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Abstract 

 

The requirements for the advanced design and production of structures with 

high performance, material and economic efficiency lead to the need for use 

of the structural elements with stiffness variation. Varying stiffness can be 

caused by continuous change of a cross-section and/or by using materials 

with varying material properties. 

Structural analysis of truss and frame structures consisting of structural 

parts with stiffness variation can be difficult. The stiffness variation of 

structural parts can be modelled by applying the fine beam FE mesh or 3D 

solid finite elements with average values of cross-sectional and material 

parameters. 

If classical finite elements are used, FE analyses of these structures require 

application of models with extremely fine mesh; thus the preparation of a 

computational model is very time-consumption and computational time can 

be too large, particularly in non-linear analyses. 

For elimination of the mentioned disadvantages of classical finite element 

applications, a two-node non-linear bar element with varying stiffness is 

developed in the first part of the monograph. Concerning the bar element, 

the continuous longitudinal variation of cross-sectional area and material 

properties is considered. The stiffness matrices of the developed finite 

element were derived using full geometric non-linear, non-incremental 

formulations of equilibrium equations without any linearization for a linear 

elastic loading state. New shape functions derived from the modified 

concept of transfer functions and constants allow the accurate description of 
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polynomial variation of the cross-sectional area and material properties in 

the bar element. Further, this approach was extended to the solution of 

physically non-linear problems. 

The matrices of non-linear bar elements were modified for the application 

of materials with a uni-axial, bilinear stress-strain relationship and isotropic 

or kinematic hardening. A non-incremental solution algorithm was 

formulated for geometric and physically non-linear analysis using the 

derived bar element matrices.  

For the implementation of varying properties of the composite—sandwich 

and functionally graded materials (FGM) into derived stiffness matrices—

the determination of effective homogenized material properties is necessary. 

Macro-mechanical modelling of composite material properties is based on 

the different homogenization techniques. In this thesis, a two-component 

composite with longitudinal variation of elasticity modulus and volume 

fractions was considered. The effective homogenized properties of the 

chosen composite were calculated using the new extended mixture rule 

formulated at the Department of Mechanics of the Faculty of Electrical 

Engineering and Information Technology, Slovak University of Technology 

in Bratislava, Slovakia. The homogenization of thermo-mechanical material 

properties was carried out for multilayers sandwich bars with polynomial 

variation of the effective Young’s modulus and volume fractions of fibre 

and matrix in the layers. The procedure for including the varying 

temperature field by means of thermal nodal forces was developed as well. 

The normal stress distribution in composite layers of the original non-
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homogenized sandwich bar was calculated by effective computational 

method. 

In the second part of the thesis, the stiffness matrices of a geometrically 

non-linear beam finite element were derived using a full non-linear, non-

incremental formulation without any linearization. The matrices of the two-

node plane beam element with a double-symmetric cross-section and 

constant stiffness were formulated.  

The suitability of the concept of transfer constants implementation, the 

accuracy and efficiency of a geometrically and physically non-linear bar 

element, a geometrically non-linear beam finite element, and applicability 

of the extended mixture rule were compared and assessed by several 

numerical experiments against ANSYS analyses with classical finite 

elements. A good agreement between results obtained by newly developed 

elements and the reference solutions in the commercial FEM code ANSYS 

was achieved. Moreover, the high efficiency of the developed procedures 

was proved. 

 

Key words 

 

geometric non-linear problems, finite elements, stiffness matrix, plasticity  

bar element, beam element
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List of abbreviations and symbols 

 

TLF  total Lagrange formulation 

ULF  updated Lagrange formulation 

GLT  Green-Lagrange strain tensor 

LCS  local coordinate system 

GCS  global coordinate system  

II.PKT  second Piola-Kirchhoff stress tensor 

Eij  Green-Lagrange strain tensor 

eij  linear part of Green-Lagrange strain tensor 

ηij  non-linear part of Green-Lagrange strain tensor 

Sij  second Piola-Kirchhoff stress tensor 

qk  local nodal displacement (rotation) 

ui  global nodal displacement (rotation) 

φij  shape function 

C  tensor of elastic material properties 

F, Fext  vector of local external nodal forces 

F
int  vector of local internal nodal forces 

F
Gext  vector of global external nodal forces 

F
Gint  vector of global internal nodal forces 

q  vector of local nodal displacements 

K  local stiffness matrix in the invariant form 

K(q)  local stiffness matrix as function of nodal displacement 

K
T  local tangent stiffness matrix in the invariant form 
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K
T(q)  local tangent stiffness matrix with displacement dependent 

elements  

N  shape function matrix 

T; TT  transformation matrix; transposed transformation matrix 

εεεε0  strain vector induced temperature field 

A0  cross-sectional area in initial configuration (undeformed) 

A(x)  continuously variable cross-sectional area (undeformed) 

E  elasticity modulus (Young’s modulus) 

Ef  elasticity modulus of fibres  

Em  elasticity modulus of matrix 

E(x) elasticity modulus continuously varied along the longitudinal axis 
of the element 

ET  tangent modulus 

Ef (x)  elasticity modulus of fibres continuously varied along the 
longitudinal axis of the element 

Em(x)   elasticity modulus of matrix continuously varied along the 
longitudinal axis of the element 

ET(x)   tangent modulus continuously variable along the longitudinal axis 
of the element 

)(xE H
L  effective homogenized elasticity modulus continuously variable 

along the longitudinal axis of the element 

EL(x)  effective longitudinal variable elasticity modulus of composite 
material 

)(xE k
L   effective longitudinal variable elasticity modulus of kth composite 

layer 

IZ  second moment of area (second moment of inertia) 

IZ2  third moment of area 
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IZ3  bi-quadratic moment of area 

L0  element length in initial (undeformed) configuration 

Lt  element length in current (deformed) configuration 

L  length of the line connecting element end nodes in the deformed 
state 

vf(x)  polynomial describing the change of fibre volume ratio 

vm(x)  polynomial describing the change of matrix volume ratio 

V0  body volume in initial configuration 

α0  initial angle between r axis of local coordinate system and x axis of 
global coordinate system 

αΤ(x)   thermal expansion coefficient continuously varied along the 
longitudinal axis of the element 

)(xH
TLα  effective homogenized thermal expansion coefficient continuously 

varied along the longitudinal axis of the element 

αΤL(x)   effective longitudinal variable thermal expansion coefficient of 
composite material 

)(xk
TLα   effective longitudinal variable thermal expansion coefficient of                

kth composite layer 

β  total rotation angle connector of element end points 

λ stretching 

yσλ   stretching on yield stress 

ρ  material density 

σy  yield stress, "mean" yield stress 

σy(x) yield stress continuously varied along the longitudinal axis of the 
element 



11 

 

T  right superscript T denotes matrix transpose operation of 
matrix/vector 

T  right superscript T denotes tangent matrix 
(i)  right superscript (i) denotes ith iteration 
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INTRODUCTION 

 

If the relationship between the displacement of the body points and 

the external load is not linear, we are talking about the non-linear 

behaviour of the body. The equations necessary to describe the 

process of the material behaviour must include the body movement 

kinematics (description of the deformation process by the vector 

field of displacements, deformation tensors), kinetics (continuum 

kinetic equations, stress tensor and its increment), thermodynamics 

and constitutive equations (generalized Hooke’s law, the 

relationships between stress increment and deformation in elastic-

plastic loading area). Based on the kinematics of the deformation 

process and the used constitutive relations, non-linear behaviour of 

the body can be caused by physical (material) non-linearity, 

geometric non-linearity and mutual contact of the bodies. 

Physical non-linearity occurs when the correlation between the load 

and deformation is not linear, e.g. if the stress in the body exceeds 

the limit of proportionality, which is associated with the emergence 

of plastic deformation or due to creep of the material. 

Geometric non-linearities lead to changes in the body configuration 

due to the load, and the displacements of ui points of the body and 

their gradient ui,j are no longer infinitely small but finite. The term 

‘finite deformations’ means a complex of the body’s rigid motion 

and strain. According to the extent of displacements of body points 

and the components of strain, we distinguish: 
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- Theory of the 1st rank comprising the area of infinitely small 

displacements and strains. The total strain can be additively 

divided into elastic and plastic components. 

- Theory of the 2nd rank comprising the area of finite 

displacements and small strains. The additive division of the 

strain into elastic and plastic elements is possible. 

- Theory of the 3rd rank, comprising 

a) small displacements and large strains, where the elastic 

element of the strain is infinitely small and the plastic element 

is finite. The additive division of the deformation tensor into 

elastic and plastic elements is acceptable after the 

modification of the constitutive relations, 

b) both large displacements and large strains. The additive 

division of the deformation tensor into elastic and plastic 

elements is not possible. For this case, multiplicative division 

is used (73).  

The first part of monograph focuses on the derivation of the stiffness 

matrices of geometrically non-linear bar elements with variable 

stiffness. The second part is devoted to the derivation of the stiffness 

matrices of geometrically non-linear beam element with constant 

stiffness.
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1. NON-INCREMENTAL FORMULATION FOR SOLVING 

GEOMETRICALLY NON-LINEAR PROBLEMS 

1.1 An overview of the current state of knowledge 

 

Numerous papers using different approaches have been published on 

solutions for non-linear tasks when displacements affect the structural 

stiffness. Among the most important studies are (5, 8, 14, 78). 

The solution of geometrically non-linear problems published in (5) is 

based on an incremental formulation. In the derivation of the stiffness 

relations, the increment variation GLT is linearized (its non-linear 

component is neglected) and at the same time, the increment II.PKT is 

linearized, too. The solution procedure and derivation of the element 

stiffness matrices is possible by the Total Lagrange Formulation (TLF) 

(when all static and kinematic variables are related to initial, undeformed 

configuration of the body), or using the Updated Lagrange Formulation 

(ULF) (when all static and kinematic variables are related to the last 

known body configuration). 

It is known that the accuracy of the results using these elements in non-

linear problems depends on the mesh density. However, coarse mesh can 

give convergent results. The discrepancy between the calculated values 

and the reality is usually significant. In addition to the choice of the shape 

function representation, the linearization of non-linear expressions of the 

finite element method is the main reason for achieving inaccurate 
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solutions and increasing the number of iterations to achieve a balance of 

internal and external forces. 

Another approach published in (14, 15) is based on neglected terms of 

higher order in variations of the increment of the Green-Lagrange 

deformation tensor (GLT). 

To eliminate the inaccuracy caused by the linearized incremental non-

linear FEM equations, a non-incremental formulation of non-linear 

equilibrium equations without linearization was established (42). The 

obtained equations contain the full non-linear stiffness matrices. 

1.2 Non-incremental formulation of solving geometrically non-

linear problems without linearization for the elastic zone of 

loading and a bar of constant cross section 

 

In order to minimize the negative impact of linearization in the 

incremental formulation of equations to derive the stiffness matrices, the 

non-linearized non-incremental formulation was derived (42, 47). 

 
 

 0
x 

 t
u 

δu 

 0xi, 
txi 

 0K 

 tK 

     0K – initial (undeformed) configuration 
      tK – configuration in deformation state t 
 

 

Fig. 1    Deformation state of the body – non-incremental method 
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Fig. 1 shows the deformation state of the body. Unlike the incremental 

formulation, in the derivation there is omitted the inter-configuration of 

the body in deformation step t + ∆t. Upon the principle of virtual work, 

the static balance of the body in its immediate position tK (see Fig. 1) can 

be derived from equality of virtual work of internal and external forces 

(the Generalized Lagrange Formulation - GLF) 

kki

A

iij

V

ij qFdAuFdVES δδδ
r

+= ∫∫
00

 , [1.1] 

where the integral on the left side of the equation represents the virtual 

work of internal forces and the expression on the right side the virtual 

work of external forces (only surface and concentrated to the node).  The 

integration is performed over the initial volume V0 (surface A0) of the 

body. If for the description of the deformation process we use GLF, the 

deformation state of the individual points of the body will be described 

by the GLT of finite deformations 

Eij = eij + ηij = jkikijji uuuu ,,2
1

,,2
1 )( ++  

[1.2] 

Its variation is expressed fully without linearization 

ij ij ijE eδ δ δη= +   . [1.3] 

Using the decomposition [1.2], non-linear equilibrium equations in the 

current deformed configuration in non-incremental form can be expressed 

in the modified relation (30, 42, 49) 
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kki

A

i

V

ijklijklijklijklij

V

klijkl

qFdAuF

dVeeCdVeeC

δδ

δηηδηδηδ

r
+=

=+++

∫

∫∫

0

00

)(

 [1.4] 

where Cijkl is the tensor of material properties defining the constitutive 

relation between II. Piola-Kirchhoff stress tensor Sij = Cijkl Ers in 

configuration tK and the Green-Lagrange strain tensor Eij [1.2].  

Furthermore, ui,j is the current deformation gradient, δui is a variation of 

displacement, Fi are the surface tractions and δqk are virtual 

displacements of points of the body in which the concentrated forces kF
r

 

operate.  The integration is performed through the initial (undeformed) 

volume V0 and the initial area A0 of the finite element. 

By discretization of the body into finite elements, the displacement of an 

arbitrary point of ui element can be expressed by interpolation of the 

nodal point displacements qk of the element using shape functions φik  

ui = φik qk [1.5] 

 

After substituting the shape functions and their derivation into the 

equation [1.4] and after necessary adjustments, substitution of indices and 

exclusion of variation δui to get a steady relationship describing the non-

linear dependence between the displacements of points of the body and 

the external load, from which it is possible to derive the shape of the 
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stiffness matrices, valid for an arbitrary type of element, the 

displacements of which can be described by the expression [1.5] (30) 

.
2

1

)(
2

1

)(
4

1

))((
4

1

00

0

0

0

,,,,

,,,,

,,,,

,,,,

n
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ini

V

qvmjrnirqlpvkpmijkl

V

rmklmlkmjpniprijkl

V

rmijnjinlprkpmijkl

V

mijnjinklmlkmijkl

FdAFdVqqqC

dVqqC

dVqqC

dVqC

r
+=

++

++

+++

∫∫

∫

∫

∫

φφφφφ

φφφφ

φφφφ

φφφφ

 
[1.6] 

Equation [1.6] can be rewritten for a single element into component Knm 

qm = Fn , or in matrix form  

K(q) q = F , [1.7] 

 

The local non-linear stiffness matrix consists of one linear and three non-

linear components 

 

)()()()()( 321 qKKqKqKqKKqK NLLNLNLNLL +=+++=  
[1.8] 

Terms of the nonlinear stiffness matrix KNL(q) depend on the local nodal 

displacement vector q in the form of linear and quadratic functions. 

