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Zusammenfassung

Diese Arbeit befasst sich mit stochastischen partiellen Differentialgleichun-
gen mit fraktalem Rauschen. In diesem Zusammenhang betrachten und
16sen wir verschiedene Probleme aus zwei recht unterschiedlichen Blick-

winkeln.

Auf der einen Seite beweisen wir Existenz, Eindeutigkeit und Regulari-
tat fiir milde Losungen einer parabolischen Transportgleichung mit
Diffusion, die nicht-glatte Koeffizienten beinhaltet. Wir untersuchen
damit verbundene Cauchy-Probleme auf glatten und beschréankten Ge-
bieten mit Dirichlet-Randbedingungen. Dabei verwenden wir Halb-
gruppentheorie und Fixpunkt Argumente. Hauptbestandteile sind
die Definition eines Produkts einer Funktion und einer (nicht zu un-
regelméfligen) Distribution sowie eine zugehorige Norm-Abschétzung.
Wir wenden die Theorie auf eine stochastische partielle Transport Dif-
ferentialgleichung mit fraktalem Brownschen Rauschen an. Dabei wird

diese pfadweise betrachtet.

Auf der anderen Seite beschéftigen wir uns mit stochastischen Differen-
tialgleichungen mit gebrochenen Brownschen Prozessen in Banach-
Réaumen. Genauer gesagt, betrachten wir abstrakte Cauchy-Probleme
in Banach-Raumen und suchen nach schwachen und milden Losungen.
Zu diesem Zweck wird eine gebrochene Brownsche Bewegung in separa-
blen Banach-Raume mit Hilfe von zylindrischen Prozessen eingefiihrt.
Wir definieren das damit verbundene stochastische Integral als zylin-
drischen Prozess und untersuchen seine Eigenschaften. Falls der Ba-
nach-Raum einen Funktionenraum darstellt, wird die Gleichung zu
einer stochastischen partiellen Differentialgleichung mit fraktalem Rau-

schen.



Abstract

This thesis deals with stochastic partial differential equations driven by frac-
tional noises. In this work, problems related to this topics are tackled and

solved from two fairly different points of view.

On one side we prove existence, uniqueness and regularity for mild solu-
tions to a parabolic transport diffusion type equation that involves
a non-smooth coefficient. We investigate related Cauchy problems
on bounded smooth domains with Dirichlet boundary conditions by
means of semigroup theory and fixed point arguments. Main ingredi-
ents are the definition of a product of a function and a (not too ir-
regular) distribution as well as a corresponding norm estimate. As an
application, transport stochastic partial differential equations driven

by fractional Brownian noises are considered in the pathwise sense.

On the other side we deal with stochastic differential equations driven by
fractal noises in Banach spaces. More precisely, we deal with abstract
Cauchy problems driven by fractional Brownian processes in Banach
spaces and look for weak and mild solutions. To this aim, a fractional
Brownian motion in separable Banach spaces is introduced by means
of cylindrical processes. The related stochastic integral is then defined
as cylindrical stochastic process and its properties are investigated.
When the Banach space is a function space then the equation becomes

a stochastic partial differential equation driven by a fractional noise.
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Introduction

The main subject of this thesis is the study of stochastic partial differential
equations driven by fractional noises. Two different approaches are adopted:
a pathwise method is applied to a parabolic transport equation with frac-
tional noise and a statement on existence, uniqueness and regularity of the
solution is proven. On the other hand, a more abstract approach is adopted
and stochastic partial differential equations with fractal noises are solved as
stochastic evolution equations in Banach spaces driven by cylindrical frac-

tional Brownian motions.

The concept of stochastic partial differential equation appears in the lit-
erature in the early 1960s. Baklan in [4] proved an existence theorem for
a stochastic parabolic equation in a Hilbert space. In the 1970s many re-
searchers, motivated by physical and biological applications, start to become
interested in partial differential equations with random parameters. Some
examples are Cabana [13], Bensoussan and Temam [8], Pardoux [56], Chow
[14], Krylov and Rozovskij [42]. Since then, this area of research has been
growing and several theories have been developed to deal with stochastic
partial differential equations. One of the main issues is to describe appro-
priate random fields for which it is possible to construct a stochastic integral

and therefore define a meaningful solution.

A classical approach was given by Walsh in [79], where he considered
the (famous) example of the vibrating string, a wave equation perturbed
by a space-time white noise. This noise is a generalized centered Gaussian
process {W (t, z), (t,x) € [0,T] x[a, b]} on a given probability space (Q, F, P)

with covariance

E[W (¢, 2)W (s,y)] = 3(t — $)5(z — ).

The integral with respect to such noise is defined by means of martingale
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measures and it is of Itd type. This approach is also known as Brownian
sheet approach. The solution of a partial differential equation perturbed by
a space-time white noise is a proper function, but this method fails when the
space dimension is bigger than 1. In this case one has to turn to distribution
valued concepts or alternatively to consider different type of noises. The
random field approach has been successfully applied in higher dimensions
for instance by Dalang [17] for spatially homogeneous Gaussian noises and
by Balan and Tudor [6] for fractional noises in time and homogeneous in

space.

Another approach is proposed by Holden, @ksendal, Ubge and Zhang
in [31] and related papers. Here they make use of white-noise calculus and
work in a framework which is a priori distribution valued. Moreover they
allow space dimension to be higher than 1. Main tools are Wick products,

chaos expansions and Hida distributions.

One of the most common approach is the infinite-dimensional approach.
A comprehensive treatment on stochastic evolution equations in infinite di-
mensions is given by Da Prato and Zabczyk in the monograph [16]. As in
the deterministic case [58], one formulates the stochastic partial differential
equation as a stochastic differential equation in Hilbert spaces. Consider for

example the heat equation with additive noise
(1) du(t) = Au(t)dt + dW(t)

in the Hilbert space H = L?(D) for some domain D C R%. Here A is the
Laplacian on H, the function u is H-valued and the noise W is the so called

Q-Wiener process. W is defined by a series of type

[e.o]

(2) W(t) = VArerbi(t)

k=1
which converges in the underlying Hilbert space H. Here (eg)ren is an
orthonormal basis in H, (b;)ren is a sequence of independent real Brownian
motions and (Ag)gen are the eigenvalues of a symmetric non-negative and
trace-class operator @@ on H. The solution to (1) with initial condition

u(0) = up and Dirichlet boundary conditions is given in the mild form by

(3) u(t) = Paug + /Ot Pi_sdW (s),
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where (P;)¢>0 is the heat semigroup generated by A with Dirichlet boundary
conditions. It turns out that one may drop the trace class assumption on
@ and still give a meaning to the solution (3) in H, even though the series
(2) does not converge any longer in H. In this case the series converges in
a bigger Hilbert space H; D H and the noise is typically called cylindrical®

Wiener process in H.

Another, completely different, point of view is the pathwise approach.
This method is based on the path properties of the noise. The main idea
to define a pathwise integral is to fix a path and then perform a Stieltjes
type integral. We mention in particular Young [80], Russo and Vallois [64],
Lyons [47], Zahle [81]. Since the techniques are based only on the regularity
properties of the paths, they are successfully applied to noises which are
not necessary white. In particular, a big thrust to the development of the
pathwise approach was given by the increasing interest in stochastic calcu-
lus with respect to different noises, for example with respect to fractional

Brownian motion.

The classical fractional Brownian motion {b"(t),t > 0} with Hurts pa-
rameter H € (0,1) is a real centered Gaussian process with covariance func-
tion

EH (06" ()] = 5 (P + 2 — |t — ")

for s,t > 0. This process was introduced in 1940 by Kolmogorov [41] and was
(first) applied by Hurst et al. some years later to model long-term storage
capacity in reservoirs, see [34, 35]. In fact fractional Brownian motion is
very interesting for many applications because it is stationary, self-similar
and in general does not have independent increments. These features make
this process suitable for modeling various situations from physics to finance,
from engineering to biology, see among others [10, 53, 61, 69].

From the mathematical point of view, fractional Brownian motion is not
Markovian and not a (semi)martingale except for H = 1/2, is a. s. nowhere
differentiable but is a. s. a-Holder continuous for any 0 < a < H. In

particular, this last property has been exploited by many authors to study

In this thesis, the word eylindrical will be used in relation to a slightly different
concept. Cylindrical processes are defined on Banach spaces and they do not need a
bigger Hilbert space (like H1) to be given a proper meaning. Under suitable assumptions
(like the trace class assumption for @), a cylindrical process reduces to a classical Banach

space valued process.
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stochastic differential equations driven by fractional Brownian motions (see
e. g. Nualart and Ragcanu [55], Zahle [82]) and later stochastic partial dif-
ferential equations driven by fractional Brownian noises (see e. g. Maslowski
and Nualart [49], Gubinelli et al. [27], Hinz and Z&hle [29]). For references
on stochastic calculus with respect to fractional Brownian motion see the
review paper by Nualart [54] or the books by Biagini et al. [9] and Mishura
[52].

Partial differential equations with fractional noises have been studied
also using the infinite-dimensional approach, mostly in Hilbert spaces. We
mention for example Tindel, Tudor, Viens [71], the series of papers by Dun-
can and coauthors [19, 20, 21, 22, 57|, Grecksch et al. [1, 25, 26]. In Banach
spaces there are very few works related to equations with fractal noises:
Balan [5] considered the heat equation driven by fractional Brownian mo-
tion in an LP setting for p > 2 and Brzezniak, Van Neerven and Salopek
[12] considered stochastic evolution equations driven by Liouville fractional

Brownian motion in Banach spaces.

In this thesis we tackle two different problems related to stochastic par-
tial differential equations driven by fractional noises and solve them with

different techniques.

In Part I we consider a parabolic transport equation with stochastic

velocity field
ou I
(4) E(t’ z) = Au(t,z) + Vu(t,z) - VB (x),
where { B (z),r € R} is a centered Gaussian field with covariance

E[B" (2)B (y)] = = (o2 + [yl — |o — y 7).

N |

This process is nowhere differentiable but possesses some Holder regularity
properties. The first main problem with equation (4) is that the (distri-
butional) derivative of B is not a function but a distribution. Therefore
the product with Vu needs some care to be appropriately defined. We do
so omegawise using the so-called paraproducts: one can define the product
between a function and a (not too irregular) distribution using the Fourier
transform. We apply this technique to a general non-differentiable function
7 on R? which exhibits the same regularity properties as B (w) with Hurst

parameter H > % for almost all w € Q.

4
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We write the problem in the abstract Cauchy setting, namely we in-
terpret all mappings as functions of time ¢ taking values in some suitable
function space U (real function space on R%, our choice will be specified
later). Set w : [0,T] — U, t — u(t) € U and (u(t))(-) := u(t,-). The

equation (4) with Dirichlet boundary conditions
(5) u(t,z) =0, forx € oD
and initial condition

(6) w(0,z) = ug(x) forxz e D

considered in the pathwise sense becomes the following abstract Cauchy

problem

u=Apu+(Vu,VZ), te(0,T]

&~

(7)

= Uuop, t:O)

|

where Ap stands for the Dirichlet-Laplace operator and (-,-) denotes the
pointwise multiplication defined via paraproducts. The product itself will
be a distribution. We use a priori estimates on this product which lead
to optimal regularity results. This problem is not covered by results in
the standard literature for partial differential equations (see for instance
[23, 46]).

There are few results on transport diffusion equations with (random)
non-smooth drift of the form (7) among the literature. Attanasio and Flan-
doli [3] consider a stochastic transport equation with non-regular drift but
without the diffusion term and with an additive (Brownian) noise. Beck
and Flandoli [7] consider a (non-linear) parabolic transport equation with
diffusion term but with Brownian noise which is time-dependent.

To our knowledge, the only study regarding a problem of the form (7) is
due to Russo and Trutnau [63], who investigate a stochastic equation like (4)
but in space dimension one. The authors proceed by freezing the realization
of the noise for each w and overcome the problem of defining the product
between a function and a distribution by means of a probabilistic represen-
tation: They express the parabolic equation probabilistically through the
associated diffusion which is the solution of a stochastic differential equa-

tion with generalized drift.
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In this thesis we define the mild solution for (7) by

(8) u(t) = Pug + /Ot P_s(Vu(s), VZ)ds.

The integral appearing on the right hand side defines an integral operator
I on the Hélder space €7([0,T]; H'+9(D)). Under suitable conditions on
the parameters §,~v > 0 it turns out that [ is a contraction in the above
mentioned space. This result is given in Theorem 2.2.2. Using this mapping
property and a contraction argument we prove the main result (Theorem
2.2.3), that is we prove existence and uniqueness of a global mild solution
for (7) in €7 ([0, T]; H'*9(D)). It is relevant that the solution is actually a
function, even though we make use of fractional Sobolev spaces of negative
index (spaces of distributions) while proving the desired result.

Thanks to how we chose the function Z, this results can be applied to
solve in a pathwise sense the stochastic Dirichlet initial value problem (4),
(5), (6). Moreover, combining it with a result of Hinz and Zahle [29] we can
treat the more general (stochastic) transport equation of the form

ou 0
a(t, x) = Au(t,z) + (Vu,VZ)(t,x) + (F, aVV)(lt,:c)

for t € (0,T],z € D together with (5) and (6), where F' is a given vector
and V = V(t,z) is a given non-differentiable function.
The content of Part I of this thesis essentially coincides with the paper

Issoglio [36]. However the exposition here is a bit more detailed.

In Part IT of this thesis we deal with evolution equations driven by frac-
tional Brownian motions in Banach spaces, that is with equations of the

form

dY (t) = AY (t)dt + CdBH(t), t € (0,T]
Y (0) = Yo,

(9)

where A is the generator of a strongly continuous semigroup on a separable
Banach space V, B is a fractional Brownian motion on (another) separable
Banach space U, C is a bounded linear operator from U to V and Yj is a
random variable in V.

In order to study and solve the Cauchy problem (9) we need to define
many concepts and objects, first of all we need to explain what a fractional

Brownian motion in a Banach space is. We do so by means of cylindrical

6
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processes. Let us stress the fact that the notion of cylindrical process that is
used here is different from the one appearing in the literature (cf. Da Prato
and Zabczyk [16]).

In this thesis, a cylindrical random variable X in a Banach space U is
defined as a linear map from the topological dual of U to the space of real
random variables on (2, F,P), that is

X :U* = LY(Q,R).

This concept was introduced by Gel’'fand in the 1960s, see the monograph
by Gel'fand and Wilenkin [24]. A similar object like a cylindrical random
variable appears under the name weak distribution in the paper of Segal
[68]. See also [38]. Moreover cylindrical random variables and cylindrical
measures were extensively considered by Schwartz and his collaborators, see
among others [65, 66, 67].

With an idea similar to the one used in Applebaum and Riedle [2] to
define (cylindrical) Lévy processes in Banach spaces, we define cylindrical
fractional Brownian motions in Banach spaces. Theorem 5.2.3 provides a

characterization of this process as a series of the type

(10) B (tyu = (Fep, u)bfl (1),

o0
k=1

where (b )ren is a sequence of independent real fractional Brownian mo-
tions, F' is a linear and continuous operator from a Hilbert space H to U,
(ex)ken is an orthonormal basis of H and (-, -) denotes the dual pairing be-
tween U and U*. The series converges in L2(Q;R). The Hilbert space H
is the reproducing kernel Hilbert space of the covariance operator of the
Gaussian random variable B¥(1). When the operator F is y-radonifying 2

then we show (see Theorem 5.2.5) that the series is morally equivalent to
[e.9]

(11) BR(t) =) Fepbf(t)
k=1

and it actually converges in L2(Q;U), that is BY is a U-valued fractional

Brownian motion.

2The notion of y-radonifying operator is a generalization of the Hilbert-Schmidt prop-
erty to Banach spaces. It is central in the description of Gaussian random variables in
Banach spaces. In fact F/F™ is the covariance operator of a Gaussian measure on B(U) if

and only if F' is «-radonifying.
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In both cases (10) and (11), if U is a Hilbert space then we recover the
classical definition of cylindrical, respectively U-valued, fractional Brownian
motion (of the type (2) but with by, replaced by bi7), such as the one used in
[22, 25, 49, 71]. Moreover, in the case U = L?(D) we can recover the space-
time fractional noise {5 (¢,2),¢ > 0,2 € D} that was used by Gubinelli
Lejay and Tindel [27] or Hinz and Zahle [29].

Let us mention the fact that, even in the Hilbert space case, we allow
more general noises than the above-mentioned authors. In fact we consider
a wider class of covariance operators F'F™*, whereas the (cylindrical) noises
given by (2) have covariance ) which is diagonal with respect to the basis,
i. e. Qer = A\gep with A, constants (they do not depend on = € D). Some
examples of fractional Brownian noises (given as series) in L?(D) and L!(D)

not yet considered in the literature are explicitly discusses in this thesis.

The second important issue one has to face when trying to solve (9) is
the definition of a stochastic integral with respect to a cylindrical fractional
Brownian motion. This is crucial in order to define any notion of solution
for the problem (9). Since in this case the noise is additive, it is enough to
define the stochastic integral for deterministic integrands.

In the Hilbert space case, the definition (based on Wiener integrals) first
appeared in [57] for general Hurst parameter H € (0,1). It exploits the
series representation of the process, as done in the Wiener case by Da Prato
and Zabczyk [16], and the integral itself is a random variable which takes
values in the underlying Hilbert space.

In Banach spaces we proceed using the same idea, but we define the
integral fOT @o(t)dBH(t) as a cylindrical (in our sense) random variable in
U. To do so we exploit the link between Wiener integrals for real valued
integrands and Wiener integrals for Hilbert space valued integrands, both
with respect to real fractional Brownian motions. In Proposition 6.2.4 we
show that the cylindrical integral is a Gaussian cylindrical random variable
and we give the explicit decomposition of its covariance operator through
a Hilbert space. This result is fundamental to prove Theorem 6.2.5 that
provides conditions under which the cylindrical integral is actually a V-
valued random variable. We also study the properties of the integral as

(cylindrical) stochastic process indexed by time.

With this tools (cylindrical fractional Brownian motion and stochastic

integral with respect to it) we can finally study problem (9) for all H €
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(0,1) and give a meaning to its solutions. We consider weak (and mild)
solutions. Under some assumptions on the semigroup and on the initial
condition we prove existence and uniqueness of a cylindrical solution for (9)
in Theorem 7.1.4. Moreover we obtain a classical weak solution in V' under
some additional conditions.

This result is applied to a stochastic parabolic equation with fractal

additive noise given by

9u(t,z) = (—Au)(t,z) + G- FVbHE(t,z), te(0,T),z €D
t,z) =0, te (0,T),xz € 0D
0,z) = up(z), zeD.

This equation has been considered by Hinz and Zahle [29] in space dimension
d = 1 and has been solved with pathwise techniques. In this example we

partly recover their results using the cylindrical approach.

This thesis provides new ideas about possible directions for future re-
search. The author is interested in (stochastic) transport equations like (7)
with a non-linear term G(Vu) in place of Vu. This equation can be treated
again in a pathwise sense and the main problem is to obtain estimates for
the pointwise product (G(Vu),VZ) in terms of Vu. The author believes
this can be done using Dirichlet forms.

Another interesting open problem is to extend the definition of the cylin-
drical stochastic integral in Banach spaces to random integrands { X (¢),¢ >
0}, that is to define fOT X (t)dB*(t). This would in principle allow to study

evolution equations in Banach spaces with multiplicative noise like

dY (t) = AY (t)dt + CY (t)dBH (t), t € (0,7
Y (0) = Y.

Clearly, in this situation Wiener integrals are not enough. One should switch
to other types of integration, like divergence-type integral or pathwise inte-
grals, and combine it with the cylindrical approach exposed here.

It is also relevant to answer the question of continuity of the cylindrical
integral with respect to time 7', question which is not yet fully answered

even in the one-dimensional case for real fractional Brownian motions.




Part 1

Pathwise approach

10



Chapter 1
The transport equation

In this chapter we introduce the problem which will be solved in Chapter
2. To this aim, in Section 1.1 we start with some preliminaries and fix the
notation. We recall and develop some concepts and useful tools that will be
fundamental in the proof of existence and uniqueness of a solution. In Sec-
tion 1.2 we state the problem and rewrite it in an abstract form. We define
the concept of solution for this problem by means of mild solutions. Some

other technical results such as pointwise multiplication will be explained.

