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Zusammenfassung

Diese Arbeit befasst sich mit stochastischen partiellen Differentialgleichun-

gen mit fraktalem Rauschen. In diesem Zusammenhang betrachten und

lösen wir verschiedene Probleme aus zwei recht unterschiedlichen Blick-

winkeln.

Auf der einen Seite beweisen wir Existenz, Eindeutigkeit und Regulari-

tät für milde Lösungen einer parabolischen Transportgleichung mit

Diffusion, die nicht-glatte Koeffizienten beinhaltet. Wir untersuchen

damit verbundene Cauchy-Probleme auf glatten und beschränkten Ge-

bieten mit Dirichlet-Randbedingungen. Dabei verwenden wir Halb-

gruppentheorie und Fixpunkt Argumente. Hauptbestandteile sind

die Definition eines Produkts einer Funktion und einer (nicht zu un-

regelmäßigen) Distribution sowie eine zugehörige Norm-Abschätzung.

Wir wenden die Theorie auf eine stochastische partielle Transport Dif-

ferentialgleichung mit fraktalem Brownschen Rauschen an. Dabei wird

diese pfadweise betrachtet.

Auf der anderen Seite beschäftigen wir uns mit stochastischen Differen-

tialgleichungen mit gebrochenen Brownschen Prozessen in Banach-

Räumen. Genauer gesagt, betrachten wir abstrakte Cauchy-Probleme

in Banach-Räumen und suchen nach schwachen und milden Lösungen.

Zu diesem Zweck wird eine gebrochene Brownsche Bewegung in separa-

blen Banach-Räume mit Hilfe von zylindrischen Prozessen eingeführt.

Wir definieren das damit verbundene stochastische Integral als zylin-

drischen Prozess und untersuchen seine Eigenschaften. Falls der Ba-

nach-Raum einen Funktionenraum darstellt, wird die Gleichung zu

einer stochastischen partiellen Differentialgleichung mit fraktalem Rau-

schen.
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Abstract

This thesis deals with stochastic partial differential equations driven by frac-

tional noises. In this work, problems related to this topics are tackled and

solved from two fairly different points of view.

On one side we prove existence, uniqueness and regularity for mild solu-

tions to a parabolic transport diffusion type equation that involves

a non-smooth coefficient. We investigate related Cauchy problems

on bounded smooth domains with Dirichlet boundary conditions by

means of semigroup theory and fixed point arguments. Main ingredi-

ents are the definition of a product of a function and a (not too ir-

regular) distribution as well as a corresponding norm estimate. As an

application, transport stochastic partial differential equations driven

by fractional Brownian noises are considered in the pathwise sense.

On the other side we deal with stochastic differential equations driven by

fractal noises in Banach spaces. More precisely, we deal with abstract

Cauchy problems driven by fractional Brownian processes in Banach

spaces and look for weak and mild solutions. To this aim, a fractional

Brownian motion in separable Banach spaces is introduced by means

of cylindrical processes. The related stochastic integral is then defined

as cylindrical stochastic process and its properties are investigated.

When the Banach space is a function space then the equation becomes

a stochastic partial differential equation driven by a fractional noise.
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Introduction

The main subject of this thesis is the study of stochastic partial differential

equations driven by fractional noises. Two different approaches are adopted:

a pathwise method is applied to a parabolic transport equation with frac-

tional noise and a statement on existence, uniqueness and regularity of the

solution is proven. On the other hand, a more abstract approach is adopted

and stochastic partial differential equations with fractal noises are solved as

stochastic evolution equations in Banach spaces driven by cylindrical frac-

tional Brownian motions.

The concept of stochastic partial differential equation appears in the lit-

erature in the early 1960s. Baklan in [4] proved an existence theorem for

a stochastic parabolic equation in a Hilbert space. In the 1970s many re-

searchers, motivated by physical and biological applications, start to become

interested in partial differential equations with random parameters. Some

examples are Cabana [13], Bensoussan and Temam [8], Pardoux [56], Chow

[14], Krylov and Rozovskij [42]. Since then, this area of research has been

growing and several theories have been developed to deal with stochastic

partial differential equations. One of the main issues is to describe appro-

priate random fields for which it is possible to construct a stochastic integral

and therefore define a meaningful solution.

A classical approach was given by Walsh in [79], where he considered

the (famous) example of the vibrating string, a wave equation perturbed

by a space-time white noise. This noise is a generalized centered Gaussian

process {Ẇ (t, x), (t, x) ∈ [0, T ]×[a, b]} on a given probability space (Ω,F ,P)
with covariance

E[Ẇ (t, x)Ẇ (s, y)] = δ(t− s)δ(x− y).

The integral with respect to such noise is defined by means of martingale
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Introduction

measures and it is of Itô type. This approach is also known as Brownian

sheet approach. The solution of a partial differential equation perturbed by

a space-time white noise is a proper function, but this method fails when the

space dimension is bigger than 1. In this case one has to turn to distribution

valued concepts or alternatively to consider different type of noises. The

random field approach has been successfully applied in higher dimensions

for instance by Dalang [17] for spatially homogeneous Gaussian noises and

by Balan and Tudor [6] for fractional noises in time and homogeneous in

space.

Another approach is proposed by Holden, Øksendal, Ubøe and Zhang

in [31] and related papers. Here they make use of white-noise calculus and

work in a framework which is a priori distribution valued. Moreover they

allow space dimension to be higher than 1. Main tools are Wick products,

chaos expansions and Hida distributions.

One of the most common approach is the infinite-dimensional approach.

A comprehensive treatment on stochastic evolution equations in infinite di-

mensions is given by Da Prato and Zabczyk in the monograph [16]. As in

the deterministic case [58], one formulates the stochastic partial differential

equation as a stochastic differential equation in Hilbert spaces. Consider for

example the heat equation with additive noise

(1) du(t) = Δu(t)dt+ dW (t)

in the Hilbert space H = L2(D) for some domain D ⊂ R
d. Here Δ is the

Laplacian on H, the function u is H-valued and the noise W is the so called

Q-Wiener process. W is defined by a series of type

(2) W (t) =
∞∑
k=1

√
λkekbk(t)

which converges in the underlying Hilbert space H. Here (ek)k∈N is an

orthonormal basis in H, (bk)k∈N is a sequence of independent real Brownian

motions and (λk)k∈N are the eigenvalues of a symmetric non-negative and

trace-class operator Q on H. The solution to (1) with initial condition

u(0) = u0 and Dirichlet boundary conditions is given in the mild form by

(3) u(t) = Ptu0 +

∫ t

0
Pt−sdW (s),

2



Introduction

where (Pt)t≥0 is the heat semigroup generated by Δ with Dirichlet boundary

conditions. It turns out that one may drop the trace class assumption on

Q and still give a meaning to the solution (3) in H, even though the series

(2) does not converge any longer in H. In this case the series converges in

a bigger Hilbert space H1 ⊃ H and the noise is typically called cylindrical 1

Wiener process in H.

Another, completely different, point of view is the pathwise approach.

This method is based on the path properties of the noise. The main idea

to define a pathwise integral is to fix a path and then perform a Stieltjes

type integral. We mention in particular Young [80], Russo and Vallois [64],

Lyons [47], Zähle [81]. Since the techniques are based only on the regularity

properties of the paths, they are successfully applied to noises which are

not necessary white. In particular, a big thrust to the development of the

pathwise approach was given by the increasing interest in stochastic calcu-

lus with respect to different noises, for example with respect to fractional

Brownian motion.

The classical fractional Brownian motion {bH(t), t ≥ 0} with Hurts pa-

rameter H ∈ (0, 1) is a real centered Gaussian process with covariance func-

tion

E[bH(t)bH(s)] =
1

2

(
t2H + s2H − |t− s|2H)

for s, t ≥ 0. This process was introduced in 1940 by Kolmogorov [41] and was

(first) applied by Hurst et al. some years later to model long-term storage

capacity in reservoirs, see [34, 35]. In fact fractional Brownian motion is

very interesting for many applications because it is stationary, self-similar

and in general does not have independent increments. These features make

this process suitable for modeling various situations from physics to finance,

from engineering to biology, see among others [10, 53, 61, 69].

From the mathematical point of view, fractional Brownian motion is not

Markovian and not a (semi)martingale except for H = 1/2, is a. s. nowhere

differentiable but is a. s. α-Holder continuous for any 0 < α < H. In

particular, this last property has been exploited by many authors to study

1In this thesis, the word cylindrical will be used in relation to a slightly different

concept. Cylindrical processes are defined on Banach spaces and they do not need a

bigger Hilbert space (like H1) to be given a proper meaning. Under suitable assumptions

(like the trace class assumption for Q), a cylindrical process reduces to a classical Banach

space valued process.

3



Introduction

stochastic differential equations driven by fractional Brownian motions (see

e. g. Nualart and Răşcanu [55], Zähle [82]) and later stochastic partial dif-

ferential equations driven by fractional Brownian noises (see e. g. Maslowski

and Nualart [49], Gubinelli et al. [27], Hinz and Zähle [29]). For references

on stochastic calculus with respect to fractional Brownian motion see the

review paper by Nualart [54] or the books by Biagini et al. [9] and Mishura

[52].

Partial differential equations with fractional noises have been studied

also using the infinite-dimensional approach, mostly in Hilbert spaces. We

mention for example Tindel, Tudor, Viens [71], the series of papers by Dun-

can and coauthors [19, 20, 21, 22, 57], Grecksch et al. [1, 25, 26]. In Banach

spaces there are very few works related to equations with fractal noises:

Balan [5] considered the heat equation driven by fractional Brownian mo-

tion in an Lp setting for p ≥ 2 and Brzezniak, Van Neerven and Salopek

[12] considered stochastic evolution equations driven by Liouville fractional

Brownian motion in Banach spaces.

In this thesis we tackle two different problems related to stochastic par-

tial differential equations driven by fractional noises and solve them with

different techniques.

In Part I we consider a parabolic transport equation with stochastic

velocity field

(4)
∂u

∂t
(t, x) = Δu(t, x) +∇u(t, x) · ∇BH(x),

where {BH(x), x ∈ R
d} is a centered Gaussian field with covariance

E[BH(x)BH(y)] =
1

2

(|x|2H + |y|2H − |x− y|2H) .
This process is nowhere differentiable but possesses some Hölder regularity

properties. The first main problem with equation (4) is that the (distri-

butional) derivative of BH is not a function but a distribution. Therefore

the product with ∇u needs some care to be appropriately defined. We do

so omegawise using the so-called paraproducts: one can define the product

between a function and a (not too irregular) distribution using the Fourier

transform. We apply this technique to a general non-differentiable function

Z on Rd which exhibits the same regularity properties as BH(ω) with Hurst

parameter H > 1
2 for almost all ω ∈ Ω.

4
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We write the problem in the abstract Cauchy setting, namely we in-

terpret all mappings as functions of time t taking values in some suitable

function space U (real function space on R
d, our choice will be specified

later). Set u : [0, T ] → U, t 
→ u(t) ∈ U and (u(t))(·) := u(t, ·). The

equation (4) with Dirichlet boundary conditions

(5) u(t, x) = 0, for x ∈ ∂D

and initial condition

(6) u(0, x) = u0(x) for x ∈ D

considered in the pathwise sense becomes the following abstract Cauchy

problem

(7)

⎧⎨
⎩

d
dtu = ΔDu + 〈∇u,∇Z〉, t ∈ (0, T ]

u = u0, t = 0,

where ΔD stands for the Dirichlet-Laplace operator and 〈·, ·〉 denotes the

pointwise multiplication defined via paraproducts. The product itself will

be a distribution. We use a priori estimates on this product which lead

to optimal regularity results. This problem is not covered by results in

the standard literature for partial differential equations (see for instance

[23, 46]).

There are few results on transport diffusion equations with (random)

non-smooth drift of the form (7) among the literature. Attanasio and Flan-

doli [3] consider a stochastic transport equation with non-regular drift but

without the diffusion term and with an additive (Brownian) noise. Beck

and Flandoli [7] consider a (non-linear) parabolic transport equation with

diffusion term but with Brownian noise which is time-dependent.

To our knowledge, the only study regarding a problem of the form (7) is

due to Russo and Trutnau [63], who investigate a stochastic equation like (4)

but in space dimension one. The authors proceed by freezing the realization

of the noise for each ω and overcome the problem of defining the product

between a function and a distribution by means of a probabilistic represen-

tation: They express the parabolic equation probabilistically through the

associated diffusion which is the solution of a stochastic differential equa-

tion with generalized drift.

5
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In this thesis we define the mild solution for (7) by

(8) u(t) = Ptu0 +

∫ t

0
Pt−s〈∇u(s),∇Z〉ds.

The integral appearing on the right hand side defines an integral operator

I on the Hölder space C γ([0, T ]; H̃1+δ(D)). Under suitable conditions on

the parameters δ, γ > 0 it turns out that I is a contraction in the above

mentioned space. This result is given in Theorem 2.2.2. Using this mapping

property and a contraction argument we prove the main result (Theorem

2.2.3), that is we prove existence and uniqueness of a global mild solution

for (7) in C γ([0, T ]; H̃1+δ(D)). It is relevant that the solution is actually a

function, even though we make use of fractional Sobolev spaces of negative

index (spaces of distributions) while proving the desired result.

Thanks to how we chose the function Z, this results can be applied to

solve in a pathwise sense the stochastic Dirichlet initial value problem (4),

(5), (6). Moreover, combining it with a result of Hinz and Zähle [29] we can

treat the more general (stochastic) transport equation of the form

∂u

∂t
(t, x) = Δu(t, x) + 〈∇u,∇Z〉(t, x) + 〈F, ∂

∂t
∇V 〉(t, x)

for t ∈ (0, T ], x ∈ D together with (5) and (6), where F is a given vector

and V = V (t, x) is a given non-differentiable function.

The content of Part I of this thesis essentially coincides with the paper

Issoglio [36]. However the exposition here is a bit more detailed.

In Part II of this thesis we deal with evolution equations driven by frac-

tional Brownian motions in Banach spaces, that is with equations of the

form

(9)

⎧⎨
⎩dY (t) = AY (t)dt+ CdBH(t), t ∈ (0, T ]

Y (0) = Y0,

where A is the generator of a strongly continuous semigroup on a separable

Banach space V , BH is a fractional Brownian motion on (another) separable

Banach space U , C is a bounded linear operator from U to V and Y0 is a

random variable in V .

In order to study and solve the Cauchy problem (9) we need to define

many concepts and objects, first of all we need to explain what a fractional

Brownian motion in a Banach space is. We do so by means of cylindrical

6
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processes. Let us stress the fact that the notion of cylindrical process that is

used here is different from the one appearing in the literature (cf. Da Prato

and Zabczyk [16]).

In this thesis, a cylindrical random variable X in a Banach space U is

defined as a linear map from the topological dual of U to the space of real

random variables on (Ω,F ,P), that is

X : U∗ → L0
P(Ω,R).

This concept was introduced by Gel’fand in the 1960s, see the monograph

by Gel’fand and Wilenkin [24]. A similar object like a cylindrical random

variable appears under the name weak distribution in the paper of Segal

[68]. See also [38]. Moreover cylindrical random variables and cylindrical

measures were extensively considered by Schwartz and his collaborators, see

among others [65, 66, 67].

With an idea similar to the one used in Applebaum and Riedle [2] to

define (cylindrical) Lévy processes in Banach spaces, we define cylindrical

fractional Brownian motions in Banach spaces. Theorem 5.2.3 provides a

characterization of this process as a series of the type

(10) BH(t)u∗ =
∞∑
k=1

〈Fek, u∗〉bHk (t),

where (bHk )k∈N is a sequence of independent real fractional Brownian mo-

tions, F is a linear and continuous operator from a Hilbert space H to U ,

(ek)k∈N is an orthonormal basis of H and 〈·, ·〉 denotes the dual pairing be-

tween U and U∗. The series converges in L2
P
(Ω;R). The Hilbert space H

is the reproducing kernel Hilbert space of the covariance operator of the

Gaussian random variable BH(1). When the operator F is γ-radonifying 2

then we show (see Theorem 5.2.5) that the series is morally equivalent to

(11) BH(t) =
∞∑
k=1

Fekb
H
k (t)

and it actually converges in L2
P
(Ω;U), that is BH is a U -valued fractional

Brownian motion.
2The notion of γ-radonifying operator is a generalization of the Hilbert-Schmidt prop-

erty to Banach spaces. It is central in the description of Gaussian random variables in

Banach spaces. In fact FF ∗ is the covariance operator of a Gaussian measure on B(U) if

and only if F is γ-radonifying.

7
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In both cases (10) and (11), if U is a Hilbert space then we recover the

classical definition of cylindrical, respectively U -valued, fractional Brownian

motion (of the type (2) but with bk replaced by bHk ), such as the one used in

[22, 25, 49, 71]. Moreover, in the case U = L2(D) we can recover the space-

time fractional noise {bH,K(t, x), t ≥ 0, x ∈ D} that was used by Gubinelli

Lejay and Tindel [27] or Hinz and Zähle [29].

Let us mention the fact that, even in the Hilbert space case, we allow

more general noises than the above-mentioned authors. In fact we consider

a wider class of covariance operators FF ∗, whereas the (cylindrical) noises

given by (2) have covariance Q which is diagonal with respect to the basis,

i. e. Qek = λkek with λk constants (they do not depend on x ∈ D). Some

examples of fractional Brownian noises (given as series) in L2(D) and L1(D)

not yet considered in the literature are explicitly discusses in this thesis.

The second important issue one has to face when trying to solve (9) is

the definition of a stochastic integral with respect to a cylindrical fractional

Brownian motion. This is crucial in order to define any notion of solution

for the problem (9). Since in this case the noise is additive, it is enough to

define the stochastic integral for deterministic integrands.

In the Hilbert space case, the definition (based on Wiener integrals) first

appeared in [57] for general Hurst parameter H ∈ (0, 1). It exploits the

series representation of the process, as done in the Wiener case by Da Prato

and Zabczyk [16], and the integral itself is a random variable which takes

values in the underlying Hilbert space.

In Banach spaces we proceed using the same idea, but we define the

integral
∫ T
0 ϕ(t)dBH(t) as a cylindrical (in our sense) random variable in

U . To do so we exploit the link between Wiener integrals for real valued

integrands and Wiener integrals for Hilbert space valued integrands, both

with respect to real fractional Brownian motions. In Proposition 6.2.4 we

show that the cylindrical integral is a Gaussian cylindrical random variable

and we give the explicit decomposition of its covariance operator through

a Hilbert space. This result is fundamental to prove Theorem 6.2.5 that

provides conditions under which the cylindrical integral is actually a V -

valued random variable. We also study the properties of the integral as

(cylindrical) stochastic process indexed by time.

With this tools (cylindrical fractional Brownian motion and stochastic

integral with respect to it) we can finally study problem (9) for all H ∈

8



Introduction

(0, 1) and give a meaning to its solutions. We consider weak (and mild)

solutions. Under some assumptions on the semigroup and on the initial

condition we prove existence and uniqueness of a cylindrical solution for (9)

in Theorem 7.1.4. Moreover we obtain a classical weak solution in V under

some additional conditions.

This result is applied to a stochastic parabolic equation with fractal

additive noise given by⎧⎪⎨
⎪⎩

∂u
∂t (t, x) = (−Au)(t, x) +G · ∂

∂t∇bH,K(t, x), t ∈ (0, T ], x ∈ D

u(t, x) = 0, t ∈ (0, T ], x ∈ ∂D

u(0, x) = u0(x), x ∈ D.

This equation has been considered by Hinz and Zähle [29] in space dimension

d = 1 and has been solved with pathwise techniques. In this example we

partly recover their results using the cylindrical approach.

This thesis provides new ideas about possible directions for future re-

search. The author is interested in (stochastic) transport equations like (7)

with a non-linear term G(∇u) in place of ∇u. This equation can be treated

again in a pathwise sense and the main problem is to obtain estimates for

the pointwise product 〈G(∇u),∇Z〉 in terms of ∇u. The author believes

this can be done using Dirichlet forms.

Another interesting open problem is to extend the definition of the cylin-

drical stochastic integral in Banach spaces to random integrands {X(t), t ≥
0}, that is to define

∫ T
0 X(t) dBH(t). This would in principle allow to study

evolution equations in Banach spaces with multiplicative noise like⎧⎨
⎩dY (t) = AY (t)dt+ CY (t)dBH(t), t ∈ (0, T ]

Y (0) = Y0.

Clearly, in this situation Wiener integrals are not enough. One should switch

to other types of integration, like divergence-type integral or pathwise inte-

grals, and combine it with the cylindrical approach exposed here.

It is also relevant to answer the question of continuity of the cylindrical

integral with respect to time T , question which is not yet fully answered

even in the one-dimensional case for real fractional Brownian motions.

9
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Chapter 1

The transport equation

In this chapter we introduce the problem which will be solved in Chapter

2. To this aim, in Section 1.1 we start with some preliminaries and fix the

notation. We recall and develop some concepts and useful tools that will be

fundamental in the proof of existence and uniqueness of a solution. In Sec-

tion 1.2 we state the problem and rewrite it in an abstract form. We define

the concept of solution for this problem by means of mild solutions. Some

other technical results such as pointwise multiplication will be explained.

1.1 Preliminaries

1.1.1 Fractional Sobolev spaces

In this first section we deal with fractional Sobolev spaces. It is a family of

spaces which are embedded in each other and provide a natural framework

for the action of the Dirichlet Laplacian and of its powers. Let us recall the

definition of fractional Sobolev spaces on C.

Definition 1.1.1. Let α ∈ R and 1 < p < ∞. We define the fractional

Sobolev space or Bessel potential space as

Hα
p (R

d;C) :=
{
f ∈ S ′(Rd;C) : ((1 + |ξ|2)α/2f̂)∨ ∈ Lp(Rd;C)

}
.

equipped with the norm 1

‖f |Hα
p (R

d;C)‖ = ‖((1 + |ξ|2)α/2f̂)∨|Lp(Rd;C)‖,
1Sometimes we indicate with ‖ · |U‖ the norm in the space U instead of the usual one

‖ · ‖U . This is done for simplicity of notation when the space U has a long name.

11



1. The transport equation

where f̂ stands for the Fourier transform of f on R
d and (·)∨ denotes the

inverse Fourier transform.

We omit the subscript index p when p = 2.

We are interested only in real-valued functions and distributions, so we follow

[62] and define S ′(Rd;R) := {f ∈ S ′(Rd;C) : f̄ = f} where f̄ is defined by

f̄(φ) = f(φ̄) for all φ ∈ S(Rd;C). For 1 < p <∞ and α ∈ R we define

Hα
p (R

d;R) = Hα
p (R

d;C) ∩ S ′(Rd;R)

and for simplicity of notation we omit the writing of the codomain when it

is R.

This family of spaces is also called scale of spaces because Hβ
p (Rd) ⊂ Hα

p (R
d)

for every α < β ∈ R. It is known that when the parameter α is a positive

integer α = m ∈ N then Hm
p (Rd) =Wm

p (Rd) where

Wm
p (Rd) :=

{
f ∈ S ′(Rd) : ∂γf ∈ Lp(Rd) for all |γ| ≤ m

}
is the classical Sobolev space on R

d equipped with the norm

‖f |Wm
p ‖ :=

⎛
⎝ ∑

|γ|≤m

‖∂γf |Lp‖p
⎞
⎠1/p

.

The latter norm and ‖ · ‖Hm
p

are equivalent norms.

We are interested in the corresponding fractional Sobolev spaces on do-

mains. There are various ways to define such spaces. Here we recall only

one of them, which is suitable for our purposes. For α > −1/2 define

H̃α
p (D) :=

{
f ∈ Hα

p (R
d) : supp(f) ⊂ D̄

}
equipped with the norm ‖ ·‖Hα

p (Rd). The norm itself is not sufficient in order

to characterize this space because it is the same as the one used for Hα
p (R

d).

Observe that if α = 0 then the space H̃0
p (D) is simply Lp(D). Such spaces

are embedded in each other in the following way: for all α > β > −1
2 we

have H̃α
p (R

d) ⊂ H̃β
p (Rd).

When p = 2 the norm in H̃α(D) will be indicated by ‖ · ‖α. Moreover

when we have a vector (like ∇Z) we write ∇Z ∈ Hα
p (R

d) (and similarly for

spaces on D) to intend that every component of the vector ∇Z belongs to

such space. The norm of a d-dimensional vector in the space (Hα
p (R

d))d is

defined as the square root of the sum of the squared norm of each component

in Hα
p (R

d). For simplicity we will indicate it with the same notation.

12



1. The transport equation

1.1.2 Semigroup theory

In this section we recall the theory of semigroups of linear operators. Fore

more details and proofs we refer to [58, 78].

We start with the definition of semigroup.

Definition 1.1.2. Let (U, ‖·‖U ) be a Banach space. A family of bounded lin-

ear operators (Tt)t≥0 acting from U into itself is called semigroup of bounded

linear operators on U (or simply semigroup) if

1. T0 = Id;

2. Tt+s = TtTs for every t, s ≥ 0.

Furthermore (Tt)t≥0 is called uniformly continuous if

3. limt↓0 ‖Tt − Id ‖L(U) = 0

and it is called strongly continuous (or also C0 semigroup) if

4. limt↓0 Ttx = x for every x ∈ U .

Remark 1.1. Each uniformly continuous semigroup is also a C0 semigroup,

but not the other way around.

For both these two types of semigroups we can define a new operator

acting again from U (or from a subspace of U) into itself, called infinitesimal

generator. This operator can be either bounded or not, depending on the

type of semigroup.

Definition 1.1.3. Given a semigroup (Tt)t≥0 on U we define a linear op-

erator A on

D(A) :=

{
x ∈ U s.t. lim

t↓0
Ttx− x

t
exists

}
as follows

Ax := lim
t↓0

Ttx− x

t

for every x ∈ D(A). Such an operator is called infinitesimal generator of

the semigroup.

As we have already mentioned, the generator has different properties

depending of the properties of the semigroup. For uniformly continuous

semigroup we have the following:

13



1. The transport equation

Theorem 1.1.4. A linear operator A : U → U is the infinitesimal generator

of a uniformly continuous semigroup if and only if A is a bounded linear

operator.

Given a bounded linear operator A we can construct the semigroup by

Tt = etA =

∞∑
n=0

(tA)n

n!

where the sum on the right-hand side converges in norm for every t ≥ 0.

If we are given the semigroup we know how to construct the generator and

moreover if two generators coincide, then the two semigroups coincide as

well.

Corollary 1.1.5. Let (Tt)t≥0 be a uniformly continuous semigroup. Then

(a) ∃ ω ≥ 0 constant such that ‖Tt‖ ≤ eωt;

(b) There exists a unique bounded linear operator A : U → U such that

Tt = etA;

(c) The operator A is the infinitesimal generator of (Tt)t≥0;

(d) The mapping t 
→ Tt is differentiable in norm and

dTt
dt

= ATt = TtA.

In many interesting situations though, the semigroup is not uniformly

continuous but only strongly continuous. In this case the generator is un-

bounded and we have the following properties.

Theorem 1.1.6. Let (Tt)t≥0 be a C0 semigroup and let A be its infinitesimal

generator defined in Definition 1.1.3. Then

(a) for every x ∈ U

lim
h→0

1

h

∫ t+h

t
Tsx ds = Ttx;

(b) for every x ∈ U ∫ t

0
Tsx ds ∈ D(A)

and

A

(∫ t

0
Tsx ds

)
= Ttx− x;

14



1. The transport equation

(c) for x ∈ D(A) then Ttx ∈ D(A) and

d

dt
Ttx = ATtx = TtAx;

(d) for every x ∈ D(A) and for every s, t ≥ 0

Ttx− Tsx =

∫ t

s
TuAxdu =

∫ t

s
Tux du.

Corollary 1.1.7. If A is the infinitesimal generator of a C0 semigroup then

D(A) is dense in U and A is a closed linear operator.

The generator is uniquely defined, meaning that if two C0 semigroups

have the same generator then they coincide. It is possible to have a charac-

terization of the generator of a C0 semigroup, as in Theorem 1.1.4. For this,

recall that if (Tt)t≥0 is a C0 semigroup then there exist ω ≥ 0 and M ≥ 1

such that ‖Tt‖ ≤ Meωt. If ω = 0 then the semigroup is called uniformly

bounded since we find a boundM which does not depend on t. Furthermore

if M = 1 then the semigroup is called C0 semigroup of contractions since

every operator is a contraction.

Given a linear operator A : U → U we can define the resolvent set of A as

follows:

ρ(A) = {λ ∈ C : λI −A is invertible}.
Once we have defined the resolvent set of an operator, we can define the

resolvent of A. This is a family of bounded linear operators {R(λ;A), λ ∈
ρ(A)} each of them defined as R(λ;A) := (λI −A)−1.

Theorem 1.1.8 (Hille-Yosida). A linear (unbounded) operator A : D(A) ⊆
U → U is the infinitesimal generator of a C0 semigroup of contractions if

and only if

(a) A is closed and densely defined ( i.e. D(A) = U);

(b) The resolvent set ρ(A) contains the real positive half-line ( i.e. ρ(A) ⊇
(0,+∞)) and for every λ > 0

‖R(λ;A)‖ ≤ 1

λ
,

where the norm is the usual operator norm.
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1. The transport equation

Fractional powers

Next we introduce fractional powers of a closed operator. In particular

we will use them for analytic semigroups. Recall that a semigroup (Tt)t≥0

on a Banach space U is analytic if there exists θ > 0 such that the map

t 
→ Tt (taking values in L(U)) admits an analytic extension to the sector

S(θ) = {λ ∈ C : | arg λ| < θ}, satisfies the semigroup property there, and

is such that t 
→ T
(ρ)
t = Teiρt is a strongly continuous semigroup for every

|ρ| < θ. A semigroup which is contractive and symmetric is also analytic (see

[18], Theorem 1.4.1 or [70], Chapter III). For the generator of an analytic

semigroup one can define fractional powers of any order (see for instance

[58]).