The system of non-linear equations [1.7] has to be solved by one of the 

iterative methods. In case of Newton's (or Newton-Rapson) iterative 

scheme, to achieve a better rate of convergence of solution, it is necessary 
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to compile a tangential stiffness matrix KT(q) of the element according to 

the following procedure: 

)(
)(

)()( qKKq
q

qK
qK

q

F
qK

NLTLT +=
∂

∂
+=

∂

∂
=  , [1.9] 

where KNLT(q) is non-linear part of the tangential stiffness matrix KT
 (q). 
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2. BAR ELEMENT WITH VARIABLE STIFFNESS FOR 

SOLVING GEOMETRICALLY AND PHYSICALLY 

NONLINEAR PROBLEMS 

 

At present, we encounter in technical practice the use of mechanical parts 

with variable stiffness, either due to economic and technological reasons, or 

because of the use of new advanced materials such as composites and 

sandwich structures or Functionally Graded Materials (FGM). 

When modelling the bar and frame structures, the problem of stiffness 

variability can be reduced by using "average" values of the section and 

material properties, by choice of the greater density of network elements 

with differentiation of section and material properties, or by modelling the 

parts of structures with variable stiffness by planar or solid finite elements. 

However, apart from the increase of time required to prepare the model and 

the solution itself, it adds the problem with inter-element compatibility. 

Therefore, based on the results obtained in numerical experiments, which 

confirm the accuracy and efficiency of the new, geometrically non-linear 

bar element with constant stiffness loaded in the area of elastic 

deformations, this solution was extended to allow for continuous variation 

of the cross-sectional area and material properties. Further, the solution was 

also extended to solve the physical non-linear problems and the possibility 

to apply the temperature field with a prescribed temperature distribution 

along the longitudinal axis of the bar as the load to the element was applied. 

This procedure aims to regard the continuous variation of the bar stiffness 

using a single bar element without having to create a relatively dense 

network of finite elements. 
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2.1 Geometrically non-linear elastic bar element with variable 

stiffness 

2.1.1 Defining the variability of input parameters 

 

In order to meet and describe the continuous variation of the cross-sectional 

area and material properties along the longitudinal axis of the one-

dimensional element in the derivation stiffness relationship, the concept of 

transfer functions and constants published by H. Rubin in (69) and extended 

by J. Murín and V. Kutiš (30, 46, 47, 51) was used. This leads to the 

establishment of new shape functions interpolating displacement of an 

arbitrary point of the element from the displacements of the bar element 

nodal points. New shape functions include the so-called transfer functions, 

their derivatives and transfer constants (values of shape functions in the 

terminal node of element). Using this approach is conditioned by the 

description variability of cross-sectional characteristics and material 

properties in the polynomial shape. We can assume that the continuous 

variation of the cross-sectional area A(x) or elastic modulus E(x) in the axis 

of the element can be described by the polynomial in the form  














+== ∑

=

n

k

k
PkiPi xPxPxP

1

1)()( ηη  [2.1] 

where ηPk are the coefficients of polynomial members ηP(x) describing the 

variability of mechanical or geometric parameter, and Pi is the size of the 

variable is the initial node i of the element.  
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i 

 j 

 Ei 

E(x) 

 A(x) 
 Ej 

 L0 

Ni = N1 

Nj = N2 

 Ai 

 Aj 

qi = q1 

qj = q2 

u(x) 

 x   N(x) 

 

Fig. 2   Bar with variable stiffness for solving of elastic problems 

Then the variability of elastic axial stiffness can be expressed in the 

relationship 

)()()()()( xEAxxEAxExA AEiiAEii ηηη ==  [2.2] 

where ηAE(x) = A(x) E(x)/Ai Ei  is the polynomial describing stiffness 

variation along the longitudinal axis of the bar. 

 

2.1.2 New shape functions of the two-node bar element 

 

The kinematic relationship between the axial displacement at the location x 

of an arbitrary point of element u(x) and axial force N(x) in place x is 

expressed by the differential equation 
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)(
)(

)()(

)()(
)( 2 xd

EA

xN

xExA

xN

dx

xdu
xu e

ii

′′===′  [2.3] 

We can define the second derivative of the transfer function d2e(x) for the 

tension/compression loading in the linear elastic loading area (subscript e) as 

)(

1))((
)(

2
2

2

2 xdx

xdd
xd

AE

e
e η

==′′  [2.4] 

Then the solution of differential equations [2.3], provided that all the loads 

of the element are transformed into nodes of the element and the axial force 

in the bar is constant (N(x) = −Ni = Nj), the function describing the axial 

displacement of any point of the element is 

)()( 2 xd
EA

N
qxu e

ii

i
i ′−=  [2.5] 

where )(2 xd e′ is the first derivation of transfer function, for which is valid  

dx
x

xd
x

AE
e ∫=′

0

2 )(

1
)(

η
. 

By substitution of x = L0 in equation [2.5] the displacement is u(L0) = qj , 

and ee dLd 2
0

2 )( ′=′  indicates the value of the first derivative of the transfer 

function in the terminal node of the element and will be further called the 

transfer constant for tension/compression. Calculation of the transfer 

constant ed2′  can be done numerically using a simple algorithm, published 

in (30, 53). By deriving an axial force Ni z from this way modified equation, 

and by backward substitution into equation [2.5] we obtain the dependence 



24 

 

between the axial displacement of an arbitrary point of the bar in the 

direction of the x-axis and the axial displacement of nodal points i and j, 

expressed by the new shape functions φ(x) 

jujiuij
e

e
i

e

e qxqxq
d

xd
q

d

xd
xu )()(

)()(
1)(

2

2

2

2 φφ +=
′

′
+









′

′
−=  [2.6] 

The first derivatives of the shape functions for two-node bar element with 

varying stiffness are then equal to 

e

e

e

e

d

xd
x

d

xd
x

2

2
1,12

2

2
1,11

)(
)(,

)(
)(

′

′′
=

′

′′
−= φφ    . [2.7] 

2.1.3 Local non-linear stiffness matrix of bar element with variable 

stiffness 

 

By substituting the derivatives of shape functions [2.7] for the two-node bar 

element and by the substitution for the one-dimensional element 

dV = A(x) dx = AiηA(x)dx and for the tensor of elastic behaviour of the 

material Cijkl(x) ≡ E(x) = EiηE(x) into the first integral in equation [1.6], we 

obtain an expression for the calculation of the linear members of the 

stiffness matrix bar element with variable stiffness: 

∫=
0

)()()( 1,11,1

L

nmAEii
L
nm dxxxxEAK φφη   . [2.8] 

Using the same procedure we get members of the non-linear stiffness 

matrices (dependent on the unknown displacements of terminal nodes of the 
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bar element) by the substitution and modification of other members in the 

equation [1.6]: 

( )∫ +=
0

)(2)()()()(
4

1
1,121,1211,111,1

1

L

nmAEii
NL
nm dxxqxqxxxEAK φφφφη  [2.9] 

( )∫ +=
0

)(2)()()()(
2

1
1,121,1211,111,1

2

L

mnAEii
NL
nm dxxqxqxxxEAK φφφφη  [2.10] 

( )∫ +=
0

)()()()()(
2

1
1,11,1

2
21,1211,11

3

L

nmAEii
NL
nm dxxxqxqxxEAK φφφφη  [2.11] 

Substituting derivatives of shape functions [2.7] into equations [2.9] and 

[2.10] results in the need for calculation of the integrals 

∫ ′′
0

2
2 ))((

L

e dxxd and ∫ ′′
0

3
2 ))((

L

e dxxd . By substitution of integrants, where in the 

denominator of the relation [2.4] we replace the polynomial ηAE(x) for 

)())(( 2 xx AEAE ηη =    or   )())(( 3 xx AEAE ηη =  entails the need for the 

calculation of integrals e

L EA

ddx
x

2
0 )(

1
=∫η

 and e

L EA

ddx
x

2
0 )(

1
=∫

η
.  

This way, we get new transfer constants ed2  and ed2  of the bar element for 

variable stiffness and the elastic loading area. To calculate these transfer 

constants, the algorithm mentioned in (32, 33, 49, 50, 51), can be used, 

since )(xEAη  and )(xEAη  are also polynomials. The final shape of the local 
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non-linear stiffness matrix of the bar element with variable stiffness can be 

expressed as 










−

−















′
−+

′
−+

′
=

11

11

)(
)(

2

1

)(
)(

2

3
1)(

3
2

22
122

2

2
12

2 e

e

e

e

e

ii

d

d
qq

d

d
qq

d

EA
qK . [2.12] 

The vector of local nodal displacement of the bar is q = [q1   q2]
T and the 

vector of external local nodal forces F = [N1   N2]
T. 

2.1.4 Local non-linear tangential stiffness matrix 

 
The system of non-linear algebraic equations is usually solved using the 

iterative Newton's (or Newton-Raphson) method. Using this way of solution, 

the local non-linear tangential stiffness matrix is required. This tangential 

stiffness matrix can be calculated using the relation [1.9], by derivation of 

matrix K(q) [2.12]. After the relevant derivations according to nodal 

displacements qi we get the expression for the local non-linear tangential 

stiffness matrix of the two-node bar element with variable stiffness 
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2.1.5 Global non-linear tangential stiffness matrix 

 
For the calculation of the global displacements of nodal points of the bar 

element from the system of global non-linear equilibrium equations we use 
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Newton's iteration method. This procedure uses the global non-linear 

tangential stiffness matrix of the body to calculate the nodal displacements. 

Since the non-linear component of tangential stiffness [2.13] is not invariant 

to rigid motion of the body, for transformation between the local and the 

global stiffness matrix, it is not possible to use standard transformation, 

known from the linear theory.  

Therefore, we apply replacement of nodal displacements by the value 

invariant to the rigid motion of the body - by stretching λ 
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By substituting the relation [2.14] into the relationship [2.13] we obtain 

invariant component of non-linear tangential stiffness in the form 
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From such expressed local non-linear tangential stiffness matrix K
T , the 

global non-linear tangential stiffness matrix T
GK  can be expressed by 

classical transformation using the transformation matrix T. 

 

2.1.6 Internal forces 

 

In the iteration process of the solution it is necessary to compute the vector 

of global internal forces. The global internal forces are formulated from the 

local equilibrium stiffness relation [1.7], where local non-linear stiffness 
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matrix K(q) is defined by the formula [2.12]. Internal forces in a bar cannot 

be calculated from the global stiffness relationship, in relation to the impact 

of large rotations. Due to the elimination of the problems associated with 

the transformation of internal forces from the global to the local coordinate 

system, we rewrite the local non-linear stiffness matrix K(q) using 

stretching λ [2.14] into the form of local stiffness matrix K, invariant to the 

rigid motion (rotation) of the bar 
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The local internal axial force can be calculated by multiplying the total non-

linear stiffness of the bar and its deformation 
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The stress in a bar can be determined from the relationship 
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where EEE ddd 222 ,, ′′′  are transfer constants for variation of elastic modulus 

E(x). They are designed by the same procedure as the transfer constants 

derived in Sections 2.1.2 and 2.1.3, however, based on the second derivative 

of the transfer function )(/1)(2 xxd EE η=′′ defined only by a polynomial of 
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the variability of modulus of elasticity E(x). The polynomial describing the 

variability of modulus of elasticity )(xEη  is in accordance with equation 

[2.1]. The local internal force vector is in the form 

[ ] [ ]TTint
iiji NNNN −==F . 

2.2 Geometrically non-linear bar element stressed in the elasto-

plastic area 

2.2.1 Defining the variability of input parameters 

 

Let us consider the direct two-node bar element with variable stiffness, 

loaded in the elasto-plastic area (Fig. 3). Variability of material properties is 

extended in the continuous variation of elastic-plastic modulus ET(x) and 

yield strength σy(x) along the longitudinal axis of the bar. Variability of 

cross-section A(x) and the modulus of elasticity E(x) is defined in 

accordance with the polynomial [2.1]. Tangent modulus ET(x) is defined by 

a similar polynomial. Then, the elasto-plastic stiffness variation along the 

longitudinal axis of the bar in the loading area above the yield strength can 

be expressed by expression similar to the equation [2.2] 

( ) ( ) ( ) ( )xEAxxEAxExA
TT AETiiEATiiT ηηη ==)(  [2.19] 

In further solution, we will deal only with material models described by 

bilinear stress-strain diagram with isotropic or kinematic hardening. 
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ET(x) 
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ETi 

Ej 

σyj 
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L
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u(x) 

qi = q1 

qj = q2 

Aj 

Ai Ni = N1 

Nj = N2 

qi = q1  x   N(x) 

 

Fig. 3   Bar with variable stiffness for solving of elasto-plastic problems 

In the case of variability of the modulus of elasticity E(x) and tangent 

modulus of elasticity ET(x), the plastic modulus 
T

T

EE

EE
H

−
=  would not 

have polynomial shape required for application of the concept of transfer 

functions and constants (69). Therefore it would be necessary to 

approximate the change in the plastic modulus H using the Taylor series to 

the polynomial shape. 

