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Chapter 1

Introduction

In this thesis, nonlinear effects of light propagation in waveguide arrays (WGAs) sup-

porting multiple guided modes are studied. Though this topic seems rather specialized,

it is rooted in very general concepts which are significant in many branches of physics

and other sciences, namely discreteness and nonlinearity. A discrete system consists

of several individual elements, which are coupled allowing for the exchange of energy.

The properties of the elements are independent of the coupling mechanism, however,

the dynamics of an excitation in the system depends on both the individual properties

of the elements and their coupling. A simple discrete system is sketched in Fig. 1.1(a),

consisting of masses connected by mechanical springs. The second important concept,

nonlinearity, describes the nonlinear dependence of one quantity on another. Albeit not

always obvious, nonlinearity is part of almost all processes. In most cases the mutual

linear dependence of two quantities is merely an approximation, valid only for limited

parameter ranges. Examples of discrete nonlinear systems appear in very diverse fields

like mechanics [1, 2], solid state physics [3–5], condensed particle physics [6–8], chem-

istry and biology [9–11], electronics [12], and different branches of optics [13–15]. Since

the mathematical description of the various discrete nonlinear phenomena is very sim-

ilar even for seemingly different systems, effects occurring in one system can often also

be confirmed in others. In recent years, optical WGAs have been used frequently as a

discrete model system to experimentally verify effects predicted in other discrete sys-

tems [16–19]. Using the analogies between WGAs and other systems, also the results

of this work may be extrapolated to other fields.

In optical WGAs, several waveguides are placed in a regular grid as shown in

Fig. 1.1(b). The proximity between the waveguides allows for the overlap of the evanes-

cent fields of their guided eigenmodes. Thus, energy exchange between the different

waveguides is enabled, as shown schematically in Fig. 1.1(c). The WGAs considered in

this work consist of waveguides which support several guided modes. These waveguide

eigenmodes have different properties and are coupled with different coupling strengths.

To conform with the definition of a discrete system, the mode properties have to be

3



CHAPTER 1. INTRODUCTION 4

independent of the evanescent coupling. This is approximately fulfilled for weak cou-

pling strengths. Then, light propagation in a WGA can be described with the discrete

model of the coupled mode equations [20].

In the discrete model, the eigenmodes of the complete WGA are superpositions of

the eigenmodes of all its waveguides. For infinite numbers of waveguides, the eigenval-

ues of these so-called supermodes form a continuous band. In WGAs, the eigenvalues

are the longitudinal wavenumbers of the supermodes, which form a band in depen-

dence on the transverse wavenumbers. These transverse wavenumbers correspond to

the phase difference between the oscillations of the modes in the individual waveguides.

Each guided mode of the single waveguide forms a separate band in the WGA. If the

condition of weak coupling is met, the dynamics of multiple bands can still be de-

scribed with the coupled mode approach [21, 22], which is not generally the case. A

more exact approach to describe the bands of a periodic system is the Floquet-Bloch

analysis [23,24]. The result of the Floquet-Bloch analysis are the Floquet-Bloch modes,

which in weakly coupled discrete systems are similar to the supermodes. This method

is more general and exact than the coupled mode approach, however, it is not suited

to treat nonlinearity and therefore not generally applicable in this thesis.

The optical nonlinearities utilized in this work are a property of the optical me-

dia. Because nonlinear optical coefficients are usually very small, optics was considered

purely linear for a very long time. The necessary power levels to change this notion be-

came available only after the invention of the laser [25,26]. The first observed nonlinear

optical effect was second-harmonic generation (SHG) [27, 28], the process of doubling

the frequency of a laser beam by propagating through a nonlinear medium. Nonlinear

coupling between the different frequency components was mediated by the second order

nonlinearity of the used crystal. Later, other fast nonlinearities [29, 30] and stronger

slow types of nonlinear interactions [31] have been explored as well. Nevertheless, the

second order nonlinearity has a very large scientific and industrial relevance. Usually,

it is the strongest of the instantaneous types of nonlinearity, allowing for applications

like all-optical switching and routing with moderate power levels [32]. Second order

Figure 1.1: (a) Abstract discrete system consitisting of masses connected by springs.
(b) Refractive index profile of a WGA with (c) field profiles of the waveguide eigen-
modes.



CHAPTER 1. INTRODUCTION 5

processes also allow for the coupling between waves of different frequencies, as in the

first nonlinear experiment, which is widely used for the generation of laser light in broad

wavelength ranges [33]. The latter advantage makes the second order nonlinearity the

prime mechanism considered here. A waveguide mode at a chosen frequency is excited,

which then nonlinearly interacts with one or more modes at a different frequency. In

WGAs, where the modes at each frequency are also linearly coupled as described above,

this corresponds to the exchange of energy between several linear discrete chains by

means of a nonlinear coupling mechanism. In this work, wavelengths of around 1500 nm

are considered for the initial excitation, which is in the wavelength range used by tele-

com applications and hence conveniently available. The nonlinear interaction takes

place between modes at this frequency, named the fundamental wave (FW) and modes

at the doubled frequency, called second harmonic (SH), with a wavelength of around

750 nm.

In linear WGAs light propagation can sufficiently be described by the supermodes

due to the possibility to construct every beam as a superposition of the supermodes. In

general, this is not possible in nonlinear systems, since the superposition principle is no

longer applicable. Nevertheless, even in the case of nonlinear propagation, stationary

solutions are meaningful. They represent the fundamental fixed points of a complicated

propagation dynamics that may be attracted by, repelled from or oscillating around

the stationary states. In WGAs with quadratic nonlinearity, such stationary solutions

can form if FW and SH are phase-locked to each other and travel with the same phase

velocity. The simplest stationary solutions are nonlinear discrete plane waves, where

the amplitudes of FW and SH components are the linear supermodes. However, more

attention is paid to localized stationary solutions, so-called discrete solitons. Here the

nonlinearity counteracts the energy spreading induced by linear coupling. Today the

term soliton is used in a rather broad context, whereas strictly it applies only to the

localized stationary solutions of integrable equations and all others were called solitary

waves. The equations considered in this thesis are non-integrable, however, following

the informal convention we will equally use both terms when we refer to the stationary

solutions. Even if they are no solitons in a strict mathematical sense, the obtained

solutions, both here and in the literature, are often rather robust and allow for a deep

physical insight into otherwise very complex nonlinear propagation behavior.

1.1 The current state of knowledge

WGAs, in the form of evanescently coupled optical fibers, were first studied theoret-

ically in 1965 [20]. Their first experimental realization was undertaken in 1973 in

gallium arsenide [34]. The peculiar linear properties of WGAs have been first con-

sidered for their imaging properties [35], the potential to mimic electron transport in



CHAPTER 1. INTRODUCTION 6

periodic lattices [16], and their ability to alter beam diffraction [36], before a more

comprehensive study was undertaken [37]. The linear properties of higher order bands

were studied in WGAs consisting of multimode waveguides [38–40]. Recently, the in-

vention of the fs-laser writing technique [41] allowed for a large freedom in the design

of longitudinally varying WGAs, resulting in complete control of the linear properties

over wide spectral ranges as described in Refs. [18, 42] and references therein.

In the first works on nonlinearity in these systems, the simplest WGA, a two core

coupler, was studied theoretically [43, 44]. These studies were driven by the desire to

obtain an all-optical switching device and considered an intensity dependent nonlin-

earity, as was used in the corresponding experiments [45, 46]. WGAs were proposed

first in 1988, when the third-order Kerr nonlinearity was predicted to counteract dis-

crete diffraction and thus enable self-focusing [47]. This triggered a flurry of theoretical

publications concerning solitons in WGAs with intensity dependent nonlinearities (see

e.g. Ref. [48] and references therein). The first experimental realization of discrete soli-

tons was carried out in aluminum-gallium-arsenide WGAs [49–51]. In the view of the

topic of this thesis, there are some notable works with third-order nonlinearities where

components with different properties interacted to form a discrete soliton. In vector

solitons [52–54], two polarization components are mutually locked to form a coherent

soliton. However, both components usually stem from the same band and thus have

similar properties. Discrete solitons of single higher bands have been excited by angled

excitation at the edge of the array [38, 55, 56] with properties qualitatively similar to

conventional discrete solitons. Beams from several bands can also form a localized

state [57]. Here one beam creates a nonlinear defect, whereas the second component is

guided in the created index modulation. The same can be achieved due to incoherent

interaction of multicolor beams [58–60].

In materials with second-order nonlinearity, different frequency components are

coherently coupled due to the nonlinear interaction. It was shown rather early, that

this interaction leads to nonlinear phase shifts due to subsequent frequency mixing

processes, so-called cascaded interactions [61–64]. Sign and strength of these phase

shifts depend on the sign and magnitude of the phase velocity mismatch between

the participating waves. The phase shifts have been considered as a means for all

optical manipulation of the FW wave in SHG processes [65–75], which was put to

practical realization in the first discrete optical elements, namely nonlinearly tunable

two waveguide couplers [32, 76]. In the waveguide couplers, the first order waveguide

modes of both FW and SH were employed. However, in 1995 it was noted in a single

waveguide, that one guided mode of the FW can interact simultaneously with several

SH modes of higher mode order [77].

Already in the 70’s it was reported, that cascading induced phase shifts may enable

the generation of spatial solitons [78], which was followed by many theoretical works
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about solitons in continuous geometries [70, 79–85]. They showed that spatial solitons

could exist for either positive or negative phase velocity mismatch and also for higher-

dimensional systems. This was confirmed experimentally in bulk lithium niobate [86,87]

and in film waveguides of the same material [88]. Spatio-temporal solitons, which are

localized in space and time, have also been studied extensively for bulk quadratic

media. Solutions have been found theoretically both neglecting the group velociy

mismatch (GVM) of the propagating pulses [79, 89–92] and taking it into account

[93–98]. Experimentally, these studies have been confirmed for fs pulses [99].

In WGAs with quadratic nonlinearity, spatial solitons where first predicted in

Ref. [100] and studied in more detail in Refs. [22,101–103] for one component of FW and

SH, respectively. It was shown that these solitons can exist for propagation constants

in the gaps above and below the linear bands [101, 104]. These predictions were veri-

fied experimentally in lithium niobate WGAs [105, 106]. Also the existence of spatio-

temporal solitons in WGAs with second-order nonlinearity was reported [107, 108],

however, without experimental verification up to now.

Commonly, discrete solitons in WGAs are classified by two schemes. First, they are

distinguished based on the symmetry of their intensity distributions. Odd solitons have

their intensity maximum at the central waveguide, whereas even solitons have the same

intensity in the two centering waveguides. Generally, the difference in the Hamiltonian

of these two kinds of solutions, the Peierls-Nabarro-barrier, prevents solitons from

moving in the transverse direction [109, 110]. The second classification is according

to the phase profile of the solitons. If all excited waveguides have the same phase,

the solitons are called unstaggered, in contrast to staggered solitons, where the phase

difference between adjacent waveguides is always π. For the solitons considered in

the literature, this classification is determined by the FW wave. Additionally, also

the individual waves in any SHG process can be termed staggered or unstaggered,

depending on their phase profile. Other, more complicated soliton profiles not described

by the mentioned classifications include front [111] and twisted [112] solitons.