Definition 1.1.9. Given an operator A : D(A) ⊆ U → U such that −A is

the infinitesimal generator of a C0 semigroup (Tt)t≥0, we define the negative

fractional power of A for any arbitrary positive α by

A−αx :=
1

Γ(α)

∫ ∞

0
tα−1Ttx dt

for every x ∈ D(A−α) where

D(A−α) :=

{
x ∈ U :

∫ ∞

0
tα−1T (t)x dt is convergent

}
.

By definition we set A−0 := Id and D(A−0) := U .

We now want to define fractional powers also for positive exponents,

and since the operator defined in Definition 1.1.9 under some conditions is

one-to-one we can give the following definition.

Definition 1.1.10. Given an operator A : D(A) ⊆ U → U such that −A
is the infinitesimal generator of a C0 semigroup (Tt)t≥0 with ‖Tt‖ ≤Me−ωt

for some positive ω, for every α > 0 we define

Aα = (A−α)−1

According to the previous notation we have A0 := I.

We recall now a standard result on semigroups, for a proof we refer to

[58] Theorem II.6.13 or [78] Theorem 7.7.2.

Theorem 1.1.11. Let −A be the infinitesimal generator of an analytic

semigroup Tt on a Banach space (U, ‖ · ‖U ). If for each t ≥ 0 holds ‖Tt‖ ≤
Me−ωt with M ≥ 1 and ω > 0, then
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1. The transport equation

(a) Tt : U → D(Aα) for every t > 0, α ≥ 0;

(b) for every α ≥ 0 and for every x ∈ D(Aα), TtA
αx = AαTtx;

(c) for every t > 0 and for every α ≥ 0 the operator AαTt is bounded and

linear and there exist constants Mα (which depends only on α) and

θ ∈ (0, ω) such that

‖AαTt‖L(U) ≤Mαe
−θtt−α;

(d) for each 0 < α ≤ 1 there exists Cα > 0 such that ∀t > 0 and for each

x ∈ D(Aα) we have

‖Ttx− x‖U ≤ Cαt
α‖Aαx‖U .

1.1.3 The Dirichlet Laplacian and its powers

The Dirichlet Laplacian is the generator of a particular C0-semigroup on

L2(D) for a bounded domain D ⊂ R
d. The action of its power on the

frational Sobolev spaces on D will be of vital importance in Chapter 2.

Let us start with the semigroup Tt generated by the negative Laplacian

A = −Δ on the whole space R
d. In this setting the explicit expression for

the semigroup applied to a function u(x) is

Ttu(x) =

∫
Rd

p(t, x, y)u(y)dy

where p(t, x, y) = (2πt)d/2 exp{−|x−y|2
2t } is the heat kernel. The classical

interpretation for this is to consider the Laplacian on C 2(R) and then we

have a semigroup an a Banach space. More generally we can extend it to the

Sobolev space H0(R). Strictly speaking we have a semigroup on a Hilbert

space, whose generator is an unbounded operator, since the domain of Δ is

dense in H0(R) = L2(R) but strictly included, namely D(Δ) = H2(R).

Consider now the Dirichlet Laplacian ΔD as the infinitesimal generator

of the Dirichlet heat semigroup acting on L2(D) (see e. g. [78] Section 4.1,

[23] Section 7.4.3). Let us indicate it with ΔD = −A. More precisely −A
generates a compact C0 semigroup of contractions (Pt)t≥0 in L

2(D) (see [78],

Theorem 7.2.5). The semigroup (Pt)t≥0 is of negative type and symmetric.

Moreover since it is also contractive, it is analytic. Thus, one can define

fractional powers of A of any order for which we have the following property.

For the proof we refer to [75] equations (27.50) and (27.51) or [74] Section

4.9.2.
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1. The transport equation

Proposition 1.1.12. Let (Pt)t≥0 be the semigroup generated by the Dirich-

let Laplacian ΔD =: −A. For all γ, α ∈ R such that −1
2 < γ, γ − α < 3

2

the fractional power A
α
2 maps isomorphically H̃γ(D) onto H̃γ−α(D), hence

there exist c1 > 0 and c2 > 0 such that for all f ∈ H̃γ(D)

(1.1)
∥∥∥Aα

2 f
∥∥∥
γ−α

≤ c1 ‖f‖γ ≤ c2

∥∥∥Aα
2 f
∥∥∥
γ−α

.

Furthermore one can prove that D(A
α
2 ) = H̃α(D) for all 0 < α < 3

2 , α �=
1
2 (for more details see [75]).

Using Theorem 1.1.11 and relation (1.1) we get the following result.

Corollary 1.1.13. Let (Pt)t≥0 be the Dirichlet heat semigroup on L2(D).

Then for all positive t and for any −1
2 < ρ, γ, ρ+ γ < 3

2we have

Pt : H̃
γ(D) → H̃ρ+γ(D).

In particular if f ∈ H̃γ(D) then supp(Ptf) ⊂ D̄.

Proof. Consider first the case when γ > 0. Let f ∈ H̃γ(D) so by (1.1) we

have g := A
γ
2 f ∈ L2(D). We write Ptf = PtA

− γ
2A

γ
2 f = PtA

− γ
2 g = A− γ

2Ptg

and by Theorem 1.1.11 (a) we know that Ptg ∈ D(Aρ) for any ρ ≥ 0.

Moreover recall that D(A2ρ) = H̃ρ(D) for all 0 ≤ ρ < 3
2 , ρ �= 1

2 , so for this

choice of ρ and using (1.1) we get Ptf = A− γ
2Ptg ∈ H̃ρ+γ(D). Observe that

this fact is true also if ρ = 1
2 since H̃ρ+γ(D) ⊂ H̃

1
2
+γ(D) for all ρ > 1

2 .

The case when γ < 0 is proven in the same way, simply write A− γ
2A

γ
2Ptf

instead of PtA
− γ

2A
γ
2 f .

1.2 The formulation of the problem

We consider the following transport equation on a domain D ⊂ R
d with

initial and Dirichlet boundary conditions

(1.2)

⎧⎪⎨
⎪⎩

∂u
∂t (t, x) = Δu(t, x) + 〈∇u,∇Z〉(t, x), t ∈ (0, T ], x ∈ D

u(t, x) = 0, t ∈ (0, T ], x ∈ ∂D

u(0, x) = u0(x), x ∈ D

where D is a bounded open set of R
d with C∞ boundary, u0 is a given

function in a fractional Sobolev space on D of appropriate order, Z is a

given non-differentiable function on R
d and the derivative is taken in the

distributional sense. The gradient ∇ as well as the Laplacian Δ refer to

the space variables. The precise definition of the product 〈∇u,∇Z〉(t, x) is
given in Section 1.2.2, and it is set by use of the Fourier transform.
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1. The transport equation

1.2.1 The abstract Cauchy problem

We want to rewrite problem (1.2) in another formalism known as abstract

Cauchy problem. For this reason we briefly recall some classical results

about it (see for instance [58], Chapter 4).

Suppose U is a Banach space and f : [0, T ) → U a given function. The

inhomogeneous abstract Cauchy problem is

(1.3)

{
du(t)
dt = Au(t) + f(t) t ∈ (0, T ]

u(0) = x,

where u is a U -valued function.

In the particular case when f ≡ 0 it holds that for every x ∈ D(A), (1.3)

has a unique solution given by u(t) = Ttx if and only if A is the generator of

a C0 semigroup (Tt)t≥0. For “solution” in this contest we mean a classical

solution and the definition is given below.

Definition 1.2.1. A function u : [0, T ) → U is a classical solution of (1.3)

on [0, T ) if u is continuous on [0, T ), continuously differentiable on (0, T ),

u(t) ∈ D(A) for 0 < t < T and (1.3) is satisfied on [0, T )

Theorem 1.2.2. If f ∈ L1([0, T ]) then for every x ∈ U the initial value

problem (1.3) has at most one solution. If the solution exists it is of the

form

(1.4) u(t) = Ttx+

∫ t

0
Tt−sf(s) ds.

Notice that for every f ∈ L1([0, T ]) the right-hand side of (1.4) is a

continuous function on [0, T ] but it is not necessarily differentiable. In this

case, according to Definition 1.2.1, u is not a classical solution. But we can

consider it as a generalized solution as follows.

Definition 1.2.3. Let A be the generator of a C0 semigroup (Tt)t≥0, let

x ∈ U and f ∈ L1([0, T ];U). The function u ∈ C([0, T ];U) given by (1.4)

for every t ∈ [0, T ] is called mild solution of the initial value problem (1.3).

It can be shown that under some conditions the mild solution is also the

classical solution, but in general the continuity of f is not sufficient.

Theorem 1.2.4. Let A be the generator of a C0 semigroup (Tt)t≥0. Let

f ∈ L1([0, T ];U) be continuous on (0, T ] and set v(t) =
∫ t
0 Tt−sf(s) ds for
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1. The transport equation

all 0 ≤ t ≤ T .

Then the initial value problem (1.3) has a classical solution on [0, T ) for

every x ∈ D(A) if one of the following conditions hold:

(1) v(t) is continuously differentiable on (0, T );

(2) v(t) ∈ D(A) for 0 < t < T and Av(t) is continuous on (0, T ).

Conversely, if (1.3) has a classical solution u on [0, T ) for some x ∈ D(A)

then v(t) satisfies both (1) and (2).

The mild solution of the transport equation

To formalize this approach in our case, we interpret all functions appearing

in (1.2) as functions only of time t and taking values in some suitable function

space U . The choice of the space U is crucial in order to prove existence

and uniqueness of the solution, and it turns out that a suitable choice is for

instance a fractional Sobolev space on D.

Set u : [0, T ] → U, t 
→ u(t) ∈ U and (u(t))(·) := u(t, ·) and choose u0 ∈ U .

The Dirichlet initial value problem becomes the following problem

(1.5)

{
d
dtu = ΔDu + 〈∇u,∇Z〉, t ∈ (0, T ]

u = u0, t = 0,

where ΔD stands for the Dirichlet-Laplace operator introduced in Section

1.1.3.

A function u is a mild solution of (1.5) if it satisfies the following integral

equation

(1.6) u(t) = Ptu0 +

∫ t

0
Pt−r〈∇u(r),∇Z〉 dr.

To give a formal meaning to the product 〈·, ·〉 we make use of the so called

paraproduct, see e. g. [62]. We shortly recall its definition and some useful

properties in the next section.

1.2.2 A pointwise multiplication

In this section we recall the notion of paraproduct introduced in [62] that

allows us to multiply a function and a distribution, provided that they are

good enough.

Suppose we are given f ∈ S ′(Rd). Choose a function ψ ∈ S(Rd) such that
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1. The transport equation

0 ≤ ψ(x) ≤ 1 for every x ∈ R
d, ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 3

2 .

Then consider the following approximation of f

Sjf(x) :=

(
ψ

(
ξ

2j

)
f̂

)∨
(x)

that is in fact the convolution of f with a smoothing function. This approx-

imation is used to define the product of two distributions fg as follows:

fg := lim
j→∞

SjfSjg

if the limit exists in S ′(Rd). The convergence in the case we are interested in

is part of the assertion below (see [29] appendix C.4, [62] Theorem 4.4.3/1).

Lemma 1.2.5. Let 1 < p, q < ∞ and 0 < β < δ and assume that q >

max(p, dδ ). Then for every f ∈ Hδ
p(R

d) and g ∈ H−β
q (Rd) we have

(1.7) ‖fg|H−β
p (Rd)‖ ≤ c‖f |Hδ

p(R
d)‖ · ‖g|H−β

q (Rd)‖.

The following Lemma regarding a locality-preserving property will be

used to shift the properties of the product fg from the whole R
d to the

domain D. For the proof see [62] Lemma 4.2.

Lemma 1.2.6. If f, g ∈ S ′(Rd) and supp(f) ⊂ D̄ then also supp(fg) ⊂ D̄.

Our aim now is to apply such product to ∇u(s) and ∇Z. We will denote

by 〈·, ·〉 the pointwise product combined with the scalar product in R
d.

Proposition 1.2.7. Let u(s) ∈ H̃1+δ
p (D), Z ∈ H1−β

q (Rd) for 1 < p, q <∞,

q > max(p, dδ ), 0 < β < 1
2 and β < δ. Then the pointwise multiplication

〈∇u(s),∇Z〉 is well defined, it belongs to the space H̃−β
p (D) and we have the

following bound

(1.8) ‖〈∇u(s),∇Z〉|H̃−β
p (D)‖ ≤ c‖∇u(s)|H̃δ

p(D)‖ · ‖∇Z|H−β
q (Rd)‖.

Proof. The idea is to apply first Lemma 1.2.5 to define the product as an

element of H−β
p (Rd) and then restrict it to H̃−β

p (D) with the help of Lemma

1.2.6.

Let f = ∇u(s) and g = ∇Z. We should check the conditions in Lemma 1.2.5.

Clearly g ∈ H−β
q (Rd) because Z ∈ H1−β

q (Rd) and it is easy to show that (∇)i

is bounded formHγ(Rd) toHγ−1(Rd) for every γ ∈ R and for all i = 1, . . . , d.
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The fact that f ∈ Hδ
p(R

d) is also clear since H̃1+δ
p (D) ⊂ H1+δ

p (Rd).

Denote m(s) := 〈∇u(s),∇Z〉 ∈ H−β
p (Rd) and by Lemma 1.2.5 we get

‖m(s)|H−β
p (Rd)‖ ≤ c‖∇u(s)|Hδ

p(R
d)‖ · ‖∇Z|H−β

q (Rd)‖ <∞.

Since supp u(s) ⊂ D̄ then supp∇u(s) ⊂ D̄ and so by Lemma 1.2.6 it follows

suppm(s) ⊂ D̄ and so m(s) ∈ H̃−β
p (D) since β < 1

2 . Moreover,

‖〈∇u(s),∇Z〉|H̃−β
p (D)‖ = ‖〈∇u(s),∇Z〉|H−β

p (Rd)‖
≤ c‖∇u(s)|Hδ

p(R
d)‖ · ‖∇Z|H−β

q (Rd)‖
= c‖∇u(s)|H̃δ

p(D)‖ · ‖∇Z|H−β
q (Rd)‖.

1.2.3 The integral operator

The notion of mild solution is now formalized. In order to check the con-

vergence of the integral appearing in the definition of the mild solution, we

introduce the following operator:

Definition 1.2.8. Given an H̃1+δ(D)-valued function u on [0, T ] we define

the integral operator I(·)(u) for any t ∈ [0, T ] setting

It(u) :=

∫ t

0
Pt−r〈∇u(r),∇Z〉 dr.

We consider this operator acting on the Hölder space Cγ([0, T ];U) into

itself (this mapping property will be proven later, see Theorem 2.2.2) for

some suitable γ and for some infinite dimensional Banach space U . The

Hölder space is defined as

Cγ([0, T ];U) := {h : [0, T ] → U s.t. ‖h‖γ,U <∞}

where

‖h‖γ,U := sup
t∈[0,T ]

‖h(t)‖U + sup
s<t∈[0,T ]

‖h(t)− h(s)‖U
(t− s)γ

.

When U = H̃1+δ(D) the norm will be indicated by ‖ · ‖γ,1+δ.
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Chapter 2

The main result

In this chapter we prove the contractivity of the operator I in the Hölder

space Cγ([0, T ]; H̃1+δ(D)). From this mapping property we obtain existence,

uniqueness and regularity of the solution in the above mentioned space.

In Section 2.1 we consider the local solution. This means the result is valid

up to an explosion time ε > 0 which needs to be small enough. In Section

2.2 we introduce a family of equivalent norms in Cγ([0, T ]; H̃1+δ(D)) thanks

to which we can prove the result for any T > 0.

Throughout the whole chapter c denotes a finite positive constant whose

exact value is not important and may change from line to line.

2.1 The local solution

We start with a result on existence and uniqueness of a local solution. Even

though this result is covered by the main theorem of Section 2.2, we give

here a detailed proof because in this case the computations are easier.

2.1.1 Preliminary results

Recall that m(r) := 〈∇u(r),∇Z〉 for all 0 ≤ r ≤ T .

Proposition 2.1.1. Let 0 < β < 1
2 and β < δ and fix a function Z ∈

H1−β
q (Rd) for some q > max(2, dδ ). Then for all 0 ≤ r ≤ t ≤ T and

u(t) ∈ H̃1+δ(D) we have

(1) ‖m(r)|H̃−β(D)‖ ≤ c‖u(r)|H̃1+δ(D)‖;

(2) ‖m(t)−m(r)|H̃−β(D)‖ ≤ c‖u(t)− u(r)|H̃1+δ(D)‖.
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2. The main result

Proof. (1) Observe that by definition ∇u(r) ∈ H̃δ(D) means that ∇u(r) ∈
Hδ(Rd) and supp(∇u(r)) ⊂ D̄. Also (∇)j : H

1+δ(Rd) → Hδ(Rd) is bounded

for all δ, i.e. for all f ∈ H1+δ(Rd) there exists c > 0 such that ‖∇f‖δ ≤
c‖f‖1+δ. These results combined with Proposition 1.2.7 (where p = 2) lead

to (1).

(2) Since H̃−β(D) is a linear space then m(t) − m(r) ∈ H̃−β(D). The

pointwise product and the operator ∇ are linear so we can write m(t) −
m(r) = 〈∇u(t) − ∇u(r),∇Z〉 = 〈∇(u(t) − u(r)),∇Z〉. Clearly u(t) − u(r)

is an element of H̃δ(D) ⊂ Hδ(Rd) so we proceed in the same way as for (1)

and we get the wanted result.

Proposition 2.1.2. Let 0 < β < δ < 1
2 and w ∈ H̃−β(D). Then Ptw ∈

H̃1+δ(D) for any t > 0 and moreover there exists a positive constant c such

that

(2.1) ‖Ptw‖1+δ ≤ c ‖w‖−β t
− 1+δ+β

2 .

Proof. Let w ∈ H̃−β(D). By (1.1) we have

‖Ptw‖1+δ ≤ c‖A 1+δ
2 Ptw‖0 = c‖A 1+δ

2 A
β
2A−β

2 Ptw‖0 = c‖A 1+δ+β
2 PtA

−β
2w‖0.

Since w ∈ H̃−β(D) then by Proposition 1.1.12 we have also A−β
2w ∈ L2(D)

and Theorem 1.1.11 part (c) ensures that the following bound holds for all

t > 0

‖A 1+δ+β
2 Pt‖L(L2(D)) ≤Me−θtt−

1+δ+β
2 .

This fact together with the previous bound imply

‖Ptw‖1+δ ≤ ct−
1+δ+β

2 ‖A−β
2w‖0 ≤ ct−

1+δ+β
2 ‖w‖−β <∞,

having used in the last inequality again equation (1.1).

2.1.2 Mapping properties of the integral operator

In what follows we state and give the proof of the main mapping property

of the integral operator: it is a contraction on a Banach space of function

with Hölder-type regularity in time and fractional Sobolev-type regularity

in space.

Theorem 2.1.3. Let 0 < β < δ < 1/2 and Z ∈ H1−β
q (D) for some q >

max(2, d/δ). Then for any γ such that 0 < 2γ < 1− δ − β it holds

I(·) : Cγ([0, T ]; H̃1+δ(D)) → Cγ([0, T ]; H̃1+δ(D))
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and the following estimate holds for any fixed u ∈ Cγ([0, T ]; H̃1+δ(D))

‖I(·)(u)‖γ,1+δ ≤ c(T )‖u‖γ,1+δ,

where c(T ) is a function of T not depending on u and such that

lim
T→0

c(T ) = 0.

Proof. Given any u ∈ Cγ
(
[0, T ]; H̃1+δ(D)

)
our goal is to bound

‖I(·)(u)‖γ,1+δ = sup
0≤t≤T

(
‖It(u)‖1+δ

+ sup
0≤s<t

‖It(u)− Is(u)‖1+δ

(t− s)γ

)
=: sup

0≤t≤T

(
(A) + (B)

)
using the norm of u, namely using ‖u‖γ,1+δ.

Step 1: consider part (A).

Fix t ∈ [0, T ]. By definition of I we have

(A) = ‖It(u)‖1+δ =

= ‖
∫ t

0
Pt−rm(r) dr‖1+δ

≤
∫ t

0
‖Pt−rm(r)‖1+δ dr.

Apply Proposition 2.1.2 with w = m(s) ∈ H̃−β(D) and afterwards Proposi-

tion 2.1.1 part (1) and obtain

(A) ≤
∫ t

0
c‖m(r)‖−β(t− r)−

1+δ+β
2 dr

≤
∫ t

0
c‖u(r)‖1+δ(t− r)−

1+δ+β
2 dr.

Observe that for any 0 ≤ r ≤ t ≤ T we have

‖u(r)‖1+δ ≤ sup
0≤r≤T

‖u(r)‖1+δ ≤ ‖u‖γ,1+δ

and then we obtain

(A) =‖It(u)‖1+δ ≤ c‖u‖γ,1+δ

∫ t

0
(t− r)−

1+δ+β
2 dr

≤ c‖u‖γ,1+δ
2

1 + δ + β
t
1−δ−β

2 .

25
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Finally we have

(2.2) (A) = ‖It(u)‖1+δ ≤ c1(t)‖u‖γ,1+δ.

where c1(t) := ct
1−δ−β

2 and so sup0≤t≤T c1(t) = c1(T ).

Step 2: consider part (B).

Let for the moment fix our attention only the argument inside the norm in

the numerator of (B). Recall that 0 ≤ s < t. We make a change of variable

in the middle integral r′ = r − t+ s and we obtain∫ t

0
Pt−rm(r) dr −

∫ s

0
Ps−rm(r) dr

=

∫ t−s

0
Pt−rm(r) dr +

∫ t

t−s
Pt−rm(r) dr −

∫ s

0
Ps−rm(r) dr

=

∫ t−s

0
Pt−rm(r) dr +

∫ s

0
Ps−rm(r + t− s) dr −

∫ s

0
Ps−rm(r) dr

=

∫ t−s

0
Pt−rm(r) dr +

∫ s

0
Ps−r

(
m(r + t− s)−m(r)

)
dr.

Therefore

‖It(u)− Is(u)‖1+δ =

∥∥∥∥
∫ t

0
Pt−rm(r) dr −

∫ s

0
Ps−rm(r) dr

∥∥∥∥
1+δ

=

∥∥∥∥
∫ t−s

0
Pt−rm(r) dr

+

∫ s

0
Ps−r

(
m(r + t− s)−m(r)

)
dr

∥∥∥∥
1+δ

,

and these computations enable us to write

(B) ≤ sup
0≤s<t

‖ ∫ t−s
0 Pt−rm(r) dr‖1+δ

(t− s)γ

+ sup
0≤s<t

‖ ∫ s
0 Ps−r

(
m(r + t− s)−m(r)

)
dr‖1+δ

(t− s)γ
=: (C) + (D).

Step 3: consider term (C).

The numerator is similar to term (A) and therefore we proceed as we did in
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2. The main result

Step 1. We have

(C) = sup
0≤s<t

‖ ∫ t−s
0 Pt−rm(r) dr‖1+δ

(t− s)γ

≤ sup
0≤s<t

∫ t−s
0 c‖u(r)‖1+δ(t− r)−

1+δ+β
2 dr

(t− s)γ

≤c‖u‖γ,1+δ sup
0≤s<t

∫ t−s

0
(t− r)−

1+δ+β
2 dr · (t− s)−γ

=c‖u‖γ,1+δ sup
0≤s<t

(t− s)
1−δ−β

2
−γ dr

=c‖u‖γ,1+δ t
1−δ−β−2γ

2 ,

where the last equality is valid if 1− δ − β − 2γ > 0.

Step 4: consider term (D).

First apply Proposition 2.1.2 to w = m(r+ t−s)−m(r) which is an element

of H̃−β(D) thanks to Proposition 1.2.7. Then apply Proposition 2.1.1, part

(2) and we get

(D) = sup
0≤s<t

∫ s
0 ‖Ps−r

(
m(r + t− s)−m(r)

)‖1+δ dr

(t− s)γ

≤ sup
0≤s<t

∫ s
0 ‖m(r + t− s)−m(r)‖−β(s− r)−

1+δ+β
2 dr

(t− s)γ

≤ sup
0≤s<t

∫ s

0

‖u(r + t− s)− u(r)‖1+δ

(t− s)γ
(s− r)−

1+δ+β
2 dr.

Fix the attention on the term
‖u(r+t−s)−u(r)‖1+δ

(t−s)γ . Observe that

‖u‖γ,1+δ = sup
0≤t≤T

‖u(t)‖1+δ + sup
0≤r<t≤T

‖u(t)− u(r)‖1+δ

(t− r)γ

and in particular, setting t − r = h, the second summand can be rewritten

as

sup
0<h≤r+h≤T

‖u(r + h)− u(r)‖1+δ

hγ
.

Since the parameters r and h are such that 0 < h ≤ r + h ≤ T , we then

have

(D) ≤c‖u‖γ,1+δ sup
0≤s<t

∫ s

0
(s− r)−

1+δ+β
2 dr

≤c‖u‖γ,1+δ sup
0≤s<t

s
1−δ−β

2

=c‖u‖γ,1+δ t
1−δ−β

2 <∞.
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Clipping the result for part (B) we obtain

(B) = (C) + (D) = sup
0≤s<t

‖It(u)− Is(u)‖1+δ

(t− s)γ
≤ c2(t)‖u‖γ,1+δ

where c2(t) = ct
1−δ−β−2γ

2 + ct
1−δ−β

2 . Again we have sup0≤t≤T c2(t) = c2(T ).

In conclusion the bound for (A)+(B) gives

‖I(·)(u)‖γ,1+δ = sup
0<t<T

(
(A) + (B)

)
≤ sup

0<t<T

(
c1(t) + c2(t)

)‖u‖γ,1+δ

= c(T )‖u‖γ,1+δ

where c(t) := c1(t)+ c2(t). Therefore c(T ) = cT
1−δ−β−2γ

2 + cT
1−δ−β

2 and this

quantity is finite for every fixed T . Moreover, since 1− δ− β − 2γ > 0 with

γ > 0 we have that c(T ) → 0 as T → 0.

2.1.3 Existence and uniqueness of a local solution

Thanks to this mapping property of I we can easily recover the existence

and uniqueness of a local mild solution for (1.5) .

Theorem 2.1.4. Let 0 < β < δ < 1/2 and 0 < 2γ < 1 − δ − β. Fix

Z ∈ H1−β
q (Rd) with q > max(2, d/δ). Then for any initial condition u0 ∈

H̃1+δ+2γ(D) there exists a sufficiently small ε > 0 for which (1.5) has a

unique local mild solution u in Cγ([0, ε]; H̃1+δ(D)). The solution satisfies

the integral equation u(t) = Ptu0 + It(u) for all 0 ≤ t ≤ ε.

Proof. From Theorem 2.1.3 we know that if u ∈ Cγ([0, T ]; H̃1+δ(D)) then

I(·)(u) ∈ Cγ([0, T ]; H̃1+δ(D)).

Now we should ensure that for u0 ∈ H̃σ(D), with σ ≥ 1 + δ + 2γ then

P(·)u0 ∈ Cγ([0, T ]; H̃1+δ(D)), namely that

sup
0≤t≤T

(
‖Ptu0‖1+δ + sup

0≤s<t

‖Ptu0 − Psu0‖1+δ

(t− s)γ

)
<∞.

For the second summand use part (d) of Theorem 1.1.11 and relation (1.1)

to obtain

‖Ptu0 − Psu0‖1+δ = ‖Ps(Pt−s − I)u0‖1+δ

≤ c‖Ps‖‖(Pt−s − I)u0‖1+δ ≤ c‖Ps‖(t− s)α‖Aαu0‖1+δ

≤ c‖Ps‖(t− s)α‖u0‖1+δ+2α ≤ cMe−ωs(t− s)α‖u0‖1+δ+2α
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for any 0 < α < 1. Therefore the second summand becomes

sup
0≤s<t≤T

‖Ptu0 − Psu0‖1+δ

(t− s)γ
≤ sup

0≤s<t≤T
cs(t− s)α

‖u0‖1+δ+2α

(t− s)γ

and if we choose α = γ then

sup
0≤s<t≤T

‖Ptu0 − Psu0‖1+δ

(t− s)γ
≤ cs‖u0‖1+δ+2γ ,

that is a finite quantity if u0 ∈ H̃1+δ+2γ(D).

So for any fixed u0 ∈ H̃1+δ+2γ(D) the operator J(·) := P(·)u0+I(·) is mapping

Cγ([0, T ]; H̃1+δ(D)) into itself.

It is left to prove that J(·) is a contraction, namely that there exists a

constant k < 1 such that for all u, v ∈ Cγ([0, T ]; H̃1+δ(D))

‖J(·)(u)− J(·)(v)‖γ,1+δ ≤ k‖u − v‖γ,1+δ.

To this aim observe that

‖J(·)(u)− J(·)(v)‖γ,1+δ = ‖P(·)u0 + I(·)(u)− P(·)u0 − I(·)(v)‖γ,1+δ

= ‖I(·)(u)− I(·)(v)‖γ,1+δ

= ‖I(·)(u − v)‖γ,1+δ

We clearly have w := u − v ∈ Cγ([0, T ]; H̃1+δ(D)) and then it suffices to

apply the result of Theorem 2.1.3 with w instead of u. Then let k = c(T )

and choose ε small enough such that for all T < ε we have c(T ) < 1.

2.2 The global solution

We look for a global solution on [0, T ] where T is now arbitrary.