 
2.2.2 Modification of the stiffness matrix for non-incremental solution 
 

If the normal stress in a bar exceeds the yield stress of material σy, it is 

necessary to set up a new dependence between stress increment and relative 

deformation in the bar. 
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With preserving non-incremental solution also in the area of elasto-plastic 

stress, after reaching the state of plasticity in the bar, the elastic stiffness of 

the bar ke will be changed into the elasto-plastic stiffness. The local stiffness 

matrix of the elasto-plastic stiffness of the bar will have the form 
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[2.20] 

where expression )(
yσλλ −  represents the size of elasto-plastic relative 

deformation of the bar 
yep σεεε −=  above the yield stress, expressed with 

the help of stretching [2.14]. Parameter 
yσλ indicates stretching in the bar at 

reaching the yield stress and is derived from the solution of cubic equation 
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e.g. by factorisation, where σy is the “mean” value of the yield stress of 

material of the bar 

dxx
L

L
yi

y y∫=

0

0
0

)(ση
σ

σ  [2.22] 

where σyi is the value of yield stress in the initial node i of the element and 

)(x
yση  is the polynomial describing the variability of yield stress along the 

length of the element. The transfer constants epepep ddd 222 ,, ′′′  are constants 

for elasto-plastic stress condition. These transfer constants can be 

determined in a similar way as the transfer constants for the case of elastic 
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loading (see subsections 2.1.2 and 2.1.3). The difference is only in the 

definition of the square derivative of the transfer function, which in this 

case has the form )(/1)(2 xxd
TAEep η=′′  defined by the polynomial of 

variability of elasto-plastic bar stiffness A(x)ET(x). The polynomial 

describing variability of elasto-plastic bar stiffness ( )x
TAEη  above the yield 

stress is defined by the equation [2.19]. 

 

2.2.3 Internal force in the bar, stress in the bar 

 

Internal force in the bar element under the stress in elastic area is calculated 

from equation [2.17]. The force in the rod when reaching yield stress is 

equal to 
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and elasto-plastic component of axial force is expressed by the relation 
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The total force in the bar in elasto-plastic state is given by the sum of 

iepii NNN
y

+= σ . The total normal stress in the bar in elasto-plastic state 

can be calculated by the sum of elasto-plastic stress increment σep above the 

yield stress and the "mean" value of yield stress σy [2.22], which can be 

expressed by the relationship 
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where 
TTT EEE ddd 222 ,, ′′′  are the transfer constants for variability elasto-

plastic modulus ET(x). They are determined by the same procedure as the 

transfer constants derived in subsections 2.1.2 and 2.1.3, but based on the 

square derivative of the transfer function )(/1)(2 xxd
TT EE η=′′  defined only 

by the polynomial of variability of tangential modulus ET(x). 

 

2.2.4 Local tangential elasto-plastic stiffness matrix 

 

The stiffness matrix KT of the elastic area, expressed by equation [2.15], in 

the elasto-plastic state will change to 
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2.2.5 Procedure of non-incremental solution of elasto-plastic problems 

 

The procedure for the non-incremental solution of elasto-plastic problems is 

shown in the chart in Fig. 4. 
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1. Calculation of starting solution (displacements Q) from global linear 
stiffness equation 

  

transformation of element local matrices/vectors into global 
matrices/vectors 

FTFTKTK T
0

int
0

T
0 == G

LL
G

 

preparation of  elastic stiffness equation of the body 
calculation of starting displacements from global linear equations 

ext
G

L
G FQK =cel

 
 

 

2. Preparation of global non-linear stiffness equations 

 

σ(i-1) > σy 
yes no 

 

element was yielded 
in (i-1) iteration 

element wasn´t yielded 
in (i-1) iteration 

 
calculation of actual lenght Lt(1) from global nodal coordinates 

of each element 
λ(1) = L t(1)/L0 

preparation of local non-linear stiffness matrices and vectors 
K(1) [3.16], σ(1) [3.18], KT(1) [3.15] 

preparation of global nonlinear stiffness matrices and vectors 
preparation of elastic stiffness equation of the body 

calculation of starting displac ements from global equations 

 
F 

stress test  in every element 
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3. Evaluation of the stress status of each element 

 

 element wasn´t yielded 
in (i-1) iteration 

σ(i) > σy 

calculation of actual  length L t(i) from global nodal coordinates 
of each element 

λ(i) = Lt(i)/L0 

 
prepa ration of loc al non-linear stiffness matrices and vectors 

K
(i)  [3.16], σ( i) [3.18], KT(i) [3.15] 

 

no yes 

C D 

element was yielded 
in (i-1) iteration 

σ(i ) > σ(i-1) 

calculat ion of actual length Lt(i)  from global nodal coordina tes 
of each element 

λ (i) = L t( i)/L0 

 
preparation of local non-linear stiffness matrices and vectors 

K(i) [3.20], σ (i) [3.25], KT(i) [3.26] 

no yes 

A B  

 

4. Calculation of axial stresses in elements and modification of stiffness 

matrices 

 

 

element load is decreased 

λ(i-1) = λma x , σ( i-1) = σmax , 

c alculat ion of actual lenght Lt(i) from global nodal coordina tes 
of each element   

λ (i) = L t( i)/L 0 
 

replace elastoplastic stiffness matrix of element to elastic 
 

preparation of local non-linear stiffness matrices and vectors 
K

(i) [3.16], σ(i) [3.18], KT(i) [3.15] 
 

σ(i) = σ( i) + σmax 

 

A 

E 

elastic loading of the element 

calculation of actual  lenght L t(i) from global nodal coordinates 
of each element 

λ(i) = Lt(i)/L0 

 
element stiffness matrix not  change 

 
prepa ration of loc al non-linear stiffness matrices and vectors 

K
(i) [3.16], σ( i) [3.18], KT(i) [3.15] 

 

C 

E 
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element was currently yielded 

D 

calculation of actual  length L t(i) from global nodal coordinates 
of each element 

λ(i) = Lt(i)/L0 

 
replace elastic stiffness matrix of ele ment to elasto-plastic 

 
prepa ration of loc al non-linear stiffness matrices and vectors 

K (i) [3.20], σ( i) [3.25], KT(i) [3.26] 
 

E 

element is loaded in elasto-plastic field 

B 

calculat ion of actual length Lt(i) from global nodal coordina tes 
of each element 

λ (i) = L t( i)/L0 

 
element stiffness matrix not change 

 
preparation of local non-linear stiffness matrices and vectors 

K(i) [3.20], σ(i) [3.25], KT(i) [3.26] 

 

E  

 

5. Preparation of new global non-linear stiffness equations, calculation of 

new global displacements 

 

 E 

transformation of element local matrices/vectors into global 
matrices/vectors 

FTFTKTK TintT == G
TT

G
 

preparation of global non-linear stiffness matrices and vectors 
preparation of stiffness equations of whole body 

calculat ion of displacement  increments from non-linear global 
equations 

res
cel G

T
G FQK =∆  

calculation of vector of residual forces 
intextres
GGG FFF +=  

calculation of global displacements 
Q(i) = Q(i-1) + ∆Q 

check the conditions for terminating the solution process 

F 
 

 Fig. 4    Flowchart of elasto-plastic problem solution with our bar 
element with variable stiffness 
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2.2.6 Numerical experiments with the bar of variable stiffness loaded in 

elastic and elasto-plastic area 
 
As a typical problem for studying geometrically non-linear behaviour of a 

structure, there was chosen a planar structure of triple joint connection of two 

bars, referred to in the literature as von Mises structure (Fig. 5).  In the 

solution of the problem the small angle α0 and symmetry of the structure were 

considered. Any imperfections causing a change of the straight shape of bar 

wasn’t considered. 
 

F 

 uy 
E(x), ET(x),σ y(x) 

 α 0 

 x 

 A(x) 

 L0 

 h0 

 x 

 

Fig. 5   Von Mises structure with bars of variable stiffness 

Dependence between axial force in the bar N or force F and displacement of 

the joint node uy, for solution in elastic area of loading and bar of constant 

stiffness is known for the construction according to the Fig. 6a. In the 

literature e.g. (5, 14), a number of approaches to analytical or numerical 

solutions of appointed problem can be found. The result of these solutions is 

the equilibrium dependence between the force in the bar of the strut frame or 

global reaction in the common joint, and vertical displacement of the joint, 

which course, when considering material with linear elastic behaviour, 

corresponds to the course displayed by the black line in Fig. 6c, d.  
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When considering loading in the elasto-plastic area, this dependence varies 

considerably, as is presented in Fig. 6c,d at the replacement of the diagram of 

tension test by the bilinear diagram with isotropic and kinematic hardening 

(Fig. 6b). 

However, in available literature sources, any analytical solutions for the 

specific geometrically non-linear problem for the bar of variable stiffness and 

the loading in elasto-plastic area have not been found. Therefore, it was 

possible to assess the accuracy of the new element only by comparison with 

results obtained by numerical solution of the commercial finite element 

program ANSYS. 

a 
b 

c 

d 

F 

uy  

a) 

 

b) 

 

c)   

 

d) 
Fig. 6   Equilibrium relationship between axial and/or global reaction and 
displacement of common joint for elastic and elasto-plastic material with 

isotropic and kinematic hardening 
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2.2.6.1 Models used in the numerical experiments 

 

To assess how accurately the stiffness matrix of the new geometrically non-

linear bar element, derived in Sections 3.1 and 3.2 describe the variability of 

the real bar stiffness, in MATHEMATICA software are created separate 

programs. The programs allow solving geometrically non-linear problems 

under elastic and elasto-plastic loading of the new finite bar element. 

In solution of all numerical experiments only one our bar element was used 

by procedure: one line = one element. The reference solutions for obtaining 

comparative results were created in ANSYS by simulation models: 

Model BEAM23 - one-dimensional model, the element stiffness matrix is 

derived using Hermite shape functions. The model allows approximation of 

the longitudinal stiffness variation of the bar in variants with different 

numbers of elements. The model was designed to solve problems in elasto-

plastic loading state. 

Model BEAM188 - one-dimensional model using the iso-parametric beam 

elements BEAM188 based on the Timoshenko theory and with division 

into selected number of elements. The element can be used for solution of 

problems with large displacements (rotations) and elasto-plastic tasks. 

Model SOLID45 - 3D model consisting of 2400 volume elements 

SOLID45. The geometric model accurately approximates the variability of 

the bar cross-section. Material properties were divided into 50 discrete 

groups, replacing the continuous variation of elasticity modulus (and 

tangential modulus), while values of moduli in each element were 
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considered to be equal to the value of the modulus in the coordinate 

corresponding to the centre of the element. 

All the models were modelled as the direct ones, with no imperfections that 

would cause distortion of the straight shape of the bar model. The 

displacement of structure common node was prescribed within the uy in 

range 〈+L0 sin α
0 ; –L0 sin α

0〉 so that to obtain dependence of axial force N, 

or global reaction F on the displacement uy and so the divergence solution 

problem near the bifurcation point was removed. 

 

2.2.6.2 Bar with variable stiffness loaded in elasto-plastic area 
 

We consider following initial geometric parameters of Mises structure in 

Fig. 5: α0 = 7°, L0 = 1 m. Polynomials describing the variation section and 

material properties are listed in Table 1. The material of the bar was under 

consideration in the bilinear model with isotropic and kinematic hardening 

(Fig. 6b). 

VARIATION OF CROSS-SECTIONAL AREA AND MATERIAL 
PROPERTIES                                                                                     Table 1 

variation of geometric parameters and material properties 
[m2, Pa] 

A(x) = 0.008 – 0.00393188x + 0.0004x2 

E(x) = 2×1011 – 0.21154×1011x + 0.002×1011x2 

ET(x) = 2×1010 – 0.21154×1010x + 0.002×1010x2 

 σy(x) = 200×106 – 30×106x – 10×106x2 
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The maximum and minimum ratio of the bar stiffness 

[A(x) E(x)]max /[ A(x) E(x)]min = [A(x) ET(x)]max /[ A(x) ET (x)]min = 2.0 

MAXIMAL VALUES OF FORCES OBTAINED USING OUR ELEMENT 
AND ANSYS MODELS WITH VARIABLE STIFFNESS               Table 2 

 axial force N    [N]  global reaction ||F||    [N] 

No. of elem. BEAM23 BEAM188  BEAM23 BEAM188 

1 –1 878 378.92 –1 881 595.57  259 577.67 259 813.44 

2 –1 829 998.74 –1 832 480.72  247 292.35 247 608.39 

5 –1 817 443.47 –1 822 460.34  242 018.15 255 617.03 

10 –1 815 236.23 –1 820 663.51  240 876.20 241 307.99 

20 –1 815 125.26 –1 819 564.55  240 884.41 241 142.75 

50 –1 815 372.23 –1 819 476.71  240 609.15 239 766.58 

100 –1 814 987.56 –1 822 222.35  240 338.47 241 125.60 

our element  –1 814 502.60  251 820.82 

SOLID45 –1 771 866.25  234 089.41 

 

Global reaction values F correspond to areas of extreme values in the first 

half of the course, where, as can be seen from the presented graphs, 

differences in the results obtained by the different models are greatest. Axial 

forces N in the tables correspond to the position of the bar αt = 0°, i.e. to the 

loading sub-step when the local x-axis of the bar is the same as the x-axis of 

the global coordinate system of the whole structure. 

At the problem solution, the results were obtained using only one new non-

linear bar element. As an increment of the displacement of upper node of 

the structure ∆uy = 1 mm was chosen, and the calculation was carried out 

steadily "1 substeps = 1 iteration." 
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Fig. 7   Global reaction F  – common hinge displacement uy response for 
the bar with isotropic hardening 

 

 
Fig. 8   Axial force N  – common hinge displacement uy response for the 

bar with isotropic hardening 
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Fig. 9   Global reaction F  – common hinge displacement uy response for 
the bar with kinematic hardening 

 

 
 

Fig. 10   Axial force N  – common hinge displacement uy response for the 
bar with kinematic hardening 
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Evaluation 

The results of numerical experiments of the von Mises structure stress in the 

elasto-plastic area are presented graphically in the form of the process of axial 

forces N and reactions F in dependence on the vertical displacement uy of 

common node. 

From the dependence of axial forces N, as well as from the results presented 

in it can be concluded that the stiffness of our bar element is higher by 

approximately 2.5% than the stiffness of the spatial model consisting of 

SOLID45 elements. Higher stiffness than our bar element (and thus higher 

levels of axial force N and reaction F) is shown by models with one beam 

element BEAM23 or BEAM188, for which the deviation from the results 

obtained by spatial model is above 6%. The resulting percentage differences 

between the maximum values of axial forces N obtained by one-dimensional 

models and spatial models are summarized in                                                                                             

Table 3. 