As can be seen, the topic of this thesis originates from a well developed field of

optical sciences. Hence, a number of review articles already exist, where different

subtopics are conveniently summarized, e.g. on solitons and other effects with second

order nonlinearities [113, 114], discrete optics in WGAs [19, 42], and discrete solitons

[48, 115–118].

1.2 The aim of this thesis

All experimental studies on channel waveguides or WGAs with second order nonlinear-

ity have utilized the fundamental guided modes of both frequency components, with

the notable exception being Ref. [77]. The latter work showed, that the first guided
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FW mode can interact with several SH modes with higher mode order, and that these

interactions take place simultaneously, influencing each other in dependence on the

input power. However, this study used only a single waveguide, thus was not able to

reveal new spatial effects. In the present thesis the interaction of an FW mode with

higher order SH modes and its ramifications on nonlinear propagation in WGAs are

studied. A special focus is put on the existence and properties of spatial discrete soli-

tons as the limiting case for nonlinear propagation. Furthermore, nonlinear dynamics is

investigated in conjunction with experimental works to explore the practical realization

of the theoretical results.

Taking into account higher order SH modes leads to considerable changes in the

investigated nonlinear discrete system, compared to the case of only the first SH mode

studied experimentally before. The linear properties in the individual waveguides are

different, since the propagation constants of higher order modes differ from that of the

first order mode. Additionally, the coupling properties of the WGA change, since the

evanescent field overlap of the higher order modes is usually much larger than for the

first order mode. This leads to increased energy exchange between different waveguides

which is especially significant for the SH modes, since the first order SH mode shows

no linear coupling for experimentally available sample lengths. Due to different mode

shapes of the SH modes also the nonlinear coupling strength between FW and SH

modes in each waveguide depends on the SH mode order. In WGAs, where the use

of the first order SH modes yielded only nonlinear effects comparable to that encoun-

tered in systems with Kerr-nonlinearity, the utilization of linearly coupled SH modes

in nonlinear interactions can qualitatively change the nature of the observed effects.

Finally, the use of higher order SH modes implies the existence of several modes. This

introduces different pairs of nonlinear interactions, adding a new degree of freedom not

possible in systems which are limited to the first SH mode. All these consequences

of the participation of higher order SH modes in discrete nonlinear propagation are

investigated in this work. Resulting effects are studied both theoretically and experi-

mentally. The mathematical foundations and the experimental tools to undertake these

studies in discrete WGAs with several modes are developed in Chapter 2.

The best known nonlinear effect in optical systems with quadratic nonlinearity

is SHG, which also takes place in WGAs [119]. Hence, it is natural to study the

effects of higher order SH modes on the generation of SH. Investigations of SHG are

conducted in Chapter 3 with a focus on the dependence of the phasematching on the

mode properties. The investigations are restricted to the case of low input powers

and plane wave excitations to avoid spatial effects and high power interplay between

different SH modes [77]. The results of the studies on SHG lead to a convenient method

for the experimental characterization of the higher order SH modes under test.

Nonlinear propagation in WGAs with several SH modes is discussed in Chapter 4.
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Already in Ref. [77] the simultaneous interaction of an FW mode with different SH

modes was studied. The authors concluded, that all FW-SH interactions induce phase

shifts. Due to the nature of quadratic nonlinear interactions the induced phase shifts

may have different signs, depending on the frequencies of the participating optical sig-

nals. This opens up the possibility to utilize SH processes with the same or opposite

signs of the induced phase shifts, thus having co- or counter-acting nonlinear inter-

actions. In this work, the spatial effects triggered by these different phase shifts in

finite beams are explored. First, discrete quadratic solitons are studied theoretically

in WGAs with two SH modes and the unique effects caused by the multimode SH are

displayed. The results of these studies are used to explain dynamic beam propagation

in the experiment.

The influence of the distinct properties of the higher order SH modes is investigated

in Chapter 5. Again, spatial solitons are discussed, with a focus on the topology of

the propagating waves in dependence on the SH mode properties. A distinct transition

of the soliton topology caused by the interplay of beam localization and synchroniza-

tion of the parametrically interacting waves is described. This effect, which is possible

only with higher order SH modes, is demonstrated experimentally. To further analyze

the experimental findings, a thorough analysis of spatio-temporal beam dynamics is

conducted. This allows for the identification of pulse reshaping effects leading to the

occurrence of the topology transition also in the non-stationary experimental environ-

ment.

The thesis is closed with a summary of its main findings in Chapter 6. The impact

of the results of this work is discussed and further research directions are disclosed.

In the appendix an overview of specific methods to characterize the samples used

in the experiments is given.

The present thesis is the result of a close collaboration with Dr. Dragomir N. Neshev

and Dr. Andrey A. Sukhorukov from the Australian National University, Canberra

and Prof. Roland Schiek from the Fachhochschule Regensburg who helped in finding

ideas, with the theoretical part of the work and performing the experiments. The

samples used in all experiments during this thesis were developed and fabricated by

Prof. Wolfgang Sohler and his co-workers at the University of Paderborn.



Chapter 2

Basic considerations

In this thesis, the propagation of higher order modes in nonlinear WGAs is studied in

two different ways. First, possible new effects should be identified theoretically, which

requires a simplified mathematical model allowing for analytical treatment. Later,

the theoretical predictions are verified experimentally. Besides a suitable experimental

apparatus, this also calls for a model taking into account all impacting effects to accu-

rately simulate and control the experiment. This requirement can be achieved, if the

mathematical description starts from a physical model of the system, allowing to take

into account all necessary effects.

These two seemingly conflicting demands on a model can be fulfilled with the well

known coupled-mode formalism [120–125]. Here each waveguide mode in each wave-

guide taking part in the interactions is represented by a separate equation, where all

physical effects are described by separate terms either coupling the different equations

or acting on just one. This enables the sought after flexibility, allowing for inclusion

or neglect of terms, and hence physical effects, according to the experimental needs or

mathematical possibilities.

In this chapter a concise derivation of the used coupled mode equations will be given,

to show how the resulting formulas originate from physical notions. The derivation

closely follows Ref. [126] but includes multiple waveguide eigenmodes. In Section 2.1

light propagation in a single waveguide is treated, where local linear and nonlinear

effects are explained. Section 2.2 is devoted to interactions between the neighboring

waveguides in the array. Here especially the additional assumptions necessary to de-

scribe multimode waveguides with the coupled mode theory are explained. Section 2.3

deals with the complete set of equations, describing the normalizations used in the

theoretical part of this work. Finally, an experimental scheme developed to study light

propagation described by the derived set of equations is presented in Section 2.4.

10
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2.1 The single waveguide

We will start our discussion with the vector wave equation for source-free dielectric

media

rot rot Ẽ(r, ω)− ω2ε0μ0Ẽ(r, ω) = μ0ω
2P̃(r, ω), (2.1)

which can be easily derived from Maxwell’s equations [127]. Here r is the coordinate

vector in space, ω the angular frequency, Ẽ and H̃ the electric and magnetic field

vectors, P̃ the polarization, and ε0 and μ0 the dielectric constant and magnetic per-

meability of vacuum. The vector fields in frequency space, as used in Eq. (2.1), are

connected to the fields in real space by a Fourier transform, given here for the electric

field as an example

E (r, t) =

∞∫
−∞

Ẽ (r, ω) exp (−iωt) dω; Ẽ (r, ω) =
1

2π

∞∫
−∞

E (r, t) exp (iωt) dt. (2.2)

The interaction of an electric field Ẽ (r, ω) with a dielectric medium is mediated by

the polarization P̃ (r, ω). For optical frequencies far from transition frequencies of

the atoms or molecules the medium consists of, the polarization can be written as a

series [30]

P̃ (r, ω) =
∞∑
n=1

P̃(n) (r, ω) . (2.3)

The nth element in this series is proportional to the nth power of the electric field.

This thesis will only be concerned with the first two elements of the series Eq. (2.3).

Additionally, it is assumed that the considered media have only a local response, which

is important for the actual form of the polarization terms [30]. The first element of the

series describes the linear anisotropic response of the material to low intensity electric

fields by a complex second rank tensor, P̃(1) (r, ω) = ε0χ̂ (r,−ω;ω) Ẽ (r, ω). The two

frequency arguments of the susceptibility tensor χ̂ (r,−ω;ω) denote the frequencies of

the polarization and the driving electric field. In the linear case these frequencies have

to be the same to fulfill energy conservation. Hence we use a simplified notation with

only one frequency argument. Usually, the susceptibility is expressed in terms of the

dielectric function ε̂ (r, ω) = 1+ χ̂ (r, ω). The important higher order polarization term

will be discussed in Section 2.1.4.

Up to now no assumptions strongly limiting the generality of Eq. (2.1) have been

proposed. However, to arrive at a description which can be actually analyzed with

respect to certain experimental situations, some simplifications are necessary and jus-

tified.

First, for transparent dielectric materials and non-resonant nonlinear processes as

discussed here, the 2nd order susceptibility P̃(2) (r, ω) is much smaller than the linear
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spatial inhomogeneity Δε̂ (r, ω), which defines the waveguides and is part of P̃(1) (r, ω).

Hence the nonlinear effects are a minor influence, which can be treated later by a

perturbation theory.

Also, the waveguides of the array are weakly coupled, meaning fields in one wave-

guide are only weakly influenced by the Δε̂ (r, ω) distributions of neighboring wave-

guides. Furthermore, linear losses in all waveguides are assumed to be small. Hence

we can treat the generally complex tensor ε̂ (r, ω) as real.

Finally, we propose that the waveguides are essentially translational invariant in

the longitudinal z-direction, Δε̂ (r, ω) = Δε̂ (x, y, ω). This enables the propagation of

guided modes in the z-direction.

The assumptions described above allow for the separation of the properties of

a guided mode of a single waveguide from all other effects in the system. The

guided modes are then determined by the real-valued, z-independent tensor ε̂ (x, y, ω),

which describes the profile of one waveguide and induces the polarization P̃ (r, ω) =

ε0 [ε̂ (x, y, ω)− 1] Ẽ (r, ω). In the next section the propagation equation Eq. (2.1) will

be solved for the linear guided modes. The influence of linear inhomogeneities, losses,

and nonlinear polarizations will later be treated within a perturbation theory as addi-

tional polarization components ΔP̃ (r, ω). However, these perturbations do not change

the linear mode properties.