1.1 Preliminaries

1.1.1 Fractional Sobolev spaces

In this first section we deal with fractional Sobolev spaces. It is a family of
spaces which are embedded in each other and provide a natural framework
for the action of the Dirichlet Laplacian and of its powers. Let us recall the

definition of fractional Sobolev spaces on C.

Definition 1.1.1. Let « € R and 1 < p < oco. We define the fractional

Sobolev space or Bessel potential space as
HE(R:C) = {f € S(REC) : (1+[6P)*/2)” € LPR% O)}

equipped with the norm !

IF1Hy RO = [[((1+ [€%)*2F)Y LR C)I,

!Sometimes we indicate with || - |U|| the norm in the space U instead of the usual one

| - ||z This is done for simplicity of notation when the space U has a long name.

11



1. The transport equation

where f stands for the Fourier transform of f on R and (-)V denotes the

inverse Fourier transform.

We omit the subscript index p when p = 2.
We are interested only in real-valued functions and distributions, so we follow
[62] and define S'(R%R) := {f € S'(R%C) : f = f} where f is defined by
f(®) = f(¢) for all p € S(R%;C). For 1 < p < oo and a € R we define

a/md. _ rro/md. d.
HY(R%R) = H*(R% C) N S'(RGR)

and for simplicity of notation we omit the writing of the codomain when it
is R.

This family of spaces is also called scale of spaces because Hg (RY) Hy (RY)
for every a < § € R. It is known that when the parameter « is a positive
integer « = m € N then H;,“(Rd) = Wg”(Rd) where

W (RY) = {f e S'(RY) : 97 f € LP(RY) for all || < m}

is the classical Sobolev space on R? equipped with the norm

1/p
IFIWel={ D o7 f1LP|P
[yl<m
The latter norm and || - ||y are equivalent norms.

We are interested in the corresponding fractional Sobolev spaces on do-
mains. There are various ways to define such spaces. Here we recall only

one of them, which is suitable for our purposes. For a > —1/2 define
- o & _
A(D) = {f € HY(RY) : supp(f) C D}

equipped with the norm || -|| He (RY): The norm itself is not sufficient in order
to characterize this space because it is the same as the one used for Hg‘(Rd).
Observe that if & = 0 then the space ]SIS (D) is simply LP(D). Such spaces
are embedded in each other in the following way: for all « > § > —% we
have H2(RY) ¢ Hy (RY).

When p = 2 the norm in H*(D) will be indicated by || - ||o. Moreover
when we have a vector (like VZ) we write VZ € HY(R?) (and similarly for
spaces on D) to intend that every component of the vector VZ belongs to
such space. The norm of a d-dimensional vector in the space (H, (R4 is
defined as the square root of the sum of the squared norm of each component

in Hy (R9). For simplicity we will indicate it with the same notation.

12



1. The transport equation

1.1.2 Semigroup theory

In this section we recall the theory of semigroups of linear operators. Fore
more details and proofs we refer to [58, 78].

We start with the definition of semigroup.

Definition 1.1.2. Let (U, ||-||v) be a Banach space. A family of bounded lin-
ear operators (Ty)i>0 acting from U into itself is called semigroup of bounded

linear operators on U (or simply semigroup) if
1. Ty =1d;
2. Tyys = T\ Ty for every t,s > 0.
Furthermore (Ty)1>0 is called uniformly continuous if
3. limyyo [Tt — 1d || g0y = 0
and it is called strongly continuous (or also €y semigroup) if
4. limy o Tix = x for every x € U.

Remark 1.1. Each uniformly continuous semigroup is also a % semigroup,

but not the other way around.

For both these two types of semigroups we can define a new operator
acting again from U (or from a subspace of U) into itself, called infinitesimal
generator. This operator can be either bounded or not, depending on the

type of semigroup.

Definition 1.1.3. Given a semigroup (T;)i>0 on U we define a linear op-

erator A on

Tow —
D(A) := {x e U st lim 27 em’sts}
tl0 t
as follows

Tox —
Az :=lim A
tl0 t

for every © € D(A). Such an operator is called infinitesimal generator of

the semigroup.

As we have already mentioned, the generator has different properties
depending of the properties of the semigroup. For uniformly continuous

semigroup we have the following:

13



1. The transport equation

Theorem 1.1.4. A linear operator A : U — U is the infinitesimal generator
of a uniformly continuous semigroup if and only if A is a bounded linear

operator.

Given a bounded linear operator A we can construct the semigroup by

T=ett=} (tA)

n!

n=0
where the sum on the right-hand side converges in norm for every ¢ > 0.
If we are given the semigroup we know how to construct the generator and
moreover if two generators coincide, then the two semigroups coincide as

well.
Corollary 1.1.5. Let (1})i>0 be a uniformly continuous semigroup. Then
(a) 3 w >0 constant such that ||T;|| < e*t;

(b) There exists a unique bounded linear operator A : U — U such that
T, = etA).

(¢) The operator A is the infinitesimal generator of (1})i>0;

(d) The mapping t — Ty is differentiable in norm and

dT;
— = AT, = T;A.
a t t

In many interesting situations though, the semigroup is not uniformly
continuous but only strongly continuous. In this case the generator is un-

bounded and we have the following properties.

Theorem 1.1.6. Let (T})1>0 be a 6o semigroup and let A be its infinitesimal
generator defined in Definition 1.1.3. Then

(a) for every x € U
t+h

lim — Tsxds = Tix;
h—0 h t

(b) for every x € U
t
/ Tsxds € D(A)
0

t
A(/ Tsmds> =Tix — x;
0

14
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1. The transport equation

(c) for x € D(A) then Tyx € D(A) and

d
aTtx = ATix = T; Ax;

(d) for every x € D(A) and for every s,t >0

t t
Tix — Tex = / T, Azdu = / T,x du.
S S

Corollary 1.1.7. If A is the infinitesimal generator of a 6y semigroup then

D(A) is dense in U and A is a closed linear operator.

The generator is uniquely defined, meaning that if two % semigroups
have the same generator then they coincide. It is possible to have a charac-
terization of the generator of a %y semigroup, as in Theorem 1.1.4. For this,
recall that if (T3)¢>0 is a %) semigroup then there exist w > 0 and M > 1
such that ||T;|| < Me*t. If w = 0 then the semigroup is called uniformly
bounded since we find a bound M which does not depend on t. Furthermore
if M = 1 then the semigroup is called % semigroup of contractions since
every operator is a contraction.

Given a linear operator A : U — U we can define the resolvent set of A as
follows:
p(A) = {\ € C: A\ — A is invertible}.

Once we have defined the resolvent set of an operator, we can define the
resolvent of A. This is a family of bounded linear operators {R(\; A), A €
p(A)} each of them defined as R(\; A) := (Al — A)~L.

Theorem 1.1.8 (Hille-Yosida). A linear (unbounded) operator A : D(A) C
U — U is the infinitesimal generator of a 6y semigroup of contractions if

and only if

(a) A is closed and densely defined (i.e. D(A) =U);

(b) The resolvent set p(A) contains the real positive half-line (i.e. p(A) D
(0,+00)) and for every A >0

1
. < =
IR A < .

where the norm is the usual operator norm.
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1. The transport equation

Fractional powers

Next we introduce fractional powers of a closed operator. In particular
we will use them for analytic semigroups. Recall that a semigroup (73)¢>0
on a Banach space U is analytic if there exists # > 0 such that the map
t — T; (taking values in £(U)) admits an analytic extension to the sector
S(0) = {\ € C : |arg \| < 0}, satisfies the semigroup property there, and
is such that t — T, t(p s vips 18 a strongly continuous semigroup for every
|p| < 6. A semigroup which is contractive and symmetric is also analytic (see
[18], Theorem 1.4.1 or [70], Chapter III). For the generator of an analytic
semigroup one can define fractional powers of any order (see for instance

[58]).

Definition 1.1.9. Given an operator A : D(A) C U — U such that —A is
the infinitesimal generator of a 6y semigroup (Ty)e>0, we define the negative

fractional power of A for any arbitrary positive a by

1 oo
A% = / t* M dt
L(a) Jo

for every x € D(A™%) where
D(A™Y) = {x eU: / t* M () dt s convergent}.
0

By definition we set A=0 :=1d and D(A™%) :=U.

We now want to define fractional powers also for positive exponents,
and since the operator defined in Definition 1.1.9 under some conditions is
one-to-one we can give the following definition.

Definition 1.1.10. Given an operator A : D(A) C U — U such that —A
is the infinitesimal generator of a €y semigroup (Ty)i>o with || Ty|| < Me vt

for some positive w, for every o > 0 we define
A% = (A—a)—l
According to the previous notation we have A° := 1.

We recall now a standard result on semigroups, for a proof we refer to
[58] Theorem I1.6.13 or [78] Theorem 7.7.2.

Theorem 1.1.11. Let —A be the infinitesimal generator of an analytic
semigroup Ty on a Banach space (U,| - ||v). If for each t > 0 holds ||T¢|| <
Me=%t with M > 1 and w > 0, then

16



1. The transport equation

(a) T; : U — D(A®*) for everyt > 0,a > 0;
(b) for every a > 0 and for every x € D(A%), T} A% = A°Tx;

(c) for everyt > 0 and for every a > 0 the operator ATy is bounded and
linear and there exist constants M, (which depends only on «) and
0 € (0,w) such that

|AYTy| oy < Mae™ "%

(d) for each 0 < o <1 there exists Co > 0 such that ¥t > 0 and for each
x € D(A%) we have

1Tix — x|y < Cat®[| A% ||y

1.1.3 The Dirichlet Laplacian and its powers

The Dirichlet Laplacian is the generator of a particular %p-semigroup on
L?*(D) for a bounded domain D C RY. The action of its power on the
frational Sobolev spaces on D will be of vital importance in Chapter 2.

Let us start with the semigroup 7; generated by the negative Laplacian
A = —A on the whole space R%. In this setting the explicit expression for

the semigroup applied to a function u(z) is
Tu(e) = | plt.c.pyul)dy

where p(t,z,y) = (2mt)%/? exp{ﬂgi;yp} is the heat kernel. The classical
interpretation for this is to consider the Laplacian on ¥?(R) and then we
have a semigroup an a Banach space. More generally we can extend it to the
Sobolev space HY(R). Strictly speaking we have a semigroup on a Hilbert
space, whose generator is an unbounded operator, since the domain of A is
dense in H°(R) = L?(R) but strictly included, namely D(A) = H?(R).

Consider now the Dirichlet Laplacian Ap as the infinitesimal generator
of the Dirichlet heat semigroup acting on L?(D) (see e. g. [78] Section 4.1,
[23] Section 7.4.3). Let us indicate it with Ap = —A. More precisely —A
generates a compact 6y semigroup of contractions (P);>o in L?(D) (see [78],
Theorem 7.2.5). The semigroup (P;):>o is of negative type and symmetric.
Moreover since it is also contractive, it is analytic. Thus, one can define
fractional powers of A of any order for which we have the following property.
For the proof we refer to [75] equations (27.50) and (27.51) or [74] Section
4.9.2.
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1. The transport equation

Proposition 1.1.12. Let (P;)¢>0 be the semigroup generated by the Dirich-
let Laplacian Ap =: —A. For all v, € R such that —% <7y —a< %
the fractional power A2 maps isomorphically HY(D) onto H'=*(D), hence

there exist ¢; > 0 and ¢y > 0 such that for all f € HY(D)
(1.1) HA%va_a < |fll, < e HA%fHW_a.

Furthermore one can prove that D(A2) = H*(D) for all 0 < o < %, o #
1 (for more details see [75]).
Using Theorem 1.1.11 and relation (1.1) we get the following result.

Corollary 1.1.13. Let (P;);>o be the Dirichlet heat semigroup on L?(D).
Then for all positive t and for any —% <p,v,p+y< %we have

P, : H'(D) — H**(D).
In particular if f € HY(D) then supp(P:f) C D.

Proof. Consider first the case when v > 0. Let f € HY(D) so by (1.1) we
have g := A2 f € L%(D). We write P,f = LA 3 A3 f = PLA 2g= A3 Py
and by Theorem 1.1.11 (a) we know that P,g € D(A”) for any p > 0.
Moreover recall that D(A%) = HP(D) for all 0 < p < 3.p# 3, so for this
choice of p and using (1.1) we get P,f = A~2 P,g € H**(D). Observe that
this fact is true also if p = % since HP7(D) I}%‘W(D) for all p > %

The case when v < 0 is proven in the same way, simply write A 2A2 P, f

instead of PtAng%f. O

1.2 The formulation of the problem

We consider the following transport equation on a domain D C R with

initial and Dirichlet boundary conditions

%(WC) :Au(t,x)—l—(Vu,VZ)(t,:c), le (O,T],xGD
(1.2) u(t,r) =0, t € (0,T),z € OD
u(0, x) = up(x), zeD

where D is a bounded open set of R? with C> boundary, ug is a given
function in a fractional Sobolev space on D of appropriate order, Z is a
given non-differentiable function on R? and the derivative is taken in the
distributional sense. The gradient V as well as the Laplacian A refer to
the space variables. The precise definition of the product (Vu, VZ)(t,x) is

given in Section 1.2.2, and it is set by use of the Fourier transform.
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1. The transport equation

1.2.1 The abstract Cauchy problem

We want to rewrite problem (1.2) in another formalism known as abstract
Cauchy problem. For this reason we briefly recall some classical results
about it (see for instance [58], Chapter 4).

Suppose U is a Banach space and f : [0,7) — U a given function. The

inhomogeneous abstract Cauchy problem is

{ Wt — Au(t)+ f(t)  te(0,T)

1.3
(1:3) u(0) =z,
where v is a U-valued function.
In the particular case when f = 0 it holds that for every x € D(A), (1.3)
has a unique solution given by u(t) = Tyx if and only if A is the generator of
a 6p semigroup (73)¢>0. For “solution” in this contest we mean a classical

solution and the definition is given below.

Definition 1.2.1. A function u : [0,T) — U is a classical solution of (1.3)
on [0,T") if u is continuous on [0,T), continuously differentiable on (0,T),

u(t) € D(A) for 0 <t <T and (1.3) is satisfied on [0,T)

Theorem 1.2.2. If f € LY([0,T]) then for every x € U the initial value
problem (1.3) has at most one solution. If the solution exists it is of the

form

(1.4) u(t) = Tix —i—/o Ti—sf(s)ds.

Notice that for every f € L'([0,T]) the right-hand side of (1.4) is a
continuous function on [0, 7] but it is not necessarily differentiable. In this
case, according to Definition 1.2.1, u is not a classical solution. But we can

consider it as a generalized solution as follows.

Definition 1.2.3. Let A be the generator of a 6y semigroup (Tt)e>o0, let
x €U and f € LY[0,T);U). The function u € C([0,T);U) given by (1.4)
for every t € [0,T) is called mild solution of the initial value problem (1.3).

It can be shown that under some conditions the mild solution is also the

classical solution, but in general the continuity of f is not sufficient.

Theorem 1.2.4. Let A be the generator of a 6y semigroup (13)¢>0. Let
f € LY[0,T);U) be continuous on (0,T] and set v(t) = f(f Ti—sf(s)ds for
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1. The transport equation

all0 <t <T.
Then the initial value problem (1.3) has a classical solution on [0,T) for

every x € D(A) if one of the following conditions hold:
(1) v(t) is continuously differentiable on (0,T);
(2) v(t) € D(A) for 0 <t <T and Av(t) is continuous on (0,T).

Conversely, if (1.3) has a classical solution uw on [0,T) for some v € D(A)
then v(t) satisfies both (1) and (2).

The mild solution of the transport equation

To formalize this approach in our case, we interpret all functions appearing
in (1.2) as functions only of time ¢ and taking values in some suitable function
space U. The choice of the space U is crucial in order to prove existence
and uniqueness of the solution, and it turns out that a suitable choice is for
instance a fractional Sobolev space on D.

Set w: [0,7] — U, t — u(t) € U and (u(t))(-) := u(t,-) and choose ug € U.

The Dirichlet initial value problem becomes the following problem

9 {

where Ap stands for the Dirichlet-Laplace operator introduced in Section
1.1.3.

A function w is a mild solution of (1.5) if it satisfies the following integral

u=Apu+ (Vu,VZ), t e (0,7)
= Uo, tZO,

= s

equation
t

(1.6) u(t) = Puug +/ P, (Vu(r),VZ)dr.
0

To give a formal meaning to the product (-,-) we make use of the so called
paraproduct, see e. g. [62]. We shortly recall its definition and some useful

properties in the next section.

1.2.2 A pointwise multiplication

In this section we recall the notion of paraproduct introduced in [62] that
allows us to multiply a function and a distribution, provided that they are
good enough.

Suppose we are given f € S’(R?). Choose a function 1) € S(RY) such that
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1. The transport equation

d 13 —N; 3
0 <(z) <1 for every z € RY, ¢(z) = 1if [z| < 1 and ¢(x) = 0 if |z| > 3.

Then consider the following approximation of f

S f(x) = (w (f) f)v (@)

that is in fact the convolution of f with a smoothing function. This approx-
imation is used to define the product of two distributions fg as follows:
fg:= lim S7fS/qg
J]—00
if the limit exists in S’(RY). The convergence in the case we are interested in
is part of the assertion below (see [29] appendix C.4, [62] Theorem 4.4.3/1).

Lemma 1.2.5. Let 1 < p,q < o0 and 0 < B < § and assume that q >
max(p, %) Then for every f € Hg(Rd) and g € H;’B(Rd) we have

(L.7) £ glH, PR < el fIHp R - llg|Hy P (R

The following Lemma regarding a locality-preserving property will be
used to shift the properties of the product fg from the whole R? to the
domain D. For the proof see [62] Lemma 4.2.

Lemma 1.2.6. If f,g € S'(R%) and supp(f) C D then also supp(fg) C D.

Our aim now is to apply such product to Vu(s) and VZ. We will denote
by (-,-) the pointwise product combined with the scalar product in R

Proposition 1.2.7. Let u(s) € ﬁ[z}""s(D), S H;_ﬁ(]Rd) for1 < p,q < oo,
q > max(p, %), 0< B < % and 8 < . Then the pointwise multiplication
(Vu(s), VZ) is well defined, it belongs to the space ﬁp_ﬁ(D) and we have the

following bound
(18)  (Vu(s), VZ)H, (D) < ellVu(s)|Hy(D)| - ||V Z|Hy P (RY)].

Proof. The idea is to apply first Lemma 1.2.5 to define the product as an
element of H,, A (R%) and then restrict it to H, B (D) with the help of Lemma
1.2.6.

Let f = Vu(s) and g = VZ. We should check the conditions in Lemma 1.2.5.
Clearly g € H(I_B(Rd) because Z € H;_'B(Rd) and it is easy to show that (V);
is bounded form H7(R?) to HY~!(R%) for every v € Rand foralli = 1,...d.
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1. The transport equation

The fact that f € Hg(Rd) is also clear since ﬁ;‘“s(D) C H;JF(S(Rd).
Denote m(s) := (Vu(s),VZ) € Hp_ﬁ(Rd) and by Lemma 1.2.5 we get

Im ()| H, P (R < ¢l Va(s) | Hy R - [V Z| Hy (R < o0

Since supp u(s) C D then supp Vu(s) C D and so by Lemma 1.2.6 it follows
suppm(s) C D and so m(s) € ﬁp_ﬁ(D) since 3 < 3. Moreover,

(Vu(s), V2)|H, P (D) = [(Vu(s), VZ)|H, " (R
< ol|Vu(s) [ Hy R - V2| H, (R
= c|[Vu(s) Hp(D)| - IVZ|H, P (RY)). O

1.2.3 The integral operator

The notion of mild solution is now formalized. In order to check the con-
vergence of the integral appearing in the definition of the mild solution, we

introduce the following operator:

Definition 1.2.8. Given an H't%(D)-valued function u on [0,T] we define
the integral operator I(.y(u) for any t € [0,T] setting

L(u) = /0 P (Vu(r), VZ) dr.

We consider this operator acting on the Holder space C7([0,T];U) into
itself (this mapping property will be proven later, see Theorem 2.2.2) for
some suitable v and for some infinite dimensional Banach space U. The

Holder space is defined as
C([0,T);U) :=={h:[0,T] = U s.t. ||h||y,u < oo}

where 1) — h(s)]
— S

[hll = sup [0(®)o+ sup D =P

te[0,T] s<tefo,r] (E—8)

When U = H'*%(D) the norm will be indicated by || - [|.14s-
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Chapter 2

The main result

In this chapter we prove the contractivity of the operator I in the Holder
space C7([0,T7; H 1+9(D)). From this mapping property we obtain existence,
uniqueness and regularity of the solution in the above mentioned space.

