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Abstract

The requirements for the advanced design and production of structures with
high performance, material and economic efficiency lead to the need for use
of the structural elements with stiffness variation. Varying stiffness can be
caused by continuous change of a cross-section and/or by using materials
with varying material properties.

Structural analysis of truss and frame structures consisting of structural
parts with stiffness variation can be difficult. The stiffness variation of
structural parts can be modelled by applying the fine beam FE mesh or 3D
solid finite elements with average values of cross-sectional and material
parameters.

If classical finite elements are used, FE analyses of these structures require
application of models with extremely fine mesh; thus the preparation of a
computational model is very time-consumption and computational time can
be too large, particularly in non-linear analyses.

For elimination of the mentioned disadvantages of classical finite element
applications, a two-node non-linear bar element with varying stiffness is
developed in the first part of the monograph. Concerning the bar element,
the continuous longitudinal variation of cross-sectional area and material
properties is considered. The stiffness matrices of the developed finite
element were derived using full geometric non-linear, non-incremental
formulations of equilibrium equations without any linearization for a linear
elastic loading state. New shape functions derived from the modified

concept of transfer functions and constants allow the accurate description of



polynomial variation of the cross-sectional area and material properties in
the bar element. Further, this approach was extended to the solution of
physically non-linear problems.

The matrices of non-linear bar elements were modified for the application
of materials with a uni-axial, bilinear stress-strain relationship and isotropic
or kinematic hardening. A non-incremental solution algorithm was
formulated for geometric and physically non-linear analysis using the
derived bar element matrices.

For the implementation of varying properties of the composite—sandwich
and functionally graded materials (FGM) into derived stiffness matrices—
the determination of effective homogenized material properties is necessary.
Macro-mechanical modelling of composite material properties is based on
the different homogenization techniques. In this thesis, a two-component
composite with longitudinal variation of elasticity modulus and volume
fractions was considered. The effective homogenized properties of the
chosen composite were calculated using the new extended mixture rule
formulated at the Department of Mechanics of the Faculty of Electrical
Engineering and Information Technology, Slovak University of Technology
in Bratislava, Slovakia. The homogenization of thermo-mechanical material
properties was carried out for multilayers sandwich bars with polynomial
variation of the effective Young’s modulus and volume fractions of fibre
and matrix in the layers. The procedure for including the varying
temperature field by means of thermal nodal forces was developed as well.

The normal stress distribution in composite layers of the original non-



homogenized sandwich bar was calculated by effective computational
method.

In the second part of the thesis, the stiffness matrices of a geometrically
non-linear beam finite element were derived using a full non-linear, non-
incremental formulation without any linearization. The matrices of the two-
node plane beam element with a double-symmetric cross-section and
constant stiffness were formulated.

The suitability of the concept of transfer constants implementation, the
accuracy and efficiency of a geometrically and physically non-linear bar
element, a geometrically non-linear beam finite element, and applicability
of the extended mixture rule were compared and assessed by several
numerical experiments against ANSYS analyses with classical finite
elements. A good agreement between results obtained by newly developed
elements and the reference solutions in the commercial FEM code ANSYS
was achieved. Moreover, the high efficiency of the developed procedures

was proved.
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List of abbreviations and symbols

TLF
ULF
GLT
LCS
GCS
II.LPKT
Ej
Cij
1;j
Sij
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total Lagrange formulation

updated Lagrange formulation
Green-Lagrange strain tensor

local coordinate system

global coordinate system

second Piola-Kirchhoff stress tensor
Green-Lagrange strain tensor

linear part of Green-Lagrange strain tensor
non-linear part of Green-Lagrange strain tensor
second Piola-Kirchhoff stress tensor

local nodal displacement (rotation)

global nodal displacement (rotation)

shape function

tensor of elastic material properties

vector of local external nodal forces
vector of local internal nodal forces

vector of global external nodal forces
vector of global internal nodal forces
vector of local nodal displacements

local stiffness matrix in the invariant form
local stiffness matrix as function of nodal displacement

local tangent stiffness matrix in the invariant form



K'(q)

E,(x)
Ex(x)
Ef (x)
Ey(x)
Ef (x)

I

IZZ

local tangent stiffness matrix with displacement dependent
elements

shape function matrix

transformation matrix; transposed transformation matrix

strain vector induced temperature field

cross-sectional area in initial configuration (undeformed)
continuously variable cross-sectional area (undeformed)

elasticity modulus (Young’s modulus)

elasticity modulus of fibres

elasticity modulus of matrix

elasticity modulus continuously varied along the longitudinal axis
of the element

tangent modulus

elasticity modulus of fibres continuously varied along the
longitudinal axis of the element

elasticity modulus of matrix continuously varied along the
longitudinal axis of the element

tangent modulus continuously variable along the longitudinal axis
of the element

effective homogenized elasticity modulus continuously variable
along the longitudinal axis of the element

effective longitudinal variable elasticity modulus of composite
material

effective longitudinal variable elasticity modulus of £ composite
layer

second moment of area (second moment of inertia)

third moment of area



L Z3
LO

vAX)

Vin(X)

a(x)
ag (x)
ag(x)

allfL (%)

bi-quadratic moment of area
element length in initial (undeformed) configuration
element length in current (deformed) configuration

length of the line connecting element end nodes in the deformed
state

polynomial describing the change of fibre volume ratio
polynomial describing the change of matrix volume ratio
body volume in initial configuration

initial angle between r axis of local coordinate system and x axis of
global coordinate system

thermal expansion coefficient continuously varied along the
longitudinal axis of the element

effective homogenized thermal expansion coefficient continuously
varied along the longitudinal axis of the element

effective longitudinal variable thermal expansion coefficient of
composite material

effective longitudinal variable thermal expansion coefficient of
k™ composite layer

total rotation angle connector of element end points

stretching
stretching on yield stress
material density

yield stress, "mean" yield stress

yield stress continuously varied along the longitudinal axis of the
element
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@)

right superscript ' denotes matrix transpose operation of
matrix/vector

right superscript ” denotes tangent matrix

right superscript ) denotes /™ iteration
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INTRODUCTION

If the relationship between the displacement of the body points and
the external load is not linear, we are talking about the non-linear
behaviour of the body. The equations necessary to describe the
process of the material behaviour must include the body movement
kinematics (description of the deformation process by the vector
field of displacements, deformation tensors), kinetics (continuum
kinetic equations, stress tensor and its increment), thermodynamics
and constitutive equations (generalized Hooke’s law, the
relationships between stress increment and deformation in elastic-
plastic loading area). Based on the kinematics of the deformation
process and the used constitutive relations, non-linear behaviour of
the body can be caused by physical (material) non-linearity,
geometric non-linearity and mutual contact of the bodies.

Physical non-linearity occurs when the correlation between the load
and deformation is not linear, e.g. if the stress in the body exceeds
the limit of proportionality, which is associated with the emergence
of plastic deformation or due to creep of the material.

Geometric non-linearities lead to changes in the body configuration
due to the load, and the displacements of u; points of the body and
their gradient u;; are no longer infinitely small but finite. The term
‘finite deformations’ means a complex of the body’s rigid motion
and strain. According to the extent of displacements of body points

and the components of strain, we distinguish:
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- Theory of the 1* rank comprising the area of infinitely small
displacements and strains. The total strain can be additively
divided into elastic and plastic components.

- Theory of the 2™ rank comprising the area of finite
displacements and small strains. The additive division of the
strain into elastic and plastic elements is possible.

- Theory of the 3" rank, comprising
a) small displacements and large strains, where the elastic

element of the strain is infinitely small and the plastic element
is finite. The additive division of the deformation tensor into
elastic and plastic elements is acceptable after the
modification of the constitutive relations,

b) both large displacements and large strains. The additive
division of the deformation tensor into elastic and plastic
elements is not possible. For this case, multiplicative division
is used (73).

The first part of monograph focuses on the derivation of the stiffness

matrices of geometrically non-linear bar elements with variable

stiffness. The second part is devoted to the derivation of the stiffness
matrices of geometrically non-linear beam element with constant

stiffness.
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1. NON-INCREMENTAL FORMULATION FOR SOLVING
GEOMETRICALLY NON-LINEAR PROBLEMS

1.1 An overview of the current state of knowledge

Numerous papers using different approaches have been published on
solutions for non-linear tasks when displacements affect the structural
stiffness. Among the most important studies are (5, 8, 14, 78).

The solution of geometrically non-linear problems published in (5) is
based on an incremental formulation. In the derivation of the stiffness
relations, the increment variation GLT is linearized (its non-linear
component is neglected) and at the same time, the increment ILPKT is
linearized, too. The solution procedure and derivation of the element
stiffness matrices is possible by the Total Lagrange Formulation (TLF)
(when all static and kinematic variables are related to initial, undeformed
configuration of the body), or using the Updated Lagrange Formulation
(ULF) (when all static and kinematic variables are related to the last
known body configuration).

It is known that the accuracy of the results using these elements in non-
linear problems depends on the mesh density. However, coarse mesh can
give convergent results. The discrepancy between the calculated values
and the reality is usually significant. In addition to the choice of the shape
function representation, the linearization of non-linear expressions of the

finite element method is the main reason for achieving inaccurate
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solutions and increasing the number of iterations to achieve a balance of
internal and external forces.

Another approach published in (14, 15) is based on neglected terms of
higher order in variations of the increment of the Green-Lagrange
deformation tensor (GLT).

To eliminate the inaccuracy caused by the linearized incremental non-
linear FEM equations, a non-incremental formulation of non-linear
equilibrium equations without linearization was established (42). The

obtained equations contain the full non-linear stiffness matrices.

1.2 Non-incremental formulation of solving geometrically non-
linear problems without linearization for the elastic zone of
loading and a bar of constant cross section

In order to minimize the negative impact of linearization in the
incremental formulation of equations to derive the stiffness matrices, the

non-linearized non-incremental formulation was derived (42, 47).

P ) |
\
'K
t
u
o %K — initial (undeformed) configuration
0y ‘K~ configuration in deformation state
[
Xi, Xi

Fig. 1 Deformation state of the body — non-incremental method
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Fig. 1 shows the deformation state of the body. Unlike the incremental
formulation, in the derivation there is omitted the inter-configuration of
the body in deformation step ¢+ Az. Upon the principle of virtual work,
the static balance of the body in its immediate position ‘K (see Fig. 1) can
be derived from equality of virtual work of internal and external forces

(the Generalized Lagrange Formulation - GLF)

[ 8,08, dv = [F ouda+F, &, , [1.1]
s 4°
where the integral on the left side of the equation represents the virtual

work of internal forces and the expression on the right side the virtual
work of external forces (only surface and concentrated to the node). The
integration is performed over the initial volume 7 (surface 4°) of the
body. If for the description of the deformation process we use GLF, the
deformation state of the individual points of the body will be described
by the GLT of finite deformations

— 1 1
Ey=eyt -5y tuy ) +yu g, [12]

Its variation is expressed fully without linearization

SE, =Se,+57, - [1.3]

Using the decomposition [1.2], non-linear equilibrium equations in the
current deformed configuration in non-incremental form can be expressed

in the modified relation (30, 42, 49)
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J.Cijkl ey de; dV + J.Cijkl (1 Ge; +ey Ony; +ny Ony)dV =
O O

= [1.4]
= [ F, ou, da+ Fy o,

M
where Cyy is the tensor of material properties defining the constitutive
relation between II. Piola-Kirchhoff stress tensor S;= CyyE, in
configuration ‘K and the Green-Lagrange strain tensor E; [1.2].
Furthermore, u;; is the current deformation gradient, du; is a variation of
displacement, F; are the surface tractions and Jg, are virtual
displacements of points of the body in which the concentrated forces l:"k
operate. The integration is performed through the initial (undeformed)
volume 7* and the initial area A° of the finite element.

By discretization of the body into finite elements, the displacement of an
arbitrary point of u; element can be expressed by interpolation of the

nodal point displacements g, of the element using shape functions ¢

U = G qr [1.5]

After substituting the shape functions and their derivation into the
equation [1.4] and after necessary adjustments, substitution of indices and
exclusion of variation du; to get a steady relationship describing the non-
linear dependence between the displacements of points of the body and

the external load, from which it is possible to derive the shape of the
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stiffness matrices, valid for an arbitrary type of element, the

displacements of which can be described by the expression [1.5] (30)

1
[ Gt G + b0 hn + 61000, 4V +
VO

1
Z chjkl ¢pm,k pr,l (¢in,_/ + ¢_/n,i)qm q av +
yo

1 [1.6]
5 chjkl ¢pr,i ¢pn,_/ (¢km,l + ¢lm,k)qm q, av +
yo

1 -
5 chjkl ¢pm,k ¢pv,l ¢rq,i ¢m,_/ dn 4y qq av = IF; ¢in d4+ Fn .
s 4°
Equation [1.6] can be rewritten for a single element into component X,

qm = F, , or in matrix form

K(q)q=F, [1.7]

The local non-linear stiffness matrix consists of one linear and three non-

linear components

K@ =K' +K" @+ K" @+ KW @ =K + K@ ) o

Terms of the nonlinear stiffness matrix K'*(q) depend on the local nodal
displacement vector q in the form of linear and quadratic functions.

The system of non-linear equations [1.7] has to be solved by one of the
iterative methods. In case of Newton's (or Newton-Rapson) iterative

scheme, to achieve a better rate of convergence of solution, it is necessary

18



to compile a tangential stiffness matrix K’(q) of the element according to

the following procedure:

KT(q)=Z—F=K(q)+Mq=KL+KN”(q) : [1.9]
q oq

where K"7(q) is non-linear part of the tangential stiffness matrix K’ (q).
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2. BARELEMENT WITH VARIABLE STIFFNESS FOR
SOLVING GEOMETRICALLY AND PHYSICALLY
NONLINEAR PROBLEMS

At present, we encounter in technical practice the use of mechanical parts
with variable stiffness, either due to economic and technological reasons, or
because of the use of new advanced materials such as composites and
sandwich structures or Functionally Graded Materials (FGM).

