in MLD and SAT of the grass 

silage fed group is significantly lower compared to control animals (Mahecha et al., 2010). 

These results are consistent with the significantly decreased SCD activity as well as the 

protein expression in the experimental group. Furthermore, the SCD activity is lower in 

muscle compared to SAT. Archibeque et al. (2005) found out that the catalytic activity of 

SCD in SAT is twice that of interfascicular adipose tissue with a higher proportion of MUFA 

in SAT. The activity in MLD tissue is in the same range as in pigs, demonstrated by Doran et 

al. (2006). The CLAcis-9,trans-11 concentration is similar between both feeding groups, 

despite the higher relative proportion of TVA in the experimental group. This is caused by the 

inhibition of the SCD protein expression and activity in tissues of this group.      

 

 

Figure 12:  (a) SCD protein expression in longissimus muscle (MLD) and subcutaneous adipose tissue 

(SAT) of German Holstein bulls (control group: n=8; experimental group: n=6). (b) SCD activity 

(nmol/mg Protein/h) in longissimus muscle (MLD) and subcutaneous adipose tissue (SAT) of 

German Holstein bulls (control group: n=15; experimental group: n=14; a,b-significant different 

between groups with P≤0.05).   

 

 

 

Enrichment of processed meat with good fatty acids and the consumers benefit 

 The awareness of consumers for more nutritious and value-added meat products has 

increased, and the interest in pasture-based beef production systems is growing (Verbeke et 
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al., 2010). The consumption of processed meat is about 61 g/day for men and 30 g/day for 

women (Max Rubner-Institut, Bundesforschungsinstitut für Ernährung und Lebensmittel, 

2008). Therefore it is of interest to consider the fatty acid composition of sausages made from 

the carcasses of the animal experiment. There are few investigations showing the fate of 

single fatty acids starting in meat, progressing through processing, and ending up in products. 

From each carcass of the PSB experiment sausages were produced as the following: German 

corned beef sausages (GCB), Tea sausage spread (TSS), and Feuerli (a kind of wiener). For 

the present work GCB and TSS are of interest. Both sausages have different recipes and were 

produced with different methods (Table 10).      

 

Table 10: Recipes and production methods of German corned beef sausages (GCB) and Tea 

sausage spreads (TSS) 

 German corned beef sausages Tea sausage spreads 

Recipe - 58% lean beef  

- 5% beef rind 

- Drinking water 

- Gelatin 

- Pickling salt 

- Spices 

- Yeast extracts 

- Celeriac 

- Corn, soy, and plant proteins 

 

- 94% beef and pork meat 

- Pickling salt 

- Spices 

- Sugar, Lactose, Dextrose 

- Antioxidant (E301, E300) 

- Flavour enhancer (E621) 

- Rum 

- Beech wood smoke 

Preparation 1) Lean meat injected with spice 

brine 

2) Scalded until an internal 

temperature of 68°C 

3) Cool down 

4) Minced 

5) Mixed with aspic 

6) Filling the mass in cleaned guts 

7) Scalded until an internal 

temperature of 78°C 

8) Cool down 

1) Mincing the lean beef and pork 

meat  

2) Adding salt and spices while 

mincing 

3) Filling the mass in artificial 

sausage skin 

4) Maturation 

5) Smoking with 25°C 

6) Postmaturation until a pH<5.6 

is reached 

 

 While the GCB was scalded by 68°C and 78°C, the TSS was treated with only 25°C. 

This difference in the temperature treatment could influence the fatty acid composition 

because of an intense lipolysis (Gandemer, 2002). N-3 PUFA added to raw meat before heat 
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processing resulted in a loss of these fatty acids due to the cooking process to produce ham 

(Lee et al., 2006). Moreover, it was found that heat catalyses the initiation of lipid 

peroxidation and the formation of oxidation products (Bilek and Turhan, 2009). 

 Table 11 represents the relative concentration of fatty acids in GCB and TSS. The 

relative concentration of the n-3 LC PUFA (EPA, DHA, and DPA) is approximately the same 

in MLD and GCB. For these fatty acids a short-time heating did not cause losses. Only the 

relative concentration of ALA in GCB is compared to the fresh muscle reduced. In fact, a 

study with pork showed an increase of PUFA after grilling due to water loss (Nuernberg et 

al., 2006). Frozen meatballs made from beef heated for 10 minutes at 230°C and then at 

203°C for the last 10 minutes showed no loss of LA and ALA compared to the fresh meat 

(Baggio and Bragagnolo, 2006). The conclusion for the production of GCB is as follows: No 

appreciable losses of n-3 fatty acids in GCB compared to the fresh meat were detected. The 

proportion of SFA is lower than that of MUFA. The ratio of n-6/n-3 fatty acids corresponds to 

the recommendations of the DGE with ≤5:1 (DGE, 2008). Considering the predominance of 

CLAcis-9,trans-11 in ruminant tissues (65-66%), no decline was observed. Therefore, a 

transfer of beneficial fatty acids from fresh muscle into the product GCB is possible without 

appreciable losses of these fatty acids. 