In Section 2.1 we consider the local solution. This means the result is valid
up to an explosion time ¢ > 0 which needs to be small enough. In Section
2.2 we introduce a family of equivalent norms in C7([0, T]; H'+%(D)) thanks
to which we can prove the result for any 7" > 0.

Throughout the whole chapter ¢ denotes a finite positive constant whose

exact value is not important and may change from line to line.

2.1 The local solution

We start with a result on existence and uniqueness of a local solution. Even
though this result is covered by the main theorem of Section 2.2, we give
here a detailed proof because in this case the computations are easier.
2.1.1 Preliminary results

Recall that m(r) := (Vu(r),VZ) for all 0 <r <T.

Proposition 2.1.1. Let 0 < 8 < % and B < § and fix a function Z €
qu_ﬂ(]Rd) for some q > maX(Z,%). Then for all 0 < r <t < T and
w(t) € H'9(D) we have

(1) |lm(r)|H=P(D)| < cllu(r)|H**(D)];
(2) |lm(t) = m(r)|H=#(D)|| < c|lu(t) — u(r)| H* (D).
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2. The main result

Proof. (1) Observe that by definition Vu(r) € H®(D) means that Vu(r) €
H(R?) and supp(Vu(r)) € D. Also (V); : H'*°(RY) — H(R?) is bounded
for all §, i.e. for all f € H'T9(R?) there exists ¢ > 0 such that |V f|s <
c||fll1+s- These results combined with Proposition 1.2.7 (where p = 2) lead
to (1).

(2) Since H=#(D) is a linear space then m(t) — m(r) € H#(D). The
pointwise product and the operator V are linear so we can write m(t) —
m(r) = (Vu(t) = Vu(r),VZ) = (V(u(t) — u(r)), VZ). Clearly u(t) — u(r)
is an element of H%(D) ¢ H*(R?%) so we proceed in the same way as for (1)

and we get the wanted result. O

Proposition 2.1.2. Let 0 < 3 < § < 1 and w € H=P(D). Then Pw €
ﬁ1+5(D) for any t > 0 and moreover there exists a positive constant ¢ such
that
14545

(2.1) [Pwlly 5 < cllwll gt
Proof. Let w € H=?(D). By (1.1) we have

1+6 +6+/3 _B

| Prwll14+s < cHA 3 thHO =c|A AZA- 2thH0 =c|A" 2 PA 2wp.
Since w € H=?(D) then by Proposition 1.1.12 we have also A 5w e L?(D)
and Theorem 1.1.11 part (c) ensures that the following bound holds for all
t>0

1+5+ﬂ

IA™=" Pill g2 (py < Me™ %t~

1+6+ﬂ

This fact together with the previous bound imply

L+d+p

|Pwlliss < ct™ 5 A Swllo < et 5 Jlwl g < o0,

having used in the last inequality again equation (1.1). O

2.1.2 Mapping properties of the integral operator

In what follows we state and give the proof of the main mapping property
of the integral operator: it is a contraction on a Banach space of function
with Holder-type regularity in time and fractional Sobolev-type regularity

in space.

Theorem 2.1.3. Let 0 < B < 6 < 1/2 and Z € H;_B(D) for some q >
max(2,d/d). Then for any v such that 0 < 2y <1—4§ — [ it holds

I(.) : C'V([O,T];[;T1+6(D)) N C’Y([O,T];ﬁlﬂs(l)))
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and the following estimate holds for any fized u € C7([0,T]; H'19(D))

ey @y 146 < ()|l 145,

where ¢(T) is a function of T not depending on u and such that

lim ¢(T') = 0.
T—0

Proof. Given any u € C7 ([O,T]; I~{1+‘5(D)> our goal is to bound

My (wllss = sup (rmu)uw
0<t<T

+ sup |1 (w) —Is(u)||1+5)
0<s<t (t—s)7

=: sup ((A)+ (B))
0<t<T

using the norm of u, namely using ||u||,145-
Step 1: consider part (A).
Fix ¢t € [0,T]. By definition of I we have

(A) = [[1:(@)ll14s =

t
—| / Prym(r) drfs
0

t
< [ 1P m(r) s
0

Apply Proposition 2.1.2 with w = m(s) € H?(D) and afterwards Proposi-
tion 2.1.1 part (1) and obtain

1+0+8

(4) < /0 ellm ()|t — )~ 52 dr

14548

< /0 ella(r) st — )~ =5 ar.

Observe that for any 0 < r <t < T we have
u(r)li+s < sup |[u(r)lli+s < lully 140
0<r<T

and then we obtain

t 14648
(A) =Tl 145 < cllulliso /0 (t— )5
< cllul 2 et
= Al +e 75
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Finally we have

(2.2) (4) = 11w 5 < ex(®)lully ves.

where ¢ (t) := ¢t 5 and so supg<;<7 c1(t) = c1(T).

Step 2: consider part (B).
Let for the moment fix our attention only the argument inside the norm in
the numerator of (B). Recall that 0 < s < t. We make a change of variable

in the middle integral ' = r — t + s and we obtain

t s
/ P,_,m(r)dr — / Ps_,m(r)dr
0 0

t—s t

= P_,m(r)dr+ Pr_ym(r)dr — / Ps_ym(r)dr
t—s 0

0
t—s s s
= Pi_,m(r)dr+ / Ps_,m(r+t—s)dr— / Ps_m(r)dr
0 0 0
t—s s
= Pi_ym(r)dr + / Py (m(r+t—s)—m(r))dr
0 0
Therefore

Hmw—@wmw—“ﬁaqmmw—éﬂammmT

140

t—s

e
/P ( (r+t—s)— m(r))dT ,
0 149
and these computations enable us to write
*P_rm(r)d
(B) < sup 1o " Preym(r) dril1ys
0<s<t (t - 3)“’
P,_, r+t—s dr
0<s<t (t— 5)

Step 3: consider term (C').

The numerator is similar to term (A) and therefore we proceed as we did in
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2. The main result

Step 1. We have

| f *P_ym(r)dr|i4s

C) = sup
©) 0<s<t (t—s)"
_ _ 14548
< sup Jo B st =) TF dr
T 0<s<t (t—s)7

t—s 1464
<cllully 145 sup / (t—r) 52 (b 5)
0<s<tJO
1-6—-p8
=C\|ﬂ||v,1+6oiup (t—s) 2 Tdr

1-6-5-2y
=cllullyist 2,
where the last equality is valid if 1 —§ — 5 — 2v > 0.
Step 4: consider term (D).
First apply Proposition 2.1.2 to w = m(r+t—s) —m(r) which is an element
of ij_ﬁ(D) thanks to Proposition 1.2.7. Then apply Proposition 2.1.1, part
(2) and we get

(D) = sup SN Pocr (m(r +t — 8) — m(r)) 145 dr
0<s<t (t—s)Y
s 14648
< sup Jo llm(r+1t—s) —m(r)[-p(s —r)" "=z dr
- 0<s<t (t—s)Y
< sup / lu(r+t—s) —u(r) |1t (s )82 gy,
0<s<tJo (t—s)7

HMTHzg;)%(T)llHé' Observe that

t) —
HQ”771+(5 = Sup HQ(t)”1+5 + sup Hﬂ( ) E(T)H1+5
Ost<T 0<r<t<T (t—r)

Fix the attention on the term

and in particular, setting t — r = h, the second summand can be rewritten

as

h) —
sup lu(r +h) — u(r)lli+s
0<h<r+h<T hy
Since the parameters » and h are such that 0 < h < r + h < T, we then

have

s 145+
(D) <clullyass swp [ (s =r) 5 ar
0<s<t JO
1-6-8
<cllull,ss sup s*F
0<s<t

1-5-8
=cllully 145t 2 < oo0.
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2. The main result

Clipping the result for part (B) we obtain

(B) = (C) + (D) = sup. ”It(“)(t—_fzgg)ﬂué

< ea(B)]|ully 145
where ca(t) = e
In conclusion the bound for (A)+(B) gives

1y (w)]ly,146 = sup ((A) + (B))
o<t<T

< sup (c1(t) + ca(t)) |lully,146
0<t<T

= oT) |l s

. Again we have supy<;<r ca(t) = co(T).

1-6—B—2v 1-5

where ¢(t) := c¢1(t) + co(t). Therefore ¢(T) =T 2 +cT =5 and this
quantity is finite for every fixed T. Moreover, since 1 —d — 8 — 2y > 0 with
v > 0 we have that ¢(T)) - 0 as T — 0. O

2.1.3 Existence and uniqueness of a local solution

Thanks to this mapping property of I we can easily recover the existence

and uniqueness of a local mild solution for (1.5) .

Theorem 2.1.4. Let 0 < f < § < 1/2 and 0 < 2y < 1 -6 — p. Fiz
A Hl}fﬂ(Rd) with ¢ > max(2,d/d). Then for any initial condition uy €
H'O2Y(D) there exists a sufficiently small € > 0 for which (1.5) has a
unique local mild solution w in C7([0,e]; H'F9(D)). The solution satisfies

the integral equation u(t) = Pug + It(u) for all0 <t <e.

Proof. From Theorem 2.1.3 we know that if u € C7([0,T]; H'*%(D)) then
I(y(u) € CV([0,T; H (D). ]

Now we should ensure that for ug € H?(D), with ¢ > 14 6 + 2y then
Pryug € CV([0,T7; H'™(D)), namely that

Piug — Psu
sup <HPtU0||1+5+ sup [ Pruo — Ps 0||1+5) _
0<t<T 0<s<t (t —s)7

For the second summand use part (d) of Theorem 1.1.11 and relation (1.1)
to obtain

[Pruo = Psuoll14s = [[Ps(Pi—s = Duol[14s

< || Pslll(Pe—s — Duollits < el Ps|(t = s)*[[A%uoll145

< c|| Psll(t = 5)*[luoll1+s+20 < cMe™(t = 5)*||uoll145+2a
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2. The main result

for any 0 < a < 1. Therefore the second summand becomes

Py — P,
sup [ Pruo = Pstola+s < sup ¢t —s)
0<s<t<T (t—s) 0<s<t<T (t—s)7

«a HUOH1+5+2a

and if we choose o = v then

| Pruo — Psuo|| 146
sup < ¢sl|uoll1+s
0<s<t<T (t _ S)V SH H1+ +27s

that is a finite quantity if ug € H'T0t27(D).

So for any fixed ug € H9+27(D) the operator Jey == Pryuo+1.y is mapping
C([0,T); H™(D)) into itself.

It is left to prove that J() is a contraction, namely that there exists a
constant k < 1 such that for all u,v € C7([0,T]; H*9(D))

[0y (w) = Ty (@) |ly146 < kllw — vy 146
To this aim observe that
[0y (@) = Joy(@)lly 46 = [[Pyuo + Ly (w) — Poyuo — Iy (@)]ly,146
= |y () = Ly ()[4, 146
= 1y (u = 2)lly,145

We clearly have w := u — v € C7([0,T]; H*+9(D)) and then it suffices to
apply the result of Theorem 2.1.3 with w instead of u. Then let k = ¢(T)
and choose € small enough such that for all 7' < € we have ¢(T") < 1. O

2.2 The global solution

We look for a global solution on [0, 7] where 7' is now arbitrary.

2.2.1 Equivalent norms and mapping properties

Let us introduce a family of equivalent norms || - ||(7p 2], p>1in CY([0,T);U)
with which we can to get a bound for the integral operator which does not

depend on T'. The (p)-norm is defined by

@3 1% = s e (U@l + sup =LY

0<s<t (t - 8)7

Fact 2.1. The (p)-norm given by (2.3) is equivalent to |||, in C7([0,T7; U)
for all p > 1.
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2. The main result

Proof. For any f € C7([0,T];U) we have

(h) _ —pt 1F () = F(s)llw
115 = s e (1@l + sup LO=L0)
TOEHOIEY

t—

< s e (IOl + s .
0<t<T s)

0<s<t (

B 1F) — £
=,z (1 + G0
—
On the other hand, it holds
B 1A — £l
= s (el + LO=L2)

= (150l + sy HO=I0I0)
<t<T

0<t< ert 0<s<t (t—s)7
< || f]1%),. O

The following Lemma gives integral bounds which will be used later.
The proof makes use of the Gamma and the Beta functions together with

some basic integral estimates. Recall the definition of the gamma function:

[ee]
I'(a) = / et 1de,
0
and the integral converges for any a € C such that Re(a) > 0.

Lemma 2.2.1. If0<s<t<T <ooand 0 <0 <1 then for any p>1 it
holds

t
(2.4) / e Prfdr <T(1-0)p" L.

Moreover if v > 0 is such that 8 + v < 1 then for any p > 1 there exists a

positive constant C' such that
t
(2.5) / e P (¢ — )0 dr < O
0

Proof. We start with (2.4). Consider the integral

t t
/ e Prfdr :/ e_p’”(pr)_eﬂ_lpg dr
S S
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2. The main result

now make the change of variable 7 = pr and obtain

pt o]
/ 677'7_79+1*1p971 dr S p01/ 677',7_794*171 dr = p971F<1 o 9)
p

S 0

Let us prove (2.5). We make several changes of variable and get
t
/ e—P(t=7) (t —r)" % dr {s=t—r}
0
t
= / e P50t —s)ds {u=ps}
0
pt
= / e u=’p"p7 (pt — u) " p~ du
0
pt
= pe'm_l/ e "u(pt —u)"7du {Set z := pt}
0

4
= p9+71/ ez —u)Vdu
0

= (2.

The integral I(t) is finite for all z > 0. If z = 0 then I(z) = 0. If z € (0, 2]

we get
z
I(z) = / e 0z —u)du {u = zz}
0
1
= Z_G_VH/ e *r9(1 —2)Vda
0
1
< 2_9_7“/ 2701 —x)Vda
0
<279HIB(—0 41, —y +1).
If z > 2 we can split I(z) into two parts and get

z—1 z
I(z) = / e"u 0z —u) TV du + / e“u~?(z — u)Vdu
0 z—1

z—1 z 1
< / e“u?du + / (z—u) Tdu=T(1-0)+ ——.
0 z—1 1- Y

O

Theorem 2.2.2. Let 0 < <6< 3 and Z € H;_ﬁ(]Rd) for ¢ > max(2, ¢).

Then for any v such that 0 < 2v <1 —9 — 8 it holds

1:C7([0,7); (D)) — C7([0, T); B+ (D))

and the following estimate holds for any fixed u € C7([0,T); H'*(D))

(2.6) 1o @I 5 < el
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2. The main result

where c(p) is a function of p not depending on uw nor T and such that

plgrolo c(p) =0.
Proof. In order to prove this result we follow the line of Theorem 2.1.3 but
using the equivalent norm || - || +1+s for some arbitrary p.

Given any u € C7([0,T]; H*(D)) our goal is to bound
(2.7)

(p)
I su e 7|1, +
|| ) ( )H A48 = t? ( H t( )”1 s

et sy ML) (1) 4 5)

using the (p)-norm of u, namely using ||uH 146
Step 1: Consider part (A). Observe that for any 0 <r <t <T
e u) s < sup e ulr)lies < Jlull
0<r<T

Then we obtain

(A) < e Y| I(w)]1+s
= / lu(r)1ies(t =)~ 2 dr
0

t 548
< c\un%’iha/o eI — )T

t S48
_C|u||71+5/0 e—prr_1+2+ dr

1+0+8 -1
771+6p 2 )

< cfjul)\”

having used estimate (2.4) of Lemma 2.2.1 in the last line. Clipping the

result together we can state that

(A) = e[ (w145 < er(p)|ull p1+5

5 —
where ¢1(p) = ¢p 5= and since M% < 0 we have ¢i1(p) = 0 as p — oc.

Step 2: Consider part (B). As done in Step 2 for the proof of Theorem 2.1.3

we get,

(B) <ot sup 1o Prem(n) el

0<s<t (t —s)7
ot I Jg Ps—r(m(r 4t —s) —m(r))dr|
et osgggt ; (t —s)7 o (€)+ (D)
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2. The main result

Step 3: Consider term (C').
The numerator is similar to the term (A) and therefore we proceed as we
did in Step 1. We have

Hf Pt Tm dT‘H1+5

C) =e " sup
© 0<s<t (t—s)7
t— 1+6+B
ot g BN st =)
T 0<s<t (t—s)7
t—s 548
< sup / e Plt= cHuH 1+6(t—r)_1+2+ (t—s) 7dr
0<s<t Jo ”

e 14548 _
SCH@”%M OS<1iI<)t/0 et — )" 2 dr

t 5
=clull¥} /0 eI ()T T dr

apply estimate (2.5) in Lemma 2.2.1 with 6 = %: since by hypothesis
2y <1—0—f then 7+ 60 < 1. We obtain

L4552y 5+B42y-1
(0) < cllull'”), 50 “<eul e
Clipping the result together
- I Jy " Prym(r) drliys S442y-1
(C) =e " sup f - < CIHUHE:)L-J 7

0<s<t (t—s)7
Step 4: Consider term (D).
First apply Proposition 2.1.2 to w = m(r+t—s) —m(r) which is an element
of H=#(D) thanks to Proposition 1.2.7. Then apply Proposition 2.1.1, part

(2).

(D) — et sup L5 Poormlr bt = 5) = mi(r)) drs

0<s<t (t—s)7

Sm(r +t—s) —m(r)||_g(s —r S
<e " sup Jo Il ) (r)ll-( ) dr

0<s<t (t — 3)7
—p(r+t— 14548
o wp /s e—p(r+t—s) lu(r +t—s) — u(r)|1+s(s — ) 3 4
o<s<tJo e PIrHt=s) (t —s)7

<c sup /8 o—P(s=r) g=p(r+t=s) |lu(r +t—s) — u(r)|l1+s (s - r)_% O
~ o<s<tJo (t —s)7

Fix the attention on the term e=P("+t=9) "Q(T+t?t$2§)%(T)“l+5 and set h =t —s:

we obtain
—p(r+my 2(r + 1) = u(r) 145

(2.8) e =
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2. The main result

Moreover observe that

() _ —pt _ptllu(t) = u(r)llite
U = Ssup e u(t)|l1es + sup e
laall 3115 ooy () |1+ b G—ry
and in particular, setting again t — r = h, the second summand can be

rewritten as
wp estren ) = () s
0<h<r+h<T hy
(p)
7a1+§
such that 0 < h < r + h < T) and applying once more estimate (2.4) in

Therefore we can bound (2.8) by ||u/| (since the parameters r and h are

Lemma 2.2.1 the upper bound for (D) becomes

S
(D) <cllull®),, sup. /0 o) (g _ )R g
<s

stp-1_(0+ [ —1
<ealul oo™ 51 (F5 ).

Clipping the result for part (B) we obtain

(29) (B)=(C)+(D)=e"" sup. Hft(u)(t—_fzgg)\hm

< c2(p)|[ull ) 5

5+B+2y-1 s+p-1 , _ _
where c2(p) = cp— 2 +¢p 2z and since 22 21 and ‘H’g 1

are
negative we have ca(p) — 0 as p — 0.
Finally observe that the bound for (A) 4+ (B) does not depend on ¢ and
_|_

then the supremum over 0 <t < T of (A) 4 (B) is simply bounded by

0 _ ()
@115 = S <(A) +(B)) < (c1(p) + calp)lull s

that is the thesis. O

2.2.2 Existence and uniqueness of a global solution

Now we prove existence and uniqueness of a global mild solution.

Theorem 2.2.3. Let 0 < B < § < % and 0 < 2v < 1 —-p8—-9. Fix
RS H(}*’B(Rd) for some q > max(2, %) Then for any initial condition ug €
I:II+5+27(D) and for any positive finite time T there exists a unique mild
solution w in C7([0,T]; H'*9(D)) for (1.5) satisfying the integral equation

u(t) = Piug + Ii(u).
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Proof. We will follow the line of Theorem 2.1.4. By the proof of the latter

theorem, we already know that
o if uw € C7([0,T); H*3(D)) then I.)(u) € C7([0,T); H*(D));
o if uy € H'*927(D) then Pyug € C([0,T); H(D)).