When modelling the bar and frame structures, the problem of stiffness
variability can be reduced by using "average" values of the section and
material properties, by choice of the greater density of network elements
with differentiation of section and material properties, or by modelling the
parts of structures with variable stiffness by planar or solid finite elements.
However, apart from the increase of time required to prepare the model and
the solution itself, it adds the problem with inter-element compatibility.
Therefore, based on the results obtained in numerical experiments, which
confirm the accuracy and efficiency of the new, geometrically non-linear
bar element with constant stiffness loaded in the area of elastic
deformations, this solution was extended to allow for continuous variation
of the cross-sectional area and material properties. Further, the solution was
also extended to solve the physical non-linear problems and the possibility
to apply the temperature field with a prescribed temperature distribution
along the longitudinal axis of the bar as the load to the element was applied.
This procedure aims to regard the continuous variation of the bar stiffness
using a single bar element without having to create a relatively dense

network of finite elements.
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2.1 Geometrically non-linear elastic bar element with variable
stiffness

2.1.1 Defining the variability of input parameters

In order to meet and describe the continuous variation of the cross-sectional
area and material properties along the longitudinal axis of the one-
dimensional element in the derivation stiffness relationship, the concept of
transfer functions and constants published by H. Rubin in (69) and extended
by J. Murin and V. Kuti§ (30, 46, 47, 51) was used. This leads to the
establishment of new shape functions interpolating displacement of an
arbitrary point of the element from the displacements of the bar element
nodal points. New shape functions include the so-called transfer functions,
their derivatives and transfer constants (values of shape functions in the
terminal node of element). Using this approach is conditioned by the
description variability of cross-sectional characteristics and material
properties in the polynomial shape. We can assume that the continuous
variation of the cross-sectional area A(x) or elastic modulus E(x) in the axis

of the element can be described by the polynomial in the form

P(x)=F; 1p(x) =P{1+ankx"J [2.1]

k=1

where 77p; are the coefficients of polynomial members 775(x) describing the
variability of mechanical or geometric parameter, and P; is the size of the

variable is the initial node i of the element.
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Fig. 2 Bar with variable stiffness for solving of elastic problems

Then the variability of elastic axial stiffness can be expressed in the

relationship

AX)E(x) = 4, E; g (x) 7,/(x) = 4; E; 7 4(X) [2.2]
where 7745(x) = A(x) E(x)/4; E; is the polynomial describing stiffness

variation along the longitudinal axis of the bar.
2.1.2 New shape functions of the two-node bar element
The kinematic relationship between the axial displacement at the location x

of an arbitrary point of element u(x) and axial force N(x) in place x is

expressed by the differential equation

22



du(x)  N(kx)  N(x)
dx  A(X)E(x) A, E,

u'(x) = dj,(x) [2.3]

We can define the second derivative of the transfer function ds.(x) for the

tension/compression loading in the linear elastic loading area (subscript e) as

d* (d,,(x)) __ 1
dx* 145 (X)

dj(x) = (2.4]

Then the solution of differential equations [2.3], provided that all the loads
of the element are transformed into nodes of the element and the axial force
in the bar is constant (M(x) =-N; = N,), the function describing the axial

displacement of any point of the element is

u(x) = q; - dze(X) [2.5]

AE;

where d},(x) is the first derivation of transfer function, for which is valid

“fo

By substitution of x =L’ in equation [2.5] the displacement is u(L") = q
and d},(L")=d}, indicates the value of the first derivative of the transfer
function in the terminal node of the element and will be further called the
transfer constant for tension/compression. Calculation of the transfer
constant dj}, can be done numerically using a simple algorithm, published
in (30, 53). By deriving an axial force &; z from this way modified equation,

and by backward substitution into equation [2.5] we obtain the dependence

23



between the axial displacement of an arbitrary point of the bar in the
direction of the x-axis and the axial displacement of nodal points i and j,

expressed by the new shape functions ¢(x)

u(x) = (1 - di;,(x) qu + di;,(x) 4; = $u ()4, + 4, ()4, [2.6]
2e 2e

The first derivatives of the shape functions for two-node bar element with

varying stiffness are then equal to

d3. (%)
d,

d3. (%)

Aa() == ()=

[2.7]

2.1.3 Local non-linear stiffness matrix of bar element with variable
stiffness

By substituting the derivatives of shape functions [2.7] for the two-node bar
element and by the substitution for the one-dimensional element
dV=A(x)dx=A;n4x)dx and for the tensor of elastic behaviour of the
material Cj,(x) = E(x) = E;7x(x) into the first integral in equation [1.6], we
obtain an expression for the calculation of the linear members of the

stiffness matrix bar element with variable stiffness:
K = A, [1,5(0) 1 () (1) [2.8]
LO

Using the same procedure we get members of the non-linear stiffness

matrices (dependent on the unknown displacements of terminal nodes of the

24



bar element) by the substitution and modification of other members in the

equation [1.6]:

K;?Z‘l = % AE; J M4£(X) B 1 (X) (¢1 (g +d21(*) g, )2¢1n,1 (x)dx [2.9]
LO

Kﬁ;]{z = % AE; JUAE () P11 (%) (¢11,1 (g +P21(x) g, )2¢1m,1 (x)dx [2.10]
LO

Kﬁ;]{} =%AiEi JUAE(X) (¢11,1(x) g1 + P12, (X) ‘I2)2¢1m,1(x) P 1 (x)dx [2.11]
LO

Substituting derivatives of shape functions [2.7] into equations [2.9] and

[2.10] results in the need for calculation of the integrals

J dj, (x))*dx and J dj, (x))*dx . By substitution of integrants, where in the
) o

denominator of the relation [2.4] we replace the polynomial 774£(x) for

(77AE()C))2 =;AE (x) or (77AE(x))3 =;AE(x) entails the need for the

. . 1 - -
calculation of integrals J = dx=d,, and J= ! dx =d,, .

107 £4(X) 1077 g4 (%)

This way, we get new transfer constants d_ZQ and d,, of the bar element for

variable stiffness and the elastic loading area. To calculate these transfer

constants, the algorithm mentioned in (32, 33, 49, 50, 51), can be used,

since ; g4(x) and ; g4 (x) are also polynomials. The final shape of the local

25



non-linear stiffness matrix of the bar element with variable stiffness can be
expressed as
3 dze

AE; 1 2 d, 1 -1
K(q)=—"*|1+=(g, - +—(q, - £ .
(q) 4, 2(‘12 ‘]1)(dée)2 2(‘12 a) (dée)3 {_1 1 [2.12]

The vector of local nodal displacement of the bar is q=[g; ¢,]' and the

vector of external local nodal forces F =[N, N,]".
2.1.4 Local non-linear tangential stiffness matrix

The system of non-linear algebraic equations is usually solved using the
iterative Newton's (or Newton-Raphson) method. Using this way of solution,
the local non-linear tangential stiffness matrix is required. This tangential
stiffness matrix can be calculated using the relation [1.9], by derivation of
matrix K(q) [2.12]. After the relevant derivations according to nodal
displacements ¢; we get the expression for the local non-linear tangential

stiffness matrix of the two-node bar element with variable stiffhess

AE. d 3 d I
K" (@) =5 14+3(qy — ) — 255 += (g2 — )" — 2 2.13
(q) . (9 —q1) (dée)z 5 (9 —q1) (dée)3 1] [ ]

2.1.5 Global non-linear tangential stiffness matrix

For the calculation of the global displacements of nodal points of the bar

element from the system of global non-linear equilibrium equations we use

26



Newton's iteration method. This procedure uses the global non-linear
tangential stiffness matrix of the body to calculate the nodal displacements.
Since the non-linear component of tangential stiffness [2.13] is not invariant
to rigid motion of the body, for transformation between the local and the
global stiffness matrix, it is not possible to use standard transformation,
known from the linear theory.

Therefore, we apply replacement of nodal displacements by the value

invariant to the rigid motion of the body - by stretching A

L AL 9~ 4
1=F=1+F=1+T . [214]
By substituting the relation [2.14] into the relationship [2.13] we obtain

invariant component of non-linear tangential stiffness in the form

E 4. 1 -1
K’ = AL 1+3(/1—1)L0&+3(/1—1)2(L°)2& . [2.15]
d3, ) 2 @) -1 1

From such expressed local non-linear tangential stiffness matrix K’ , the
global non-linear tangential stiffness matrix Kg can be expressed by

classical transformation using the transformation matrix T.
2.1.6 Internal forces
In the iteration process of the solution it is necessary to compute the vector

of global internal forces. The global internal forces are formulated from the

local equilibrium stiffness relation [1.7], where local non-linear stiffness

27



matrix K(q) is defined by the formula [2.12]. Internal forces in a bar cannot
be calculated from the global stiffness relationship, in relation to the impact
of large rotations. Due to the elimination of the problems associated with
the transformation of internal forces from the global to the local coordinate
system, we rewrite the local non-linear stiffness matrix K(q) using
stretching A [2.14] into the form of local stiffness matrix K, invariant to the

rigid motion (rotation) of the bar

z 7 4, [1 -1
K=£ +£(1_1)L0‘{#ez+l(,1—1)2(ﬁ))2d—263 . [2.16]
dy |2 () 2 () -1 1

The local internal axial force can be calculated by multiplying the total non-
linear stiffness of the bar and its deformation
_AE;

N, = [ +3(,1—1)L°
d5, 2

d2c 42 2,70 d2c 0
(/1 (L (A-DL
(d5, ) D ) d) ] D

e 2e

[2.17]

e

The stress in a bar can be determined from the relationship

o= (a-pr j”) Ly e

S (A-DL [2.18]
drg| 2 2E SE

where d),d};,d are transfer constants for variation of elastic modulus

E(x). They are designed by the same procedure as the transfer constants
derived in Sections 2.1.2 and 2.1.3, however, based on the second derivative

of the transfer function d};(x) =1/1,(x) defined only by a polynomial of
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the variability of modulus of elasticity E(x). The polynomial describing the

variability of modulus of elasticity 7;(x) is in accordance with equation
[2.1].  The local internal force vector is in the form

=y, N =y, -~

2.2 Geometrically non-linear bar element stressed in the elasto-
plastic area

2.2.1 Defining the variability of input parameters

Let us consider the direct two-node bar clement with variable stiffness,
loaded in the elasto-plastic area (Fig. 3). Variability of material properties is
extended in the continuous variation of elastic-plastic modulus E(x) and
yield strength o,(x) along the longitudinal axis of the bar. Variability of
cross-section A(x) and the modulus of elasticity E(x) is defined in
accordance with the polynomial [2.1]. Tangent modulus E7(x) is defined by
a similar polynomial. Then, the elasto-plastic stiffness variation along the
longitudinal axis of the bar in the loading area above the yield strength can

be expressed by expression similar to the equation [2.2]
A(x)Er (x) =4 Erny (X)UET (x) =4 Eri 14, (x) [2.19]

In further solution, we will deal only with material models described by

bilinear stress-strain diagram with isotropic or kinematic hardening.
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Fig. 3 Bar with variable stiffness for solving of elasto-plastic problems

In the case of variability of the modulus of elasticity £(x) and tangent

EE,

modulus of elasticity E7(x), the plastic modulus A = would not

T
have polynomial shape required for application of the concept of transfer
functions and constants (69). Therefore it would be necessary to
approximate the change in the plastic modulus A using the Taylor series to

the polynomial shape.
2.2.2 Modification of the stiffness matrix for non-incremental solution

If the normal stress in a bar exceeds the yield stress of material o, it is
necessary to set up a new dependence between stress increment and relative

deformation in the bar.
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With preserving non-incremental solution also in the area of elasto-plastic
stress, after reaching the state of plasticity in the bar, the elastic stiffness of
the bar &, will be changed into the elasto-plastic stiffness. The local stiffness

matrix of the elasto-plastic stiffness of the bar will have the form

AE dy, 1 R
K, = 250 142 (A= gy ) 22 2
v, +2( Dt (d;g,,)”z( Ao ) )(dze,,) { 1 1} [2.20]

where expression (/1—/1%) represents the size of elasto-plastic relative

deformation of the bar &,, =&—¢&, above the yield stress, expressed with

o,

the help of stretching [2.14]. Parameter A,

» indicates stretching in the bar at
)

reaching the yield stress and is derived from the solution of cubic equation

0 0N\2 g1
[N 3L dy, A, L n+oo [221]

d
— ( oy - )3 + 1 \3 v ' Y
2 (dZe) 2 (dZe) d2e Ei

e.g. by factorisation, where o; is the “mean” value of the yield stress of

material of the bar

LO
O-yi
o, =—% [, (x)dx [2.22]
0

where o), is the value of yield stress in the initial node i of the element and

o, (x) is the polynomial describing the variability of yield stress along the

length of the element. The transfer constants d5,,, d5,,, d5,, are constants

for elasto-plastic stress condition. These transfer constants can be

determined in a similar way as the transfer constants for the case of elastic
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loading (see subsections 2.1.2 and 2.1.3). The difference is only in the
definition of the square derivative of the transfer function, which in this

case has the form dj,,(x)=1/7n 4E, (x) defined by the polynomial of

variability of elasto-plastic bar stiffness A(x)E7(x). The polynomial
describing variability of elasto-plastic bar stiffness 77, (x) above the yield

stress is defined by the equation [2.19].
2.2.3 Internal force in the bar, stress in the bar
Internal force in the bar element under the stress in elastic area is calculated

from equation [2.17]. The force in the rod when reaching yield stress is

equal to

_AE
N, =——L1+= (,1 —nL— 03
Cdy (d

e 2e 26

S+ (,1 DAL )Z(d“) }(,1 -’ [2.23]

and elasto-plastic component of axial force is expressed by the relation

N, = _AEn) 3 (/1 A, ) 0 4y —+— (/1 Ay )(L°) ﬂ(z Ay )L° [2.24]
T dy, 2 (d5) 2

Zcp

The total force in the bar in elasto-plastic state is given by the sum of

N; =N, io, + Nie, - The total normal stress in the bar in elasto-plastic state

can be calculated by the sum of elasto-plastic stress increment o, above the
yield stress and the "mean" value of yield stress o, [2.22], which can be

expressed by the relationship
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_ d d
o=—Ln 1+3(/1—/10‘ )L‘deiff)2 +%(/1—/10‘)2(L°)2f757)3 (-2, +o, [2.25]

2E, 2E; 2E;

where djp ,dyp ,dyp  are the transfer constants for variability elasto-

plastic modulus Ex(x). They are determined by the same procedure as the
transfer constants derived in subsections 2.1.2 and 2.1.3, but based on the

square derivative of the transfer function d; g, (X)=1/ng_(x) defined only

by the polynomial of variability of tangential modulus E#(x).
2.2.4 Local tangential elasto-plastic stiffness matrix

The stiffness matrix K’ of the elastic area, expressed by equation [2.15], in

the elasto-plastic state will change to

Ey, d5 ds 11
K, L 143(A=2, )" —22— +3(/1—/10,)2(L°)2—,”” 3 [ } [2.26]
dZEp ! (dZEp) 2 ! (dZEp) -1 1