2.1.1 Guided modes

The wave equation for a homogeneous linear waveguide reads like

rot rot Ẽ(r, ω)− ω2ε0μ0ε̂(x, y, ω)Ẽ(r, ω) = 0. (2.4)

Eigenmodes of this equation have the form

Ẽ(r, ω) = eμ(x, y, ω) exp[iβμ(ω)z]. (2.5)

The insertion of Eq. (2.5) into Eq. (2.4) leads to a generalized eigenvalue problem

for the waveguide modes eμ(x, y, ω) as eigenfunctions and the propagation constants

βμ(ω) as eigenvalues. In general, this eigenvalue problem has to be solved numerically,

although approximate analytical solutions exist for some waveguides with circular [128]

or step index profiles [129]. Numerical solutions for the waveguides investigated in this

thesis are presented in Section 3.1 of Chapter 3. To obtain these solutions, the Finite

Element method [130, 131] and the Plane Wave Expansion method [132] have been

used in this thesis.
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All eigenmodes of a given dielectric waveguide fulfill the orthogonality relation

∞∫
−∞

∞∫
−∞

[
eμt (x, y, ω)× hμ

t
∗ (x, y, ω)

]
zdxdy = 0, (2.6)

with t denoting the transverse components of the electric field eμ and the magnetic

field hμ. The asterisk ∗ denotes the complex conjugate. Additionally, all eigenmodes

are assumed to be normalized like

1

2
�
⎡
⎣ ∞∫
−∞

∞∫
−∞

[
eμt (x, y, ω)× hμ

t
∗ (x, y, ω)

]
zdxdy

⎤
⎦ = P0 = 1W, (2.7)

which simplifies the following equations.

In the unperturbed waveguide the derived modes propagate without change. How-

ever, a longitudinal dynamics, reviewed in the next section, is introduced by virtue of

the small perturbations described in the initial assumption of Section 2.1.

2.1.2 Dynamics of the mode amplitude

The derivation of the propagation dynamics starts from a harmonic wave of a single

mode μ

E (r, t) = 1
2
ϕ̃μ (z, ω) eμ (x, y, ω) exp (−iωt) + c.c., (2.8)

where the mode profile eμ (x, y, ω) is constant along z. In experiments, the amplitude

ϕ̃μ (z = 0, ω) is determined by the transverse part of the exciting magnetic field H̃ext
t

via the overlap integral

ϕ̃μ(z = 0, ω) =
1

2P0

∞∫
−∞

∞∫
−∞

[
eμ∗t (x, y)× H̃ext

t (x, y, z = 0, ω)
]
zdxdy. (2.9)

In the unperturbed waveguide, only the phase of the mode amplitude evolves harmon-

ically with ϕ̃μ(z, ω) = ϕ̃μ(0, ω) exp [iβμ (ω) z]. However, this changes when a small

perturbing polarization ΔP̃ (r, ω) induces longitudinal dynamics. Here we will utilize

perturbation theory, in particular making use of the reciprocal theorem, to describe

the dynamics of the modal amplitude ϕ̃μ(z, ω) in dependence on ΔP̃ (r, ω) [133, 134].

The derivation starts from the field of an unperturbed waveguide Ẽ1(r, ω) and the

field Ẽ2(r, ω) of a waveguide subject to a small perturbation ΔP̃ (r, ω). Both fields
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have to fulfill Maxwell’s equations

rot Ẽ1 = iωμ0H̃1 (2.10)

rot H̃1 = −iωε0ε̂Ẽ1 (2.11)

rot Ẽ2 = iωμ0H̃2 (2.12)

rot H̃2 = −iω
(
ε0ε̂Ẽ2 +ΔP̃

)
. (2.13)

Now we subtract the complex conjugate of Eq. (2.11), multiplied by Ẽ2 from Eq. (2.12)

multiplied by H̃∗
1 and arrive at

div
(
Ẽ2 × H̃∗

1

)
= iω

(
μ0H̃2H̃

∗
1 − ε0ε̂Ẽ2Ẽ

∗
1

)
. (2.14)

Similarly we subtract the complex conjugate of Eq. (2.10) multiplied by H̃2 from

Eq. (2.13) multiplied by Ẽ∗
1. The latter result is subtracted from Eq. (2.14) and we

obtain

div
(
Ẽ2 × H̃∗

1 + Ẽ∗
1 × H̃2

)
= iωẼ∗

1ΔP̃. (2.15)

Integrating over the transverse cross section of Eq. (2.15) yields

∞∫
−∞

∞∫
−∞

∇t ·
(
Ẽ2 × H̃∗

1 + Ẽ∗
1 × H̃2

)
t
dxdy+

∞∫
−∞

∞∫
−∞

∂

∂z

(
Ẽ2 × H̃∗

1 + Ẽ∗
1 × H̃2

)
z
dxdy = iω

∞∫
−∞

∞∫
−∞

Ẽ∗
1ΔP̃dxdy, (2.16)

where the first integral can be transformed into a line integral at infinity using Gauss’s

law and thus vanishes.

The unperturbed field is now assumed to propagate in the guided mode μ

Ẽ1(r, ω) = eμ (x, y, ω) exp [iβμ(ω)z] , H̃1(r, ω) = hμ (x, y, ω) exp [iβμ(ω)z] . (2.17)

In contrast to this the perturbed field may consist of several modes,

Ẽ2(r, ω) =
∑
μ′

ϕ̃μ′
eμ

′
(x, y, ω) , H̃2(r, ω) =

∑
μ′

ϕ̃μ′
hμ′

(x, y, ω) . (2.18)

Here only forward propagating modes are taken into account since we assume that

the polarization ΔP̃ (r, ω) does not couple modes of different propagation directions.

Taking into account the orthogonality relation Eq. (2.6) and the mode normalization

Eq. (2.7), the integration of the remaining left side term of Eq. (2.16) can be carried

out. We arrive at an equation describing the evolution of the amplitude of mode μ
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[
∂

∂z
− iβμ(ω)

]
ϕ̃μ(z, ω) =

iω

4P0

∞∫
−∞

∞∫
−∞

eμ∗(x, y, ω)ΔP̃(r, ω) dxdy. (2.19)

This equation takes into account the dispersion of the mode’s propagation constant

across the whole spectral range. However, the assumption of a constant mode pro-

file cannot be sustained for largely different frequencies. Thus, the applicability of

Eq. (2.19) is limited to excitations with small spectral width Δω, where the modal

field can be considered frequency independent, e0
μ(x, y) = eμ(x, y, ω0). Here ω0 � Δω

is the center frequency of the signal spectrum. Assuming a smooth variation, the prop-

agation constant βμ (ω) can be written as a Tailor expansion for frequencies close to

ω0

βμ (ω) ≈ βμ
0 +

1

vμg
(ω − ω0) +

Dμ

2
(ω − ω0)

2 . (2.20)

where vμg is the group velocity and Dμ the group velocity dispersion (GVD) of the

mode μ. The coefficients in Eq. (2.20) are determined by

βμ
0 = βμ (ω0) ,

1

vμg
=

dβμ

dω

∣∣∣∣
ω0

, and Dμ =
d2βμ

dω2

∣∣∣∣
ω0

. (2.21)

Additionally, all frequency arguments ω in Eq. (2.19) are fixed to ω0. Thus, the dis-

persion of the induced polarization term ΔP is neglected, assuming an instantaneous

response. The effects induced by the perturbing polarizations are determined only at

ω0. Now an inverse Fourier transformation of Eq. (2.19) can be performed. If we finally

assume that the temporal change of the field envelope is slow compared to the fast phase

oscillation of the carrier wave, the fast phase term exp (iβμ
0 z − iω0t) can be eliminated,

which is the well known slowly varying envelope approximation [135]. Thus, we arrive at

a propagation equation for the slowly varying amplitude uμ (z, t) = ϕ (z, t) exp (−iβμ
0 z)

of the waveguide mode

[
i
∂

∂z
+

i

vμg

∂

∂t
− Dμ

2

∂2

∂t2

]
uμ(z, t) = − ω0

4P0

∞∫
−∞

∞∫
−∞

eμ∗0 (x, y)ΔP̄(r, t) dxdy exp(−iβμ
0 z).

(2.22)

Here ΔP̄(r, t) is the slowly varying envelope of the polarization in the time domain,

ΔP(r, t) = 1
2
ΔP̄(r, t) exp (−iω0t) + c.c..

Since all perturbing polarizations are small and do not strongly change the proper-

ties of the waveguide modes, the linear and nonlinear local perturbations or nonlocal

perturbations from other waveguides act independently. Hence, in the further treat-

ment they can be linearly superimposed. Terms in the coupled mode equations resulting

from these perturbations can be taken into account or be neglected without affecting

the validity of other terms.
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2.1.3 Linear perturbations

Linear perturbations acting only locally on one waveguide are introduced through

changes in the distribution of the dielectric function defining a waveguide, Δε̂ (r).

These, generally complex, inhomogeneities result in the local polarization

ΔPlinear =
1

2
ε0Δε̂ (r) uμ(z, t)e0

μ(x, y) exp (iβμ
0 z − iω0t) + c.c., (2.23)

which results in the propagation equation

[
i
∂

∂z
+

i

vμg

∂

∂t
− Dμ

2

∂2

∂t2
+Δβμ

lin (z) + i
αμ

2

]
uμ(z, t) = 0, (2.24)

obtained by splitting Δε̂ (r) into real and imaginary parts. The coefficients Δβμ
lin (z)

and αμ (z) are defined as

Δβμ
lin (z) =

ω0ε0
4P0

∞∫
−∞

∞∫
−∞

� [Δε̂ (r)] e0
μ∗(x, y)e0μ(x, y)dxdy,

αμ (z) =
2ω0ε0
4P0

∞∫
−∞

∞∫
−∞

� [Δε̂ (r)] e0
μ∗(x, y)e0μ(x, y)dxdy.

(2.25)

The physical meaning of Δβμ
lin (z) is a local detuning of the propagation constant,

whereas αμ (z) describes the linear loss of the waveguide.

2.1.4 Nonlinear perturbations

The higher order polarization terms in the expansion Eq. (2.3) also contribute to the

locally perturbing polarizations. In this thesis only the effect of the quadratic term is

considered. This and all other even terms exist only in media not possessing inversion

symmetry, like the lithium niobate crystals used to manufacture the samples investi-

gated here. The ith vector component of the 2nd order polarization term depends on

the electric field like

P̃
(2)
i (r, ω) = ε0

∑
θ1,θ2

∞∫
−∞

∞∫
−∞

χ̂
(2)
iθ1θ2

(
r,−ωσ;ω1ω2

)
Ẽθ1

(
r, ω1

)
Ẽθ2

(
r, ω2

)
δ (ω − ωσ) dω1dω2,

(2.26)

where the 2nd order susceptibility tensor couples three fields of different frequencies

and polarizations [30]. However, the frequencies have to obey energy conservation,

expressed by the δ-term in Eq. (2.26) which demands ωσ = ω1 + ω2. This also follows

from the Manley-Rowe-relations [136]. Here only two frequencies are considered, a low
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frequency fundamental wave (FW) and a high frequency second harmonic (SH), which

have to obey

ωSH = 2ωFW. (2.27)

In general, the two FW fields may stem from two different waveguide modes. In the

following, interactions where both FW fields are propagating in the same mode are

called degenerate interactions, in contrast to non-degenerate interactions with two dif-

ferent FW modes. We note, that in other works the distinction between degenerate

and non-degenerate interactions is usually based on the frequencies of the long wave-

length photons, which are always the same here. Since we consider just one particular

experimental system, we can make another simplification without loosing the validity

of our approach. In lithium niobate, the largest coefficient of the χ̂(2) tensor is χ
(2)
333,

coupling the electric field components polarized along the crystal’s optical axis [137].