So for any fixed ug € H'*927(D) the operator Jy == Pryuo+1.y is mapping
C([0,T); H'(D)) into itself. It is left to prove that J(.y is a contraction
(for arbitrary T' > 0), namely that there exists a constant k < 1 such that
for all u,v € C7([0,T]; H' (D))

10y (w) = Ty @)1 5 < kllu— 0] 5.
For this aim observe that

(p)
’Y,l-‘r(;

1y () =Ty (@) 1) 15 = [ Pro + Iy (w) — Prug — Iy ()

S ‘

(p)

/P.MVu(T),VZ)dr/ P_.(Vu(r),VZ)dr
0 0 ~¥,1448
(p)

<y — )15
v,1+0

/0 P, (V(u(r) — (r)), VZ)dr)

We clearly have w := u — v € C7([0,T]; H*+9(D)) and then it suffices to
apply the result of Theorem 2.2.2 with w instead of u and choose p big
enough such that the constant ¢(p) appearing in (2.6) is less than 1. O
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Chapter 3

Applications: the stochastic

transport equation

In this chapter we will apply the previous results to some stochastic PDEs.

3.1 The stochastic transport equation

Consider the stochastic transport equation given by

(3.1)
a—?(t,x) = o?Au(t,z) + (Vu(t,z), VY (z,w)), te(0,T],x €D
u(t,z) =0, te (0,T),x € 0D
u(0,x) = up(z), reD

where Y = {Y (z,w)},cpa is a stochastic field defined on a given probability
space (€2, F,P). One suitable example for the noise Y is the Levy fractional
Brownian motion {B¥(x)}, cgpa which is the isotropic generalization of the
fractional Brownian motion (see [45]). This field is defined to be a centered

Gaussian field on R? of covariance function
1
E[B" (z)B" (y)] = §(I$!§H + lyl3" = |z —yl3),

where |-|4 stands for the Euclidean norm in RY. The parameter 0 < H < 1 is
called Hurst parameter. In case when H = % we recover the Levy Brownian
motion, whereas if d = 1 we get the fractional Brownian motion. Using a
Kolmogorov continuity theorem suitable for stochastic fields (see for instance

[43], Theorem 1.4.1) and basic properties of Gaussian random variables one
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3. Applications: the stochastic transport equation

can show that there exist 3 C Q with P(£2;) = 1 and a modification of
B (z),z € D (for simplicity we call it again B (x)) with D c R? arbitrary
bounded domain of R¢ such that for every w € Q; and for every z,y € D

we have
|BH($,(JJ) - BH(y7w)‘ S Kw‘l' - y’ga Va < Ha

where K is a positive random variable with finite moments of every order.
In other words, for almost every realization w the field is a-Hélder continuous
on D of any order a < H. This fact together with the following property
enable us to apply the results presented in the previous section to equation

(3.1) in a pathwise sense.

Proposition 3.1.1. Let h be a compactly supported real valued a-Hélder
continuous function on R® for some 0 < a < 1. Then for any o/ < o we
have h € H]?/(Rd) for all 2 <p < oco.

The proof makes use of the equivalent norm

1
(- +y) =hOlZs , \*
hllL» + / 7 dy
H ||L ( <1 ’y‘d+2a

for the Besov spaces Bg’; (R%) and of embedding properties between Besov

and Sobolev spaces (see [73] for more details).

Proof. First recall the embedding relation between the Besov spaces and
the Bessel potential spaces (see [73] for definition, equivalent norms in Sec-
tion 11.4 and embedding results in Section 2.6.1): Bﬁ;(Rd) C Fpo‘, (RY) =
HZ‘,’" (R%) for all p > 2 and all 0 < o/ < 1, and an equivalent norm in BI?"IQ (RY)

is

1/2
1A G +y) = h()lI7
3.2 hllr» + / 7 d
(32) 12/l (IySl =D y

where | - [|z» is the norm in LP(R?). Clearly the first summand of (3.2)
is finite, since h is continuous and it has compact support. Consider for a
moment only ||A(- +y) — h(-)||2, for some fixed y € R? such that |y| < 1.
The set K = supp(h) C R? is compact by assumption. We define

K={z=z+4+y:zeKyecR |y <1}

37



3. Applications: the stochastic transport equation

which is obviously also a compact set. Moreover for any |y| < 1 the function
h(- 4 ) — h(-) is supported in K. Using the Holder continuity we have for
all y € RY Jy| < 1

-+~ RO < ([ na+) - <mwm)wp

2/p ~
s(@ﬁM?w> — AR < eyl

We can now easily bound the second summand in (3.2). Let ¢ := a — &/.

1/2 - 1/2
/ [h(+y) — ()IILpd </ vl dy
ly|<1 |y|d+2e’ B ly|<1 |y|d+2e’
) 1/2
f(/yl<1wdy> SO

because d — 2¢ < d since £ > 0 by assumption. OJ

In order to apply this to (almost every) path of B we should ensure
the compactness of the support. This is not true in general. Instead, since
(3.1) is considered only on the domain D, let ¢(z), z € R? be a C*™-function
with compact support and such that ¢)(x) = 1 Vo € D. Then for almost
every w € Q the function 9 (z) B (w, z) is a-Holder continuous we have that
for all 1 < ¢ < oo and for all &/ < a < H, ¥(-)BH (w,-) € Hg‘/(Rd). For
consistency of notation call 1 — 3 := o/, and so 1 — 8 < H. In order to match
the conditions on the parameter S we have to choose % < H < 1. Then for
every w € ) we set Z(z) := ¢(z)B”(w,z) and so Theorem 2.2.3 ensures
existence and uniqueness of a function solution to the stochastic Dirichlet
problem (3.1) with Y = B,

3.2 A (more) general stochastic transport equa-

tion

We combine in this section the main result obtained in Chapter 2 with
a result obtained by Hinz and Zéhle in [29]. In this paper they consider

(among others) a linear equation of the form

(33) o — _Au+FIVV, te(0,T]
u(0, ) = f(x),
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3. Applications: the stochastic transport equation

where F' is a deterministic vector and V' is a given non-differentiable function
which can be for example the path of a space-time fractional noise. More
precisely, the field V is taken to be an element of C''=([0,7T7; H,}_B(Rd)).

The solution to (3.3) is given in the mild form as

ut:) = BfC) + [ PP 9V() 0 s
0

=Pf() + I (F, 5. VV)

where the integral operator I (F, %VV) is defined in Definition 2.1 of [29]
(we only need the case k = 1). Fourier transform is used to perform the
integration with respect to the space variable x and fractional derivatives
are employed to give a meaning to the derivative with respect to time.

To get a better idea about the definition of this integral operator, let us

write it with the help of a mapping W, (-) given by
Uy(s)(w) := Pr_s(F - w),

for any w € Hy (D). The integral operator becomes then

t t
/ P_s(F-VV(s))ds = / Wy(s)(F - VV(s))ds.
0 0
They show that in fact W; is an operator valued mapping
W, : [0,t] — £L(HP(D); H (D))

(for some [3) with fractional order of smoothness o’ (in time) slightly bigger
than «, where a appears in the smoothness of V. By assumptions on V' it
follows also that VV has fractional order of smoothness 1 — o’ therefore one

can define
t t
/ Wy (s)(VV(s))ds = / D, Wy(s) (D= V;) ds,
0 0

where V; := V — V(t) and DS‘J,r and D%__a/ are respectively left and right
sided fractional derivatives in Banach spaces (for more details see [28]).
The authors exploit also the regularity of this integral and prove in Proposi-
tion 7.1 that if 0 < «, 8,7 < 1 with a4+~ < 1 and 27—1—5 < 2—2a— [ then the
integral I (0‘;(F ) %VV) (which in fact does not depend on «') belongs to the
space C7([0,T7; fIS(D)) for any given function V € C1=%([0, T]; H'=#(R%))
and vector I € RY,
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3. Applications: the stochastic transport equation

Taking this into account we are able to give the following existence and

uniqueness result.

Corollary 3.2.1. Let T > 0 be fized, choose 0 < # <6 < % and 0 < 2y <
1-B8—6. Fiu FeR Z e Hy P(RY) and V e C1=((0,T); Hy " (R%))
for some q > max(Q,%l) and for some 0 < a < 1 such that a +v < 1.
Then given any initial condition uy € ﬁ1+5+27(D) there exists a unique
global mild solution u(t,z) in the Hélder space CV([0,T); H'*%(D)) for the

problem

% (t,2) = o*Au(t,2) + (Vu(t, 2), VZ())

(3.4) +(F %VV(t,a:)), te (0,T],x €D
u(0, ) = uo(), z€D

and the solution is given by

0
u(t,) = Poug + Ii(w) + I/ (F, aVV).

Proof. Set 6 := 1+448. Since 2y < 1 —8 — 8 then 2y 4+ 6 < 2 — 8 and if
one chooses a positive a such that 2v + 6 < 2 — 8 — 2a then the condition
a+v < 1is satisfied and by Proposition 7.1 in [29] we have IE?)(F, %VV) €
c([0,T); H S(D)). Finally apply a contraction principle as applied in the
proof of Theorem 2.2.3 and recover the thesis. O

With the same technique illustrated in Section 3.1 one can solve (3.4) in
the case when Z and V are substituted by stochastic fields, and then the
system is solved in the pathwise sense. See [29], Section 6 for a survey on

possible noises in place of V.
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Part 11

Cylindrical approach
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Chapter 4

The fractional Brownian

motion

This chapter is devoted to fractional Brownian motion (fBm) and related
stochastic calculus.

In Section 4.1 we define the fBm in R, R™ and more generally in a Hilbert
space. FBm is a family of Gaussian processes depending on the so-called
Hurst parameter H € (0,1) and (except for H = 1/2) they are not semi-
martingales. For this reason a stochastic calculus different from Ito-type
calculus has been developed in the last decades, leading to many different
approaches, each of them exploiting a different property of fBm.

In Section 4.2 we present Wiener integrals. This integration theory can
be performed for deterministic integrands with respect to general Gaussian
processes. In Subsection 4.2.1 we recall the theory of Wiener integrals for
real valued Gaussian processes, with the main focus on fractional Brownian
motion. This theory is classical and we refer to [9, 52] for more details.
In Subsection 4.2.2 we present the theory of Wiener integrals for Hilbert
space valued integrands with respect to real valued fBm. This results is
a generalization of the real case and appeared in some works of Duncan et
al. [22, 20, 57]. The integral as stochastic process (indexed by time ¢ € [0,7T7])
is also considered. Some result on continuity with respect to time are given
in some special cases (the answer to this question in general is still un-
known). Finally, in Subsection 4.2.4 we give a detailed proof of stochastic

Fubini theorem for fractional Brownian motion for Wiener integrals.
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4. The fractional Brownian motion

4.1 Introduction

The fractional Brownian motion was first introduced in 1940 in a Hilbert
space framework by Kolmogorov (see [41]) with the name Wiener Heliz.
Later on, Hurst and coauthors published some papers devoted to long-term
storage capacity in reservoirs (see [34, 35]), after which the parameter H was
named Hurst parameter. In 1968 Mandelbrot and Van Ness provided in [48]
a stochastic integral representation of this process in terms of a standard
Brownian motion. From this pioneering work originates the name fractional
Brownian motion and this paper was the starting point for the develop-
ment of a stochastic calculus for this process. Because of its long-memory
property, fBm has been used in various models dealing for instance with

teletraffic, finance, climate and weather derivatives.

We start with the definition of fractional Brownian motion in R. Let

(Q, F,P) be a complete probability space.

Definition 4.1.1. A fractional Brownian motion with Hurst parameter
H € (0,1) is a continuous and centered Gaussian process {b"(t),t > 0}

on (2, F,IP) with covariance function

E[bH(t)bH(s)] = (t2H + 2t — s|2H) :

N =

The special case H = 1/2 correspond to the Brownian motion. For the
fBm b := {b(t),t > 0} we have the following properties:

1. b(0) = 0.
2. b has homogeneous increments.

3. b is a Gaussian process with E[b7 ()] = 0 and E[(b"(¢))?] = t*/ for
all t > 0 and for all H € (0,1).

4. bH has continuous trajectories.

5. b is a self-similar process, i.e. Law(b (at),t > 0) = Law(a™b" (t),t >
0).

6. b admits a version with a.s. a-Holder continuous trajectories of order
a< H.

7. b is not a semimartingale for H # 1/2.
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4. The fractional Brownian motion

Let (-,+), denote the Euclidean scalar product in R™. The definition of

fBm can be generalized to R™ as follows.

Definition 4.1.2. Let M be a positive symmetric n X n matriz. A con-
tinuous, zero-mean, R™-valued Gaussian process {b™(t),t € R} is said to
be a fractional Brownian motion in R™ (or n-dimensional fBm) with Hurst
parameter H € (0,1) if E[(v, b (t)),] =0 for allv € R™ and t € R, and

(o1, b7 () (02, 7 (5))a] = (Mon, v2)ug (P2 4+ 52 — [t — 52

for allt,s € Ry and v1,vy € R™.

Example 4.1. Let M =1d. Then B is called standard fractional Brown-

ian motion in R™ since the components of the process are independent.

Example 4.2. If H = 1/2 and M = Id we recover the Brownian motion in

R"™ because the covariance is given by

E[(v1,0"2(8))n(v2,0"2(5))u] = (v1,02)u(t A 5).

In a similar way as in R™, one can give the definition of fBm in a Hilbert
space. Let H be a separable Hilbert space (possibly infinite dimensional)
with scalar product [, ]g. Let a € H and @ be a positive, symmetric and
trace-class operator on H. A Gaussian measure p on (H, B(H)) is a measure

with mean a, covariance operator () and Fourier transform given by

ii(h) = exp {i(a,h) _ %[Qh, h]H} . hed

A random variable X in H is Gaussian if its law is Gaussian. The following
definition of a Hilbert space-valued fBm is verbally given by Duncan et
al. [19].

Definition 4.1.3. Let () be a non-negative, nuclear, self-adjoint operator on
H. A continuous, zero-mean H-valued Gaussian process {X(t),t € R}
is said to be a fractional Brownian motion with Hurst parameter H € (0, 1)
associated to the covariance operator Q, if E[[h, X (t)]g] =0 for allh € H
and t € Ry and

(4.1) E[[he, X7 () lha, X7 (s)]] = [th,hg]H%(ﬁH + 82— |t — s

for allt,s € Ry and hy,he € H.
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4. The fractional Brownian motion

4.2 Wiener integral wrt real valued fBm

In this section we recall the theory of Wiener integrals for a real valued
fractional Brownian motion b := {b(¢),t > 0}.

In the first subsection we consider real valued integrands and we refer to
[9, 52]. In the second subsection we focus on Wiener integrals with respect
to real valued fBms for Hilbert space valued integrands. For more details
see the works of Duncan and coauthors [22, 20, 57]. In the third subsection
we consider the integral as a stochastic process and derive some properties
of it. In the last subsection we give the detailed proof of stochastic Fubini

theorem for fBm (with respect to Wiener integrals).

4.2.1 Wiener integrals for real valued integrands

In the following we introduce the Wiener integral of a real valued determin-
istic function ¢ with respect to a one dimensional fBm following [9], Chapter

2. For more details we refer to this book.

Let b/ := {b(t),t > 0} be a real fractional Brownian motion defined on a
probability space (€2, F,P) and denote its covariance function by
1
Ry (t,s) := B[ (t)b" (s5)] = i(tzH + s2H — |t — s2H).

The covariance function has an integral representation given by

tAs
(4.2) Ry(t,s) = Ky (t,u)Kg(s,u)du,
0

where the kernel Ky (t,s) has different expressions for H < 1/2 and H >
1/2. If H > 1/2, for t > s we have

t
Kg(t,s) = CHsl/Q—H/ (u — s)H=3/2H=1/2 4y,

where ¢y = [H(2H — 1)/8(2 — 2H,H — 1/2)]Y/? and B(a,v) = I'(a +
v)/(T()T'(y)) with I'(+) indicating the Gamma function.
If H<1/2, for t > s we have

Ku(t,s) =dy [ <t> e (1 — 5)H-1/2

S
1 t
— <H _ 2) 81/2—H/ (u— S)H—l/QuH—?)/Q du},

where dy = [2H/((1 — 2H)B(1 — 2H, H +1/2))]~1/2.
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4. The fractional Brownian motion

The Wiener integral

Let &p be the set of simple functions on [0, 7] with values in R, that is

L—1
Er = {¢:[0,T] - R such that ¢(t) = > Nillp, ) (1),
1=0
With)\iER,OZto<t1<...<tL=T}.

Every function in & can be expressed as a sum of simple functions of the
form plpg ). This representation is not unique. We define a scalar product

on &7 by

L-1 M—-1 L-1M-1
(4.3) <Z )‘i]l[O,ti)v Z :UJj]l[O,s]')> = Z Z )\i,UjRH(tiasj)-
Hr

=0 Jj= i=0 j=0

It is easy to show that it is well defined in the sense that it does not depend
on the representation. Let denote by Hr the closure of & with respect to

(-,)72y- The Wiener integral of a simple function ¢ € & of the form

L—-1
¢(t) = Z Aiﬂ[ti,t¢+1)(t)
=0

is defined as

T L—-1
(4.4) /0 B AT (1) = 3 A (0 (1i11) — b (1))
=0
and it is also sometimes denoted by b%r (¢). The norm of ¢ in Ep is given by
L—1 L—1 L—1
H¢H%—[T = ” Z )‘i]l[ti,tzurl) H'ZHT - <Z Ai]l[ti,tz#l)’ Z )\j]l[tj»tj+l)>HT
i=0 i=0 j=0
L-1L-1
- Z Z /\i)‘j<]l[07ti+1) - H[O,ti)’ l[o,th) - ]l[oatj)>HT
i=0 j=0
L—-1L-1
=3 > NN[Rultivr,ti) + Ru(tity) — Ru(titjs)
i=0 j=0

— Ry (tiy1,t5)]
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4. The fractional Brownian motion

The norm! of the stochastic integral b% (¢) in L2(%R) is

_ 2

HbT( HL2(QR Z tz—i-l _b ( ))

L—1IL—
Z Z Htivr) — 07 (t:)) (b7 (1) — b7 (1))
=0 j=0
L-1L-1
Z Aidj[ R (tiv1, tj1) + Ru(ti, ty) — R (ti tjen)+
=0 j=

— Ru(tiy1, ;)]

Thus, we obtain ||b% (¢) ||cpH§{T This means that the map ¢ —

HL2 R)
fOT ¢ db? defines an isometry between &7 and L]%(Q; R) and so one can ex-

tend bl (-) as an operator
Hr = LE(QR), ¢ b7 (9).

This extension defines the Wiener integral of ¢ with respect to b.

A characterization of Hp
Consider the linear operator K7 for all H € (0,1) given by

0Ky

5 (u,s)du

T
(K30)(s) = o(s) Knr (T, ) + / (é(w) — 6(s))

for ¢ € Er. We have

(K71po,)(s)
T
= Yoo (Kn(T8) + [ oy~ 1o () 5 2 (s 5)

T
45) = 10(o) (Ku(5)+ [ (o) - Lo @) 25 (1.5) du

T oKy
| ou (u, s) du>

~ T4 (s) (KH<T, 5 -

= Ljo.0) () Ku(t, s).

'"We denote by L3(Q;R) the space of random variables on (2, F,P) with values in R

and by Lﬁ(Q; R) the space of square-integrable random variables with values in R.
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4. The fractional Brownian motion

Therefore, it follows that

1B 30,0122 0.7 = L0, K et ) 12201

t
B / KH(t73)2 ds = RH(tvt) < 00,
0

and so for each ¢ € Er, by linearity, K2 takes values in L?([0,77]). For this

reason it is possible to introduce the following scalar product on Ep

(4.6) (¢, V)er = (K10, K1) r2((0,1))-

In this way the map
K;‘ : (ETa <'7 '>5T) - L2([07T])

is an isometry. Notice that the scalar product defined on &7 by (4.6) coin-

cides with the one introduced before by (4.3): in fact we have

(Lo,0), Ljo,s))er = (KT 10,4y, K7 10,6)) £2([0,17)

= (Kg(t, )L, Ku (s, )1jo.s)) L2(j0,1)
tAs
= Ky (t,u)Kg(s,u)du
0

= Ru(t,s) = (L), Ljo,6)) Hr-
Therefore, the closure of Er with respect to (-,-)g, coincides with Hp and
since the operator K7 is an isometry, we can extend it to H7. The isometry
property will still hold and combining it with the isometry between Hr and

LE(OQ;R) we get
T 2
/ ¢ db
0

(4.7) E

= ||K%¢||2L2([07T])

for all ¢ € Hrp.