2.2.5 Procedure of non-incremental solution of elasto-plastic problems

The procedure for the non-incremental solution of elasto-plastic problems is

shown in the chart in Fig. 4.
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1. Calculation of starting solution (displacements Q) from global linear
stiffness equation

transformation of element local matrices/vectors into global
matrices/vectors
K:=T,K'T, Fr=TF
preparation of elastic stiffness equation of the body
calculation of starting displacements from global linear equations

L _ et
K. Q=F;

v

2. Preparation of global non-linear stiffness equations

!

calculation of actual lenght L" from global nodal coordinates
of each element
A0 = o
preparation of local non-linear stiffness matrices and vectors
K" [3.16],6" [3.18], K"V [3.15]
preparation of global nonlinear stiffness matrices and vectors
preparation of elastic stiffness equation of the body
calculation of starting displac ements from global equations

@ >

stress test in every element

yes no
element was yielded element wasn 't yielded
in (i-1) iteration in (i-1) iteration
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3. Evaluation of the stress status of each element

element was yielded
in (i-1) iteration

!

element wasn't yielded
in (j-1) iteration

{

calculation of actual length L' from global nodal coordinates
of each element
20— [ Gyp0

preparation of local non-linear stiffness matrices and vectors
K®[3.20], s® [3.25], K™ [326]

calculation of actual length L” from global nodal coordinates
of each element
20 = 100

preparation of local non-linear stiffness matrices and vectors
K" [3.16], o [3.18], K" [3.15]

4. Calculation of axial stresses in elements and modification of stiffness

matrices

element load is decreased

elastic loading of the element

PYC T —
calculation of actual lenght L from global nodal coordinates
ofeach element
20 = Lty 0

replace elastoplastic stiffness matrix of element to elastic

preparation of local non-linear stiffness matrices and vectors
K [3.16], 6" [3.18], K" [3.15]

6= 6"+ G

{

calculation of actual lenght L® from global nodal coordinates
of each element
40 = 11010

element stiffness matrix not change

preparation of local non-linear stiffness matrices and vectors
K" [3.16], o [3.18], K" [3.15]




element is loaded in elasto-plastic field

element was currently yielded

i

{

calculation of actual length L' from global nodal coordinates
ofeach element
40— 0

element stiffness matrix not change

preparation of local non-linear stiffness matrices and vectors
K©[3.20], s [3.25], K" [326]

calculation of actual length L'” from global nodal coordinates
of each element
40 = [10/10

replace elastic stiffness matrix of element to elasto-plastic

preparation of local non-linear stiffness matrices and vectors
K [3.20], o [3.25], K™ [3.26]

5.

Preparation of new global non-linear stiffness equations, calculation of

new global displacements

{

®

transformation of element local matrices/vectors into global
matrices/vectors

KL =T'K'T

F'=T'F

preparation of global non-linear stiffness matrices and vectors
preparation of stiffness equations of whole body
calculation of displacement increments from non-linear global
equations
K{wAQ =Fg’
calculation of vector of residual forces
Fre =Fo + Fin
calculation of global displacements
Q?=QW D+ AQ

check the conditions for terminating the solution process

Fig. 4 Flowchart of elasto-plastic problem solution with our bar

element with variable stiffness
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2.2.6 Numerical experiments with the bar of variable stiffness loaded in
elastic and elasto-plastic area

As a typical problem for studying geometrically non-linear behaviour of a
structure, there was chosen a planar structure of triple joint connection of two
bars, referred to in the literature as von Mises structure (Fig.5). In the
solution of the problem the small angle o and symmetry of the structure were
considered. Any imperfections causing a change of the straight shape of bar

wasn’t considered.

E(x), Er(x),0 (x)

Fig. 5 Von Mises structure with bars of variable stiffness

Dependence between axial force in the bar N or force F and displacement of
the joint node u,, for solution in elastic area of loading and bar of constant
stiffness is known for the construction according to the Fig. 6a. In the
literature e.g. (5, 14), a number of approaches to analytical or numerical
solutions of appointed problem can be found. The result of these solutions is
the equilibrium dependence between the force in the bar of the strut frame or
global reaction in the common joint, and vertical displacement of the joint,
which course, when considering material with linear elastic behaviour,

corresponds to the course displayed by the black line in Fig. 6c, d.
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When considering loading in the elasto-plastic area, this dependence varies
considerably, as is presented in Fig. 6¢,d at the replacement of the diagram of
tension test by the bilinear diagram with isotropic and kinematic hardening
(Fig. 6b).

However, in available literature sources, any analytical solutions for the
specific geometrically non-linear problem for the bar of variable stiffness and
the loading in elasto-plastic area have not been found. Therefore, it was

possible to assess the accuracy of the new element only by comparison with

results obtained by numerical solution of the commercial finite element

program ANSYS.

isotropic

kinematic
a
€
E

20 Oy
’ E: b
< ro

2Gmay| _dk

a) b)

N isofropic
4
a

u
AT —  kinematic/ v
c ¥

elastic

c) d)
Fig. 6 Equilibrium relationship between axial and/or global reaction and
displacement of common joint for elastic and elasto-plastic material with
isotropic and kinematic hardening
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2.2.6.1  Models used in the numerical experiments

To assess how accurately the stiffness matrix of the new geometrically non-
linear bar element, derived in Sections 3.1 and 3.2 describe the variability of
the real bar stiffness, in MATHEMATICA software are created separate
programs. The programs allow solving geometrically non-linear problems
under elastic and elasto-plastic loading of the new finite bar element.

In solution of all numerical experiments only one our bar element was used
by procedure: one line = one element. The reference solutions for obtaining

comparative results were created in ANSY'S by simulation models:

Model BEAM23 - one-dimensional model, the element stiffness matrix is
derived using Hermite shape functions. The model allows approximation of
the longitudinal stiffness variation of the bar in variants with different
numbers of elements. The model was designed to solve problems in elasto-

plastic loading state.

Model BEAM188 - one-dimensional model using the iso-parametric beam
elements BEAM188 based on the Timoshenko theory and with division
into selected number of elements. The element can be used for solution of

problems with large displacements (rotations) and elasto-plastic tasks.

Model SOLID45 -3D model consisting of 2400 volume elements
SOLID45. The geometric model accurately approximates the variability of
the bar cross-section. Material properties were divided into 50 discrete
groups, replacing the continuous variation of elasticity modulus (and

tangential modulus), while values of moduli in each element were
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considered to be equal to the value of the modulus in the coordinate
corresponding to the centre of the element.
All the models were modelled as the direct ones, with no imperfections that
would cause distortion of the straight shape of the bar model. The
displacement of structure common node was prescribed within the u, in
range (+L° sina” ; —L" sin o) so that to obtain dependence of axial force N,
or global reaction F on the displacement u, and so the divergence solution

problem near the bifurcation point was removed.

2.2.6.2  Bar with variable stiffness loaded in elasto-plastic area

We consider following initial geometric parameters of Mises structure in
Fig. 5: @’ =7°, L =1 m. Polynomials describing the variation section and
material properties are listed in Table 1. The material of the bar was under

consideration in the bilinear model with isotropic and kinematic hardening

(Fig. 6b).

VARIATION OF CROSS-SECTIONAL AREA AND MATERIAL
PROPERTIES Table 1

variation of geometric parameters and material properties
[m’, Pa]

A(x) = 0.008 — 0.00393188x + 0.0004x>
E(x)=2x10"—0.21154x10"x + 0.002x10"'x
E7(x)=2x10"—0.21154x10"x + 0.002x10'%
oy(x) = 200x10° — 30x10°% — 10x10°%°
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The maximum and minimum ratio of the bar stiffness
[A(X) E()]max /[ A) E(X)]min = [A(X) E1(X)]max /[ AC) ET () ]min = 2.0
MAXIMAL VALUES OF FORCES OBTAINED USING OUR ELEMENT

AND ANSYS MODELS WITH VARIABLE STIFFNESS Table 2
axial force N [N] global reaction ||F]| [N]

No. of elem. BEAM23 BEAM188 BEAM23 BEAM188

1 —1878378.92 1881 595.57 259 577.67 259 813.44

2 —1829998.74 —1832480.72 247292.35 247 608.39

5 —1817443.47 -1822460.34 242 018.15 255617.03

10 —1815236.23 —1820663.51 240 876.20 241 307.99

20 -1 81512526 —1819564.55 240 884.41 241 142.75

50 —1815372.23 —1819476.71 240 609.15 239 766.58

100 —1814987.56 —1822222.35 240 338.47 241 125.60
our element —1 814 502.60 251 820.82
SOLID45 —1 771 866.25 234 089.41

Global reaction values F correspond to areas of extreme values in the first
half of the course, where, as can be seen from the presented graphs,
differences in the results obtained by the different models are greatest. Axial
forces N in the tables correspond to the position of the bar o’ = 0°, i.e. to the
loading sub-step when the local x-axis of the bar is the same as the x-axis of
the global coordinate system of the whole structure.

At the problem solution, the results were obtained using only one new non-
linear bar element. As an increment of the displacement of upper node of
the structure Au, =1 mm was chosen, and the calculation was carried out

steadily "/ substeps = 1 iteration."
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BEAM188-1e

400000
——BEAM188-20e //
BEAM23-1e

&, 300000 — BEAM23-20e
B SOLID45
=1 L
'% 200000} our bar element
<
&
=
£
< 100000}

0.00 0.05 0.10 0.15 0.20

displacement u,, [m]

Fig. 7 Global reaction F — common hinge displacement u, response for
the bar with isotropic hardening

BEAM188-1¢
1.5%x10° — BEAMI88-20¢
. BEAM23-1e
1.0x 10
= —— BEAM23-20e
; 500000 ——SOLID45
° —— our bar element
o
=
5 0
E
S —-500000
-1.0x10¢
-1.5%10°¢

0.00 0.05 0.10 0.15 0.20

displacement u, [m]

Fig. 8 Axial force N — common hinge displacement u, response for the
bar with isotropic hardening

42



250000 BEAM188-1e
—— BEAMI188-20e
200000 BEAM23-1e
— )
& —— BEAM23-20e /
150 000 J
= —— SOLID45 /
‘g 100000 —— our bar element ’///'
2 //,
z /
€ 50000 \ /
o0 /
)
0 //
—~50000
0.00 0.05 0.10 0.15 0.20

displacement u,, [m]

Fig. 9 Global reaction F' — common hinge displacement u, response for
the bar with kinematic hardening

1.0x10° ‘
BEAMI188-1e
— BEAMI88-20¢ /’,/"/'/'
500000 ~ BEAM23-le ~
— BEAM23-20e //
0— — SOLID45 [

—— our bar element

—500000

axial force N [N]

—1.0x 108

-1.5x108 - -
0.00 0.05 0.10 0.15 0.20

displacement u, [m]

Fig. 10 Axial force N — common hinge displacement u, response for the
bar with kinematic hardening
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Evaluation

The results of numerical experiments of the von Mises structure stress in the
elasto-plastic area are presented graphically in the form of the process of axial
forces N and reactions F’ in dependence on the vertical displacement u, of
common node.

From the dependence of axial forces N, as well as from the results presented
in it can be concluded that the stiffness of our bar element is higher by
approximately 2.5% than the stiffness of the spatial model consisting of
SOLID45 elements. Higher stiffness than our bar element (and thus higher
levels of axial force NV and reaction F) is shown by models with one beam
element BEAM23 or BEAMI8S, for which the deviation from the results
obtained by spatial model is above 6%. The resulting percentage differences
between the maximum values of axial forces N obtained by one-dimensional
models and spatial models are summarized in

Table 3.

PERCENT DIFFERENCE IN MAXIMUM VALUES OF AXIAL FORCES
N DETERMINED BY NEW BAR ELEMENT AND BY ANSYS
MODELS Table 3

percentage difference of axial forces

(BEAM 23/ le) — SOLID45 (BEAM 23/100e) — SOLID45 (BEAM188/le) — SOLID45 (BEAM188/100e) — SOLIDA45 our bar elem. — SOLID45

SOLID45 SOLID45 SOLID45 SOLID45 SOLID45

6.01% 2.43% 6.19% 2.84% 2.41%

It can be concluded from the results that the courses of axial forces and
reactions determined by our element are in better compliance with the

solution obtained by spatial model SOLID45 than the courses obtained by
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models with beam elements BEAM23, 188, especially for models with

isotropic hardening material.

Significant differences in the course of forces between the models with one

element and the models with fine mesh occur in the area of transition from

elastic to elasto-plastic state.

This difference is caused by:

- in the case of models with one element (new bar element, beam models)
is necessary to provide "mean" value of the yield stress o, to determine
limits of transition into elasto-plastic state for the entire element, when
after exceeding the stress limit, the elastic stiffness matrix [2.16] of new
element turns into elasto-plastic matrix [2.20],

- in contrast to models with more elements that result in a gradual
transition of the model into elasto-plastic state by plasticization of
particular elements in dependence from stiffness and yield stress of the
element.

This deviation also occurs in other models consisting of one beam elements

(BEAM23, 188). A more significant increase of the difference in the course

of axial force can be observed in case of considering the material with

kinematic hardening comparing to the isotropic hardening material. With
increasing axial force (i.e. an increase in the loading of a bar in elasto-
plastic area) the difference between the results obtained by one new bar
element and results from models decreases. In the case of considering
material with isotropic hardening, the process of axial force obtained from
solution by one new non-linear bar element is in good agreement with the

results obtained from the multi-element models also in area of elastic
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unloading of the bar and tensile stress after exceeding yield stress in the

tensile area. This compliance is not significantly affected by the degree of

the polynomial of the stiffness variability or by the ratio of maximum and

minimum stiffness in the bar.

The difference in maximum values of axial forces determined by a new bar

element and SOLID45 spatial model is less than 2.0% only in cases where

the ratio of the maximum and minimum stiffness in the bar is less than 3.0.

The results of numerical experiments lead to the following conclusions:

deviation between the value of the axial force maximum in a nonlinear bar
of variable stiffness and the value obtained by a spatial model SOLID45
compared for all variations was at the level of 3.0% (or less) at a stress of
the bar in flexible area,

with increasing degree of the polynomial of variability stiffness, this
difference decreases slightly,

numerical experiments show a good agreement with the results of
solving a new bar in the elasto-plastic deformation areas with spatial
model in the ANSYS programme, especially when considering the
material with isotropic hardening,

significant difference in the course of axial forces or reactions
determined by a new element compared to the spatial model and the
model with higher density of division by BEAM elements can be
reported when considering the material with kinematic hardening and
stiffness ratio in the bar greater than 3.0,

significant differences between the results obtained by the new bar

element and the models with division into a larger number of elements
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occur after exceeding the yield stress, and are caused by the transition of
the entire bar from elastic to elasto-plastic state. This phenomenon
occurs even in models with one classic BEAM element. During further
increase of loading, this difference in the course of forces decreases
more significantly, namely in the bars from material with isotropic

hardening.