At a wavelength of 1.55 μm this coefficient is χ
(2)
333 = −20.6 pm

V
[138]. In the coordinate

system used here, the optical axis of the crystal is directed along the y-direction. Since

the used samples are designed to only utilize the χ
(2)
333 coefficient, the mathematical

description will be restricted to the y-components of the electric field and polarization.

Consequently, all fields will be considered only as scalar variables in the following.

However, not only the magnitude of the susceptibility dictates the efficiency of 2nd

order nonlinear processes. Since two field components with vastly different frequencies

interact, a matching of the phase velocity of all participating components is necessary.

To achieve this, several techniques are available, e.g. birefringent phasematching [139]

and quasi-phasematching (QPM) [28] by periodic poling of the crystal structure [140].

The latter method is employed here, since it enables the use of the χ
(2)
333 coefficient.

In a periodically poled sample the optical axis of the crystal is flipped periodically

with the period ΛQPM along the light propagation direction. In each of this alternating

domains the susceptibility is either χ
(2)
333 or −χ

(2)
333. To deal with this rectangular grid

mathematically, it is expanded into a Fourier series and we keep only the first order

terms

χ(z) = ±χ
(2)
333 ≈=

2

π
χ
(2)
333

(
exp

(
i

2π

ΛQPM
z

)
+ exp

(
−i

2π

ΛQPM
z

))
. (2.28)

Taking into account also higher order terms has been discussed elsewhere [141–143] and

it was shown that they may have the same effect as higher order nonlinear polarizations

of the series Eq. (2.3). However, the impact of these terms is restricted to special

parameter ranges and generally much smaller than the first order QPM term.

The electric field in the waveguide can be written as a superposition of all modes
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propagating at the two frequencies taken into account

Ey =
∑
μ

1

2
[uμeμ0 exp (iβ

μ
0 z − iωμ

0 t) + c.c.] . (2.29)

Then, according to Eq. (2.26) the y-component of the induced polarization reads like

P (2)
y = ε0

∑
μ,μ′

χ
(2)
333

(
−ωσ;ω

μ
0 , ω

μ′
0

)[
1
2
uμeμ0 e

(iβμ
0 z−iωμ

0 t) +c.c.

][
1
2
uμ′

eμ
′

0 e

(
iβμ′

0 z−iωμ′
0 t

)
+c.c.

]
,

(2.30)

where μ and μ′ are running over all modes at all frequencies [30]. Using this polarization

as the perturbing polarization in Eq. (2.22), a system of coupled mode equations for

the amplitudes of several FW and SH modes propagating together is obtained, which

for the FW mode ξ and the SH mode ν is

(
i
∂

∂z
+

i

vξg

∂

∂t
− Dξ

2

∂2

∂t2

)
uξ = −ωFW

0

∑
ξ′

∑
ν′

χν′ξξ′
eff uξ′∗uν′ exp

[
−iΔβν′ξξ′z

]
,

(
i
∂

∂z
+

i

vνg

∂

∂t
− Dν

2

∂2

∂t2

)
uν = −ωFW

0

∑
ξ′ξ′′

χνξ′ξ′′
eff uξ′uξ′′ exp

[
iΔβνξ′ξ′′z

]
. (2.31)

Here the ξ′ and ξ′′ are running over all modes at the FW frequency, whereas ν ′ de-

notes modes at the SH frequency. The phase mismatch between interacting modes is

determined by

Δβνξξ′ = βξ
0 + βξ′

0 − βν
0 +

2π

ΛQPM
(2.32)

and the strength of the nonlinear interaction is given by the effective susceptibility

χνξξ′
eff =

ε0
2πP0

∞∫
−∞

∞∫
−∞

χ
(2)
333e

ν
0e

ξ∗
0 eξ

′∗
0 dx dy. (2.33)

In the propagation equations Eqs. (2.31) the power is conserved as

P =
∑
μ

∞∫
−∞

|uμ (z, t)|2 dt =
∑
ξ

∞∫
−∞

∣∣uξ (z, t)
∣∣2 dt+∑

ν

∞∫
−∞

|uν (z, t)|2 dt. (2.34)

In most of the available waveguides and WGAs only one guided FW mode exists,

whereas at the SH frequency always several modes are guided. In this case the nonlinear

interaction is always degenerated, i.e. both FW fields are propagating in the same mode
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denoted by the index FW. This allows to simplify Eqs. (2.31) to

(
i
∂

∂z
+

i

vFWg

∂

∂t
− DFW

2

∂2

∂t2

)
uFW = −ωFW

0

∑
ν′

χν′
effu

FW*uν′ exp
[
−iΔβν′z

]
,

(
i
∂

∂z
+

i

vνg

∂

∂t
− Dν

2

∂2

∂t2

)
uν = −ωFW

0 χν
eff

[
uFW

]2
exp [iΔβνz] .

(2.35)

Also the used coefficients take a simpler form, with the mismatch being

Δβν = 2βFW
0 − βν

0 +
2π

ΛQPM
(2.36)

and the effective susceptibility

χν
eff =

ε0
2πP0

∞∫
−∞

∞∫
−∞

χ
(2)
333e

ν
0e

FW∗
0 eFW∗

0 dx dy. (2.37)

2.2 Linear dynamics in waveguide arrays

In the preceding section the locally induced perturbing polarizations have been dis-

cussed. They have been differentiated in linear and nonlinear perturbations. Nonlocal

perturbations, induced to a certain waveguide by the neighboring waveguides placed in

regular distances d within the WGA, can be categorized in the same way. However, in

this thesis only linear nonlocal perturbations are considered. Nonlinear effects between

neighboring waveguides are in general much weaker than local nonlinear effects and

are neglected throughout this thesis.

2.2.1 The coupling of multimode waveguides

The linear nonlocal interactions between the individual waveguides of a WGA can

be attributed to the evanescent overlap of the fields in the waveguides and lead to

a coherent exchange of energy between the guided modes in different waveguides at

one frequency. To describe this mathematically, the dielectric functions of the whole

WGA ε̂ (x, y) and the nth waveguide Δε̂n (x, y) are used. Again, our considerations are

restricted to the polarization components along the optical axis of the lithium niobate

crystal. The y-component of the polarization induced in a waveguide n by all other

waveguides n′ reads as

ΔPy,n =
ε0
2

∑
μ

∑
n′ (n′ �=n)

[ε̂33 (x, y)−Δε̂n;33 (x, y)]u
μ
n′e

μ
n′ e(

iβμ

0n′z−iω0n′ t) + c.c. (2.38)
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Here we treat only modes of a single frequency which are denoted by the index μ.

The sum over all waveguides excludes the interaction of the nth waveguide with itself,

which would lead to a small correction of the phase velocity due to the existence of other

waveguides. This contribution is very weak compared to the propagation constant in

the single waveguide and therefore is neglected, which is in accordance with the initial

assumptions. The polarization Eq. (2.38) leads to the following propagation equation

for the waveguide mode μ

[
i
∂

∂z
+

i

vμg

∂

∂t
− Dμ

2

∂2

∂t2

]
uμ
n +
∑
μ′

∑
n′ (n′ �=n)

cμμ
′

nn′u
μ′
n′ exp

[
i
(
βμ′
0 − βμ

0

)
z
]
= 0. (2.39)

The energy exchange between the modes μ and μ′ in the waveguides n and n′, respec-

tively, is characterized by the scalar coupling constants

cμμ
′

nn′ =
ε0ω0

4P0

∞∫
−∞

∞∫
−∞

[ε̂33 −Δε̂n;33]e
μ∗
n eμ

′
n′ dx dy. (2.40)

Eq. (2.39) and Eq. (2.40) are valid only for identical waveguides with Δε̂n (x, y) =

Δε̂n′ (x, y). For waveguide systems where this does not hold, more involved formalisms

to describe the propagation have been developed [144–147]. From Eq. (2.39) and

Eq. (2.40) we also see, that in general different modes from different waveguides can

exchange energy [21, 148], which is in contrast to a single waveguide where the indi-

vidual modes have to fulfill the orthogonal relation Eq. (2.6). For identical lossless

waveguides the coupling constants Eq. (2.40) are symmetric, cμμ
′

nn′ = cμμ
′

n′n = cμ
′μ

nn′ . Under

the assumption of small perturbations, only the nearest neighbor interaction needs to

be taken into account, leading to the simplified equation

[
i
∂

∂z
+

i

vμg

∂

∂t
− Dμ

2

∂2

∂t2

]
uμ
n +
∑
μ′

cμ
′μ
[
uμ′
n+1 + uμ′

n−1

]
exp
[
i
(
βμ′
0 − βμ

0

)
z
]
= 0 (2.41)

with cμ
′μ = cμ

′μ
n n+1.

2.2.2 Mode mixing effects

The coupled mode equations Eqs. (2.41) describe light propagation in an array of equal

multimode waveguides, where different modes in adjacent waveguides couple. However,

due to different propagation constants, with the exception of the case μ = μ′, all cou-

pling processes are phase mismatched. Phase-mismatched coupling is generally rather

inefficient, as is well known from other coupled phenomena depending on phasematch-

ing, like two-core couplers of non-identical waveguides or SHG. The energy transfer

from mode μ to μ′ is usually negligible. However, additional effects appear due to
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so-called cascading processes, which take place if light from mode μ is coupled to mode

μ′ in the next waveguide and then back to μ. To analyze this, a WGA with only two

modes is considered, as we also find later in our experiments. This system is described

by the coupled mode equations

i
∂

∂z
u1
n + c11

[
u1
n+1 + u1

n−1

]
+ c12

[
u2
n+1 + u2

n−1

]
exp
[
i
(
β2
0 − β1

0

)
z
]
= 0, (2.42)

i
∂

∂z
u2
n + c22

[
u2
n+1 + u2

n−1

]
+ c21

[
u1
n+1 + u1

n−1

]
exp
[
i
(
β1
0 − β2

0

)
z
]
= 0, (2.43)

where the temporal degrees of freedom are neglected for simplicity. Only the first mode

is excited and u2
n (z = 0) = 0. Due to the phase mismatched linear coupling, the energy

is oscillating between both modes during propagation. In the stationary regime, the

amplitudes of the 2nd mode can be described with the ansatz

u2
n(z) = Φn exp

[
i
(
β1
0 − β2

0

)
z
]
. (2.44)

Inserting this ansatz into Eq. (2.43) leads to

Φn

(
β2
0 − β1

0

)
= c22 [Φn+1 + Φn−1] + c21

[
u1
n+1 + u1

n−1

]
= 0, (2.45)

which can be solved using the discrete Fourier transform

Φn =
∑
κ

Φ̃κe
iκn; u1

n =
∑
κ

ũ1
ke

iκn. (2.46)