2.2.1 Equivalent norms and mapping properties

Let us introduce a family of equivalent norms ‖ · ‖(ρ)γ,U , ρ ≥ 1 in Cγ([0, T ];U)

with which we can to get a bound for the integral operator which does not

depend on T . The (ρ)-norm is defined by

(2.3) ‖f‖(ρ)γ,U := sup
0≤t≤T

e−ρt

(
‖f(t)‖U + sup

0≤s<t

‖f(t)− f(s)‖U
(t− s)γ

)
.

Fact 2.1. The (ρ)-norm given by (2.3) is equivalent to ‖·‖γ,U in Cγ([0, T ];U)

for all ρ ≥ 1.
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Proof. For any f ∈ Cγ([0, T ];U) we have

‖f‖(ρ)γ,U = sup
0≤t≤T

e−ρt

(
‖f(t)‖U + sup

0≤s<t

‖f(t)− f(s)‖U
(t− s)γ

)

≤ sup
0≤t≤T

e0
(
‖f(t)‖U + sup

0≤s<t

‖f(t)− f(s)‖U
(t− s)γ

)

= sup
0≤s<t≤T

(
‖f(t)‖U +

‖f(t)− f(s)‖U
(t− s)γ

)
= ‖f‖γ,U .

On the other hand, it holds

‖f‖γ,U = sup
0≤s<t≤T

(
‖f(t)‖U +

‖f(t)− f(s)‖U
(t− s)γ

)

= sup
0≤t≤T

eρt

eρt

(
‖f(t)‖U + sup

0≤s<t

‖f(t)− f(s)‖U
(t− s)γ

)
≤ eρT ‖f‖(ρ)γ,U .

The following Lemma gives integral bounds which will be used later.

The proof makes use of the Gamma and the Beta functions together with

some basic integral estimates. Recall the definition of the gamma function:

Γ(a) =

∫ ∞

0
e−tta−1dt,

and the integral converges for any a ∈ C such that Re(a) > 0.

Lemma 2.2.1. If 0 ≤ s < t ≤ T < ∞ and 0 ≤ θ < 1 then for any ρ ≥ 1 it

holds

(2.4)

∫ t

s
e−ρrr−θdr ≤ Γ(1− θ)ρθ−1.

Moreover if γ > 0 is such that θ + γ < 1 then for any ρ ≥ 1 there exists a

positive constant C such that

(2.5)

∫ t

0
e−ρ(t−r)(t− r)−θr−γdr ≤ Cρθ−1+γ .

Proof. We start with (2.4). Consider the integral∫ t

s
e−ρrr−θdr =

∫ t

s
e−ρr(ρr)−θ+1−1ρθ dr
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now make the change of variable τ = ρr and obtain∫ ρt

ρs
e−ττ−θ+1−1ρθ−1 dτ ≤ ρθ−1

∫ ∞

0
e−ττ−θ+1−1 dτ = ρθ−1Γ(1− θ).

Let us prove (2.5). We make several changes of variable and get∫ t

0
e−ρ(t−r)(t− r)−θr−γdr {s = t− r}

=

∫ t

0
e−ρss−θ(t− s)−γds {u = ρs}

=

∫ ρt

0
e−uu−θρθργ(ρt− u)−γρ−1du

= ρθ+γ−1

∫ ρt

0
e−uu−θ(ρt− u)−γdu {Set z := ρt}

= ρθ+γ−1

∫ z

0
e−uu−θ(z − u)−γdu

=: ρθ+γ−1I(z).

The integral I(t) is finite for all z ≥ 0. If z = 0 then I(z) = 0. If z ∈ (0, 2]

we get

I(z) =

∫ z

0
e−uu−θ(z − u)−γdu {u = zx}

= z−θ−γ+1

∫ 1

0
e−zxx−θ(1− x)−γdx

≤ 2−θ−γ+1

∫ 1

0
x−θ(1− x)−γdx

≤ 2−θ−γ+1B(−θ + 1,−γ + 1).

If z ≥ 2 we can split I(z) into two parts and get

I(z) =

∫ z−1

0
euu−θ(z − u)−γdu+

∫ z

z−1
euu−θ(z − u)−γdu

≤
∫ z−1

0
euu−θdu+

∫ z

z−1
(z − u)−γdu = Γ(1− θ) +

1

1− γ
.

Theorem 2.2.2. Let 0 < β < δ < 1
2 and Z ∈ H1−β

q (Rd) for q > max(2, dδ ).

Then for any γ such that 0 < 2γ < 1− δ − β it holds

I : Cγ([0, T ]; H̃1+δ(D)) → Cγ([0, T ]; H̃1+δ(D))

and the following estimate holds for any fixed u ∈ Cγ([0, T ]; H̃1+δ(D))

(2.6) ‖I(·)(u)‖(ρ)γ,1+δ ≤ c(ρ)‖u‖(ρ)γ,1+δ
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where c(ρ) is a function of ρ not depending on u nor T and such that

lim
ρ→∞ c(ρ) = 0.

Proof. In order to prove this result we follow the line of Theorem 2.1.3 but

using the equivalent norm ‖ · ‖(ρ)γ,1+δ for some arbitrary ρ.

Given any u ∈ Cγ([0, T ]; H̃1+δ(D)) our goal is to bound

‖I(·)(u)‖(ρ)γ,1+δ = sup
0≤t≤T

(
e−ρt‖It(u)‖1+δ+

(2.7)

+ e−ρt sup
0≤s<t

‖It(u)− Is(u)‖1+δ

(t− s)γ

)
=: sup

0≤t≤T

(
(A) + (B)

)
using the (ρ)-norm of u, namely using ‖u‖(ρ)γ,1+δ.

Step 1: Consider part (A). Observe that for any 0 ≤ r ≤ t ≤ T

e−ρr‖u(r)‖1+δ ≤ sup
0≤r≤T

e−ρr‖u(r)‖1+δ ≤ ‖u‖(ρ)γ,1+δ.

Then we obtain

(A) ≤ e−ρt‖It(u)‖1+δ

≤ ce−ρt

∫ t

0
‖u(r)‖1+δ(t− r)−

1+δ+β
2 dr

≤ c‖u‖(ρ)γ,1+δ

∫ t

0
e−ρ(t−r)(t− r)−

1+δ+β
2 dr

= c‖u‖(ρ)γ,1+δ

∫ t

0
e−ρrr−

1+δ+β
2 dr

≤ c‖u‖(ρ)γ,1+δρ
1+δ+β

2
−1,

having used estimate (2.4) of Lemma 2.2.1 in the last line. Clipping the

result together we can state that

(A) = e−ρt‖It(u)‖1+δ ≤ c1(ρ)‖u‖(ρ)γ,1+δ

where c1(ρ) = cρ
δ+β−1

2 and since δ+β−1
2 < 0 we have c1(ρ) → 0 as ρ→ ∞.

Step 2: Consider part (B). As done in Step 2 for the proof of Theorem 2.1.3

we get

(B) ≤e−ρt sup
0≤s<t

‖ ∫ t−s
0 Pt−rm(r) dr‖1+δ

(t− s)γ

+ e−ρt sup
0≤s<t

‖ ∫ s
0 Ps−r(m(r + t− s)−m(r)) dr‖1+δ

(t− s)γ
:= (C) + (D).
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Step 3: Consider term (C).

The numerator is similar to the term (A) and therefore we proceed as we

did in Step 1. We have

(C) =e−ρt sup
0≤s<t

‖ ∫ t−s
0 Pt−rm(r) dr‖1+δ

(t− s)γ

≤e−ρt sup
0≤s<t

∫ t−s
0 c‖u(r)‖1+δ(t− r)−

1+δ+β
2 dr

(t− s)γ

≤ sup
0≤s<t

∫ t−s

0
e−ρ(t−r)c‖u‖(ρ)γ,1+δ(t− r)−

1+δ+β
2 (t− s)−γ dr

≤c‖u‖(ρ)γ,1+δ sup
0≤s<t

∫ t−s

0
e−ρ(t−r)(t− r)−

1+δ+β
2 r−γ dr

=c‖u‖(ρ)γ,1+δ

∫ t

0
e−ρ(t−r)(t− r)−

1+δ+β
2 r−γ dr

apply estimate (2.5) in Lemma 2.2.1 with θ = 1+δ+β
2 : since by hypothesis

2γ < 1− δ − β then γ + θ < 1. We obtain

(C) ≤ c‖u‖(ρ)γ,1+δρ
1+δ+β+2γ

2
−1 ≤c‖u‖(ρ)γ,1+δρ

δ+β+2γ−1
2 .

Clipping the result together

(C) = e−ρt sup
0≤s<t

‖ ∫ t−s
0 Pt−rm(r) dr‖1+δ

(t− s)γ
≤ c1‖u‖(ρ)γ,1+δρ

δ+β+2γ−1
2 .

Step 4: Consider term (D).

First apply Proposition 2.1.2 to w = m(r+ t−s)−m(r) which is an element

of H̃−β(D) thanks to Proposition 1.2.7. Then apply Proposition 2.1.1, part

(2).

(D) = e−ρt sup
0≤s<t

‖ ∫ s
0 Ps−r(m(r + t− s)−m(r)) dr‖1+δ

(t− s)γ

≤e−ρt sup
0≤s<t

∫ s
0 ‖m(r + t− s)−m(r)‖−β(s− r)−

1+δ+β
2

(t− s)γ
dr

≤ce−ρt sup
0≤s<t

∫ s

0

e−ρ(r+t−s)

e−ρ(r+t−s)

‖u(r + t− s)− u(r)‖1+δ(s− r)−
1+δ+β

2

(t− s)γ
dr

≤c sup
0≤s<t

∫ s

0
e−ρ(s−r)e−ρ(r+t−s) ‖u(r + t− s)− u(r)‖1+δ

(t− s)γ
(s− r)−

1+δ+β
2 dr.

Fix the attention on the term e−ρ(r+t−s) ‖u(r+t−s)−u(r)‖1+δ

(t−s)γ and set h = t−s:
we obtain

(2.8) e−ρ(r+h) ‖u(r + h)− u(r)‖1+δ

hγ
.
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Moreover observe that

‖u‖(ρ)γ,1+δ = sup
0≤t≤T

e−ρt‖u(t)‖1+δ + sup
0≤r<t≤T

e−ρt ‖u(t)− u(r)‖1+δ

(t− r)γ

and in particular, setting again t − r = h, the second summand can be

rewritten as

sup
0<h≤r+h≤T

e−ρ(r+h) ‖u(r + h)− u(r)‖1+δ

hγ
.

Therefore we can bound (2.8) by ‖u‖(ρ)γ,1+δ (since the parameters r and h are

such that 0 < h ≤ r + h ≤ T ) and applying once more estimate (2.4) in

Lemma 2.2.1 the upper bound for (D) becomes

(D) ≤c‖u‖(ρ)γ,1+δ sup
0≤s<t

∫ s

0
e−ρ(s−r)(s− r)−

1+δ+β
2 dr

≤c2‖u‖(ρ)γ,1+δρ
δ+β−1

2 Γ

(
δ + β − 1

2

)
.

Clipping the result for part (B) we obtain

(2.9) (B) = (C) + (D) = e−ρt sup
0≤s<t

‖It(u)− Is(u)‖1+δ

(t− s)γ
≤ c2(ρ)‖u‖(ρ)γ,1+δ

where c2(ρ) = cρ
δ+β+2γ−1

2 + cρ
δ+β−1

2 and since δ+β+2γ−1
2 and δ+β−1

2 are

negative we have c2(ρ) → 0 as ρ→ ∞.

Finally observe that the bound for (A) + (B) does not depend on t and

then the supremum over 0 ≤ t ≤ T of (A) + (B) is simply bounded by

‖I(·)(u)‖(ρ)γ,1+δ = sup
0≤t≤T

(
(A) + (B)

)
≤ (c1(ρ) + c2(ρ))‖u‖(ρ)γ,1+δ

that is the thesis.

2.2.2 Existence and uniqueness of a global solution

Now we prove existence and uniqueness of a global mild solution.

Theorem 2.2.3. Let 0 < β < δ < 1
2 and 0 < 2γ < 1 − β − δ. Fix

Z ∈ H1−β
q (Rd) for some q > max(2, dδ ). Then for any initial condition u0 ∈

H̃1+δ+2γ(D) and for any positive finite time T there exists a unique mild

solution u in Cγ([0, T ]; H̃1+δ(D)) for (1.5) satisfying the integral equation

u(t) = Ptu0 + It(u).
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Proof. We will follow the line of Theorem 2.1.4. By the proof of the latter

theorem, we already know that

• if u ∈ Cγ([0, T ]; H̃1+δ(D)) then I(·)(u) ∈ Cγ([0, T ]; H̃1+δ(D));

• if u0 ∈ H̃1+δ+2γ(D) then P(·)u0 ∈ Cγ([0, T ]; H̄1+δ(D)).

So for any fixed u0 ∈ H̃1+δ+2γ(D) the operator J(·) := P(·)u0+I(·) is mapping

Cγ([0, T ]; H̃1+δ(D)) into itself. It is left to prove that J(·) is a contraction

(for arbitrary T > 0), namely that there exists a constant k < 1 such that

for all u, v ∈ Cγ([0, T ]; H̃1+δ(D))

‖J(·)(u)− J(·)(v)‖(ρ)γ,1+δ ≤ k‖u − v‖(ρ)γ,1+δ.

For this aim observe that

‖J(·)(u)−J(·)(v)‖(ρ)γ,1+δ = ‖Ptu0 + I(·)(u)− Ptu0 − I(·)(v)‖(ρ)γ,1+δ

=

∥∥∥∥
∫ ·

0
P·−r〈∇u(r),∇Z〉dr −

∫ ·

0
P·−r〈∇v(r),∇Z〉dr

∥∥∥∥(ρ)
γ,1+δ

≤
∥∥∥∥
∫ ·

0
P·−r (〈∇(u(r)− v(r)),∇Z〉dr)

∥∥∥∥(ρ)
γ,1+δ

≤ ‖I(·)(u − v)‖(ρ)γ,1+δ.

We clearly have w := u − v ∈ Cγ([0, T ]; H̃1+δ(D)) and then it suffices to

apply the result of Theorem 2.2.2 with w instead of u and choose ρ big

enough such that the constant c(ρ) appearing in (2.6) is less than 1.
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Chapter 3

Applications: the stochastic

transport equation

In this chapter we will apply the previous results to some stochastic PDEs.

3.1 The stochastic transport equation

Consider the stochastic transport equation given by

(3.1)⎧⎪⎨
⎪⎩

∂u
∂t (t, x) = σ2Δu(t, x) + 〈∇u(t, x),∇Y (x, ω)〉, t ∈ (0, T ], x ∈ D

u(t, x) = 0, t ∈ (0, T ], x ∈ ∂D

u(0, x) = u0(x), x ∈ D

where Y = {Y (x, ω)}x∈Rd is a stochastic field defined on a given probability

space (Ω,F ,P). One suitable example for the noise Y is the Levy fractional

Brownian motion {BH(x)}x∈Rd which is the isotropic generalization of the

fractional Brownian motion (see [45]). This field is defined to be a centered

Gaussian field on R
d of covariance function

E[BH(x)BH(y)] =
1

2
(|x|2Hd + |y|2Hd − |x− y|2Hd ),

where |·|d stands for the Euclidean norm in R
d. The parameter 0 < H < 1 is

called Hurst parameter. In case when H = 1
2 we recover the Levy Brownian

motion, whereas if d = 1 we get the fractional Brownian motion. Using a

Kolmogorov continuity theorem suitable for stochastic fields (see for instance

[43], Theorem 1.4.1) and basic properties of Gaussian random variables one
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3. Applications: the stochastic transport equation

can show that there exist Ω1 ⊂ Ω with P(Ω1) = 1 and a modification of

BH(x), x ∈ D (for simplicity we call it again BH(x)) with D ⊂ R
d arbitrary

bounded domain of Rd such that for every ω ∈ Ω1 and for every x, y ∈ D

we have

|BH(x, ω)−BH(y, ω)| ≤ Kω|x− y|αd , ∀α < H,

where K is a positive random variable with finite moments of every order.

In other words, for almost every realization ω the field is α-Hölder continuous

on D of any order α < H. This fact together with the following property

enable us to apply the results presented in the previous section to equation

(3.1) in a pathwise sense.

Proposition 3.1.1. Let h be a compactly supported real valued α-Hölder

continuous function on Rd for some 0 < α < 1. Then for any α′ < α we

have h ∈ Hα′
p (Rd) for all 2 ≤ p <∞.

The proof makes use of the equivalent norm

‖h‖Lp +

(∫
|y|≤1

‖h(·+ y)− h(·)‖2Lp

|y|d+2α′ dy

) 1
2

for the Besov spaces Bα′
p,2(R

d) and of embedding properties between Besov

and Sobolev spaces (see [73] for more details).

Proof. First recall the embedding relation between the Besov spaces and

the Bessel potential spaces (see [73] for definition, equivalent norms in Sec-

tion 11.4 and embedding results in Section 2.6.1): Bα′
p,2(R

d) ⊂ Fα′
p (Rd) =

Hα′
p (Rd) for all p ≥ 2 and all 0 < α′ < 1, and an equivalent norm in Bα′

p,2(R
d)

is

(3.2) ‖h‖Lp +

(∫
|y|≤1

‖h(·+ y)− h(·)‖2Lp

|y|d+2α′ dy

)1/2

where ‖ · ‖Lp is the norm in Lp(Rd). Clearly the first summand of (3.2)

is finite, since h is continuous and it has compact support. Consider for a

moment only ‖h(· + y) − h(·)‖2Lp for some fixed y ∈ R
d such that |y| ≤ 1.

The set K = supp(h) ⊂ R
d is compact by assumption. We define

K̃ := {z = x+ y : x ∈ K, y ∈ R
d, |y| ≤ 1}
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which is obviously also a compact set. Moreover for any |y| ≤ 1 the function

h(· + y) − h(·) is supported in K̃. Using the Hölder continuity we have for

all y ∈ R
d, |y| ≤ 1

‖h(·+ y)− h(·)‖2Lp ≤
(∫

K̃
|h(x+ y)− h(x)|pdx

)2/p

≤
(∫

K̃
cp|y|αpd dx

)2/p

= c2λ(K̃)|y|2αd ≤ c|y|2αd .

We can now easily bound the second summand in (3.2). Let ε := α− α′.(∫
|y|≤1

‖h(·+ y)− f(·)‖2Lp

|y|d+2α′ dy

)1/2

≤
(∫

|y|≤1

|y|2α
|y|d+2α′ dy

)1/2

≤
(∫

|y|≤1

1

|y|d−2ε
dy

)1/2

≤ C <∞

because d− 2ε < d since ε > 0 by assumption.

In order to apply this to (almost every) path of BH we should ensure

the compactness of the support. This is not true in general. Instead, since

(3.1) is considered only on the domain D, let ψ(x), x ∈ R
d be a C∞-function

with compact support and such that ψ(x) = 1 ∀x ∈ D̄. Then for almost

every ω ∈ Ω the function ψ(x)BH(ω, x) is α-Hölder continuous we have that

for all 1 < q < ∞ and for all α′ < α < H, ψ(·)BH(ω, ·) ∈ Hα′
q (Rd). For

consistency of notation call 1−β := α′, and so 1−β < H. In order to match

the conditions on the parameter β we have to choose 1
2 < H < 1. Then for

every ω ∈ Ω1 we set Z(x) := ψ(x)BH(ω, x) and so Theorem 2.2.3 ensures

existence and uniqueness of a function solution to the stochastic Dirichlet

problem (3.1) with Y = BH .

3.2 A (more) general stochastic transport equa-

tion

We combine in this section the main result obtained in Chapter 2 with

a result obtained by Hinz and Zähle in [29]. In this paper they consider

(among others) a linear equation of the form

(3.3)

⎧⎨
⎩

∂u
∂t = −Au+ F ∂

∂t∇V, t ∈ (0, T ]

u(0, x) = f(x),
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where F is a deterministic vector and V is a given non-differentiable function

which can be for example the path of a space-time fractional noise. More

precisely, the field V is taken to be an element of C1−α([0, T ];H1−β
q (Rd)).

The solution to (3.3) is given in the mild form as

u(t, ·) = Ptf(·) +
∫ t

0
Pt−s

(
F · ∇V (s)

)
(·) ds

= Ptf(·) + Iα
′

t (F,
∂

∂t
∇V )

where the integral operator Iα
′

t (F, ∂
∂t∇V ) is defined in Definition 2.1 of [29]

(we only need the case k = 1). Fourier transform is used to perform the

integration with respect to the space variable x and fractional derivatives

are employed to give a meaning to the derivative with respect to time.

To get a better idea about the definition of this integral operator, let us

write it with the help of a mapping Ψt(·) given by

Ψt(s)(w) := Pt−s

(
F · w),

for any w ∈ H̃−β
q (D). The integral operator becomes then∫ t

0
Pt−s

(
F · ∇V (s)

)
ds =

∫ t

0
Ψt(s)

(
F · ∇V (s)

)
ds.

They show that in fact Ψt is an operator valued mapping

Ψt : [0, t] → L(H̃−β(D); H̃δ(D)
)

(for some β) with fractional order of smoothness α′ (in time) slightly bigger

than α, where α appears in the smoothness of V . By assumptions on V it

follows also that ∇V has fractional order of smoothness 1−α′ therefore one
can define ∫ t

0
Ψt(s)

(∇V (s)
)
ds =

∫ t

0
Dα′

0+Ψt(s)
(
D1−α′

t− Vt
)
ds,

where Vt := V − V (t) and Dα′
0+ and D1−α′

t− are respectively left and right

sided fractional derivatives in Banach spaces (for more details see [28]).

The authors exploit also the regularity of this integral and prove in Proposi-

tion 7.1 that if 0 < α, β, γ < 1 with α+γ < 1 and 2γ+δ̃ < 2−2α−β then the

integral Iα
′

(·)(F,
∂
∂t∇V ) (which in fact does not depend on α′) belongs to the

space Cγ([0, T ]; H̃ δ̃(D)) for any given function V ∈ C1−α([0, T ];H1−β(Rd))

and vector F ∈ R
d.
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Taking this into account we are able to give the following existence and

uniqueness result.

Corollary 3.2.1. Let T > 0 be fixed, choose 0 < β < δ < 1
2 and 0 < 2γ <

1 − β − δ. Fix F ∈ R
d, Z ∈ H1−β

q (Rd) and V ∈ C1−α([0, T ];H1−β
q (Rd))

for some q > max(2, dδ ) and for some 0 < α < 1 such that α + γ < 1.

Then given any initial condition u0 ∈ H̃1+δ+2γ(D) there exists a unique

global mild solution u(t, x) in the Hölder space Cγ([0, T ]; H̃1+δ(D)) for the

problem

(3.4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t (t, x) = σ2Δu(t, x) + 〈∇u(t, x),∇Z(x)〉

+ 〈F, ∂
∂t∇V (t, x)〉, t ∈ (0, T ], x ∈ D

u(t, x) = 0, t ∈ (0, T ], x ∈ ∂D

u(0, x) = u0(x), x ∈ D

and the solution is given by

u(t, ·) = Ptu0 + It(u) + Iαt (F,
∂

∂t
∇V ).

Proof. Set δ̃ := 1 + δ. Since 2γ < 1 − δ − β then 2γ + δ̃ < 2 − β and if

one chooses a positive α such that 2γ + δ̃ < 2 − β − 2α then the condition

α+ γ < 1 is satisfied and by Proposition 7.1 in [29] we have Iα(·)(F,
∂
∂t∇V ) ∈

Cγ([0, T ]; H̃ δ̃(D)). Finally apply a contraction principle as applied in the

proof of Theorem 2.2.3 and recover the thesis.

With the same technique illustrated in Section 3.1 one can solve (3.4) in

the case when Z and V are substituted by stochastic fields, and then the

system is solved in the pathwise sense. See [29], Section 6 for a survey on

possible noises in place of V .
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Part II

Cylindrical approach
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Chapter 4

The fractional Brownian

motion

This chapter is devoted to fractional Brownian motion (fBm) and related

stochastic calculus.

In Section 4.1 we define the fBm in R, Rn and more generally in a Hilbert

space. FBm is a family of Gaussian processes depending on the so-called

Hurst parameter H ∈ (0, 1) and (except for H = 1/2) they are not semi-

martingales. For this reason a stochastic calculus different from Îto-type

calculus has been developed in the last decades, leading to many different

approaches, each of them exploiting a different property of fBm.

In Section 4.2 we present Wiener integrals. This integration theory can

be performed for deterministic integrands with respect to general Gaussian

processes. In Subsection 4.2.1 we recall the theory of Wiener integrals for

real valued Gaussian processes, with the main focus on fractional Brownian

motion. This theory is classical and we refer to [9, 52] for more details.

In Subsection 4.2.2 we present the theory of Wiener integrals for Hilbert

space valued integrands with respect to real valued fBm. This results is

a generalization of the real case and appeared in some works of Duncan et

al. [22, 20, 57]. The integral as stochastic process (indexed by time t ∈ [0, T ])

is also considered. Some result on continuity with respect to time are given

in some special cases (the answer to this question in general is still un-

known). Finally, in Subsection 4.2.4 we give a detailed proof of stochastic

Fubini theorem for fractional Brownian motion for Wiener integrals.
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4.1 Introduction

The fractional Brownian motion was first introduced in 1940 in a Hilbert

space framework by Kolmogorov (see [41]) with the name Wiener Helix.

Later on, Hurst and coauthors published some papers devoted to long-term

storage capacity in reservoirs (see [34, 35]), after which the parameter H was

named Hurst parameter. In 1968 Mandelbrot and Van Ness provided in [48]

a stochastic integral representation of this process in terms of a standard

Brownian motion. From this pioneering work originates the name fractional

Brownian motion and this paper was the starting point for the develop-

ment of a stochastic calculus for this process. Because of its long-memory

property, fBm has been used in various models dealing for instance with

teletraffic, finance, climate and weather derivatives.

We start with the definition of fractional Brownian motion in R. Let

(Ω,F ,P) be a complete probability space.

Definition 4.1.1. A fractional Brownian motion with Hurst parameter

H ∈ (0, 1) is a continuous and centered Gaussian process {bH(t), t ≥ 0}
on (Ω,F ,P) with covariance function

E
[
bH(t)bH(s)

]
=

1

2

(
t2H + s2H − |t− s|2H) .

The special case H = 1/2 correspond to the Brownian motion. For the

fBm bH := {bH(t), t ≥ 0} we have the following properties:

1. bH(0) = 0.

2. bH has homogeneous increments.

3. bH is a Gaussian process with E[bH(t)] = 0 and E[(bH(t))2] = t2H for

all t ≥ 0 and for all H ∈ (0, 1).

4. bH has continuous trajectories.

5. bH is a self-similar process, i.e. Law(bH(at), t ≥ 0) = Law(aHbH(t), t ≥
0).

6. bH admits a version with a.s. α-Hölder continuous trajectories of order

α < H.

7. bH is not a semimartingale for H �= 1/2.
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Let (·, ·)n denote the Euclidean scalar product in R
n. The definition of

fBm can be generalized to R
n as follows.

Definition 4.1.2. Let M be a positive symmetric n × n matrix. A con-

tinuous, zero-mean, Rn-valued Gaussian process {bH(t), t ∈ R+} is said to

be a fractional Brownian motion in R
n (or n-dimensional fBm) with Hurst

parameter H ∈ (0, 1) if E[(v, bH(t))n] = 0 for all v ∈ R
n and t ∈ R+ and

E[(v1, b
H(t))n(v2, b

H(s))n] = (Mv1, v2)n
1

2
(t2H + s2H − |t− s|2H)

for all t, s ∈ R+ and v1, v2 ∈ R
n.

Example 4.1. Let M = Id. Then BH is called standard fractional Brown-

ian motion in R
n since the components of the process are independent.

Example 4.2. If H = 1/2 and M = Id we recover the Brownian motion in

R
n because the covariance is given by

E[(v1, b
1/2(t))n(v2, b

1/2(s))n] = (v1, v2)n(t ∧ s).

In a similar way as in R
n, one can give the definition of fBm in a Hilbert

space. Let H be a separable Hilbert space (possibly infinite dimensional)

with scalar product [·, ·]H . Let a ∈ H and Q be a positive, symmetric and

trace-class operator on H. A Gaussian measure μ on (H,B(H)) is a measure

with mean a, covariance operator Q and Fourier transform given by

μ̂(h) = exp

{
i(a, h)− 1

2
[Qh, h]H

}
, h ∈ H.

A random variable X in H is Gaussian if its law is Gaussian. The following

definition of a Hilbert space-valued fBm is verbally given by Duncan et

al. [19].

Definition 4.1.3. Let Q be a non-negative, nuclear, self-adjoint operator on

H. A continuous, zero-mean H-valued Gaussian process {XH(t), t ∈ R+}
is said to be a fractional Brownian motion with Hurst parameter H ∈ (0, 1)

associated to the covariance operator Q, if E[[h,XH(t)]H ] = 0 for all h ∈ H

and t ∈ R+ and

(4.1) E
[
[h1, X

H(t)]H [h2, X
H(s)]H

]
= [Qh1, h2]H

1

2
(t2H + s2H − |t− s|2H)

for all t, s ∈ R+ and h1, h2 ∈ H.

44



4. The fractional Brownian motion

4.2 Wiener integral wrt real valued fBm

In this section we recall the theory of Wiener integrals for a real valued

fractional Brownian motion bH := {bH(t), t ≥ 0}.
In the first subsection we consider real valued integrands and we refer to

[9, 52]. In the second subsection we focus on Wiener integrals with respect

to real valued fBms for Hilbert space valued integrands. For more details

see the works of Duncan and coauthors [22, 20, 57]. In the third subsection

we consider the integral as a stochastic process and derive some properties

of it. In the last subsection we give the detailed proof of stochastic Fubini

theorem for fBm (with respect to Wiener integrals).