2.3 Sandwich bar element with variable stiffness

Implementation of the new advanced materials such as composites,
sandwich structures or functionally graded materials into the design and
production calls for designing of an appropriate model of the material. Due
to a number of variables that control the design of a functionally graded
microstructure, the full potential of FGM requires the development of
appropriate strategies for modelling of their mechanical or thermo-
mechanical properties.

Functionally graded materials (FGM) are a new generation of structural
materials, in which the microstructure is purposefully spatially changed due
to the uneven distribution of hardening component(s). Achieving such a
state is possible by using hardening components of different properties, size
and shape of the particles or by continuous gradual substitution of
hardening components (fibres and matrices). This is most often achieved by
creating FGM by plasma spraying or powder metallurgy. The result is a
microstructure that is formed by a continuous (or discrete) change in

macroscopic, electrical, thermal and mechanical properties.
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FGM are suitable materials e.g. for the so-called thermal barrier in
applications involving large temperature gradients, from the aircraft and
rocket engines up to the use in microelectronic circuits or MEMS.

Without homogenizing the material properties of such materials, the non-
linear component analysis would require creation of very fine finite element
mesh, and even the time-consuming preparation of the model and the
solution process itself would be significant. Macro-mechanical modelling of
effective material properties of such composites is based on different
homogenization procedures.

By mixing two or more components we can achieve a synergic effect when
the properties of newly produced material are better than the properties of
individual components. These new materials are characterized by
continuous or discontinuous variation of material properties. Along with the
development of these materials to improve the calculation precision and
description of material properties in the numerical simulations, new
methods of homogenization are being developed (27, 36, 40), or the already
existing procedures are being improved (54, 55). Recently, also multi-scale
methods are elaborated and are starting to be applied (26, 35).

One way of macroscopic modelling of mechanical properties of materials
with heterogeneous microstructure is their homogenization and
determination of effective material properties of the composite using mixing
rules. The simplest mixing rule by which we can determine the average
effective material properties is based on the assumption that the material
properties of the composite are the sum of material properties of each

component multiplied by its volume fraction. The resulting effective
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property p. of the bi-component composite consisting of the matrix with

property p,, and the hardening phase pis determined by

Pe=VrPrt Vin P [2.27]
where v; v,, are the volume fractions of the matrix and the hardening phase,
for which in each point of the material is valid vy + v,, = 1.

In this part of the study, the extended mixing rule published in (54, 55) is
used. In the first step is considered a bi-component composite material with
a variable change in the modulus of elasticity and the volume ratio of both
components along the longitudinal axis of a bar composite (single-direction
composite). For homogenization of material properties of such composite,
in section 2.3.1 is described the procedure allowing to derive the relation
describing variability of the effective longitudinal elastic modulus E7(x) of
the composite.

In the second part, the process of homogenization of the material properties
of the sandwich element for the extended multi-layer composite is designed.
For such a bar of constant double symmetric cross-section with variation of
material properties of individual composite layers, the homogenization
process of material properties of multilayer material is then derived. The
procedure of material property homogenization is in accordance with the
laminate theory (2, 54, 55). Delamination of the sandwich material is not
considered. This procedure allows homogenising properties of composite
and sandwich materials with spatially varying volume ratio of the

components and their material properties.
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With the proposed mixing rule and the procedure of homogenization, the
homogenized effective properties were calculated and the stiffness matrices

of non-linear bar element were assembled.

2.3.1 Single-layer composite bar element with variable stiffness

We consider a bar of constant symmetrical cross-section made of the two-
component composite with symmetric distribution of both components in
the cross section of the bar, to prevent the occurrence of flexural

components of deformation at tensile or compressive stress of the bar.

A, EL(x)

by

qix

Fig. 11 Single-layer composite bar

In order to implement the variability of the composite bar element stiffness
into our non-linear solution and derive stiffness matrices of the single-layer
composite two-node bar element, it is necessary to determine the variability
of the effective longitudinal modulus E;(x), that will represent a continuous
variation of mechanical properties of the composite material in the direction
of the axis of the bar. After determining the effective longitudinal modulus
of elasticity, it is possible to derive the stiffness matrices of the composite

bar element by the procedure referred to in section 2.1.

50



The prerequisite for the solution is the loading of element with variable
stiffness only in elastic area. Also in this case, we consider polynomial
variability of the modulus of fibre elasticity E/(x) and the matrix E,(x),
which can be described by polynomials similar to [2.1].

In the following text, Ej, E,; will label the elastic modulus of fibres or
matrix at the first node i of the element, and 7g/(x) or 7g.(x) are the
polynomials describing the variation of elastic modulus of fibre or matrix.
Such variability of elasticity modulus can be caused by temperature field
generated by passing electric current (steady-state or transient), by chemical
reaction, piezoelectric phenomenon, etc., acting in the element.

The volume fraction of fibres v(x) and the matrix v,(x) as the two
components of the composite material in the longitudinal axis of the bar
may also be variable in accordance with [3.1] whereby in each point of the

body is valid

V() +ve(x)=1 . [2.28]
By consideration of constant mechanical properties of the fibres and matrix,
the effective longitudinal modulus £7(x) can be determined by a mixing rule
for two-component laminate composites known from literature (3, 13, 27).
By exchange of constant values of elasticity moduli and volume fractions of
the fibres and matrix conditions describing the variables change in any
element point along the longitudinal axis, we obtain advanced mixing rules
to determine the function describing the change in the effective longitudinal

elastic modulus E;(x) in the form of polynomial (54, 55)
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E1(x) = vix) Efx) + viu(x) En(x) = Ep; 175, (%) [2.29]
where E;; = v; E; + (1 — vp)E,,; is value of effective longitudinal elastic

modulus in first node i of the element and

vf (x) Ef (x) Vi (x) Em (x)
vﬁ Eﬂ + Vi Emi

Mg, (x) = [2.30]

is a polynomial describing the variation of the effective longitudinal
elasticity modulus of whole composite.
The local non-linear stiffness matrix of bar element with the effective

modulus E;(x) has the form

, d) 1 -1
K:@ 1+§(/1_1)L0 £ +l(/1—1)2(L°)2% { } [2.31]
dZEL 2 (dzEL) 2 (dzEL) -1 1

r° O
where dyy . dyg, = [(dl, ()7 dx, dyg, = [(dlg, (x)’dx are transfer
0 0

constants of the bar of homogenised properties for elastic area of loading

based on the second derivative of the transfer function d; g, ) =1/ng (x).

For the calculation of the transfer constants the same algorithm is used as in
section 2.1.2.
We calculate axial force in the bar from modified equation [2.17], where we

replace the constant transfer @5, to dyp .
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AE;; 3 dig 1 > 0 o 0
Ny = =22 2 ()25 — (AP0 (-1 [2.32]
dyg, | 2 (dsp,)? 2 (dsg, )

L

Similarly, changes the local nonlinear tangent stiffness matrix [2.13] to

‘ d d; 1 -1
K7 = 2B (o253 (P —2E { } [2.33]
dZE,_ (dzE,_ ) 2 (dZE,_ ) R

2.3.2 Effective material properties of symmetric multilayer sandwich bar

Using relationships described in the previous part of this study, the
procedure for calculating the effective homogenized properties of multilayer
sandwich material with a continuous change in the modulus of elasticity of
the fibres and the matrix along the longitudinal axis of the element (e.g.,
caused by non-homogeneous thermal field in the bar) can be derived. It is
necessary to make it possible to describe changes of elasticity moduli £,,(x)
a E(x) of both components of the composite (matrix and reinforcing phase)
by polynomial in the form [2.1] in each layer k. Analogously, it is necessary
to consider the variability of the volume fractions of both components v,,(x),
vA(x) of the composite and also the polynomial change in coefficients of
thermal expansion a,,(x), o(x). In general, different material properties with
varying degrees of variability in each of the i-th layer may be assumed.

Volume fractions of fibres v, and matrix v, and materials properties of

fibres £ and matrix E,, are considered to be constant only across the width
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of the element 5 and in the thickness direction of individual layers A"

(Fig. 12). The bar cross-sectional area of each layer is considered to be

constant along the entire length of the bar. The bar element with such a

defined variability of material properties will be loaded in the elastic area.

} top/bottom layers

(L T o I
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/

- core layer
fffffffffff plane of symmetry
A E) E}(x),.... B} (x)

ay, 0 (x),...,an(x)

bxh

AZ_An

AZ_An

Fig. 12 Double symmetric multilayered sandwich bar element with

variation of stiffness in initial state

2.3.2.1 Variation of material properties and volume fractions of composite

constituents

In the case of multilayer composite material, we consider uniaxial

polynomial change in elastic modulus of fibres Efk(x) and matrix E,(x) in

each of the k-th sandwich layer. Volume fractions of fibres v_l; (x) and

matrix v,lfl (x) as the composite components are described by similar

polynomial expressions.
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The effective longitudinal elasticity modulus of A-th layer changes
according to modified equation [2.29] for single-layer composite rewritten

to
Ef(x) =V () EJ(x)+ vy (x) Ep (x) = Efy 1 (%) [2.34]

k k
mi Emi

= v; E'; +(1- v; )E ks the value of effective

mi

where Ej; = v; E'; +v

longitudinal modulus in first node i of the bar and A-th layer

k k k k
My, (X)ng, (x)+1, ()0, (x) Sl
! P =1+ g x? 23]
Li

g=1

ny, (x) =1+

is the relation for effective longitudinal elasticity modulus variation of the
k-th layer. Order of the polynomial [2.35] depends on the constituent
material properties and the volume fractions variation. Index ke(1;n=6)
denotes the layer number in the upper/lower symmetrical part of the bar (see

Fig. 12).

2.3.2.2 Variation of thermal expansion coefficient one layer
in sandwich bar

We consider variation of fibres thermal expansion coefficient alff (x) and

matrix thermal expansion coefficient alfm (x) in k-th layer of sandwich bar
described by polynomials in form [2.1].
The effective longitudinal thermal expansion coefficient a;’fL (x) of k-th

layer can be calculated using extended Schapery approximation (60)
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_ Viaty () EF(x) + v, (1), (D) E,, (x)

Vi ()E) () + v (x) Ep (%)

allgL (x)

[2.36]

Expression [2.36] is not polynomial and expansion to Taylor’s series is

necessary to be used to convert it into polynomial form.

2.3.2.3 Variation of homogenized material properties of sandwich element

Let us define a cross-sectional area ratio of k-th layer

rk=24%/4 [2.37]
where A" is cross-sectional area of k-th layer and A is total cross-sectional
area of the bar. Then, the homogenized effective longitudinal elasticity
modulus of the whole element £ f (x) in the polynomial form is given by

H C k pk
Ef (x)= kZ‘;rA Ef(x) = Ef{ 11, (x) [2.38]

where E f, is the value of homogenized effective longitudinal elasticity

modulus at node i and 7,4 (x) is the polynomial of its longitudinal
L

variation. Elasticity modulus of k-th layer Ef (x) is given by equation

[2.34].
The homogenized effective longitudinal thermal expansion coefficient of

the whole element can be calculated from expression
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> g (DEL(x) )
oy (x) =4 D i afy (x)Ef (x) [2.39]

n = H
E* (x) E; (x)o

where thermal expansion coefficient of k-th layer a;’fL (x) can be calculated

using [2.36]. Equation [2.39] is necessary to convert into polynomial form

using expansion to Taylor’s series.

oy (x) = gy 1, (%) [2.40]
where @y is the value of homogenized effective longitudinal thermal

expansion coefficient at node i and 7 _y(x) is the polynomial of its
TL

longitudinal variation.

2.3.2.4  Homogenized stiffness matrices of the sandwich bar element

The procedure of the stiffness matrices of homogenized sandwich bar
derivation is identical to the procedure in section 2.1. In the differential
equation [2.3] the constant cross-section is considered, and the variability of
modulus of elasticity is determined by the relationship [2.38]. Thus the
relation [2.3] determining the relative deformation of in the bar is changed

to

du(x) _N(x) __ N
dx  AE!(x) AEﬁﬂEf(x)

[2.41]

57



The second derivative of the transfer function d 2" g () =1/, (x) is
L L
defined by polynomial of variability 7, (x) of the homogenized effective
L

longitudinal modulus of elasticity in equation [2.38]. After modifying the
shape functions of bar element, the displacement of an arbitrary point of the
bar can be expressed by the relationship
d’) . (x) d’) . (x)
2E 2E
u(x)=|1=———lu +————u; = 4; + ¢ 4, [2.42]

2E] 2E]

After implementation of shape functions [2.42] into equations [2.8], [2.9],
[2.10] and [2.11] local stiffness matrix of the bar K change to

H d u d u 1 -1
k2L S B gy S
| 2 (dypn)’ 2 (dy)* =11 .
I =
where = [(d} 0 () dx, d)u = [(@](x)’dx  are transfer
0 0

constants derived from a polynomial describing variability of homogenized
effective longitudinal modulus of elasticity.
The relationship [2.17] for calculation of axial force in the element will be

changed into

i d; 4
Ny =2y 3oy 2 LG pate 2 )
dzEf 2 (dzEf) 2 (d2ELH)

Relationship [2.15] for determining the tangential stiffness matrix of the

homogenized material of the sandwich bar will be changed in the form
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H d d, 1
K7 = AEL )y 30 253 Py 2k { 1

d;E,’_’ (déE,’_[ )2 2 (déE,’_’ )3

1

} [2.45]

2.4 Inclusion of the thermal field action in a sandwich bar

In this paper, the relations for the implementation of the thermal field effect
in the bar to its deformation are derived. Let us assume that the bar operates
in the stationary temperature field, whereby the temperature is changed
along the longitudinal axis of the bar. At the same time, we consider the

longitudinal variation of the coefficient of thermal expansion of each layer
aﬁ (x) , which can be described by polynomial [2.36]. The effect of thus
operating the thermal field is reflected through the contribution of forces
induced by thermal field into the vector of nodal forces on the right-hand
side of equation [1.7]. The task is solved as a weak coupled problem.

In the linear FEM theory, the equivalent nodal thermal load is defined by
the relationship

g | =IBTDsOdV -
o F{h L 1 [2.46]
VO

J

For the bar element, we can overwrite the previous relationship to

F -1
|2 J' B{EaTATAdx{ 1} [2.47]
LO

J
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Using shape functions ¢ for elastic loading area, the strain transformation

matrix can be expressed by derivatives of shape functions [2.42]

[2.48]

2EN 2EY

T
dl u(x) d_u(x)
2F 2
B, =[g11(x) ¢12,1(x>]T=[— ’ 2
The matrix of elastic material constants for the bar is defined by

D= lE f (x)J and the strain thermal vector is equal to
€y =&y(x) = aﬁ (x)(T(x)-T,,) where T, s the reference temperature.

