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1 Introduction

The Boltzmann equation provides a mathematical description of gas flows on a meso-

scopic level and is useful in a number of applications like the modelling of microflows.

Due to the complexity of the equation (the Boltzmann collision operator requires the

calculation of a five-dimensional integral to be evaluated pointwise in phase space) it

is hard to construct efficient numerical schemes based on the classical numerical dis-

cretization concepts. One way out is the use of Monte Carlo methods. This approach

is not discussed here. Another way is the derivation of highly reduced discrete kinetic

models.

Concepts for discrete kinetic models on regular lattices have been proposed and

investigated by a number or authors. The paper [16] provides an attempt to discretize

the collision operator on a Cartesian grid. However, the order of consistency is extremely

low (see the investigations in [15, 13]). Another possibility is the construction of classes

of models which as a minimal requirement satisfy the correct physical conservation laws

[9, 10]. However, we do not know of any results confirming their use as a numerical

tool. An attempt to construct discrete collision dynamics which in a sense are optimally

adapted to a given lattice have been introduced in [2] as the socalled Lattice Group

Models. They turn out to be applicable to produce reliable numerical results in a

number of test cases [3, 4].

Discrete kinetic models are also used as a tool for macroscopic simulation. A com-

monly applied technique represent the Lattice Boltzmann Systems [18, 14] which have

been proven to be consistent with the Navier-Stokes equations. At present there seem to

be two separate scientific communities with not much overlap applying kinetic schemes

either from the view point of rarefied gas dynamics or of fluid dynamics. The present

paper is intended to overcome this gap. We derive a framework for discrete kinetic

models on the basis of two-particle collisions and then apply it in the fluid dynamic

limit. The scope of the paper is this. In section 2 we define two-particle collisions on

general discrete grids and introduce an appropriate representation for the nonlinear ant

the linearized collision operators. Furthermore we establish the concept of the pseudo

inverse. In section 3 we investigate the moment system and give arguments why discrete

models on (small) grids can only be expected to yield useful results in the small Mach

number limit. Applying the classical Chapman Enskog procedure we derive the Navier

Stokes system. Section 4 is devoted to 2D velocity models with rotational symmetry.

We derive systems comparable to the single relaxation time (SRT) and to the multiple

relaxation time (MRT) models used in Lattice Boltzmann schemes. A few numerical

examples are presented in section 5 demonstrating the need for further investigations
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concerning instabilities when passing to the fluid dynamics regime.

2 Discrete kinetic models: Mathematical framework

2.1 The nonlinear collision operator

Let I be a finite index set, |I| = N and define V = {vi, i ∈ I} ⊂ lRd (d ∈ {2, 3})
as a set of N pairwise different points (“velocities”) in lRd. Suppose given a quadruple

α = (i, j, k, l) ∈ I. We call a transition

(vi,vj)↔ (vk,vl) (2.1)

between velocity pairs a two-particle collision. The collision is called momentum and

energy conserving (short: an elastic collision), if

vi + vj = vk + vl, (2.2)

|vi|2 + |vj|2 = |vk|2 + |vl|2. (2.3)

The following result is well-known and elementary.

2.1 Lemma: The collision is elastic iff the polygone connecting vi, vk, vj, vl is a

rectangle in lRd.

Related to the collision is the nonlinear elementary collision operator Jα : lRV → lRV ,

(Jαf)m =


fkfl − fifj for m ∈ {i, j}
fifj − fkfl for m ∈ {k, l}

0 for m ∈ I \ {i, j, k, l}

 = (fkfl − fifj) · sα, (2.4)

where sα is the α-index vector defined by

sα = ei + ej − ek − el, (2.5)

with em being the m-th canonical unit vector in lRV . In the following, A ⊂ I4 denotes

the set of all quadruples α = (i, j, k, l) corresponding to elastic collisions. Writing

elements v of V componentwise in the form v = (vx, vy) for d = 2 resp. v = (vx, vy, vz)

for d = 3, we define the moment vectors mi ∈ lRN , i = 0, . . . , d+ 1 by

m0 = l1 = (1, . . . , 1)T , (2.6)

m1 = vx = (vx,v ∈ V)T , (2.7)

m2 = vy = (vy,v ∈ V)T , (2.8)

m3 = vz = (vz,v ∈ V)T (if d = 3), (2.9)

md+1 = 0.5v2 = (0.5|v|2,v ∈ V)T , (2.10)
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the matrix

M := (mi, i = 0, . . . , d+ 1) ∈ lRN×(d+2), (2.11)

and the subspace

M = span(mi, i = 0, . . . , d+ 1) ⊆ lRV . (2.12)

An immediate consequence of the conservation laws (2.2) and (2.3) is

2.2 Lemma: α ∈ A ⇔MT sα = 0⇔ sα ∈M⊥.

2.3 Definition: (a) A subset A0 ⊆ A is called regular, if

span(sα, α ∈ A0) =M⊥. (2.13)

(b) A collision operator J : lRV → lRV

J :=
∑
α∈A

παJα (2.14)

with collision frequencies πα ≥ 0 is called regular if the set AJ := {α ∈ A : πα > 0} is

regular.