4.2.2 Wiener integrals for Hilbert space valued integrands

The same construction of Wiener integrals can be generalised to Hilbert

space valued integrands. In this case the integral will be an element of the

Hilbert space. Here we recall it briefly, for more details see [19, 20, 57].
Let H be a separable Hilbert space with scalar product [-, -]z and b/

a real valued fBm on (€, F,P). Consider the space of simple functions
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4. The fractional Brownian motion

® :[0,7] — H and denote it by &7, that is

&r :={®:[0,T] — H such that (¢ Zaﬂl[t“twl)
WithOziEH,OZt0<t1<...<tL:T}.

Then consider the inner product on &7 given by

L-1 M-1 —1 M-
(4.8) <Z il Z ’Yjﬂ[o,sj)> = Z Z i, Vila R (ti, s5)-
i=0 =0

%T 1=0 ]:O

Let us denote by 7 the closure of & with respect to (-,-) .. The
Wiener integral of & = Z -0 azﬂ[t ) € &r with respect to b is defined

T L-1
(4.9) /0 o v = Zai (bH( i+1) — b (t ))
i=0

also denoted by b (®). The integral b (®) is a random variable which takes
values in H and the map ® +— b¥(®) can be extended to all ® € #7 as in

the real valued case because of the isometry between L2(€;R) and &

T 2
(4.10) E H / ddp|| =
0 H

This isometry is derived with similar computations as in the real valued

case: in fact both the right and the left hand side equal the quantity

L-1L-1

D0 i aglu(Ru(tiva, tysn) + Ri(ti, ty) — Ru(tist1) — Ru(tivn, 1)),
i=0 j=0

Let us introduce the linear operator K%, on &7 defined by

T
(K7 0)(6) = BOK(T.0) + [ (8(6) - 2(0) %5 (5,00

for & € & . The integral appearing on the right-hand side is a Bochner

integral. As for the real valued case, the scalar product on &7 given by

<(I), \Il>,g’T = <K}¢7K§“\II>L2([O,T];H)
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4. The fractional Brownian motion

coincides with (4.8) because K3, (oz]l[o’t)) (u) = aKpy(t,u)ljo(u) so that

<a1[0,t)7 7]1[0,5)>6”T = <K§“ (Oé]l[o,t)) 7K§“ (71[0,8))>L2([07T1;H)
= <aKH(t7 ')H[O,t)a YK (s, .)]1[075)>L2([0,T];H)

= [,V a(Ku(t, ) Lo, Ku(s,)Lo.s)) L2 (o,m)
tAs
= [aa’Y]H KH(t>u)KH(S7u) du
0

= [a77]HRH(t7 8) - <aﬂ[0,t)77]1[0,s)>=%0T'

Moreover K is an isometry between & and L?([0,77]; H). Therefore, it can
be extended to .#7. Combining it with (4.10) we get the following isometry
between L2(€;R) and L?([0,T); H)

2
= |K7® 172 0.17.00)
H

(4.11) EH/chdﬁH
0

for all ® € 7.

4.2.3 The integral as a stochastic process

In this section we introduce the integral fot ¢ dbf for t € [0,T] and consider
the process { fot ¢db™ t > 0}. In order for it to be well defined we restrict
ourself to the class of ¢ € Hy such that 1jg,)¢ € Hr for all t € [0,T7].

Definition 4.2.1. We define

St :={¢ € Hr such that 1y ¢ € Hr for all t € [0,T]}.

Definition 4.2.2. Let b be a fBm in R and ¢ € Sp. We have

T
D (10.00) = / 0.0 (5)6(5) dbT (s)
for allt € [0,T].

The integral is well defined because for each ¢ € Sy then 1y ¢ € Hr.
To show that in this way one defines an integral that is consistent with the
integral b (¢) = fg #(s) db(s), we have to introduce some other objects.
Let & and H; be the analogous spaces to & and Hp but defined for any
fixed t € [0,7]. The operator K; will be the analogous of K., defined on

H; with values in L?(0,¢). Clearly it is an isometry.
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4. The fractional Brownian motion

Proposition 4.2.3. Let ¢ € Hy. Then for all s € [0,T] we have

Lo () (K7 9)(s) = K7 (L10,59)(s)-
Proof. We have

(K70)(s) =Kt 5)os) + [ (0(r) - ¢<s>>W<r, s)dr
_KH t 8 / ¢
- ¢( )[KH(tv S) - KH(37 5)]

_ / 6(r) 8;? (r, 5)dr + 6(s) K (s, ).

rsdr

It follows that

1o (5) (57 6)(5) =T 0. / o) 2 (1 5) dr + Tyg 0 (3)(5) K 1 (5. 9)

/ Lo ()6 )82? (r, ) dr -+ D ) (5)6(5) K (5,5

= Loy (8)0() Ku (T 8) + Ljo,p) ()9 () K (T s)

T OK
= [ 1)) 2 E ) ar

T
— [ 100900 52 r5) dr + Lo (5)6(5) KT

T
= [ (W6 — 10(5)6() L ()

+ Lo, (8)p(s) K (T, 8)
=K7(Ljp9)(s),
which completes the proof. O

Remark 4.1. The integral b (¢) defined directly using K; and H; coincides
with b¥(1[07t)¢), as expected.

Proof. Let ¢ € Sp. By Proposition 4.2.3 we have
2

= [Kr(Lpo,n2)l 2200,1)

= || L0, K¢ Dl 22001
= | Kol 20,0

T
B /0 0. (5)6(s) b (s)

=E
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4. The fractional Brownian motion

This tells us that bg(]l[ojt) ¢) = bf'(¢) in LE(2, R). Notice that from the last

computations we also get that

10,0 llmr = [l DMl

which ensures that [|¢[|z;, < 00 if 1jg )¢ € Hr. In other words, the condition
¢ € St implies that the integral fot ¢ db™ is well defined as isometry between
H; and L2(Q;R) for all ¢ € [0, T]. O

In what follows, for all ¢ € Sy, we consider the integral as a process,
{bf1(¢),t € [0,T]}. We prove the existence of a continuous version of the
integral process under some suitable conditions. Similar results were proven
in [44] for a different kind of integral with respect to fractional Brownian
motion.

Lemma 4.2.4. Let 0 < t1 <ty <T. It holds
H
I KT Ly o) lp2g0,m) = [t2 — ta] -

Proof. Recall that the operator K. is linear. It holds
HK%l[h,tz)H%? = ”K’ilk‘ﬂ[o,tz) - K;1[07t1)“%2(O,T)

T
— /O K0 (8) — K10, (D)2

T
- /0 ( (K;’]l[o,tz)(t))Q + (K%H[O,tl)(t))Q

= 2K 0., (K7 Lo (1) )

and by (4.5) we get
T

T
:/O (ll[o,tz)(t)KH(tg,t))zdt—i—/ (ll[o’tl)(t)KH(tl,t))zdt

0

T
2 /0 Lio,60)(8) Ljo.0) () Ky (1, ) K gy (t2, t) dt
to t1
:/ (K (ta,t))? dt+/ (K (t,t)* dt
0 0

t1At2
. 2/ Ky (t, ) Kp(ta, t) dt.
0
Using the integral representation (4.2) of Ry (t,s) we finally have

"K;“]l[tl,tz)H%? = Ry (ta,t2) + Ry (t1,t1) — 2Ry (t1,t2)

= B+ B — (@ 8y — ) =t — 0. O
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4. The fractional Brownian motion

Proposition 4.2.5. Let H € (1/2,1) and ¢ : [0,7] — R be such that
¢ € L>*(0,T). Then ¢ € Sp and there exists a version of the integral process
{bfl(¢),t € [0, T} with a-Hélder continuous paths for any o € [0, H — 3).

Proof. First of all observe that ¢ € L*([0,7]) C L*([0,7]) C Hr (for the
last inclusion see [9], Proposition 2.1.13) and the same holds for 1}y ;¢ for

each 0 <t <T. Thus ¢ € Sp. We have
[ to 11 2
o(s)db (s) — [ ¢(s)db(s)

B[l o) vl =E || | g
_E < ’ ¢(s)de(3)>2]

ty

—E (/oT Lity 1) (5)(s) de(s)>2]

= ||K§k“(ﬂ[t1,t2)d))H%Z(O,T)'

Recall that for H > 1/2 the operator K. reduces to

T
K)o = [ 0% (5.0

with 6?—8’{(3, t)=cpy (%)H71/2 (s —t)H#=3/2, This function is always positive

when t < s < T and so using the fact that ¢ is bounded we have

oK
1[t1,t2)(8)¢(s) QSH (s, t)‘ ds

T
K3 (L, 1) 8)(0)] < /

0Ky
0s

T
< (16l / L 101 (5)

= [[@llco K7 (L1t 1)) (B)-

(s, t)' ds

By Lemma 4.2.4 we get
2 *
E [[6f1(6) = b1 (6)[*] = 1K (10, 1)) 22 0,m)
T
* 2
= [ 100l (i, )0

< QI3 T Lty 1)) 720,77

= [|glI3c Itz — 1.

Since 2H > 1, Kolmogorov’s continuity theorem implies that there exists a

version with a-Hoélder continuous paths for any « € [0, H — %) O
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4. The fractional Brownian motion

4.2.4 Stochastic Fubini theorem for fBm

Here we consider a stochastic Fubini theorem for fBm with Wiener integrals.
The result is known in the literature and some more general version of this
theorem (for divergence-type integrals) can be found in the literature for
instance in [9] or [52]. Here we give a detailed proof of an easier case, namely
the case of deterministic integrands, which holds both for H € (0,1/2) and
for H € (1/2,1).

Theorem 4.2.6. Let {b"(t),t € [0,T]} be a real fBm and let f : [0,7T] x
[0,T] — R be element of Sp. Then we have

(4.12) /Ot/osf(s,r) de(r)ds:/Ot/:f(s,r)dsde(r).

Proof. Recall that for each fBm {b (¢),t > 0} there exists a Bm {b(t),t > 0}
such that

[ e ao) = [Cacoma)
where K acts on ¢ € H, in the following way

(50)() = Kials,r)(r) + [ () = w0 2 1)

for (almost) all r € [0, s]. Using this integral representation we can rewrite
the inner integral of the LHS of (4.12) as follows

| ssnate) = [ )0 a)
0 05
= [ (Kuts.nssn)
0 S
- / (f(s,u) - f(s,r))aéff () du) db(r)
/ Ku(s,r)f(s,7) db(r)
/ / (s,u) (s, r))aaﬁ(u,r) dudb(r).

u

The LHS of (4.12) becomes

//fsrde ds//KHsr (s,7)db(r) ds

[ = o) S iy as = 4+ )
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4. The fractional Brownian motion

For the summand (A) we apply stochastic Fubini theorem for Bm and we

get
(A):/O /r Ky (s,r)f(s,r)dsdb(r).

For the summand (B) we first apply stochastic Fubini theorem for Bm and

then classical Fubini theorem. We get

/// (5,u) = f(s T))%(u,r)dudsdb(r)
- (f(s,u) — f(sy?”))aﬁ(u,fr) ds dudb(r).
[ :

On the other side, the RHS of (4.12) can be written as

(4.13) /Ot /rtf(s,r) dsdbt (r) :/OtKQ‘</tf(s, .)ds)(r) db(r),

where the integrands is

K} /f ds Kg(t,r) 1t(.s,r)ds

r

(4.14) +/Tt(/utf(s,u) ds/:f(s,r) ds)aézH(u,r) du.

Observe that » < u < t and we can write

/utf(s,u)ds—/th(s,r)ds:/:f(su dsi/ f(s,r) ds—/tf(s r)ds
t

:/u(f( u) — f(s,r))ds — fsr

Therefore (4.14) gives us

K* /f ds KH(t,r)/tf(s,r)ds

t t

(f(s,u) — f(s,r)) dsagiH (u,r)du

f(s,r) dsaaliLH(u,r) du




4. The fractional Brownian motion

where in the last summand we applied again Fubini theorem. We get
t t
K;(/ f(s,)ds) (r) =K, r)/ f(s,7)ds
t t aK
+/ / (f(s,u) = f(s,7)) dSTuH(u’T) du
t
— / f(s,r)(KH(t, r) — KH(S,T)) ds

r

:/: /ut (F(s,0) — f(s,7)) dsaé{H (u, ) du

U

+ / Ky (s,r)f(s,r)ds.

Using (4.13) we finally get that the RHS of (4.12) equals (B) + (A).
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Chapter 5

Fractional Brownian motion

in Banach spaces

In this chapter we introduce the concept of fractional Brownian motion in
a separable Banach space as a cylindrical process. The notion of cylindrical
random variable is therefore a key stone. It was introduced by Gel’fand,
see the monograph by Gel’fand and Wilenkin [24]. A similar object as a
cylindrical random variable appears under the name weak distribution in
the paper of Segal [68]. See also [38]. Moreover cylindrical measures and
cylindrical random variables were extensively considered by Schwartz and
his collaborators, see among others in [65, 66, 67].

In Section 5.1 we give a brief introduction to probability theory in Banach
spaces following the notes [59]. In particular, we focus on the notion of
cylindrical measure and cylindrical random variable. We also recall the def-
inition of the reproducing kernel Hilbert space of a covariance operator and
some of its properties.

In Section 5.2 we define the cylindrical fBm in a separable Banach space U
and we prove some of its properties. Afterwards we define a U-valued fBm
as a classical process in a Banach space. We then relate them between each
other.

Finally, in Section 5.3 we compare the object just introduced with the ex-
isting literature. We show that, in the Hilbert space case, the cylindrical
fBm we introduced is equivalent to the one that we find in the literature.
Moreover the space-time fractional noise is considered and some examples

are provided.
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5. Fractional Brownian motion in Banach spaces

5.1 Preliminaries

In this section we introduce cylindrical measures and cylindrical processes
on Banach spaces. A very important class of cylindrical processes is the
class of Gaussian processes. Related to it, the notion of reproducing kernel
Hilbert space is explained. We will follow the notes of Riedle, [59], for more

details we refer to it and to the references therein.

5.1.1 Cylindrical measures and cylindrical processes

Throughout this thesis, U indicates a separable Banach space over R with
norm || - [[y. The (topological) dual space U* of U is the collection of all
linear and continuous functionals on U. We denote by U’ the algebraic dual
of U, namely all linear functionals on U. For any v* € U* (or u* € U’) and
u € U we indicate the dual pairing u*(u) by (u,u*) = (u*, u).

The Borel o-algebra on U is denoted by B(U). Let I' be a subset of U*,
neN, uj,...,u;, €' and B € B(R"). A set of the form

Z(ul,...,uy,B):={ueU: ((u,uy),...,{(u,u,)) € B},

is called a cylindrical set. We denote by Z(U,I") the set of all cylindrical
sets in U for a given I'. It turns out this is an algebra. Let C(U,I') be
the generated o-algebra. When I' = U* the notation is Z(U) and C(U)
respectively. If U is separable then both the Borel o-algebra B(U) and the
cylindrical o-algebra C(U) coincide.

A function p: Z(U) — [0, 00] is called a cylindrical measure on Z(U) if for
each finite subset I' C U* the restriction of p to the o-algebra C(U,T") is
a measure. It is called finite if u(Z(U)) is finite and cylindrical probability
measure if p(Z(U)) = 1. A cylindrical probability measure p on Z(U) is
called weakly Gaussian if the image measure po(u*)~! is a Gaussian measure
on B(R) for all u* € U*. For weakly Gaussian cylindrical measures we have
the following result (see [76], Section VI.3.1).

Theorem 5.1.1. Let u be a weakly Gaussian cylindrical measure on C(U).

Then its characteristic function ¢, : U* — C is of the form

(51) (") = explim(u’) — 55(u"))

where m : U* — R and s : U" = R are given by

*\ * *\ *\ 2 _mu* 2.
m(u*) = /U (Yl du),  s(u”) = /U (%) a(du) — m(u)
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5. Fractional Brownian motion in Banach spaces

Conversely, if p is a cylindrical measure with characteristic function of the
form (5.1) for a linear functional m : U* — R and a quadratic form s :

U* = Ry, then u is a weakly Gaussian cylindrical measure.

For a weakly Gaussian cylindrical measure u one also defines a covariance
operator @ : U* — (U*) given by

Q)0 = [ (e o)) = mla (o)

These integrals exist because p is a Gaussian measure on the o-algebra
generated by u* and v*. In general, the covariance operator takes value in
the algebraic dual of U*, that is the map is non necessarily continuous.

In the special case of Gaussian measures, for each u* € U* the operator Qu*
is continuous and moreover can be seen as an element of U C U** (see [76],
Thm I11.2.1). In the framework of cylindrical measures this is not always the
case and therefore we introduce a stronger concept of Gaussian cylindrical

measures.

Definition 5.1.2. A centered weakly Gaussian cylindrical measure p on
Z(U) is called strongly Gaussian if the covariance operator @ : U* — (U*)’

1s U-valued.

Definition 5.1.3. A cylindrical random variable Y in U is a linear map
Y U* — LY(4R).

A cylindrical process X in U is a family {X (t),t > 0} of cylindrical random
variables in U.

A cylindrical process X is said to be adapted to a given filtration {Fi}i>o if
X(t)u* is Fi-measurable for all u* € U* and all t > 0.

Clearly every classical random variable Y in a Banach space U can be

seen as a cylindrical random variable as follows: define
X :U* = LY(R), X (u*) = (Y,u*)

for all w* € U*. The map X is a cylindrical random variable thanks to the
linearity of the dual pairing.
With the help of cylindrical random variables we can give a simple example

of cylindrical probability measure.
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5. Fractional Brownian motion in Banach spaces

Example 5.1. Let X be a cylindrical random variable. Given any n € N,
any Borel set F' € B(R") and any uj, ..., u;, € U* we define pi : Z(U) — [0, 1]
by

n({u € Us (). (uus) € F}) = P((Xuj...., Xu}) € F)
which is clearly a cylindrical probability measure.

We can introduce the characteristic function associated to a cylindrical

process and a cylindrical probability measure.

Definition 5.1.4. The characteristic function of a cylindrical probability

measure . on Z(U) is given by

o U= C, o¢uu”)= /Uexp{i(u, u*) bu(du).

The characteristic function of a cylindrical random variable X in U 1is given

by
ex U= C, o¢x(u")=Elexp{iXu"}].

The concepts of cylindrical measure and cylindrical random variable
match perfectly. Because the characteristic function of a cylindrical ran-
dom variable is positive-definite and continuous on finite subspaces, there
exists a cylindrical measure p with the same characteristic function. We call
1 the cylindrical distribution of X. Vice versa, for every cylindrical measure
wuon C(U) there exists a probability space (2,.%#,P) and a cylindrical ran-
dom variable X : U* — L%(€2;R) such that x is the cylindrical distribution
of X, see [76], V1.3.2.

In Hilbert spaces we can define a special Gaussian cylindrical measure as

follows.

Definition 5.1.5. Let H be a separable Hilbert space. The measure vy defined
by its characteristic function ¢ : H — C by

1
y(h) = exp{—C[l5}
is called standard Gaussian cylindrical measure on H .

Noteworthy is the fact that, in contrast to measures on infinite dimen-
sional spaces, there is an analogue of Bochner’s theorem for cylindrical mea-

sures:
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5. Fractional Brownian motion in Banach spaces

Theorem 5.1.6. A function ¢ : U* — C is a characteristic function of a

cylindrical measure on Z(U) if and only if

e p(0)=0
e © is positive-definite

e the restriction of ¢ to every finite dimensional subset I' C U* is con-

tinuous with respect to the norm topology.

Using the characteristic function it is easy to see that for a centered
weakly Gaussian cylindrical random variable X with covariance operator @,

for every v*,u* € U* we have
E|Xu" Xv*| = (Qu*,v™).