In the Fourier space the equation for Φn reads as

Φ̃κ

(
β2
0 − β1

0

)
= 2 cos (κ)

(
c22Φ̃κ + c21ũ1

κ

)
(2.47)

and can be solved straightforwardly

Φ̃κ =
2 cos (κ) c21ũ1

κ

(β2
0 − β1

0)− 2c22 cos (κ)
≈ 2 cos (κ) c21ũ1

κ

(β2
0 − β1

0)
. (2.48)

Here we assume, that the mismatch (β2
0 − β1

0) between two waveguide modes is much

larger than the coupling constant c22, which is justified for the WGAs used in this

thesis. After transforming back to real space this results in an equation for mode 2

u2
n(z) =

c21

(β2
0 − β1

0)

[
u1
n+1 + u1

n−1

]
exp
[
i
(
β1
0 − β2

0

)
z
]

(2.49)
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which can be inserted into Eq. (2.42) and leads to

i
∂

∂z
u1
n + 2Cmixu

1
n + c11

[
u1
n+1 + u1

n−1

]
+ Cmix

[
u1
n+2 + u1

n−2

]
= 0 (2.50)

with

Cmix =
c12c21

(β2
0 − β1

0)
. (2.51)

The obtained result in Eq. (2.50) depends now only on one mode. Compared with the

well known coupled mode equations for a monomode WGA [37], two additional terms

appear. The term 2Cmixu
1
n results in a shift of the phase velocity and can be treated as

part of the local perturbations described in Section 2.1.3. The term Cmix

[
u1
n+2 + u1

n−2

]
is similar to the next-nearest neighbor coupling terms appearing in specially designed

WGAs [149–152] or when the assumption of weak linear coupling is dropped [153].

The linear mode mixing effects are weak if the linear mismatch (β2
0 − β1

0) between the

waveguide modes is large, as we already assumed. For the WGAs and modes under

investigation in this thesis, Cmix is always more than 20 times smaller than the coupling

constant between similar modes and is neglected. However, this cannot be assumed in

general and has to be questioned separately for each WGA.

2.3 Normalized coupled mode equations

The complete set of equations describing the propagation of one FW mode uFW
n and the

νth of several SH modes uν
n in the nth waveguide of a large WGA under the influence

of a second order nonlinearity is

(
i
∂

∂z
+

i

vFWg

∂

∂t
− DFW

2

∂2

∂t2
+ΔβFW

lin (z) + i
αFW

2

)
uFW
n + cFW

[
uFW
n+1 + uFW

n−1

]
(2.52)

= −ωFW
∑
ν

χν
effu

FW∗
n uν

n exp [−iΔβνz] ,

(
i
∂

∂z
+

i

vνg

∂

∂t
− Dν

2

∂2

∂t2
+Δβν

lin (z) + i
αν

2

)
uν
n + cν

[
uν
n+1 + uν

n−1

]
= −ωFWχν

eff

[
uFW
n

]2
exp [iΔβνz] .

Although these equations reflect the physical roots of the different effects, they are not

well suited for numerical treatment due to the vastly different magnitudes of the various

coefficients. This can be improved by a set of normalizations. First the coefficient of

the group velocity mismatch (GVM) for the SH mode ν is expressed as the difference
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between the inverse group velocities of FW and SH

δν =
1

vνg
− 1

vFW
g

. (2.53)

The nonlinear interaction strengths between the various SH modes and the FW mode

are normalized to that of a distinct mode SH1

χν
eff = γνχSH1

eff , (2.54)

which results in γSH1 = 1. If the propagation length is rescaled by a scaling length

z = z̄L0, the coupling constants, propagation constants, and losses can be readjusted

like

cμ =
Cμ

L0

,Δβν =
Δν

L0

, Δβμ
lin (z) =

Δμ
lin (z)

L0

, and αμ =
2ᾱμ

L0

, (2.55)

with ν applying only for SH modes. Now the amplitudes are normalized according to

uFW
n = AFW

n

1

L0χSH1
eff ωFW

, uν
n = Aν

n

exp (iΔβνz)

L0χSH1
eff ωFW

. (2.56)

Finally, the time is scaled by applying a coordinate frame moving with the FW pulse

and normalizing with a fixed scaling time t = τT0 − z
vFW
g

. Thus, the dispersion coeffi-

cients can be set as

δν = δ̄ν
T0

L0

, Dν = D̄ν T
2
0

L0

. (2.57)

The substitution of all the equations given above in Eqs. (2.52) leads to a set of nor-

malized equations

(
i
∂

∂z̄
− D̄FW

2

∂2

∂τ 2
+ΔFW

lin (z) + iᾱFW

)
AFW

n + CFW
[
AFW

n+1 + AFW
n−1

]
(2.58)

= −
∑
ν

γνAFW∗
n Aν

n,(
i
∂

∂z̄
+ δ̄ν

∂

∂τ
− D̄ν

2

∂2

∂τ 2
−Δν +Δν

lin (z) + iᾱν

)
Aν

n + Cν
[
Aν

n+1 + Aν
n−1

]
= −γν

[
AFW

n

]2
,

which can now be treated numerically with great efficiency. Both sets of equations

Eqs. (2.52) and Eqs. (2.58) describe the same phenomena and will both be used equally

throughout this thesis.
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2.4 Experimental methods

In the preceding sections it was explained how nonlinear light propagation in WGAs

is described within the framework of the coupled mode theory. The following chapters

of this thesis are devoted to particular effects described by these general equations.

However, the aim of this thesis is not only to theoretically account for new effects

connected to higher order modes, but also to demonstrate them experimentally. To this

end now a versatile set of experimental tools to monitor light propagation is described,

which is used later on to prove our predictions. First, the generation of the high power

input radiation necessary to study nonlinear effects is introduced in detail, afterwards

the complete setup will be explained.

2.4.1 Tunable high power light source

Some requirements for the laser light used in the experiments can already be extracted

from the physical fundamentals of the effects occurring in the WGA. To probe beam

propagation for different values of the phase mismatch defined in Eq. (2.32), the light

source needs to be tunable. To avoid strong dispersion of the wavelength dependent

phase mismatch across the spectrum of the measurement signal, the spectral width

of the used laser source should be small. Furthermore, the nonlinear coefficient χν
eff is

very small and large powers are necessary to produce detectable nonlinear effects. High

peak powers are usually achieved by using pulsed lasers with pulse durations in the

range of ps or fs. However, to not contradict with the small bandwidth required, the

pulses should not be shorter than a few ps. Finally, to enable efficient beam shaping

and coupling to an optical waveguide, the beam profile of the laser should be close to

an ideal Gaussian beam.

A very wide tuning range in the sought after near-infrared (NIR) wavelength band

can be provided by tunable diode lasers, which are available with tuning ranges from

1260 nm to 1640 nm [154]. These lasers are usually fiber coupled, hence provide a very

good beam profile. Nevertheless, the output powers are limited to a few mW, not

enough to observe most of the effects discussed in this thesis. Fiber amplifiers, which

could provide higher powers, are limited by the small amplification bandwidth of the

usually employed Erbium doped fibers [155, 156]. The required spectral ranges are

supported by optical parametric amplifiers (OPAs), which use non-degenerated three-

photon mixing to transfer energy from a pump frequency to the amplified frequency

[33,157]. In the laser system used to perform the experiments described in this thesis,

the fiber and OPA approaches are combined. A fiber coupled tunable diode laser

provides the controllable large wavelength range and an excellent beam profile. The

beam from the fiber is than amplified in a specially designed OPA.

The OPA used here, whose operation principle is shown in Fig. 2.1, was designed
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Figure 2.1: Scheme of the operation principle of the two stage, cw-seeded noncollinear
optical parametric amplifier (NOPA). The arrows and � symbols on the beams in the
sketch denote the beam polarization.

and built at the Ludwig-Maximilians-Universität Munich [158] and is a noncollinear

optical parametric amplifier (NOPA) [159–161]. The amplifier is pumped by pulses

with a full-width half-maximum (FWHM) length of 11 ps. The pump pulse energy is

≈ 400 μJ with a repetition rate of 5 kHz and a central wavelength of 1064 nm. In a first

step the pump light is frequency doubled by SHG in a β-barium borate (BBO) crystal.

The resulting light beam with a wavelength of 532 nm (green in Fig. 2.1) is divided

with a ratio of 40:60 by a beam splitter to pump the two amplification stages. The

amplification stages again consist of BBO crystals. Here the pump beam is split by

noncollinear difference-frequency generation (DFG) into signal and idler frequencies,

which have to fulfill the energy conservation relation ωpump = ωsignal + ωidler. The

amplification of signal and idler is determined by the phasematching properties of the

BBO crystal, which allow for several pairs of frequencies and directions to be generated.

To control the amplified signal, the desired NIR frequency is seeded, thus fixing also

the propagation direction and the idler properties. The cw seed light is generated in a

standard tunable diode laser, allowing for computer controlled wavelength tuning over

a wide range. After the BBO amplifier stages the idler photons generated in the DFG

process are filtered out. Since only short pulses of the cw-seed are amplified, the two

amplification stages need to be synchronized to always overlap a pump pulse with a

seed pulse. This is achieved by placing one of the pump beam folding mirrors onto a

linear stage, thus enabling to change the propagation distance of the pump pulses.

The output pulses of the described NOPA are characterized temporally with an

autocorrelator and spectrally with an optical spectrum analyzer. The laser system

generates ≈ 5 ps long pulses with a repetition rate of 5 kHz and a pulse energy of

≈ 4 μJ for the complete tuning range of the used tunable diode lasers. The spectral

FWHM bandwidth of the generated pulses is always 0.11THz, which corresponds to
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Figure 2.2: Sketch of the setup including (a) laser and amplifier, (b) beam shaping, (c)
sample coupling and detection instruments for (d) the FW and (e) the SH frequency
components. The beam paths of FW and SH light are drawn in red and blue, respec-
tively. The abbreviations mean MO - microscope objective and PD - photodetector.
The TM polarization is denoted by the � symbol.

0.85 nm at a wavelength of 1500 nm. Computer controlled wavelength changes within

a bandwidth of 20 nm can be achieved without changing the amplifier setup due to the

large phasematching bandwidth of the BBO crystals. Only the seed laser wavelength

needs to be adjusted. However, the BBO crystals have to be readjusted when tuning

across a larger spectral range is necessary. The low power cw-beam of the seed laser is

always part of the NOPA output as a weak background signal . Consequently, the laser

system can also be used as a low power cw source by switching off the pump pulse.

2.4.2 Optical setup and detection tools

The central part of the experimental apparatus used here is the investigated WGA

sample. Since the described laser system generates a light beam with diameters of

several mm, suitable optical elements are employed to couple light in and out of the

sample. These coupling devices and the sample stage form the core part of the setup

described here. To probe the various aspects of light propagation in dependence on the

characteristic parameters of the coupled light, e.g. power, wavelength, beam shape,

beam tilt and beam position, these parameters have to be tunable. They are set in a

separate building block between laser system and sample coupling. Finally, the light

coupled out of the sample has to be detected and evaluated. Since we use two distinct

wavelength ranges, FW and SH, two separate detection systems are necessary, which

form the last building blocks of a flexible setup.