The evolution equation on lRV

∂tf = Jf (2.15)

with regular collision operator J is called a (homogeneous) Boltzmann equation. Con-

sider the initial value problem (IVP)

∂tf = Jf, f(0) = f (0) ∈ lRV+ (2.16)

for a Boltzmann equation with strictly positive initial condition f (0) (lR+ denotes the

open interval (0,∞)). Applying the classical arguments from kinetic theory (e.g. [12],

with adaptation to discrete models like in [2]) one can prove the following standard

results.

2.4 Remark: (a) Existence and uniqueness: For all t ≥ 0 there exists a unique solution

of the IVP in lRV+.

(b) Conservation laws: The only invariants are mass, moments and energy, i.e. the

quantities 〈mif(t)〉, i = 0, . . . , d+ 1. (For vectors f, g ∈ lRq we denote by 〈fg〉 the usual
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scalar product fTg in lRq.)

(c) H-Theorem: The H-functional

Hf(t) = 〈f(t) ln(f(t))〉 (2.17)

is monotonously decreasing and strictly decreasing as long f(t) is not a Maxwellian, i.e.

a function of the form

f(v) = a · exp(−s|v − b|2). (2.18)

(d) Equilibria: The only functions f ∈ lRV+ satisfying Jf = 0 are Maxwellians. (This

latter statement is not generally true for initial values f (0) ∈ lR+
V
.)

2.2 The linearized collision operator

Consider an elementary collision operator

Jαf = −(fifj − fkfl) · sα (2.19)

and choose an arbitrary Maxwellian a · e(v) with a > 0 and

e(v) = exp(−s|v − b|2) = (ei, i ∈ I) ∈ lRV+ (2.20)

which we keep fixed in the following. Then Jαe = 0, and for f = e+ εφ the linearization

of Jα for ε small is given by a · Lαφ with

Lαφ = −(eiφj + ejφi − ekφl − elφk) · sα. (2.21)

Taking into account the conservation laws (2.2), (2.3) we find that

eiej = ekel = exp(−s
[
(|vi|2 + |vj|2 − 2〈b(vi + vj)〉+ 2|b|2

]
) =: qα > 0. (2.22)

Thus defining the matrix E := diag(e(v),v ∈ V) ∈ lRN×N , we can write the linearization

in matrix vector form as

Lαφ = −qαsα · (e−1
i φi + e−1

j φj − e−1
k φk − e−1

l φl) = −qαsαsTαE−1φ. (2.23)

Now let J be a regular collision operator with AJ given as in definition 2.3(b). Define

a fixed subset A0 ⊆ AJ (which we keep fixed in the following) such that

{sα, α ∈ A0}

is a basis of M⊥, and define the matrix

S = (sα, α ∈ A0) ∈ lRN×(N−d−2).
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By definition of A0 we find for arbitrary α ∈ AJ a unique vector cα ∈ lRN−d−2 such

that sα = Scα. Thus the corresponding linearized elementary collision operator takes

the form

Lα = −qαScαc
T
αS

TE−1.

This proves the following representation result for the linearized regular collision oper-

ator

L =
∑
α∈A

παLα.

2.5 Lemma: With the symmetric positive definite matrix

C =
∑
α∈AJ

παqαcαc
T
α ∈ lR(N−d−2)×(N−d−2)

L takes the form

L = −SCSTE−1.

Important for the characterization of L is the following decomposition of vectors f ∈ lRV .

2.6 Lemma: For f ∈ lRV there exist unique vectors f‖ ∈ lRd+2 and f⊥ ∈ lRN−d−2 such

that

f = Sf⊥ + EMf‖. (2.24)

These are given as

f‖ = (MTEM)−1MTf, (2.25)

f⊥ = (STE−1S)−1STE−1f. (2.26)

Proof: Since the columns of M (resp. S) are a basis of M (resp. M⊥, existence and

uniqueness of a decomposition are evident. The inverses of STE−1S and MTEM exist,

since S and M have maximal dimension. Now suppose that f has the representation
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(2.24). Multiplication with MT and the fact that MTS = 0 yield f‖. Similarly, multi-

plication with STE−1 gives the expression for f⊥. �

This leads to the following description of L.

2.7 Theorem: (a) The range of L is R(L) =M⊥. The nullspace is ker(L) = EM.

(b) g = Lf has the decomposition g = Sg⊥ + EMg‖ with

g⊥ = −CSTE−1Sf⊥, (2.27)

g‖ = 0. (2.28)

Proof: (a) From R(L) ⊆M⊥, the regularity of C, and from the fact that the columns

of S spanM⊥ follows R(L) =M⊥. Furthermore, ker(L) ⊆ EM, and the dimension of

ker(L) is d+ 2 from which we conclude that ker(L) = EM.

(b) follows from (a) and Lemma 2.6. �

2.8 Definition: The pseudo-inverse L† is defined as the operator on lRV with ker(L†) =

EM such that L†Lf = LL†f = Sf⊥.