 To compare the TSS fatty acid composition with that of the fresh beef is not very useful 

because a part of the mixture contains pork meat with an unknown fatty acid composition. 

Nonetheless, the relative concentration of ALA in TSS from the experimental group is 

significantly higher compared to that of the control group with similar n-3 LC PUFA, but less 

when compared to GCB. The lower proportion of SFA compared to MUFA in TSS of both 

groups is particularly advantageous. Due to the significantly greater proportion of n-3 fatty 

acids in the experimental TSS, the ratio of n-6/n-3 is lower in this group but is higher than the 

recommendation of the DGE by 6.4±0.3. Moreover, the fat concentration in TSS is ten times 

higher compared to GCB associated with a clearly higher absolute amount of ALA, DPA, 

DHA, and AA. However, the absolute amount of EPA is only 1 mg/100 g more in TSS of the 

control and 1 mg/100 g less of TSS in the experimental group, compared to the corresponding 

GCB. In summary, despite the high amount of fat in TSS and the additional supplies of ALA 

and n-3 LC PUFA, the inclusion of TSS made from the meat of the experimental group into 

the human diet is supported. 
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Table 11: Relative fatty acid composition (%) of German Corned Beef and Tea Sausage Spread made from German Holstein bulls 

 Corned beef Tea sausage spread 

CG  TG   CG  TG   

LSM SEM LSM SEM P LSM SEM LSM SEM P 

C16:0  22.6 0.3 22.1 0.3 0.17 24.7 0.2 24.2 0.2 0.06 

C16:1cis-9 3.8 0.1 3.4 0.1 0.01 3.6 0.1 3.3 0.1 0.01 

C18:0  13.8 0.3 14.8 0.3 0.04 15.4 0.4 16.1 0.4 0.25 

C18:1cis-9 38.7 0.5 37.3 0.5 0.07 38.1 0.3 38.2 0.3 0.83 

C18:1trans-1  0.7 0.1 0.8 0.1 0.50 0.5 0.0 0.5 0.0 0.34 

C18:2n-6 7.7 0.5 7.8 0.5 0.94 7.5 0.3 7.6 0.3 0.83 

C18:3n-3 1.0 0.1 1.5 0.1 0.01 0.8 0.1 1.0 0.1 0.00 

C20:4n-6 1.3 0.1 1.5 0.1 0.29 0.2 0.0 0.2 0.0 0.99 

C20:5n-3 0.2 0.0 0.4 0.0 0.00 0.02 0.0 0.03 0.0 0.13 

C22:4n-3 0.2 0.0 0.2 0.0 0.09 0.1 0.0 0.1 0.0 0.33 

C22:5n-3 0.4 0.0 0.6 0.1 0.00 0.1 0.0 0.1 0.0 0.11 

C22:6n-3 0.05 0.0 0.08 0.0 0.00 0.0 0.0 0.0 0.0 0.92 

Σ  SFA 40.1 0.4 40.7 0.4 0.32 43.8 0.5 43.9 0.5 0.86 

Σ MUFA 47.2 0.6 45.4 0.6 0.04 46.7 0.3 46.2 0.3 0.27 

Σ  n-3 fatty acids 1.8 0.2 2.7 0.2 0.00 1.1 0.1 1.3 0.1 0.00 

Σ n-6 fatty acids 9.9 0.5 10.1 0.5 0.79 9.2 0.4 8.3 0.4 0.83 

Ratio n-6/n-3 FA 5.9 0.4 4.0 0.4 0.00 8.0 0.3 6.4 0.3 0.00 

Σ n-3 LC PUFA 0.7 0.1 1.1 0.1 0.00 0.1 0.0 0.2 0.0 0.19 

Σ n-6 LC PUFA 1.6 0.1 1.7 0.1 0.44 0.3 0.0 0.3 0.0 0.88 

Σ trans FA 1.3 0.1 1.5 0.1 0.29 1.2 0.1 1.1 0.1 0.46 

Σ FA 2165.7 118.0 1966.3 122.1 0.25 21776.9 599.4 21836.4 620.4 0.95 

For explanation see Table 9 
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Conclusion 

 Two feeding experiments were conducted to investigate the effects of n-3 and n-6 fatty 

acids on the regulation of metabolism in ruminants and the fatty acid composition of cattle 

tissues. The current results validate, that the animal feeding experiments were successful and 

suited for the research.  

 A diet with ingredients high in n-3 fatty acids, like linseed oil, rapeseed and grass 

silage, results in an increase of n-3 fatty acids in cattle tissues despite the biohydrogenation in 

the rumen. The concentration of EPA and DHA (for human health important n-3 long-chain 

products) in cattle tissues depends upon the ALA concentration in the animal diet. 