Remark 5.1. If X : U* — LY(}, R) is a cylindrical random variable with
E[|Xu*|?] < oo and covariance operator @ : U* — U*' then the following

are equivalent
(a) Q:U* = U™
b) X is continuous as a mapping from U* to L3(Q, R
P

Proof. (a) = (b). By Lemma 1.1 in [76], Chapter III there exists a Hilbert
space (H, [, ]x) (which is nothing but the RKHS of @, see Section 5.1.2)
and a continuous linear operator F' : U* — H such that Q = F*F. Let
(uf)nen C U* be such that [Jul|| — 0. We have

E|Xuy, [ = (Quyy, uy) = (F*Fuy, uy,)

n» -'n

= [Fuy, Fupln = | Fup |l

The continuity of F' implies now the continuity of X.
(b) = (a). Let v* € U* be arbitrary and consider a sequence (v} )peny C U*
such that [ju)|| — 0, that is such that (v,v);) — 0 for all v € V. We show

that @ is actually U**-valued because Qv* is continuous for any v*. In fact

by
we have
[(Qu¥)up| = E|Xv*, Xuj| < E|Xv*[E|Xu)|?

and the latter converges to zero by assumption (b). O

61



5. Fractional Brownian motion in Banach spaces

Remark 5.2. If X : U* — LY(%;R) is a cylindrical random variable with
E[|Xu*|?] < oo and covariance operator @ : U* — U*' then the following

are equivalent
(a) Q:U*—=U

(b) X is continuous as a mapping from U* to L3(Q;R) in the weak* topol-
ogy.

Proof. Let us consider v* € U* and a sequence (u))nen C U™ such that
v: 0. Then by [50], Corollary 2.7.10 we have that Qu* € U if and only if
(Qu*,v}) — 0 and since

(Qu*,vy) = E|[Xu" Xy | = [XU*7X”:JL§,(Q,R)7

we have the equivalence. O

5.1.2 The reproducing kernel Hilbert space

In this section we describe how to factorize a positive and symmetric oper-
ator @ : U* — U through a Hilbert space (the so-called reproducing kernel
Hilbert space). In the special case when U is a Hilbert space, then the op-
erator can be factorized trough the Hilbert space U itself by its square root
Q = QY2QY2. This construction is useful in order to characterize covari-
ance operators of Gaussian measures on B(U). For Hilbert spaces it is well
known that @ must be nuclear or equivalently Q'/2 must be Hilbert-Schmidt;
for Banach spaces an analogous result requires the notion of «-radonifying

operator which we will recall. For more details see [76], Section IIL.1.

Consider any positive symmetric operator @ : U* — U. For any v*, v* €

U™ let us introduce the following bilinear form on the range of @

[QU*a QU*]HQ = <QU*a U*>'

It is easy to see that this bilinear form [, -], is an inner product on Q(U™)

therefore the range of @) is a pre-Hilbert space.

Definition 5.1.7. Let Q be a symmetric positive operator form U* to U.
The Hilbert space obtained by the completion of Q(U*) with respect to the
inner product [, -|u, is denoted by (Hq, [, -|n,) and is called the reproducing

kernel Hilbert space associated to Q).
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5. Fractional Brownian motion in Banach spaces

The RKHS and its embedding into U have several properties that we

recall in what follows (for the proofs see [60], Section 4).

(a) the inclusion mapping from the range of @ into U is continuous with
respect to the inner product [-, -] Hg- Thus it extends to a bounded

linear operator ig from Hg to U;
b) the operator @ enjoys the decomposition ) = igi}y;
Q'Q
(c) the range of if, is dense in Hg;
d) the inclusion mapping 7¢ is injective;
Q
(e) if U is separable then Hg is separable.

As already mentioned, we are looking for an analogous of the concept of
Hilbert-Schmidt operators, and this is actually very much related to the
question of the characterization of covariance operators for Gaussian mea-
sures.

Recall that a classical result by E. Mourier (see [76], Theorem IV.2.4) about
Gaussian measures on Hilbert spaces tells us that Q : H — H is the covari-
ance operator of a Gaussian measure on B(H) if and only if it is positive,
symmetric and nuclear. In this case one can decompose () through its square
root and the condition “Q is nuclear” is then equivalent to “Q/2 is Hilbert-
Schmidt”.

The analogous result for Banach spaces is still an open problem. For separa-
ble Banach spaces there are some results (see Theorem 5.1.9) which require

the notion of y-radonifying operators.

Definition 5.1.8. Let H be a separable Hilbert space and U a separable
Banach space. Consider the standard Gaussian cylindrical measure v on
H as given in Definition 5.1.5. A linear bounded operator F' € L(H,U) is
called ~v-radonifying if the cylindrical measure v o iél extends to a Radon

measure on B(U).

The proof of the following theorem can be found in [59], Theorem 1.2.26
and in [77], Theorem 5.15. and Theorem 5.16.

Theorem 5.1.9. Let v be the standard Gaussian measure on a separable
Hilbert space H with orthonormal basis (e )ren and let (Gi)ken be a sequence
of independent real normal random variables. For an operator F' € L(H,U)

the following are equivalent:
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5. Fractional Brownian motion in Banach spaces

(a) the operator F' is y-radonifying;

(b) the operator FF* : U* — U is the covariance operator of a Gaussian

measure on B(U);
(c) the series Y p- | GpFey converges a.s. in U;
(d) the series > po GpFey converges in LE(;U) for some p € [1,00);
(e) the series y o | GpFey converges in LE(Q;U) for all p € [1,00).

In this situation we have for every p € [1,00):

[e.e]
Z GLFey
k=1

The following theorem was proved by It6 and Nisio in [39]. The proof
can be also found in [76], Theorem V.2.4.

p

/ lulPp(du) = E
U

Theorem 5.1.10 (It6, Nisio). Let (X,)nen be a sequence of independent,
symmetric U-valued random variables. Then for S, == X1+ ...+ X, and a

U -valued random variable S the following are equivalent:

(a) lim, o0 Sp = S P-a.s.;

(b) lim,, o0 Sy, = S in probability;

(¢) limy 00 (S, u*) = (S, u*) P-a.s. for all u* € U*;

(d) limp, 00 (Sp, u™) = (S,u*) in probability for all uw* € U*.
In this situation, if S € Ly(Q;U) then one also has

(e) limy, o0 Sp = S in LL (4 U).

The next result gives a straightforward argument of the fact that the
class of y-radonifying operators coincide with the one of Hilbert-Schmidt
operators when the underlying space is a Hilbert space. For the proof see
[59], Corollary 1.2.27.

Corollary 5.1.11. If H and U are separable Hilbert spaces then for F &
L(H,U) the following are equivalent:

(a) F is y-radonifying;

(b) F is Hilbert-Schmidt.
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5. Fractional Brownian motion in Banach spaces

5.2 The cylindrical fractional Brownian motion in

Banach spaces

In this section we introduce the notion of cylindrical fractional Brownian
motion in Banach spaces. The idea is similar to the one adopted by Ap-
plebaum and Riedle in [2] to define cylindrical Lévy processes in Banach
spaces.

The word cylindrical may be misleading. In the literature, it is often
referred to infinite sums in a Hilbert space H which do not converge in
the space H. Let us explain it with a well known example: consider the
cylindrical Wiener process introduced by Da Prato and Zabczyk in [16].

Here the process is of the form
W(t) =  Anenbn(t),
n=1

where (e, )nen is an orthonormal basis of H, (A, )nen is a sequence of positive
coefficients and (b, )en a sequence of independent real valued Brownian mo-
tions. It turns out that this series in general does not converge in L3(Q; H).
Some additional conditions are necessary for the sum to converge, that is,
the sequence (\,)peny must be summable. In other words, the covariance
operator () associated to W must be nuclear.

Problems arise as soon as one wishes to define (in this way) a process W
that generalizes the n-dimensional Bm which has independent components.
In this case, one has to require () = Id and such operator is not nuclear. To
overcome the problem, one formally considers the same series but converg-
ing in a bigger Hilbert space (which is not unique and does not even need
to be specified).

For this reason, we introduce the cylindrical fractional Brownian motion
in a different way, in order to avoid the introduction of the bigger Hilbert
space. Our approach does not need any Hilbert structure and therefore
we consider Banach spaces. When the underlying space is a Hilbert space
and the covariance operator is nuclear then the process coincides with the

classical one.

5.2.1 The cylindrical fractional Brownian motion

We introduce the cylindrical fBm in U using the definition of n-dimensional

fBm. In particular we ask that each n-dimensional projection is a fBm in
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5. Fractional Brownian motion in Banach spaces

R™.

Definition 5.2.1. A cylindrical process BY = {BH(t),t > 0} in U is a

cylindrical fractional Brownian motion with Hurst parameter H € (0,1) if

(i) for any ui,...,u; € U* and n € N, the R"-valued stochastic process
{(B"(t)ui, ..., B (t)uy,),t > 0}

1s an n-dimensional fractional Brownian motion with Hurst parameter
H e (0,1);

(i3) the covariance operator of B (1) is U-valued.

We observe that in case H = % then we immediately recover the cylin-
drical Wiener process as defined in [51] and [59].
This definition involves all possible n-dimensional projections of the pro-
cess, but since we are dealing with Gaussian processes the condition can be

simplified using only 2-dimensional projections.

Lemma 5.2.2. For a cylindrical process B = {BH (t),t > 0} the following

are equivalent:

(a) B is a cylindrical fractional Brownian motion with Hurst parameter
H e (0,1);

(b) BY satisfies:

(i) for any ui,ul € U* the vector (B (t)us, BH (t)u}) is a 2-dimen-
sional fBm according to Definition 4.1.2;

(ii) the covariance operator of B (1) is U-valued.

Proof. (a) = (b). It is clear by definition.

(b) = (a). We just need to check that for any n € N and for any uj,...,u} €
U* the process {Y (t),t > 0} given by Y (t) = (B (t)uj,...,BH (t)u}) is an
n-dimensional fBm according to Definition 4.1.2. It is a Gaussian process be-
cause for any 8 € R" the real valued process (8, Y (t))n, = > iy BiBH (t)u; =

BH(#)S"" | Biuf is a Gaussian process. Moreover for any v € R” then

n

E[(v, Y ()] = E[}_ oY) = 3 vV E; ()] = 0.

j=1
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Let now M = (m;;);';—; be the n-dimensional matrix defined by
mi; = E[B" (1)u; B" (1)u]]

for each 7,5 = 1,...,n. By (i) we have E[B" (t)u; BY (s)u}] = mi 5t +

s — |t — s|*1). Then for any vy, v2 € R" we get

El(01, Y ()2, Y ()] = B | 3 (o B 0)ur) 32 (o8B (5)u5)

’i:1 =

=E szl *BH( Y 3
2 1 j=1

=33 BB ()0 B (51

i=1 j=1
NN 0,0, L
—;;”1 [2) mw§(t2H+82H_ \t—s‘QH)

1
= (le,vz)ni(tw + 2 |t — s2H)
which concludes the proof. O

The following result provides a representation of the cylindrical fractional

Brownian motion in terms of a series.

Theorem 5.2.3. For a cylindrical process BY .= (B (t),t > 0) the follow-

ing are equivalent:

(a) BY is a cylindrical fractional Brownian motion with Hurst parameter
€(0,1);

(b) there exist a Hilbert space H with an orthonormal basis (ex)ken, F €
L(H,U) and a sequence of independent real valued fractional Brownian

motions (bf)keN such that

00
=D _(Fey,u
k=1

in LE(Q;R) for all u* € U* and all t > 0.
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Proof. (a) = (b). Since the cylindrical distribution of B (1) is strongly
Gaussian the covariance operator () associated to it is a positive and sym-
metric operator ) : U* — U. Let Hg be its RKHS with inclusion mapping
i@ : Hg — U. Recall that i, : U* — Hg and Q = igig. The range of i,
is dense in Hg and Hg is separable, so there exists an orthonormal basis
(ex)ken of Hg such that (ex)ren C range(iy)).

Choose wy, € U* such that ijyw; = ex and define b () :== BH()w} for all
k € N. Clearly {bf(t),t > 0} is a real valued fractional Brownian motion
for each k£ € N. We obtain

n 2 n 2
E Y liger, u" )by (t) — BY (tyu*| =E | B (1) (Z@Qek,u*m;—u*)]
k=1 k=1
=E[BH (t)v*]?

having called for simplicity v* := Y"}'_, (igey, u*)w; — u*. By construction
v* € U*. Recall that for the Gaussian cylindrical random variable B (1)
with covariance @ we have E[BY(1)v*]?> = (Qu*,v*). Moreover, the frac-
tional Brownian motion is self-similar, meaning that for each a € R, B (at)

and a? B (t) are equal in law. It follows
E[BR (t)v*]*> = E[BY(1)(t"v*)]? = t*E[B7(1)v*]?

= QU ) = M iginu", o) = 7 i

n 2
= i ( (igek, u™)wy, — u*)
k=1 Hg
n 2
= 21 Z(iQek,u*ﬂ*QwZ—i*Qu*
k=1 Hg
n 2
= 21 Z[ek,i’éu*]HQek—iZ?u*
k=1 Hg

— 0 for n — oo.

It is left to prove that the fractional Brownian motions (ka Jken are in-

dependent. For any j,k € {1,...,n} consider the 2-dimensional vector
mi; Mk

bﬁ(t) = (bf,bf). Let Mj; = P

denote its covariance ma-
Mp; Mgk

trix according to Definition 4.1.2. Then for each vy,vy € R? we have by

definition

E[(v1, b3, (1))2(v2, b3 (5))2] = (Mg v1, vz)zé(tm + s — |t — s*)
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and choosing v; = (1,0) and vo = (0,1) we get

1
E[bf](t)ka(s)] — mj7k§(t2H L 2H it — s|2H),

On the other hand, we have

Efby (1) (1)] = E[B" (1)w; BY (Dwi] = (Qu, w})

= [le] ) Zka] [ejv ek] 5j,k

and for ¢t = s = 2 this implies m;;, = J;; and so
E[bY (8)bf (s)] = 6j (tzH + 52— |t — ).

(b) = (a). Let n € Nand uj, ..., u;, € U* be arbitrarily chosen and consider
the n-dimensional stochastic process Y := {Y(¢),¢ > 0} defined by

Y(t): = (BE(t, ..., BE(t)u)

n

o0 o0
= (Z(Fek,ul b (t ,Z Fey,ul)b (t )
k=1

k=1

for all £ > 0. We now check that the stochastic process Y is an n-dimensional
fractional Brownian motion according to Definition 4.1.2. It is a Gaus-
sian process because for any f = (f1,...,0,) € R™ the real valued process
(BY ()=S0, BiBE(Yup = BE(:) S| Biuf is clearly Gaussian. More-
over E[(v,Y (t))n] =0 for all v € R” and all ¢ > 0.

Let M = (m; ;) be the n-dimensional covariance matrix of the process Y,
that is m; ; := E[Y;(1)Y;(1)]. By definition of Y we get

mm:EZ Fep,u;) bH ZF@Z, (1)]
k=1 =1
=SS (Feg,uf) (Fen, ul VI (b (1)
k=1 1=1

tnqg

(Feg,u; ) (Feg,uj).

i
I

Using this expression, let us compute for each vi,vo € R" the following

expectation

E[(01,Y (£))n (v, Y (8))n] = E (Zv%(t)) v§Y;(s)
j=1

=1
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=E (Zlvl)z Feyp, le ) Zn:v liFel, ]bH
¢ = =1

—E szg%gﬁ <Z<Fek,u;<>b£ (t)) (Z<Fel,u;f>blH <s>>
k=1 =1

| i=1 j=1
=33 o DTS (Fer u)(Fep, u)E [bf (0] (5)]
i=1 j=1 k=1 1=1
and since the bf! are independent fBms, we get E [bf (£)bf (s)] = 65,5 (127 +

2H |t _ S|2H)

s and then obtain

E(v1, Y(£))n(v2, Y (s))n]

= Y Y S > (Few,ui){Fer,uf) 05 (0% + s — |t — 1)

i=1 j—l k=1 1=1

_ (4),.(4) 2H 2H 2H

— ZE 1)1 s mw2t + 57— |t —s]*)
=1 j=1

1
= (Muy, vg)n§(t2H + s2H |t — s2H).

It is left to prove that the covariance operator R : U* — U*' of the cylindrical
measure j of BH(1) is in fact U-valued. The measure p is centered so we
have 9, (u*) = exp{—(Ru*)u*}. On the other hand we have

Yu(u*) = Elexp{iB"(1)u"}]

o0

= Elexp{i Z(Fek, w)bi (1)}
k=1

= lim Elexp{i Z(Fem u*)bi (1)}

m—00
k=1

m

= nlgnooE[H exp{i(Fe, U*>ka(1)}]

k=1

—  lim Hexp{——<Fek, )%}

m—r00

m

1
= lim exp{fi Z(Fek, u*)?}

m—00
k=1

o0

= exp{—y > (Feru')?}

k=1

1 k%
— exp{— 3 IF ),
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which implies
*\ %k 1 * %2 1 * %k * %
(Ru™)u :§HF U HHzi[F u*, F*u* g

If one now defines ) := FF* then Q : U* — U and by the previous compu-
tations it turns out that 2(Ru*)u* = (Qu*,u*) for each u* € U*. Thus the

proof is complete. O

Remark 5.3. For a cylindrical fBm BY in U with covariance operator
Q := FF* with F linear and continuous (as appearing in condition (b) of
Theorem 5.2.3) we have

1
E[BY (t)u’ BY (s)o"] = (Qu,v*) (P + 52 — |t — sH)
for all u*,v* € U* and all s,t > 0.

Proof. For u*,v* € U* and s,t > 0 we have
o0 o
BB (0B (50| = B | S {Fewa bl (03 (Fero
k= =1

(Fep,u"){Fer, v )E[bg ()b (s)]

plqg
NE

£
Il
—
o~
Il
—

1
[Bk,F*U*][Bl,F*U*]5k7l§(t2H + S2H o |t o 8|2H)

o
WE

=
Il
i
-
Il

1

1
[ek,F*u*][ek,F*v*]ﬁ(tQH + 82H o ‘t _ S‘ZH)

e
Il
—_

1
[ek,F* *]ek7F*v*]§(t2H + 82H . |t o 8|2H)

Mz

=

i

1

1
— [F*U* F*’U*]i(tZH —|—82H . |t . S|2H)

= (Qu*, 0)2(t2H+82H |t —S’QH). O

5.2.2 The U-valued fractional Brownian motion

In this section we focus on the special case of U-valued processes, namely
proper processes in Banach spaces. We show their relation to cylindrical
processes.

The following definition is similar to the one given by Duncan et al. in

[19] (see also Definition 4.1.3 in Section 4.1) but here it is given in the wider
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5. Fractional Brownian motion in Banach spaces

framework of Banach spaces. It also can be seen as the direct generalization
of Definition 4.1.2.

Definition 5.2.4. A U-valued stochastic process BH = {BH(t),t > 0} is
called a fractional Brownian motion in U if there exists a Gaussian measure
on B(U) with covariance operator * Q : U* — U such that

(i) (B2 (t),u*) =0 for all u* € U* and all t > 0;

(ii) the covariance function is given by

(5.2) E[B(t),u")(B"(s),0")] = <QU*7U*>%(t2H + 87—t — s|*M)

for all u*,v* € U* and all s,t > 0.

Observe that the definition already requires that the cylindrical distri-
bution of B (1) is strongly Gaussian or equivalently the weak™ continuity
of B (1) between U* and L(%;R) (see Remark 5.2).

The definition we just stated includes all the known cases in literature,
that is the case when U is a finite-dimensional space or a Hilbert space and

includes also the Banach space case:

Example 5.2. Let U = R™. Then it is known by Mourier Theorem that
there exists a centered Gaussian measure on B(R"™) with covariance operator

Q : R™ — R™ if and only if Q = M is a positive and symmetric matrix.

Example 5.3. Let U = H be a Hilbert space. Then it is known that
there exists a centered Gaussian measure on B(H ) with covariance operator

Q : H — H if and only if @ is a positive, symmetric and nuclear operator.

Example 5.4. Let U be a separable Banach space. Then by Theorem 5.1.9
there exists a centered Gaussian measure on B(U) with covariance operator
Q : U* — U if and only if @) can be factorized through a Hilbert space H
by Q@ = FF* where F € L(H,U) is a y-radonifying operator.

The next result is the analogous of Theorem 5.2.3 but for U-valued pro-

cesses.

Theorem 5.2.5. For a U-valued process BY = {BY(t),t > 0} the following

are equivalent:

'For a characterization of covariance operators in Banach spaces see Theorem 5.1.9.
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5. Fractional Brownian motion in Banach spaces

(a) B is a fBm in U;

(b) there exist a Hilbert space H with an orthonormal basis (er)ken, a
~-radonifying operator F € L(H,U) and independent R-valued fBms
(b)) en such that

BY(t) = Fep by (1)
k=1
in LE(Q; U).