 

PERCENT DIFFERENCE IN MAXIMUM VALUES OF AXIAL FORCES 
N DETERMINED BY NEW BAR ELEMENT AND BY ANSYS 
MODELS                                                                                            Table 3  

percentage difference of axial forces 

45

45)1/23(

SOLID

SOLIDeBEAM −  
45

45)100/23(

SOLID

SOLIDeBEAM −  
45

45)1/188(

SOLID

SOLIDeBEAM −  
45

45)100/188(

SOLID

SOLIDeBEAM −  
45

45.

SOLID

SOLIDelembarour −  

6.01% 2.43% 6.19% 2.84% 2.41% 

 

It can be concluded from the results that the courses of axial forces and 

reactions determined by our element are in better compliance with the 

solution obtained by spatial model SOLID45 than the courses obtained by 
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models with beam elements BEAM23, 188, especially for models with 

isotropic hardening material. 

Significant differences in the course of forces between the models with one 

element and the models with fine mesh occur in the area of transition from 

elastic to elasto-plastic state. 

This difference is caused by: 

- in the case of models with one element (new bar element, beam models) 

is necessary to provide "mean" value of the yield stress σy to determine 

limits of transition into elasto-plastic state for the entire element, when 

after exceeding the stress limit, the elastic stiffness matrix [2.16] of new 

element turns into elasto-plastic matrix [2.20], 

- in contrast to models with more elements that result in a gradual 

transition of the model into elasto-plastic state by plasticization of 

particular elements in dependence from stiffness and yield stress of the 

element. 

This deviation also occurs in other models consisting of one beam elements 

(BEAM23, 188). A more significant increase of the difference in the course 

of axial force can be observed in case of considering the material with 

kinematic hardening comparing to the isotropic hardening material. With 

increasing axial force (i.e. an increase in the loading of a bar in elasto-

plastic area) the difference between the results obtained by one new bar 

element and results from models decreases. In the case of considering 

material with isotropic hardening, the process of axial force obtained from 

solution by one new non-linear bar element is in good agreement with the 

results obtained from the multi-element models also in area of elastic 
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unloading of the bar and tensile stress after exceeding yield stress in the 

tensile area. This compliance is not significantly affected by the degree of 

the polynomial of the stiffness variability or by the ratio of maximum and 

minimum stiffness in the bar. 

The difference in maximum values of axial forces determined by a new bar 

element and SOLID45 spatial model is less than 2.0% only in cases where 

the ratio of the maximum and minimum stiffness in the bar is less than 3.0. 

The results of numerical experiments lead to the following conclusions: 

- deviation between the value of the axial force maximum in a nonlinear bar 

of variable stiffness and the value obtained by a spatial model SOLID45 

compared for all variations was at the level of 3.0% (or less) at a stress of 

the bar in flexible area, 

- with increasing degree of the polynomial of variability stiffness, this 

difference decreases slightly, 

- numerical experiments show a good agreement with the results of 

solving a new bar in the elasto-plastic deformation areas with spatial 

model in the ANSYS programme, especially when considering the 

material with isotropic hardening, 

- significant difference in the course of axial forces or reactions 

determined by a new element compared to the spatial model and the 

model with higher density of division by BEAM elements can be 

reported when considering the material with kinematic hardening and 

stiffness ratio in the bar greater than 3.0, 

- significant differences between the results obtained by the new bar 

element and the models with division into a larger number of elements 
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occur after exceeding the yield stress, and are caused by the transition of 

the entire bar from elastic to elasto-plastic state. This phenomenon 

occurs even in models with one classic BEAM element. During further 

increase of loading, this difference in the course of forces decreases 

more significantly, namely in the bars from material with isotropic 

hardening. 

 

2.3 Sandwich bar element with variable stiffness 

 

Implementation of the new advanced materials such as composites, 

sandwich structures or functionally graded materials into the design and 

production calls for designing of an appropriate model of the material. Due 

to a number of variables that control the design of a functionally graded 

microstructure, the full potential of FGM requires the development of 

appropriate strategies for modelling of their mechanical or thermo-

mechanical properties. 

Functionally graded materials (FGM) are a new generation of structural 

materials, in which the microstructure is purposefully spatially changed due 

to the uneven distribution of hardening component(s). Achieving such a 

state is possible by using hardening components of different properties, size 

and shape of the particles or by continuous gradual substitution of 

hardening components (fibres and matrices). This is most often achieved by 

creating FGM by plasma spraying or powder metallurgy. The result is a 

microstructure that is formed by a continuous (or discrete) change in 

macroscopic, electrical, thermal and mechanical properties. 



48 

 

FGM are suitable materials e.g. for the so-called thermal barrier in 

applications involving large temperature gradients, from the aircraft and 

rocket engines up to the use in microelectronic circuits or MEMS. 

Without homogenizing the material properties of such materials, the non-

linear component analysis would require creation of very fine finite element 

mesh, and even the time-consuming preparation of the model and the 

solution process itself would be significant. Macro-mechanical modelling of 

effective material properties of such composites is based on different 

homogenization procedures. 

By mixing two or more components we can achieve a synergic effect when 

the properties of newly produced material are better than the properties of 

individual components. These new materials are characterized by 

continuous or discontinuous variation of material properties. Along with the 

development of these materials to improve the calculation precision and 

description of material properties in the numerical simulations, new 

methods of homogenization are being developed (27, 36, 40), or the already 

existing procedures are being improved (54, 55). Recently, also multi-scale 

methods are elaborated and are starting to be applied (26, 35). 

One way of macroscopic modelling of mechanical properties of materials 

with heterogeneous microstructure is their homogenization and 

determination of effective material properties of the composite using mixing 

rules. The simplest mixing rule by which we can determine the average 

effective material properties is based on the assumption that the material 

properties of the composite are the sum of material properties of each 

component multiplied by its volume fraction. The resulting effective 
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property pe of the bi-component composite consisting of the matrix with 

property pm and the hardening phase pf is determined by 

pe = vf pf + vm pm [2.27] 

where vf, vm are the volume fractions of the matrix and the hardening phase, 

for which in each point of the material is valid vf + vm = 1. 

In this part of the study, the extended mixing rule published in (54, 55) is 

used. In the first step is considered a bi-component composite material with 

a variable change in the modulus of elasticity and the volume ratio of both 

components along the longitudinal axis of a bar composite (single-direction 

composite). For homogenization of material properties of such composite, 

in section 2.3.1 is described the procedure allowing to derive the relation 

describing variability of the effective longitudinal elastic modulus EL(x) of 

the composite.  

In the second part, the process of homogenization of the material properties 

of the sandwich element for the extended multi-layer composite is designed. 

For such a bar of constant double symmetric cross-section with variation of 

material properties of individual composite layers, the homogenization 

process of material properties of multilayer material is then derived. The 

procedure of material property homogenization is in accordance with the 

laminate theory (2, 54, 55). Delamination of the sandwich material is not 

considered. This procedure allows homogenising properties of composite 

and sandwich materials with spatially varying volume ratio of the 

components and their material properties. 
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With the proposed mixing rule and the procedure of homogenization, the 

homogenized effective properties were calculated and the stiffness matrices 

of non-linear bar element were assembled. 

 

2.3.1 Single-layer composite bar element with variable stiffness 

 

We consider a bar of constant symmetrical cross-section made of the two-

component composite with symmetric distribution of both components in 

the cross section of the bar, to prevent the occurrence of flexural 

components of deformation at tensile or compressive stress of the bar. 

 

 j 

 Ni  Nj 

 i 

 L0 

 x 

 qj 

 A, EL(x) 

 qi  u(x)  x 

 

Fig. 11   Single-layer composite bar 

In order to implement the variability of the composite bar element stiffness 

into our non-linear solution and derive stiffness matrices of the single-layer 

composite two-node bar element, it is necessary to determine the variability 

of the effective longitudinal modulus EL(x), that will represent a continuous 

variation of mechanical properties of the composite material in the direction 

of the axis of the bar. After determining the effective longitudinal modulus 

of elasticity, it is possible to derive the stiffness matrices of the composite 

bar element by the procedure referred to in section 2.1. 
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The prerequisite for the solution is the loading of element with variable 

stiffness only in elastic area. Also in this case, we consider polynomial 

variability of the modulus of fibre elasticity Ef(x) and the matrix Em(x), 

which can be described by polynomials similar to [2.1]. 

In the following text, Efi, Emi will label the elastic modulus of fibres or 

matrix at the first node i of the element, and ηEf(x) or ηEm(x) are the 

polynomials describing the variation of elastic modulus of fibre or matrix. 

Such variability of elasticity modulus can be caused by temperature field 

generated by passing electric current (steady-state or transient), by chemical 

reaction, piezoelectric phenomenon, etc., acting in the element. 

The volume fraction of fibres vf(x) and the matrix vm(x) as the two 

components of the composite material in the longitudinal axis of the bar 

may also be variable in accordance with [3.1] whereby in each point of the 

body is valid 

1)()( =+ xvxv fm   . [2.28] 

By consideration of constant mechanical properties of the fibres and matrix, 

the effective longitudinal modulus EL(x) can be determined by a mixing rule 

for two-component laminate composites known from literature (3, 13, 27). 

By exchange of constant values of elasticity moduli and volume fractions of 

the fibres and matrix conditions describing the variables change in any 

element point along the longitudinal axis, we obtain advanced mixing rules 

to determine the function describing the change in the effective longitudinal 

elastic modulus EL(x) in the form of polynomial (54, 55) 
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EL(x) = vf(x) Ef(x) + vm(x) Em(x) = )(xE
LELi η  [2.29] 

where  ELi = vfi Efi + (1 – vfi)Emi is value of effective longitudinal elastic 

modulus in first node i of the element and 

mimififi

mmff
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+
=
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)(η  [2.30] 

is a polynomial describing the variation of the effective longitudinal 

elasticity modulus of whole composite. 

The local non-linear stiffness matrix of bar element with the effective 

modulus EL(x) has the form 
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 are transfer 

constants of the bar of homogenised properties for elastic area of loading 

based on the second derivative of the transfer function )(/1)(2 xxd
LL EE η=′′ . 

For the calculation of the transfer constants the same algorithm is used as in 

section 2.1.2. 

We calculate axial force in the bar from modified equation [2.17], where we 

replace the constant transfer ed2′  to 
LEd2′ . 
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Similarly, changes the local nonlinear tangent stiffness matrix [2.13] to 
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2.3.2 Effective material properties of symmetric multilayer sandwich bar 

 

Using relationships described in the previous part of this study, the 

procedure for calculating the effective homogenized properties of multilayer 

sandwich material with a continuous change in the modulus of elasticity of 

the fibres and the matrix along the longitudinal axis of the element (e.g., 

caused by non-homogeneous thermal field in the bar) can be derived. It is 

necessary to make it possible to describe changes of elasticity moduli Em(x) 

a Ef(x) of both components of the composite (matrix and reinforcing phase) 

by polynomial in the form [2.1] in each layer k. Analogously, it is necessary 

to consider the variability of the volume fractions of both components vm(x), 

vf(x) of the composite and also the polynomial change in coefficients of 

thermal expansion αm(x), αf(x). In general, different material properties with 

varying degrees of variability in each of the k-th layer may be assumed.  

Volume fractions of fibres vf and matrix vm and materials properties of 

fibres Ef and matrix Em are considered to be constant only across the width 
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of the element b and in the thickness direction of individual layers hn 

(Fig. 12). The bar cross-sectional area of each layer is considered to be 

constant along the entire length of the bar. The bar element with such a 

defined variability of material properties will be loaded in the elastic area. 
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Fig. 12   Double symmetric multilayered sandwich bar element with 
variation of stiffness in initial state 

2.3.2.1 Variation of material properties and volume fractions of composite 
constituents 

 

In the case of multilayer composite material, we consider uniaxial 

polynomial change in elastic modulus of fibres Ef
k(x) and matrix Em

k(x) in 

each of the k-th sandwich layer. Volume fractions of fibres )(xvk
f  and 

matrix )(xvk
m  as the composite components are described by similar 

polynomial expressions. 
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The effective longitudinal elasticity modulus of k-th layer changes 

according to modified equation [2.29] for single-layer composite rewritten 

to 
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is the relation for effective longitudinal elasticity modulus variation of the 

k-th layer. Order of the polynomial [2.35] depends on the constituent 

material properties and the volume fractions variation. Index k∈〈1;n=6〉 

denotes the layer number in the upper/lower symmetrical part of the bar (see 

Fig. 12). 

 

2.3.2.2 Variation of thermal expansion coefficient one layer                                
in sandwich bar  

 

We consider variation of fibres thermal expansion coefficient ( )xk
Tfα  and 

matrix thermal expansion coefficient ( )xk
Tmα  in k-th layer of sandwich bar 

described by polynomials in form [2.1]. 

The effective longitudinal thermal expansion coefficient ( )xk
TLα  of k-th 

layer can be calculated using extended Schapery approximation (60) 
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Expression [2.36] is not polynomial and expansion to Taylor´s series is 

necessary to be used to convert it into polynomial form. 

 

2.3.2.3 Variation of homogenized material properties of sandwich element 

 

Let us define a cross-sectional area ratio of k-th layer 

AAr kk
A /2=  [2.37] 

where Ak is cross-sectional area of k-th layer and A is total cross-sectional 

area of the bar. Then, the homogenized effective longitudinal elasticity 

modulus of the whole element )(xE H
L  in the polynomial form is given by 
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 [2.38] 

where H
LiE  is the value of homogenized effective longitudinal elasticity 

modulus at node i and )(xH
LE

η  is the polynomial of its longitudinal 

variation. Elasticity modulus of k-th layer )(xE k
L  is given by equation 

[2.34]. 

The homogenized effective longitudinal thermal expansion coefficient of 

the whole element can be calculated from expression 
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where thermal expansion coefficient of k-th layer )(xk
TLα  can be calculated 

using [2.36]. Equation [2.39] is necessary to convert into polynomial form 

using expansion to Taylor´s series. 
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H
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where H
TLiα is the value of homogenized effective longitudinal thermal 

expansion coefficient at node i  and )(xH
TLαη  is the polynomial of its 

longitudinal variation. 