From (2.27) we conclude

2.9 Corollary: The pseudo-inverse of L is given as

L† = −S(STE−1S)−1C−1(STE−1S)−1STE−1 (2.29)

Proof: Define

L̃ := −S(STE−1S)−1C−1(STE−1S)−1STE−1 (2.30)

Then EM ⊆ ker(L̃), and

L̃Lf = LL̃f (2.31)

= S(STE−1S)−1STE−1f = S(STE−1S)−1STE−1(Sf⊥ + EMf‖) = Sf⊥ �
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3 Fluid dynamic limits

3.1 The Euler system

Consider the space inhomogeneous rescaled Boltzmann equation for a density function

f(t,x,v),

(∂t + v∇x)f =
1

ε
Jf. (3.32)

Multiplication with the transpose MT of the moment matrix yields the non-closed sys-

tem of moment equations

∂tρ+∇x · (ρv) = 0, (3.33)

∂t(ρv) +∇x(ρv ⊗ v + P ) = 0, (3.34)

∂t

(
ρ(eint +

1

2
|v|2)

)
+∇x

(
ρv(eint +

1

2
|v|2) + Pv + q

)
= 0, (3.35)

with the moments

density ρ = 〈f〉,
momentum vector ρv = 〈vf〉,

and specific internal energy eint = 〈|v − v|2f〉/ρ.

(3.2) to (3.4) does not represent a closed system, since the stress tensor P = (pνν′), the

pressure p and the heat-flow vector q = (qν) defined by

pνν′ = 〈(vν − vν)(vν′ − vνν′)f〉, (3.36)

p =
1

d

d∑
ν=1

pνν , (3.37)

qν =
1

2

d∑
ν′=1

〈(vν − vν)(vν′ − vνν′)2f〉 (3.38)

cannot be expressed by ρ, ρv and eint. Formally, the system can be closed by passing to

the limit ε ↘ 0 and replacing the density function f in the definitions (3.5), . . . , (3.7)

by the equilibrium a · exp(−s|v − b|2) with the same density, momentum and internal

energy as f . For small values of b (and thus small flow velocities v) we can use the

Taylor expansion around the centered Maxwellian

e0(v) = exp(−s|v|2) (3.39)
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to obtain

e(v) = exp(−s|v − b|2) = e0(v) ·
(
1 + 2s〈vb〉 − s|b|2 + 2s2〈vb〉2

)
+O(|b|3)(3.40)

In the following we need some symmetry conditions for the velocity set V. For a

multiindex n = (nν , ν = 1, . . . , d) of nonnegative integers define the n-moment of f by

〈vnf〉 :=
〈
Πd
ν=1v

nν
ν f
〉

If π is a permutation of {1, . . . , d}, then write for short nπ := (nπ(ν), ν = 1, . . . , d). From

now on we assume the follwing assumptions to be satisfied.

3.1 Symmetry assumptions: (a) Moments of centered Maxwellians e0 are invariant

under permutations π, i.e. 〈vnπe0〉 = 〈vne0〉.
(b) 〈vne0〉 = 0 whenever one of the numbers nν is odd.

Obviously these conditions are satisfied it V is invariant under reflection along and under

rotation of 45◦ around the coordinate axes of lRd.

3.2 Lemma: For Maxwellians e(v) = exp(−s|v−b|2) and for ν, ν ′ ∈ {1, . . . , d}, ν 6= ν ′,

the coefficients of the stress tensor satisfy

pνν − pν′ν′ = 2s2(b2ν − b2ν′)
(
〈v4
νe0〉 − 〈v2

νv
2
ν′e0〉 − 2

〈v2
νe0〉2

〈e0〉

)
+O(|b|3) (3.41)

pνν′ = 4s2bνbν′

(
〈v2
νv

2
ν′e0〉 −

〈v2
νe0〉2

〈e0〉

)
+O(|b|3) (3.42)

Proof: A straightforward calculation yields

pνν = 〈v2
νe〉 − v2

ν〈e〉

= (1− s|b|2)〈v2
νe0〉+ 2s2b2ν

(
〈v4
νe0〉 − 〈v2

νv
2
ν′e0〉 − 2

〈v2
νe0〉2

〈e0〉

)
+2s2|b|2〈v2

νv
2
ν′e0〉+O(|b|3)

From this and the symmetry assumptions follows the first formula. The calculations for

pνν′ are similar. �

In classical fluid dynamics, the stress tensor takes the form

P = p · I (3.43)
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with the pressure p depending on the density and the temperature T defined by

T =
2

d
eint, (3.44)

but not on bulk velocity v which in first order is proportional to b (3.16). Thus in

discrete models, which do not satisfy the two conditions

〈v2
νv

2
ν′e0〉 =

1

3
〈v4
νe0〉 =

〈v2
νe0〉2

〈e0〉
(3.45)

there is a structural error of the order O(|b|2) related to the stress tensor. This means

that such models can yield useful results only in the limit |b| ↘ 0. In the following

calculations we take into account only terms up to the order O(|b|). We verify easily

the following formulas relating ρ, v and T to the parameters a, b = (bν) and s,

ρ = a〈e0〉+O(|b|2), (3.46)

ρv = 2as〈v2
νe0〉b +O(|b|3), (3.47)

sb =
〈e0〉

2〈v2
νe0〉
· v +O(|b|3), (3.48)

∂sT =
〈|v|2e0〉2 − 〈|v|4e0〉〈e0〉

2〈e0〉2
+O(|b|2). (3.49)

3.2 The Navier-Stokes correction

The Navier-Stokes correction presents a modification of the right hand side of the Euler

system described above. In classical fluid dynamics, it is given by
0

µ
[∑

ν′ ∂xν′

(
∂vν
∂xν′

+
∂vν′
∂xν

)
− 2

d
∂xν (∇x · v)

]
, ν = 1, . . . , d

λ∆xT

 (3.50)