Considerably more ALA than LA in the animal diet results in a clearly greater concentration 

of EPA, DHA and ALA, and a reduced LA concentration in cattle tissues. With two servings 

of meat (200g per serving) per week, a person could ingest up to 40 mg EPA+DHA and 130 

mg ALA. The intake of GCB (2 servings per week with 50 g per serving) could provide up to 

20 mg EPA+DHA and 65 mg ALA to the nutrition. Unfortunately, it is just a small 

contribution to the human nutrition but it should be kept in mind especially for persons who 

eat no fish. Feeding linseed oil to cattle is not exactly cheap. Therefore, it could be difficult to 

realize in the conventional agriculture but should however be an option for organic farming. 

Another option for the conventional farming is the application of linseed pellets as 

supplementation to the concentrate in combination with grass silage.  

 In the future, research should be geared to find alternatives instead of fish, meat or algae 

for the sustenance of humans with n-3 fatty acids and the so important long chain products 

like EPA and DHA. It should be of interest to find sustainable sources, like plants, with a 

sufficient concentration of n-3 fatty acids to provide humans according to the current 

recommendations. 
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9. Summary 

 

Background: 

 Animal-derived foods contribute a substantial part of dietary fat. In recent years the 

consumer interests have focused not only on the amount of fat but also on the fatty acid 

composition. An adequate intake of n-3 fatty acids is recommended because of several health 

benefits in human, for example the treatment of rheumatoid arthritis, coronary heart disease, 

in general inflammatory diseases and various cancers (especially in the case of 

gastrointestinal disorders). In this context, options to replace saturated and enhance the 

beneficial n-3 fatty acids in milk, meat and products by different feeding systems are 

important. Furthermore, the clarification of the exogenous n-6 and n-3 PUFA effect on lipid 

metabolism, especially the lipogenic enzymes, and in consequence on the fatty acid 

composition of tissues in cattle is required. 

 

Objectives:  

 The decrease of SFA and the increase of essential fatty acids in meat are desirable from 

nutritional point of view. The aim of the two experiments with bulls was to clarify the effect 

of different exogenous PUFA (n-6 vs. n-3 FA) on the regulation of lipid metabolism and the 

final fatty acid synthesis and deposition in different tissues. There are only very few studies 

investigating the effect of LA and ALA enriched diets on the protein expression of lipogenic 

enzymes in cattle. Furthermore, there is a need for research of tissue specific differences and 

the relationship between protein expression of lipogenic enzymes, enzyme activities and the 

products of these enzymes as well as the absorption and deposition of n-3 and n-6 fatty acids 

in ruminants.  

 Consumers are becoming more aware of the relationships between diet and health and 

this has increased consumer interest in the nutritional value of foods. In Germany the 

consumption of processed meat is higher than fresh meat. There is little information about the 

fate of PUFA in fresh beef during processing to products. Therefore, the influence of the 

processing method on beneficial n-3 fatty acid content during production of different beef 

sausages by using the fresh beef was investigated. 

  

Design: 

 Two animal experiments were conducted to investigate the effect of diets enriched in 
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ALA or LA in different cattle breeds.  

 The first experiment was realised with German Simmental bulls. Nine animals were fed 

a control diet with maize silage and a concentrate supplemented with soybean meal (20%) and 

soybean oil (2%) and was rich in LA. Seven animals received the experimental diet with a 

70/30 grass and maize silage mixture and the concentrate was supplemented with rapeseed 

cake (32%) and rapeseed oil (2%). This diet was rich in ALA. Additionally, a third group of 

nine animals was fed the experimental diet but at the beginning of the feeding experiment 

with a short-time feeding restriction of 112 days.  

 The second animal experiment was realised with German Holstein bulls. The control 

group with 15 animals received a diet with maize silage and a concentrate supplemented with 

soybean meal (41%) resulting in a diet high in LA. The experimental group with 14 animals 

received grass silage and a concentrate supplemented with rapeseed cake (12%) and linseed 

oil (3%) resulting in a diet high in ALA.  

   

Results:  

Fatty acid composition in longissimus muscle and subcutaneous adipose tissue of German 

Holstein bulls 

 The sum of fatty acids was about > 25% significantly decreased in MLD of the 

experimental group. A significant increase was observed in the experimental compared to the 

control group for the relative concentration of ALA (> 3-times), EPA, n-3 DPA, and DHA. 

The sum of n-3 LC PUFA was 2-times higher in experimental compared to control group. The 

absolute concentration of CLAcis-9,trans-11 was not affected. The ratio of n-6/n-3 was with 

2.3±0.1 significantly lower than in the control group with 5.8±0.1. 

 As in muscle the sum of fatty acids was significantly decreased in experimental SAT. 