Fig. 2.2 shows a sketch of the experimental apparatus used for the measurements

described throughout this thesis. The general building blocks described above are



CHAPTER 2. BASIC CONSIDERATIONS 27

marked by the dashed labeled boxes. The beam manipulation system is shown in

Fig. 2.2(b). The polarization is fixed by a polarizer to TM (vertical) to be parallel to

the optical axis of the sample crystals and thus use the χ
(2)
333 element of the nonlinear

susceptibility tensor. To set the laser beam power, a rotating half-waveplate in front

of the polarizer is used. The waveplate controls the polarization of the incoming beam

and hence determines the power fraction transmitted by the polarizer. The position

of the waveplate is changed computer controlled according to the desired input power.

Feedback is provided by an Indium-Gallium-Arsenide (InGaAs) photodetector measur-

ing the power of a fixed small fraction of the beam, which is split off after all optical

elements but in front of the coupling objective. According to the desired experimental

conditions also the beam width has to be adjusted. If just a single waveguide of the

WGA needs to be excited, after the coupling objective a round focus spot with a full-

width at half-maximum (FWHM) of ≈ 4 μm should be realized. For this purpose, the

lens coupling to the sample is chosen such that it forms the necessary focal spot out of

the existing laser beam, which has a FWHM of 2mm and a negligible diffraction at a

wavelength of 1500 nm. To excite several waveguides in the 1D WGA, the horizontal

beam width needs to be adjusted accordingly, with a maximum FWHM in the range

of 100 μm. To form an elliptic focal spot after the coupling objective a cylindric lens

is introduced in the beam path in front of it. Together they form a telescope for only

the horizontal direction of the beam. To ensure that both horizontal and vertical focus

positions of the coupling spot are in the same longitudinal position, the focus of the

cylindric lens has to be in the backside focal point of the objective. The horizontal

beam width can now be chosen by using an appropriate cylindric lens. A smaller focus

(and smaller focal length) of the cylindric lens leads to a wider ellipse of the coupling

spot after the microscope objective. In the experiments presented here, two different

cylindric lenses are used. In Chapter 3, a lens with a focal length of 200mm is used to

create an elliptic focus with a horizontal FWHM of 110 μm, whereas in Chapter 4 and

Chapter 5 the desired horizontal FWHM of 60 μm is achieved with a cylindric lens of

400mm focal length.

Finally, the angle of the exciting beam with respect to the front facet of the sample

has to be changed in order to achieve phase differences between adjacent excited wave-

guides. If only a single angle is necessary to perform the measurement, as is the case

in Chapter 4 and Chapter 5, this task is solved by inserting a rotating glass plate in

front of the coupling stage which slightly shifts the beam away from the center of the

microscope objective (see Fig. 2.2(b)). This leads to a tilt of the beam after the objec-

tive, shown schematically in Fig. 2.3(a). However, since the available rotating stages

are not motorized, this method is not feasible if the beam angle has to be scanned

continuously, as in Chapter 3. Hence, the beam shaping part needs to be modified to

fulfill this task. To this end, a moving mirror on a computer controlled linear stage as
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Figure 2.3: (a) Scheme of the coupling to the sample with laterally shifted beams. (b)
Beam shaping and coupling parts of the setup used in Chapter 3.

shown in Fig. 2.3(b) was utilized to move the beam laterally. The part of the setup

shown in Fig. 2.3(b) is used instead of the elements in Fig. 2.2(b). To achieve an input

spot width and phase profile independent of the mirror position the cylindric lens is

also placed on the linear stage.

The coupling system of the setup depicted in Fig. 2.2(c) consists of two microscope

objectives and the sample holder. For the coupling into the sample a Newport F-L10B

laser diode objective was used. This 10X objective has a very high transmission of

0.94 for wavelengths in the near infrared. The output coupling and imaging onto the

detection units is performed with different microscope objectives, depending on the

measurement task. For most of the measurements presented throughout this thesis,

also a 10X microscope objective is employed. The sample itself is placed in an oven

and usually heated to 220℃ to prevent SH induced photorefraction [31].

Behind the output coupling objective a dichroic beamsplitter is installed, which

transmits the FW and reflects the SH components. This is necessary to divide the

beam between the detection systems for both wavelengths. In the FW detection system

in Fig. 2.2(d), first a beamsplitter separates a small part of the FW power and guides

it to a power measuring indium-gallium-arsenide (InGaAs) photodetector. The FW is

measured by an InGaAs charge-coupled-device (CCD) camera, which allows to record

the 2D output intensity profiles of the WGA. The used camera is a Xenics Xeva-1.7-640

with a resolution of 640 × 512 pixels. The camera is read out by a computer, which,

based on the illumination level, automatically sets filter wheels to always provide the

best possible dynamic range without camera saturation.

The SH detection system in Fig. 2.2(e) works in a similar a fashion. First, a small

part is split off and routed to a power detector. Again a computer controlled filter

wheel is installed to set the excitation levels for the used cameras. However, not only

spatial information needs to be obtained for the SH but also the spatial spectrum. A

4f-setup with two lenses of 75mm focal length is utilized to achieve this. The length

of four times this focal distance starts at the image plane of the microscope objective
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coupling out of the sample, which is fixed since an FW image has to be generated on

the FW camera. Here also a spatial filter is installed, which allows for the selection

of certain waveguides for further evaluation. A beamsplitter is integrated in the 4-f

setup to allow for simultaneous detection of spatial and spatio-spectral intensity. The

spatial intensity of the SH is detected after the 4f-setup with a Hamamatsu ORCA

silicon (Si) CCD with a resolution of 1344 × 1024 pixels. The SH spatial spectrum

is monitored in the Fourier plane of the 4f-setup. Here either a Yobin-Yvon iHR320

spectrometer, which allows also for spectral decomposition of the SH signal, or a Basler

A102f Si-CCD with 1392× 1040 pixels resolution is used.

The presented setup allows for a great flexibility in exciting the sample under test.

It enables computer controlled scans of the input power, wavelength, and, with the

modification presented in Fig. 2.3, input angle. For each set of excitation parame-

ters, the powers and output profiles of both frequency components can be measured

automatically under optimized measurement conditions. Hence, automated parameter

scans are possible.



Chapter 3

Second harmonic generation

SHG is one of the most studied and applied nonlinear optical processes. The generation

of light at the SH frequency ωSH by frequency doubling of an input FW frequency ωFW

is the first experimentally observed nonlinear optical effect [27]. It is widely used

to generate laser wavelengths not available otherwise. Additionally, since the SHG

is well understood theoretically, it can be used for structural investigation of optical

crystals [162].

One of the peculiarities of SHG is the necessity of phasematching between FW and

SH fields to achieve a high conversion efficiency. With the QPM technique, phase-

matching can be only achieved for singular wavelengths due to dispersion. This leads

to a resonance-like dependence of the SH output power on the FW input frequency.

In this chapter the basic properties of SHG and phasematching in WGAs are reviewed

and it is shown that due to the SHG resonances specific SHG modes can be excited

precisely. This ability is used to characterize the properties of SHG modes in WGAs,

which is important for the modeling of later experiments. In these characterization

experiments, changes of the phasematching properties due to nonlinear interactions

with several modes [77] must be avoided. To achieve this, the lowest FW input powers

sufficient to generate detectable SH are used. The necessary power can already be

delivered by a cw laser, hence our mathematical description is restricted to the cw case

and the dispersion terms in Eqs. (2.52) are dropped.

Already in Chapter 2 it was shown, that the guided modes of all frequencies are

determined by the single waveguide and that the nonlinear effects act only locally.

Consequently, in Section 3.1 first the linear and nonlinear properties of single wave-

guides are studied. In Section 3.2 the focus will be on SHG in a WGA. Here, the

influence of the transverse degree of freedom in WGAs on the phasematching for SHG

will be investigated and methods using the peculiarities of SHG to characterize the

linear states of the WGA are discussed.

30
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3.1 The isolated waveguide

The majority of the characteristic coefficients in the full set of propagation equations

Eqs. (2.52) are derived from properties of the linear eigenmodes of a separated wave-

guide. Hence, in Section 3.1.1 the relevant eigenmodes and their respective propagation

constants are introduced for both FW and SH frequencies. SHG between several pairs

of FW and SH modes is investigated in Section 3.1.2 to get insight into the dependence

on the mode propagation constants, mode symmetries and excitation conditions.

3.1.1 Properties of guided modes

Lithium niobate, which is the host material for all WGAs used in this thesis, is a

uniaxial crystal [137]. Hence, the extraordinary permittivity ε̂33 in the dielectric tensor

in the crystal coordinate system differs from the two similar ordinary values of ε̂11 and

ε̂22. In this thesis only electric fields polarized linearly in the y-direction are taken into

account. Hence, only the wavelength dependent extraordinary permittivity ε̂33 (λ) and

the refractive index nhost (λ) =
√

ε̂33 (λ) will be used from now on to characterize the

material.

The waveguides and WGAs used for the experiments described in this thesis were

fabricated at the University of Paderborn using titanium indiffusion [163–165]. This

technique uses thin stripes of titanium, which are deposited on and then indiffused

into the lithium niobate wafer to generate the locally increased refractive index needed

to guide light. The resulting profile of the refractive index in the lithium niobate

crystal is n (x, y, λ) = nhost (λ) + ΔnTi (x, y, λ), where nhost (λ) is the refractive in-

dex of bulk lithium niobate and ΔnTi (x, y, λ) is the change of the refractive index

induced by the indiffused titanium. The latter can be calculated with ΔnTi (λ, x, y) =

fe (λ)Feρ (x, y), where Fe = 1.2 · 10−23 cm3 is a concentration constant and fe (λ) =

(0.839λ2) / (λ2 − 0.0645) accounts for the dispersion. The concentration of titanium in

the lithium niobate crystal ρ (x, y) is described by [166–168]

ρ (x, y) =
1

2
ρ0

(
erf

[
wTi

2Dx

(
1 +

2x

wTi

)]
+ erf

[
wTi

2Dx

(
1− 2x

wTi

)])
exp

(
− y2

D2
y

)
. (3.1)

Here ρ0 = 6.412 · 1022 cm−3dTi/Dy is the concentration at the surface of the substrate

with the thickness of the titanium stripe rTi. wTi is the width of the titanium stripe and

Dx and Dy are the diffusion constants parallel and perpendicular to the surface of the

lithium niobate substrate, respectively. The determination of the diffusion constants is

crucial to describe the index profile in the samples. Although they have been measured

in bulk lithium niobate [169, 170], for the samples used in the experiments presented

here they vary [171]. The diffusion constants of each sample are determined experi-

mentally by fitting simulated mode profiles for the refractive index profile calculated
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Figure 3.1: Typical change of refractive index due to titanium indiffusion in a
Ti:LiNbO3 waveguide. The waveguide parameters are Dx = 4.5 μm, Dy = 5.78 μm,
rTi = 100 nm, wTi = 7 μm, and λ = 1550 nm. The upper edge of the substrate is
localized at y = 0.

with Eq. (3.1) to the measured mode profiles, as is described in detail in Appendix B.