[17] with viscosity µ and thermal conductivity λ. For our discrete models we derive it

here applying the classical formal Chapman-Enskog procedure. To this end we decom-

pose the solution f of the rescaled Boltzmann equation (3.1) like in section 2 in the

form

f = ae+ εSf⊥ (3.51)

with e(v) = exp(−s|v − b|2), and with a, b and s depending on t, x and ε. Inserting

this ansatz in the Boltzmann equation and neglecting terms of the order O(ε) yields

(∂t + v∇x)(ae) = aLSf⊥. (3.52)
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Here, L is the linearized operator related to the local Maxwellian e(t,x). Thus

Sf⊥ =
1

a
L†(∂t + v∇x)(ae). (3.53)

Plugging this into the Boltzmann equation and multiplying with MT yields as the

Navier-Stokes correction the vector

−εMT (∂t + v∇x)

(
1

a
L†(∂t + v∇x)(ae)

)
. (3.54)

In several steps we are going to simplify this expression.

3.3 Lemma: The Navier-Stokes correction is

−εMTv∇x

(
L†(v∇x)e

)
. (3.55)

Proof: (a) One verifies quickly that ∂t(ae) ∈ EM. Thus STE−1∂t(ae) = 0 and

L†∂t(ae) = 0.

(b)Furthermore, from the definition of L† follows that L† maps intoM⊥. ThusMTL†ψ =

0 for arbitrary ψ.

(c) Since (v∇xa) · e =
∑

ν(∂xνa)vνe ∈ EM, we find finally L†(v∇x)(ae) = aL†(v∇x)e.

�

Notice that

v∇xe =
∑
ν′

vν′

(
−|v|2∂xν′s+

∑
ν̃

vν̃∂xν′ (sbν̃) + ∂xν′ |b|
2

)
e. (3.56)

Defining the diagonal matrices Vν := diag(vν ,v ∈ V and |V | := diag(|v|,v ∈ V , and

writing e = E l1, we can write (3.24) in matrix vector form as

−ε
∑
ν,ν′

MTVν∂xν

(
L†EVν′ [−|V |2∂xν′s+

∑
ν̃

Vν̃∂xν′ (sbν̃)]

)
l1. (3.57)

For reasons discussed above, we consider grid models useful only for small bulk velocities.

Suppose the local Maxwellians are given in the form ae where e = e(t,x,v) = exp(−s|v−
b|2) deviates only slightly from a global central Maxwellian e0(v) = exp(−s0|v|2) (with

s0 being a fixed constant). We are going to derive the linear approximation (in terms

of ∆s = s− s0 and b) of the Navier-Stokes correction.

3.4 Lemma: Denote E0 := diag(e0(v),v ∈ V). Then (STE−1S)−1 is a perturbation of

(STE−1
0 S)−1 which up to linear order is given as

(STE−1S)−1 = (STE−1
0 S)−1 − (STE−1

0 S)−1Ξ(STE−1
0 S)−1 (3.58)
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with the first order correction term

Ξ = STE−1
0

(
∆s · |V |2 − 2s0

d∑
ν=1

bνVν

)
S (3.59)

Proof: Taylor expansion up to first order yields

E−1 = E−1
0 ·

(
I + ∆s · |V |2 − 2s0

d∑
ν=1

bνVν

)
and

STE−1S = STE−1
0 S + Ξ

= (STE−1
0 S)1/2

(
I + (STE−1

0 S)−1/2Ξ(STE−1
0 S)−1/2

)
(STE−1

0 S)1/2

(Notice that (STE−1
0 S)−1 is symmetric and positive definite; thus (STE−1

0 S)−1/2 exists.)

The required result follows from inverting while inserting

I − (STE−1
0 S)−1/2Ξ(STE−1

0 S)−1/2

as a first order approximation of

(I + (STE−1
0 S)−1/2Ξ(STE−1

0 S)−1/2)−1 �

This result allows us to replace in the representation of Corollary 2.7 the matrix E by

E0 and to shift the derivative ∂xν in (3.26) to the right. Applying the formulas (3.17)

and (3.18) we find the general form of the correction term.

3.5 Theorem: Up to linear order in v and T − T0, the Navier-Stokes correction reads

ε
∑
ν,ν′

MTVνS(STE−1
0 S)−1C−1(STE−1

0 S)−1STVν′

·

(
〈e0〉

2〈v2
νe0〉

∑
ν̃

Vν̃∂xνxν′vν̃ +
2〈e0〉2

〈|v|4e0〉〈e0〉 − 〈|v|2e0〉2
|V |2∂xνxν′T

)
(3.60)

4 2D Cartesian lattices

In the following we derive kinetic models on sublattices VN of the 2D-integer grid V =

Z×Z, exploiting rotational symmetry. Rotation around 45◦ (counterclockwise) is given
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by the operator

R =

(
0 −1

1 0

)
(4.1)

4.1 Rotational symmetry

Let (vn, n ∈ lN0) be a bijection from lN0 = {0, 1, . . .} to V with properties stated below.