4.2.1 Wiener integrals for real valued integrands

In the following we introduce the Wiener integral of a real valued determin-

istic function φ with respect to a one dimensional fBm following [9], Chapter

2. For more details we refer to this book.

Let bH := {bH(t), t ≥ 0} be a real fractional Brownian motion defined on a

probability space (Ω,F ,P) and denote its covariance function by

RH(t, s) := E[bH(t)bH(s)] =
1

2
(t2H + s2H − |t− s|2H).

The covariance function has an integral representation given by

(4.2) RH(t, s) =

∫ t∧s

0
KH(t, u)KH(s, u) du,

where the kernel KH(t, s) has different expressions for H < 1/2 and H >

1/2. If H > 1/2, for t > s we have

KH(t, s) = cHs
1/2−H

∫ t

s
(u− s)H−3/2uH−1/2 du,

where cH = [H(2H − 1)/β(2 − 2H,H − 1/2)]1/2 and β(α, γ) := Γ(α +

γ)/(Γ(α)Γ(γ)) with Γ(·) indicating the Gamma function.

If H < 1/2, for t > s we have

KH(t, s) = dH

[( t
s

)H−1/2

(t− s)H−1/2

−
(
H − 1

2

)
s1/2−H

∫ t

s
(u− s)H−1/2uH−3/2 du

]
,

where dH = [2H/((1− 2H)β(1− 2H,H + 1/2))]−1/2.

45



4. The fractional Brownian motion

The Wiener integral

Let ET be the set of simple functions on [0, T ] with values in R, that is

ET := {φ : [0, T ] → R such that φ(t) =

L−1∑
i=0

λi�[ti,ti+1)(t),

with λi ∈ R, 0 = t0 < t1 < . . . < tL = T}.

Every function in ET can be expressed as a sum of simple functions of the

form μ�[0,t). This representation is not unique. We define a scalar product

on ET by

(4.3)

〈
L−1∑
i=0

λi�[0,ti) ,

M−1∑
j=0

μj�[0,sj)

〉
HT

:=

L−1∑
i=0

M−1∑
j=0

λiμjRH(ti, sj).

It is easy to show that it is well defined in the sense that it does not depend

on the representation. Let denote by HT the closure of ET with respect to

〈·, ·〉HT
. The Wiener integral of a simple function φ ∈ ET of the form

φ(t) =

L−1∑
i=0

λi�[ti,ti+1)(t)

is defined as

(4.4)

∫ T

0
φ(t) dbH(t) :=

L−1∑
i=0

λi
(
bH(ti+1)− bH(ti)

)
and it is also sometimes denoted by bHT (φ). The norm of φ in ET is given by

‖φ‖2HT
= ‖

L−1∑
i=0

λi�[ti,ti+1)‖2HT
= 〈

L−1∑
i=0

λi�[ti,ti+1),

L−1∑
j=0

λj�[tj ,tj+1)〉HT

=
L−1∑
i=0

L−1∑
j=0

λiλj〈�[0,ti+1) − �[0,ti),�[0,tj+1) − �[0,tj)〉HT

=
L−1∑
i=0

L−1∑
j=0

λiλj [RH(ti+1, tj+1) +RH(ti, tj)−RH(ti, tj+1)

−RH(ti+1, tj)].
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4. The fractional Brownian motion

The norm1 of the stochastic integral bHT (φ) in L2
P
(Ω;R) is

‖bHT (φ)‖2L2
P
(Ω;R) = E

∣∣∣∣∣
L−1∑
i=0

λi
(
bH(ti+1)− bH(ti)

)∣∣∣∣∣
2

= E

⎡
⎣L−1∑

i=0

L−1∑
j=0

λiλj
(
bH(ti+1)− bH(ti)

) (
bH(tj+1)− bH(tj)

)⎤⎦
=

L−1∑
i=0

L−1∑
j=0

λiλj [RH(ti+1, tj+1) +RH(ti, tj)−RH(ti, tj+1)+

−RH(ti+1, tj)].

Thus, we obtain ‖bHT (φ)‖2
L2
P
(Ω;R)

= ‖ϕ‖2HT
. This means that the map φ 
→∫ T

0 φ dbH defines an isometry between ET and L2
P
(Ω;R) and so one can ex-

tend bHT (·) as an operator

HT → L2
P(Ω;R), φ 
→ bHT (φ).

This extension defines the Wiener integral of φ with respect to bH .

A characterization of HT

Consider the linear operator K∗
T for all H ∈ (0, 1) given by

(K∗
Tφ)(s) := φ(s)KH(T, s) +

∫ T

s
(φ(u)− φ(s))

∂KH

∂u
(u, s) du

for φ ∈ ET . We have

(K∗
T�[0,t))(s)

= �[0,t)(s)KH(T, s) +

∫ T

s
(�[0,t)(u)− �[0,t)(s))

∂KH

∂u
(u, s) du

= �[0,t)(s)

(
KH(T, s) +

∫ T

s
(�[0,t)(u)− �[0,T )(u))

∂KH

∂u
(u, s) du

)
(4.5)

= �[0,t)(s)

(
KH(T, s)−

∫ T

t

∂KH

∂u
(u, s) du

)
= �[0,t)(s)KH(t, s).

1We denote by L0
P(Ω;R) the space of random variables on (Ω,F ,P) with values in R

and by L2
P(Ω;R) the space of square-integrable random variables with values in R.
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4. The fractional Brownian motion

Therefore, it follows that

‖K∗
T�[0,t)‖2L2([0,T ]) = ‖�[0,t)KH(t, ·)‖2L2([0,T ])

=

∫ t

0
KH(t, s)2 ds = RH(t, t) <∞,

and so for each φ ∈ ET , by linearity, K∗
T takes values in L2([0, T ]). For this

reason it is possible to introduce the following scalar product on ET

(4.6) 〈φ, ψ〉ET := 〈K∗
Tφ,K

∗
Tψ〉L2([0,T ]).

In this way the map

K∗
T : (ET , 〈·, ·〉ET ) → L2([0, T ])

is an isometry. Notice that the scalar product defined on ET by (4.6) coin-

cides with the one introduced before by (4.3): in fact we have

〈�[0,t),�[0,s)〉ET = 〈K∗
T�[0,t),K

∗
T�[0,s)〉L2([0,T ])

= 〈KH(t, ·)�[0,t),KH(s, ·)�[0,s)〉L2([0,T ])

=

∫ t∧s

0
KH(t, u)KH(s, u)du

= RH(t, s) = 〈�[0,t),�[0,s)〉HT
.

Therefore, the closure of ET with respect to 〈·, ·〉ET coincides with HT and

since the operator K∗
T is an isometry, we can extend it to HT . The isometry

property will still hold and combining it with the isometry between HT and

L2
P
(Ω;R) we get

(4.7) E

∣∣∣∣
∫ T

0
φ dbH

∣∣∣∣2 = ‖K∗
Tφ‖2L2([0,T ])

for all φ ∈ HT .

4.2.2 Wiener integrals for Hilbert space valued integrands

The same construction of Wiener integrals can be generalised to Hilbert

space valued integrands. In this case the integral will be an element of the

Hilbert space. Here we recall it briefly, for more details see [19, 20, 57].

Let H be a separable Hilbert space with scalar product [·, ·]H and bH

a real valued fBm on (Ω,F ,P). Consider the space of simple functions
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4. The fractional Brownian motion

Φ : [0, T ] → H and denote it by ET , that is

ET := {Φ : [0, T ] → H such that Φ(t) =

L−1∑
i=0

αi�[ti,ti+1)(t),

with αi ∈ H, 0 = t0 < t1 < . . . < tL = T}.

Then consider the inner product on ET given by

(4.8)

〈
L−1∑
i=0

αi�[0,ti) ,
M−1∑
j=0

γj�[0,sj)

〉
HT

=
L−1∑
i=0

M−1∑
j=0

[αi, γj ]HRH(ti, sj).

Let us denote by HT the closure of ET with respect to 〈·, ·〉HT
. The

Wiener integral of Φ =
∑L−1

i=0 αi�[ti,ti+1) ∈ ET with respect to bH is defined

as

(4.9)

∫ T

0
ΦdbH :=

L−1∑
i=0

αi

(
bH(ti+1)− bH(ti)

)
,

also denoted by bH(Φ). The integral bH(Φ) is a random variable which takes

values in H and the map Φ 
→ bH(Φ) can be extended to all Φ ∈ HT as in

the real valued case because of the isometry between L2
P
(Ω;R) and ET

(4.10) E

∥∥∥∥
∫ T

0
ΦdbH

∥∥∥∥2
H

= ‖Φ‖2ET
.

This isometry is derived with similar computations as in the real valued

case: in fact both the right and the left hand side equal the quantity

L−1∑
i=0

L−1∑
j=0

[αi, αj ]H(RH(ti+1, tj+1) +RH(ti, tj)−RH(ti, tj+1)−RH(ti+1, tj)).

Let us introduce the linear operator K∗
T on ET defined by

(K∗
TΦ)(t) := Φ(t)KH(T, t) +

∫ T

t
(Φ(s)− Φ(t))

∂KH

∂s
(s, t) ds

for Φ ∈ ET . The integral appearing on the right-hand side is a Bochner

integral. As for the real valued case, the scalar product on ET given by

〈Φ,Ψ〉ET
:= 〈K∗

TΦ,K
∗
TΨ〉L2([0,T ];H)
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4. The fractional Brownian motion

coincides with (4.8) because K
∗
T

(
α�[0,t)

)
(u) = αKH(t, u)�[0,t)(u) so that

〈α�[0,t), γ�[0,s)〉ET
=
〈
K

∗
T

(
α�[0,t)

)
,K∗

T

(
γ�[0,s)

)〉
L2([0,T ];H)

=
〈
αKH(t, ·)�[0,t), γKH(s, ·)�[0,s)

〉
L2([0,T ];H)

= [α, γ]H〈KH(t, ·)�[0,t),KH(s, ·)�[0,s)〉L2([0,T ])

= [α, γ]H

∫ t∧s

0
KH(t, u)KH(s, u) du

= [α, γ]HRH(t, s) = 〈α�[0,t), γ�[0,s)〉HT
.

Moreover K∗
T is an isometry between ET and L2([0, T ];H). Therefore, it can

be extended to HT . Combining it with (4.10) we get the following isometry

between L2
P
(Ω;R) and L2([0, T ];H)

(4.11) E

∥∥∥∥
∫ T

0
Φ dβH

∥∥∥∥2
H

= ‖K∗
TΦ‖2L2([0,T ];H)

for all Φ ∈ HT .

4.2.3 The integral as a stochastic process

In this section we introduce the integral
∫ t
0 φ db

H for t ∈ [0, T ] and consider

the process {∫ t
0 φ db

H , t ≥ 0}. In order for it to be well defined we restrict

ourself to the class of φ ∈ HT such that �[0,t)φ ∈ HT for all t ∈ [0, T ].

Definition 4.2.1. We define

ST := {φ ∈ HT such that �[0,t)φ ∈ HT for all t ∈ [0, T ]}.

Definition 4.2.2. Let bH be a fBm in R and φ ∈ ST . We have

bHT (�[0,t)φ) :=

∫ T

0
�[0,t)(s)φ(s) db

H(s)

for all t ∈ [0, T ].

The integral is well defined because for each φ ∈ ST then �[0,t)φ ∈ HT .

To show that in this way one defines an integral that is consistent with the

integral bHt (φ) =
∫ t
0 φ(s) db

H(s), we have to introduce some other objects.

Let Et and Ht be the analogous spaces to ET and HT but defined for any

fixed t ∈ [0, T ]. The operator K∗
t will be the analogous of K∗

T , defined on

Ht with values in L2(0, t). Clearly it is an isometry.

50



4. The fractional Brownian motion

Proposition 4.2.3. Let φ ∈ Ht. Then for all s ∈ [0, T ] we have

�[0,t)(s)(K
∗
t φ)(s) = K∗

T (�[0,t)φ)(s).

Proof. We have

(K∗
t φ)(s) =KH(t, s)φ(s) +

∫ t

s
(φ(r)− φ(s))

∂KH

∂r
(r, s) dr

=KH(t, s)φ(s) +

∫ t

s
φ(r)

∂KH

∂r
(r, s) dr

− φ(s)[KH(t, s)−KH(s, s)]

=

∫ t

s
φ(r)

∂KH

∂r
(r, s) dr + φ(s)KH(s, s).

It follows that

�[0,t)(s)(K
∗
t φ)(s) =�[0,t)(s)

∫ t

s
φ(r)

∂KH

∂r
(r, s) dr + �[0,t)(s)φ(s)KH(s, s)

=

∫ t

s
�[0,t)(r)φ(r)

∂KH

∂r
(r, s) dr + �[0,t)(s)φ(s)KH(s, s)

− �[0,t)(s)φ(s)KH(T, s) + �[0,t)(s)φ(s)KH(T, s)

=

∫ T

s
�[0,t)(r)φ(r)

∂KH

∂r
(r, s) dr

−
∫ T

s
�[0,t)(s)φ(s)

∂KH

∂r
(r, s) dr + �[0,t)(s)φ(s)KH(T, s)

=

∫ T

s
(�[0,t)(r)φ(r)− �[0,t)(s)φ(s))

∂KH

∂r
(r, s) dr

+ �[0,t)(s)φ(s)KH(T, s)

=K∗
T (�[0,t)φ)(s),

which completes the proof.

Remark 4.1. The integral bHt (φ) defined directly usingK∗
t andHt coincides

with bHT (�[0,t)φ), as expected.

Proof. Let φ ∈ ST . By Proposition 4.2.3 we have

E

∣∣∣∣
∫ T

0
�[0,t)(s)φ(s) db

H(s)

∣∣∣∣2 = ‖K∗
T (�[0,t)φ)‖L2(0,T )

= ‖�[0,t)K∗
t φ‖L2(0,T )

= ‖K∗
t φ‖L2(0,t)

= E

∣∣∣∣
∫ t

0
φ(s) dbH(s)

∣∣∣∣2 .
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4. The fractional Brownian motion

This tells us that bHT (�[0,t)φ) = bHt (φ) in L2
P
(Ω,R). Notice that from the last

computations we also get that

‖�[0,t)φ‖HT
= ‖φ‖Ht ,

which ensures that ‖φ‖Ht <∞ if �[0,t)φ ∈ HT . In other words, the condition

φ ∈ ST implies that the integral
∫ t
0 φ db

H is well defined as isometry between

Ht and L
2
P
(Ω;R) for all t ∈ [0, T ].

In what follows, for all φ ∈ ST , we consider the integral as a process,

{bHt (φ), t ∈ [0, T ]}. We prove the existence of a continuous version of the

integral process under some suitable conditions. Similar results were proven

in [44] for a different kind of integral with respect to fractional Brownian

motion.

Lemma 4.2.4. Let 0 ≤ t1 ≤ t2 ≤ T . It holds

‖K∗
T�[t1,t2)‖L2(0,T ) = |t2 − t1|H .

Proof. Recall that the operator K∗
T is linear. It holds

‖K∗
T�[t1,t2)‖2L2 = ‖K∗

T�[0,t2) −K∗
T�[0,t1)‖2L2(0,T )

=

∫ T

0
|K∗

T�[0,t2)(t)−K∗
T�[0,t1)(t)|2 dt

=

∫ T

0

( (
K∗

T�[0,t2)(t)
)2

+
(
K∗

T�[0,t1)(t)
)2

− 2K∗
T�[0,t1)(t)K

∗
T�[0,t2)(t)

)
dt,

and by (4.5) we get

=

∫ T

0

(
�[0,t2)(t)KH(t2, t)

)2
dt+

∫ T

0

(
�[0,t1)(t)KH(t1, t)

)2
dt

− 2

∫ T

0
�[0,t1)(t)�[0,t2)(t)KH(t1, t)KH(t2, t) dt

=

∫ t2

0
(KH(t2, t))

2 dt+

∫ t1

0
(KH(t1, t))

2 dt

− 2

∫ t1∧t2

0
KH(t1, t)KH(t2, t) dt.

Using the integral representation (4.2) of RH(t, s) we finally have

‖K∗
T�[t1,t2)‖2L2 = RH(t2, t2) +RH(t1, t1)− 2RH(t1, t2)

= t2H2 + t2H1 − (t2H1 + t2H2 − |t2 − t1|2H) = |t2 − t1|2H .
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4. The fractional Brownian motion

Proposition 4.2.5. Let H ∈ (1/2, 1) and φ : [0, T ] → R be such that

φ ∈ L∞(0, T ). Then φ ∈ ST and there exists a version of the integral process

{bHt (φ), t ∈ [0, T ]} with α-Hölder continuous paths for any α ∈ [0, H − 1
2).

Proof. First of all observe that φ ∈ L∞([0, T ]) ⊂ L2([0, T ]) ⊂ HT (for the

last inclusion see [9], Proposition 2.1.13) and the same holds for �[0,t)φ for

each 0 ≤ t ≤ T . Thus φ ∈ ST . We have

E

[∣∣bHt2 (φ)− bHt1 (φ)
∣∣2] = E

[∣∣∣∣
∫ t2

0
φ(s) dbH(s)−

∫ t1

0
φ(s) dbH(s)

∣∣∣∣2
]

= E

[(∫ t2

t1

φ(s) dbH(s)

)2
]

= E

[(∫ T

0
�[t1,t2)(s)φ(s) db

H(s)

)2
]

= ‖K∗
T (�[t1,t2)φ)‖2L2(0,T ).

Recall that for H > 1/2 the operator K∗
T reduces to

K∗
T (ψ)(t) =

∫ T

t
ψ(s)

∂KH

∂s
(s, t) ds

with ∂KH
∂s (s, t) = cH

(
s
t

)H−1/2
(s− t)H−3/2. This function is always positive

when t < s < T and so using the fact that φ is bounded we have

∣∣K∗
T (�[t1,t2)φ)(t)

∣∣ ≤ ∫ T

t

∣∣∣∣�[t1,t2)(s)φ(s)∂KH

∂s
(s, t)

∣∣∣∣ ds
≤ ‖φ‖∞

∫ T

t
�[t1,t2)(s)

∣∣∣∣∂KH

∂s
(s, t)

∣∣∣∣ ds
= ‖φ‖∞K∗

T (�[t1,t2))(t).

By Lemma 4.2.4 we get

E

[∣∣bHt2 (φ)− bHt1 (φ)
∣∣2] = ‖K∗

T (�[t1,t2)φ)‖2L2(0,T )

=

∫ T

0

∣∣‖φ‖∞K∗
T (�[t1,t2))(t)

∣∣2dt
≤ ‖φ‖2∞‖K∗

T (�[t1,t2))‖2L2(0,T )

= ‖φ‖2∞|t2 − t1|2H .

Since 2H > 1, Kolmogorov’s continuity theorem implies that there exists a

version with α-Hölder continuous paths for any α ∈ [0, H − 1
2).
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4. The fractional Brownian motion

4.2.4 Stochastic Fubini theorem for fBm

Here we consider a stochastic Fubini theorem for fBm with Wiener integrals.

The result is known in the literature and some more general version of this

theorem (for divergence-type integrals) can be found in the literature for

instance in [9] or [52]. Here we give a detailed proof of an easier case, namely

the case of deterministic integrands, which holds both for H ∈ (0, 1/2) and

for H ∈ (1/2, 1).

Theorem 4.2.6. Let {bH(t), t ∈ [0, T ]} be a real fBm and let f : [0, T ] ×
[0, T ] → R be element of ST . Then we have

(4.12)

∫ t

0

∫ s

0
f(s, r) dbH(r) ds =

∫ t

0

∫ t

r
f(s, r) ds dbH(r).

Proof. Recall that for each fBm {bH(t), t ≥ 0} there exists a Bm {b(t), t ≥ 0}
such that ∫ s

0
ψ(r) dbH(r) =

∫ s

0
(K∗

sψ)(r) db(r),

where K∗
s acts on ψ ∈ Hs in the following way

(K∗
sψ)(r) = KH(s, r)ψ(r) +

∫ s

r
(ψ(u)− ψ(r))

∂KH

∂u
(u, r) du

for (almost) all r ∈ [0, s]. Using this integral representation we can rewrite

the inner integral of the LHS of (4.12) as follows∫ s

0
f(s, r) dbH(r) =

∫ s

0

(
K∗

sf(s, ·)
)
(r) db(r)

=

∫ s

0

(
KH(s, r)f(s, r)

+

∫ s

r

(
f(s, u)− f(s, r)

)∂KH

∂u
(u, r) du

)
db(r)

=

∫ s

0
KH(s, r)f(s, r) db(r)

+

∫ s

0

∫ s

r

(
f(s, u)− f(s, r)

)∂KH

∂u
(u, r) du db(r).

The LHS of (4.12) becomes∫ t

0

∫ s

0
f(s, r) dbH(r) ds =

∫ t

0

∫ s

0
KH(s, r)f(s, r) db(r) ds

+

∫ t

0

∫ s

0

∫ s

r

(
f(s, u)− f(s, r)

)∂KH

∂u
(u, r) du db(r) ds =: (A) + (B).
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For the summand (A) we apply stochastic Fubini theorem for Bm and we

get

(A) =

∫ t

0

∫ t

r
KH(s, r)f(s, r) ds db(r).

For the summand (B) we first apply stochastic Fubini theorem for Bm and

then classical Fubini theorem. We get

(B) =

∫ t

0

∫ t

r

∫ s

r

(
f(s, u)− f(s, r)

)∂KH

∂u
(u, r) du ds db(r)

=

∫ t

0

∫ t

r

∫ s

r

(
f(s, u)− f(s, r)

)∂KH

∂u
(u, r) ds du db(r).

On the other side, the RHS of (4.12) can be written as∫ t

0

∫ t

r
f(s, r) ds dbH(r) =

∫ t

0
K∗

t

(∫ t

·
f(s, ·) ds

)
(r) db(r),(4.13)

where the integrands is

K∗
t

(∫ t

·
f(s, ·) ds

)
(r) =KH(t, r)

∫ t

r
f(s, r) ds

+

∫ t

r

( ∫ t

u
f(s, u) ds−

∫ t

r
f(s, r) ds

)∂KH

∂u
(u, r) du.(4.14)

Observe that r < u < t and we can write∫ t

u
f(s, u) ds−

∫ t

r
f(s, r) ds =

∫ t

u
f(s, u) ds±

∫ u

r
f(s, r) ds−

∫ t

r
f(s, r) ds

=

∫ t

u

(
f(s, u)− f(s, r)

)
ds−

∫ u

r
f(s, r) ds.

Therefore (4.14) gives us

K∗
t

(∫ t

·
f(s, ·) ds

)
(r) =KH(t, r)

∫ t

r
f(s, r) ds

+

∫ t

r

∫ t

u

(
f(s, u)− f(s, r)

)
ds
∂KH

∂u
(u, r) du

−
∫ t

r

∫ u

r
f(s, r) ds

∂KH

∂u
(u, r) du

=KH(t, r)

∫ t

r
f(s, r) ds

+

∫ t

r

∫ t

u

(
f(s, u)− f(s, r)

)
ds
∂KH

∂u
(u, r) du

−
∫ t

r

∫ t

s
f(s, r)

∂KH

∂u
(u, r) du ds,
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where in the last summand we applied again Fubini theorem. We get

K∗
t

(∫ t

·
f(s, ·) ds

)
(r) =KH(t, r)

∫ t

r
f(s, r) ds

+

∫ t

r

∫ t

u

(
f(s, u)− f(s, r)

)
ds
∂KH

∂u
(u, r) du

−
∫ t

r
f(s, r)

(
KH(t, r)−KH(s, r)

)
ds

=

∫ t

r

∫ t

u

(
f(s, u)− f(s, r)

)
ds
∂KH

∂u
(u, r) du

+

∫ t

r
KH(s, r)f(s, r) ds.

Using (4.13) we finally get that the RHS of (4.12) equals (B) + (A).
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Chapter 5

Fractional Brownian motion

in Banach spaces

In this chapter we introduce the concept of fractional Brownian motion in

a separable Banach space as a cylindrical process. The notion of cylindrical

random variable is therefore a key stone. It was introduced by Gel’fand,

see the monograph by Gel’fand and Wilenkin [24]. A similar object as a

cylindrical random variable appears under the name weak distribution in

the paper of Segal [68]. See also [38]. Moreover cylindrical measures and

cylindrical random variables were extensively considered by Schwartz and

his collaborators, see among others in [65, 66, 67].

In Section 5.1 we give a brief introduction to probability theory in Banach

spaces following the notes [59]. In particular, we focus on the notion of

cylindrical measure and cylindrical random variable. We also recall the def-

inition of the reproducing kernel Hilbert space of a covariance operator and

some of its properties.

In Section 5.2 we define the cylindrical fBm in a separable Banach space U

and we prove some of its properties. Afterwards we define a U -valued fBm

as a classical process in a Banach space. We then relate them between each

other.

Finally, in Section 5.3 we compare the object just introduced with the ex-

isting literature. We show that, in the Hilbert space case, the cylindrical

fBm we introduced is equivalent to the one that we find in the literature.

Moreover the space-time fractional noise is considered and some examples

are provided.
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5. Fractional Brownian motion in Banach spaces

5.1 Preliminaries

In this section we introduce cylindrical measures and cylindrical processes

on Banach spaces. A very important class of cylindrical processes is the

class of Gaussian processes. Related to it, the notion of reproducing kernel

Hilbert space is explained. We will follow the notes of Riedle, [59], for more

details we refer to it and to the references therein.

5.1.1 Cylindrical measures and cylindrical processes

Throughout this thesis, U indicates a separable Banach space over R with

norm ‖ · ‖U . The (topological) dual space U∗ of U is the collection of all

linear and continuous functionals on U . We denote by U ′ the algebraic dual
of U , namely all linear functionals on U . For any u∗ ∈ U∗ (or u∗ ∈ U ′) and
u ∈ U we indicate the dual pairing u∗(u) by 〈u, u∗〉 = 〈u∗, u〉.
The Borel σ-algebra on U is denoted by B(U). Let Γ be a subset of U∗,
n ∈ N, u∗1, . . . , u∗n ∈ Γ and B ∈ B(Rn). A set of the form

Z(u∗1, . . . , u
∗
n, B) := {u ∈ U : (〈u, u∗1〉, . . . , 〈u, u∗n〉) ∈ B},

is called a cylindrical set. We denote by Z(U,Γ) the set of all cylindrical

sets in U for a given Γ. It turns out this is an algebra. Let C(U,Γ) be

the generated σ-algebra. When Γ = U∗ the notation is Z(U) and C(U)

respectively. If U is separable then both the Borel σ-algebra B(U) and the

cylindrical σ-algebra C(U) coincide.

A function μ : Z(U) → [0,∞] is called a cylindrical measure on Z(U) if for

each finite subset Γ ⊆ U∗ the restriction of μ to the σ-algebra C(U,Γ) is

a measure. It is called finite if μ(Z(U)) is finite and cylindrical probability

measure if μ(Z(U)) = 1. A cylindrical probability measure μ on Z(U) is

called weakly Gaussian if the image measure μ◦(u∗)−1 is a Gaussian measure

on B(R) for all u∗ ∈ U∗. For weakly Gaussian cylindrical measures we have

the following result (see [76], Section VI.3.1).

Theorem 5.1.1. Let μ be a weakly Gaussian cylindrical measure on C(U).

Then its characteristic function ϕμ : U∗ → C is of the form

(5.1) ϕμ(u
∗) = exp{im(u∗)− 1

2
s(u∗)}

where m : U∗ → R and s : U∗ → R+ are given by

m(u∗) =
∫
U
〈u, u∗〉μ(du), s(u∗) =

∫
U
〈u, u∗〉2μ(du)−m(u∗)2.
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5. Fractional Brownian motion in Banach spaces

Conversely, if μ is a cylindrical measure with characteristic function of the

form (5.1) for a linear functional m : U∗ → R and a quadratic form s :

U∗ → R+, then μ is a weakly Gaussian cylindrical measure.

For a weakly Gaussian cylindrical measure μ one also defines a covariance

operator Q : U∗ → (U∗)′ given by

(Qu∗) v∗ =
∫
U
〈u, u∗〉〈u, v∗〉μ(du)−m(u∗)m(v∗)

These integrals exist because μ is a Gaussian measure on the σ-algebra

generated by u∗ and v∗. In general, the covariance operator takes value in

the algebraic dual of U∗, that is the map is non necessarily continuous.

In the special case of Gaussian measures, for each u∗ ∈ U∗ the operator Qu∗

is continuous and moreover can be seen as an element of U ⊂ U∗∗ (see [76],

Thm III.2.1). In the framework of cylindrical measures this is not always the

case and therefore we introduce a stronger concept of Gaussian cylindrical

measures.

Definition 5.1.2. A centered weakly Gaussian cylindrical measure μ on

Z(U) is called strongly Gaussian if the covariance operator Q : U∗ → (U∗)′

is U -valued.

Definition 5.1.3. A cylindrical random variable Y in U is a linear map

Y : U∗ → L0
P(Ω;R).

A cylindrical process X in U is a family {X(t), t ≥ 0} of cylindrical random

variables in U .

A cylindrical process X is said to be adapted to a given filtration {Ft}t≥0 if

X(t)u∗ is Ft-measurable for all u∗ ∈ U∗ and all t ≥ 0.

Clearly every classical random variable Y in a Banach space U can be

seen as a cylindrical random variable as follows: define

X : U∗ → L0
P(Ω;R), X(u∗) := 〈Y, u∗〉

for all u∗ ∈ U∗. The map X is a cylindrical random variable thanks to the

linearity of the dual pairing.