2.3.2.4 Homogenized stiffness matrices of the sandwich bar element 

 

The procedure of the stiffness matrices of homogenized sandwich bar 

derivation is identical to the procedure in section 2.1. In the differential 

equation [2.3] the constant cross-section is considered, and the variability of 

modulus of elasticity is determined by the relationship [2.38]. Thus the 

relation [2.3] determining the relative deformation of in the bar is changed 

to 
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The second derivative of the transfer function )(/1)(
2

xxd H
L

H
L EE

η=′′  is 

defined by polynomial of variability )(xH
LE

η  of the homogenized effective 

longitudinal modulus of elasticity in equation [2.38]. After modifying the 

shape functions of bar element, the displacement of an arbitrary point of the 

bar can be expressed by the relationship 

jjiij
E

E
i

E

E
qqu

d

xd
u

d

xd
xu

H
L

H
L

H
L

H
L

11

2

2

2

2
)()(

1)( φφ +=
′

′
+














′

′
−=  [2.42] 

After implementation of shape functions [2.42] into equations [2.8], [2.9], 

[2.10] and [2.11]  local stiffness matrix of the bar K change to 
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 are transfer 

constants derived from a polynomial describing variability of homogenized 

effective longitudinal modulus of elasticity.  

The relationship [2.17] for calculation of axial force in the element will be 

changed into 
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Relationship [2.15] for determining the tangential stiffness matrix of the 

homogenized material of the sandwich bar will be changed in the form 
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2.4 Inclusion of the thermal field action in a sandwich bar 

 

In this paper, the relations for the implementation of the thermal field effect 

in the bar to its deformation are derived. Let us assume that the bar operates 

in the stationary temperature field, whereby the temperature is changed 

along the longitudinal axis of the bar. At the same time, we consider the 

longitudinal variation of the coefficient of thermal expansion of each layer 

)(xk
TLα , which can be described by polynomial [2.36]. The effect of thus 

operating the thermal field is reflected through the contribution of forces 

induced by thermal field into the vector of nodal forces on the right-hand 

side of equation [1.7]. The task is solved as a weak coupled problem. 

In the linear FEM theory, the equivalent nodal thermal load is defined by 

the relationship 
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For the bar element, we can overwrite the previous relationship to 
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Using shape functions φik for elastic loading area, the strain transformation 

matrix can be expressed by derivatives of shape functions [2.42] 
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The matrix of elastic material constants for the bar is defined by 

[ ])(xE H
L=D  and the strain thermal vector is equal to 
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H
TL TxTxx −== αε0ε  where refT  s the reference temperature.  

After substituting these relations into [2.46] this relationship can be 

modified in the form (56, 57) 
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For the bar with the longitudinal variability of the homogenized modulus of 

elasticity )(xE H
L according to [2.38] the homogenized effective longitudinal 

coefficient of thermal expansion )(xH
TLα determined by [2.40] and loaded 

by thermal field represented by the change in temperature T(x) = Ti ηT(x) v 

along the longitudinal axis of the bar element. Effective thermal nodal 

forces can be determined from the modified relation [2.49] 
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where ∆Ti = Ti – Tref  represents the temperature difference between the 

temperature Ti in the node i of the element by chosen reference temperature 

Tref. The polynomial ηα∆T(x) is represented by 

)()()( xxx TT H
TL

∆∆ = ηηη αα  [2.51] 

where )/())(()( refirefT TTTxTx −−=∆η  is the polynomial describing the 

variability of the thermal field, and the polynomial )(xH
TLαη  describing the 

longitudinal variability of the homogenized thermal expansion coefficient 

can be expressed by the equation [2.40]. Relative deformation of the 

temperature ε0(x) at any point of the element made of the material of 

homogenized properties can be calculated from equation 
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Deformation ∆uT of the bar caused by thermal loading not dependent on the 

stiffness of the bar and is equal 
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For inclusion of thermal forces, it is sufficient to change the right side of 

[1.7] to 
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2.5 Normal stress in sandwich bar 

2.5.1 Normal stress caused by structural axial loading 

 

The expression for calculation of the effective longitudinal strain caused by 

structural loading in elastic area, we get from the derivation of equations 

[2.42] and [2.52] in the form (60) 

H
L

H
L EE

Tij
struc dx

uqq
x

dx

xdu
x

2
0 )(

)(
)(

)(
)(

′

∆−−
=−=

η
εε  . [2.55] 

The effective normal stress in the homogenized bar is then 

)()()( xExx H
Lstruc

H
L εσ =  . [2.56] 

Real stress in the k-th layer is 

)()()( xExx k
Lstruc

k εσ =   . [2.57] 

2.5.2 Normal stress caused by temperature loading 

 

The thermal stresses in the bar are caused by difference between thermal 

expansion coefficient )(xk
TLα  of individual layers and homogenized 

effective thermal expansion coefficient )(xH
TLα  of whole element. Thermal 

stress in k-th layer can be calculated from 

( )( ) )()()()()( xETxTxxx k
Lref

k
TL

H
TL

k
th −−= αασ  [2.58] 



63 

 

2.5.3 Total strain and stress 

 

Total normal stress in k-th layer is equal to the sum of structural [2.57]  and 

thermal stress [2.58] 

)()()( xxx k
th

kk
total σσσ +=  [2.59] 

The total displacement of an arbitrary point of the bar under elastic loading 

is determined by the sum of the displacement caused by structural and 

thermal loading and is expressed by equation (59, 60) 
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2.6 Numerical experiments for evaluation of the properties                              

of the sandwich bar element with variable stiffness 

2.6.1 Models used in problems of the sandwich bar stress 

 

To assess whether the stiffness matrices of the new geometrically nonlinear 

bar element with the effective modulus of elasticity of the homogenized bar, 

derived in section 2.4, allow to accurately measure the stiffness variability of 

the real composite or sandwich bar, the finite element programs to solve 

selected problems were developed in the MATHEMATICA software 

environment. The compiled programmes allowed solving geometrically 

nonlinear problems in the elastic stress area of the new bar element from the 

material of homogenized properties. The possibility of taking into account the 
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temperature field effect in the bar, as derived in section 2.4, was implemented 

into the programmes. The programmes were extended also to the calculation 

of stresses in the layers of sandwich bar according to the relationships 

described in section 2.5.3. In solving of all the problems, only one bar element 

was used, i.e. the problem was always modelled by the procedure one line = 

one element. The full square, along the length constant cross-section was 

considered. 

As the reference solutions for obtaining comparative results to assess the 

properties of the new element the following simulation models were created 

in the ANSYS: 

• Model BEAM3 – one-dimensional model consisting of 20 beam 

elements BEAM3, 

• Model BEAM188 – one-dimensional model consisting of 20 beam 

elements BEAM188, 

• spatial model consisting of the mesh of 37200 elements SOLID45 that 

allowed faithfully enough to describe the variability of cross section 

and material properties and determine the course of stresses in 

individual layers of the sandwich element, 

• PLANE42 – the two-dimensional model with an identical mesh 

topology, used in repeated analyzes to determine the course of stresses 

to reduce computational time. 
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2.6.2 Numerical experiment 

To assess the structural behaviour of sandwich bar element of homogenized 

properties, there was considered the two-node 12-layer sandwich bar with 

constant cross-section in Fig. 12 placed in the structure according to 

Fig. 6a. Layers and their geometric shape of the considered bar are 

symmetrical in relation to the neutral plane. The material of layers consists 

of two components: the matrix material NiFe labeled by m infex and the 

fibre material Tungsten labelled by f index.  

Geometric parameters (Fig. 12) of the bar and material properties are 

arranged in Table 4. The constant linear elastic material properties of the 

matrix and the fibres (Em = konst. and Ef = konst.) were considered in the 

numerical experiment. The material of the sandwich structure intermediate 

layer (core, labelled by number 1) was considered with the properties of 

pure matrix with modulus of elasticity Em. Symmetrical pairs of layers 

labelled k = 〈2,...,6〉 were created by asymmetric mixing of both components 

of the matrix and the fibres, wherein the ratio of the components in 

individual layers was different.  

The considered values of the parameters in this equation for the relevant kth 

layer are specified in Table 5. The volume fibre ratios were considered 

constant in width-wise direction b and height-wise direction hk každej 

vrstvy. There is assumed only a linear change of the volume fibre ratios in 

the direction of the length L0 of each layer, i.e. the mechanical properties of 

the whole sample are changing in the direction of its height and length. In 

the initial node i , the volume fraction of fibres (matrix) was considered 
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different in each layer and in the terminal node j of the element, it was 

considered constant in all layers. 

MATERIAL PROPERTIES OF CONSTITUENTS AND GEOMETRICAL 
PARAMETERS                                                                                Table 4    

material properties 

Tungsten 
(fibres) 

elasticity modulus of fibres Ef = 400 GPa 
thermal expansion coefficient of fibres αTf = 5.3×10-6 K-1 

NiFe 
(matrix) 

elasticity modulus of matrix Em = 255 GPa 
thermal expansion coefficient of matrix αTm = 1.5×10-5 K-1 

 

geometrical parameters of specimen 

specimen length  L0 = 0.1 m 
specimen width b = 0.01 m 
specimen height h = 0.01 m 

total number of layers (incl. core) 2n = 12 (2×6) 
initial angle α0 = 7º 

cross-sectional area A = 0.0001 m2 
cross-sectional area of 1st layer A1 = 0.00004 m2 
cross-sectional area of kth layer Ak = 0.000002 m2 
total thickness of face layers t = 0.001 m 

thickness of 1st layer h1 = 0.004 m 
thickness of kth layer hk = 0.0002 m 

 

PARAMETERS OF OLYNOMIAL VARIATION OF FIBRE VOLUME 
FRACTION ALONG THE X-AXIS OF THE BAR                        Table 5 
    

k-th layer 1 2 3 4 5 6 
k
fiν  0 0.6 0.7 0.8 0.9 1.0 

k
f 1νη  0 – 30/6 – 40/7 – 50/8 – 60/9 – 70/10 
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Volume fraction of the composite components changes linearly along each 

k-th layer in accordance with the relation [3.28] 

 )1()(1)( 1 xxx k
f

k
fi

k
m

k
f νηννν +=−=          k∈〈1,...,6〉              [P1] 

List of k
f

k
fi 1, νην  parameters is given in Table 5. 

By substituting coefficients k
f

k
fi 1, νην  listed in Table 5 into relation [P1] we 

obtain polynomials describing the variation of volume fractions of the 

composite hardening component )(xk
fν  in individual composite layers. 

Then using the equation [2.34] polynomials of effective longitudinal 

modulus of elasticity )(xEk
L  of the k-th composite layer of the sandwich 

was determined. Thus designed polynomials describing the variation of the 

effective modulus of elasticity in each layer are shown in the following 

table. 

 

VARIATION OF ELASTICITY MODULUS ALONG THE 
LONGITUDINAL X-AXIS OF THE BAR IN K-TH LAYER          Table 6 

k-th layer variation of elasticity modulus of  k-th sandwich layer )(xE k
L    [GPa] 

1 255 
2 342 (1 – 1.271929824 x) 
3 356.5 (1 – 1.626928471 x) 
4 371 (1 – 1.954177898 x) 
5 385.5 (1 – 2.256809338 x) 
6 400 (1 – 2.5375 x) 
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The effective homogenized elasticity modulus )(xE H
L  of whole sandwich is 

calculated by expression [2.38] using the effective elasticity moduli )(xE k
L  

(Table 6) of sandwich layers 

 =)(xE H
L  278,2 (1 – 0,5212077642 x)   [GPa] [P2] 

while for the coefficient of the ratio of cross sectional areas [2.37] on the 

basis of geometric dimensions in                                                                                 

Table 4 is valid: rA
1 = 0,8 a rA

k = 0,04 for k∈〈2,...,6〉. All effective elasticity 

moduli are shown in Fig. 13. 
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Fig. 13   Variations of all effective longitudinal elasticity moduli 
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2.6.2.1 Stress of the sandwich bar element in elastic area considering                         
the temperature field 

 

In this part of the numerical experiment, we considered loading of the bar 

structure in Fig. 5 by displacement uy of the common node and by the 

stationary temperature field varying along the length of the bar, described 

by the relationship [P4]. Similarly, as for the elastic modulus based on the 

relationships derived in section 2.3.2.2, it is necessary to determine the 

effective coefficient of thermal expansion of individual layers )(xk
TLα .  

 

VARIATION OF THERMAL EXPANSION COEFFICIENTS IN THE 
DIRECTION OF LONGITUDINAL ELEMENT AXIS IN EACH LAYER 

                 Table 7 

k-th 
layer 

variation of thermal expansion coefficient of k-th layer )(xk
TLα    [K-1] 

1 51 10.5,1)( −=xTLα  

2 5
5

2 10.1758,1
78620,0

10.5686,1
)( −

−

−
−

=
x

xTLα  

3 5
5

3 10.1758,1
61465,0

10.1764,1
)( −

−

−
−

=
x

xTLα  

4 5
6

4 10.1758,1
51172,0

10.4116,9
)( −

−

−
−

=
x

xTLα  

5 5
6

5 10.1758,1
44310,0

10.8430,7
)( −

−

−
−

=
x

xTLα  

6 5
6

6 10.1758,1
39408,0

10.7226,6
)( −

−

−
−

=
x

xTLα  
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To determine the effective coefficient of thermal expansion of k-th 

composite layer, the relationship [2.36] was used. Obtained variabilities of 

effective coefficients of thermal expansion of the layers thermal expansion 

are shown in Table 7. 

Consequently, from the relation [2.39], as described in section 2.3.2.3, was 

determined an effective longitudinal coefficient of thermal expansion of the 

homogenized sandwich element )(xH
TLα , using the already determined 

coefficients of thermal expansion of individual layers )(xk
TLα . The resulting 

relationship was necessary to be transformed into the polynomial form (by 

the development into Taylor series) and for selected variability coefficients 

of thermal expansion of individual layers k (Table 7), the expression for the 

an effective homogenized longitudinal coefficient of thermal expansion has 

the form 

=)(xH
TLα  1,2768.10-5 + 1,2783.10-5 x + 6,6629.10-6 x2 +  

3,472.10-6 x3 + 1,81.10-6 x4 + 9,4341.10-7 x5  + 4,9171.10-7 x6 [K-1] 

[P3] 

 
All thermal expansion coefficients are shown in Fig. 14. 
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Fig. 14   Variations of all effective thermal expansion coefficients 

Variability of the effective longitudinal coefficient of thermal expansion 

)(xk
TLα  in single layers k∈〈1,...,6〉 and the whole homogenized effective 

longitudinal coefficient of thermal expansion )(xH
TLα  is described by the 

relationship [P3]. 