While LA, the sum of n-6 fatty acids, and the ratio of n-6/n-3 was significantly increased in 

the control group, C18:1trans-11, ALA (1.75-times), and EPA were significantly increased in 

SAT of the experimental group. CLAcis-9,trans-11 was not affected and the concentration 

was 6-7% higher compared to MLD. 

 

Fatty acid composition of German Corned beef and Tea sausage spread made from meat of 

German Holstein bulls 

 The LA concentration in German Corned beef was similar between groups. 

Significantly higher concentrations were revealed for ALA (1.5-times) and the sum of n-3 LC 
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PUFA (1.6-times) in experimental group. The ratio of n-6/n-3 was with 4.0±0.4 significantly 

lower in GCB of experimental group than in control group (5.9±0.4). No differences were 

revealed for the CLA concentration.  

 The relative concentration of ALA in TSS from the experimental group is significantly 

higher compared to that of the control group with similar n-3 LC PUFA concentrations. The 

ratio n-6/n-3 is with 6.4±0.3 lower in the experimental compared to the control group with 

8.0±0.3. 

 

Fatty acid composition in tissues of German Simmental bulls 

The absolute concentration of ALA, the sum of n-3 fatty acids and the sum of n-3 LC 

PUFA were significantly increased in MLD of experimental groups, whereas n-3 LC PUFA is 

highest in the unrestricted group. The CLA and LA concentration was similar between groups 

and the ratio n-6/n-3 was significantly lower in experimental groups (3.0±0.1 and 3.2±0.1). 

C18:1trans-11, ALA, CLAcis-9,trans-11 and the sum of PUFA was significantly increased in 

the triglyceride fraction of MLD of the experimental groups and in the phospholipid fraction a 

significant increase in experimental groups was observed for ALA, EPA, and the n-3 DPA. 

DHA was only in the restricted group significantly increased. 

 The sum of fatty acids of SAT was about 7000 mg/100 g and the sum of n-6 LC PUFA 

(significantly) lower in the experimental groups. The experimental diet resulted in an 

increased absolute concentration of ALA, the sum of n-3 fatty acids and the C18:1trans-11. 

The relative concentration of n-3 PUFA and n-3 LC PUFA was significantly increased in the 

liver of experimental groups and the control diet resulted in an increased n-6 fatty acid 

concentration in the liver of the control compared to the restricted group. 

 Considering the relative fatty acid concentration of erythrocytes and serum no 

differences were revealed for the sum of n-6 fatty acids between feeding groups. In both 

tissues were the sum of n-3 fatty acids significantly increased in the experimental groups but 

only in erythrocytes the n-3 LC PUFA concentration. 

 

Short-time feeding restriction and compensatory growth 

 A short-time feeding restriction of 112 days did not result in an increase of IMF in 

muscle of German Simmental bulls. The deposition of beneficial n-3 fatty acids is not 

negatively influenced. 
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C16:1cis-9 as a signalling molecule 

 The correlations in MLD of German Holstein and German Simmental bulls between the 

concentration of de novo synthesised fatty acids (C10:0, C12:0, C14:0, C16:0) in mg/100 g 

and the concentration of C16:1cis-9 in mg/100 g are very strong with r
2
=0.92 for German 

Holstein and 0.93 for German Simmental bulls. Additionally, a strong correlation in MLD 

was found between de novo synthesised fatty acids (C10:0, C12:0, C14:0, C16:0) and 

C18:1cis-9 with r
2
=0.94 for German Holstein bulls and r

2
=0.95 for German Simmental bulls. 

  

Lipogenic enzyme protein expression and activity  

 The protein expression of ACC is not affected by diet. However, the Δ6D protein 

expression is significantly 33% lower in muscle of experimental group compared to the 

control German Holstein bulls. Additionally, there might be a tissue specific difference 

because there have been no effects of the diet on Δ6D protein expression in SAT. The SCD 

protein expression was significantly lower in muscle (37%) and SAT (29%) of experimental 

group as well as the enzyme activity in muscle (50%) and SAT (39%). These results are in 

line with the reduced MUFA concentration in tissues. It is the first functional proteomics 

approach showing a causal relationship between SCD protein expression, enzyme activity and 

the final product of this SCD (MUFA) in different tissues of bulls. 

 

Conclusion:  

 Feeding a diet enriched in LA or ALA results in an increased deposition of these fatty 

acids, induced chain elongation and desaturation and deposition of the long-chain products in 

tissues of ruminants despite the high bacterial biohydrogenation in the rumen. The 

supplementation of the concentrate with rapeseed cake and linseed oil in combination with 

feeding grass silage is efficient, at least for German Holstein bulls. The diet fed to German 

Simmental bulls resulted in approximately 3-times higher ALA content and 0.5% more n-3 

LC PUFA in MLD. Despite the higher concentration of LA in the diet the relative LA 

concentration in MLD of German Holstein bulls were similar between groups. This gives 

evidence that the metabolic important n-3 fatty acids are preferred deposited in MLD and it 

seems that LA is more hydrogenated in the rumen and it can be speculated that LA is 

intensively used for oxidation. Essential fatty acids are preferentially deposited in muscle 

compared to subcutaneous adipose tissue and also preferred in erythrocytes; conclusively they 
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are good long-time marker for the fatty acid intake. Despite the low proportion of the de novo 

fatty acid synthesis in the liver of ruminants the concentration of n-3 fatty acids and de novo 

synthesised n-3 LC PUFA is much higher compared to MLD. Summarizing, there is a tissue 

specific incorporation and deposition of n-6 and n-3 fatty acids depending on the function of 

the respective tissue. 