With the help of cylindrical random variables we can give a simple example

of cylindrical probability measure.
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5. Fractional Brownian motion in Banach spaces

Example 5.1. Let X be a cylindrical random variable. Given any n ∈ N,

any Borel set F ∈ B(Rn) and any u∗1, . . . , u∗n ∈ U∗ we define μ : Z(U) → [0, 1]

by

μ ({u ∈ U : (〈u, u∗1〉, . . . , 〈u, u∗n〉) ∈ F}) := P ((Xu∗1, . . . , Xu
∗
n) ∈ F )

which is clearly a cylindrical probability measure.

We can introduce the characteristic function associated to a cylindrical

process and a cylindrical probability measure.

Definition 5.1.4. The characteristic function of a cylindrical probability

measure μ on Z(U) is given by

ϕμ : U∗ → C, ϕμ(u
∗) =

∫
U
exp{i〈u, u∗〉}μ(du).

The characteristic function of a cylindrical random variable X in U is given

by

ϕX : U∗ → C, ϕX(u∗) = E [exp{iXu∗}] .

The concepts of cylindrical measure and cylindrical random variable

match perfectly. Because the characteristic function of a cylindrical ran-

dom variable is positive-definite and continuous on finite subspaces, there

exists a cylindrical measure μ with the same characteristic function. We call

μ the cylindrical distribution of X. Vice versa, for every cylindrical measure

μ on C(U) there exists a probability space (Ω,F ,P) and a cylindrical ran-

dom variable X : U∗ → L0
P
(Ω;R) such that μ is the cylindrical distribution

of X, see [76], VI.3.2.

In Hilbert spaces we can define a special Gaussian cylindrical measure as

follows.

Definition 5.1.5. Let H be a separable Hilbert space. The measure γ defined

by its characteristic function ϕγ : H → C by

ϕγ(h) = exp{−1

2
‖h‖2H}

is called standard Gaussian cylindrical measure on H.

Noteworthy is the fact that, in contrast to measures on infinite dimen-

sional spaces, there is an analogue of Bochner’s theorem for cylindrical mea-

sures:
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5. Fractional Brownian motion in Banach spaces

Theorem 5.1.6. A function ϕ : U∗ → C is a characteristic function of a

cylindrical measure on Z(U) if and only if

• ϕ(0) = 0

• ϕ is positive-definite

• the restriction of ϕ to every finite dimensional subset Γ ⊆ U∗ is con-

tinuous with respect to the norm topology.

Using the characteristic function it is easy to see that for a centered

weakly Gaussian cylindrical random variable X with covariance operator Q,

for every v∗, u∗ ∈ U∗ we have

E|Xu∗Xv∗| = 〈Qu∗, v∗〉.

Remark 5.1. If X : U∗ → L0
P
(Ω,R) is a cylindrical random variable with

E[|Xu∗|2] < ∞ and covariance operator Q : U∗ → U∗′ then the following

are equivalent

(a) Q : U∗ → U∗∗

(b) X is continuous as a mapping from U∗ to L2
P
(Ω,R)

Proof. (a) ⇒ (b). By Lemma 1.1 in [76], Chapter III there exists a Hilbert

space (H, [·, ·]H) (which is nothing but the RKHS of Q, see Section 5.1.2)

and a continuous linear operator F : U∗ → H such that Q = F ∗F . Let

(u∗n)n∈N ⊂ U∗ be such that ‖u∗n‖ → 0. We have

E|Xu∗n|2 = 〈Qu∗n, u∗n〉 = 〈F ∗Fu∗n, u
∗
n〉

= [Fu∗n, Fu
∗
n]H = ‖Fu∗n‖2H .

The continuity of F implies now the continuity of X.

(b) ⇒ (a). Let v∗ ∈ U∗ be arbitrary and consider a sequence (v∗n)n∈N ⊂ U∗

such that ‖u∗n‖ → 0, that is such that 〈v, v∗n〉 → 0 for all v ∈ V . We show

that Q is actually U∗∗-valued because Qv∗ is continuous for any v∗. In fact

we have

|(Qv∗)u∗n| = E|Xv∗, Xu∗n| ≤ E|Xv∗|2E|Xu∗n|2

and the latter converges to zero by assumption (b).
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5. Fractional Brownian motion in Banach spaces

Remark 5.2. If X : U∗ → L0
P
(Ω;R) is a cylindrical random variable with

E[|Xu∗|2] < ∞ and covariance operator Q : U∗ → U∗′ then the following

are equivalent

(a) Q : U∗ → U

(b) X is continuous as a mapping from U∗ to L2
P
(Ω;R) in the weak* topol-

ogy.

Proof. Let us consider u∗ ∈ U∗ and a sequence (u∗n)n∈N ⊂ U∗ such that

v∗n
∗
⇀ 0. Then by [50], Corollary 2.7.10 we have that Qu∗ ∈ U if and only if

〈Qu∗, v∗n〉 → 0 and since

〈Qu∗, v∗n〉 = E|Xu∗Xv∗n| = [Xu∗, Xv∗n]L2
P
(Ω,R),

we have the equivalence.

5.1.2 The reproducing kernel Hilbert space

In this section we describe how to factorize a positive and symmetric oper-

ator Q : U∗ → U through a Hilbert space (the so-called reproducing kernel

Hilbert space). In the special case when U is a Hilbert space, then the op-

erator can be factorized trough the Hilbert space U itself by its square root

Q = Q1/2Q1/2. This construction is useful in order to characterize covari-

ance operators of Gaussian measures on B(U). For Hilbert spaces it is well

known thatQmust be nuclear or equivalentlyQ1/2 must be Hilbert-Schmidt;

for Banach spaces an analogous result requires the notion of γ-radonifying

operator which we will recall. For more details see [76], Section III.1.

Consider any positive symmetric operator Q : U∗ → U . For any u∗, v∗ ∈
U∗ let us introduce the following bilinear form on the range of Q

[Qu∗, Qv∗]HQ
:= 〈Qu∗, v∗〉.

It is easy to see that this bilinear form [·, ·]HQ
is an inner product on Q(U∗)

therefore the range of Q is a pre-Hilbert space.

Definition 5.1.7. Let Q be a symmetric positive operator form U∗ to U .

The Hilbert space obtained by the completion of Q(U∗) with respect to the

inner product [·, ·]HQ
is denoted by (HQ, [·, ·]HQ

) and is called the reproducing

kernel Hilbert space associated to Q.
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5. Fractional Brownian motion in Banach spaces

The RKHS and its embedding into U have several properties that we

recall in what follows (for the proofs see [60], Section 4).

(a) the inclusion mapping from the range of Q into U is continuous with

respect to the inner product [·, ·]HQ
. Thus it extends to a bounded

linear operator iQ from HQ to U ;

(b) the operator Q enjoys the decomposition Q = iQi
∗
Q;

(c) the range of i∗Q is dense in HQ;

(d) the inclusion mapping iQ is injective;

(e) if U is separable then HQ is separable.

As already mentioned, we are looking for an analogous of the concept of

Hilbert-Schmidt operators, and this is actually very much related to the

question of the characterization of covariance operators for Gaussian mea-

sures.

Recall that a classical result by E. Mourier (see [76], Theorem IV.2.4) about

Gaussian measures on Hilbert spaces tells us that Q : H → H is the covari-

ance operator of a Gaussian measure on B(H) if and only if it is positive,

symmetric and nuclear. In this case one can decompose Q through its square

root and the condition “Q is nuclear” is then equivalent to “Q1/2 is Hilbert-

Schmidt”.

The analogous result for Banach spaces is still an open problem. For separa-

ble Banach spaces there are some results (see Theorem 5.1.9) which require

the notion of γ-radonifying operators.

Definition 5.1.8. Let H be a separable Hilbert space and U a separable

Banach space. Consider the standard Gaussian cylindrical measure γ on

H as given in Definition 5.1.5. A linear bounded operator F ∈ L(H,U) is

called γ-radonifying if the cylindrical measure γ ◦ i−1
Q extends to a Radon

measure on B(U).

The proof of the following theorem can be found in [59], Theorem 1.2.26

and in [77], Theorem 5.15. and Theorem 5.16.

Theorem 5.1.9. Let γ be the standard Gaussian measure on a separable

Hilbert space H with orthonormal basis (ek)k∈N and let (Gk)k∈N be a sequence

of independent real normal random variables. For an operator F ∈ L(H,U)

the following are equivalent:
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5. Fractional Brownian motion in Banach spaces

(a) the operator F is γ-radonifying;

(b) the operator FF ∗ : U∗ → U is the covariance operator of a Gaussian

measure on B(U);

(c) the series
∑∞

k=1GkFek converges a.s. in U ;

(d) the series
∑∞

k=1GkFek converges in Lp
P
(Ω;U) for some p ∈ [1,∞);

(e) the series
∑∞

k=1GkFek converges in Lp
P
(Ω;U) for all p ∈ [1,∞).

In this situation we have for every p ∈ [1,∞):∫
U
‖u‖pμ(du) = E

∥∥∥∥∥
∞∑
k=1

GkFek

∥∥∥∥∥
p

.

The following theorem was proved by Itô and Nisio in [39]. The proof

can be also found in [76], Theorem V.2.4.

Theorem 5.1.10 (Itô, Nisio). Let (Xn)n∈N be a sequence of independent,

symmetric U -valued random variables. Then for Sn := X1 + . . .+Xn and a

U -valued random variable S the following are equivalent:

(a) limn→∞ Sn = S P-a.s.;

(b) limn→∞ Sn = S in probability;

(c) limn→∞〈Sn, u∗〉 = 〈S, u∗〉 P-a.s. for all u∗ ∈ U∗;

(d) limn→∞〈Sn, u∗〉 = 〈S, u∗〉 in probability for all u∗ ∈ U∗.

In this situation, if S ∈ Lp
P
(Ω;U) then one also has

(e) limn→∞ Sn = S in Lp
P
(Ω;U).

The next result gives a straightforward argument of the fact that the

class of γ-radonifying operators coincide with the one of Hilbert-Schmidt

operators when the underlying space is a Hilbert space. For the proof see

[59], Corollary 1.2.27.

Corollary 5.1.11. If H and U are separable Hilbert spaces then for F ∈
L(H,U) the following are equivalent:

(a) F is γ-radonifying;

(b) F is Hilbert-Schmidt.
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5.2 The cylindrical fractional Brownian motion in

Banach spaces

In this section we introduce the notion of cylindrical fractional Brownian

motion in Banach spaces. The idea is similar to the one adopted by Ap-

plebaum and Riedle in [2] to define cylindrical Lévy processes in Banach

spaces.

The word cylindrical may be misleading. In the literature, it is often

referred to infinite sums in a Hilbert space H which do not converge in

the space H. Let us explain it with a well known example: consider the

cylindrical Wiener process introduced by Da Prato and Zabczyk in [16].

Here the process is of the form

W (t) =
∞∑
n=1

√
λnenbn(t),

where (en)n∈N is an orthonormal basis ofH, (λn)n∈N is a sequence of positive

coefficients and (bn)n∈N a sequence of independent real valued Brownian mo-

tions. It turns out that this series in general does not converge in L2
P
(Ω;H).

Some additional conditions are necessary for the sum to converge, that is,

the sequence (λn)n∈N must be summable. In other words, the covariance

operator Q associated to W must be nuclear.

Problems arise as soon as one wishes to define (in this way) a process W

that generalizes the n-dimensional Bm which has independent components.

In this case, one has to require Q = Id and such operator is not nuclear. To

overcome the problem, one formally considers the same series but converg-

ing in a bigger Hilbert space (which is not unique and does not even need

to be specified).

For this reason, we introduce the cylindrical fractional Brownian motion

in a different way, in order to avoid the introduction of the bigger Hilbert

space. Our approach does not need any Hilbert structure and therefore

we consider Banach spaces. When the underlying space is a Hilbert space

and the covariance operator is nuclear then the process coincides with the

classical one.

5.2.1 The cylindrical fractional Brownian motion

We introduce the cylindrical fBm in U using the definition of n-dimensional

fBm. In particular we ask that each n-dimensional projection is a fBm in
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R
n.

Definition 5.2.1. A cylindrical process BH = {BH(t), t ≥ 0} in U is a

cylindrical fractional Brownian motion with Hurst parameter H ∈ (0, 1) if

(i) for any u∗1, . . . , u∗n ∈ U∗ and n ∈ N, the R
n-valued stochastic process

{(BH(t)u∗1, . . . , B
H(t)u∗n

)
, t ≥ 0}

is an n-dimensional fractional Brownian motion with Hurst parameter

H ∈ (0, 1);

(ii) the covariance operator of BH(1) is U -valued.

We observe that in case H = 1
2 then we immediately recover the cylin-

drical Wiener process as defined in [51] and [59].

This definition involves all possible n-dimensional projections of the pro-

cess, but since we are dealing with Gaussian processes the condition can be

simplified using only 2-dimensional projections.

Lemma 5.2.2. For a cylindrical process BH = {BH(t), t ≥ 0} the following

are equivalent:

(a) BH is a cylindrical fractional Brownian motion with Hurst parameter

H ∈ (0, 1);

(b) BH satisfies:

(i) for any u∗1, u∗2 ∈ U∗ the vector (BH(t)u∗1, BH(t)u∗2) is a 2-dimen-

sional fBm according to Definition 4.1.2;

(ii) the covariance operator of BH(1) is U -valued.

Proof. (a) ⇒ (b). It is clear by definition.

(b) ⇒ (a). We just need to check that for any n ∈ N and for any u∗1, . . . , u∗n ∈
U∗ the process {Y (t), t ≥ 0} given by Y (t) =

(
BH(t)u∗1, . . . , BH(t)u∗n

)
is an

n-dimensional fBm according to Definition 4.1.2. It is a Gaussian process be-

cause for any β ∈ R
n the real valued process (β, Y (t))n =

∑n
i=1 βiB

H(t)u∗i =
BH(t)

∑n
i=1 βiu

∗
i is a Gaussian process. Moreover for any v ∈ R

n then

E[(v, Y (t))n] = E[

n∑
j=1

v(j)Yj(t)] =

n∑
j=1

v(j)E[Yj(t)] = 0.
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Let now M = (mi,j)
n
i,j=1 be the n-dimensional matrix defined by

mi,j = E[BH(1)u∗iB
H(1)u∗j ]

for each i, j = 1, . . . , n. By (i) we have E[BH(t)u∗iB
H(s)u∗j ] = mi,j

1
2(t

2H +

s2H − |t− s|2H). Then for any v1, v2 ∈ R
n we get

E[(v1, Y (t))n(v2, Y (s))n] = E

⎡
⎣ n∑

i=1

(
v
(i)
1 BH(t)u∗i

) n∑
j=1

(
v
(j)
2 BH(s)u∗j

)⎤⎦

= E

⎡
⎣ n∑

i=1

n∑
j=1

v
(i)
1 v

(j)
2 BH(t)u∗iB

H(s)u∗j

⎤
⎦

=

n∑
i=1

n∑
j=1

v
(i)
1 v

(j)
2 E[BH(t)u∗iB

H(s)u∗j ]

=

n∑
i=1

n∑
j=1

v
(i)
1 v

(j)
2 mi,j

1

2
(t2H + s2H − |t− s|2H)

= (Mv1, v2)n
1

2
(t2H + s2H − |t− s|2H)

which concludes the proof.

The following result provides a representation of the cylindrical fractional

Brownian motion in terms of a series.

Theorem 5.2.3. For a cylindrical process BH := (BH(t), t ≥ 0) the follow-

ing are equivalent:

(a) BH is a cylindrical fractional Brownian motion with Hurst parameter

H ∈ (0, 1);

(b) there exist a Hilbert space H with an orthonormal basis (ek)k∈N, F ∈
L(H,U) and a sequence of independent real valued fractional Brownian

motions (bHk )k∈N such that

BH(t)u∗ =
∞∑
k=1

〈Fek, u∗〉bHk (t)

in L2
P
(Ω;R) for all u∗ ∈ U∗ and all t ≥ 0.

67



5. Fractional Brownian motion in Banach spaces

Proof. (a) ⇒ (b). Since the cylindrical distribution of BH(1) is strongly

Gaussian the covariance operator Q associated to it is a positive and sym-

metric operator Q : U∗ → U . Let HQ be its RKHS with inclusion mapping

iQ : HQ → U . Recall that i∗Q : U∗ → HQ and Q = iQi
∗
Q. The range of i∗Q

is dense in HQ and HQ is separable, so there exists an orthonormal basis

(ek)k∈N of HQ such that (ek)k∈N ⊂ range(i∗Q).
Choose w∗

k ∈ U∗ such that i∗Qw
∗
k = ek and define bHk (·) := BH(·)w∗

k for all

k ∈ N. Clearly {bHk (t), t ≥ 0} is a real valued fractional Brownian motion

for each k ∈ N. We obtain

E

∣∣∣∣∣
n∑

k=1

〈iQek, u∗〉bHk (t)−BH(t)u∗
∣∣∣∣∣
2

=E

[
BH(t)

(
n∑

k=1

〈iQek, u∗〉w∗
k − u∗

)]2

=E[BH(t)v∗]2

having called for simplicity v∗ :=
∑n

k=1〈iQek, u∗〉w∗
k − u∗. By construction

v∗ ∈ U∗. Recall that for the Gaussian cylindrical random variable BH(1)

with covariance Q we have E[BH(1)v∗]2 = 〈Qv∗, v∗〉. Moreover, the frac-

tional Brownian motion is self-similar, meaning that for each a ∈ R, BH(at)

and aHBH(t) are equal in law. It follows

E[BH(t)v∗]2 = E[BH(1)(tHv∗)]2 = t2HE[BH(1)v∗]2

= t2H〈Qv∗, v∗〉 = t2H〈iQi∗Qv∗, v∗〉 = t2H‖i∗Qv∗‖2HQ

= t2H

∥∥∥∥∥i∗Q
(

n∑
k=1

〈iQek, u∗〉w∗
k − u∗

)∥∥∥∥∥
2

HQ

= t2H

∥∥∥∥∥
n∑

k=1

〈iQek, u∗〉i∗Qw∗
k − i∗Qu

∗
∥∥∥∥∥
2

HQ

= t2H

∥∥∥∥∥
n∑

k=1

[ek, i
∗
Qu

∗]HQ
ek − i∗Qu

∗
∥∥∥∥∥
2

HQ

→ 0 for n→ ∞.

It is left to prove that the fractional Brownian motions (bHk )k∈N are in-

dependent. For any j, k ∈ {1, . . . , n} consider the 2-dimensional vector

bHjk(t) := (bHj , b
H
k ). Let Mjk :=

(
mj,j mj,k

mk,j mk,k

)
denote its covariance ma-

trix according to Definition 4.1.2. Then for each v1, v2 ∈ R
2 we have by

definition

E[(v1, b
H
jk(t))2(v2, b

H
jk(s))2] = (Mjk v1, v2)2

1

2
(t2H + s2H − |t− s|2H)
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and choosing v1 = (1, 0) and v2 = (0, 1) we get

E[bHj (t)bHk (s)] = mj,k
1

2
(t2H + s2H − |t− s|2H).

On the other hand, we have

E[bHj (1)bHk (1)] = E[BH(1)w∗
jB

H(1)w∗
k] = 〈Qw∗

j , w
∗
k〉

= [i∗Qw
∗
j , i

∗
Qw

∗
k] = [ej , ek] = δj,k

and for t = s = 2 this implies mj,k = δj,k and so

E[bHj (t)bHk (s)] = δj,k
1

2
(t2H + s2H − |t− s|2H).

(b) ⇒ (a). Let n ∈ N and u∗1, . . . , u∗n ∈ U∗ be arbitrarily chosen and consider

the n-dimensional stochastic process Y := {Y (t), t ≥ 0} defined by

Y (t) : = (BH(t)u∗1, . . . , B
H(t)u∗n)

=

( ∞∑
k=1

〈Fek, u∗1〉bHk (t), . . . ,

∞∑
k=1

〈Fek, u∗n〉bHk (t)

)

for all t ≥ 0. We now check that the stochastic process Y is an n-dimensional

fractional Brownian motion according to Definition 4.1.2. It is a Gaus-

sian process because for any β = (β1, . . . , βn) ∈ R
n the real valued process

(β, Y (·))n =
∑n

i=1 βiB
H(·)u∗i = BH(·)∑n

i=1 βiu
∗
i is clearly Gaussian. More-

over E[(v, Y (t))n] = 0 for all v ∈ R
n and all t ≥ 0.

Let M = (mi,j) be the n-dimensional covariance matrix of the process Y ,

that is mi,j := E[Yi(1)Yj(1)]. By definition of Y we get

mi,j = E[

∞∑
k=1

〈Fek, u∗i 〉bHi (1)

∞∑
l=1

〈Fel, u∗j 〉bHj (1)]

=

∞∑
k=1

∞∑
l=1

〈Fek, u∗i 〉〈Fel, u∗j 〉E[bHi (1)bHj (1)]

=

∞∑
k=1

〈Fek, u∗i 〉〈Fek, u∗j 〉.

Using this expression, let us compute for each v1, v2 ∈ R
n the following

expectation

E[(v1,Y (t))n(v2, Y (s))n] = E

⎡
⎣( n∑

i=1

v
(i)
1 Yi(t)

)⎛⎝ n∑
j=1

v
(j)
2 Yj(s)

⎞
⎠
⎤
⎦
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=E

⎡
⎣( n∑

i=1

v
(i)
1

∞∑
k=1

〈Fek, u∗i 〉bHk (t)

)⎛⎝ n∑
j=1

v
(j)
2

∞∑
l=1

〈Fel, u∗j 〉bHl (s)

⎞
⎠
⎤
⎦

=E

⎡
⎣ n∑

i=1

n∑
j=1

v
(i)
1 v

(j)
2

( ∞∑
k=1

〈Fek, u∗i 〉bHk (t)

)( ∞∑
l=1

〈Fel, u∗j 〉bHl (s)

)⎤⎦
=

n∑
i=1

n∑
j=1

v
(i)
1 v

(j)
2

∞∑
k=1

∞∑
l=1

〈Fek, u∗i 〉〈Fel, u∗j 〉E
[
bHk (t)bHl (s)

]
and since the bHk are independent fBms, we get E

[
bHk (t)bHl (s)

]
= δk,l

1
2(t

2H+

s2H − |t− s|2H) and then obtain

E[(v1, Y (t))n(v2, Y (s))n]

=

n∑
i=1

n∑
j=1

v
(i)
1 v

(j)
2

∞∑
k=1

∞∑
l=1

〈Fek, u∗i 〉〈Fel, u∗j 〉δk,l
1

2
(t2H + s2H − |t− s|2H)

=

n∑
i=1

n∑
j=1

v
(i)
1 v

(j)
2 mi,j

1

2
(t2H + s2H − |t− s|2H)

= (Mv1, v2)n
1

2
(t2H + s2H − |t− s|2H).

It is left to prove that the covariance operator R : U∗ → U∗′ of the cylindrical
measure μ of BH(1) is in fact U -valued. The measure μ is centered so we

have ψμ(u
∗) = exp{−(Ru∗)u∗}. On the other hand we have

ψμ(u
∗) = E[exp{iBH(1)u∗}]

= E[exp{i
∞∑
k=1

〈Fek, u∗〉bHk (1)}]

= lim
m→∞E[exp{i

m∑
k=1

〈Fek, u∗〉bHk (1)}]

= lim
m→∞E[

m∏
k=1

exp{i〈Fek, u∗〉bHk (1)}]

= lim
m→∞

m∏
k=1

exp{−1

2
〈Fek, u∗〉2}

= lim
m→∞ exp{−1

2

m∑
k=1

〈Fek, u∗〉2}

= exp{−1

2

∞∑
k=1

〈Fek, u∗〉2}

= exp{−1

2
‖F ∗u∗‖2H},
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which implies

(Ru∗)u∗ =
1

2
‖F ∗u∗‖2H =

1

2
[F ∗u∗, F ∗u∗]H .

If one now defines Q := FF ∗ then Q : U∗ → U and by the previous compu-

tations it turns out that 2(Ru∗)u∗ = 〈Qu∗, u∗〉 for each u∗ ∈ U∗. Thus the

proof is complete.

Remark 5.3. For a cylindrical fBm BH in U with covariance operator

Q := FF ∗ with F linear and continuous (as appearing in condition (b) of

Theorem 5.2.3) we have

E[BH(t)u∗BH(s)v∗] = 〈Qu∗, v∗〉1
2
(t2H + s2H − |t− s|2H)

for all u∗, v∗ ∈ U∗ and all s, t ≥ 0.

Proof. For u∗, v∗ ∈ U∗ and s, t ≥ 0 we have

E[BH(t)u∗BH(s)v∗] = E

[ ∞∑
k=1

〈Fek, u∗〉bHk (t)

∞∑
l=1

〈Fel, v∗〉bHl (s)

]

=

∞∑
k=1

∞∑
l=1

〈Fek, u∗〉〈Fel, v∗〉E[bHk (t)bHl (s)]

=

∞∑
k=1

∞∑
l=1

[ek, F
∗u∗][el, F ∗v∗]δk,l

1

2
(t2H + s2H − |t− s|2H)

=

∞∑
k=1

[ek, F
∗u∗][ek, F ∗v∗]

1

2
(t2H + s2H − |t− s|2H)

= [

∞∑
k=1

[ek, F
∗u∗]ek, F ∗v∗]

1

2
(t2H + s2H − |t− s|2H)

= [F ∗u∗, F ∗v∗]
1

2
(t2H + s2H − |t− s|2H)

= 〈Qu∗, v∗〉1
2
(t2H + s2H − |t− s|2H).

5.2.2 The U-valued fractional Brownian motion

In this section we focus on the special case of U -valued processes, namely

proper processes in Banach spaces. We show their relation to cylindrical

processes.

The following definition is similar to the one given by Duncan et al. in

[19] (see also Definition 4.1.3 in Section 4.1) but here it is given in the wider
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5. Fractional Brownian motion in Banach spaces

framework of Banach spaces. It also can be seen as the direct generalization

of Definition 4.1.2.

Definition 5.2.4. A U -valued stochastic process BH = {BH(t), t ≥ 0} is

called a fractional Brownian motion in U if there exists a Gaussian measure

on B(U) with covariance operator 1 Q : U∗ → U such that

(i) 〈BH(t), u∗〉 = 0 for all u∗ ∈ U∗ and all t ≥ 0;

(ii) the covariance function is given by

(5.2) E[〈BH(t), u∗〉〈BH(s), v∗〉] = 〈Qu∗, v∗〉1
2
(t2H + s2H − |t− s|2H)

for all u∗, v∗ ∈ U∗ and all s, t ≥ 0.

Observe that the definition already requires that the cylindrical distri-

bution of BH(1) is strongly Gaussian or equivalently the weak* continuity

of BH(1) between U∗ and L0
P
(Ω;R) (see Remark 5.2).

The definition we just stated includes all the known cases in literature,

that is the case when U is a finite-dimensional space or a Hilbert space and

includes also the Banach space case:

Example 5.2. Let U = Rn. Then it is known by Mourier Theorem that

there exists a centered Gaussian measure on B(Rn) with covariance operator

Q : Rn → R
n if and only if Q =M is a positive and symmetric matrix.

Example 5.3. Let U = H be a Hilbert space. Then it is known that

there exists a centered Gaussian measure on B(H) with covariance operator

Q : H → H if and only if Q is a positive, symmetric and nuclear operator.

Example 5.4. Let U be a separable Banach space. Then by Theorem 5.1.9

there exists a centered Gaussian measure on B(U) with covariance operator

Q : U∗ → U if and only if Q can be factorized through a Hilbert space H

by Q = FF ∗ where F ∈ L(H,U) is a γ-radonifying operator.

The next result is the analogous of Theorem 5.2.3 but for U -valued pro-

cesses.

Theorem 5.2.5. For a U -valued process BH = {BH(t), t ≥ 0} the following

are equivalent:

1For a characterization of covariance operators in Banach spaces see Theorem 5.1.9.
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(a) BH is a fBm in U ;

(b) there exist a Hilbert space H with an orthonormal basis (ek)k∈N, a

γ-radonifying operator F ∈ L(H,U) and independent R-valued fBms

(bHk )k∈N such that

BH(t) =

∞∑
k=1

Fek b
H
k (t)

in L2
P
(Ω;U).

Proof. (a) ⇒ (b). Let (ek)k∈N ⊂ HQ be an orthonormal basis of HQ and

define a sequence (bHk )k∈N as bHk (t) := 〈BH(t), u∗k〉 where (u∗k)k∈N ⊂ U∗ is

arbitrarily chosen such that i∗Qu
∗
k = ek for all k ∈ N. Then by Theorem 5.2.3

we have

〈BH(t), u∗〉 =
∞∑
k=1

〈iQek, u∗〉bHk (t)

in L2
P
(Ω;R) for all u∗ ∈ U∗.

Let BH
n (t) :=

∑n
k=1 iQekb

H
k (t) so last equation reads

(5.3) 〈BH(t), u∗〉 = lim
n→∞

n∑
k=1

〈iQek, u∗〉bHk (t) = lim
n→∞〈BH

n (t), u∗〉

in L2
P
(Ω;R) for all u∗ ∈ U∗, and so (5.3) holds also in probability for all

u∗ ∈ U∗. Moreover BH(t) ∈ L2
P
(Ω;U) by Hoffmann-Jørgensen Theorem

(see [30]). By Itô-Nisio Theorem (see Theorem 5.1.10) we have

∞∑
k=1

iQek b
H
k (t) = lim

n→∞BH
n (t) = BH(t)

in L2
P
(Ω;U). Moreover, Theorem 5.1.9 verifies i∗Q as γ-radonifying.

(b) ⇒ (a). Our aim is to show that BH is a fBm according to Definition 5.2.4.

By assumption the operator F ∈ L(H,U) is γ-radonifying and moreover

(bHk )k∈N is a sequence of independent real valued Gaussian random variables.

Theorem 5.1.9, part (c) implies that
∑∞

k=1 Fek b
H
k (t) converges a.s. in U for

every t ≥ 0. Therefore, the limit defines a U -valued stochastic process

which we denote by {BH(t), t ≥ 0}. For this process BH we check that the

conditions in Definition 5.2.4 are satisfied.