Variability of the effective coefficient of thermal expansion )(xk
TLα  (Table 

7) and effective modulus of )(xEk
L  Table 6 for each k-th layer were used to 

define material properties of the elements of spatial model designed in 

ANSYS programme. Homogenized effective material properties )(xH
TLα  

[P3] a )(xEH
L  [P2] of the whole sandwich element were used in models 

made by one-dimensional elements (our beam element and models with 

beam elements BEAM3 a BEAM188).  
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In all models, the steady-state effect of thermal field and temperature 

distribution along the length of bar was considered as a thermal load and is 

described by the relationship 

 T(x) = 30(1 – 2x + 4x2)  [ºC]  .  [P4] 

The reference temperature was  Tref = 0ºC. 

 

Statically determinate sandwich bar loaded by longitudinally varying 

temperature field 

The first step of the numerical experiment considering the effect of the 

temperature field was determination of total deformation (extension) of a 

static 12-layer sandwich bar under the effect of temperature field described 

by the relationship [P4]. The resulting extensions of bar caused by 

temperatures for the selected simulation models are presented in the table 

below. 

 
EXTENSION OF A STATICALLY DETERMINATE SANDWICH                       
BAR LOADED BY THERMAL FIELD                                            Table 8    

 BEAM188-20e PLANE42 SOLID45 our bar elem. 

∆l  [m] 0.000036753 0.000036876 0.000036895 0.000036745 

 

Fig. 15 shows distribution of normal stresses in layers of statically 

determinate sandwich bar loaded only by temperature field defined by [P4]. 

Stress results were obtained by only one bar element and using spatial 

model SOLID45 with very fine mesh. 
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Fig. 15   Distribution of normal stresses in individual layers of statically 
determinate sandwich element with consideration of thermal loading 

 

Statically indeterminate sandwich bar loaded by the longitudinally 

varying thermal field 

In the second step of numerical experiment, a 12-layer sandwich statically 

indeterminate bar was exposed to steady thermal field with the variation of 

temperature defined by the relationship [P4]. The course of displacement of 

nodal points on the axis of the bar, obtained using the new bar element and 

a spatial model with elements of SOLID45 is compared Fig. 16. Calculated 

absolute values of reaction in bonds of statically indeterminate bar are 

shown in Table 9, Fig. 17a) illustrate the courses of stresses in layers 

statically indeterminate sandwich bar loaded only thermal field described by 

the relationship [P4]. 
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Fig. 16   Distribution of axial displacements ux in statically indeterminate 
bar with consideration of thermal loading 

REACTIONS IN CONSTRAINTS OF STATICALLY INDETERMINATE 
SANDWICH BAR LOADED BY TEMPERATURE FIELD           Table  9    

 BEAM188-20e PLANE42 SOLID45 our bar elem. 

||R||  [N] 9953.9 9964.0 9964.1 9953.69 
 

Effective normal stress in statically indeterminate bar with homogenized 

material properties hold H
Lσ = –99,5369 MPa. 
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Fig. 17   Distribution of normal stresses in individual layers of statically 
indeterminate sandwich element with consideration of thermal loading 

Von Mises structure with sandwich bars loaded along the 

longitudinally varying thermal field 

In the third loading step, Von Mises structure, according to Fig. 5, was 

loaded by displacement uy within the range 〈+L0 sin α
0 ; –L0 sin α

0〉 so that 

to obtain dependence of axial force N or reaction F on the displacement uy 

during deformation of the structure. Bars were also subjected to the action 

of steady thermal field with the variation of temperature defined by the 

relationship [P4]. From Fig. 18 (dependence of reaction F) a Fig. 19 

(dependence of axial force N from the displacement uy) it can be concluded 

that the results of the course of forces obtained with one sandwich bar 

element of homogenized material properties are in good agreement with the 

results obtained from the spatial model SOLID45. Compared with the 
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solution without considering the thermal loading, there was an increase of 

the difference between both solutions by around 0.2%. The maximum 

values of forces (axial N and reaction F) reached when the differences 

between particular results are the largest are listed in Table 10. 

VALUES OF MAXIMUM FORCES OBTAINED BY OUR BAR 
ELEMENT AND REFERENCE ANSYS SOLUTIONS WITH 
CONSIDERATION OF THERMAL LOADING                             Table 10 

axial force N   [N] 

BEAM3 
20 elements 

BEAM188 
20 elements 

one new bar 
element 

SOLID45 
 

–113 034 –113 231 –112 446 –112 916 

 

global reaction ||F||   [N] 

BEAM3 
20 elements 

BEAM188 
20 elements 

one new bar 
element 

SOLID45 
 

3 978.78 3 982.77 3 965.42 3 975.88 

 

Fig. 18   Global reaction F vs. common node displacement uy response in 
the elastic bar under structural and thermal loading 



77 

 

 

Fig. 19   Axial force N vs. common node displacement uy response in the 
elastic bar under structural and thermal loading 

 

Fig. 20   Normal stresses in layers of sandwich bar in configuration 
αt = 0° and with consideration of thermal field 
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Fig. 20 shows the courses of the total normal stresses (structural and 

thermal) in the line passing through the mid-height of each layer, 

determined from the analysis by the ANSYS using a spatial model 

SOLID45 and the results obtained by using one new bar element. 

PERCENTAGE DIFFERENCES OF MAXIMUM FORCES OBTAINED BY 
OUR BAR ELEMENT AND REFERENCE ANSYS SOLUTIONS WITH 
CONSIDERATION OF THERMAL LOADING                                Table 11 

axial force  N global reaction  F 

3

3

BEAM

BEAMbarour −  
188

188

BEAM

BEAMbarour −  
SOLID

SOLIDbarour −  
3

3

BEAM

BEAMbarour −  
188

188

BEAM

BEAMbarour −  
SOLID

SOLIDbarour −  

0.523% 0.698% 0.418% 0.337% 0.437% 0.264% 
 
Reciprocal percentage differences of the forces maxima obtained by 

particular models are listed in Table 11. 

NORMAL STRESS IN MIDDLE OF K-TH LAYER IN LOAD STEP 
αT = 0°, WITH CONSIDERATION OF THERMAL FIELD           Table 12    

node 
 

k-th layer: 

normal stress in k-th layer σk
i(j)  [MPa] 

1 2 3 4 5 6 

i 
our element –1 053.15 –1 342.63 –1 390.86 –1 439.12 –1 487.36 –1 535.61 

SOLID45 –1 056.71 –1 342.78 –1 390.34 –1 437.94 –1 485.62 –1 533.45 

j 
our element –1 098.72 –1 256.82 –1 256.82 –1 256.82 –1 256.82 –1 256.82 

SOLID45 –1 098.64 –1 261.63 –1 262.44 –1 263.17 –1 263.74 –1 264.11 

 

Table 12 contains the values of normal stresses in the middle of each layer 

in the start and end point of element (in nodes in outer surfaces of the 

model). These results are obtained from the solution with one of our bar 

elements and from a spatial model SOLID45, and they correspond to the 

loading state when axial force in the bar reaches the maximum value, i.e. 
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the local x-axis of the bar is identified with the global x-axis. Effective 

normal stress in the bar of homogenized material properties reached the 

value H
Lσ = –1 130.34 MPa. 

 

Evaluation 

In this case, the properties and the accuracy of extended mixing rule described 

in section 2.3.2 with the application on 12-layer sandwich bar were studied. For 

the selected material properties of the components of composite forming 

individual layers of the sandwich listed in                           

Table 4, based on the procedure described in section 2.3.2.3, were determined 

the effective moduli of the individual layers )(xE k
L  and the supplementary 

effective homogenized modulus of elasticity )(xE H
L  of the complete sandwich 

bar expressed by relationship [P2]. In the same way, the coefficient of thermal 

expansion of individual layer )(xk
TLα  (Table 7) and homogenized effective 

coefficient of thermal expansion )(xH
TLα  expressed by relationship [P3] were 

determined. Homogenized effective properties were used in one-dimensional 

models with a new bar element and in one-dimensional BEAM models 

consisting of beam elements. As a comparative solution, spatial model 

SOLID45 was also used, in which the variation of thermo-mechanical 

properties separately in each layer of spatial model was defined. To assess the 

accuracy of the homogenization of material properties, the problem of Von 

Mises structure snap-through was used. Three types of numerical experiments 

were performed, in which, besides structural loading, the influence of thermal 
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field described by the relationship [P4] was also considered. The inclusion of 

thermal field exposure to loading of the bar is described in section 2.4. 

The results obtained using different models were prepared in the form of a table 

of maximum values of axial forces N and reactions F, and graphical 

dependencies on the displacement uy forces during the whole deformation 

process. In section 2.5 were derived relationships allowing in the case of the 

solution of problem with one-dimensional model of homogenized material 

properties to determine the course of normal stresses in the individual layers of 

sandwich bar. In this way, designated courses of stresses were compared with 

the courses of normal stresses in the layers of sandwich designated from a 

spatial model SOLID45. 

In the first loading case, a statically determinate sandwich bar loaded only 

by the thermal field was considered. This state was achieved by releasing a 

bond in the common node of Von Mises structure Fig. 5, what allowed free 

movement in the y-axes direction. In Fig. 15, a very good agreement of the 

axial stresses in the layers of a bar specified by the new bar element and the 

spatial model SOLID45 for this loading state is seen. 

In the second loading case, the case of statically indeterminate bar loaded only 

by thermal field was considered. This state was achieved by inserting a bond 

into the common node of Von Mises structure, i.e. by specifying of the global 

displacement uy = 0. Fig. 16 compares the course of the local displacements ux 

of the points on the bar axis designated by a new bar element of homogenized 

properties and by the spatial model SOLID45. Table 9 summarizes the absolute 

values of internal forces in terminal nodes in direction of the bar axis 

determined by the applied models. Fig. 17 illustrates the course of structural 
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normal stresses in layers, which operate in a sandwich bar in this state of 

loading. Also, in this case, a very good agreement between the results obtained 

by one new element and a spatial model can be stated. 

In the third loading case, Von Mises structure was stressed by displacement 

uy within the range 〈+L0 sin α
0 ; –L0 sin α

0〉 so that to achieve dependence of 

axial force N or reaction F from displacement uy during deformation of the 

structure. The resulting dependence of the axial force N for selected models 

is presented in the graph in Fig. 19. Table 10 specifies the extreme values of 

axial force N and reaction F in the common node, which are selected from 

all the models used in solving this problem. Fig. 20 compares the course of 

normal stresses in the layers of sandwich bar designated by the new bar 

element and by the new comparative model SOLID45. Table 12 contains 

the values of these stresses at the beginning and end of the bar. The 

presented results correspond to the load step when αt = 0°, i.e. the position 

when the axial force in the bar reaches the maximum value. Again, a very 

good agreement of the new approach and the reference solution can be seen. 

In Table 11, reciprocal differences in the percentage of maximum values of 

axial forces N and reactions F, which are common to all models less than 

0.7%, are seen. That confirms that the designed extended mixing rule is 

appropriate for the determination of the effective homogenized elastic 

Young's modulus )(xE H
L . 

In the fourth loading case when the rod was loaded up to the moment when 

the value of the yield stress in the bar was achieved (in the place of the 

smallest cross-section of the bar), i.e. the bar was still stressed in elastic 
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area. Besides the structural stress, in such stressed bar, the thermal field was 

also acted. For this state, Fig. 21 shows the course of displacement of points 

on the axis of the bar at the stress limit. 

 

 

Fig. 21   Displacement of points on axis of the bar at the stress limit and 
consideration of thermo-elastic loading 
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3. PLANAR BEAM ELEMENT WITH CONSTANT STIFFNESS 

FOR THE SOLUTIONS OF GEOMETRICALLY 

NONLINEAR PROBLEMS AND ELASTIC AREA                            

OF LOADING 

 

This part of the study deals with derivation of the finite beam element for 

the solution of nonlinear problems based on a complete non-incremental 

formulation. There are prepared the stiffness matrices for planar two node 

beam element with the closed, constant and symmetric cross-section 

satisfying Euler-Bernoulli conditions for bending without considering 

torque transmission. 
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Fig. 22   Planar beam element in initial configuration and deformed state 

In the derivation of the stiffness matrix of planar beam element, the 

procedure for formulation of non-incremental geometrically nonlinear FEM 

equations of equilibrium, which was described in section 1.2 is used. 
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3.1 Shape functions 

A condition for the use of non-linear equilibrium equation [1.6] to compile 

a local element stiffness matrix is that the displacement of any point of the 

element is expressed in the form of equation [1.5]. Alternative functions φik 

for 2D two node beam element are defined by the linear polynomials for 

axial displacement and cubic interpolation functions for Hermitean bending 

displacement components. 

For the two-noded planar beam element, the shape function matrix N(r,s) 

has a shape known from literature (5, 10, 47). For the displacements of the 

element points u1 and u2 in the direction of the local axis, the matrix of the 

shape functions can be written in the form 


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[3.1] 

In accordance with Fig. 22 the local nodal displacements (or rotations)  qk of 

the beam element nodal points are defined == ][ kqq  

[ ]T654321 qqqqqq= . Global nodal displacements are arranged in 

the vector Q = [ui  vi  ϕi  uj  vj  ϕj]
T. 

In the planar bending of the beam (in the plane determined by local 

coordinates r, s), the displacement vector of arbitrary point of the beam 
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element is determined by the shape functions [3.1] and the local 

displacements on nodal points in the relationship 

qNu ),( sr=  [3.2] 

that we get expressed in the component form by the relationship kiki qu φ=   
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[3.3] 

3.2 Local stiffness matrix of 2D beam element 

 

The transformation relationship between strain and displacement of an 

arbitrary point of the beam element expressed by derivatives of shape 

functions φik,r is reduced to a single equation 
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[3.4] 

To derive the local stiffness matrix of the two-noded planar beam element 

according to Fig. 22  the equilibrium relationship [1.6] is used.  