Given this mapping we define (N + 1)-velocity sets by

VN = {vn, n = 0, . . . , N}. (4.2)

To define a kinetic model on VN we have to define a set AN0 of rectangles α = (i, j, k, l)

given by the diagonals vivj and vkvl, resp. a basis of the (N − 3)-dimensional subspace

M⊥ of lR|V
N | of vectors of the form sα = ei + ej − ek − el. To exploit symmetries, the

bijection (vn, n ∈ lN0) and the set A0 have to follow the rules given below. We say that

a quadrupel (i, j, k, l) of velocities is in cyclic order, if

vj = Rvi, vk = Rvj, vl = Rvk. (4.3)

We say that a quadrupel (αp, αq, αr, αs) of rectangles with αm = (im, jm, km, lm), m =

p, q, r, s, is in cyclic order, if each of the quadrupels (ip, iq, ir, is), (jp, jq, jr, js), (kp, kq, kr, ks)

and (lp, lq, lr, ls) is in cyclic order, i.e. if each of the rectangles arises from its predecessor

by application of R.

4.1 Assumptions: The bijection (vn, n ∈ lN0) from lN0 to V satisfies

(R1) v0 = (0, 0), v1 = (1, 0), v5 = (1, 1) v9 = (2, 0) .

(R2) For m ∈ lN0, the quadrupel (v4m+n, n = 1, . . . , 4) is in cyclic order.

The set A0 = {αn, n ∈ lN0} satisfies

(R3) α0 = (1, 3, 2, 4), α1 = (0, 5, 1, 2), α5 = (0, 9, 5, 8) .

(R4) For m ≥ 0, the quadrupels (α4m+n, n = 1, . . . , 4) are in cyclic order.

(R5) Ifm ≥ 2 and α4m+1 = (i, j, k, l), then j = 4m+5 and i, k, l ∈ {1, . . . , 4m+4}.

We denote

AN0 := {αn, n = 0, . . . , N}. (4.4)

Notice that the rule (R5) guarantees that the vectors sα are pairwise linearly indepen-

dent.
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4.2 Example: Figure 1 illustrates one choice of v0, . . . ,v40 such that (R1) and (R2) are

satisfied. For N = 8, 12, 20, 24, 36, 40, VN is R-invariant and thus the symmetry assump-

tions 3.1 are satisfied. In addition, the velocities are semi-ordered by |vn+1| ≥ |vn|. The

corresponding setA8
0 is given by (R3), (R4) as {(1, 3, 2, 4), (0, 5, 1, 2), (0, 6, 2, 3), (0, 7, 3, 4),

(0, 8, 4, 1)}. ForA12
0 we have to add (0, 9, 5, 8), (0, 10, 6, 5), (0, 11, 7, 6), (0, 12, 8, 7). Higher

indices may be chosen according to (R5) as α9 = (1, 13, 5, 9), α13 = (2, 17, 5, 10),

α17 = (5, 21, 13, 17), α21 = (1, 25, 13, 20), etc.

38
30 26 33

22 14 10 17 21
34 18 6 2 5 13 29

39 27 11 3 0 1 9 25 37
31 15 7 4 8 20 36

23 19 12 16 24
35 28 32

40

FIGURE 1. Numbering of Z× Z

The cyclic ordering of αn leads to a special structure of the matrices SN given by the

index vectors sn of αn (n = 0, . . . , N). E.g., in the above example, the transpose is for

N = 12 given as

ST =


0 1 −1 1 −1 0 0 0 0 0 0 0 0

1 −1 −1 0 0 1 0 0 0 0 0 0 0

1 0 −1 −1 0 0 1 0 0 0 0 0 0

1 0 0 −1 −1 0 0 1 0 0 0 0 0

1 −1 0 0 −1 0 0 0 1 0 0 0 0

1 0 0 0 0 −1 0 0 −1 1 0 0 0

1 0 0 0 0 −1 −1 0 0 0 1 0 0

1 0 0 0 0 0 −1 −1 0 0 0 1 0

1 0 0 0 0 0 0 −1 −1 0 0 0 1

 (4.5)

Define the 4× 4-matrices

G =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 , I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (4.6)

and the vector

l1− = (1,−1, 1,−1)T . (4.7)
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Then G generates a multiplicative group of order 4 (i.e. G4 = I4), and S has the

4× 4-block structure

ST =

 0 l1T− 0 0

l1 −I4 −G I4 0

l1 0 −I4 −G3 I4



These observations can be generalized. For N = 4m ≥ 8 and SN = (sij, 0 ≤ i ≤
N − 4, 0 ≤ j ≤ N) define the submatrices

S0,n = (s0,4n−3, . . . , s0,4n) for n ≥ 1

Sm,0 = (s4m−3,0, . . . , s4m,0)
T for m ≥ 1

Sij = (sij, 4m− 3 ≤ i ≤ 4m, 4n− 3 ≤ j ≤ 4n) for m,n ≥ 1

which give the block structure of SN ,

SN =


s00 · · · S0n · · ·
...

...

Sm0 · · · Smn · · ·
...

...

 (4.8)

Then from (R3), (R4) and (R5) immediately follows

4.3 Lemma: Let N ≥ 8 be a multiple of 4.

(a) s00 = 0, and

S0n =

{
l1T− for n = 1

0 for n > 1
(4.9)

(b) The left column is given by

Sm0 =

{
l1 for m = 1, 2

0 for m > 2
(4.10)

(c) The 4×4-submatrices are polynomials in G with coefficients in {−1, 0, 1} and satisfy

Smn =

{
I4 for n = m+ 1

0 for m > n+ 1 or (m,n) = (1, 2)
(4.11)
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Denote by P(G) the set of all polynomials in G. Since G4 = I4, the most general form

of a polynome is

P (G) = p0I4 + p1G+ p2G
2 + p3G

3 (4.12)

Furthermore, G3 = GT and thus (P (G))T = P (GT ). P(G) is a commutative ring with

unit element I4. We call an element P (G) invertible, if there exists Q ∈ P(G) with

PQ = I4. An invertible element P is denoted as positive if there exists Q ∈ P(G) such

that P (G) = Q(G)Q(GT ). Useful are the following formulas.