(i) The process BH is a zero-mean Gaussian process because it is limit of a

sequence of zero-mean Gaussian processes;

(ii) Let Q := FF ∗ : U∗ → U . By Theorem 5.1.9, part (b), Q is the
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covariance operator of a Gaussian measure on B(U). In what follows it is

shown that in fact this operator satisfies (5.2) of Definition 5.2.4 for BH .

Let u∗, v∗ ∈ U∗. For each t, s ≥ 0 we have

E[〈BH(t), u∗〉〈BH(s), v∗〉] = E[〈
∞∑
k=1

Fekb
H
k (t), u∗〉〈

∞∑
j=1

Fejb
H
j (s), v∗〉]

= E[
∞∑
k=1

bHk (t)〈Fek, u∗〉
∞∑
j=1

bHj (s)〈Fej , v∗〉]

=

∞∑
k=1

∞∑
j=1

〈Fek, u∗〉〈Fej , v∗〉E[bHk (t)bHj (s)](5.4)

=

∞∑
k=1

〈Fek, u∗〉〈Fek, v∗〉1
2
(t2H + s2H − |t− s|2H)

= 〈Qu∗, v∗〉1
2
(t2H + s2H − |t− s|2H).

In the following proposition we show that the notion of U -valued fBm

matches with the notion of cylindrical fBm when the latter is induced by a

classical process.

Proposition 5.2.6. Let X = {X(t), t ≥ 0} be a cylindrical fBm which is

induced by a U -valued process X̃ = {X̃(t), t ≥ 0}, i.e.,

(5.5) X(t)u∗ = 〈X̃(t), u∗〉

for all u∗ ∈ U∗. Then X̃ is a U -valued fBm.

Vice versa, if X̃ is a U -valued fBm then X defined by (5.5) is a cylindrical

fBm. Moreover, the covariance operators coincide.

Proof. By hypothesis there exists X̃ such that X(t)u∗ = 〈X̃(t), u∗〉 for all

u∗ ∈ U∗. Then the vector

(〈X̃(t), u∗1〉, . . . , 〈X̃(t), u∗n〉) = (X(t)u∗1, . . . , X(t)u∗n)

is by Definition 5.2.1 an n-dimensional fBm for all n ∈ N and for all

u∗1, . . . , u∗n ∈ U∗, and so {X̃(t), t ≤ 0} is a zero-mean Gaussian process.

Moreover by the same computations as in (5.4) we have for any u∗, v∗ ∈ U∗

E[〈X̃(t), u∗〉〈X̃(s), v∗〉] = E[X(t)u∗X(s)v∗]

= 〈Qu∗, v∗〉1
2
(t2H + s2H − |t− s|2H).
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On the other hand, suppose that X̃ is a U -valued fBm. By Theorem 5.2.5

we have that there exist a Hilbert space H with a basis (ek), a γ-radonifying

operator F ∈ L(H,U) and a sequence of real valued fBms (bHk ) such that

X̃(t) =

∞∑
k=1

Fekb
H
k (t)

and so we also have the representation

X(t)u∗ = 〈X̃(t), u∗〉 = 〈
∞∑
k=1

Fekb
H
k (t), u∗〉 =

∞∑
k=1

〈Fek, u∗〉bHk (t)

which ensures that X is a cylindrical fBm using Theorem 5.2.3.

Finally, since the covariance operator is defined in both cases as Q = FF ∗,
they coincide for X and X̃.

Remark 5.4. A cylindrical fBm with representation
∑∞

k=1〈Fek, ·〉bHk (t) for

some F ∈ L(H,U) is a classical fBm in U if and only if F is γ-radonifying.

5.3 Comparison with literature and examples

In Section 5.3.1 we compare the cylindrical fractional Brownian motion in-

troduced in the thesis with the existing literature. A first special case that

we easily recover is the Hilbert space case which was considered for instance

in [16, 19, 49, 71]. There are several definitions of fBm in a Hilbert space:

we show how they all coincide and how they can be obtained from our defi-

nition.

The second subsection is devoted to the space-time noise which is fractional

in time and in space. We show that this process is nothing but a cylindri-

cal fractional Brownian motion in a suitable (function) space. This kind of

process is used for instance in the framework of SPDEs driven by fractional

noises.

Finally, in Section 5.3.3 we give two examples of fBms in L1 and L2. Even

in the Hilbert case, the example we provide is a more general noise than the

one considered in the literature.

5.3.1 Fractional Brownian motion in Hilbert spaces

Let V be a separable Hilbert space (possibly infinite dimensional) with scalar

product [·, ·]V . Recall that (see Corollary 5.1.11) in Hilbert spaces an oper-
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ator F ∈ L(H,U) is γ-radonifying if and only if F is Hilbert-Schmidt if and

only if FF ∗ is nuclear.

A possible definition of fBm in Hilbert space is given in Definition 4.1.3.

Remark 5.5. A fractional Brownian motion {XH(t), t ∈ R+} according to

Definition 4.1.3 is also a V -valued fractional Brownian motion according to

Definition 5.2.4.

An interesting case arises when the components are independent. This

would be a generalization of an finite dimensional standard fBm and it

corresponds to the case Q = Id. More generally, it is interesting to deal

with non-nuclear covariance operators. For this reason let us mention the

following fact.

Fact 5.1. Consider the formal series

(5.6) XH(t) =

∞∑
n=1

√
λnenβ

H
n (t)

where (βHn )n∈N are real independent fractional Brownian motions, (λn)n∈N
is a bounded sequence of non-negative numbers and (en)n∈N is an orthonor-

mal basis in V . In this case the covariance operator Q is given by Qen =

λnen, n ∈ N.

If
∑∞

n=1 λn = ∞ (that is if Q is not nuclear) then the series (5.6) does not

converge in L2
P
(Ω;V ). Nevertheless, one can always consider a Hilbert space

V1 such that V ⊂ V1 and such that the inclusion is Hilbert-Schmidt. Doing

so, we obtain a series which converges in L2
P
(Ω;V1).

Several authors, see for instance [16, 49, 71], use (5.6) as a definition for

both the V -valued fBm and the cylindrical fBm, depending on the properties

of Q. We recall here this definition.

Definition A. Let Q be a self-adjoint positive operator on V . Moreover let

Q be nuclear. It is known that in this case, Q admits a sequence (λn)n∈N
of eigenvalues λn > 0 for all n and λn ↓ 0 and

∑∞
n=1 λn < ∞. The corre-

sponding eigenvectors (en)n∈N form an orthonormal basis in V .

Then we define the V -valued fractional Brownian motion with covariance Q

by

(5.7) XH
Q (t) =

∞∑
n=1

√
λnenβ

H
n (t)
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where (βHn )n∈N is a sequence of real independent fractional Brownian mo-

tions. The series converges in L2
P
(Ω;V ) if Q is nuclear. (In this case we

recover Definition 4.1.3)

If we want to consider a non-nuclear covariance operator Q, then (5.7) de-

fines a cylindrical fractional Brownian motion in V to be interpreted as

explained in Fact 5.1.

Next we check that in fact our Definition 5.2.4 (and Definition 5.2.1) is a

more general notion than the analogous object introduced in the literature,

even in the case of Hilbert spaces. We refer to Section 5.3.3 for an example

of Gaussian process (a cylindrical fBm) which has not been considered in

the classical sense of Da Prato and Zabczyk.

Proposition 5.3.1. Let XH
Q be a (cylindrical) fBm according to Definition

A. Then

(a) if Q is nuclear then XH
Q is a V -valued fBm according to Definition

5.2.4;

(b) if Q is not nuclear then XH
Q is a V1-valued fBm according to Definition

5.2.4 where V1 is chosen according to Fact 5.1;

(c) if Q is not nuclear then XH
Q is a cylindrical fBm in V according to

Definition 5.2.1.

Proof. (a) We want to use Theorem 5.2.5. We chose U = H = V and bHk =

βHk for all k ∈ N. We define a linear and continuous operator F : V → V by

Fek =
√
λkek. It turns out that F = Q1/2 is Hilbert-Schmidt because Q is

nuclear. Therefore the series

BH(t) =
∞∑
k=1

Fekb
H
k (t) =

∞∑
k=1

√
λkekβ

H
k (t)

converges in L2
P
(Ω;V ) by Theorem 5.2.5.

(b) Consider Q : V → V and define the separable Hilbert space V0 :=

Q1/2(V ) with (gk)k∈N orthonormal basis of V0. Then let V1 be a larger

Hilbert space such that the inclusion J : V0 ↪→ V1 is Hilbert-Schmidt.

Clearly V1 is not unique. A possible construction of the space V1 is the

following: since (gk)k∈N ⊂ V0 is an orthonormal basis of V0, every v ∈ V0

admits a representation v =
∑∞

k=1 αkgk and ‖v‖20 =
∑∞

k=1 α
2
k. Set V1 := V0

endowed with the norm ‖ · ‖1 given by ‖v‖21 =
∑∞

k=1
1
k2
α2
k for any v ∈ V0.
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The embedding operator J : V0 → V1 is simply the identity and is Hilbert-

Schmidt since
∑∞

k=1 ‖Jgk‖21 =
∑∞

k=1
1
k2
<∞.

By Fact 5.1 we know that

BH(t) =
∞∑
k=1

Jgkβ
H
k (t)

is a V1-valued fBm according to Definition A. If we set U = U∗ = V1, H =

V0, F
∗ = J∗ and so F = J , ek = gk and bHk = βHk for all k ∈ N, then

Theorem 5.2.5, part (b) is satisfied.

(c) Consider as in (a) the space U = H = V and the operator F = Q1/2 ∈
L(H). Then define the cylindrical process {BH(t), t ≥ 0} in V by

BH(t)v =
∞∑
j=1

[Fej , v]V β
H
j (t).

The process BH is well defined as the series on the right-hand side converges

in L2
P
(Ω;R):

E

⎡
⎣
∣∣∣∣∣∣
m+n∑
j=m

[Fej , v]V β
H
j (t)

∣∣∣∣∣∣
2⎤⎦ =

m+n∑
j=m

[Fej , v]
2
V E
[|βHj (t)|2]

=t2H
m+n∑
j=m

[Fej , v]
2
V

≤t2H
∞∑

j=m

[Fej , v]
2
V = t2H

∞∑
j=m

[ej , Fv]
2
V ,

which tents to 0 as m→ ∞ because
∑∞

j=1[ej , Fv]
2
V = ‖Fv‖2V <∞.

By Theorem 5.2.3 we have that BH is a cylindrical fBm in V with covariance

operator Q.

(c) alternative proof.

Consider the following cylindrical process Y = {Y (t), t ≥ 0} in V , defined

for any v ∈ V as

(5.8) Y (t)v :=
∞∑
j=1

[igj , v]V β
H
j (t)

where (gj)j∈N ⊆ V0 is an orthonormal basis of V0 := Q1/2(V ). The space V0

is endowed with the scalar product [h1, h2]V0 : [Q−1/2h1, Q
−1/2h2]V and i :

V0 ↪→ V is the natural embedding operator. By the Corollary of Proposition
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1.6, Ch III in [76] part (a) and (b) we get that V0 is dense in V and that

ii∗ = Q because in this situation the reproducing kernel Hilbert space HQ

is V0. The process Y is well defined as the series on the right-hand side of

(5.8) converges in L2
P
(Ω;R):

E

⎡
⎣
∣∣∣∣∣∣
m+n∑
j=m

[igj , v]V β
H
j (t)

∣∣∣∣∣∣
2⎤⎦ =

m+n∑
j=m

[igj , v]
2
V E
[|βHj (t)|2]

=t2H
m+n∑
j=m

[igj , v]
2
V

≤t2H
∞∑

j=m

[igj , v]
2
V = t2H

∞∑
j=m

[gj , i
∗v]2V0

,

which tents to 0 as m→ ∞ because
∑∞

j=1[gj , i
∗v]2V0

= ‖i∗v‖2V0
<∞.

By Theorem 5.2.3 we have that {Y (t), t ≥ 0} is a cylindrical fBm in V with

covariance operator Q.

Remark 5.6. The Hilbert space used in (a) to decompose the operator is the

space V itself and it is not the RKHS. In fact the RKHS would be the closure

of Q1/2(V ) with respect to the bilinear form [Q1/2v1, Q
1/2v2]HQ

:= [v1, v2]V

for all v1, v2 ∈ V . Since Qek = λkek, it turns out that the RKHS HQ is V

endowed with the norm

‖v‖2HQ
= ‖Q−1/2v‖2V =

∞∑
k=1

[Q−1/2v, ek]
2
V =

∞∑
k=1

[v, λ
1/2
k ek]

2
V =

∞∑
k=1

λk[v, ek]
2
V .

The fact that the Hilbert space used in the proof is not the RKHS is not a

problem. In fact by Theorem 5.2.5 it just needs to be a Hilbert space with a

linear and continuous operator from it to the Banach space that decomposes

Q. In this case the operator is exactly the square root of Q. The same holds

for the first proof of (c).

5.3.2 The space-time fractional noise

The aim of this section is to show the relation between the cylindrical fBm

and a space-time field which would correspond to a fractional version of the

white noise. Since fBm is not a martingale (except for H = 1/2), we cannot

expect to have a martingale measure as in the Brownian case. Therefore, in

order to relate the fractional field {BH(t, x), t ≥ 0, x ∈ D} and a fractional
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Brownian motion (living in a function space) we proceed here inspired by

Gubinelli et al. who introduced in [27] a fractional Brownian noise.

Let D ⊂ R
d be a bounded and smooth domain and consider the Hilbert

space L2(D) with the usual scalar product denoted by 〈·, ·〉. Suppose we are
given a sequence of independent R-valued fBm (βHk )k∈N with Hurst index

H ∈ (0, 1), an orthonormal system (ek)k∈N of L2(D) and a sequence of real

numbers (qk)k∈N such that supk∈N |qk| <∞. Then we can always construct

a cylindrical fBm on L2(D) as follows.

Example 5.5. Let us define an operator F on L2(D) by Fek := qkek.

Clearly F ∈ L(L2(D)). The cylindrical process

bH(t) : L2(D) → L2
P(Ω;R)

defined for all h ∈ L2(D) and all t ≥ 0 by

bH(t)h =
∞∑
k=1

〈Fek, h〉βHk (t)

is a cylindrical fBm in L2(D). To see it, simply apply Theorem 5.2.3.

Depending on the properties of F , it might turn out that the cylindrical

process is a proper process on L2(D), as shown in the next example.

Example 5.6. If F is Hilbert-Schmidt, that is if
∑∞

k=1 q
2
k < ∞ then bH is

induced by a honest fBm b̃H in L2(D) which has the form

b̃H(t) =

∞∑
k=1

Fekβ
H
k (t).

To see it apply Theorem 5.2.5 and Proposition 5.2.6.

Denote by ‖ · ‖ the norm in L2(D). Let Pt be the (heat) semigroup on

L2(D) generated by (the Friedrich extension of) some second order differen-

tial operator A with Dirichlet boundary conditions. The simplest example

is the Dirichlet Laplacian −ΔD on D. Next we introduce a family of Hilbert

spaces Hα, α ∈ R defined by means of A and of its fractional powers:

- if α ≥ 0 let Hα := D(Aα) with scalar product 〈x, y〉α := 〈Aαx,Aαy〉
and norm ‖x‖α := ‖Aαx‖. Since A−α is continuous it follows that the

norm ‖ · ‖α is equivalent to the graph norm of Aα. If α = 0, then

H0 = L2(D) and A0 = Id;
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- if α < 0 let Hα be the completion of L2(D) with respect to the norm

‖x‖α := ‖Aαx‖. Denote by 〈·, ·〉α the scalar product. It follows that

Hα is a larger space than L2(D).

The Laplacian acts in a nice way on these spaces, i.e. for any ν < 0 and

for any γ ∈ R

Aν : Hγ+ν → Hγ

isomorphically.

With the help of these spaces and of the Dirichlet Laplacian we can

recover the fractional noise considered by Gubinelli et al. [27] and Hinz and

Zähle [29] starting from the noise defined in the two previous examples.

To this aim, we report the definition of fractional noise given in terms of

Gaussian series that can be found in [29], Section 6 or [27], Section 4.1:

Definition 5.3.2. Let (βk)k∈N be a sequence of independent, real valued

fractional Brownian motions with Hurst parameter 0 < H < 1, {λk, k ∈
N} = σ(A) and let (qk)k∈N be a sequence of positive numbers such that∑∞

k=1 q
2
kλ

−μ
k <∞ for some μ ∈ (0, 1) given. Then define

(5.9) bH,K(t, x) =
∞∑
k=1

qkek(x)β
H
k (t),

which is shown to be for almost all ω ∈ Ω an element of Cα([0, T ]; H̄−β(D))

for 0 < μ < β < 1 and 0 < α < H. A number K ∈ (0, 1) slightly bigger than

1− μ can be called Hurst parameter in space.

For more details about the construction of bH,K and its regularity in

time and space (fBm behaviour) we refer to the paper of Tindel Tudor and

Viens [72], Section 3.2.1.

Fact 5.2. Hinz and Zähle show that for any fixed t ∈ [0, T ] then bH,K(t, ·) is
an element of H̄−β

P-a.s. Gubinelli et al. show that it belongs to the space

H−β/2.

Remark 5.7. If we have a fBm with Hurst parameter K, then the fBm

is δ-Hölder continuous in space for all δ < K. In this definition, the noise

bH,K(t, ·) is the derivative of a fBm with Hurst parameter K. In fact since

it belongs to H−β/2, its regularity is of order −β = (1−β)−1 = δ−1 where

the parameter δ < K is chosen δ = 1 − β. This is exactly the regularity of

the derivative of a function which is (1− β)-Hölder continuous.
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We can recover the result stated in Fact 5.2 by our theory: we consider

the noise bH introduced in Example 5.5 together with the additional con-

dition
∑∞

k=1 q
2
kλ

−β
k < ∞. Recall that F is Hilbert-Schmidt if and only if∑∞

k=1 q
2
k < ∞ and this is not necessarily satisfied. Therefore, we do not

expect a classical process in L2(D). On the other hand, we can embed the

space L2(D) in H−β/2 and consider the process in this bigger space: in this

way we obtain a classical process in H−β/2 (see Theorem 5.3.3). Moreover,

this process induces the process bH in L2(D) as shown in Corollary 5.3.4.

Let us consider the sequence (ek)k∈N of eigenfunctions of A such that they

form an orthonormal basis in H0. Let (λk)k∈N be the corresponding eigen-

values. For all k ∈ N define gk := Aβ/2ek = λ
β/2
k ek ∈ H−β/2 and a linear op-

erator G : H−β/2 → H−β/2 given by Ggk := μkgk, where μk := qkλ
−β/2
k ∈ R.

Theorem 5.3.3. If
∑∞

k=1 μ
2
k =

∑∞
k=1 q

2
kλ

−β
k < ∞, that is if G is Hilbert-

Schmidt, then the process {b̄H(t), t ≥ 0} defined by

b̄H(t) =
∞∑
k=1

Ggkβ
H
k (t)

is a classical fBm on H−β/2.

Proof. First observe that the space H−β/2 is a Hilbert space with scalar

product 〈u, u〉−β/2 = 〈A−β/2u,A−β/2u〉. Since (ek)k∈N is a basis for H0 then

then (gk)k∈N is a basis for H−β/2: to see this let u ∈ H−β/2, then

u = Aβ/2A−β/2u

= Aβ/2
∞∑
k=1

〈A−β/2u, ek〉ek

= Aβ/2
∞∑
k=1

〈A−β/2u,A−β/2Aβ/2ek〉ek

= Aβ/2
∞∑
k=1

〈u,Aβ/2ek〉−β/2ek

=
∞∑
k=1

〈u,Aβ/2ek〉−β/2A
β/2ek

=

∞∑
k=1

〈u, gk〉−β/2gk.

Also ‖gk‖−β/2 = ‖Aβ/2A−β/2gk‖−β/2 = ‖Aβ/2ek‖−β/2 = ‖ek‖ = 1 and for

all j �= k we have 〈gk, gj〉−β/2 = 0.
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The operator G acts on H−β/2 and we have Ggk = μkgk with supk∈N |μk| <
∞ which ensures G ∈ L(H−β/2). Moreover G is Hilbert-Schmidt in H−β/2

and so the process {b̄H(t), t ≥ 0} given by

b̄H(t) :=

∞∑
k=1

Ggkβ
H
k (t)

is a fBm in H−β/2. To see this proceed as in proof of Proposition 5.3.1, part

(a).

Corollary 5.3.4. If
∑∞

k=1 μ
2
k < ∞ then the cylindrical process {bH(t), t ≥

0} introduced in Example 5.5 is induced by the classical fBm {b̄H(t), t ≥ 0}.
Moreover bH,K(t, ·) = b̄H in H−β/2, where {bH,K(t, x), t ≥ 0, x ∈ D} is

defined in (5.9).

Proof. First observe that

qkek = λ−β/2qkλ
β/2ek = λ−β/2qkgk = μkgk,

that is Fek = Ggk. For all h ∈ H, we have

〈b̄H(t), h〉 = 〈
∞∑
k=1

Ggkβ
H
k (t), h〉

= 〈
∞∑
k=1

Fekβ
H
k (t), h〉

=

∞∑
k=1

〈Fek, h〉βHk (t) = bH(t)h.

Moreover we also get

bH,K(t, ·) =
∞∑
k=1

qkekβ
H
k (t) =

∞∑
k=1

Ggkβ
H
k (t) = b̄H(t)

as process in H−β/2.

5.3.3 Two examples in L2 and L1

Here we explicitly construct fractional Brownian noises in L2(D) and L1(D)

for D ⊆ R
d.

We want to consider noises which are anisotropic, for instance noises

localized on a subset A ⊆ D or noises whose action along the kth eigen-

function is restricted to a set Ak. To this aim, we introduce a linear and
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continuous operator F with a series representation involving the product of

a function qk(·) with an eigenfunction ek(·). The function qk will be taken

as �Ak
in some specific examples.

The Hilbert space case L2

Denote by [·, ·]2 the scalar product in L2(D) and consider a complete or-

thonormal system (ek)k∈N in L2(D). Let (qk)k∈N be a sequence of bounded

functions qk ∈ L∞(D) such that

(5.10)

∞∑
k=1

‖qk‖2L∞(D) ≤ C <∞

for some constant C. Then we define the following function on D for each

h ∈ L2(D) by setting

(5.11) Fh(x) :=

∞∑
k=1

[h, ek]2qk(x)ek(x).

Fact 5.3. For each h ∈ L2(D) the function Fh belongs to L2(D).

Proof. Let h ∈ L2(D). We have

‖Fh‖L2(D) = ‖
∞∑
k=1

[h, ek]2qkek‖L2(D)

≤
∞∑
k=1

|[h, ek]2|‖qkek‖L2(D)

Now observe that

‖qkek‖2L2(D) =

∫
D
q2k(x)e

2
k(x) dx ≤ ‖qk‖2L∞(D)‖ek‖2L2(D) = ‖qk‖2L∞(D)

and therefore we get

‖Fh‖L2(D) ≤
∞∑
k=1

|[h, ek]2|‖qk‖L∞(D)

≤
( ∞∑

k=1

|[h, ek]2|2
)1/2( ∞∑

k=1

‖qk‖2L∞(D)

)1/2

(5.12)

=

( ∞∑
k=1

[h, ek]
2
2

)1/2( ∞∑
k=1

‖qk‖2L∞(D)

)1/2

= ‖h‖L2(D)C
1/2 <∞(5.13)

because of (5.10).
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Therefore the operator

(5.14) F : L2(D) → L2(D), Fh =
∞∑
k=1

[h, ek]2qkek

is well defined. Moreover it turns out it is linear and continuous, as shown

in the following proposition.

Proposition 5.3.5. Under the condition (5.10), the operator F defined in

(5.14) is linear and continuous.

Proof. Let us first check linearity. Let a ∈ R and h, g ∈ L2(D). Then we

have

F (ah+ g) =
∞∑
k=1

[ah+ g, ek]2qk(x)ek(x)

=

∞∑
k=1

([ah, ek]2qk(x)ek(x) + [g, ek]2qk(x)ek(x))

= a

∞∑
k=1

[h, ek]2qk(x)ek(x) +

∞∑
k=1

[g, ek]2qk(x)ek(x)

= aFh+ Fg.

Moreover by the computations in the proof of Fact 5.3 we get that

‖Fh‖L2(D) ≤ C‖h‖L2(D)

for all h ∈ L2(D), which means F ∈ L(L2(D)).

Now we construct a cylindrical fBm in L2(D) using Theorem 5.2.3. Let

(bHk )k∈N be a sequence of independent real fBm. Define the cylindrical pro-

cess {X(t), t ≥ 0} by

X(t) : L2(D) → L2
P
(Ω,R)

f 
→ X(t)f

with

(5.15) X(t)f :=
∞∑
k=1

[Fek, f ]2b
H
k (t)

which has covariance operator given by Q = FF ∗ : L2(D) → L2(D). Theo-

rem 5.2.3 yields the following result.
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Proposition 5.3.6. If (qk)k∈N ⊂ L2(D) satisfies (5.10) then the cylindrical

noise X given by (5.15) is a cylindrical fBm in L2(D).

Example 5.7. Let qk(x) = μk�Ak
(x) where Ak ⊆ D for all k ∈ N and such

that
∑
μ2k <∞. In this case we clearly have that coefficients (qk)k∈N satisfy

(5.10) and therefore by Proposition 5.3.6 we can define a cylindrical fBm in

L2(D).

Remark 5.8. The interesting feature of this noise is that it can behave in an

asymmetric way in space. This is reflected into the fact that the coefficient

qk depend on x, which is not the case for the classical noises given through

series representations that are presented in the literature.

In fact we defined more than just a cylindrical process in L2, namely

under this conditions we actually have a classical fBm which is L2-valued.

Theorem 5.3.7. Under the assumption (5.10), the noise {X̃(t), t ∈ [0, T ]}
given by

X̃(t) =
∞∑
k=1

Fekb
H
k (t).

is an L2(D)-valued fBm. Moreover, the noise X defined above by (5.15) is

induced by X̃ in the sense that [X̃(t), f ]2 = X(t)f for all f ∈ L2(D).

Proof. In order to have a classical process in L2(D) we must verify F as

Hilbert-schmidt. If this is the case, by Theorem 5.2.5 we have that X̃(t)

converges in L2
P
(Ω;L2(D)) and therefore is an L2(D)-valued fBm.

We now check that F is Hilbert-Schmidt. Previously observe that Fek =∑∞
j=1[ek, ej ]2qjej = qkek. We have

‖F‖2L2(L2(D)) =
∞∑
k=1

‖Fek‖2L2(D)

=

∞∑
k=1

‖qkek‖2L2(D)

≤
∞∑
k=1

‖qk‖2L∞(D) <∞

where the last sum is convergent by assumption. The process X̃ induces

now the cylindrical process X by Proposition 5.2.6.
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Example 5.8. Using this theorem we can write now a fractional Brownian

noise whose randomness is localized in space, that is a noise which is not

isotropic. Suppose assumptions of Example 5.7 are satisfied and consider

the noise is given by

X̃(t, x) =
∞∑
k=1

μk�Ak
(x)ek(x)b

H
k (t).

The sum converges in L2
P
(Ω;L2(D)) as a function of x.

The Banach space case L1

Now we consider a sequence of weights (qk)k∈N ⊂ L2(D) such that

(5.16)
∞∑
k=1

‖qk‖2L2(D) ≤ C <∞.

We can show that under this condition then the operator F given by (5.11)

for all h ∈ L2(D) takes values in L1(D). It is again linear and continuous

and therefore we can define a cylindrical fBm in L1(D). Since D might be

unbounded, we give the explicit proof that F takes actually values in L1(D).

Fact 5.4. For each h ∈ L2(D) the function Fh belongs to L1(D).

Proof. Let h ∈ L2(D). Observe that ‖qkek‖L1(D) ≤ ‖qk‖L2(D)‖ek‖L2(D) =

‖qk‖L2(D) and therefore we get

‖Fh‖L1(D) = ‖
∞∑
k=1

[h, ek]2qkek‖L1(D)

≤
∞∑
k=1

|[h, ek]2|‖qk‖L2(D).

By similar computations as in (5.12) and using (5.16) we get ‖Fh‖L1(D) ≤
c‖h‖L2(D) <∞.

We then have an operator

(5.17) F : L2(D) → L1(D), Fh =

∞∑
k=1

[h, ek]2qkek

which is well defined. Moreover we have already shown that it is linear and

continuous.
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Proposition 5.3.8. Under the condition (5.16), the operator F defined in

(5.17) is linear and continuous.

Now we construct a cylindrical fBm in L1(D) using Theorem 5.2.3. Re-

call that (L1(D))∗ = L∞(D) and let us denote the dual pairing between

L1(D) and L∞(D) by 〈·, ·〉. Let (bHk )k∈N be a sequence of independent real

fBm. Define the cylindrical process {X(t), t ≥ 0} by

X(t) : L∞(D) → L2
P
(Ω,R)

f 
→ X(t)f

with

(5.18) X(t)f :=
∞∑
k=1

〈Fek, f〉bHk (t)

which has covariance operator given by Q = FF ∗ : L∞(D) → L1(D). The-

orem 5.2.3 yields the following result.

Proposition 5.3.9. If (qk)k∈N ⊂ L2(D) satisfies (5.10) then the cylindrical

noise X given by (5.18) is a cylindrical fBm in L1(D).