From the first member of the equation [1.6] for calculation of the 

components of linear stiffness matrix, after substitution of dV = dr dA and 

Cijkl = C1111 = E we will get relationship  
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∫ ∫ ++=
0 0

))((
4

1
,,,,

L A

ijnjinklmlkm
L
nm dAdrEK φφφφ  [3.5] 

For the derivation of the stiffness matrices of the new planar two-noded 

beam element, the free indices m and n acquire values to the extent 

determined by the number of degrees of freedom (displacements) of the 

element, i.e. for our beam element m, n = 1 ÷ 6. The result of substituting 

derivatives of shape functions φik,r [3.4] to [3.5] is the linear stiffness matrix 

of a planar beam element known from the linear theory. When modifying, 

we replace integrals by 0
0

=∫ dAs
A

 for the first moment of area 

and by Z

A

IdAs =∫
0

2  for the second moment of area. 

From the second member in [1.6], after substitution dV and Cijkl as in case of 

linear matrix, we modify for the calculation of the components of the first 

non-linear stiffness matrix 

∫ ∫ +=
0 0

)(
4

1
)( ,,,,

1

L A

rijnjinlprkpm
NL
nm dAdrqEqK φφφφ   . [3.6] 

Free indices m, n and r, for the case of the derivation of the new planar two 

nodal beam element acquire values in the range 1 ÷ 6. Substituting 

derivatives of shape functions into [3.6] and the necessary modifications in 

the derived equations result in the integrals for calculation of higher-order 
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moments of area: third moment of area 2
3

0

Z

A

IdAs =∫ . For symmetrical 

cross-sections, however, IZ2 = 0 is valid. 

From the third member of equation [1.6] after substitution of dV and Cijkl for 

the calculation of components of the second non-linear stiffness matrix, we 

obtain 

∫ ∫ +=
0 0

)(
2

1
)( ,,,,

2

L A

rklmlkmjpnipr
NL
nm dAdrqEqK φφφφ  . [3.7] 

In this case, in the derived equations, an integral to calculate third moment 

of area will occur. 

By substituting derivatives of shape functions into the last integral in [1.6] 

and after substitution of dV and Cijkl we get equation for calculation of the 

components of the second nonlinear stiffness matrix. 

∫ ∫=
0 0

,,,,
3

2

1
)(

L A

qvjrnirqlpvkpm
NL
nm dAdrqqEqK φφφφ  [3.8] 

Necessary modifications in derived equations result in integrals for 

calculation of high order moments of area: third moment of area 

02
3

0

==∫ Z

A

IdAs  (for the symmetric cross sections) and bi-quadratic 

moment of area 3
4

0

Z

A

IdAs =∫ .   Total local stiffness matrix of two nodal 

planar beam element is determined by the sum [1.8] of the components 

derived from the relations [3.5], [3.6], [3.7] and [3.8]. The resulting local 
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stiffness matrix of planar non-linear beam element, like all its components 

is symmetrical. 

In previous terms the bi-quadratic moment of area IZ3 for circular and 

rectangle cross-section is expressed 
 

d 
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3
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π

=     
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80
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3
hb

IZ =  

3.3 Local stiffness matrix of beam element in the shape invariant                

to rigid motion 

 

During the deformation process, the large rotations of the element occur, 

which causes rotation of the local beam axis r between the deformation 

steps (iterations) as is shown in Fig. 23.  
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Fig. 23   Local displacements of element end nodes in different 
deformation states (iterations) 

For the iterative solution in seeking an equilibrium of the internal and 

external forces, qi
(i) are local increments of the displacements related to the 

current local coordinate system of the deformed element (r(i), s(i)) with the 

angle αt = α(i) with the respect to the x-axis of the global coordinate system. 

The resulting node displacements after the exact solution are determined by 

the total local displacements qk, which are related to the initial 

configuration, when a local coordinate system of un-deformed element (r,s) 

is rotated given the global axis x by angle α0. Total nodal rotations q3 or q6 
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are given by the sum ∑∑
==

==
n

j

i
n

j

i qqqq
1

)(
66

1

)(
33  , where n is number of 

iterations. 

As in the case of non-linear bar elements also to derive the beam element 

stiffness matrix K(q) [3.9], it is necessary to know the local displacements 

of the element end nodes. To transform the global nodal displacements to 

the local displacements, classical transformational relationship known from 

linear theory cannot be used, because the transformation law ignores rigid 

rotation. In the case of planar problem solution, the large-rotation problem 

for displacements in the direction of the local longitudinal axis of the 

element r (node joints) can be solved similarly to the bar element, by 

implementation of the dimensionless, i.e. rigid displacement (rotation) 

invariant variable stretching λ [2.14], which can be determined also from 

the global displacements of the element nodes (valid length of the node 

joints). Displacements in the direction of the local axis s can be replaced by 

the angle of rotation of the joint of the nodal points of the beam element β 

in valid configuration with regard to the last known configuration of the 

element assuming that deformation in the axis of the bar is caused only by 

the stress from axial force N. 

0
14

0
1

L

qq

L

Lt −
+==λ    and   

0
2525tan

L

qq

L

qq
t λ

β
−

=
−

=   [3.9] 

of which can be expressed 

0
14 )1( Lqq −=− λ    and   βλ tan0

25 Lqq =−   [3.10] 
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In the case of stiffness matrices derivation of spatial beam element, for 

transformation from a global to a local coordinate system, Rodrigues 

formula (76) can be used. 

The resulting total local stiffness matrix of beam element invariant to rigid 

body motion, after the introduction of dimensionless values [3.9] and 

relevant modifications has the shape 
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where the terms of the resulting invariant local stiffness matrix are equal to 
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3.4 Local vector of internal nodal forces  

 

Local vector of internal nodal forces F
int(q)  that can be obtained from the 

equilibrium non-linear equation K(q) q = F by multiplying the local non-

linear stiffness matrix K(q) [3.9] by vector of valid local displacements q or 



93 

 

from equation Fint = K q  where the matrix K is given by expression [3.11],  

can be expressed in invariant form 
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where K11 to K66 are identical to the elements of the stiffness matrix [3.11]. 

3.5 Local tangential stiffness matrix of 2D beam element 

 

To accelerate the convergence of the nonlinear equation system solution, in 

the case of using Newton-Rapson method is advisable to use tangential 

element stiffness matrix. 

To determine the members of the local tangential stiffness matrix of the new 

beam element, the relation [1.9] can be used. Another option is the 

compilation of a tangential stiffness matrix of beam element using the 

derivative of the potential energy of internal forces by local nodal 

displacements (Castigliano principle). 

Potential energy of internal forces in the current configuration for the 

complete non-incremental formulation can be expressed by (42, 47, 48) 
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while integration is underway through the initial volume of the element. 

Assuming that the isotropic tensor of material properties is constant 

throughout the entire deformation process, the 2nd Piola-Kirchhoff stress 

tensor )( klklijklklijklij eCECS η+==  can be expressed by components of 

Green-Lagrange strain tensor [1.2]. Potential energy of internal forces are 

expressed by the relationship 
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Members of the local tangential element stiffness matrix KT = ][ T
mnK  can 

be obtained by derivation of the potential energy of internal forces 

according to the nodal displacements qk in the form 
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L
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  . [3.15] 

where members L
mnK  form linear component KL and members NL

mnK  form 

nonlinear component KNL of the total local stiffness matrix of element K. 

In the case of two-node planar beam element, the non-linear 

transformational relationship between strain and displacement of nodes is 

reduced to one component of the Green-Lagrange strain tensor 
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E11 = e11 + η11 = ( )1,11,11,1 2
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uuu +  [3.16] 

where the derivative of displacements u1,1 is expressed by relationship [3.4]. 

By the derivation of the linear component of internal potential energy AL 

according to local displacements qk and after substitution dV = dr dA and 

C1111 = E we obtain the expression for calculation the elements of linear 

components of the local tangent stiffness matrix of one-dimensional 

element 
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Similarly, but from the derivation of the first and second members of 

nonlinear component of the potential energy ANL and after relevant 

modifications, we obtain relations for calculating the members of two non-

linear components of tangential stiffness matrix of one-dimensional element 
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The local full non-linear tangential stiffness matrix of the two-node planar 

beam element is given by the sum of the linear and non-linear sub-matrices 

21 )()()( NLTNLTLT
qKqKKqK ++=  [3.20] 
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3.6 Local tangential stiffness matrix of beam element expressed                

in the form invariant to rigid body motion 

 

Fig. 24 shows deformation states of the beam element in individual iteration 

steps. As mentioned in section 3.3 it is not possible for the calculation of 

local tangential stiffness matrix KT(q) defined by the relationship [3.20] to 

use local displacements qk, because they cannot be derived from the global 

displacements due to the effect of large rotations. 

Because in the iteration process, the global displacements vector Q is 

determined, it is necessary to replace the local displacements qk by variables 

invariant to rigid body motion (rotation) - stretching λ and angle β  of the 

rotations of the beam element end node joints defined by the relationship 

[3.9]. 

After substituting relations [3.10] for calculating non-linear relationship of 

the local tangential components of the stiffness matrix [3.17], [3.18] and 

[3.19], the total local non-linear tangential stiffness matrix [3.20] can be 

expressed in the form invariant to rigid motion 
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where 
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The resulting local tangential stiffness matrix of planar non-linear beam 

element is as symmetrical as all its components. 

3.7 Algorithm for solving problems with new non-linear beam                        

element loaded in elastic area 

 

The procedure for solving the problem of non-linear deformation of the 

structure consisting of the new nonlinear beam element is identical to the 

procedure described in section 2.1.4. Changes, comparing those being 

already described for nonlinear bar element, are summarized in the 

following subsections. To calculate global displacements (rotations) on 

nodal points of the element from the global non-linear equilibrium 

equations, the Newton's iteration method and non-linear tangential stiffness 

matrix KT [3.21] is used. Internal forces (moments) in the beam cannot be 

calculated from the global stiffness relationship due to the effect of large 
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rotation. In order to eliminate the problems associated with the 

transformation of the internal forces from the global to the local coordinate 

system, for calculation of internal forces we will use a local non-linear 

stiffness matrix K [3.11] invariant to the rigid motion (rotation) of the 

beam. The local vector of internal forces Fint will then have a shape defined 

by the relationship [3.12]. 

3.7.1 Computation of initial global displacements of the system 

The beginning of the solution requires calculation of initial values of global 

displacements for non-linear calculation. It is usually based on local linear 

stiffness matrix KL, which is transformed into a global system according to 

a relationship for one element 

0
T
0 TKTK

LG = . [3.22] 

where the transformation matrix T0 depends on the angle α0 of the element 

axis in the initial configuration. In the next step, the stiffness matrix of the 

whole system G
celK is prepared and similarly a vector of external load of the 

whole system G
celF  is designed. Initial global displacements Q0  

[ ]T0
jjjiii vuvu ϕϕ=Q . [3.23] 

are determined from the linear equilibrium relationship 

G
celK Q

0 = G
celF . [3.24] 
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3.7.2 Iterative calculation of global displacements from nonlinear system 

of equations 

 

The increment of global nodal displacements ∆Q in the ith iteration is 

calculated using non-linear global tangential stiffness matrix and global 

residual force vector  

res
celcel
GG

T FQK =∆  . [3.25] 

where res
cel
G

F  is the vector of global residual (loss) forces (section 3.7.3) and 

G
TcelK  is the total tangential matrix of the system structure prepared from 

extended global tangential stiffness matrix of elements G
TK . Non-linear 

global tangential stiffness matrix of an element G
TK  can be expressed by 

the classical transformation using transformation matrix T from the local 

nonlinear tangential stiffness matrix KT [3.21] 

TKTK
TG

T
T=  . [3.26] 

For the two-node beam element stressed in a plane, the matrix T has the 

form known from literature (9) 
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where α t  is the angle determining rotation of the joint of terminal nodes of 

the beam element in valid configuration, which is a function of current 

coordinates of the nodal points of element {[Xi, Yi], [Xj, Yj]} and valid 

length Lt. 

In accordance with Fig. 24 we can express the total angle α of rotation of 

the element nodal joints in the current configuration of the beam 

considering the global axis x. The angle is defined as the sum of α t = α(i-

1) + β(i) , where β(i) is the increment of the rotational angle of nodal joints in 

the current iteration due to the position of the nodal joints of the beam in the 

previous known configuration.  

The overall angle of rotation can be determined using the sum of the angles 

of rotations of the node joints in all performed iterations, i.e. 

α t = α0 + ∑β(i), where α0 is rotation angle of the beam axis in undeformed, 

initial configuration in relation to axis x of the global coordinate system. 
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Fig. 24   Changing global displacements during an iterative process  

3.7.3 Vector of global internal forces 

Vector of local internal forces and moments 

[ ]Tint
jjjiii MTNMTN=F  has, in the case of the new the beam 

element, the shape given by vector [3.12]. f the vector of local internal 

forces in the bar is expressed by stretching λ and angle of rotation of the 

nodal joint β  defined in the form [3.9], the global internal forces and 

moments can be obtained by standard transformation using transposed 

transformation matrix T for the beam element 
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intTint
FTF =G . [3.28] 

Vector of global internal forces for two-noded beam element in a two-

dimensional space has the form 

[ ]Tintintintintintintint G
Zj

G
Yj

G
Xj

G
Zi

G
Yi

G
Xi

G MFFMFF=F . [3.29] 

By the sum of extended vectors of global internal forces, we obtain the 

vector of total global nodal forces of the system int
cel
G

F , which represents the 

exact nodal forces (moments) corresponding to the valid deformation of 

beam element. 

Global residual force vector res
cel
G

F  can then be expressed as the difference 

between external global load vector ext
cel
G

F  and the total internal global 

nodal forces int
cel
G

F  of the system 

int
cel

ext
cel

res
cel

GGG
FFF −=  . [3.30] 

To determine the accuracy of the iterative procedure we use Euclidean norm 

of residual forces 

res
cel

res
cel

res
cel . GGG

FFF =  , [3.31] 

that we compare to the norm of external loading forces ext
cel
G

F . Completion 

of the iteration process occurs after fulfilling the condition 

ext
cel

res
cel

GG
FF ε≤  , [3.32] 

where ε  specifies the tolerance (accuracy) of the equilibrium achievement. 
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The total global displacement after the ith iteration is then 

Q
i = Qi-1 + ∆Q . [3.33] 

3.8 Numerical experiment 

 

To assess the accuracy and effectiveness of the new nonlinear beam 

element, the problem of deflection of statically definite cantilever beam 

with a length L0, of the constant full circular cross-section according to Fig. 