4.4 Calculus in P(G): Let P,Q,R ∈ P(G) with coefficients pi, qi and ri, i = 0, 1, 2, 3.

(a) Multiplication: If PQ = R then

r0 = p0q0 + p1q3 + p2q2 + p3q1 (4.13)

r1 = p0q1 + p1q0 + p2q3 + p3q2 (4.14)

r2 = p0q2 + p1q1 + p2q0 + p3q3 (4.15)

r3 = p0q3 + p1q2 + p2q1 + p3q0 (4.16)

(b) P ∈ P(G) is invertible iff |p0 + p2| 6= |p1 + p3| and |p0 − p2|2 + |p1 − p3|2 6= 0. The

coefficients of R(G) = P−1(G) are given by

r0 + r2 = =
p0 + p2

(p0 + p2)2 − (p1 + p3)2
(4.17)

r0 − r2 =
p0 − p2

(p0 − p2)2 + (p1 − p3)2
(4.18)

r1 + r3 = =
−(p1 + p3)

(p0 + p2)2 − (p1 + p3)2
(4.19)

r1 − r3 =
−(p1 − p3)

(p0 − p2)2 + (p1 − p3)2
(4.20)

(c) Necessary for positiveness is p1 = p3. Sufficient for positiveness of an invertible

element is that p1 = p3 and in addition p0 > p2 and |p1| < 1
2
(p0 + p2). In this case a

root Q(G) = q0I4 + q1G+ q2G
2 + q3G

3 is given by

q0 =
1

2

(
1

2
(
√
p0 + 2p1 + p2 +

√
p0 − 2p1 + p2) +

√
p0 − p2

)
(4.21)

q1 = q3 =
1

4

(√
p0 + 2p1 + p2 −

√
p0 − 2p1 + p2

)
(4.22)

q2 =
1

2

(
1

2
(
√
p0 + 2p1 + p2 +

√
p0 − 2p1 + p2)−

√
p0 − p2

)
(4.23)
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Proof: (a) follows from elementary calculations. For the other results, the following

transformation is useful. Define the orthogonal matrix

Q =
1

2


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

 (4.24)

satisfying Q = Q−1, and the transformed matrix Ĝ = QGQ. Then

Ĝ =


1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 −1

 Ĝ2 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 Ĝ3 =


1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 −1


Thus P (G) transforms into

P (Ĝ) = diag

(
p0 + p1 + p2 + p3,

(
p0 − p2 −p1 + p3

p1 − p3 p0 − p2

)
, p0 − p1 − p2 + p3

)
(4.25)

The inverse P−1(G) follows now easily from inverting P (Ĝ) which leads to

r0 + r2 =
1

2

(
1

p0 + p1 + p2 + p3

+
1

p0 − p1 + p2 − p3

)
r0 − r2 =

p0 − p2

(p0 − p2)2 + (p1 − p3)2

r1 + r3 =
1

2

(
1

p0 + p1 + p2 + p3

− 1

p0 − p1 + p2 − p3

)
r1 − r3 =

−(p1 − p3)

(p0 − p2)2 + (p1 − p3)2

and thus to (4.16) to (4.19). Similarly the results (4.20) to (4.22) are obtained. �

Given N as a multiple of 4, we denote by BN(P ) the set of all matrices A = (aij, 1 ≤
i, j ≤ N) for which the block-submatrices

Amn = (aij, 4m− 3 ≤ i ≤ 4m, 4n− 3 ≤ j ≤ n), 1 ≤ m,n ≤ N/4

are elements of P(G). We call A ∈ BN(P ) invertible in BN(P ), if A is regular as an

element of lRN×N and if A−1 ∈ BN(P ). A ∈ BN(P ) is called Cholesky-decomposable if
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there exists C ∈ BN(P ) with Cnn positive and Cmn = 0 for m < n such that A = CCT .

In this case A is invertible in BN(P ), since we can use the decomposition to construct

A−1. A special role for our collision models plays the matrix STE−1
0 S. Since

E0 = diag(1, e0(v4m) · I4, 1 ≤ m ≤ k)

it has the structure

STE−1
0 S =

(
σ 0

0 Σ

)
with σ ∈ lR+ and Σ ∈ BN−4(P ). The above calculus simplifies significantly the con-

struction of specific models. An example is given in the following subsection.

4.2 The collision matrix for the nine-velocity model

We are going to establish the collision matrix C for the nine-velocity lattice V8. The

five elements of A0 (and with these the column vectors s0, . . . , s4) are chosen as given in

(R3) and represent collisions with (positive) collision probabilities π0 (for α0) and π1 (for

α1, . . . , α4). However, there are more rectangles which have to be taken into account.