Example 5.9. The noise

X(t)f =
∞∑
k=1

〈μk�Ak
, f〉bHk (t)

is a cylindrical fBm in L1(D) if Ak ⊆ D is bounded for all k ∈ N and

(μk)k∈N ⊂ R are such that
∑∞

k=1 μ
2
k <∞.
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Chapter 6

Stochastic integration with

respect to cylindrical

fractional Brownian motion

in Banach spaces

In this chapter, after giving some preliminary results, we introduce the the-

ory of integration in Banach spaces with respect to the cylindrical fractional

Brownian motion introduced in Chapter 5.

The special case when the underlying space is a Hilbert space has already

been considered in the literature. The definition, based on Wiener integrals,

first appeared in [57] for general Hurst parameter H ∈ (0, 1). We briefly

recall it using our setting of cylindrical processes.

Let H be a Hilbert space with scalar product [·, ·] and let (ek)k∈N be an

orthonormal system for H. Let B be a cylindrical standard fBm in H with

covariance function Q = I, i.e. the process B admits the representation

[B(t), h] =
∞∑
k=1

[ek, h]βk(t), in L2
P(Ω;R)

for all h ∈ H and ∀t ≥ 0. Recall that (βk)k∈N are independent real valued

fBms.

The stochastic integral
∫ T
0 GdB is defined for an operator-valued func-

tion G : [0, T ] → L(H). The following definition and proposition are cited

verbally from [57]. For more details and the proof we refer to it.
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Definition 6.0.10. Let G : [0, T ] → L(H), (ek)k∈N be a complete orthonor-

mal basis in H, gn(t) := G(t)en, gn ∈ HT for n ∈ N and B be a cylindrical

standard fBm in H. Define

(6.1)

∫ T

0
GdB :=

∞∑
k=1

∫ T

0
gk dβk

provided the infinite series converges in L2
P
(Ω;R).

Proposition 6.0.11. Let G : [0, T ] → L(H) and G(·)h ∈ HT for all h ∈ H.

Let ΓT : H → L2([0, T ];H) be given as

(ΓTh)(t) := (K∗
TGh)(t)

for t ∈ [0, T ] and h ∈ H. If ΓT ∈ L2(H;L2([0, T ];H)), that is ΓT is a

Hilbert-Schmidt operator, then the stochastic integral (6.1) is a well defined

Gaussian H-valued random variable with covariance operator QT given by

QTh =

∫ T

0

∞∑
k=1

[(ΓT ek)(s), h](ΓT ek)(s) ds.

This integral does not depend on the choice of the complete orthonormal

basis (ek)k∈N.

Inspired by this result, we define in this chapter the integral with respect

to cylindrical fBm in separable Banach spaces. We recover the same type of

result and we prove some properties of the integral.

6.1 Preliminary results

In this section we give some preliminary results and definitions. First we

concentrate on the the link between Wiener integrals of real valued functions

and Wiener integrals of Hilbert space valued functions. These technical

results are then used in the second subsection (and later as well) in order to

define the integral, its covariance operator and to study their properties.

6.1.1 The link between real- and Hilbert space-valued inte-

grands

Let us recall definition of Bochner integral. Let U be a separable Banach

space with norm ‖ · ‖, (A,A, μ) a finite measure space and f : A → U a
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measurable function. The Bochner integral is the integral of f with respect

to μ and it is defined to be an element of U . It is first defined for simple

functions ξ(a) =
∑N

i=1 bi�Ai(a), where bi ∈ U and Ai ∈ A, as

∫
A
ξ dμ =

∫
A

N∑
i=1

bi�Ai(a)μ(da) :=

N∑
i=1

bi μ(Ai ∩A).

By density one extends this definition to all measurable functions f : A→ U

such that ∫
A
‖f(a)‖μ(da) <∞.

through ∫
A
f(a)μ(da) := lim

n→∞

∫
A
ξn(a)μ(da)

for simple functions (ξn)n∈N which approximate f appropriately.

The Bochner integral behaves in a nice way with the dual pairing: for f :

[0, T ] → U measurable and such that
∫ T
0 ‖f(t)‖ dt <∞, then for any b∗ ∈ U∗

we have

(6.2)

〈∫ T

0
f(t)dt, b∗

〉
=

∫ T

0
〈f(t), b∗〉dt.

Moreover, for g : [0, T ] → R measurable and such that
∫ T
0 |g(t)| dt < ∞,

then for any b ∈ U the function bg : [0, T ] → U is Bochner integrable and

(6.3)

∫ T

0
bg(t)dt = b

∫ T

0
g(t)dt.

We prove now a technical result that is useful to link the operator K
∗
T

withK∗
T and that will be used in this chapter to define the stochastic integral

in Banach spaces.

The first obvious result is that K∗
T (α�[0,t)) = αK∗

T�[0,t) for all α ∈ H. This

follows from (6.3) applied in the the special case of Hilbert space valued

functions.

Proposition 6.1.1. (i) For any φ ∈ HT and α ∈ H then Φ : [0, T ] → H

defined by Φ(t) := αφ(t) for all t ∈ [0, T ] is an element of HT with

‖Φ‖2HT
= ‖α‖2H‖φ‖2HT

and

K
∗
Tαφ = αK∗

Tφ.
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(ii) For any Φ ∈ HT and α ∈ H then φ : [0, T ] → R given by φ(t) :=

[Φ(t), α] for all t ∈ [0, T ] is an element of HT with

‖φ‖2HT
≤ ‖α‖2H‖Φ‖2HT

and

[K∗
TΦ(·), α]H = K∗

Tφ(·).

Proof. (i) Let φ ∈ H and α ∈ H. By linearity of K∗
T and using equation

(6.3) we have K
∗
HΦ = αK∗

Tφ so we get

‖Φ‖2HT
= ‖αφ‖2HT

= ‖K∗
Tαφ‖2L2([0,T ];H)

= ‖αK∗
Tφ‖2L2([0,T ];H)

=

∫ T

0
‖α(K∗

Tφ)(t)‖2H dt

=

∫ T

0
‖α‖2H |(K∗

Tφ)(t)|2 dt

= ‖α‖2H‖K∗
Tφ‖2L2([0,T ]) = ‖α‖2H‖φ‖2HT

<∞,

which guarantees Φ ∈ HT .

(ii) Using equation (6.2) and the linearity of operators K∗
T and K

∗
T we get

easily that

[K∗
TΦ(·), α]H = K∗

T ([Φ(·), α]H).

Moreover, since Φ ∈ HT it holds

‖φ‖2HT
= ‖K∗

Tφ‖2L2([0,T ])

= ‖[K∗
TΦ(·), α]H‖2L2([0,T ])

=

∫ T

0
[K∗

TΦ(t), α]
2
H dt

≤
∫ T

0
‖K∗

TΦ(t)‖2H‖α‖2H dt

= ‖α‖2H
∫ T

0
‖K∗

TΦ(t)‖2H dt

= ‖α‖2H‖K∗
TΦ(·)‖2L2([0,T ];H)

= ‖α‖2H‖Φ‖2HT
<∞.
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6.1.2 Some definitions and properties

We indicate by U and V two separable Banach spaces with norm ‖ · ‖U and

‖ · ‖V , respectively. The dual pairing is denoted by 〈·, ·〉U,U∗ and 〈·, ·〉V,V ∗

respectively, or only with 〈·, ·〉 for both of them by abuse of notation when

it is clear which one we mean.

Let BH be a cylindrical fBm in U as introduced in Definition 5.2.1 so that

we have the representation

(6.4) BH(t)u∗ =
∞∑
k=1

〈iQek, u∗〉bHk (t)

for all u∗ ∈ U∗. Let ϕ : [0, T ] → L(U, V ) be given and denote by ϕ∗ : [0, T ] →
L(V ∗, U∗) the adjoint of ϕ(t) for all t ∈ [0, T ]. The main idea to define

a cylindrical integral
∫ T
0 ϕ(t)dBH(t) is by exploiting the representation of

BH as a series, therefore involving one-dimensional fBms. In this spirit one

defines the integral as sum of one-dimensional integrals where the integrands

are real valued functions defined by means of the dual pairing in V, V ∗ as

follows ∞∑
k=1

∫ T

0
〈ϕ(t)iQek, v∗〉V,V ∗ dbHk (t).

The series is considered as an element in L2
P
(Ω;R) (that is it is required to

converge). It turns out that under suitable conditions the integral is well

defined: each one-dimensional integral makes sense and the sum converges

in L2
P
(Ω;R).

In order to formalize this definition, let us introduce the space of deter-

ministic functions for which the integral is well defined.

Definition 6.1.2. We denote by IT the space of deterministic functions ϕ

that are integrable on [0, T ] with respect to BH , that is

IT := {ϕ : [0, T ] → L(U, V ) such that for all v∗ ∈ V ∗, i∗Qϕ
∗(·)v∗ ∈ HT }.

Another class of integrable functions is a subset of IT and it is given by

the following

Definition 6.1.3. We define the following subset of IT :

BT := {ϕ ∈ IT such that ∃C > 0 :

‖i∗Qϕ∗(·)v∗‖HT
≤ C‖v∗‖V ∗ for all v∗ ∈ V ∗},
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that is the class of functions ϕ for which the operator i∗Qϕ
∗(·) acting on V ∗

with values in HT is continuous.

The next proposition gives an example of a class of functions ϕ : [0, T ] →
L(U, V ) which is a subset of BT . For the proof we need to recall a prelimi-

nary known fact about HT (see [19], Section 2 or [33], Lemma 5.20).

In the case H ∈ (0, 1/2) we have C β([0, T ];HQ) ⊂ HT for each β > 1/2−
H and the inclusion is continuous.

In the case H ∈ (1/2, 1) then L1/H([0, T ];HQ) ⊂ HT and the inclusion is

continuous. In particular L2([0, T ];HQ) ⊂ HT , the inclusion being

continuous.

Proposition 6.1.4. Let ϕ : [0, T ] → L(U, V ) be given.

(i) For H ∈ (0, 1/2), if ϕ∗ ∈ C β([0, T ];L(V ∗, U∗)) for some β > 1/2−H,

then i∗Qϕ
∗(·)v∗ ∈ HT for all v∗ ∈ V ∗ and moreover we have

‖i∗Qϕ∗(·)v∗‖HT
≤ c‖v∗‖V ∗ ‖i∗Q‖L(U∗;HQ) ‖ϕ∗‖C β([0,T ];L(V ∗,U∗)),

that is ϕ ∈ BT .

(ii) For H ∈ (1/2, 1), if ϕ∗ ∈ L2([0, T ];L(V ∗, U∗)) then i∗Qϕ
∗(·)v∗ ∈ HT

for all v∗ ∈ V ∗ and moreover we have

‖i∗Qϕ∗(·)v∗‖HT
≤ c‖v∗‖V ∗ ‖i∗Q‖L(U∗;HQ) ‖ϕ∗‖L2([0,T ];L(V ∗,U∗)),

that is ϕ ∈ BT .

Proof. For sake of simplicity, we will sometimes indicate the operator norm

of the spaces of linear and continuous functionals with ‖ · ‖L without spec-

ifying the spaces where the operator acts. The same for the norms in C β

and L2.

(i) Let H ∈ (0, 1/2) and ϕ∗ ∈ C β([0, T ];L(V ∗, U∗)), i.e.

‖ϕ∗‖β = sup
0≤s<t≤T

‖ϕ∗(t)− ϕ∗(s)‖L
|t− s|β <∞.
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Let i∗Qϕ
∗ : [0, T ] → L(V ∗, HQ) be the map defined by t 
→ i∗Qϕ

∗(t). We have

‖i∗Qϕ∗‖β = sup
0≤t≤T

‖i∗Qϕ∗(t)− i∗Qϕ
∗(s)‖L

|t− s|β

≤ sup
0≤t≤T

‖i∗Q‖L‖ϕ∗(t)− ϕ∗(s)‖L
|t− s|β

= ‖i∗Q‖L sup
0≤s<t≤T

‖ϕ∗(t)− ϕ∗(s)‖L
|t− s|β

= ‖i∗Q‖L‖ϕ∗‖β <∞

that is i∗Qϕ
∗ ∈ C β([0, T ];L(V ∗, HQ)). With the same kind of computations

one proves that the map

i∗Qϕ
∗(·)v∗ : [0, T ] → HQ

t 
→ i∗Qϕ
∗(t)v∗

is an element of C β([0, T ];HQ) and the following bound holds

‖i∗Qϕ∗(·)v∗‖β ≤ ‖v∗‖V ∗ ‖i∗Q‖L(U∗;HQ) ‖ϕ∗‖C β([0,T ];L(V ∗,U∗)).

Since for H ∈ (0, 1/2) the inclusion C β([0, T ];H) ⊂ HT is continuous, the

claim follows.

(ii) Let H ∈ (1/2, 1) and ϕ∗ ∈ L2([0, T ];L(V ∗, U∗)). We have

‖i∗Qϕ∗‖2L2 =

∫ T

0
‖i∗Qϕ∗(t)‖2L dt

≤
∫ T

0
‖i∗Q‖2L ‖ϕ∗(t)‖2L dt

≤ ‖i∗Q‖2L ‖ϕ∗‖2L2 <∞

and so the map i∗Qϕ
∗ is an element of L2([0, T ];L(V ∗;HQ)). In the same way

one gets for all v∗ ∈ V ∗ that i∗Qϕ
∗(·)v∗ ∈ L2([0, T ];HQ) and the following

bound holds

‖i∗Qϕ∗(t)v∗‖L2([0,T ];HQ) ≤ ‖v∗‖V ∗ ‖i∗Q‖L(U∗;HQ) ‖ϕ∗‖L2([0,T ];L(V ∗,U∗)).

Since for H ∈ (1/2, 1) the inclusion L2([0, T ];HQ) ⊂ HT is continuous, the

claim follows.

Next we introduce an operator ΓT,ϕ which will be useful to prove that the

integral is well defined and to show several properties of it. The operator in
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fact, plays a crucial role in the description of the random variable as Gaussian

process. It will provide the decomposition of the covariance operator of the

integral
∫ T
0 ϕdBH , allowing us to give conditions under which the integral

is induced by a classical random variable in V .

Definition 6.1.5. For each ϕ ∈ IT we define the linear operator ΓT,ϕ

acting on V ∗ by

ΓT,ϕ : V ∗ −→ L2([0, T ];HQ)

v∗ 
−→ ΓT,ϕ(v
∗)

where

ΓT,ϕ(v
∗) := K

∗
T (i

∗
Qϕ

∗(·)v∗)
with K

∗
T as defined in Section 4.2.2.

By this definition we easily get the following isometry property.

Proposition 6.1.6. For ϕ ∈ IT and for all v∗ ∈ V ∗ we have

‖ΓT,ϕ(v
∗)‖L2([0,T ];HQ) = ‖i∗Qϕ∗(·)v∗‖HT

Proof. Observe that ϕ ∈ IT ensures that i∗Qϕ
∗(·)v∗ ∈ HT . We have

‖ΓT,ϕ(v
∗)‖2L2([0,T ];HQ) =

∫ T

0
‖ΓT,ϕ(v

∗)‖2HQ
dt

=

∫ T

0
‖K∗

T (i
∗
Qϕ

∗(t)v∗)‖2HQ
dt

= ‖K∗
T (i

∗
Qϕ

∗(·)v∗)‖2L2([0,T ];HQ)

= ‖i∗Qϕ∗(·)v∗‖2HT
.

The last equality follows from the isometry property of the operator K∗
T .

6.2 Stochastic integral with respect to fBm in Ba-

nach spaces

In this section we define the stochastic integral with respect to a cylindrical

fBm. The integral is defined as a cylindrical r.v. in a separable Banach

space V . We investigate its properties and give conditions under which it is

well defined. The integral turns out to be a centered Gaussian cylindrical

random variable. Under suitable assumptions it is actually induced by a

classical r.v. in V as shown in the second subsection. Finally we consider

the integral as a stochastic process indexed by t.
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6.2.1 Definition of the stochastic integral

We can now proceed to give the formal definition of the integral with respect

to BH , which, at a first stage, will be a cylindrical process in V .

Definition 6.2.1. Let ϕ ∈ IT be given. The stochastic integral of ϕ on

[0, T ] with respect to a cylindrical fBm BH is denoted by IT (ϕ) and is defined

as a cylindrical random variable in V by

(6.5) IT (ϕ)v∗ :=
∞∑
k=1

∫ T

0
〈ϕ(t)iQek, v∗〉V,V ∗ dbHk (t)

for all v∗ ∈ V ∗, where the series converges in L2
P
(Ω;R).

Theorem 6.2.2. Let ϕ ∈ IT . For the integral IT (ϕ) we have:

(i) the following isometry property

‖IT (ϕ)v∗‖L2
P
(Ω;R) = ‖ΓT,ϕ(v

∗)‖L2([0,T ];HQ)

holds for each v∗ ∈ V ∗;

(ii) the integral is a well-defined cylindrical random variable in V ;

(iii) the definition does not depend on the representation of the fBm.

Proof. (i) Let v∗ ∈ V ∗ be fixed. Using the independence of the one-

dimensional integrals and the isometry property of K∗
H between HT and

L2([0, T ];R) we have

‖IT (ϕ)v∗‖2L2
P
(Ω;R) = E

∣∣∣∣∣
∞∑
k=1

∫ T

0
〈ϕ(t)iQek, v∗〉dbHk (t)

∣∣∣∣∣
2

=

∞∑
k=1

E

∣∣∣∣
∫ T

0
〈ϕ(t)iQek, v∗〉dbHk (t)

∣∣∣∣2

=

∞∑
k=1

∫ T

0
|K∗

T 〈ϕ(t)iQek, v∗〉V,V ∗ |2 dt

=

∞∑
k=1

∫ T

0

∣∣K∗
T [ek, i

∗
Qϕ

∗(t)v∗]HQ

∣∣2 dt.
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By Proposition 6.1.1 we get

‖IT (ϕ)v∗‖2L2
P
(Ω;R) =

∞∑
k=1

∫ T

0

∣∣[ek,K∗
T i

∗
Qϕ

∗(t)v∗]HQ

∣∣2 dt
=

∞∑
k=1

∫ T

0
[ΓT,ϕ(v

∗), ek]2HQ
(t) dt

=

∫ T

0

∞∑
k=1

[ΓT,ϕ(v
∗), ek]2HQ

(t) dt

=

∫ T

0
‖ΓT,ϕ(v

∗)‖2HQ) dt

= ‖ΓT,ϕ(v
∗)‖2L2([0,T ];HQ

.

(ii) First observe that 〈ϕ(t)iQek, v∗〉V,V ∗ = [ek, ϕ
∗(·)i∗Qv∗]HQ

. Since by hy-

pothesis ϕ∗(·)i∗Qv∗ ∈ HT , then Proposition 6.1.1 implies [ek, ϕ
∗(·)i∗Qv∗]HQ

∈
HT that is the one-dimensional integrals appearing in (6.5) are well defined

as Wiener integrals. The sum converges in L2
P
(Ω;R) thanks to the isometry

property (i) and to the assumption that i∗Qϕ
∗(·)v∗ ∈ HT . Finally the map

IT is linear due to the linearity of the Wiener integral and of the dual pair-

ing.

(iii) Let (fk)k∈N be another orthonormal system in HQ, (w
∗
j )j∈N ⊂ U∗ be

such that i∗Qw
∗
j = fj and let (cHj )j∈N be independent one-dimensional fBms

such that for all u∗ ∈ U∗

(6.6) BH(t)u∗ =
∞∑
j=1

〈iQfj , u∗〉cHj (t)

in L2
P
(Ω;R).

It is easy to show that E[bHk (t)cHj (s)] = RH(t, s)[ek, fj ]HQ
. In fact if we

denote by vk the elements in U∗ such that i∗Qv
∗
k = ek for each k ∈ N, then

we have

bHk (t) = BH(t)v∗k and cHj (t) = BH(t)w∗
j

which, together with the definition of cylindrical fBm, yields

E[bHk (t)cHj (s)] = E[BH(t)v∗kB
H(s)w∗

j ] = RH(t, s)〈Qv∗k, w∗
j 〉

= RH(t, s)[i∗Qv
∗
k, i

∗
Qw

∗
j ]HQ

= RH(t, s)[ek, fj ]HQ
.

On the other hand, it is known (see for instance [9], Section 2.1) that for

each fBm cHj there exist a Bm W̃j such that cHj (t) =
∫ t
0 KH(t, u) dW̃j(u)

98



6. Stochastic integration in Banach spaces

and also ∫ T

0
ϕ(t)dcHj (t) =

∫ T

0
(K∗

Hϕ)(t)dW̃j(t)

for each ϕ ∈ HT . Denote by Wk the Bm corresponding to bHk . Then we

have

RH(t, s)[ek, fj ]HQ
= E[bHk (t)cHj (s)]

= E

[∫ t

0
KH(t, u) dWk(u)

∫ s

0
KH(s, u) dW̃j(u)

]

=

∫ T

0
�[0,t)(u)KH(t, u)�[0,s)(u)KH(s, u)d[Wk, W̃j ]u

=

∫ s∧t

0
KH(t, u)KH(s, u)d[Wk, W̃j ]u

where [·, ·]u denotes the quadratic variation.

Since RH(t, s) =
∫ t∧s
0 KH(t, u)KH(s, u)du we have

RH(t, s)[ek, fj ]HQ
=

∫ t∧s

0
KH(t, u)KH(s, u)[ek, fj ]HQ

du

=

∫ s∧t

0
KH(t, u)KH(s, u)d[Wk, W̃j ]u

and therefore we get d[Wk, W̃j ]u = [ek, fj ]HQ
du. Using this relation we get

E

[∫ T

0
〈ϕ(t)iQek, v∗〉dbHk (t)

∫ T

0
〈ϕ(t)iQfj , v∗〉dcHj (t)

]
(6.7)

= E

[∫ T

0
K∗

H〈ϕ(t)iQek, v∗〉dWk(t)

∫ T

0
K∗

H〈ϕ(t)iQfj , v∗〉dW̃j(t)

]

=

∫ T

0
K∗

T 〈ϕ(t)iQek, v∗〉K∗
T 〈ϕ(t)iQfj , v∗〉[ek, fj ]HQ

dt

=

∫ T

0
K∗

T [ek, i
∗
Qϕ

∗(t)v∗]HQ
K∗

T [fj , i
∗
Qϕ

∗(t)v∗]HQ
[ek, fj ]HQ

dt

=

∫ T

0
[ΓT,ϕ(v

∗)(t), ek]HQ
[ΓT,ϕ(v

∗)(t), fj ]HQ
[ek, fj ]HQ

dt.

Define in L2
P
(Ω;R) the integral ĨT (ϕ) of ϕ with respect to BH using the

representation (6.6), that is define the integral by the following series

ĨT (ϕ)v∗ :=
∞∑
j=1

∫ T

0
〈ϕ(t)iQfj , v∗〉 dcHj (t)
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for all v∗ ∈ V ∗. Then using the isometry property stated in part (i) and

(6.7) we get

E|IT (ϕ)v∗ − ĨT (ϕ)v∗|2

=E|IT (ϕ)v∗|2 + E|ĨT (ϕ)v∗|2 − 2E[(IT (ϕ)v∗)(ĨT (ϕ)v∗)]
=2‖ΓT,ϕ(v

∗)‖2L2([0,T ];HQ)

− 2

∞∑
k=1

∞∑
j=1

∫ T

0
[ΓT,ϕ(v

∗)(t), ek]HQ
[ΓT,ϕ(v

∗)(t), fj ]HQ
[ek, fj ]HQ

dt

=2‖ΓT,ϕ(v
∗)‖2L2([0,T ];HQ)

− 2

∫ T

0
‖ΓT,ϕ(v

∗)(t)‖HQ
‖ΓT,ϕ(v

∗)(t)‖HQ
dt

=2‖ΓT,ϕ(v
∗)‖2L2([0,T ];HQ) − 2‖ΓT,ϕ(v

∗)‖2L2([0,T ];HQ) = 0,

which proves the independence of the definition from the representation.

Remark 6.1. The isometry property can be expressed also in terms of the

space HT as follows

‖IT (ϕ)v∗‖L2
P
(Ω;R) = ‖i∗Qϕ∗(·)v∗‖HT

for all v∗ ∈ V ∗. The proof follows easily combining Proposition 6.1.6 and

part (i) of Theorem 6.2.2.

6.2.2 The stochastic integral as cylindrical random variable

and its properties

Next we give a description of the stochastic integral as a cylindrical random

variable in V . It turns out that under suitable conditions the covariance

function can be factorized through a linear and continuous operator which

is given explicitly by ΓT,ϕ and therefore the reproducing kernel Hilbert space

of the variable IT (ϕ) turns out to be L2([0, T ];HQ).

The following technical lemma will be used for this aim.

Lemma 6.2.3. Let w∗ ∈ V ∗ be fixed and let (v∗n)n∈N ⊂ V ∗ be weakly*

convergent to 0. If ϕ ∈ BT then the series

∞∑
k=1

〈[ΓT,ϕw
∗, ek]HQ

, [ΓT,ϕv
∗
n, ek]HQ

〉L2([0,T ])

converges in R uniformly in n.
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Proof. Observe that

〈[ΓT,ϕw
∗, ek]HQ

, [ΓT,ϕv
∗
n, ek]HQ

〉L2([0,T ])

≤ ‖[ΓT,ϕw
∗, ek]HQ

‖L2([0,T ]) ‖[ΓT,ϕv
∗
n, ek]HQ

‖L2([0,T ])

and by Hölder inequality we get∣∣∣∣∣
∞∑

k=m

〈[ΓT,ϕw
∗, ek]HQ

, [ΓT,ϕv
∗
n, ek]HQ

〉L2([0,T ])

∣∣∣∣∣
≤

∞∑
k=m

∣∣〈[ΓT,ϕw
∗, ek]HQ

, [ΓT,ϕv
∗
n, ek]HQ

〉L2([0,T ])

∣∣
≤

∞∑
k=m

‖[ΓT,ϕw
∗, ek]HQ

‖L2([0,T ]) ‖[ΓT,ϕv
∗
n, ek]HQ

‖L2([0,T ])

≤
( ∞∑

k=m

‖[ΓT,ϕw
∗, ek]HQ

‖2L2([0,T ])

)1/2( ∞∑
k=m

‖[ΓT,ϕv
∗
n, ek]HQ

‖2L2([0,T ])

)1/2

≤
( ∞∑

k=m

‖[ΓT,ϕw
∗, ek]HQ

‖2L2([0,T ])

)1/2( ∞∑
k=1

‖[ΓT,ϕv
∗
n, ek]HQ

‖2L2([0,T ])

)1/2

.

(6.8)

The second factor equals ‖ΓT,ϕv
∗
n‖L2([0,T ];HQ) because by Fubini-Tonelli the-

orem we can write

‖ΓT,ϕv
∗
n‖2L2([0,T ];HQ) =

∫ T

0
‖ΓT,ϕv

∗
n‖2HQ

dt

=

∫ T

0

∞∑
k=1

[ΓT,ϕv
∗
n, ek]

2
HQ

dt

=

∞∑
k=1

∫ T

0
[ΓT,ϕv

∗
n, ek]

2
HQ

dt

=

∞∑
k=1

‖[ΓT,ϕv
∗
n, ek]HQ

‖2L2([0,T ]).

Using Proposition 6.1.6 and the definition of BT , the second factor of (6.8)

can be bounded as follows

‖ΓT,ϕv
∗
n‖L2(0,T ;HQ) = ‖i∗Qϕ∗(·)v∗n〉‖HT

≤ C ′‖v∗n ‖V ∗

≤ C ′ sup
n∈N

‖v∗n‖V ∗ = C <∞,
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where the last bound is finite because (v∗k) is weakly* convergent and there-

fore the supremum is bounded. Moreover C does not depend on n. On

the other hand, we know that ΓT,ϕw
∗ is an element of L2([0, T ], HQ) which

means

‖ΓT,ϕw
∗‖2L2([0,T ],HQ) =

∞∑
k=1

‖[ΓT,ϕw
∗, ek]HQ

‖2L2([0,T ]) <∞.

Therefore, for any ε > 0 given, there exists a positive number N such that

for all m > N we have

∞∑
k=m

‖[ΓT,ϕw
∗, ek]HQ

‖2L2([0,T ]) <
ε2

C2
.

For this choice of N and for all m > N we therefore have∣∣∣∣∣
∞∑

k=m

〈[ΓT,ϕw
∗, ek]HQ

, [ΓT,ϕv
∗
n, ek]HQ

〉L2([0,T ])

∣∣∣∣∣
≤
( ∞∑

k=m

‖[ΓT,ϕw
∗, ek]HQ

‖2L2([0,T ])

)1/2

‖ΓT,ϕv
∗
n‖L2([0,T ];HQ) ≤

ε

C
C = ε

for arbitrary ε and N independent of n, that is the series is convergent

uniformly in n.

Proposition 6.2.4. 1 If ϕ ∈ BT then the integral IT (ϕ) is a zero-mean

Gaussian cylindrical random variable. Moreover the covariance operator

QT,ϕ : V ∗ → V ∗∗ can be decomposed through QT,ϕ = Γ∗
T,ϕΓT,ϕ and is actually

V -valued.

Proof. The integral IT (ϕ)v∗ is a zero-mean Gaussian random variable for

all v∗ ∈ V ∗ because it is a linear combination of independent zero-mean

Gaussian random variables on R and it is well defined as random variable in

L2
P
(Ω;R). By similar computations as done in the proof of Theorem 6.2.2,

part (iii), we obtain the following expression for the covariance operator

QT,ϕ : V ∗ → V ∗∗

(QT,ϕv
∗)w∗ = E[IT (ϕ)v∗IT (ϕ)w∗]

= E

⎡
⎣( ∞∑

k=1

∫ T

0
〈ϕ(t)iQek, v∗〉dbHk (t)

)⎛⎝ ∞∑
j=1

∫ T

0
〈ϕ(t)iQej , w∗〉dbHj (t)

⎞
⎠
⎤
⎦

1After the academic defence, the author was informed about an incorrectness in the

proof of the fact that QT,ϕ is V -valued. Fore more details see [37].
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=
∞∑
k=1

∞∑
j=1

E

[∫ T

0
〈ϕ(t)iQek, v∗〉dbHk (t)

∫ T

0
〈ϕ(t)iQej , w∗〉dbHj (t)

]

=

∞∑
k=1

∫ T

0
[ΓT,ϕ(v

∗), ek]HQ
[ΓT,ϕ(w

∗), ek] dt

= 〈ΓT,ϕv
∗,ΓT,ϕw

∗〉L2([0,T ];HQ) = 〈Γ∗
T,ϕΓT,ϕv

∗
n, w

∗〉V ∗,V ∗∗ ,

which gives us the decomposition QT,ϕ = Γ∗
T,ϕΓT,ϕ : V ∗ → V ∗∗.