Proof. (a) = (b). Let (ex)ren C Hg be an orthonormal basis of Hg and
define a sequence (b)ien as b (t) := (BH(t),u}) where (u})ren C U* is
arbitrarily chosen such that i¢yuy = ey, for all k € N. Then by Theorem 5.2.3
we have -
(B (t),u*) = (iqer, u")bi! (1)

k=1
in LZ(Q;R) for all u* € U*.
Let B (t) := 3"1_ igerbH (t) so last equation reads

n

(5:3)  (BT(t),u") = lim 3 iges, uw)bf! (1) = lmn (B (1), u")
k=1

in L2(Q;R) for all u* € U*, and so (5.3) holds also in probability for all
u* € U*. Moreover B (t) € L3(Q;U) by Hoffmann-Jgrgensen Theorem
(see [30]). By It6-Nisio Theorem (see Theorem 5.1.10) we have

> iger bl (t) = lim BH(t) = BH (1)
k=1

in L]%(Q; U). Moreover, Theorem 5.1.9 verifies 122 as y-radonifying.

(b) = (a). Our aim is to show that B¥ is a fBm according to Definition 5.2.4.
By assumption the operator F' € L£(H,U) is y-radonifying and moreover
(ka )ken is a sequence of independent real valued Gaussian random variables.
Theorem 5.1.9, part (c) implies that Y72 | Fey, b (t) converges a.s. in U for
every t > 0. Therefore, the limit defines a U-valued stochastic process
which we denote by {B(t),t > 0}. For this process BY we check that the
conditions in Definition 5.2.4 are satisfied.

(i) The process B is a zero-mean Gaussian process because it is limit of a
sequence of zero-mean Gaussian processes;

(ii)) Let Q := FF* : U* — U. By Theorem 5.1.9, part (b), @ is the
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5. Fractional Brownian motion in Banach spaces

covariance operator of a Gaussian measure on B(U). In what follows it is
shown that in fact this operator satisfies (5.2) of Definition 5.2.4 for BH.
Let w*,v* € U*. For each t, s > 0 we have

E[(B" (t), u")(B" (s),v") EZF%m; Equ ), 0")]

= B0 (1) (Fe,u) S b (5)(Fej,v)]
k=1 j=1
(5.4) =Y (Fey,u)(Fej, v*)E[by (£)b] (s)]
k=1 j=1

o0
1
Z(Fek,u*><F6k,v*>§(t2H + 20 |t — s|?H)

—_

k
1
= (QuA o5 (B + 52 |1 — of2H), m

In the following proposition we show that the notion of U-valued fBm

matches with the notion of cylindrical fBm when the latter is induced by a

classical process.

Proposition 5.2.6. Let X = {X(t),t > 0} be a cylindrical fBm which is
induced by a U-valued process X = {X(t),t > 0}, i.e.,

(5.5) X (b = (X(t),u")
for all u* € U*. Then X is a U-valued fBm.
Vice versa, if X is a U-valued fBm then X defined by (5.5) is a cylindrical

fBm. Moreover, the covariance operators coincide.

Proof. By hypothesis there exists X such that X (t)u* = (X(t),u*) for all
u* € U*. Then the vector

(X (), ul), ... (X (), ur)) = (X(D)uf, ..., X (t)u})

r ' n

is by Definition 5.2.1 an n-dimensional fBm for all n € N and for all
uf,...,ut € U* and so {X(t),t < 0} is a zero-mean Gaussian process.

Moreover by the same computations as in (5.4) we have for any u*,v* € U*
E[(X (1), u"){X(s),0")] = E[X ()u"X (s)v"]

= (Quv);

2(t2H + 2H |t — s|2H).
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5. Fractional Brownian motion in Banach spaces

On the other hand, suppose that X is a U-valued fBm. By Theorem 5.2.5
we have that there exist a Hilbert space H with a basis (ey), a y-radonifying
operator ' € L(H,U) and a sequence of real valued fBms (b/) such that

[ee]
X(t) =) Fepbfl(t)
k=1
and so we also have the representation

0o 00
Xty = (X(1),u) = (O Fepby! (t),u*) =Y (Fer, u")b (1)
k=1 k=1
which ensures that X is a cylindrical fBm using Theorem 5.2.3.
Finally, since the covariance operator is defined in both cases as Q = FF™*,
they coincide for X and X. O

Remark 5.4. A cylindrical fBm with representation Y o (Fey, -)bi (t) for
some F' € L(H,U) is a classical fBm in U if and only if F' is v-radonifying.

5.3 Comparison with literature and examples

In Section 5.3.1 we compare the cylindrical fractional Brownian motion in-
troduced in the thesis with the existing literature. A first special case that
we easily recover is the Hilbert space case which was considered for instance
in [16, 19, 49, 71]. There are several definitions of fBm in a Hilbert space:
we show how they all coincide and how they can be obtained from our defi-
nition.

The second subsection is devoted to the space-time noise which is fractional
in time and in space. We show that this process is nothing but a cylindri-
cal fractional Brownian motion in a suitable (function) space. This kind of
process is used for instance in the framework of SPDEs driven by fractional
noises.

Finally, in Section 5.3.3 we give two examples of fBms in L' and L?. Even
in the Hilbert case, the example we provide is a more general noise than the

one considered in the literature.

5.3.1 Fractional Brownian motion in Hilbert spaces

Let V' be a separable Hilbert space (possibly infinite dimensional) with scalar

product [-,-]y. Recall that (see Corollary 5.1.11) in Hilbert spaces an oper-
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5. Fractional Brownian motion in Banach spaces

ator F' € L(H,U) is y-radonifying if and only if F' is Hilbert-Schmidt if and
only if F'/F* is nuclear.

A possible definition of fBm in Hilbert space is given in Definition 4.1.3.

Remark 5.5. A fractional Brownian motion { X% (t),¢ € R} according to
Definition 4.1.3 is also a V-valued fractional Brownian motion according to
Definition 5.2.4.

An interesting case arises when the components are independent. This
would be a generalization of an finite dimensional standard fBm and it
corresponds to the case ) = Id. More generally, it is interesting to deal
with non-nuclear covariance operators. For this reason let us mention the

following fact.

Fact 5.1. Consider the formal series

(5.6) XH(t) ="V nenBl (1)
n=1

where (81),cn are real independent fractional Brownian motions, (A,)nen
is a bounded sequence of non-negative numbers and (e, ),en is an orthonor-
mal basis in V. In this case the covariance operator () is given by Qe, =
An€n,n € N.

If "7, A\ = oo (that is if @ is not nuclear) then the series (5.6) does not
converge in L(£2; V). Nevertheless, one can always consider a Hilbert space
V1 such that V' C V4 and such that the inclusion is Hilbert-Schmidt. Doing

so, we obtain a series which converges in L3(Q; V7).

Several authors, see for instance [16, 49, 71], use (5.6) as a definition for
both the V-valued fBm and the cylindrical fBm, depending on the properties
of (). We recall here this definition.

Definition A. Let @) be a self-adjoint positive operator on V. Moreover let
@ be nuclear. It is known that in this case, ) admits a sequence (A,)nen
of eigenvalues )\, > 0 for all n and A\, | 0 and 22021 An < 0o. The corre-
sponding eigenvectors (e, )nen form an orthonormal basis in V.

Then we define the V -valued fractional Brownian motion with covariance @)
by

(5.7) XE(1) =Y Ve (1)
n=1
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5. Fractional Brownian motion in Banach spaces

where (81),cn is a sequence of real independent fractional Brownian mo-
tions. The series converges in L3(Q; V) if Q is nuclear. (In this case we
recover Definition 4.1.3)

If we want to consider a non-nuclear covariance operator @, then (5.7) de-
fines a cylindrical fractional Brownian motion in V to be interpreted as

explained in Fact 5.1.

Next we check that in fact our Definition 5.2.4 (and Definition 5.2.1) is a
more general notion than the analogous object introduced in the literature,
even in the case of Hilbert spaces. We refer to Section 5.3.3 for an example
of Gaussian process (a cylindrical fBm) which has not been considered in

the classical sense of Da Prato and Zabczyk.

Proposition 5.3.1. Let Xg be a (cylindrical) fBm according to Definition
A. Then

(a) if Q is nuclear then Xg 1s a V-valued fBm according to Definition
5.2.4;

(b) if Q is not nuclear then Xg 1s a Vi-valued fBm according to Definition
5.2.4 where Vi is chosen according to Fact 5.1;

(c) if Q is not nuclear then Xg is a cylindrical fBm in V according to
Definition 5.2.1.

Proof. (a) We want to use Theorem 5.2.5. We chose U = H =V and b =
,6’,? for all £ € N. We define a linear and continuous operator F' : V. — V by
Fep = \/Areg. It turns out that ' = Q1/2 is Hilbert-Schmidt because @ is

nuclear. Therefore the series
o oo
BR(t) =) Ferb! (1) = > vV werBi (1)
k=1 k=1

converges in L2(€; V') by Theorem 5.2.5.

(b) Consider @ : V. — V and define the separable Hilbert space Vj :=
Q'Y2(V) with (gi)ren orthonormal basis of Vy. Then let Vi be a larger
Hilbert space such that the inclusion J : Vj — Vj is Hilbert-Schmidt.
Clearly V7 is not unique. A possible construction of the space Vi is the
following: since (gx)reny C Vb is an orthonormal basis of Vj, every v € Vj
admits a representation v = Y 7 | axgr and |[v]|3 = Y32, aF. Set Vi =V}
endowed with the norm || - ||; given by |Jv[|? = Y32, k%ai for any v € V.
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5. Fractional Brownian motion in Banach spaces

The embedding operator J : Vy — V) is simply the identity and is Hilbert-
Schmids since Y32 | Jgellf = Yopey 1z < 0©.
By Fact 5.1 we know that

BY(t) =Y JaBi (1)
k=1

is a Vj-valued fBm according to Definition A. If we set U =U* =V, H =
Vo, F* = J* and so F' = J, e, = g and ka = ﬁf for all £ € N, then
Theorem 5.2.5, part (b) is satisfied.

(¢) Consider as in (a) the space U = H = V and the operator F = Q'/? ¢
L(H). Then define the cylindrical process { B (t),t > 0} in V by

[e.9]

BH(t)v = Z[F€j7 U]VﬁjH(t)-

j=1

The process B is well defined as the series on the right-hand side converges
in LZ(Q;R):

m—+n m—+n
E || [FejolvBf ()| | =D [Fej,oRE (18] ()]
j=m Jj=m
m+n

=21y " [Fej, ol
j=m

o o0
<t*f Z[Fej,v]%/ S Z[ej,Fv]%/,
i=m

Jj=m

which tents to 0 as m — oo because Y 3, [ej, Fv]f, = || Fvlf§, < oo.
By Theorem 5.2.3 we have that B is a cylindrical fBm in V with covariance
operator ().
(c) alternative proof.
Consider the following cylindrical process Y = {Y (¢),t > 0} in V, defined
for any v € V as
oo
(5.8) Y (tyo =Y lig;, vlv B (t)

J=1

where (g;)jen C Vo is an orthonormal basis of Vj := QY%(V). The space Vj
is endowed with the scalar product [hi, ha]v; : [Q‘l/th, Q_I/th]v and 7 :
Vo <= V is the natural embedding operator. By the Corollary of Proposition

78



5. Fractional Brownian motion in Banach spaces

1.6, Ch III in [76] part (a) and (b) we get that Vp is dense in V' and that
17" = () because in this situation the reproducing kernel Hilbert space Hg
is V. The process Y is well defined as the series on the right-hand side of
(5.8) converges in LZ(Q;R):

2

m+n m+n
E (1> ligjolvBi ()| | =D ligs, vV E [|18] (t)]]
j=m j=m
m-+n

=t*1 Z [igj7 U]%/
j=m

oo 0
St2H Z [Zgjv 'U]%/ = t2H Z [9]7 i*v]%/07

j=m j=m
which tents to 0 as m — oo because » 22, [g;, *vly, = lli*vll§, < oo,
By Theorem 5.2.3 we have that {Y'(¢),t > 0} is a cylindrical fBm in V with
covariance operator Q. O

Remark 5.6. The Hilbert space used in (a) to decompose the operator is the
space V itself and it is not the RKHS. In fact the RKHS would be the closure
of QY/2(V) with respect to the bilinear form [Q'/?vy, Q1/2v2]HQ = [v1, v2]v
for all vi,v92 € V. Since Qe = Aiex, it turns out that the RKHS Hp is V

endowed with the norm

oliZ, = 1Q2u]? = ST1Q v enf2 = Y o N et = 3 Mifv, enl?
k=1 k=1 k=1

The fact that the Hilbert space used in the proof is not the RKHS is not a
problem. In fact by Theorem 5.2.5 it just needs to be a Hilbert space with a
linear and continuous operator from it to the Banach space that decomposes
Q. In this case the operator is exactly the square root of (). The same holds
for the first proof of (c).

5.3.2 The space-time fractional noise

The aim of this section is to show the relation between the cylindrical fBm
and a space-time field which would correspond to a fractional version of the
white noise. Since fBm is not a martingale (except for H = 1/2), we cannot
expect to have a martingale measure as in the Brownian case. Therefore, in
order to relate the fractional field {B(t,z),t > 0,2 € D} and a fractional
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Brownian motion (living in a function space) we proceed here inspired by
Gubinelli et al. who introduced in [27] a fractional Brownian noise.

Let D C R? be a bounded and smooth domain and consider the Hilbert
space L?(D) with the usual scalar product denoted by (-, -). Suppose we are
given a sequence of independent R-valued fBm (85 )geny with Hurst index
H € (0,1), an orthonormal system (eg)gen of L?(D) and a sequence of real
numbers (gx)ren such that supycy |gr| < 0o. Then we can always construct

a cylindrical fBm on L?(D) as follows.

Example 5.5. Let us define an operator F on L?(D) by Fe := qiex.
Clearly F € L(L*(D)). The cylindrical process

b (t) : L*(D) — LA(;R)

defined for all h € L?(D) and all t > 0 by

b ()= (Fer, )5l (t)
k=1

is a cylindrical fBm in L?(D). To see it, simply apply Theorem 5.2.3.

Depending on the properties of F', it might turn out that the cylindrical

process is a proper process on L?(D), as shown in the next example.

Example 5.6. If F' is Hilbert-Schmidt, that is if Y 3%, g7 < oo then b is
induced by a honest fBm b in L?(D) which has the form

Bt = S FenBl ().
k=1

To see it apply Theorem 5.2.5 and Proposition 5.2.6.

Denote by || - || the norm in L?(D). Let P; be the (heat) semigroup on
L?(D) generated by (the Friedrich extension of) some second order differen-
tial operator A with Dirichlet boundary conditions. The simplest example
is the Dirichlet Laplacian —Ap on D. Next we introduce a family of Hilbert

spaces H,, a € R defined by means of A and of its fractional powers:

- if @« > 0 let H, := D(A®) with scalar product (x,y)s := (A%, A%)
and norm ||z||o = ||A%||. Since A~ is continuous it follows that the
norm || - |lo is equivalent to the graph norm of A% If a = 0, then
Hy = L*(D) and A° = 1d;
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- if a < 0 let H, be the completion of L?(D) with respect to the norm
|zl = ||A%x||. Denote by (-,-)s the scalar product. It follows that
H, is a larger space than L?(D).

The Laplacian acts in a nice way on these spaces, i.e. for any v < 0 and
for any v € R
A" Hry+l/ — H’y

isomorphically.

With the help of these spaces and of the Dirichlet Laplacian we can
recover the fractional noise considered by Gubinelli et al. [27] and Hinz and
Zahle [29] starting from the noise defined in the two previous examples.
To this aim, we report the definition of fractional noise given in terms of

Gaussian series that can be found in [29], Section 6 or [27], Section 4.1:

Definition 5.3.2. Let (Bk)ken be a sequence of independent, real valued
fractional Brownian motions with Hurst parameter 0 < H < 1, {\i,k €
N} = o(A) and let (qi)ren be a sequence of positive numbers such that
Sy @AM < oo for some p € (0,1) given. Then define

(5.9) bRt 2) = quen(x) B (1),
k=1

which is shown to be for almost all w € Q an element of C*([0,T]; H—?(D))
forO<p<f<land0<a< H. A number K € (0,1) slightly bigger than

1 — p can be called Hurst parameter in space.

For more details about the construction of b-K

and its regularity in
time and space (fBm behaviour) we refer to the paper of Tindel Tudor and

Viens [72], Section 3.2.1.

Fact 5.2. Hinz and Zihle show that for any fixed ¢ € [0, T then b5 (¢, ) is
an element of H—# P-a.s. Gubinelli et al. show that it belongs to the space

H_g/a-

Remark 5.7. If we have a fBm with Hurst parameter K, then the fBm
is 0-Hoélder continuous in space for all 6 < K. In this definition, the noise
bHE(t,.) is the derivative of a fBm with Hurst parameter K. In fact since
it belongs to H_g/y, its regularity is of order — = (1~ ) —1 = § — 1 where
the parameter 6 < K is chosen § = 1 — . This is exactly the regularity of

the derivative of a function which is (1 — 3)-Hélder continuous.
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We can recover the result stated in Fact 5.2 by our theory: we consider
the noise b introduced in Example 5.5 together with the additional con-
dition Y 7, qi)\lzﬁ < 00. Recall that F' is Hilbert-Schmidt if and only if
ppaty q,% < oo and this is not necessarily satisfied. Therefore, we do not
expect a classical process in L?(D). On the other hand, we can embed the
space L?(D) in H_ /2 and consider the process in this bigger space: in this
way we obtain a classical process in H_g/; (see Theorem 5.3.3). Moreover,
this process induces the process b in L?(D) as shown in Corollary 5.3.4.
Let us consider the sequence (eg)ren of eigenfunctions of A such that they
form an orthonormal basis in Hy. Let (A;)ren be the corresponding eigen-
values. For all k € N define gy, := AP/2¢;, = )\g/Qek € H_g/; and a linear op-
erator G : H_g/5 — H_g/o given by Ggi := p gk, where py := qk)\,;ﬂm eR.

Theorem 5.3.3. If > 7o, u2 = > 52, q,%A,;’B < oo, that is if G is Hilbert-
Schmidt, then the process {b" (t),t > 0} defined by

(1) =Y GarBi (1)
k=1

is a classical fBm on H_g/5.

Proof. First observe that the space H_g/, is a Hilbert space with scalar
product (u,u)_ g/ = (A=B/2q, A=B/2y). Since (ey)ren is a basis for Hy then
then (g )ken is a basis for H_pg/5: to see this let u € H_g/5, then

u = AP2ABIZy
= AB/? Z(A_ﬁmu, ek)ek
k=1

—  AB/2 Z<A_B/2u’ A—5/2A5/26k>€k
k=1

= AP Z<U,A5/26k>—,8/2€k

k=1
00

= Z(u,A6/26k>,5/2Aﬁ/2€k

i
I

[
hE

(W, gk) —p/29k-

o~
Il
—

Also lgell_sj2 = IA8/2A5/2g, g5 = [|4%2e]|_g s = llex] = 1 and for
all j # k we have (gk, g;)—5/2 = 0.
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The operator G acts on H_g/ and we have Ggy, = prgr With supgey x| <
oo which ensures G' € L(H_g/5). Moreover G is Hilbert-Schmidt in H_g/,
and so the process {b"(t),t > 0} given by

b (1) = G (t)
k=1
is a fBm in H_g/5. To see this proceed as in proof of Proposition 5.3.1, part
(a). O

Corollary 5.3.4. If >3, i} < oo then the cylindrical process {b'(t),t >
0} introduced in Example 5.5 is induced by the classical fBm {b" (t),t > 0}.
Moreover b5 (t,-) = b in H_g/5, where {b"5(t,x),t > 0,2 € D} is
defined in (5.9).

Proof. First observe that
awer = AP q N Pep = NP Pgugr = g,

that is Fe, = Ggg. For all h € H, we have

O (1), k) = O GarBil (1), h)
k=1

= <Z Fekﬁlg{(t)?h)
k=1

= > (Fer, B (t) = b™ (t)h.
k=1

Moreover we also get
[e.e] o0 -
VR () = qreB (1) =D GarBl(t) =" (1)
k=1 k=1
as process in H_g/s. O

5.3.3 Two examples in L? and L!

Here we explicitly construct fractional Brownian noises in L?(D) and L!(D)
for D C R,

We want to consider noises which are anisotropic, for instance noises
localized on a subset A C D or noises whose action along the kth eigen-

function is restricted to a set Aj. To this aim, we introduce a linear and
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continuous operator F’ with a series representation involving the product of
a function g (-) with an eigenfunction eg(-). The function g will be taken

as 14, in some specific examples.