Four of these are given by (1, 6, 3, 5) (represented by s2−s1) and three more obtained by

rotation. We attach to these the collision frequency π̃1 ≥ 0. A final collision (5, 7, 6, 8)

(with frequency π̃2 ≥ 0) is given by s1 − s2 + s3 − s4. Define the centered Maxwellian

e0(v) = exp(−s|v|2) and the corresponding diagonal matrix E0. With ξ := exp(−s), C
takes the form

C = ξ2 ·

(
π0

(π1 + 2π̃1ξ + π̃2ξ
2) · I4 − (π̃1ξ + π̃2ξ

2) · (G+G3) + π̃2ξ
2 ·G2

)

=: ξ2 ·

(
c00

PC(G)

)
(4.26)

The matrix STE−1
0 S is given as

STE−1
0 S =

(
4ξ−1

PS(G)

)
(4.27)

with

PS(G) = η2I4 + η(G+G3) +G2, η = 1 + ξ−1. (4.28)

Its inverse is

(STE−1
0 S)−1 =

(
ξ/4

P−1
S (G)

)
(4.29)

18



with

P−1
S (G) = (η2 − 1)−2(η2I4 − η(G+G3) +G2). (4.30)

Crucial for the adequate modelling are the following results.

4.5 Theorem: (a) If

π1 6= π̃2ξ
2 (4.31)

then the matrix (STE−1
0 S)−1C−1(STE−1

0 S)−1 takes the form

(STE−1
0 S)−1C−1(STE−1

0 S)−1 =

(
`00

`0I4 + `1(G+G3) + `2G
2

)
(4.32)

The Navier-Stokes correction part of Theorem 3.5 is
0

1+2ξ
ξ

[`00(∂xx(vx)− ∂xy(vy)) + (`0 − 2`1 + `2)(∂xy(vy) + ∂yy(vx))]
1+2ξ
ξ

[`00(∂yy(vy)− ∂xy(vx)) + (`0 − 2`1 + `2)(∂xx(vy) + ∂xy(vx))]
2(1+2µ)2

µ
(`0 − `2)(∂xx + ∂yy)T

 (4.33)

(b) The correction term (4.32) is of the form (3.19) iff

`00 = (`0 − 2`1 + `2). (4.34)

In this case the nine-velocity model describes a system with viscosity

µ =
1 + 2ξ

ξ
`00 (4.35)

and thermal conductivity

λ =
2(1 + 2µ)2

µ
(`0 − `2). (4.36)

Proof: (a) Because of 4.4, PC(G) is invertible if π1 6= π̃2ξ
2. Since P(G) is closed with

respect to multiplication, (4.31) is satisfied. (4.32) follows from straight evaluation of

(3.29), taking into account the moments

〈e0〉 = (1 + 2ξ)2, (4.37)

〈|v|2e0〉 = 4ξ(1 + 2ξ), (4.38)

〈|v|4e0〉 = 4ξ(1 + 4ξ). (4.39)
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(b) For d = 2, (3.19) can be reformulated as
0

µ [(∂xx(vx)− ∂xy(vy)) + (∂xy(vy) + ∂yy(vx))]

µ [(∂yy(vy)− ∂xy(vx)) + (∂xx(vy) + ∂xy(vx))]

λ(∂xx + ∂yy)T

 . � (4.40)

We are now able to construct models which asymptotically describe the classical Navier-

Stokes system (for this, (4.33) has to be satisfied), and which has a specified Prandtl

number

Pr =
µ

λ
. (4.41)

4.6 Example (Single relaxation time, SRT): If we choose C = (STE0S)−1, then

the linearized equation

∂tf = Lf (4.42)

describes a system relaxing exponentially to the equilibrium (single relaxation time,

SRT system). It corresponds to the BGK system of classical fluid dynamics. In this

case the matrix (4.31) is given by (STE−1
0 S)−1, i.e.

`00 = ξ/4, (`0, `1, `2, `3) = (η2 − 1)−2 · (η2,−η, 1,−η). (4.43)

Thus `0 − (`1 + `3) + `2 = ξ2, and (4.33) is satisfied iff

ξ = 1/4. (4.44)

The collision frequencies turn out as

π0 = 1, π1 = π̃1 = π̃2 = 4/9. (4.45)

Viscosity and thermal conductivity are

µ = λ = 3/4

thus yielding Prandtl number Pr = 1. This is the same as the Prandtl number for

classical BGK systems [17] as well as for the SRT Lattice Boltzmann system citeSucci.

Since λ depends on `0 − `2 but not on `0 + `2 while the opposite is true for µ, it is easy
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to construct systems with variable Prandtl numbers.

4.7 Example (Variable Prandtl number): The ansatz

C−1 = (STE−1
0 S) ·

(
1

(1 + ε) · I4 − ε ·G2

)
(4.46)

leads to the representation (4.31) with `00, `0 + `2 and `1 + `3 as in Example 4.6. Thus

viscosity is the same as before. `0 − `2 and thermal conductivity change by a factor

(1 + ε) giving rise to the new Prandtl number

Pr = (1 + ε)−1. (4.47)

The new collision frequencies can be easily calculated as

π0 = 1, (π1, π̃1, π̃2) =
4

9 · (1 + 2ε)
· (1− ε, 1 + 2ε, 1 + 26ε). (4.48)

E.g. for a hard sphere gas with Pr = 2/3 we find the frequencies

π0 = 1, π1 = 1/9, π̃1 = 4/9, π̃2 = 28/9. (4.49)

5 Numerical examples

After having studied the algebraic structure of (linearized) discrete kinetic models we

are going to discuss some of their numerical properties. We restrict to the nine-velocity

model (N = 8) since this is comparable to the standard D2Q9 relaxation models for

Boltzmann Lattice systems.