 The production conditions of German Corned beef and tea sausage spread made from 

the meat of the German Holstein bulls did not lead to a loss of beneficial n-3 fatty acids. 

Consequently, the ratio n-6/n-3 for German Corned beef is quite low and is in the range 

recommended from the German Society for Nutrition.     

 Further research is necessary considering the signalling function of C16:1cis-9 and 

C18:1cis-9 in ruminant tissues. The questions should be answered whether there is a 

relationship between the concentration of de novo synthesised fatty acids in tissues, as 

muscle, liver and subcutaneous adipose tissue, and C16:1cis-9 and C18:1cis-9 in plasma and 

how this mechanism works and how these fatty acids interfere. 

 Additionally to the ACC protein expression the ACC activity should be considered 

under LA and ALA feeding to explain the lower sum of fatty acids under ALA feeding. It is 

of interest to figure out the mechanisms how the tissue-specific effect of Δ6D works on 

protein expression level and on the level of activity. The SCD protein expression, the enzyme 

activity and the MUFA concentration are more inhibited by n-3 fatty acids than by n-6 fatty 

acids in different tissues of bulls. 
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10. Zusammenfassung 

 

Hintergrund: 

 Lebensmittel tierischer Herkunft liefern einen bedeutenden Teil des Nahrungsfettes in 

der menschlichen Ernährung. In den letzten Jahren hat sich das Interesse der Verbraucher 

nicht nur auf den Fettanteil sondern auch auf die Fettsäurezusammensetzung der Lebensmittel 

fokussiert. Die Empfehlung verschiedener Gremien sieht vor, täglich eine ausreichende 

Menge an n-3 Fettsäuren aufzunehmen, da diese positiven Einfluss auf verschiedene 

Erkrankungen haben. N-3 Fettsäuren werden in der Behandlung von rheumatischer Arthritis, 

koronarer Herzkrankheit, generell bei entzündlichen Erkrankungen und bei verschiedenen 

Krebsarten (vor allem im gastrointestinalen Bereich) eingesetzt. In diesem Zusammenhang ist 

es wichtig, Möglichkeiten zu haben, die gesättigten Fettsäuren im Fleisch zu reduzieren und 

die gewünschten n-3 Fettsäuren in Milch, Fleisch und Fleischprodukten anzureichern.  

 In diesem Zusammenhang ist die Aufklärung der Wirkung von differenten exogenen 

(Futter)  n-6 und n-3 Fettsäuren auf den Lipidstoffwechsel, und hier besonders der lipogenen 

Enzyme, und in der Konsequenz auf die Fettsäurezusammensetzung in den Geweben von 

Nutztieren relevant.  

 

Ziele:  

 Aus ernährungsbedingter Sicht ist es wünschenswert, den Gehalt an gesättigten 

Fettsäuren im Fleisch zu reduzieren und den der essentiellen Fettsäuren zu erhöhen. Das Ziel 

der beiden Fütterungsversuche mit Bullen lag darin, den Einfluss exogen zugeführter 

mehrfach ungesättigter Fettsäuren (n-6 vs. n-3 Fettsäuren) auf die Regulation des 

Lipidmetabolismus und die Fettsäuresynthese sowie die Einlagerung der Fettsäuren in die 

Gewebe zu untersuchen. Bisher gibt es nur wenige wissenschaftliche Untersuchungen, die 

den Einfluss von Linol- und Linolensäure angereicherten Diäten auf die Proteinexpression 

lipogener Enzyme beim Rind. Außerdem ist es notwendig, gewebespezifische Differenzen der  

Proteinexpression lipogener Enzyme beim Wiederkäuer und vor allem den Zusammenhang 

zwischen der Proteinexpression, der spezifischen Aktivität und der synthetisierten 

Fettsäureprodukte lipogener Enzyme sowie die Aufnahme und Einlagerung von n-3 und n-6 

Fettsäuren aufzuklären.  