Fig. 3.1 shows ΔnTi calculated with the concentration profile Eq. (3.1) with Dx =

4.5 μm and Dy = 5.78 μm. The titanium thickness rTi = 100 nm and width wTi =

7 μm will be the same for all samples described in this thesis. The refractive index of

the lithium niobate substrate can be calculated for a large range of wavelengths and

temperatures [172].

With the refractive index profile n (x, y, λ) the eigenmodes of a waveguide are de-

fined as solutions of the wave equation Eq. (2.4) for the y-components of the electric

field in the form of Eq. (2.5). The eigenmode field profiles eμy (x, y, λ) of the waveguide

described with the parameters mentioned above were calculated with FEM and are

shown in Fig. 3.2. For a wavelength of 1500 nm the waveguide supports two guided

modes shown in Fig. 3.2(a). The number of guided modes at smaller wavelengths is

much higher, in Fig. 3.2(b) the eight modes with the highest propagation constants

for a wavelength of 750 nm are plotted. The modes are labeled FW or SH, according

to their frequency, followed by the numbers of sign changes of the electric field in y-

and x-direction, e.g. SH00 for the first order mode of the SH frequency. An important

characteristic of the modes is their symmetry with respect to the x = 0 axis. Even

modes with eμy (x, y, λ) = eμy (x,−y, λ) must have an even number of zero crossings in

x-direction, while odd solutions have eμy (x, y, λ) = −eμy (x,−y, λ) and an odd number

of zero crossings.

The eigenvalues βμ (λ) of the eigenvalue problem introduced by ansatz Eq. (2.5)

and Eq. (2.4) are the propagation constants of the eigenmodes. However, the phase

velocity of the guided modes is often described with the effective index nμ
eff (λ) of the

mode, which is defined by

βμ (λ) =
2π

λ
nμ
eff (λ) . (3.2)
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Figure 3.2: (a) Normalized y-component of the electric field of the eigenmodes with
mode indices for the refractive index profile shown in Fig. 3.1 for a wavelength of
1500 nm and a temperature of 220℃. (b) Same as (a) for a wavelength of 750 nm.
(c,d) Wavelength dependence of the effective indices for (c) FW and (d) SH modes.

In Figs. 3.2(c) and (d) the wavelength dependence of the effective indices of the cal-

culated modes is plotted. All effective indices decrease monotonically with increasing

wavelength. Their dispersion is mainly determined by the material dispersion and

is almost independent from the mode index. Notably, the FW01 mode has its long

wavelength cut-off at around 1545 nm and is not guided for larger wavelengths.

After the introduction of the eigenmodes and propagation constants and a review of

their basic properties, in the next section SHG of the eigenmodes of different frequencies

will be analyzed in a single waveguide.

3.1.2 Second harmonic generation in a single waveguide

The nonlinear propagation of harmonic waves of an FW mode ξ and an SH mode ν in

a homogeneous lossless waveguide is described by

i
∂

∂z
uξ (z) = −ωFW

∑
ξ′

∑
ν′

χν′ξξ′
eff uξ′∗ (z) uν′ (z) exp

[
−iΔβν′ξξ′z

]
,

i
∂

∂z
uν (z) = −ωFW

∑
ξ′ξ′′

χνξ′ξ′′
eff uξ′ (z) uξ′′ (z) exp

[
iΔβνξ′ξ′′z

]
, (3.3)
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Figure 3.3: (a) SH power P SH in dependence on the mismatch and the propagation
distance. (b) Mismatch dependence of the SH power for a fixed sample length L.

derived from Eqs. (2.31) by omitting inhomogeneity, loss and dispersion. ξ′ and ξ′′

index the FW modes whereas ν ′ denotes the SH modes. Eqs. (3.3) can be solved

analytically for only one FW and SH mode and uSH (0) = 0 [28]. In Fig. 3.3(a)

the analytically calculated SH power P SH (z) =
∣∣uSH (z)

∣∣2 for this case is plotted for

different mismatches in dependence on the propagation distance. The total power in

the waveguide is conserved (if losses are neglected), P SH + PFW = const. For Δβ = 0

the FW is completely depleted and converted to SH. For increasing mismatch the

maximum conversion efficiency decreases, and the energy oscillates between FW and

SH.

For the multimode case the dependence of the SH output power on the phase

mismatch for a fixed propagation length L can be calculated in the undepleted pump

approximation, i.e. the FW modes fulfill
∣∣uξ (z)

∣∣2 ≈ ∣∣uξ (0)
∣∣2 ∀ ξ. These assumption

implies, that only a negligible part of the energy of the FW field is transferred to the

SH field. In this case the amplitude of any SH mode ν is [135, 173]

uν (L) = −ωFW
∑
ξξ′

χνξξ′
eff uξ (0) uξ′ (0)

Δβνξξ′

[
exp
(
iΔβνξξ′L

)
− 1
]
. (3.4)

The power of the generated SH field is P ν (L) = |uν (L)|2 and in general is dependent

on the interference of SH generated by several FW mode pairs ξξ′. However, in realistic

systems the mismatches Δβνξξ′ differ much for different FW mode pairs. Thus, in the

vicinity of the SHG maximum for a particular pair of FW modes at Δβνξξ′ = 0, the

interference terms are neglected. The resulting power in the νth SH mode is

P ν (L) =
1

2

∑
ξξ′

(
ωFWχνξξ′

eff

)2
P ξ (0)P ξ′ (0) sinc2

(
Δβνξξ′L

2π

)
, (3.5)

with sinc (x) = sin (πx) /πx. The normalized SH output power of an SHG process with
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one pair of FW modes is shown in Fig. 3.3(b). The maximum conversion efficiency is

obtained for vanishing mismatch and the SH output power quickly drops for increasing

Δβνξξ′ . If different terms of the sum in Eq. (3.4) are taken into account, the SH output

power in dependence on the mismatch shows several separated maxima.

Fig. 3.3(b) shows that significant SHG for a certain mode combination can only

be achieved if the corresponding phase mismatch Eq. (2.32) vanishes. This can be

controlled by either employing the temperature dependence of the refractive index

of lithium niobate [172] or the dispersion of the mode propagation constants [see

Figs. 3.2(c,d)]. In the second case, used here, the wavelength of the interacting fields

is adjusted and the temperature is kept constant.

SHG depends on the phase mismatch, but the maximum output power is determined

by the effective nonlinearity χνξξ′
eff defined in Eq. (2.33). This quantity depends on the

overlap integral

Kνξξ′ =

∞∫
−∞

∞∫
−∞

eν0e
ξ∗
0 eξ

′∗
0 dx dy (3.6)

of the mode profiles participating in the nonlinear interaction. The absolute value of

Kνξξ′ depends sensitively on the specific mode profiles and hence on the fabrication

parameters of the investigated waveguide. However, since the mode profiles eμ0 are real,

universal rules with respect to the mode symmetry can be formulated. For degenerate

interactions (ξ = ξ′) the overlap integral with odd SH modes is alway 0 since the

product of two functions with equal symmetry is always even. The same holds true

for any two FW modes with the same symmetry. Hence, the only way to achieve a

non-vanishing overlap integral with an odd SH mode is to utilize interactions with one

even and one odd FW mode.

Figure 3.4: Phasematching condition for a single waveguide. (a) Effective refractive
indices of the FW and even SH modes, where the SH indices include the contribu-
tions of the QPM grating. (b) Effective indices for odd SH modes accounting for the
QPM grating and mean effective index of both FW modes. The dashed lines mark all
phasematching wavelengths.
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Figure 3.5: (a) Tuningcurve measurements in a single waveguide with centered and
shifted excitation. The FW input power is 3 mW for the complete spectral range. (b)
FW output of the waveguide for both excitations. (c) SH modes for symmetric FW
excitation. The given wavelengths correspond to the peaks in the tuningcurve. (d)
Even and (e) odd SH modes appearing only for detuned excitation.

For the SH waveguide modes calculated in Section 3.1 the possible nonlinear inter-

actions are visualized in Fig. 3.4. In Fig. 3.4(a) the effective indices of the FW modes

nξ and the quantity nν
QPM = nν

eff + λFW/2ΛQPM, accounting also for the periodic pol-

ing, are shown for even SH modes. Each intersection designates a wavelength where

the corresponding phase mismatch vanishes. In Fig. 3.4(b) the same information is

plotted for the non-degenerate interactions possible in this waveguide, where two dif-

ferent FW modes of the same wavelength interact with one SH mode. For the FW

nFW
ndeg =

(
nFW00
eff + nFW01

eff

)
/2 is plotted to account for the mixing of both FW modes.

All phasematching wavelengths are denoted by the dashed lines in Fig. 3.4(a) and (b).

Again, the cut-off of the FW01 mode imposes a long wavelength limit for possible

nonlinear interactions involving this mode.

SHG in a single waveguide is studied experimentally by coupling an FW beam

with 3 mW power into a lithium niobate waveguide and measuring the SH output

power in dependence on the FW wavelength. The spectrum obtained by this type

of measurement is called a tuningcurve. The Gaussian input spot can be adjusted

and hence the overlap integrals Eqs. (2.9) with the FW modes can be influenced.

Tuningcurves of the single waveguide for two different adjustments of the input spot

are presented in Fig. 3.5(a). The blue curve is measured for a symmetric excitation in

the waveguide center, whereas the red curve is measured with an asymmetric excitation
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shifted horizontally by ≈ 3 μm. Both curves show a number of characteristic peaks,

which correspond to the resonances obtained for low efficiency SHG. However, in the

experiment these maxima differ from the sinc-function Eq. (3.5) because of sample

inhomogeneities. Fig. 3.5(b) shows the profiles of the FW wave at the sample output.

For the symmetric excitation only the overlap with the symmetric fundamental mode

FW00 is large, which consequently is detected at the array output [see Fig. 3.2 for

comparison]. In the asymmetric case, the overlap integrals with both propagating

FW modes have similar values, and hence the FW output is a superposition of the

FW00 and FW01 mode profiles. As is expected from the symmetry considerations, the

FW excitation has a profound influence on the measured tuningcurves. If the FW00

mode is excited exclusively, only even SH modes can be generated. This is verified

by measuring the mode profiles of the SH with a CCD camera at the wavelength of

maximum SHG. Fig. 3.5(c) shows the SH mode profiles measured for the symmetric

(FW00) excitation. As expected, both modes are even. These two SH modes are

excited at the same wavelengths also for detuned input field. Additional peaks appear,

which are due to the excitation of the FW01 mode in the detuned case. Figs. 3.4(d,e)

show the corresponding even and odd SH mode profiles, respectively. According to

the argument given above, the odd modes can be only generated if both FW modes

are excited. The position of the phasematching wavelengths is qualitatively in good

agreement with the predictions from the FEM simulations Fig. 3.4. The deviations are

in the range of a few nm and are a result of the influence of very small variations of

the actual refractive index profile on the properties of the modes. The measurements

show, that higher order SH modes can be precisely excited by SHG. Thus, suitable

modes and clusters of phasematching resonances for the experiments in Chaps. 4 and

5 can be identified.