After substituting these relations into [2.46] this relationship can be
modified in the form (56, 57)

gL dypn (¥) " -1
| = [ B (@i (0 (T(0) - T, ) dx [2.49]
F{h dv " of 1

J 0 “2E!
For the bar with the longitudinal variability of the homogenized modulus of

elasticity Ef (x) according to [2.38] the homogenized effective longitudinal

coefficient of thermal expansion aﬁ (x) determined by [2.40] and loaded

by thermal field represented by the change in temperature 7(x) = T; n#x) v
along the longitudinal axis of the bar element. Effective thermal nodal

forces can be determined from the modified relation [2.49]

F"] [-11E" 4al AT %
{ H }—“ P [ D () [2.50]

th ’
F./ 1 dzE{’ 0
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where AT; = T; — T, represents the temperature difference between the
temperature 7; in the node 7 of the element by chosen reference temperature

T.os. The polynomial 77,47(x) is represented by

Naar (¥) =171 (%) 177 (X) [2.51]

where 17,7 (x)=(T(x)=T, ) (T; —T,,r) is the polynomial describing the
variability of the thermal field, and the polynomial 7 , (x) describing the
ar

longitudinal variability of the homogenized thermal expansion coefficient
can be expressed by the equation [2.40]. Relative deformation of the
temperature &(x) at any point of the element made of the material of

homogenized properties can be calculated from equation

0(x) = agy (x) (T(x) = T ) = afy; AT, 1gar (x) [2.52]

Deformation Auz of the bar caused by thermal loading not dependent on the

stiffness of the bar and is equal

1° 0
Aur = [ e (x)dx = gy AT, [Doar (x)d [2.53]
0 0

For inclusion of thermal forces, it is sufficient to change the right side of

[1.7] to
Ni F}th
F= N, + Fo [2.54]
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2.5 Normal stress in sandwich bar

2.5.1 Normal stress caused by structural axial loading

The expression for calculation of the effective longitudinal strain caused by
structural loading in elastic area, we get from the derivation of equations

[2.42] and [2.52] in the form (60)

du(x (9, —9q;) - Au
Estruc ()C) = d( ) — & ()C) = /—d'T [255]
X M (X) dypr
The effective normal stress in the homogenized bar is then
o (%) = &, (%) Ef (x) . [2.56]
Real stress in the &-th layer is
oF(x)=¢,,,.(x) Ef (x) . [2.57]

2.5.2 Normal stress caused by temperature loading

The thermal stresses in the bar are caused by difference between thermal

expansion coefficient ajlfL(x) of individual layers and homogenized

effective thermal expansion coefficient aﬁ (x) of whole element. Thermal

stress in k-th layer can be calculated from

o () = (@ () — ek, (0) () = Ty JEE () [2.58]
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2.5.3 Total strain and stress

Total normal stress in k-th layer is equal to the sum of structural [2.57] and

thermal stress [2.58]

Gt () = 0" (x) + 0, (1) [2.59]
The total displacement of an arbitrary point of the bar under elastic loading

is determined by the sum of the displacement caused by structural and

thermal loading and is expressed by equation (59, 60)

u(x) = (1 %) qu p ey Ly (0 260)
dZe dZe . dZe

2.6 Numerical experiments for evaluation of the properties
of the sandwich bar element with variable stiffness

2.6.1 Models used in problems of the sandwich bar stress

To assess whether the stiffness matrices of the new geometrically nonlinear
bar element with the effective modulus of elasticity of the homogenized bar,
derived in section 2.4, allow to accurately measure the stiffness variability of
the real composite or sandwich bar, the finite element programs to solve
selected problems were developed in the MATHEMATICA software
environment. The compiled programmes allowed solving geometrically
nonlinear problems in the elastic stress area of the new bar element from the

material of homogenized properties. The possibility of taking into account the
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temperature field effect in the bar, as derived in section 2.4, was implemented
into the programmes. The programmes were extended also to the calculation
of stresses in the layers of sandwich bar according to the relationships
described in section 2.5.3. In solving of all the problems, only one bar element
was used, i.e. the problem was always modelled by the procedure one line =
one element. The full square, along the length constant cross-section was
considered.

As the reference solutions for obtaining comparative results to assess the

properties of the new element the following simulation models were created

in the ANSYS:

e Model BEAM3 — one-dimensional model consisting of 20 beam
elements BEAM3,

e Model BEAM188 — one-dimensional model consisting of 20 beam
elements BEAM188,

e spatial model consisting of the mesh of 37200 elements SOLID45 that
allowed faithfully enough to describe the variability of cross section
and material properties and determine the course of stresses in
individual layers of the sandwich element,

e PLANE42 — the two-dimensional model with an identical mesh
topology, used in repeated analyzes to determine the course of stresses

to reduce computational time.
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2.6.2 Numerical experiment

To assess the structural behaviour of sandwich bar element of homogenized
properties, there was considered the two-node 12-layer sandwich bar with
constant cross-section in Fig. 12 placed in the structure according to
Fig. 6a. Layers and their geometric shape of the considered bar are
symmetrical in relation to the neutral plane. The material of layers consists
of two components: the matrix material NiFe labeled by m infex and the
fibre material Tungsten labelled by findex.

Geometric parameters (Fig. 12) of the bar and material properties are
arranged in Table 4. The constant linear elastic material properties of the
matrix and the fibres (£,, = konst. and E,= konst.) were considered in the
numerical experiment. The material of the sandwich structure intermediate
layer (core, labelled by number 1) was considered with the properties of
pure matrix with modulus of elasticity E,. Symmetrical pairs of layers
labelled &k = (2,...,6) were created by asymmetric mixing of both components
of the matrix and the fibres, wherein the ratio of the components in
individual layers was different.

The considered values of the parameters in this equation for the relevant k"
layer are specified in Table 5. The volume fibre ratios were considered
constant in width-wise direction b and height-wise direction Wt kazdej
vrstvy. There is assumed only a linear change of the volume fibre ratios in
the direction of the length L° of each layer, i.e. the mechanical properties of
the whole sample are changing in the direction of its height and length. In

the initial node i, the volume fraction of fibres (matrix) was considered
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different in each layer and in the terminal node j of the element, it was
considered constant in all layers.

MATERIAL PROPERTIES OF CONSTITUENTS AND GEOMETRICAL

PARAMETERS Table 4
material properties
Tungsten elasticity modulus of fibres E;=400 GPa
(fibres)  thermal expansion coefficient of fibres o= 5.3% 10°K"!
NiFe elasticity modulus of matrix E,, =255 GPa

(matrix)  thermal expansion coefficient of matrix oy, = 1.5x10™ K!

geometrical parameters of specimen

specimen length L°=0.1m
specimen width b=0.0lm
specimen height h=0.0lm
total number of layers (incl. core) 2n =12 (2x6)
initial angle =7
cross-sectional area A=10.0001 m*
cross-sectional area of 1% layer A'=0.00004 m*
cross-sectional area of &A™ layer A4¥=0.000002 m*
total thickness of face layers t=0.001 m
thickness of 1% layer h'=0.004 m
thickness of k™ layer 7*=0.0002 m

PARAMETERS OF OLYNOMIAL VARIATION OF FIBRE VOLUME

FRACTION ALONG THE X-AXIS OF THE BAR Table 5
k-th layer 1 2 3 4 5 6
v 0 0.6 0.7 0.8 0.9 1.0
e 0 ~30/6  —40/7 -508 —60/9 —70/10
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Volume fraction of the composite components changes linearly along each

k-th layer in accordance with the relation [3.28]
Vi) =1-vh(x) = vi(+ny, x) ke(l,....6) [P1]
List of prl , 77‘1;,1 parameters is given in Table 5.

By substituting coefficients v;, 7]{}1 listed in Table 5 into relation [P1] we
obtain polynomials describing the variation of volume fractions of the

composite hardening component vj‘{ (x) in individual composite layers.

Then using the equation [2.34] polynomials of effective longitudinal
modulus of elasticity Ef (x) of the k-th composite layer of the sandwich

was determined. Thus designed polynomials describing the variation of the
effective modulus of elasticity in each layer are shown in the following

table.

VARIATION OF ELASTICITY MODULUS ALONG THE
LONGITUDINAL X-AXIS OF THE BAR IN K-TH LAYER Table 6

k-thlayer variation of elasticity modulus of k-th sandwich layer E,lf (x) [GPa]

255

342 (1 - 1.271929824 x)

356.5(1 — 1.626928471 x)

371 (1 - 1.954177898 x)

385.5(1 —2.256809338 x)
400 (1 —2.5375 x)

[ NS B Y S S
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The effective homogenized elasticity modulus £ f (x) of whole sandwich is

calculated by expression [2.38] using the effective elasticity moduli £ f (%)
(Table 6) of sandwich layers

EM(x)= 278,2(1-0,5212077642 x) [GPa] [P2]

while for the coefficient of the ratio of cross sectional areas [2.37] on the
basis of geometric dimensions in
Table 4 is valid: r,' = 0,8 a r,*= 0,04 for ke(2,...,6). All effective elasticity

moduli are shown in Fig. 13.

410" F
38x 10" -
36x10"E
310" e
3210

310"
28x10"E EF (x) ]
0.00 0.02 0.04 0.06 008 00

specimen length L° [m]

elasticity modulus E;(x) [Pa]

Fig. 13 Variations of all effective longitudinal elasticity moduli
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2.6.2.1 Stress of the sandwich bar element in elastic area considering
the temperature field

In this part of the numerical experiment, we considered loading of the bar
structure in Fig. 5 by displacement u, of the common node and by the
stationary temperature field varying along the length of the bar, described
by the relationship [P4]. Similarly, as for the elastic modulus based on the

relationships derived in section 2.3.2.2, it is necessary to determine the

effective coefficient of thermal expansion of individual layers a;’fL (x).

VARIATION OF THERMAL EXPANSION COEFFICIENTS IN THE
DIRECTION OF LONGITUDINAL ELEMENT AXIS IN EACH LAYER

Table 7
lk'th variation of thermal expansion coefficient of k-th layer a;{l (x) K"
ayer
1 g (x)=1,5.107
1,5686.107° _
2 a? (x)==F———— _11758.107°
(%) 0,78620 — x
1,1764.107° s
3 a3 (x) ==2———— —1,1758.10
(%) 0,61465 — x
9,4116.107° s
4 afb (x) === _11758.10
(%) 0,51172 - x
7,8430.107° s
5 ay (x)=—"—""—_11758.10
(%) 0,44310 — x
—6
6 af (x)= 67226.10 7} 195g 10
0,39408 — x
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To determine the effective coefficient of thermal expansion of k-th
composite layer, the relationship [2.36] was used. Obtained variabilities of
effective coefficients of thermal expansion of the layers thermal expansion
are shown in Table 7.

Consequently, from the relation [2.39], as described in section 2.3.2.3, was

determined an effective longitudinal coefficient of thermal expansion of the

homogenized sandwich element afL (x), using the already determined

coefficients of thermal expansion of individual layers afl (x) . The resulting

relationship was necessary to be transformed into the polynomial form (by
the development into Taylor series) and for selected variability coefficients
of thermal expansion of individual layers & (Table 7), the expression for the
an effective homogenized longitudinal coefficient of thermal expansion has
the form
af (x) = 1,2768.10° + 1,2783.107 x + 6,6629.10° x* +
(P3]
3,472.10°x° + 1,81.10° x* + 9,4341.107 x° +4,9171.107 x° [K™']

All thermal expansion coefficients are shown in Fig. 14.
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Fig. 14 Variations of all effective thermal expansion coefficients

Variability of the effective longitudinal coefficient of thermal expansion
afL (x) in single layers ke(l,...,6) and the whole homogenized effective
longitudinal coefficient of thermal expansion afL (x) 1is described by the
relationship [P3].

Variability of the effective coefficient of thermal expansion a7lfL (x) (Table
7) and effective modulus of £ f (x) Table 6 for each k-th layer were used to
define material properties of the elements of spatial model designed in
ANSYS programme. Homogenized effective material properties aﬁ(x)
[P3] a Ef (x) [P2] of the whole sandwich element were used in models

made by one-dimensional elements (our beam element and models with

beam elements BEAM3 a BEAM188).
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In all models, the steady-state effect of thermal field and temperature
distribution along the length of bar was considered as a thermal load and is

described by the relationship
T(x) = 30(1 — 2x + 4x%) [°C] . [P4]

The reference temperature was 7,.,= 0°C.

Statically determinate sandwich bar loaded by longitudinally varying
temperature field

The first step of the numerical experiment considering the effect of the
temperature field was determination of total deformation (extension) of a
static 12-layer sandwich bar under the effect of temperature field described
by the relationship [P4]. The resulting extensions of bar caused by
temperatures for the selected simulation models are presented in the table

below.

EXTENSION OF A STATICALLY DETERMINATE SANDWICH
BAR LOADED BY THERMAL FIELD Table 8

Q—T BEAM188-20c  PLANE42 SOLID45 our bar elem.

Al [m]  0.000036753  0.000036876  0.000036895  0.000036745

Fig. 15 shows distribution of normal stresses in layers of statically
determinate sandwich bar loaded only by temperature field defined by [P4].
Stress results were obtained by only one bar element and using spatial

model SOLID45 with very fine mesh.
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Fig. 15 Distribution of normal stresses in individual layers of statically
determinate sandwich element with consideration of thermal loading

Statically indeterminate sandwich bar loaded by the longitudinally
varying thermal field

In the second step of numerical experiment, a 12-layer sandwich statically
indeterminate bar was exposed to steady thermal field with the variation of
temperature defined by the relationship [P4]. The course of displacement of
nodal points on the axis of the bar, obtained using the new bar element and
a spatial model with elements of SOLID45 is compared Fig. 16. Calculated
absolute values of reaction in bonds of statically indeterminate bar are
shown in Table 9, Fig. 17a) illustrate the courses of stresses in layers
statically indeterminate sandwich bar loaded only thermal field described by

the relationship [P4].
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Fig. 16 Distribution of axial displacements u, in statically indeterminate
bar with consideration of thermal loading

REACTIONS IN CONSTRAINTS OF STATICALLY INDETERMINATE

SANDWICH BAR LOADED BY TEMPERATURE FIELD Table 9
1+ BEAMISS20  PLANE42 SOLID45 our bar elem.
IR|| [N] 9953.9 9964.0 9964.1 9953.69

Effective normal stress in statically indeterminate bar with homogenized

material properties hold o fl =-99,5369 MPa.
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Fig. 17 Distribution of normal stresses in individual layers of statically
indeterminate sandwich element with consideration of thermal loading

Von Mises structure with sandwich bars loaded along the
longitudinally varying thermal field

In the third loading step, Von Mises structure, according to Fig. 5, was
loaded by displacement u, within the range (+L° sin o’ ; —L° sin o) so that
to obtain dependence of axial force NV or reaction F on the displacement u,
during deformation of the structure. Bars were also subjected to the action
of steady thermal field with the variation of temperature defined by the
relationship [P4]. From Fig. 18 (dependence of reaction F) a Fig. 19
(dependence of axial force N from the displacement u,) it can be concluded
that the results of the course of forces obtained with one sandwich bar
element of homogenized material properties are in good agreement with the

results obtained from the spatial model SOLID45. Compared with the
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solution without considering the thermal loading, there was an increase of
the difference between both solutions by around 0.2%. The maximum
values of forces (axial N and reaction F) reached when the differences
between particular results are the largest are listed in Table 10.