5.1 Heat layer and Couette flow

The simplest nontrivial flows to investigate for the N + 1-velocity systems are the heat

layer and the Couette flow between two parallel plates, considered here to be placed

at x = −1 and x = 1. Both are given by the (N + 1)-dimensional steady Boltzmann

system

vx∂xf = γJ(f) (5.1)

with inflow boundary conditions at x = ±1. This describes an index-1 differential-

algebraic system of equation which can be transformed into an (N + 1−n)-dimensional

differential two-point boundary value system, where n is the dimension of the algebraic
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part. In the case of the nine-velocity model, the algebraic part has dimension 3 (number

of velocities with vanishing vx-components), and the differential system has dimension

6. Denote by

e0(v) = a0 · exp(−s|v|2) (5.2)

a central Maxwellian and by L the corresponding linearized collision operator. Elimi-

nating the algebraic part, the linearized problem is governed by a differential system of

the form

∂xφ = γL̂φ (5.3)

In [7] (for the continuous case) and in [1, 6] (for discrete models with certain symme-

try conditions which are satisfied in our case) flows satisfying this equation have been

analyzed and shown to consist of exponentially decaying boundary layers, of a linear

macroscopic profile and an orthogonal macroscopically non-observable part. This is due

to the Jordan normal form of L̂ which is given by

N = diag(Λ,−Λ, N0, N0, 0, 0) (5.4)

Here, Λ is a diagonal matrix with positive diagonal entries, and

N0 =

(
0 1

0 0

)
(5.5)

is an elementary Jordan block with eigenvalue 0. Solutions of the linearized system are

given by the exponential

exp(xN) = diag

(
exp(xΛ), exp(−xΛ),

(
1 x

0 1

)
,

(
1 x

0 1

)
, 1, 1

)
(5.6)

The blocks corresponding to exp(±xΛ) establish the boundary layers, and the other

blocks the 6-dimensional linear macroscopic part. Obviously the nine-velocity system

has a dimension too low to produce boundary layers. Thus only linear profiles are to

be expected. Figure 2 shows the temperature profile of a heat layer problem with the

inflow boundary conditions

fin(±1) = a± · exp(−(s±∆s)|v|2) (5.7)

b = (0, by)
T , and the velocity profile of a Couette problem with boundary conditions

fin(±1) = a · exp(−s|v ± b|2), (5.8)
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For these calculations we have chosen a spatial discretization ∆x = 0.01, a collision

frequency γ = 0.002, and a ratio between space and time discetization parameter

∆t/∆x = 0.5. We denote the corresponding Knudsen number as Kn0.

FIGURE 2. Linear profiles for (a) heat layer and (b) Couette flow problem.

In order to show that the situation is more complex than shown above, we modify

parameters. (We restrict to the Couette problem.) In the Lattice Boltzmann case one

is interested in the Navier-Stokes equations, i.e. in small Knudsen numbers. To this

end we choose ∆t/∆x = 0.1 and γ = 0.02 which results in a Knudsen number 0.02Kn0.

While the Navier-Stokes correction to the Euler equation predicts a linear profile similar

to that above, we find vanishing flow velocity in the main part, supplemented with

boundary layers (Figure 3(a)). This shows that the Chapman-Enskog procedure does

not produce the correct results. Passing to large Knudsen numbers the situation again

changes completely. The flow pattern now exhibits a shock profile. In Figure 3(b) we

have chosen γ = 0.00002 (Kn0 = 20). Increasing the mean free path even more with

∆x = 0.0025, γ = 10−7 and ∆t/∆x = 0.1 produces a double shock. This situation needs

further theoretical investigation which will follow in some future work.
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FIGURE 3. Degenerate profiles for (a) small (b) large Knudsen numbers.

5.2 Lid-driven flow

In [5] a 2D simulation of a thermal creep flow with the nine-velocity model was demon-

strated, showing a tendency to instability in a certain parameter range. Here, we shortly

illustrate an example of a lid-driven flow, i.e. a flow in a square cavity with one moving

wall (upper wall) generating a circular flow. This is a favorite test case for lattice Boltz-

mann simulations, e.g. [11]. In 2D simulations it turns out that large Knudsen numbers

as those taken above lead to artificial flow profiles due to the low number of velocities.

Thus we have to restrist to reasonably small mean free paths. Lid driven cavities lead

to typical flow patterns like that in Figure 4(a) which was obtained on a 40× 40 spatial

grid with a ration ∆t/∆x = 5 and a relaxation time of τ = 1.15. The flow pattern in

the upper right corner on a 150 × 150 grid with ∆t/∆x = 1 and τ = 0.015 is given in

Figure 4(b). Figure 5 shows the pressure profile for this situation. It turns out that the

circular pattern is superimposed by a plane perturbation. Phenomena like these will be

studied in future work. In particular it will have to be investigated how far the results

are affected by the choice of the collision models.
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FIGURE 4. Lid-driven flow at (a) large (b) small Knudsen numbers.

FIGURE 5. Pressure field of lid-driven flow.
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