25 with loading in elastic area was solved. The results of the analysis were 

compared with the reference results obtained by solving the problem using 

models developed in the commercial software ANSYS:  

- BEAM3 model – one-dimensional model with dividing elements to the 

selected number of finite elements BEAM3. Cross-sectional 

characteristics corresponded to the full circular cross section with a 

diameter according to the assignment of the solved model. Boundary 

conditions matched the problem solution. 

- SOLID45 model – spatial model consisting of 5100 body elements 

SOLID45 creating a cylinder ∅d – L0 with the dimensions according to 

assignment of the solved problem. 

The input parameters for the problem solution: elasticity modulus 

E = 200 GPa, L0 = 1 000 mm, diameter d = 20 mm, cross-sectional area 

A = 314,159 mm2, IZ = 7 853,98 mm4, IZ3 = 392 699 mm6. The beam is 

loaded by conservative vertical force F = 1000 N. 
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Fig. 25   Cantilever beam with an end point load 

 

Fig. 26   Deflection of beam for different models 
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THE RESULTING VALUES OF DISPLACEMENTS AND ROTATIONS 
IN THE BEAM ENDPOINT OBTAINED BY THE NEWLY 
DEVELOPED BEAM ELEMENT AND THE REFERENCE  
SOLUTIONS BY THE CODE ANSYS                                           Table 13  
 uxj   [mm] vyj   [mm] ϕzj   [rad] 

BEAM3 – 1 element –20.530 –208.298 –0.314385 

BEAM3 – 2 elements –24.054 –204.390 –0.309077 

BEAM3 – 5 elements –24.952 –203.343 –0.307611 

BEAM3 – 10 elements –25.077 –203.197 –0.307403 

BEAM3 – 50 elements –25.117 –203.150 –0.307336 

BEAM3 – 100 elements –25.118 –203.149 –0.307334 

SOLID model –22.170 –191.039 –0.288660 
our beam – 1 element –20.911 –203.425 –0.311654 
our beam – 2 elements –23.030 –200.260 –0.308628 
our beam – 5 elements –23.888 –199.474 –0.307962 
our beam – 10 elements –24.019 –199.371 –0.307874 

REACTIONS IN THE BEAM CONSTRAIN OBTAINED USING THE 
DEVELOPED BEAM ELEMENT AND THE REFERENCE SOLUTIONS 
                                                                                                           Table 14 

 Rx   [N] Ry   [N] Μz   [Nmm] iter. 

BEAM3 – 1 element –0.63121 10-4 1 000 987 670 7 

BEAM3 – 2 elements –0.54046 10-5 1 000 978 420 9 

BEAM3 – 5 elements –0.12746 10-5 1 000 975 460 9 

BEAM3 – 10 elements 0.26962 10-5 1 000 975 020 8 

BEAM3 – 50 elements 0.12556 10-5 1 000 974 880 6 

BEAM3 – 100 elements 0.85225 10-7 1 000 974 880 7 

our beam – 1 element 0.172273 10-4 1 000 979 090 8 

our beam – 2 elements 0.605573 10-4 1 000 976 971 9 

our beam – 5 elements 0.620974 10-5 1 000 976 114 9 

our beam – 10 elements 0.311687 10-5 1 000 975 983 9 
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Summary of results  

Based upon the results of the point displacements at the free end of the 

cantilever beam listed in Table 13, as well as from the process of deformation 

of particular models in Fig. 26, it can be concluded that the deformations 

determined by one new non-linear beam element are comparable with the 

results from a model consisting of minimum five beam elements BEAM3. 

Fig. 27 shows that by increasing mesh density of the model with the new 

beam element, the results of deformation are getting closer to the solution 

obtained from the deformation of spatial model SOLID45. 

 

 

Fig. 27    Comparison of deflection of models with the new beam elements 
and different mesh density 

Significant agreement of the results obtained from the spatial model and the 

derived beam elements can be achieved by the use of two new elements. 
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Even when using a model with 100 elements BEAM3, there was not such 

an agreement of the results obtained. The results of deformation calculated 

by one new element are comparable to traditional solutions for hermitian 

element BEAM3 divided into 50 elements, considerable deviation occurs 

only in the value of displacement in the direction of the global x-axis. Table 

14 gives the reaction values derived from the used models. The difference 

between the value of the moment Mz in relation specified by one new beam 

element and for the model with 100 elements BEAM3 is 0.432% and for the 

model with ten new beam elements, the deviation moments is reduced to 

0.113%. This difference is caused by the fact that the results of deformation 

in the direction of the global x-axis calculated by models with the new 

element are smaller than those obtained by the models with BEAM3 

elements. Displacements defined by the new element are in better 

agreement with the results from the spatial model SOLID45. 

The number of iterations needed to obtain results by the models with new 

beam element at a standard accuracy in ANSYS programme was 

comparable. To achieve comparable results, a model with fewer new 

elements is needed. It can be stated that the new nonlinear beam element 

achieves greater efficiency and accuracy. 

The new element makes it possible to solve problems of deformation of 

frame structures by using fewer elements, and in some cases with its help 

there will be possible to solve problems using the procedure "one bar = one 

finite element". Differences in the size of deformation specified by the beam 

models (by new beam elements or traditional element BEAM3), and the 
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model SOLID45 with body elements of the spatial stress is particularly in 

incomplete agreement of both FEM physical models. 
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CONCLUSIONS 

 

This monograph is devoted to derivation and application of non-linearized 

stiffness matrices of one-dimensional elements for the solution of 

geometrically non-linear problems based on complete geometrically non-

linear non-incremental formulation described in section 1.2. 

In the first part, the stiffness matrices of geometrically non-linear bar 

element of variable stiffness are derived. In designing of stiffness matrices, 

the expanded concept of transfer functions and constants allowing exact 

inclusion of continuous variability of the cross-section and the material 

properties was used. On this basis, the stiffness matrices of bar elements of 

variable cross sections loaded in an elastic area were derived.  

The non-linear bar element is extended in implementation of variability of 

material properties and the possibility of loading the bar in elasto-plastic 

area. To assess the non-linear behaviour of the structure, the problem of 

deformation of Mises structure was selected. The results of numerical 

experiments obtained by new elements are compared with those obtained by 

conventional beam and spatial elements implemented in the commercial 

FEM program (ANSYS).  

The new non-linear bar element of stiffness variability eliminates the 

disadvantages of conventional beam elements, in which, in case of 

requirements, it is necessary to include into the solution the variability of 

section and material properties, to use the "mean" values of these 

parameters what increases a deviation from the exact solution. Another 

possibility of taking into account the variability of geometry and material 
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properties, is the replacement of real bar by sufficient mesh of beam 

elements, and thus in a graded manner to define longitudinal stiffness 

variation, what expects increased requirements for the preparation and the 

time of the problem solution.  

 

The presented results of loading in the elastic area show better agreement of 

the solution with one new bar element with the results obtained by spatial 

model SOLID, in comparison with results from comparative models with 

beam elements BEAM in the commercial software ANSYS. The difference 

of maximum axial forces for all the considered variations of stiffness 

calculated by a new element compared to the spatial model is about 3%, 

and, with increasing degree of the stiffness variability, it decreases. It can 

therefore be concluded that the results obtained by one new bar element are 

in good agreement with the results specified by the spatial model. Stiffness 

matrices of the new non-linear bar element allow to  accurately take into 

account the longitudinal variability of cross section and material properties 

as a way to create a model "1 bar = 1 element". The accuracy of the solution 

thus depends on the mesh density. 

In the next part of the study, the solution of nonlinear problems with new 

bar element was extended to the area elasto-plastic deformations. Non-

linear stiffness matrices for non-incremental problem solving with 

considering material with bilinear model and isotropic or kinematic 

hardening were prepared. By numerical experiments, the accuracy of non-

linear bar element in dependence on the degree of the polynomial variability 

of stiffness and the ratio of the maximum and minimum value of stiffness in 
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the bar was investigated. In solving the problems of deformation in the Von 

Mises structure in elasto-plastic area by one our bar element of variable 

stiffness, the results are in better agreement with the solutions obtained from 

the models with a large number elements (BEAM SOLID) than those 

obtained from the models with one beam element (BEAM23, BEAM188). 

Significant differences in the course of axial forces or reactions occur only 

in the area of transition from elastic to elasto-plastic state.   

This deviation, which occurs in all models with one element (new bar 

element BEAM23, BEAM188), and is more pronounced when considering 

the material with kinematic hardening, is caused mainly due to the fact that 

in the models with a larger number of elements, the transition to elasto-

plastic state is made gradually. With a further increase in load, however, the 

difference between the course of axial forces determined by one new bar 

element and models decreases. The good agreement occurs in cases where a 

ratio of the maximum and minimum stiffness of the bar is not greater than 

3.0. If the ratio of the extreme values of stiffness in the bar is higher 

(particularly in the case of considering material with kinematic hardening), 

the use of a new non-linear bar of variable stiffness to solve the problems 

with deformations in elasto-plastic area appears to be less accurate, and 

therefore it is advisable to choose for the solution of such problems a 

different approach. 

Another area in which it is possible to use accuracy and good properties of 

the new nonlinear bar element are the problems for which the variability of 

stiffness caused by the use of materials with controlled variability of the 

material and physical properties such as composite materials, functional 



113 

 

graded materials (FGM) or sandwich structures. In the production of such 

materials procedures allowing targeted control of variability of material 

properties by changing individual components of the composite and their 

reciprocal volume ratios in the volume of the body are used. To assess the 

stress-strain state of the components made of such materials, it is necessary 

to determine the variability of homogenized material properties in the body. 

In general, to determine the homogenized properties of such composite 

materials, various homogenization techniques are used.  

In the commercial FEM programs, modelling of varying material properties 

can be reduced by using the "mean" value material properties and using fine 

mesh of finite elements, what causes an increase in the time required to 

prepare the model and the solution. 

In the study, the author used advanced mixing rule designed at the 

Department of Mechanics (Faculty of Electrical Engineering and 

Information technology, Slovak University of Technology in Bratislava, 

Slovakia) allowing, in case of the bar of symmetric constant cross section 

made from a two-component composite with longitudinal variability of 

material properties of the components and their volume ratios, to set the 

varying, effectively homogenized material properties. The homogenized 

effective modulus of elasticity of the composite material obtained by the 

designed procedure was then implemented in stiffness matrices of non-

linear bar element. The accuracy of the designed mixing rule was compared 

with an improved mixing rule designed by Love and Batra (36). From the 

results of the carried out numerical experiment can be concluded, that the 

differences in the course of axial forces in the bar with homogenized 



114 

 

modulus of elasticity determined by the designed extended mixing rule 

(MR) and improved mixing rule proposed by Love and Batra (LB) are 

marginal, and both homogenisation procedures allow to obtain effective 

homogenized properties of the composite with the same accuracy.  

In the next step, a procedure was designed that allows using the extended 

mixing rule for calculation of the effective homogenized properties of 

symmetric multilayer sandwich material consisting of layers of composites.  

Furthermore, the solution was extended by the impact of the inclusion of 

stationary temperature field represented by a variable longitudinal 

temperature distribution. All the performed numerical experiments 

confirmed good agreement of the results of axial forces or reactions, 

deformations and stresses in the bar, obtained by one non-linear bar 

element, and the results obtained by the spatial model with dense finite 

element mesh (SOLID). Solution with one bar element enables a high 

effective obtaining of the results of deformation and stress distribution in 

the layers of sandwich bar with accuracy comparable with the results 

specified by models with spatial or planar elements, and fine mesh at 

infinitely shorter time of solution. The applied procedure for compiling 

stiffness matrices of the bar element allows the use of other homogenization 

techniques for the determination of effective material properties. The only 

condition is that the resulting relationship describing the variability of 

material properties in composite layers, as well as the whole composite 

element, would have the polynomial form. 

The second main part is devoted to the derivation of stiffness matrices of 

non-linear beam element of constant stiffness, determined for the solution 
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of geometrically non-linear problems with large displacements (rotations) 

but very small strain. Matrices of the two-noded planar beam element of 

double symmetric cross section were derived, provided the Euler-Bernoulli 

conditions for deflection formed by material with linearly elastic property. 

Matrices of the element were designed from basic geometrically non-linear 

equilibrium stiffness equation derived from complete geometrically non-

linear non-incremental formulation without any linearization of increment 

GL of the tensor of relative deformation or calculation of the stress tensor 

increment. As substitute functions at derivation of element stiffness 

matrices, for axial displacement components and linear polynomials, and 

for the deflection components of displacement, the cubic hermitian 

interpolation polynomials were used.  

To assess the accuracy and effectiveness of the new nonlinear beam 

element, the program in MATHEMATICA software was designed. After 

the necessary modifications, the program was used in the four numerical 

experiments. As a comparative solution, computational models in ANSYS 

programme with varying mesh density formed by traditional hermitian 

beam element BEAM3 and spatial models consisting of the body element 

SOLID185 were used. The outcomes of the performed numerical 

experiments with a statically determinate beam showed, that the 

deformations obtained by one new element are in better agreement with the 

results obtained from the spatial model consisting of a mesh of body 

elements SOLID, than the results of displacement defined by the model 

consisting of 100 traditional elements BEAM. The difference in the values 

of deformation at statically determinate problems, in comparison with the 
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solution obtained by the spatial model is at the level of 6%. In solution of 

statically indeterminate problems, the experiments showed that the new 

beam element satisfies exactly both global and local equilibrium conditions. 

Unlike the new element in the carried out numerical experiment, the 

traditional hermitian beam element satisfied equilibrium equations at the 

mesh density with 20 elements. From the experiments, it can be concluded 

that to achieve comparable results, it is necessary to use a model with 

approximately 3-fold greater number of traditional beam elements than for 

the model with new beam elements. 

Differences in the results of deformations specified by beam models and 

body elements of spatial stress state was possible to expect mainly due to 

incomplete agreement of both physical FEM models. 
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