VALUES OF MAXIMUM FORCES OBTAINED BY OUR BAR
ELEMENT AND REFERENCE ANSYS SOLUTIONS WITH

CONSIDERATION OF THERMAL LOADING Table 10
axial force N [N]
BEAM3 BEAM188 one new bar SOLID45
20 elements 20 elements element
-113 034 -113 231 —112 446 -112916
global reaction ||F]| [N]
BEAM3 BEAM188 one new bar SOLID45
20 elements 20 elements element
3 978.78 3982.77 3 965.42 3975.88
4000
~3700 \\
20000 o /) \

: -3900 \\ / /'/ \\

g 000 \\:; — //

<§ 0 T oo02s 00030 00035 00040 0.0045 '//

'T'g N\ / BEAM3-20¢

=0 /

20001 \ / —BEAMI188-20¢
——SOLID45
\\ our bar element-1e
—4000} ‘
0.000 0.005 0.010 0.015

displacement u,, [m]

Fig. 18 Global reaction F vs. common node displacement u, response in
the elastic bar under structural and thermal loading
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Fig. 19 Axial force N vs. common node displacement u, response in the
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Fig. 20 Normal stresses in layers of sandwich bar in configuration

d = 0° and with consideration of thermal field
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Fig. 20 shows the courses of the total normal stresses (structural and
thermal) in the line passing through the mid-height of each layer,
determined from the analysis by the ANSYS using a spatial model
SOLIDA45 and the results obtained by using one new bar element.

PERCENTAGE DIFFERENCES OF MAXIMUM FORCES OBTAINED BY
OUR BAR ELEMENT AND REFERENCE ANSYS SOLUTIONS WITH

CONSIDERATION OF THERMAL LOADING Table 11
axial force N global reaction F
our bar — BEAM3  our bar — BEAM 188 our bar — SOLID  }our bar — BEAM3  our bar — BEAM188 our bar — SOLID
BEAM3 BEAM 188 SOLID BEAM3 BEAM 188 SOLID
0.523% 0.698% 0.418% 0.337% 0.437% 0.264%

Reciprocal percentage differences of the forces maxima obtained by
particular models are listed in Table 11.

NORMAL STRESS IN MIDDLE OF K-TH LAYER IN LOAD STEP

al = 0°, WITH CONSIDERATION OF THERMAL FIELD Table 12
q normal stress in k-th layer " iy [MPa]
node k-th layer: 1 2 3 4 5 6

our element -1053.15 -1342.63 -1390.86 -1439.12 148736 -1535.61

SOLID45 -1056.71 -1342.78 -1390.34 -1437.94 -1485.62 -1533.45

our element -1098.72 -1256.82 -1256.82 -1256.82 —-1256.82 —1256.82

SOLID45 -1098.64 -1261.63 -1262.44 -1263.17 -1263.74 -1264.11

Table 12 contains the values of normal stresses in the middle of each layer
in the start and end point of element (in nodes in outer surfaces of the
model). These results are obtained from the solution with one of our bar
elements and from a spatial model SOLID45, and they correspond to the

loading state when axial force in the bar reaches the maximum value, i.e.
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the local x-axis of the bar is identified with the global x-axis. Effective

normal stress in the bar of homogenized material properties reached the

value o' =—-1130.34 MPa.

Evaluation

In this case, the properties and the accuracy of extended mixing rule described
in section 2.3.2 with the application on 12-layer sandwich bar were studied. For
the selected material properties of the components of composite forming
individual layers of the sandwich listed in

Table 4, based on the procedure described in section 2.3.2.3, were determined

the effective moduli of the individual layers Ef (x) and the supplementary

effective homogenized modulus of elasticity £ f (x) of'the complete sandwich
bar expressed by relationship [P2]. In the same way, the coefficient of thermal

expansion of individual layer afL (x) (Table 7) and homogenized effective

coefficient of thermal expansion aﬁ (x) expressed by relationship [P3] were

determined. Homogenized effective properties were used in one-dimensional
models with a new bar element and in one-dimensional BEAM models
consisting of beam elements. As a comparative solution, spatial model
SOLID45 was also used, in which the variation of thermo-mechanical
properties separately in each layer of spatial model was defined. To assess the
accuracy of the homogenization of material properties, the problem of Von
Mises structure snap-through was used. Three types of numerical experiments

were performed, in which, besides structural loading, the influence of thermal

79



field described by the relationship [P4] was also considered. The inclusion of
thermal field exposure to loading of the bar is described in section 2.4.

The results obtained using different models were prepared in the form of a table
of maximum values of axial forces N and reactions F, and graphical
dependencies on the displacement u, forces during the whole deformation
process. In section 2.5 were derived relationships allowing in the case of the
solution of problem with one-dimensional model of homogenized material
properties to determine the course of normal stresses in the individual layers of
sandwich bar. In this way, designated courses of stresses were compared with
the courses of normal stresses in the layers of sandwich designated from a
spatial model SOLID45.

In the first loading case, a statically determinate sandwich bar loaded only
by the thermal field was considered. This state was achieved by releasing a
bond in the common node of Von Mises structure Fig. 5, what allowed free
movement in the y-axes direction. In Fig. 15, a very good agreement of the
axial stresses in the layers of a bar specified by the new bar element and the
spatial model SOLID4S5 for this loading state is seen.

In the second loading case, the case of statically indeterminate bar loaded only
by thermal field was considered. This state was achieved by inserting a bond
into the common node of Von Mises structure, i.e. by specifying of the global
displacement u, = 0. Fig. 16 compares the course of the local displacements u,
of the points on the bar axis designated by a new bar element of homogenized
properties and by the spatial model SOLIDA45. Table 9 summarizes the absolute
values of internal forces in terminal nodes in direction of the bar axis

determined by the applied models. Fig. 17 illustrates the course of structural
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normal stresses in layers, which operate in a sandwich bar in this state of
loading. Also, in this case, a very good agreement between the results obtained
by one new element and a spatial model can be stated.

In the third loading case, Von Mises structure was stressed by displacement
u, within the range (+L° sin o’ ; —L° sin o) so that to achieve dependence of
axial force NV or reaction F from displacement u, during deformation of the
structure. The resulting dependence of the axial force N for selected models
is presented in the graph in Fig. 19. Table 10 specifies the extreme values of
axial force N and reaction F in the common node, which are selected from
all the models used in solving this problem. Fig. 20 compares the course of
normal stresses in the layers of sandwich bar designated by the new bar
element and by the new comparative model SOLID45. Table 12 contains
the values of these stresses at the beginning and end of the bar. The
presented results correspond to the load step when o = 0°, i.e. the position
when the axial force in the bar reaches the maximum value. Again, a very
good agreement of the new approach and the reference solution can be seen.
In Table 11, reciprocal differences in the percentage of maximum values of
axial forces N and reactions F, which are common to all models less than
0.7%, are seen. That confirms that the designed extended mixing rule is

appropriate for the determination of the effective homogenized elastic
Young's modulus £ f (x).

In the fourth loading case when the rod was loaded up to the moment when
the value of the yield stress in the bar was achieved (in the place of the

smallest cross-section of the bar), i.e. the bar was still stressed in elastic
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area. Besides the structural stress, in such stressed bar, the thermal field was
also acted. For this state, Fig. 21 shows the course of displacement of points

on the axis of the bar at the stress limit.

0.00000F*

—0.00005

—-0.00010+

—0.00015+ our bar element

——SOLID45

displacement of points on bar axis u(x) [m]

0.0 0.2 04 0.6 0.8 1.0
length of element 2/ [m]

Fig. 21 Displacement of points on axis of the bar at the stress limit and
consideration of thermo-elastic loading
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3. PLANAR BEAM ELEMENT WITH CONSTANT STIFFNESS
FOR THE SOLUTIONS OF GEOMETRICALLY
NONLINEAR PROBLEMS AND ELASTIC AREA
OF LOADING

This part of the study deals with derivation of the finite beam element for
the solution of nonlinear problems based on a complete non-incremental
formulation. There are prepared the stiffness matrices for planar two node
beam element with the closed, constant and symmetric cross-section
satisfying Euler-Bernoulli conditions for bending without considering

torque transmission.

y A= s
or,s) L
B A [ e s
N ,/’// t K
o n(r.5)
, =0 10 ¥ j -
. P A a ui(r,s)
Yi v u; -
xi X; X

Fig. 22 Planar beam element in initial configuration and deformed state

In the derivation of the stiffness matrix of planar beam element, the
procedure for formulation of non-incremental geometrically nonlinear FEM

equations of equilibrium, which was described in section 1.2 is used.
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3.1  Shape functions

A condition for the use of non-linear equilibrium equation [1.6] to compile
a local element stiffness matrix is that the displacement of any point of the
element is expressed in the form of equation [1.5]. Alternative functions ¢
for 2D two node beam element are defined by the linear polynomials for
axial displacement and cubic interpolation functions for Hermitean bending
displacement components.

For the two-noded planar beam element, the shape function matrix N(7,s)
has a shape known from literature (5, 10, 47). For the displacements of the
element points u; and u, in the direction of the local axis, the matrix of the
shape functions can be written in the form

N(r,s)= B:lk } =

2k
r 6r 6r2 4 32 r
- S|—F3——% sSi-l+———=| — +
L JAR L) L L
0 1 32 N 213 2r? N > 32 23 2 N >
B A o _ .
L02 L03 70 L02 L02 L03 70 L02

In accordance with Fig. 22 the local nodal displacements (or rotations) g of

the beam element nodal points are defined q=[q,]=

= [ql 9, 93 494 9s qé]T. Global nodal displacements are arranged in
the vector Q =[u; vi @ u; v; goj]T.
In the planar bending of the beam (in the plane determined by local

coordinates r, s), the displacement vector of arbitrary point of the beam

84



element is determined by the shape functions [3.1] and the local

displacements on nodal points in the relationship
u=N(,s)q [3.2]
that we get expressed in the component form by the relationship #; = @y, ¢,

qQ
r 6r 6r’ 4 32 r 6r 6r’ 2r 32 q,
-5 S| S o g o et ol 0 e
{“1}= I 0 Lo I 0% Lo @ (3.3]

0 1 32 278 22 R 32 278 2P q4
gl I ol B T
L L L L L L 5

de

_

3.2 Local stiffness matrix of 2D beam element

The transformation relationship between strain and displacement of an
arbitrary point of the beam element expressed by derivatives of shape

functions ¢, is reduced to a single equation

du(r,s
ilr ) G sdi = Bia G+ Pag o+ Ay G+ Py a+ hisa s + be ds =

(a6 t2r) (4 ey (1) (6 o) (o ) [34]
= 0 q1 T+ S LOZ LOS qy + S 0 LOZ 93 0 4t S Log LOS 5 + S 0 Log 6

To derive the local stiffness matrix of the two-noded planar beam element

according to Fig. 22 the equilibrium relationship [1.6] is used.
From the first member of the equation [1.6] for calculation of the
components of linear stiffness matrix, after substitution of dV'=dr d4 and

Cijw = Cii11 = E we will get relationship
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1

Kf];m = J .[E(¢km,l + ¢lm,k)(¢in,_/ + ¢_/n,i)dAdr [35]

4 0 40

14
For the derivation of the stiffness matrices of the new planar two-noded
beam element, the free indices m and n acquire values to the extent
determined by the number of degrees of freedom (displacements) of the
element, i.e. for our beam element m, n = 1 + 6. The result of substituting
derivatives of shape functions ¢, [3.4] to [3.5] is the linear stiffness matrix

of a planar beam element known from the linear theory. When modifying,

we replace integrals by .[ sdA=0 for the first moment of area
AO
and by J s*dA =1, for the second moment of area.
AO
From the second member in [1.6], after substitution dJ and C as in case of
linear matrix, we modify for the calculation of the components of the first

non-linear stiffness matrix

1

NL1

K@ =5 [ [ EB s by B + 81000, dAdr [3.6]
4°

Free indices m, n and r, for the case of the derivation of the new planar two

nodal beam element acquire values in the range 1 + 6. Substituting

derivatives of shape functions into [3.6] and the necessary modifications in

the derived equations result in the integrals for calculation of higher-order
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moments of area: third moment of area J s°dA=1,,. For symmetrical
AO

cross-sections, however, I, = 0 is valid.

From the third member of equation [1.6] after substitution of dV and Cy, for

the calculation of components of the second non-linear stiffness matrix, we

obtain

K@ = [ [E0s b G + B4, A 57
4°
In this case, in the derived equations, an integral to calculate third moment
of area will occur.
By substituting derivatives of shape functions into the last integral in [1.6]
and after substitution of dV and Cj; we get equation for calculation of the

components of the second nonlinear stiffness matrix.