 Die Nachfrage nach qualitativ hochwertigen Lebensmitteln durch den Verbraucher ist 

stetig gestiegen, da der Zusammenhang von Ernährung und Gesundheit immer bewusster 
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wahrgenommen wird. Der Verzehr von verarbeitetem Fleisch ist in Deutschland höher als der 

Verzehr von reinem Fleisch. Bis heute gibt es allerdings nur wenige Informationen über das 

Verhalten von mehrfach ungesättigten Fettsäuren während des Verarbeitungsprozesses zu 

Fleischprodukten. Deshalb  wurde im Rahmen dieser Arbeit auch der Einfluss der 

Verarbeitungsmethoden auf den Gehalt der n-3 Fettsäuren in verschiedenen Wurstprodukten, 

die unter Verwendung des frischen Fleisches der Bullen aus einem Fütterungsversuch, 

geprüft.  

  

Design: 

 Es wurden zwei Fütterungsversuche durchgeführt, um den Einfluss einer Linolsäure- 

bzw. Linolensäure angereicherten Diät mit zwei verschiedenen Rinderrassen zu erforschen. 

 Der erste Versuch wurde mit Deutschen Fleckvieh Bullen durchgeführt. Die 

Kontrolldiät, reich an Linolsäure, war aus Maissilage und einem Konzentrat, angereichert mit 

Sojaextraktionsschrot (20 %) und Sojabohnenöl (2 %), zusammengesetzt, und wurde an neun 

Bullen verfüttert. Das Versuchsfutter, reich an Linolensäure, bestand aus einer Mischung aus 

Gras- und Maissilage im Verhältnis 70/30 und einem Konzentrat, angereichert mit 

Rapskuchen (32 %) und Rapsöl (2 %). Diese Futtermischung wurde an sieben Tiere 

verfüttert. Zusätzlich gab es eine zweite Versuchsgruppe mit neun Bullen. Diese erhielt 

ebenso das Versuchsfutter, aber zu Beginn der Fütterung wurde eine Futterrestriktion von 112 

Tagen durchgeführt.  

 Das zweite Fütterungsexperiment wurde mit Deutschen Holstein Bullen durchgeführt. 

Die Kontrolldiät, ebenfalls reich an Linolsäure, wurde an 15 Bullen verfüttert und bestand aus 

Maissilage und einem Konzentrat, angereichert mit Sojaextraktionsschrot (41 %). Die 

Versuchsdiät, reich an Linolensäure, wurde an 14 Bullen verfüttert und bestand aus 

Grassilage und einem Konzentrat, angereichert mit Rapskuchen (12 %) und Leinöl (3 %).  

   

Ergebnisse:  

Fettsäurezusammensetzung in Muskel und subkutanem Fettgewebe von Deutschen Holstein 

Bullen 

 Die Summe der gesamten Fettsäuren war im MLD der Versuchsgruppe um mehr als 25 

% signifikant verringert. Die relative Konzentration von ALA (> 3-fach), EPA, n-3 DPA, und 

DHA im Muskel der Versuchsgruppe ist im Vergleich zur Kontrollgruppe signifikant erhöht. 

Die Summe der n-3 LC PUFA war zweifach höher im MLD der Versuchsgruppe verglichen 
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mit der Kontrollgruppe. Die Konzentration der CLAcis-9,trans-11 war nicht beeinflusst. Das 

Verhältnis n-6/n-3 war mit 2,3±0,1 signifikant niedriger in der Versuchsgruppe verglichen zur 

Kontrollgruppe mit 5,8±0,1. 

 Wie im Muskel ist auch im Fettgewebe (SAT) der Versuchsgruppe die Summe der 

Fettsäuren signifikant niedriger. Während die Konzentration der Linolsäure, die Summe der 

n-6 Fettsäuren und das Verhältnis von n-6/n-3 signifikant höher waren in der Kontrollgruppe, 

sind C18:1trans-11, ALA (1,75-fach), und EPA signifikant in der Versuchsgruppe erhöht. Die 

Konzentration der CLAcis-9,trans-11 war 6-7 % höher im Fettgewebe verglichen mit dem 

Muskel und war gleich zwischen den Gruppen. 

 

Fettsäurezusammensetzung von Deutschem Corned Beef und der Teewurst, hergestellt aus 

dem Fleisch der Deutschen Holstein Bullen 

 Die Konzentration der Linolsäure für das Deutsche Cornedbeef war gleich zwischen 

den Gruppen, die Konzentration von Linolensäure (1,5-fach) und die Summe der langkettigen 

n-3 Fettsäuren (1,6-fach) war signifikant höher im Corned Beef der Versuchsgruppe. Das 

Verhältnis von  n-6/n-3 war mit 4,0±0,4 signifikant niedriger im Corned Beef, hergestellt aus 

dem Fleisch der Versuchstiere, verglichen mit dem Cornedbeef der Kontrollgruppe  (5,9±0,4). 

Die CLA-Konzentration in den Corned Beefs war gleich zwischen den Gruppen.   