In order to show that QT,ϕ is actually V -valued (with V separable Banach

space) we use Corollary 2.7.10 in [50] and show, instead, that for each w∗ ∈
V ∗ and each sequence (v∗n)n∈N ⊂ V ∗ which is weakly* convergent to zero,

then

(6.9) lim
n→∞〈QT,ϕw

∗, v∗n〉 = 0.

Recall that v∗n
∗
⇀ 0 if and only if 〈v∗n, z〉 → 0 for all z ∈ V . By the previous

computations we have

〈QT,ϕw
∗, v∗n〉 =〈ΓT,ϕ(w

∗),ΓT,ϕ(v
∗
n)〉L2([0,T ];HQ)

=
∞∑
k=1

∫ T

0
[ΓT,ϕ(v

∗
n), ek]HQ

[ΓT,ϕ(w
∗), ek] dt,

where the series is uniformly convergent in n by Lemma 6.2.3. Therefore we

get

lim
n→∞〈QT,ϕw

∗, v∗n〉 =
∞∑
k=1

lim
n→∞

∫ T

0
[ΓT,ϕ(w

∗), ek]HQ
[ΓT,ϕ(v

∗
n), ek] dt

≤
∞∑
k=1

lim
n→∞

(∫ T

0
[ΓT,ϕ(w

∗), ek]2HQ
dt

)1/2

·
(∫ T

0
[ΓT,ϕ(v

∗
n), ek]

2
HQ

dt

)1/2

=

∞∑
k=1

(∫ T

0
[ΓT,ϕ(w

∗), ek]2HQ
dt

)1/2

·
(

lim
n→∞

∫ T

0
[ΓT,ϕ(v

∗
n), ek]

2
HQ

dt

)1/2

.(6.10)

Recall that [ΓT,ϕ(v
∗
n), ek]

2
HQ

≤ ‖ΓT,ϕ(v
∗
n)‖2L2([0,T ];HQ) = ‖i∗Qϕ∗(·)v∗n‖2HT

. The

hypothesis ϕ ∈ BT gives us

‖i∗Qϕ∗(·)v∗n‖HT
≤C ′‖v∗n‖V ∗ ≤ C ′ sup

n∈N
‖v∗n‖V ∗ ,
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where the supremum is bounded because v∗n
∗
⇀ 0. Thus, we have

[ΓT,ϕ(v
∗
n), ek]

2
HQ

≤ C

for some positive constant C < ∞. The dominated convergence theorem

can be applied and we get

lim
n→∞

∫ T

0
[ΓT,ϕ(v

∗
n), ek]

2
HQ

dt =

∫ T

0
lim
n→∞[K∗

T (i
∗
Qϕ

∗(·)v∗n), ek]2HQ
dt

=

∫ T

0
lim
n→∞

(
K∗

T [i
∗
Qϕ

∗(·)v∗n, ek]HQ

)2
dt

=

∫ T

0

⎛
⎝K∗

T lim
n→∞〈v∗n, ϕ(·)iQek︸ ︷︷ ︸

∈V

〉
⎞
⎠2

dt,

where the last equality holds by continuity of the operator K∗
T . Since by

assumption (v∗n)n∈N is weakly* convergent to zero, then

lim
n→∞〈v∗n, ϕ(·)iQek〉 = 0

and K∗
T 0 = 0. Together with (6.10), this gives now the desired result (6.9)

and the proof is complete.

Theorem 6.2.5. Suppose ϕ ∈ BT . Then the integral IT (ϕ) is induced by

a classical random variable ZT (ϕ) in V if and only if the operator Γ∗
T,ϕ is

γ-radonifying.

In this case the random variable ZT (ϕ) is Gaussian and we have

〈ZT (ϕ), v
∗〉 = IT (ϕ)v∗

for all v∗ ∈ V ∗.

Proof. The assumption ϕ ∈ BT ensures that the operator ΓT,ϕ is continuous

and that Γ∗
T,ϕ takes values in V . Another consequence is that Γ∗∗

T,ϕ = ΓT,ϕ

and so Γ∗
T,ϕΓ

∗∗
T,ϕ = Γ∗

T,ϕΓT,ϕ.

By Proposition 6.2.4 we have the decomposition QT,ϕ = Γ∗
T,ϕΓT,ϕ and by

Theorem 5.1.9 we have that Γ∗
T,ϕ is γ-radonifying if and only if the operator

Γ∗
T,ϕΓT,ϕ : V ∗ → V is the covariance operator of a Gaussian measure μ on

B(V ). Let ZT (ϕ) be the Gaussian random variable in V with probability

distribution μ and assume it is on the same probability space (Ω,F ,P). Thus
we have

E[〈ZT (ϕ), v
∗〉] = 0 = E[IT (ϕ)v∗]
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for all v∗ ∈ V ∗, and

E[〈ZT (ϕ), v
∗〉〈ZT (ϕ), w

∗〉] = 〈QT,ϕv
∗, w∗〉 = E[IT (ϕ)v∗IT (ϕ)w∗]

for all v∗, w∗ ∈ V ∗, which together with the Gaussian property gives us

〈ZT (ϕ), v
∗〉 = IT (ϕ)v∗

for all v∗ ∈ V ∗.

6.2.3 The cylindrical integral as a stochastic process

In this section we introduce the indefinite cylindrical integral
∫ t
0 ϕ(s)dB

H(s)

for all t ∈ [0, T ]. As done for the indefinite integral in R, we need to restrict

the set of integrable functions to all those ϕ ∈ IT such that �[0,t)ϕ ∈ IT .

But we are interested mainly in the case when the cylindrical integral is

induced by a classical random variable, therefore we will consider only the

space BT instead of the more general one IT .

Definition 6.2.6. Let ϕ ∈ BT be such that �[0,t)ϕ ∈ BT for all t ∈ [0, T ].

Then define the integral∫ t

0
ϕ(s)dBH(s) :=

∫ T

0
�[0,t)(s)ϕ(s)dB

H(s)

for all t ∈ [0, T ].

We have that IT (�[0,t)ϕ) is a cylindrical random variable on V .

The integral is well defined because �[0,t)ϕ ∈ BT and in fact it coincides with

the integral It(ϕ) defined directly using K∗
t ,K

∗
t ,It and Bt (where they are

defined in an analogous way as their correspondents). We see this with the

help of the following result.

Proposition 6.2.7. Let f ∈ Ht. Then for all s ∈ [0, T ] we have

�[0,t)(s)(K
∗
t f)(s) = K

∗
T (�[0,t)f)(s).

Proof. The proof is similar to the one of Proposition 4.2.3, with Bochner

integrals instead of Lebesgue integrals.

Proposition 6.2.8. For ϕ as in Definition 6.2.6, we have

It(ϕ) = IT (�[0,t)ϕ)
as cylindrical random variable in V . In particular it is a strongly Gaussian

centered random variable with covariance Qt,ϕ = QT,�[0,t)ϕ.
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Proof. We already know that they are Gaussian random variables with zero

mean. Then observe that for a function ϕ : [0, T ] → L(U, V ) we have

(�[0,t)ϕ)
∗(s) = �[0,t)ϕ

∗(s) for all s ∈ [0, T ]. Let ϕ ∈ BT such that �[0,t)ϕ ∈
BT for every t ∈ [0, T ]. By Proposition 6.2.7 we have that

〈QT,�[0,t)ϕv
∗, v∗〉 = E

∣∣∣∣
∫ T

0
�[0,t)(s)ϕ(s) dB

H(s)v∗
∣∣∣∣2

= ‖K∗
T (i

∗
Q(�[0,t)ϕ)

∗(·)v∗)‖2L2([0,T ];HQ)

= ‖K∗
T (�[0,t)i

∗
Qϕ

∗(·)v∗)‖2L2([0,T ];HQ)

= ‖�[0,t)K∗
t (i

∗
Qϕ

∗(·)v∗)‖2L2([0,T ];HQ)

= ‖K∗
t (i

∗
Qϕ

∗(·)v∗)‖2L2([0,t];HQ)

= E

∣∣∣∣
∫ t

0
ϕ(s) dBH(s)v∗

∣∣∣∣2
= 〈Qt,ϕv

∗, v∗〉.

The same computations yield It(ϕ)v∗ = IT (�[0,t)ϕ)v∗ in L2
P
(Ω;R) for all

v∗ ∈ V ∗ and all t ∈ [0, T ].

Using this result it is immediate to prove the following corollary.

Corollary 6.2.9. For any ϕ such that �[0,t)ϕ ∈ BT for all t ∈ [0, T ], the

cylindrical process {It(ϕ), t ∈ [0, T ]} is a family of Gaussian cylindrical

random variables in V and for each t ∈ [0, T ] the covariance operator of

It(ϕ) is given by Γ∗
t,ϕΓt,ϕ.
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Chapter 7

Stochastic (partial)

differential equations in

Banach spaces

In this chapter we apply the integration theory with respect to cylindrical

fractional Brownian motions to solve Cauchy problems in Banach spaces. As

an application we consider a stochastic parabolic equation in L2(D) driven

by a fractional space-time noise.

7.1 Cylindrical evolution equation

7.1.1 Weak solutions in Banach spaces

The are various notions of solution to an evolution equation in infinite di-

mensional spaces. In this section we recall the notion of weak solution as

this is going to be used later. We refer to [77] for more details.

Consider the problem

(7.1)

⎧⎨
⎩

du
dt = Au+ f(t)

u(0) = x

where A : D(A) ⊆ U → U is a closed densely defined linear operator on

U and f ∈ L1([0, T ];U) is given. Define the adjoint of A, that is a linear

operator on U∗, A∗ : D(A∗) ⊆ U∗ → U∗ possibly unbounded.

A strong solution of (7.1) is a function u ∈ L1([0, T ];U) such that for all
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t ∈ [0, T ] we have
∫ t
0 u(s)ds ∈ D(A) and

u(t) = x+A

∫ t

0
u(s) ds+

∫ t

0
f(s) ds.

A weak solution of (7.1) is a function u ∈ L1([0, T ];U) such that for all

t ∈ [0, T ] and v∗ ∈ D(A∗) we have

d

dt
〈u(t), v∗〉 = 〈u(t), A∗v∗〉+ 〈f(t), v∗〉.

Observe that the integral form of this equation from 0 to t is given by

(7.2) 〈u(t), v∗〉 = 〈x, v∗〉+
∫ t

0
〈u(r), A∗v∗〉 dr +

∫ t

0
〈f(r), v∗〉 dr.

Remark 7.1. Every weak solution of (7.1) is a strong solution.

For the proof of next result we refer to [77], Theorem 7.17.

Theorem 7.1.1. For each x ∈ U and f ∈ L1([0, T ], U) the problem (7.1) a

unique weak solution u which is given by

u(t) = Stx+

∫ t

0
St−sf(s)ds, 0 ≤ t ≤ T.

7.1.2 The Cauchy problem in Banach spaces with fractional

noise

In this section we consider evolution equations in Banach spaces driven by

fractional Brownian motions. We give a meaning to the equations using

cylindrical processes.

Let BH be a cylindrical fBm in a separable Banach space U , A a linear

operator on (another) separable Banach space V such that it is the generator

of a strongly continuous semigroup (St)t≥0 on V , C ∈ L(U, V ) and Y0 a

cylindrical random variable in V such that the map Y0 : V ∗ → L0
P
(Ω;R) is

continuous with the topology of the convergence in probability.

In general, if X is a cylindrical variable in U and T : D(T ) ⊂ U → V is

a closed densely defined linear operator, we can define a linear map with

domain D(T ∗) by

TX : D(T ∗) ⊂ V ∗ → L0
P(Ω;R), (TX)(a) := X(T ∗a).

Clearly if D(T ∗) = V ∗ then the map TX defines a cylindrical random vari-

able in V .
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Lemma 7.1.2. Let BH be a cylindrical fBm in U and C ∈ L(U, V ). Then

{CBH(t), t ≥ 0} is a cylindrical fBm in V with covariance function CQC∗.

Proof. By definition CBH(t)v∗ = BH(C∗v∗) for all v∗ ∈ V ∗, therefore it

is well defined as cylindrical process. From the representation BH(t)u∗ =∑∞
k=1〈iQek, u∗〉bHk (t) we have that

CBH(t)v∗ = BH(C∗v∗)

=

∞∑
k=1

〈iQek, C∗v∗〉bHk (t)

=

∞∑
k=1

〈CiQek, v∗〉bHk (t)

for all v∗ ∈ V ∗. The operator CiQ : HQ → V is linear and continuous so by

Theorem 5.2.3 we have that CBH is a fBm in V and the covariance operator

is given by CiQ(CiQ)
∗ = CQC∗.

In this setting we give the definition of cylindrical weak solution for the

Cauchy problem

(7.3)

{
dY (t) = AY (t)dt+ CdBH(t), t ∈ (0, T ]

Y (0) = Y0

inspired by the integral form (7.2) of the weak solution for the deterministic

evolution equation.

Definition 7.1.3. A cylindrical process {Y (t), t ∈ [0, T ]} in V is called

weak cylindrical solution of (7.3) if

Y (t)v∗ = Y0v
∗ +

∫ t

0
AY (r)v∗ dr + CBH(t)v∗

for all v∗ ∈ D(A∗) P-a.s.

We can recover the analogous sufficient conditions for the existence of a

weak solution given in Theorem 7.1.1, but we need an additional condition

for the cylindrical integral to be well defined. Let us make the following

assumption:

(A) For H ∈ (0, 1/2) let the S∗
t−· ∈ C β([0, t];L(V ∗)) for some β > 1/2−H

and for all t ≥ 0. For H ∈ (1/2, 1) let the semigroup (St)t≥0 be

uniformly bounded.
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Assumption (A) is satisfied for the Dirichlet heat semigroup (Pt)t≥0 on

L2(D).

Theorem 7.1.4. For every Cauchy problem of the form (7.3) such that as-

sumption (A) holds there exists a unique cylindrical weak solution {Y (t), t ∈
[0, T ]} given by

Y (t) = StY0 +

∫ t

0
St−sC dBH(s)

for all t ∈ [0, T ].

Proof. Let us consider the stochastic convolution integral which is a cylin-

drical process in V given by(∫ t

0
St−sCdB

H(s)

)
v∗ =

(∫ T

0
�[0,t)(s)St−sCdB

H(s)

)
v∗,

for all t ∈ [0, T ] and all v∗ ∈ V ∗.
The integral is well defined if �[0,t)(s)St−sC ∈ IT for all t ∈ [0, T ] and this

condition is verified under the assumption (A). In fact a stronger condition

is verified, that is

(7.4) �[0,t)(s)St−sC ∈ BT for all t ∈ [0, T ].

To see this, let us consider the cases H < 1/2 and H > 1/2 separately.

Case H ∈ (0, 1/2). By Proposition 6.1.4 we know that (7.4) is satisfied if

C∗S∗
t−· ∈ C β([0, t];L(V ∗, U∗)) and since C is a linear and continuous opera-

tor it is enough to have S∗
t−· ∈ C β([0, t];L(V ∗)) which is true by assumption.

Case H ∈ (1/2, 1). By Proposition 6.1.4 we know that (7.4) is satisfied if

C∗S∗
t−· ∈ L2([0, T ];L(V ∗, U∗)) which is true if S∗

t−· ∈ L2([0, t];L(V ∗)) for

all t ∈ [0, T ]. To verify this condition, observe that since (St)t≥0 is uni-

formly bounded, so (S∗
t )t≥0 is, and therefore there exist M > 0 such that

‖S∗
t ‖L(V ∗) ≤M . Using this bound we easily compute∫ t

0
‖S∗

t−s‖2L(V ∗) ds =

∫ t

0
‖S∗

s‖2L(V ∗) ds ≤
∫ t

0
M2 ds = tM2 <∞.

Now set X(t) :=
∫ t
0 St−sCdB

H(s) and Z(t) := StY0 and we show that

Y = Z +X is a weak cylindrical solution of (7.3), that is Y satisfies

(7.5) (Z(t)+X(t))v∗ = Y0v
∗+
∫ t

0
AZ(s)v∗ ds+

∫ t

0
AX(s)v∗ ds+CBH(t)v∗
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for all v∗ ∈ D(A∗). The first integral on the RHS of (7.5) is a Bochner

integral and gives us∫ t

0
AZ(s)v∗ ds =

∫ t

0
ASsY0v

∗ ds

=

∫ t

0
Y0(S

∗
sA

∗v∗) ds

= Y0

∫ t

0
S∗
sA

∗v∗ ds

= Y0(S
∗
t v

∗ − S∗
0v

∗)

= S(t)Y0v
∗ − Y0v

∗ = Z(t)v∗ − Y0v
∗

where we have used the assumption on the continuity of Y0. The second

integral in the RHS of (7.5) is also a Bochner integral, but the integrand is

a stochastic integral. Here we use a stochastic Fubini theorem for fBm (see

Theorem 4.2.6) and we get∫ t

0
AX(s)v∗ ds =

∫ t

0
X(s)(A∗v∗) ds

=

∫ t

0

(∫ s

0
Ss−rC dBH(r)

)
(A∗v∗) ds

=

∫ t

0

∞∑
k=1

∫ s

0
〈Ss−rCiQek, A

∗v∗〉dbHk (r)ds

=

∞∑
k=1

∫ t

0

∫ s

0
〈Ss−rCiQek, A

∗v∗〉dbHk (r)ds

=

∞∑
k=1

∫ t

0

∫ t

r
〈Ss−rCiQek, A

∗v∗〉 ds dbHk (r).

For a moment consider only the inner integral. Since Ss−rCiQek ∈ D(A) we

have ∫ t

r
〈Ss−rCiQek, A

∗v∗〉ds =
∫ t

r
〈ASs−rCiQek, v

∗〉ds

= 〈
∫ t

r
ASs−rCiQekds, v

∗〉

= 〈Ss−rCiQek − S0CiQek, v
∗〉.

111



7. Stochastic differential equations in Banach spaces

Therefore, we get∫ t

0
AX(s)v∗ ds =

∞∑
k=1

∫ t

0
〈St−rCiQek, v

∗〉 dbHk (r)

−
∞∑
k=1

∫ t

0
〈CiQek, v∗〉 dbHk (r)

=

(∫ t

0
St−rC dBH(r)

)
(v∗)−

∞∑
k=1

〈iQek, C∗v∗〉bHk (t)

= X(t)v∗ −BH(t)(C∗v∗) = X(t)v∗ − CBH(t)v∗.

Clipping the result together we get that the RHS of (7.5) equals

Y0v
∗ + Z(t)v∗ − Y0v

∗ +X(t)v∗ − CBH(t)v∗ + CBH(t)v∗.

We now investigate the properties of the solution as cylindrical pro-

cess. Observe that by Corollary 6.2.9 we have that It(St−·C) is a zero-mean

strongly Gaussian cylindrical random variable in V for each t ∈ [0, T ]. The

covariance operator is given by

Qt,St−·C = QT,�[0,t)St−·C = Γ∗
T,�[0,t)St−·CΓT,�[0,t)St−·C .

Proposition 7.1.5. If Y0 is a centered Gaussian random variable inde-

pendent of BH then the process {Y (t), t ∈ [0, T ]} given as the weak so-

lution to (7.3) is a cylindrical Gaussian family with covariance operator

QY
t = QSY0

t + Qt,St−·C where QSY0
t denotes the covariance operator of the

cylindrical process StY0.

Proof. First observe that the solution Y is sum of two processes Y (t) =

StY0 + It(St−·C). For each given t ∈ [0, T ] and v∗ ∈ V ∗, StY0v∗ = Y0(S
∗
t v

∗)
is Gaussian variable because Y0 is Gaussian and S∗

t : V ∗ → V ∗. Also

It(St−·C)v∗ is Gaussian and so for each v∗ the random variable Y (t)v∗

is Gaussian because linear combination of independent Gaussian variables

StY0v
∗ and It(St−·C). The mean is clearly zero. The covariance operator

at time t for every v∗, w∗ ∈ V ∗ is given by

〈QY
t v

∗, w∗〉 = E[Y (t)v∗Y (t)w∗]

= E[(StY0v
∗ + It(St−·C)v∗)(StY0w∗ + It(St−·C)w∗)]
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and by independence of Y0 and BH we get

〈QY
t v

∗, w∗〉 = E[StY0v
∗StY0w∗] + E[It(St−·C)v∗It(St−·C)w∗]

= 〈QSY0
t v∗, w∗〉+ 〈Qt,St−·Cv

∗, w∗〉
= 〈(QSY0

t +Qt,St−·C)v
∗, w∗〉.

We now turn our attention to the question of existence of classical solu-

tions, namely under which conditions the cylindrical solution process Y is

induced by a classical process in V . To this aim recall the following fact.

Remark 7.2. A cylindrical random variable Y = X + Z is induced by a

classical random variable in V if X and Z are induced by classical random

variables in V .

Theorem 7.1.6. The cylindrical process {Y (t), t ∈ [0, T ]} obtained as the

weak solution of (7.3) is induced by a classical process in V if

(a) Y0 is induced by a classical random variable in V ;

(b) the operator Γ∗
t,St−·C is γ-radonifying for all t ∈ [0, T ].

Proof. By Remark 7.2 we have that Y is induced by a classical random vari-

able if and only if both summands are induced by classical random variables.

For the first term we have

〈ξ, v∗〉 = StY0v
∗ = Y0(S

∗
t v

∗) = 〈η, S∗
t v

∗〉 = 〈Stη, v∗〉

where ξ and η are V -valued random variables. We have ξ = Stη induces

StY0 if and anly if η induces Y0. The second summand verifies condition (b)

simply by application of Theorem 6.2.5.

7.2 Applications: a stochastic parabolic equation

with fractal noise

In this section we want to consider an example of SPDE driven by fractal

noise and write it as an abstract Cauchy problem driven by a cylindrical

fractional Brownian motion. After that, we look for cylindrical (mild and

weak) solutions and give conditions under which the solution is actually

induced by a classical process.
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In particular, we consider the linear SPDE considered in [29] of the form

(7.6)

⎧⎪⎨
⎪⎩

∂u
∂t (t, x) = (−Au)(t, x) + 〈G, ∂

∂t∇bH,K〉(t, x), t ∈ (0, T ], x ∈ D

u(t, x) = 0, t ∈ (0, T ], x ∈ ∂D

u(0, x) = u0(x), x ∈ D

where here 〈·, ·〉 denotes the pathwise integral introduced by Hinz and Zähle

in [29]. In this example the space dimension is taken d = 1 therefore the

matrix G reduces to a constant G ∈ R and D ⊂ R. The noise bH,K is

given by the process introduced in Section 5.3.2. We have proven that this

noise can be written as a cylindrical fBm in L2(D) and we denote it by

{BH(t), t ≥ 0}. The Hurst parameter is taken to be H ∈ (1/2, 1). With this

notation the SPDE (7.6) can be reformulated as follows:

(7.7)

{
du(t) = −ΔDu(t)dt+GdBH(t) for t ∈ (0, T ]

u(0) = u0 for t = 0.

Recall that we denote by (Pt)t≥0 the semigroup in L2(D) generated by the

Dirichlet Laplacian ΔD (see Section 1.1.3 for more details). The semigroup

satisfies condition (A), therefore the process given by

u(t) = Ptu0 +

∫ T

0
Pt−sG dBH(s)

= Ptu0 +G

∫ T

0
Pt−s dB

H(s)

= Ptu0 +G IT (Pt−·)

for all t ∈ [0, T ], is a cylindrical process in L2(D) which is solution (weak

and mild) to (7.7) according to Theorem 7.1.4. The initial condition u0 is

an element of L2(D).

Theorem 7.2.1. If
∑∞

j=1 q
2
jλ

−β
j <∞ for some β ∈ (0, 1) then the solution

{u(t), t ∈ [0, T ]} is induced by a classical process in L2(D) for all t ∈ [0, T ].

Lemma 7.2.2. In this setting we have

‖Pt−·ej‖L2(D) ≤ λ
−β/2
j ‖Aβ/2Pt−·‖L(L2(D)) <∞

for all β ∈ (0, 1).
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Proof. Using Theorem 1.1.11 part (a) and (b) we have

‖Pt−·ek‖L2(D) =‖Aβ/2A−β/2Pt−·ej‖L2(D)

=‖Aβ/2Pt−·A−β/2ej‖L2(D)

=‖Aβ/2Pt−·λ
−β/2
j ej‖L2(D)

≤‖Aβ/2Pt−·‖L(L2(D))‖λ−β/2
j ej‖L2(D)

=λ
−β/2
j ‖Aβ/2Pt−·‖L(L2(D))

for all β ∈ (0, 1). The operator norm of Aβ/2Pt−· is bounded by Theorem

1.1.11 part (c).

Proof of Theorem 7.2.1. According to Theorem 7.1.6 we need to check that

u0 is a cylindrical Gaussian random variable and that Γ∗
t,Pt−· is γ-radonifying.

The first condition is clearly verified because u0 is deterministic. The second

condition is equivalent to Γt,Pt−· ∈ L2(L
2(D);L2([0, t];HQ)) for all t ∈ [0, T ],

because the underlying space is a Hilbert space.

We only have to show that ‖Γt,Pt−·‖L2(L2(D);L2([0,t];HQ)) <∞ for all t ∈ [0, T ].

Let denote by (ek)k∈N a complete orthonormal system in L2(D) formed of

eigenfunctions of the Dirichlet Laplacian, that is ΔDek = λkek. Recall that

the covariance operator of BH is decomposed through the reproducing kernel

Hilbert space HQ by iQ. In this case (see Section 5.3.2) they are given by

HQ = L2(D) and iQ = i∗Q defined by iQek = qkek for all k ∈ N. The

Hilbert-Schmidt norm gives us

‖Γt,Pt−·‖2L2(L2(D);L2([0,t];HQ)) =
∞∑
k=1

∫ t

0
‖K∗

t (i
∗
QP

∗
t−sek)‖2HQ

ds

=

∫ t

0

∞∑
k=1

‖K∗
t (i

∗
QP

∗
t−sek)‖2HQ

ds

for all t ∈ [0, T ], the last equality being true by Fubini-Tonelli theorem. For
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each fixed k ∈ N we have

‖K∗
t (i

∗
QP

∗
t−sek)‖2HQ

=

∞∑
j=1

[K∗
t (i

∗
QP

∗
t−sek), ej ]

2
HQ

=
∞∑
j=1

(
K∗

t [i
∗
QP

∗
t−sek, ej ]HQ

)2
=

∞∑
j=1

(
K∗

t [P
∗
t−sek, iQej ]HQ

)2
=

∞∑
j=1

(
K∗

t [ek, Pt−sqjej ]HQ

)2
=

∞∑
j=1

q2j
(
K∗

t [ek, Pt−sej ]HQ

)2
=

∞∑
j=1

q2j [ek,K
∗
t (Pt−sej)]

2
HQ

which gives us∫ t

0

∞∑
k=1

‖K∗
t (i

∗
QP

∗
t−s)ek)‖2HQ

ds =

∫ t

0

∞∑
k=1

∞∑
j=1

q2j [ek,K
∗
t (Pt−sej)]

2
HQ

ds

=

∫ t

0

∞∑
k=1

∞∑
j=1

q2j ‖K∗
t (Pt−sej) ‖2HQ

ds

Fubini-Tonelli

=
∞∑
j=1

q2j

∫ t

0

∞∑
k=1

‖K∗
t (Pt−sej) ‖2HQ

ds.

We have then

‖Γt,Pt−·‖2L2(L2(D);L2([0,t];HQ)) =

∞∑
j=1

q2j ‖K∗
t (Pt−·ej) ‖2L2([0,T ];HQ)

=

∞∑
j=1

q2j ‖Pt−·ej‖2Ht
.

Consider for a moment only the norm part. Since H ∈ (1/2, 1), we can

bound the norm in Ht with L
2([0, t];L2(D)) (see Section 6.1.2) and get

‖Pt−·ej‖2Ht
≤ ‖Pt−·ej‖2L2([0,t];L2(D)) ≤

∫ t

0
‖Pt−sej‖2ds.
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The inner norm can be bounded using Lemma 7.2.2. Together with Theorem

1.1.11 part (c) we get

‖Pt−·ej‖2Ht
≤ ∥∥λ−β/2

j ‖Aβ/2Pt−·‖L(L2(D))

∥∥2
L2([0,t])

= λ−β
j

∫ t

0
‖Aβ/2Pt−s‖2L(L2(D)) ds

≤ λ−β
j

∫ t

0
M2

βe
−2θ(t−s)(t− s)−β ds

≤ λ−β
j M2

βθ
β−1Γ(1− β) = cλ−β

j

where in the last inequality we applied Lemma 2.2.1. Combining this esti-

mate with previous ones we get

‖Γt,Pt−·‖2L2(L2(D);L2([0,t];HQ)) =

∞∑
j=1

q2j ‖Pt−·ej‖2Ht

≤ c

∞∑
j=1

q2jλ
−β
j <∞

where the last series converges by assumption. This proves that the operator

Γt,Pt−· is Hilbert-Schmidt for all t ∈ [0, T ].
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