1

3

K(q)nNrIr; = 5 .[ .[E¢pm,k ¢pv,l ¢rq,i ¢m,_/ qv44 dAdr [38]
4

Necessary modifications in derived equations result in integrals for

calculation of high order moments of area: third moment of area

.[ s°dA=1,,=0 (for the symmetric cross sections) and bi-quadratic
AO

moment of area J s*dA=1,. Total local stiffness matrix of two nodal
AO
planar beam element is determined by the sum [1.8] of the components

derived from the relations [3.5], [3.6], [3.7] and [3.8]. The resulting local
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stiffness matrix of planar non-linear beam element, like all its components
is symmetrical.
In previous terms the bi-quadratic moment of area I; for circular and

rectangle cross-section is expressed

bh’
80

_ﬂd6
237512

Z3

3.3  Local stiffness matrix of beam element in the shape invariant
to rigid motion

During the deformation process, the large rotations of the element occur,

which causes rotation of the local beam axis r between the deformation

steps (iterations) as is shown in Fig. 23.
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Fig. 23 Local displacements of element end nodes in different
deformation states (iterations)

For the iterative solution in seeking an equilibrium of the internal and
external forces, ¢, are local increments of the displacements related to the
current local coordinate system of the deformed element (+”, s”) with the
angle o = o” with the respect to the x-axis of the global coordinate system.
The resulting node displacements after the exact solution are determined by
the total local displacements ¢, which are related to the initial
configuration, when a local coordinate system of un-deformed element (7,s)

is rotated given the global axis x by angle a’. Total nodal rotations ¢ or g
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n n
are given by the sum ¢; = qu’) e = qu) , where n is number of
J=1 j=1

iterations.
As in the case of non-linear bar elements also to derive the beam element
stiffness matrix K(q) [3.9], it is necessary to know the local displacements
of the element end nodes. To transform the global nodal displacements to
the local displacements, classical transformational relationship known from
linear theory cannot be used, because the transformation law ignores rigid
rotation. In the case of planar problem solution, the large-rotation problem
for displacements in the direction of the local longitudinal axis of the
element 7 (node joints) can be solved similarly to the bar element, by
implementation of the dimensionless, i.e. rigid displacement (rotation)
invariant variable stretching A [2.14], which can be determined also from
the global displacements of the element nodes (valid length of the node
joints). Displacements in the direction of the local axis s can be replaced by
the angle of rotation of the joint of the nodal points of the beam element S
in valid configuration with regard to the last known configuration of the
element assuming that deformation in the axis of the bar is caused only by
the stress from axial force N.

z:%:n"‘*—_o"l and tang=2"12_ 951 [3.9]

L L r AL

of which can be expressed

qa—q =(A-DL" and g5—gq, =21 tan B [3.10]
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In the case of stiffness matrices derivation of spatial beam element, for
transformation from a global to a local coordinate system, Rodrigues
formula (76) can be used.

The resulting total local stiffness matrix of beam element invariant to rigid
body motion, after the introduction of dimensionless values [3.9] and

relevant modifications has the shape

Kll K12 K13 _Kll _K12 K16
K22 K23 _K12 _K22 K26

K= [3.11]
Ky Ky, —Kig
Sym. K,, —Ky
Kes

where the terms of the resulting invariant local stiffness matrix are equal to

K, = 70 ( +§(/1—1)+i(/1—1)2j+

Zz) B2 (tan §)” —34tan gy + 4) + (a3 + a3 45 +42)
Ky, = i Z) (22 +1)(24 tan (g5 +q5))
3= IZ (22 tan B(245 +4))
K6 = (I Z 0 (2A+1)(22 tan B(qs +245))
Ky = 1(25)2)315 (1+—(/1—1)+—(/1—1)2j+
2:;153 (27/12 (tan B)* —27 A tan f(q; +q¢ ) + (8¢5 +11q; g + 842 ))
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S E 30 Loy
K23—(L0)2(1+2(ﬂ D+ 1)j+

s(L%)"

(54].2 (t nﬂ) —4Atan f(16g5 +11gc) + (Zlq3 +22q5 9 +11gg ))

S E 3 et
Ky = (L0)2 (1+2(l 1)+2(1 1) j+

+ Z 23) (54/12 (tan B) —4Atan B(11g; +16q) + (11g3 +22q; qs +21q¢ ))

4], F 3 1
Ky =—Z221+2(A=-D)+=A -1 |+
=70 ( 2( ) 2( )j

‘5‘33) (48,12(t an f)? —3Atan B(21g; +11g¢) + (22¢3 +19¢; g4 +7q6))

Ky = ZIZ E

(1+—(l D+— (A l)j
21,4 E
5(1°
4IZE

s ( 642 (tan 8)* — 66 tan B(gs +q) + (1997 + 28¢5 ¢ + 19q§))

K66 -

(1+ A-D+— (l l)j

47
+ 5(23) (48},2 (tan f)—3Atan S(11g; +21gc) + (7q3 +19q5 g4 + 22q6))

3.4  Local vector of internal nodal forces

Local vector of internal nodal forces F™(q) that can be obtained from the
equilibrium non-linear equation K(q) q=F by multiplying the local non-

linear stiffness matrix K(q) [3.9] by vector of valid local displacements q or
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from equation F"=K q where the matrix K is given by expression [3.11],

can be expressed in invariant form

I — K (A-DL =Ky AL tan B+ K3 g5+ K 646 |
—Ky(A-DL =Ky AL tan B+ Kyy g3 + K g
~Ki3(A-DL =Ky AL tan B+ K33 g5 + K364,

K (A=-DL + K, AL tan B— K3 g5 — K g4
Kiy(A=DL" + Ky AL tan B~ K3 g5 — Keq
|~ Ki(4 ~DL’ = Ky A L tan B+ Ky 43 + Ko 4 i

[3.12]

where K, to K¢ are identical to the elements of the stiffness matrix [3.11].

3.5 Local tangential stiffness matrix of 2D beam element

To accelerate the convergence of the nonlinear equation system solution, in
the case of using Newton-Rapson method is advisable to use tangential
element stiffness matrix.

To determine the members of the local tangential stiffness matrix of the new
beam element, the relation [1.9] can be used. Another option is the
compilation of a tangential stiffness matrix of beam element using the
derivative of the potential energy of internal forces by local nodal
displacements (Castigliano principle).

Potential energy of internal forces in the current configuration for the

complete non-incremental formulation can be expressed by (42, 47, 48)
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1
AzEV,[)S@/‘E@/‘ dv [3.13]

while integration is underway through the initial volume of the element.
Assuming that the isotropic tensor of material properties is constant
throughout the entire deformation process, the 2nd Piola-Kirchhoff stress

tensor S = Cyy Eyy = Cyy(eyy +1) can be expressed by components of

Green-Lagrange strain tensor [1.2]. Potential energy of internal forces are

expressed by the relationship

1
4 :5 .[C?/kl(ekl +n) ey +m;)dV = gL LN _
VO

3.14

1 1 [3.14]

:5 .[Cg‘/kl eye;dV +5 .[Cg‘/‘kl(ekl My + M €5 + Mg 1) AV
v v

T

Members of the local tangential element stiffness matrix K’ = [K o

] can
be obtained by derivation of the potential energy of internal forces

according to the nodal displacements g in the form

7 azA :KL +KNLT B aZAL N aZANL

= mn mn [315]
04,09, 04,04, 04,04,

mn

NL

s fOrm

where members K ,ﬁ” form linear component K* and members K

nonlinear component K'* of the total local stiffness matrix of element K.
In the case of two-node planar beam element, the non-linear
transformational relationship between strain and displacement of nodes is

reduced to one component of the Green-Lagrange strain tensor
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1
En=en+m= u11+5(u1,1u1,1) [3.16]

where the derivative of displacements u; ; is expressed by relationship [3.4].
By the derivation of the linear component of internal potential energy A*
according to local displacements g, and after substitution dV'=dr dA4 and
Ci111 = E we obtain the expression for calculation the elements of linear
components of the local tangent stiffness matrix of one-dimensional

element

o Ouyy Ouy
KE = dV |=E —dAd, 3.17
84,04 [ J(“u) ] LJ;/][) 34, 0q, r [ ]

Similarly, but from the derivation of the first and second members of
nonlinear component of the potential energy 4" and after relevant
modifications, we obtain relations for calculating the members of two non-

linear components of tangential stiffness matrix of one-dimensional element

62
KMV~ |E _[3117711 dv

aul 1 aul 1
_3E ML ggdr 38

4q,

04°

o> | E 3 duy ; Ou
gNLT2 _ 2 vl=3E 2 Oy Oy g0
mn —aqm 20| 2 I/J;Un > L_[)Joul,l 0 on r [3.19]

m n

The local full non-linear tangential stiffness matrix of the two-node planar

beam element is given by the sum of the linear and non-linear sub-matrices

K' (@) =K" +K(@"""" + K(q)""* [3.20]
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3.6  Local tangential stiffness matrix of beam element expressed
in the form invariant to rigid body motion

Fig. 24 shows deformation states of the beam element in individual iteration
steps. As mentioned in section 3.3 it is not possible for the calculation of
local tangential stiffness matrix K’(q) defined by the relationship [3.20] to
use local displacements ¢, because they cannot be derived from the global
displacements due to the effect of large rotations.

Because in the iteration process, the global displacements vector Q is
determined, it is necessary to replace the local displacements g, by variables
invariant to rigid body motion (rotation) - stretching A and angle § of the
rotations of the beam element end node joints defined by the relationship
[3.9].

After substituting relations [3.10] for calculating non-linear relationship of
the local tangential components of the stiffness matrix [3.17], [3.18] and
[3.19], the total local non-linear tangential stiffness matrix [3.20] can be

expressed in the form invariant to rigid motion
[T T T T T T
Ky Ky Ky Ky —Kp o Ky
T T T T T
Ky Ky —Kp —Ky o Ky
T T T T
K33 —Ki3 —Ky o Ky

K’ = 3.21
K, KL KL 21

Sym. KZTZ —K2T6

Kis |

where
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KITI_ALE(I+3(/1 D+= (/1 l)j

+2(6LI E(3/12(t ﬂ)z—Mtanﬂ(%+q6)+(q32+q3q6+q62))
K =22 05 i n2atan Bg; +45)
Kl - fiZ) QA+1)(24tan S5 +45))
KT - fiZ) @A +1) (24 tan B(gs +245))
K, =12LE [1+3(/1 1)+ (/1 1))
752(ILZ3 (27/12(t an f)* =272 tan (g5 + q6) + (843 +11¢3 ¢ +8q6))
61
Kl =222 143(A-T)+2 (A -1
e
g(]f) (547 tan )? ~421an (1 1g, +1645)+ (1163 +224, 4 +2147))
61
KL = (LZ) (1+3(/1 D+= (/1 1)j

. 15(153) (542 (tan ) ~ 4 tan B(16g5 +11g¢) + (2143 +2243 g5 +1167))
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K3T3—4IZE(1+3(1 H+= (/1 1)]
12123 5 , )
S 1y 48% (tan B)* —3Atan B(21q; +11¢¢) +(22¢% +19¢; q¢ +792)
Ki = 2ILZE[1+3(/1 D+= (/1 1) j
oL (6642(tanﬂ)2—66/1tanﬂ(q o)+ (192 +284; g +192))
510y 346 3 396 6
Kl = 41LZOE(1+3(,1—1)+%(,1—1)2J+

121
5( LZ3) (48/12(tan B)* —3Atan B(11g; +21g6) +(7q3 +19¢5 q6+22q6))
The resulting local tangential stiffness matrix of planar non-linear beam

element is as symmetrical as all its components.

3.7 Algorithm for solving problems with new non-linear beam
element loaded in elastic area

The procedure for solving the problem of non-linear deformation of the
structure consisting of the new nonlinear beam element is identical to the
procedure described in section 2.1.4. Changes, comparing those being
already described for nonlinear bar element, are summarized in the
following subsections. To calculate global displacements (rotations) on
nodal points of the element from the global non-linear equilibrium
equations, the Newton's iteration method and non-linear tangential stiffness
matrix K’ [3.21] is used. Internal forces (moments) in the beam cannot be

calculated from the global stiffness relationship due to the effect of large
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rotation. In order to eliminate the problems associated with the
transformation of the internal forces from the global to the local coordinate
system, for calculation of internal forces we will use a local non-linear
stiffness matrix K [3.11] invariant to the rigid motion (rotation) of the
beam. The local vector of internal forces F™ will then have a shape defined

by the relationship [3.12].

3.7.1 Computation of initial global displacements of the system

The beginning of the solution requires calculation of initial values of global
displacements for non-linear calculation. It is usually based on local linear
stiffness matrix K, which is transformed into a global system according to

a relationship for one element

K°=T, K"'T,. [3.22]
where the transformation matrix T, depends on the angle &’ of the element

axis in the initial configuration. In the next step, the stiffness matrix of the

whole system Kgl is prepared and similarly a vector of external load of the

whole system FZ is designed. Initial global displacements Q°

QO:[ul- Vi @ u; v goj]r. [3.23]

are determined from the linear equilibrium relationship

K¢ Q"= FS,. [3.24]
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3.7.2 lIterative calculation of global displacements from nonlinear system
of equations

The increment of global nodal displacements AQ in the i™ iteration is
calculated using non-linear global tangential stiffness matrix and global

residual force vector

K$ , AQ=F [3.25]

cel

where FZ® is the vector of global residual (loss) forces (section 3.7.3) and

K%el is the total tangential matrix of the system structure prepared from
extended global tangential stiffness matrix of elements K?. Non-linear

global tangential stiffness matrix of an element K? can be expressed by

the classical transformation using transformation matrix T from the local

nonlinear tangential stiffness matrix K’ [3.21]

KS=T'K'T . [3.26]
For the two-node beam element stressed in a plane, the matrix T has the

form known from literature (9)
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[ cosa’  sina’ 0 0 0 0]
—sina’ cosa’ 0 0 0 0

T- 0 0 1 0 , .0 , 0 ’ (3.27]
0 0 0 cosa sina’ 0
0 0 0 -sinag’ cosa’ 0
0 0 0 0 0 1

where ' is the angle determining rotation of the joint of terminal nodes of
the beam element in valid configuration, which is a function of current
coordinates of the nodal points of element {[X;, Y], [X), Y]} and valid
length L'.

In accordance with Fig. 24 we can express the total angle o of rotation of
the element nodal joints in the current configuration of the beam
considering the global axis x. The angle is defined as the sum of o' = o
D+ A9 where A is the increment of the rotational angle of nodal joints in
the current iteration due to the position of the nodal joints of the beam in the
previous known configuration.

The overall angle of rotation can be determined using the sum of the angles
of rotations of the node joints in all performed iterations, i.e.
a'=d + X[, where @ is rotation angle of the beam axis in undeformed,

initial configuration in relation to axis x of the global coordinate system.
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Fig. 24 Changing global displacements during an iterative process
3.7.3 Vector of global internal forces

Vector of local internal forces and moments
Fnt = [Ni T, M; N, T, M_/]T has, in the case of the new the beam
element, the shape given by vector [3.12]. f the vector of local internal
forces in the bar is expressed by stretching A and angle of rotation of the
nodal joint f defined in the form [3.9], the global internal forces and

moments can be obtained by standard transformation using transposed

transformation matrix T for the beam element
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FGint =TT Fint . [328]
Vector of global internal forces for two-noded beam element in a two-

dimensional space has the form

FGintz[F/gint FOM G F)gim ngm ngint]T' [3.29]

By the sum of extended vectors of global internal forces, we obtain the

vector of total global nodal forces of the system Fglim , which represents the

exact nodal forces (moments) corresponding to the valid deformation of

beam element.