 Die Teewurst, hergestellt aus dem Fleisch der Versuchstiere, enthielt eine signifikant 

höhere Konzentration an Linolensäure verglichen zur Teewurst aus dem Fleisch der 

Kontrolltiere. Das Verhältnis n-6/n-3 ist mit 6,4±0,3 niedriger in der Teewurst mit dem 

Versuchstierfleisch verglichen zur Teewurst der Kontrolltiere mit 8,0±0,3. 

 

Fettsäurezusammensetzung der Gewebe der Deutschen Fleckvieh Bullen  

 Die absolute Konzentration der Linolensäure, die Summe der n-3 Fettsäuren und die 

Summe der langkettigen n-3 Fettsäuren waren signifikant erhöht im MLD der Tiere aus den 

Versuchsgruppen, wobei die Konzentration der langkettigen n-3 Fettsäuren in der 

Versuchsgruppe ohne Futterrestriktion am höchsten war. Die Konzentration der CLA und der 

Linolsäure war gleich zwischen den Gruppen. Das Verhältnis n-6/n-3 war signifikant 

niedriger in den Versuchsgruppen (3,0±0,1 und 3,2±0,1) verglichen zur Kontrolle. Die 

Konzentration von C18:1trans-11, der Linolensäure, der CLAcis-9,trans-11 und der Summe 

der mehrfach ungesättigten Fettsäuren war signifikant erhöht in der Triglyzeridfraktion des 

MLD der Versuchsgruppen. In der Phospholipidfraktion des MLD der Versuchsgruppen 
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wurde eine signifikant erhöhte Konzentration von Linolensäure, EPA und der n-3 DPA 

detektiert. Die Konzentration der DHA war lediglich in der futterrestriktierten Gruppe 

signifikant erhöht. 

 Die Summe der Fettsäuren im subkutanen Fettgewebe war rund 7000 mg/100 g 

niedriger in den Versuchsgruppen. Die Summe der langkettigen n-6 Fettsäuren war ebenfalls 

niedriger im subkutanen Fettgewebe der Versuchsgruppen. Die absolute Konzentration der 

Linolensäure, die Summe der n-3 Fettsäuren und der C18:1trans-11 war im Gewebe der 

Versuchstiere erhöht.  

 Die relative Konzentration der Summe der n-3 Fettsäuren und der langkettigen n-3 

Fettsäuren war signifikant erhöht in der Leber der Versuchstiere verglichen mit dem 

Lebergewebe der Kontrolltiere. Die Kontrolldiät resultierte in einer höheren n-6 

Fettsäurekonzentration in der Leber der Bullen verglichen mit den Versuchstieren.  

 Die Summe der n-6 Fettsäuren ergab bei der Analyse der Erythrozyten und des Serums 

keine Unterschiede bezüglich der relativen Konzentration zwischen den Gruppen. Die Summe 

der n-3 Fettsäuren hingegen war in Erythrozyten und Serum der Versuchsgruppen signifikant 

erhöht, die relative Konzentration der langkettigen n-3 Fettsäuren allerdings nur in den 

Erythrozyten.  

 

Kurzzeit-Futterrestriktion und kompensatorisches Wachstum 

 Die Futterrestriktion von 112 Tagen hatte keine Erhöhung des intramuskulären 

Fettgehaltes im Muskel der Deutschen Fleckvieh Bullen zur Folge gehabt. Die Einlagerung 

von n-3 Fett-säuren im Muskel ist nicht negativ beeinflusst. 

 

 C16:1cis-9 als Signalmolekül 

 Die Korrelationen im Muskel von Deutschen Holstein und Fleckvieh Bullen zwischen 

der Konzentration der de novo synthetisierten Fettsäuren (C10:0, C12:0, C14:0, C16:0) in 

mg/100 g und der Konzentration der C16:1cis-9 in mg/100 g sind sehr eng mit r
2
=0,92 im 

Muskel der Deutschen Holstein Bullen und r
2
=0,93 für Deutsche Fleckvieh Bullen. Außerdem 

wurde eine enge Korrelation zwischen den de novo synthetisierten Fettsäuren (C10:0, C12:0, 

C14:0, C16:0) und C18:1cis-9 mit einem Korrelationsfaktor von r
2
=0,94 für Deutsche 

Holstein und r
2
=0,95 für Deutsche Fleckvieh Bullen gefunden. 
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Proteinexpression lipogener Enzyme  und Enzymaktivität  

 Die Proteinexpression der ACC ist nicht beeinflusst durch die Futterzusammensetzung. 