The Hilbert space case L?

Denote by [-,-]o the scalar product in L?(D) and consider a complete or-
thonormal system (ej)ren in L?(D). Let (qx)ren be a sequence of bounded
functions g € L*°(D) such that

(5.10) Z i3 (py < € < o0

for some constant C'. Then we define the following function on D for each
h € L*(D) by setting

(5.11) = [hy er)aqr(@)er(@).
k=1

Fact 5.3. For each h € L?(D) the function Fh belongs to L*(D).

Proof. Let h € L*(D). We have

oo

IER| 2Dy = | Z [h, ex]2qrer| L2 (D)
=1

o0
< s exlallgrell 2o
k=1

Now observe that

larerlZ2(py = /qu(f)ei(fﬂ) dar < lagll7 ooy lexllT2(py = llarllFoo )

and therefore we get

| F'hl[z2(py < Z |[h, ekl llak |l (D)

0o 1/2 /oo 1/2
(5.12) < (ZW@, ek]2!2> <Z H%Hm(n)
k=1 k=1
o0 12 /oo 1/2
(5.13) = (Z[ha €k]2> (Z g7, D)) = [|h|[z2 D)C ? < o0
k=1 k=1
because of (5.10). O
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Therefore the operator

(5.14) F:L*(D) — L*(D), Fh= i[h, exloqrer
k=1

is well defined. Moreover it turns out it is linear and continuous, as shown

in the following proposition.

Proposition 5.3.5. Under the condition (5.10), the operator F defined in

(5.14) is linear and continuous.

Proof. Let us first check linearity. Let a € R and h,g € L?(D). Then we

have

M8

F(ah+g) =) [ah+ g,ex]oqr(x)er(x)

B
Il

1

([ah, exlagr(x)ex(z) + [g, exloqr(z)ex ()

*bllﬁg

1

o0 [e.9]
Y [h, exlagr(x )+ > 9 exlagr(x)er()
k=1 k=1

=aFh+ Fg.

Moreover by the computations in the proof of Fact 5.3 we get that
IER 2(py < Clihllr2(p)
for all h € L?(D), which means F' € L(L?(D)). O

Now we construct a cylindrical fBm in L?(D) using Theorem 5.2.3. Let
(b)) en be a sequence of independent real fBm. Define the cylindrical pro-
cess {X(t),t > 0} by

X(t): L*(D) — L2(LR)
o= X

with
(5.15) = [Fey, fl2bf (t
k=1

which has covariance operator given by Q = FF* : L?(D) — L?(D). Theo-
rem 5.2.3 yields the following result.
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Proposition 5.3.6. If (qx)reny C L?(D) satisfies (5.10) then the cylindrical
noise X given by (5.15) is a cylindrical fBm in L*(D).

Example 5.7. Let g; () = pupla, (x) where Ay C D for all k € N and such
that > ,ui < 00. In this case we clearly have that coefficients (gx)ren satisfy
(5.10) and therefore by Proposition 5.3.6 we can define a cylindrical fBm in
L?(D).

Remark 5.8. The interesting feature of this noise is that it can behave in an
asymmetric way in space. This is reflected into the fact that the coefficient
qr. depend on x, which is not the case for the classical noises given through

series representations that are presented in the literature.

In fact we defined more than just a cylindrical process in L?, namely

under this conditions we actually have a classical fBm which is L?-valued.

Theorem 5.3.7. Under the assumption (5.10), the noise {X(t),t € [0,T]}
given by
oo
X(t) =Y Fepbfl (t).
k=1

is an L?(D)-valued fBm. Moreover, the noise X defined above by (5.15) is
induced by X in the sense that [X(t), fla = X(t)f for all f € L*(D).

Proof. In order to have a classical process in L?(D) we must verify F as
Hilbert-schmidt. If this is the case, by Theorem 5.2.5 we have that X (t)
converges in L2(Q; L?(D)) and therefore is an L?(D)-valued fBm.

We now check that F' is Hilbert-Schmidt. Previously observe that Fep =

Zﬁﬂeh ejl2gje; = qrer. We have
oo
IFNZ,z2my) = D IFerll 2y
kozol
= Z Hlech%Q(D)
k=1

oo
< Skl ) < 00
k=1

where the last sum is convergent by assumption. The process X induces

now the cylindrical process X by Proposition 5.2.6. O
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Example 5.8. Using this theorem we can write now a fractional Brownian
noise whose randomness is localized in space, that is a noise which is not
isotropic. Suppose assumptions of Example 5.7 are satisfied and consider

the noise is given by
Z/’Lk]lAk )bk ( )

The sum converges in L3(Q; L?(D)) as a function of x.

The Banach space case L'

Now we consider a sequence of weights (qx)reny C L?(D) such that

(5.16) Z gl Z2(py < C < oo

We can show that under this condition then the operator F' given by (5.11)
for all h € L*(D) takes values in L*(D). It is again linear and continuous
and therefore we can define a cylindrical fBm in L'(D). Since D might be
unbounded, we give the explicit proof that F' takes actually values in L(D).

Fact 5.4. For each h € L?(D) the function F'h belongs to L*(D).

Proof. Let h € L?*(D). Observe that ”‘chekHLl(D) < ”qk||L2(D)H€kHL2(D) _
|gk|lz2(py and therefore we get

o0
IFRl Loy = 11> by exlaarerll i
k=1

o0
<>l exlalllarl 2o
k=1

By similar computations as in (5.12) and using (5.16) we get ||Fh|;1(p) <
cl[hllr2(py < oo

(I

We then have an operator

(5.17) F:L*(D) — LY(D), Fh= i[h, exloqrer
k=1

which is well defined. Moreover we have already shown that it is linear and

continuous.
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5. Fractional Brownian motion in Banach spaces

Proposition 5.3.8. Under the condition (5.16), the operator F defined in

(5.17) is linear and continuous.

Now we construct a cylindrical fBm in L!(D) using Theorem 5.2.3. Re-
call that (L'(D))* = L*>°(D) and let us denote the dual pairing between
LY(D) and L>*(D) by (-,-). Let (bi)ren be a sequence of independent real
fBm. Define the cylindrical process {X(t),t > 0} by

X(t): L®(D) — L2(Q,R)

foo= Xf
with
(5.18) X(A)f =Y (Fer, )b (t)
k=1

which has covariance operator given by Q = FF* : L>(D) — LY(D). The-
orem 5.2.3 yields the following result.

Proposition 5.3.9. If (qi)reny C L*(D) satisfies (5.10) then the cylindrical
noise X given by (5.18) is a cylindrical fBm in L'(D).

Example 5.9. The noise
X(0)f =) {mlae HOF (1)
k=1

is a cylindrical fBm in L'(D) if Ay C D is bounded for all k¥ € N and
(1tk)ken C R are such that Y52, 2 < .
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Chapter 6

Stochastic integration with
respect to cylindrical
fractional Brownian motion

in Banach spaces

In this chapter, after giving some preliminary results, we introduce the the-
ory of integration in Banach spaces with respect to the cylindrical fractional
Brownian motion introduced in Chapter 5.

The special case when the underlying space is a Hilbert space has already
been considered in the literature. The definition, based on Wiener integrals,
first appeared in [57] for general Hurst parameter H € (0,1). We briefly
recall it using our setting of cylindrical processes.

Let H be a Hilbert space with scalar product [-,-] and let (eg)reny be an
orthonormal system for H. Let B be a cylindrical standard fBm in H with

covariance function ) = I, i.e. the process B admits the representation

(BB = len hIBk(®), in LE(UR)
k=1
for all h € H and Vt > 0. Recall that (8j)ren are independent real valued
fBms.
The stochastic integral fOT GdB is defined for an operator-valued func-
tion G : [0,T] — L(H). The following definition and proposition are cited

verbally from [57]. For more details and the proof we refer to it.
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6. Stochastic integration in Banach spaces

Definition 6.0.10. Let G : [0,T] — L(H), (ex)ren be a complete orthonor-
mal basis in H, g,(t) := G(t)en, gn € H7 for n € N and B be a cylindrical
standard fBm in H. Define

T o0 T
(6.1) /OGdB ::kZ:l/O gr dBg

provided the infinite series converges in L3(%;R).

Proposition 6.0.11. Let G : [0,T] — L(H) and G(-)h € 7 for allh € H.
Let T'r: H— L*([0,T); H) be given as

(Crh)(t) := (K7 Gh)(t)

fort € [0,T] and h € H. If Ty € Lo(H; L*([0,T); H)), that is T'r is a
Hilbert-Schmidt operator, then the stochastic integral (6.1) is a well defined

Gaussian H-valued random variable with covariance operator Qr given by

T o0
Qrh= [ SI(Tre)(s) b(Pren) s) ds
0 k=1
This integral does not depend on the choice of the complete orthonormal

basis (ef)keN-

Inspired by this result, we define in this chapter the integral with respect
to cylindrical fBm in separable Banach spaces. We recover the same type of

result and we prove some properties of the integral.

6.1 Preliminary results

In this section we give some preliminary results and definitions. First we
concentrate on the the link between Wiener integrals of real valued functions
and Wiener integrals of Hilbert space valued functions. These technical
results are then used in the second subsection (and later as well) in order to

define the integral, its covariance operator and to study their properties.

6.1.1 The link between real- and Hilbert space-valued inte-
grands

Let us recall definition of Bochner integral. Let U be a separable Banach

space with norm || - ||, (4, A, 1) a finite measure space and f : A — U a
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6. Stochastic integration in Banach spaces

measurable function. The Bochner integral is the integral of f with respect
to p and it is defined to be an element of U. It is first defined for simple
functions €(a) = SN b;14,(a), where b; € U and A; € A, as

N N
Agdu:A;biﬂAi(a)u(da) ::;bm(AmA).

By density one extends this definition to all measurable functions f : A — U
such that

[ I@lntao) < .

A

through
[ s@taa) = tim [ (@ (o)
A A

for simple functions (&,),eny which approximate f appropriately.
The Bochner integral behaves in a nice way with the dual pairing: for f :
[0,T] — U measurable and such that fOT | f(t)|| dt < oo, then for any b* € U*

we have

(6.2) </0T Fo)dt, b*> - /0T<f(t), b*)dt.

Moreover, for g : [0,7] — R measurable and such that fOT lg(t)|dt < oo,
then for any b € U the function bg : [0,7] — U is Bochner integrable and

T T
(6.3) /0 bo(t)dt = b /0 g()dt.

We prove now a technical result that is useful to link the operator K7,
with K7 and that will be used in this chapter to define the stochastic integral
in Banach spaces.

The first obvious result is that K7.(alj ) = aK7 1)) for all « € H. This
follows from (6.3) applied in the the special case of Hilbert space valued

functions.

Proposition 6.1.1. (i) For any ¢ € Hr and o € H then ® : [0,T] - H
defined by ®(t) := a@(t) for all t € [0,T] is an element of F7 with

1213 = lleliZ 613,

and
Krap = aKr¢.
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(ii) For any ® € 7 and o € H then ¢ : [0,T] — R given by ¢(t) :=
[@(t),a] for all t € [0,T] is an element of Hy with

9113, < ez 125

and
[K7®(-), ol = K76(-).

Proof. (i) Let ¢ € H and o € H. By linearity of K% and using equation
(6.3) we have K}, ® = aK7¢ so we get

121%, = ledl % = K720 11.00)
= | aEF 22 o 1.1

T
- /0 laE50) ()13 dt

T
- /0 a3 (K6) ()2 dt
— ol K622 0.27) = Il 16l3, < oo,

which guarantees ® € .77.
(11) Using equation (6.2) and the linearity of operators K7 and K. we get
easily that
[K7®(-), o]z = K7([®(-), alm).
Moreover, since ® € 7 it holds
6132 = K717z 0.1
= [K72(-), ol | 720.m)

T
- / K50 (1), of? dt

0

T 2 2
< /O 1K) 2|3 dt

T
— Jlall% /0 K563 dt

= [l H KT @) 20,790

= llalf 1215 < oo 2
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6.1.2 Some definitions and properties

We indicate by U and V' two separable Banach spaces with norm || - ||y and
| - |lv, respectively. The dual pairing is denoted by (-, )y - and (-, -)v,y=
respectively, or only with (-,-) for both of them by abuse of notation when
it is clear which one we mean.

Let B¥ be a cylindrical fBm in U as introduced in Definition 5.2.1 so that

we have the representation

oo
(6.4) B (tyut = 3 igen, u' )bl (1
k=1

forallu* € U*. Let ¢ : [0,T] — L(U, V) be given and denote by ¢* : [0,T] —
L(V*,U*) the adjoint of ¢(t) for all t € [0,7]. The main idea to define
a cylindrical integral fOT o(t)dBH(t) is by exploiting the representation of
BH as a series, therefore involving one-dimensional fBms. In this spirit one
defines the integral as sum of one-dimensional integrals where the integrands
are real valued functions defined by means of the dual pairing in V,V* as

follows

T
Z/O (p(t)iger, v*)v,v+ dbg (t).
k=1

The series is considered as an element in L3(€;R) (that is it is required to
converge). It turns out that under suitable conditions the integral is well
defined: each one-dimensional integral makes sense and the sum converges
in L2(R).

In order to formalize this definition, let us introduce the space of deter-

ministic functions for which the integral is well defined.

Definition 6.1.2. We denote by S the space of deterministic functions ¢
that are integrable on [0, T] with respect to B, that is

I ={¢:[0,T] = L(U,V) such that for all v* € V*, igyo*(-)v* € A7},

Another class of integrable functions is a subset of Zr and it is given by

the following

Definition 6.1.3. We define the following subset of Ip:

PBr :={p € Ip such that 3C > 0 :
lige™ (vl < Cllv*|lv+ for all v* € V*},
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that is the class of functions ¢ for which the operator 222()0*() acting on V*

with values in 4 is continuous.

The next proposition gives an example of a class of functions ¢ : [0,7] —
L(U,V') which is a subset of #r. For the proof we need to recall a prelimi-
nary known fact about .77 (see [19], Section 2 or [33], Lemma 5.20).

In the case H € (0,1/2) we have €°([0,T]; Hg) C 7 for each 8 > 1/2—

H and the inclusion is continuous.

In the case H € (1/2,1) then LY ([0,T]; Hg) C 4 and the inclusion is
continuous. In particular L?([0,T]; Hg) C %, the inclusion being

continuous.
Proposition 6.1.4. Let ¢ : [0,T] — L(U,V) be given.
(i) For H € (0,1/2), if o* € €°([0,T]; L(V*,U*)) for some B >1/2—H,
then igyp*(-)v* € A7 for all v* € V* and moreover we have
lige" (Vv lle < cllv™llve il ewmg) ¢ e o107+ 00))
that is ¢ € ABr.
(ii) For H € (1/2,1), if ¢* € L*([0,T]; L(V*,U*)) then ine* (vt € At
for all v* € V* and moreover we have
lige™ (vl < cllv*llv=lliglcw=;mg) 19" 2o, r120v+ %))
that is ¢ € Br.

Proof. For sake of simplicity, we will sometimes indicate the operator norm
of the spaces of linear and continuous functionals with || - ||z without spec-
ifying the spaces where the operator acts. The same for the norms in €
and L2

(i) Let H € (0,1/2) and ¢* € €5([0,T]; L(V*,U*)), i.e.

\ [¢*(t) — " (8)llc
o'lls = sup —
0<s<t<T |t — s

< oQ.
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Let i, " : [0,T] — L(V*, Hy) be the map defined by t — if,*(t). We have

lie™ () —ige™(s)lc

ligells = sup, = 5|7
< sup liglclle™(®) —e*(s)llc
0<t<T |t — s|?
— iyl sup e () — " (s)lic
0<s<t<T |t —s|?

= lligllclle®lls < oo

that is igyp" € €P([0,T); L(V*, Hg)). With the same kind of computations

one proves that the map
i ()v"[0,T] — Hq
tigp"(t)v”
is an element of ¢([0,T]; Hg) and the following bound holds
litge" (0" lls < 0" v~ 1 oty 9" b oy
Since for H € (0,1/2) the inclusion €”([0,T]; H) C J# is continuous, the
claim follows.
(i) Let H € (1/2,1) and o* € L?([0,T]; L(V*,U*)). We have
2 g 2
lie I = [ liaw Ol

T
< /0 libll2 o (1) 2 dt
< Jigll3 0|2 < oo

and so the map 15" is an element of L%([0,T); L(V*; Hg)). In the same way
one gets for all v* € V* that i5,p*(-)v* € L%([0,T); Hg) and the following
bound holds

lige™ ()" | L2o,1mg) < 10"+ liQllcw:m0) 19" L2 0,172+ 0

Since for H € (1/2,1) the inclusion L*([0,T]; Hg) C 57 is continuous, the

claim follows. O

Next we introduce an operator I'r, which will be useful to prove that the

integral is well defined and to show several properties of it. The operator in
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fact, plays a crucial role in the description of the random variable as Gaussian
process. It will provide the decomposition of the covariance operator of the
integral fOT odBH | allowing us to give conditions under which the integral

is induced by a classical random variable in V.

Definition 6.1.5. For each ¢ € Y1 we define the linear operator I'r,
acting on V* by

I'rp: V¥ — LZ([O,T];HQ)

v* — Dp,(v)
where
I (v) := Kp(ige™(-)v7)
with K% as defined in Section 4.2.2.
By this definition we easily get the following isometry property.

Proposition 6.1.6. For ¢ € S and for all v* € V* we have

P70 (V)| a(o11510) = ligw™ ()" ||

Proof. Observe that ¢ € S ensures that i;,*(-)v* € #7. We have
T
7,6 (W) 17 5 10,7 110) :/0 07, (0%) [, dt
T
= [ I 00 g
= K3 (i (o) 20,7 10)

= |ligye™ ()0 3.

The last equality follows from the isometry property of the operator K%.. [J

6.2 Stochastic integral with respect to fBm in Ba-

nach spaces

In this section we define the stochastic integral with respect to a cylindrical
fBm. The integral is defined as a cylindrical r.v. in a separable Banach
space V. We investigate its properties and give conditions under which it is
well defined. The integral turns out to be a centered Gaussian cylindrical
random variable. Under suitable assumptions it is actually induced by a
classical r.v. in V as shown in the second subsection. Finally we consider

the integral as a stochastic process indexed by ¢.
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6.2.1 Definition of the stochastic integral

We can now proceed to give the formal definition of the integral with respect

to BY, which, at a first stage, will be a cylindrical process in V.

Definition 6.2.1. Let ¢ € S be given. The stochastic integral of ¢ on
[0, T] with respect to a cylindrical fBm B is denoted by Ir(yp) and is defined

as a cylindrical random variable in V' by
o0 AT

(65) Tr(ow' ==Y [ {eltlier, vhy- dbf! (0
=10

for all v* € V*, where the series converges in L3(;R).
Theorem 6.2.2. Let ¢ € Fp. For the integral Ir(yp) we have:

(i) the following isometry property

IZr(L)v" | 220y = P70 (v") 2210, 73;11)
holds for each v* € V*;
(ii) the integral is a well-defined cylindrical random variable in V;
(iii) the definition does not depend on the representation of the fBm.

Proof. (i) Let v* € V* be fixed. Using the independence of the one-
dimensional integrals and the isometry property of K7j; between Hr and
L%([0,T); R) we have

2
”IT(SO)U*H%I%P(Q;R) =E

% T
;/0 (p(tyiger, v*)dby (t)
k=1

00 T
= Z/ | K7 (p(t)iger, v vy |* dt
k=170

2

T
/0 (o (tYiger, v*)dbf (1)

[e.e] T )
=> / | KT [er, i@ (H)v*]m,|” dt.
k=170
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By Proposition 6.1.1 we get
20 ) = 2 / lew Kiitye™ (60" g | dt
_Z/ [T (v ek]HQ (t)dt
:/ Z [T7 (v ekHQ(t)dt
0

k=1
T 2
:/0 ||FT,@(U*)HHQ)dt
= |]FT,¢(U*)I|%2([0,T};HQ'

(i1) First observe t