Global residual force vector Fr

- can then be expressed as the difference

between external global load vector Fo:™

and the total internal global

nodal forces FZ™

of the system

FGres _ plext _ Gint . [330]

cel cel cel
To determine the accuracy of the iterative procedure we use Euclidean norm

of residual forces

FI| = FGS FGS [3.31]
that we compare to the norm of external loading forces FcGele’“ . Completion
of the iteration process occurs after fulfilling the condition

™| < e ra™| - [3.32]

where ¢ specifies the tolerance (accuracy) of the equilibrium achievement.
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The total global displacement after the i” iteration is then

Q'=Q" +AQ. [3.33]

3.8 Numerical experiment

To assess the accuracy and effectiveness of the new nonlinear beam

element, the problem of deflection of statically definite cantilever beam

with a length L°, of the constant full circular cross-section according to Fig.

25 with loading in elastic area was solved. The results of the analysis were

compared with the reference results obtained by solving the problem using

models developed in the commercial software ANSYS:

- BEAMS3 model — one-dimensional model with dividing elements to the
selected number of finite elements BEAM3. Cross-sectional
characteristics corresponded to the full circular cross section with a
diameter according to the assignment of the solved model. Boundary
conditions matched the problem solution.

- SOLID45 model — spatial model consisting of 5100 body elements
SOLID45 creating a cylinder @d — L° with the dimensions according to
assignment of the solved problem.

The input parameters for the problem solution: elasticity modulus

E =200 GPa, L°=1000 mm, diameter d=20 mm, cross-sectional area

A=314,159 mm®, I,=7853,98 mm", I;;=392 699 mm’. The beam is

loaded by conservative vertical force = 1000 N.
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deflection v(x) [mm]

LO

Fig. 25 Cantilever beam with an end point load

0
—50
BEAM3—1e
—100+ ——BEAM3-2e¢
—— BEAM3—5e
—— BEAM3—-50e
—150 —— SOLID435
——new beam element
—— undeformed beamn
—200
0 200 400 600 800 1000

length L° [mm)]

Fig. 26 Deflection of beam for different models
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THE RESULTING VALUES OF DISPLACEMENTS AND ROTATIONS
IN THE BEAM ENDPOINT OBTAINED BY THE NEWLY
DEVELOPED BEAM ELEMENT AND THE REFERENCE

SOLUTIONS BY THE CODE ANSYS Table 13
uy; [mm] vy [mm] @ [rad]
BEAM3 — | element —20.530 —208.298 —0.314385
BEAM3 — 2 elements -24.054 —204.390 —0.309077
BEAM3 — 5 elements -24.952 —203.343 -0.307611
BEAM3 — 10 elements -25.077 —203.197 —-0.307403
BEAM3 — 50 elements -25.117 —203.150 —0.307336
BEAM3 — 100 elements -25.118 —203.149 -0.307334
SOLID model -22.170 -191.039 —0.288660
our beam — 1 element -20.911 —203.425 -0.311654
our beam — 2 elements —23.030 —200.260 —0.308628
our beam — 5 elements —23.888 —-199.474 -0.307962
our beam — 10 elements —24.019 —-199.371 -0.307874

REACTIONS IN THE BEAM CONSTRAIN OBTAINED USING THE
DEVELOPED BEAM ELEMENT AND THE REFERENCE SOLUTIONS

Table 14
R, [N] R, [N] M. [Nmm] iter.
BEAM3 — 1 element -0.63121 10 1 000 987 670 7
BEAM3 — 2 elements ~0.54046 107 1 000 978 420 9
BEAM3 — 5 elements ~0.12746 107 1 000 975 460 9
BEAM3 — 10 elements 0.26962 107 1 000 975 020 8
BEAM3 — 50 elements 0.12556 107 1 000 974 880 6
BEAM3 — 100 elements 0.85225 107 1 000 974 880 7
our beam — 1 element 0.172273 10* 1000 979 090 8
our beam — 2 elements 0.605573 10 1 000 976 971 9
our beam — 5 elements 0.620974 107 1 000 976 114 9
our beam — 10 elements 0.311687 107 1 000 975 983 9
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Summary of results

Based upon the results of the point displacements at the free end of the
cantilever beam listed in Table 13, as well as from the process of deformation
of particular models in Fig. 26, it can be concluded that the deformations
determined by one new non-linear beam element are comparable with the
results from a model consisting of minimum five beam elements BEAM3.
Fig. 27 shows that by increasing mesh density of the model with the new
beam element, the results of deformation are getting closer to the solution

obtained from the deformation of spatial model SOLID45.

——SOLID43
——new beam-1le
——new beam—2e¢
—50
——new beam—10¢
BEAM3-50¢
——undeformed beam

—100

deflection v(x) [mm]

—150

—200

0 200 400 600 800 1000
length e [mm]

Fig. 27 Comparison of deflection of models with the new beam elements
and different mesh density

Significant agreement of the results obtained from the spatial model and the

derived beam elements can be achieved by the use of two new elements.
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Even when using a model with 100 elements BEAM3, there was not such
an agreement of the results obtained. The results of deformation calculated
by one new element are comparable to traditional solutions for hermitian
element BEAM3 divided into 50 elements, considerable deviation occurs
only in the value of displacement in the direction of the global x-axis. Table
14 gives the reaction values derived from the used models. The difference
between the value of the moment M, in relation specified by one new beam
element and for the model with 100 elements BEAM3 is 0.432% and for the
model with ten new beam elements, the deviation moments is reduced to
0.113%. This difference is caused by the fact that the results of deformation
in the direction of the global x-axis calculated by models with the new
element are smaller than those obtained by the models with BEAM3
elements. Displacements defined by the new element are in better
agreement with the results from the spatial model SOLID45.

The number of iterations needed to obtain results by the models with new
beam element at a standard accuracy in ANSYS programme was
comparable. To achieve comparable results, a model with fewer new
elements is needed. It can be stated that the new nonlinear beam element
achieves greater efficiency and accuracy.

The new element makes it possible to solve problems of deformation of
frame structures by using fewer elements, and in some cases with its help
there will be possible to solve problems using the procedure "one bar = one
finite element". Differences in the size of deformation specified by the beam

models (by new beam elements or traditional element BEAM3), and the
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model SOLID45 with body elements of the spatial stress is particularly in
incomplete agreement of both FEM physical models.
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CONCLUSIONS

This monograph is devoted to derivation and application of non-linearized
stiffness matrices of one-dimensional elements for the solution of
geometrically non-linear problems based on complete geometrically non-
linear non-incremental formulation described in section 1.2.

In the first part, the stiffness matrices of geometrically non-linear bar
element of variable stiffness are derived. In designing of stiffness matrices,
the expanded concept of transfer functions and constants allowing exact
inclusion of continuous variability of the cross-section and the material
properties was used. On this basis, the stiffness matrices of bar elements of
variable cross sections loaded in an elastic area were derived.

The non-linear bar element is extended in implementation of variability of
material properties and the possibility of loading the bar in elasto-plastic
area. To assess the non-linear behaviour of the structure, the problem of
deformation of Mises structure was selected. The results of numerical
experiments obtained by new elements are compared with those obtained by
conventional beam and spatial elements implemented in the commercial
FEM program (ANSYS).

The new non-linear bar element of stiffness variability eliminates the
disadvantages of conventional beam elements, in which, in case of
requirements, it is necessary to include into the solution the variability of
section and material properties, to use the "mean" values of these
parameters what increases a deviation from the exact solution. Another

possibility of taking into account the variability of geometry and material
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properties, is the replacement of real bar by sufficient mesh of beam
elements, and thus in a graded manner to define longitudinal stiffness
variation, what expects increased requirements for the preparation and the

time of the problem solution.

The presented results of loading in the elastic area show better agreement of
the solution with one new bar element with the results obtained by spatial
model SOLID, in comparison with results from comparative models with
beam elements BEAM in the commercial software ANSYS. The difference
of maximum axial forces for all the considered variations of stiffness
calculated by a new element compared to the spatial model is about 3%,
and, with increasing degree of the stiffness variability, it decreases. It can
therefore be concluded that the results obtained by one new bar element are
in good agreement with the results specified by the spatial model. Stiffness
matrices of the new non-linear bar element allow to accurately take into
account the longitudinal variability of cross section and material properties
as a way to create a model "/ bar = I element". The accuracy of the solution
thus depends on the mesh density.

In the next part of the study, the solution of nonlinear problems with new
bar element was extended to the area elasto-plastic deformations. Non-
linear stiffness matrices for non-incremental problem solving with
considering material with bilinear model and isotropic or kinematic
hardening were prepared. By numerical experiments, the accuracy of non-
linear bar element in dependence on the degree of the polynomial variability

of stiffness and the ratio of the maximum and minimum value of stiffness in
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the bar was investigated. In solving the problems of deformation in the Von
Mises structure in elasto-plastic area by one our bar element of variable
stiffness, the results are in better agreement with the solutions obtained from
the models with a large number elements (BEAM SOLID) than those
obtained from the models with one beam element (BEAM23, BEAM188).
Significant differences in the course of axial forces or reactions occur only
in the area of transition from elastic to elasto-plastic state.

This deviation, which occurs in all models with one element (new bar
element BEAM23, BEAM188), and is more pronounced when considering
the material with kinematic hardening, is caused mainly due to the fact that
in the models with a larger number of elements, the transition to elasto-
plastic state is made gradually. With a further increase in load, however, the
difference between the course of axial forces determined by one new bar
element and models decreases. The good agreement occurs in cases where a
ratio of the maximum and minimum stiffness of the bar is not greater than
3.0. If the ratio of the extreme values of stiffness in the bar is higher
(particularly in the case of considering material with kinematic hardening),
the use of a new non-linear bar of variable stiffness to solve the problems
with deformations in elasto-plastic area appears to be less accurate, and
therefore it is advisable to choose for the solution of such problems a
different approach.

Another area in which it is possible to use accuracy and good properties of
the new nonlinear bar element are the problems for which the variability of
stiffness caused by the use of materials with controlled variability of the

material and physical properties such as composite materials, functional
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graded materials (FGM) or sandwich structures. In the production of such
materials procedures allowing targeted control of variability of material
properties by changing individual components of the composite and their
reciprocal volume ratios in the volume of the body are used. To assess the
stress-strain state of the components made of such materials, it is necessary
to determine the variability of homogenized material properties in the body.
In general, to determine the homogenized properties of such composite
materials, various homogenization techniques are used.

In the commercial FEM programs, modelling of varying material properties
can be reduced by using the "mean" value material properties and using fine
mesh of finite elements, what causes an increase in the time required to
prepare the model and the solution.

In the study, the author used advanced mixing rule designed at the
Department of Mechanics (Faculty of Electrical Engineering and
Information technology, Slovak University of Technology in Bratislava,
Slovakia) allowing, in case of the bar of symmetric constant cross section
made from a two-component composite with longitudinal variability of
material properties of the components and their volume ratios, to set the
varying, effectively homogenized material properties. The homogenized
effective modulus of elasticity of the composite material obtained by the
designed procedure was then implemented in stiffness matrices of non-
linear bar element. The accuracy of the designed mixing rule was compared
with an improved mixing rule designed by Love and Batra (36). From the
results of the carried out numerical experiment can be concluded, that the

differences in the course of axial forces in the bar with homogenized
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modulus of elasticity determined by the designed extended mixing rule
(MR) and improved mixing rule proposed by Love and Batra (LB) are
marginal, and both homogenisation procedures allow to obtain effective
homogenized properties of the composite with the same accuracy.

In the next step, a procedure was designed that allows using the extended
mixing rule for calculation of the effective homogenized properties of
symmetric multilayer sandwich material consisting of layers of composites.
Furthermore, the solution was extended by the impact of the inclusion of
stationary temperature field represented by a variable longitudinal
temperature distribution. All the performed numerical experiments
confirmed good agreement of the results of axial forces or reactions,
deformations and stresses in the bar, obtained by one non-linear bar
element, and the results obtained by the spatial model with dense finite
element mesh (SOLID). Solution with one bar element enables a high
effective obtaining of the results of deformation and stress distribution in
the layers of sandwich bar with accuracy comparable with the results
specified by models with spatial or planar elements, and fine mesh at
infinitely shorter time of solution. The applied procedure for compiling
stiffness matrices of the bar element allows the use of other homogenization
techniques for the determination of effective material properties. The only
condition is that the resulting relationship describing the variability of
material properties in composite layers, as well as the whole composite
element, would have the polynomial form.

The second main part is devoted to the derivation of stiffness matrices of

non-linear beam element of constant stiffness, determined for the solution
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of geometrically non-linear problems with large displacements (rotations)
but very small strain. Matrices of the two-noded planar beam element of
double symmetric cross section were derived, provided the Euler-Bernoulli
conditions for deflection formed by material with linearly elastic property.
Matrices of the element were designed from basic geometrically non-linear
equilibrium stiffness equation derived from complete geometrically non-
linear non-incremental formulation without any linearization of increment
GL of the tensor of relative deformation or calculation of the stress tensor
increment. As substitute functions at derivation of element stiffness
matrices, for axial displacement components and linear polynomials, and
for the deflection components of displacement, the cubic hermitian
interpolation polynomials were used.

To assess the accuracy and effectiveness of the new nonlinear beam
element, the program in MATHEMATICA software was designed. After
the necessary modifications, the program was used in the four numerical
experiments. As a comparative solution, computational models in ANSYS
programme with varying mesh density formed by traditional hermitian
beam element BEAM3 and spatial models consisting of the body element
SOLID185 were used. The outcomes of the performed numerical
experiments with a statically determinate beam showed, that the
deformations obtained by one new element are in better agreement with the
results obtained from the spatial model consisting of a mesh of body
elements SOLID, than the results of displacement defined by the model
consisting of 100 traditional elements BEAM. The difference in the values

of deformation at statically determinate problems, in comparison with the
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solution obtained by the spatial model is at the level of 6%. In solution of
statically indeterminate problems, the experiments showed that the new
beam element satisfies exactly both global and local equilibrium conditions.
Unlike the new element in the carried out numerical experiment, the
traditional hermitian beam element satisfied equilibrium equations at the
mesh density with 20 elements. From the experiments, it can be concluded
that to achieve comparable results, it is necessary to use a model with
approximately 3-fold greater number of traditional beam elements than for
the model with new beam elements.

Differences in the results of deformations specified by beam models and
body elements of spatial stress state was possible to expect mainly due to

incomplete agreement of both physical FEM models.
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