Die Δ6D-Proteinexpression hingegen ist im Muskel der Versuchsgruppe um 33 % reduziert 

im Vergleich zur Kontrollgruppe. Zusätzlich scheint es einen gewebespezifischen Unterschied 

zu geben, da im subkutanen Fettgewebe kein Effekt auf die Proteinexpression der Δ6D 

beobachtet wurde. Die SCD-Proteinexpression war im Muskel und im subkutanen Fettgewebe 

der Versuchstiere um 37 % bzw. 29 % reduziert. Ebenfalls war die Aktivität im Muskel und 

Fettgewebe der Versuchstiere reduziert, um 50 % und 39 %. Diese Ergebnisse werden durch 

die reduzierte Konzentration der einfach ungesättigten Fettsäuren in den Geweben der 

Versuchstiere bestätigt. Dies ist der erste funktionelle Proteomics-Ansatz der zeigt, dass ein 

kausaler Zusammenhang zwischen der SCD-Proteinexpression, Aktivität und dem 

Endprodukt, den einfach ungesättigten Fettsäuren, in verschiedenen Geweben von Bullen 

besteht.  

 

Schlussfolgerung:  

 Das Füttern einer Diät, die reich an Linol- und Linolensäure ist, führt zu einer 

Einlagerung dieser Fettsäuren, zur Kettenverlängerung und Desaturierung sowie zur 

Einlagerung der langkettigen Fettsäureprodukte im Wiederkäuergewebe trotz der 

Biohydrogenierung durch Mikroorganismen im Pansen. Die Supplementierung des 

Konzentrates mit Rapskuchen und Leinöl in Kombination mit dem Füttern von Grassilage ist 

erfolgreich in Deutschen Holstein Bullen einzusetzen, wenn die Konzentration der n-3 

Fettsäuren im Gewebe erhöht werden soll. Die Diät, welche den Deutschen Fleckvieh Bullen 

gefüttert wurde, führte zu einem ca. 3-fach höheren Gehalt an Linolensäure und einer 

0,5%igen höheren Einlagerung von langkettigen n-3 Fettsäuren im MLD. Trotz der höheren 

Konzentration der Linolsäure im Futter der Kontrollgruppe war die relative Konzentration der 

Linolsäure im Muskel gleich zwischen den Gruppen der Deutschen Holstein Bullen. Dies ist 

ein Hinweis darauf, dass die metabolisch wichtigen n-3 Fettsäuren bevorzugt im Muskel 

eingelagert werden. Außerdem scheint es, dass die Linolsäure stärker im Pansen hydrogeniert 

wird und zudem vorwiegend zur Oxidation genutzt wird. Essentielle Fettsäuren werden 

bevorzugt im Muskel eingelagert im Vergleich zum subkutanen Fettgewebe und ebenso 

bevorzugt in Erythrozyten. Diese sind also gute Langzeitmarker für die Fettsäureaufnahme. 

Trotz des geringen Anteils der Leber an der de novo Fettsäuresynthese in Wiederkäuern ist 

die relative Konzentration der n-3 Fettsäuren und der langkettigen de novo synthetisierten n-3 
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Fettsäuren in der Leber höher als im Muskel. Zusammenfassend ist zu sagen, dass eine 

gewebespezifische Einlagerung und Deponierung der n-6 und n-3 Fettsäuren festgestellt 

wurde, die abhängig von der Funktion der jeweiligen Gewebe zu sein scheint. 

 Die Herstellung von Deutschem Corned Beef und Teewurst aus dem Fleisch der 

Deutschen Holstein Bullen aus dem Fütterungsversuch hat durch den Herstellungsprozess 

nicht zum Verlust der wertvollen n-3 Fettsäuren geführt. Dies hat zur Konsequenz, dass das 

Verhältnis n-6/n-3 Fettsäuren im Fett von Deutschem Corned Beef im empfohlenen Bereich 

durch die DGE liegt.     

 Weiterführende Untersuchungen sind notwendig, um Informationen  zur  

Signalfunktion der C16:1cis-9 und C18:1cis-9 im Wiederkäuergewebe zu erhalten. Es sollten 

folgende Fragen beantwortet werden: Gibt es einen Zusammenhang zwischen der 

Konzentration der de novo synthetisierten Fettsäuren im Muskel und subkutanem Fettgewebe 

und der Konzentration der C16:1cis-9 beziehungsweise C18:1cis-9 im Serum und wenn ja, 

wie funktionieren die Mechanismen und wo greifen diese beiden Fettsäuren ein? 

 Zusätzlich zur ACC-Proteinexpression sollte die Aktivität der ACC im 

Wiederkäuergewebe unter exogener Linol- und Linolensäuresupplementierung untersucht 

werden, um eine Erklärung für die niedrigere Summe der Fettsäuren in Muskel und 

subkutanem Fettgewebe der Deutschen Holstein Bullen zu finden. Außerdem ist es von 

Interesse, die Mechanismen der gewebespezifischen Wirkung der Δ6D auf dem Level der 

Proteinexpression und der Aktivität herauszufinden. Aus den Ergebnissen kann 

geschlussfolgert werden, dass die SCD-Proteinexpression, die SCD-Aktivität und die 

Konzentration der einfach ungesättigten Fettsäuren im Gewebe von Bullen stärker durch 

exogene n-3 Fettsäuren inhibiert werden als durch n-6 Fettsäuren.  
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