3.2 Waveguide arrays

After we explored the properties of SHG in a single waveguide in the preceding section

we will now focus on WGAs. In contrast to the last section, energy can now be

exchanged between adjacent waveguides. First, the consequences of this additional

transverse degree of freedom will be analyzed in detail. The linear propagation of light

with a single frequency in a homogeneous lossless WGA is, according to Section 2.2,

described by

i
∂

∂z
uμ
n (z) + cμ

[
uμ
n+1 (z) + uμ

n−1 (z)
]
= 0, (3.7)

where the initial condition uμ
n (0) is determined by the overlap of the exciting beam

with the waveguide modes according to Eq. (2.9).

For WGAs, where the number of waveguides N goes to infinity, Eq. (3.7) can be
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solved analytically. To this end the equation has to be Fourier transformed according

to

ũμ (κ, z) =
1

2π

∑
n

uμ
n (z) exp (−iκn) , uμ

n (z) =

π∫
−π

ũμ (κ, z) exp (iκn) dκ. (3.8)

The ũμ (κ, z) are the amplitudes of the eigenmodes of the infinite WGA. In the coupled

mode approximation these so-called supermodes eμarray (x, y, κ) are linear combinations

of the mode profiles eμ (x, y), where κ is the phase difference between adjacent wave-

guides, eμarray (x, y, κ) =
∑

n e
μ (x, y − nd) exp (iκn) with the period d of the WGA.

These supermodes are very good approximations of the Floquet-Bloch modes of the

periodic system [23, 24], which can be found by solving Eq. (2.4) for the dielectric

profile of the periodic array. However, in general not all Floquet-Bloch modes can be

approximated by supermodes and hence, the discrete model cannot always be used. A

particular example are modes where the linear inter-mode mixing cannot be neglected

as discussed in Section 2.2.2. Here the Floquet-Bloch modes consist of contributions

from several waveguide modes.

Applying the discrete spatial Fourier transform Eq. (3.8) to Eq. (3.7) yields the

propagation equation for the supermodes

[
i
∂

∂z
+ 2cμ cos (κ)

]
ũμ (κ, z) = 0. (3.9)

The solution of this equation is a mode amplitude with constant magnitude along z

but an evolving phase, which is 2cμ cos (κ) z. With this we can define the longitudinal

wavenumber of the supermode in the slowly varying envelope approximation, which

depends on the transverse wavenumber

kμ (κ, λ, T ) = 2cμ (λ, T ) cos (κ) . (3.10)

Eq. (3.10) is known as the diffraction relation of the weakly coupled WGA and deter-

mines the linear propagation in the array [37]. The complete longitudinal wavenumber

of a supermode in the WGA, describing the physical phase velocity, is

kμ
0 (κ, λ, T ) = 2cμ (λ, T ) cos (κ) + βμ

0 (λ, T ) = kμ (κ, λ, T ) + βμ
0 (λ, T ) . (3.11)

Eq. (3.11) determines a continuous band of longitudinal wavenumbers for the super-

modes of the waveguide mode μ, depending on the transverse wavenumber and is

hence often termed the band of the supermode. In the WGA the wavenumber spec-

trum of each single waveguide eigenmode is broadened to form a band, just depending

on the coupling constant. Fig. 3.6 shows the Floquet-Bloch bands of an array with
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Figure 3.6: Bands of the FW (left panel) at 1500 nm and the SH at 750 nm. The black
line in the left panel shows the wavenumber for propagation in bulk lithium niobate
and the labels denote the mode indices.

Dx = 3.8 μm, Dy = 4.45 μm and a period of d = 12.5 μm, which are calculated for

the complete periodic system [132]. The bands are periodic with a period of 2π and

symmetric with respect to κμ = 0. Hence, it is sufficient to plot only the bands for

one half of the first period of the bandstructure. Commonly, each period of the com-

plete bandstructure is called a Brillouin zone. The first FW band and the first four

SH bands indeed can be approximated with the cos-function Eq. (3.11). However, the

FW01 band is clipped by the cut-off of waveguiding in the array, marked by the black

line. Hence, it cannot be described with the coupled mode approximation and thus not

with Eq. (3.11). In the following we always assume, that only one complete FW band

exists in the investigated arrays. Hence, only one equation is necessary to describe this

FW mode, which is denoted by the index FW.

If only one supermode with the transverse wavenumber κ0 is excited, back trans-

formation of the solution of Eq. (3.9) according to Eq. (3.8) leads to the solution in

the spatial domain

uμ
n (z) = uμ

0 (κ0) exp (i [2c
μ cos (κ0) z + κ0n]) , (3.12)

which describes a discrete plane wave with the fixed amplitude uμ
0 (κ) in all waveguides

propagating with the longitudinal phase velocity kμ (κ0) and a fixed phase difference

of κ0 between the waveguides.

In the following sections we will explore how SHG of plane waves in WGAs depends

on the transverse wavenumber κ and the longitudinal wavenumber kμ (κ).

3.2.1 Transverse phasematching

In Section 3.1 we investigated SHG in a single waveguide without transverse dynamics.

In this system the SH output depends mostly on the phase mismatch Δβνξξ′ due to
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Figure 3.7: (a) Spatial spectrum of the SH output of a WGA in dependence on the
FW transverse wavenumber. The crosses mark the maxima of one Fourier order. (b)
Linear fit of the SH transverse wavenumbers to the experimentally obtained maxima.

the necessary momentum conservation. The phase mismatch is defined solely by the

longitudinal propagation constants of the modes in the waveguides. As we have seen

above, a coupled WGA assembled from multiple waveguides is a two-dimensional (2D)

system, whose eigenmodes are also characterized by a transverse wavenumber. This

transverse momentum has to be conserved in SHG in WGAs. Hence, for the transverse

wavenumbers the relation

κSH = 2κFW + 2mπ,m ∈ N (3.13)

holds [119], where the second term on the right side accounts for the wavevector induced

by the periodic WGA.

This relation can be verified experimentally. To this end a WGA with d = 13.5 μm
is utilized and a wide FW beam with an FWHM width of 110 μm or ≈ 7 waveguides is

coupled to the WGA. This beam excites several FW supermodes centered around the

transverse wavenumber of the exciting beam, which is conserved upon excitation. For

the used wide input beam the resulting spatial spectrum is narrow enough to enable the

description of the beam dynamics by the properties of only the supermode in the center

of the spectrum [37] (see also Section 4.1). We measure the energy distribution of the

SH in the spatial spectrum in dependence on the angle of the FW beam and hence,

in dependence on the FW wave vector with the setup explained in Section 2.4.2. The

FW wavelength for each angle is set to achieve maximum SHG for a certain interaction

(the connection between the transverse wavenumber and the phasematching wavelength

will be studied in the next section). Fig. 3.7 shows a result which is obtained for the

interaction of the FW00 with the SH10 mode. The transverse wavenumber of the

FW is determined by monitoring the FW output in the spatial domain according to

Ref. [37].

For each transverse FW wavenumber a periodic pattern in the SH spatial spectrum
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is visible, where each maximum corresponds to one value of m in Eq. (3.13). The

differences between these maxima are 2π. The crosses in Fig. 3.7(a) mark transverse

SH wavenumbers which correspond to the same m. In Fig. 3.7(b) the points marked

in Fig. 3.7(a) are plotted again with a linear fit. We find, as expected, that the ratio

between κSH and κFW is 2.04± 0.05, which confirms the relation Eq. (3.13).

3.2.2 Second harmonic generation

In the previous section the relation of the transverse wavenumbers of a generated SH

wave and the generating FW field in a WGA was discussed. Now the efficiency of the

SHG process of the FW and SH supermodes defined by the transverse wavenumbers

κ0 and 2κ0 is investigated.

Nonlinear propagation of cw light in a WGA is described in the spatial domain by

i
∂

∂z
uFW
n + cFW

[
uFW
n+1 + uFW

n−1

]
= −ωFW

∑
ν′

χν′
effu

FW*
n uν′

n exp
[
−iΔβν′z

]
,

i
∂

∂z
uν
n + cν

[
uν
n+1 + uν

n−1

]
= −ωFWχν

eff

[
uFW
n

]2
exp [iΔβνz] .

(3.14)

Similar to the derivation of Eq. (3.4) in 3.1.2, we assume that the conversion efficiency

is rather low. Hence, the FW solution in the spatial domain is the linear solution

Eq. (3.12). This linear solution is inserted as a driving wave in the right hand side

of the SH equation of Eqs. (3.14) and the resulting equation is Fourier transformed

according to Eq. (3.8) to give

[
i
∂

∂z
+ 2cν cos (2κ0)

]
ũν (z) = −ωFWχν

eff

[
ũFW

]2
exp
[
i
(
2kFW (κ0) + Δβν

)
z
]
. (3.15)

We solve Eq. (3.15) in the Fourier domain using the ansatz

ũν (z) = Ãν (z) exp [ikν (2κ0) z] , (3.16)

where we set the longitudinal wavenumber of the considered SH supermode to kν (2κ0) =

2cν cos (2κ0). The resulting SH amplitude after a fixed length L, obtained by direct

integration analog to Eq. (3.4) under the assumption that Ãν (0) = 0, is

Ãν (L) = Ãν
0

{
exp
[
iL
(
2kFW (κ0)− kν (2κ0) + Δβν

)]− 1
}

(3.17)

with

Ãν
0 =

ωFWχν
eff

[
ũFW

]2
[2kFW (κ0)− kν (2κ0) + Δβν ]

. (3.18)

This solution has a similar structure as Eq. (3.4) in the spatial domain. Hence, the
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Figure 3.8: Scheme of the SH and FW bands in dependence on the wavelength, which
are represented by the blue and red planes, respectively. The line of phasematching is
marked by the blue spheres. The measurement procedure to determine the SH band
is sketched by the black line and the green measured SH power.

generated SH power is

P ν (L) =
1

2

(
ωFWχν

eff

)2
PFW (0)

2
sinc2

([
2kFW (κ0)− kν (2κ0) + Δβν

]
L

2π

)
. (3.19)

The maximum SH power is now achieved for [119]

2kFW (κ0)− kν (2κ0) + Δβν = 4cFW cos (κ0)− 2cν cos (2κ0) + Δβν = 0. (3.20)

The SHG output power again shows the resonant sinc-dependence, however, the posi-

tion of the maximum now depends also on the diffraction relations of the used bands.

Thus the maximum SHG is achieved for different wavelengths depending on the trans-

verse FW wavenumber.

3.2.3 Band characterization

The condition Eq. (3.20) for efficient SHG allows for the measurement of the bands if

the properties of one waveguide mode and its supermodes are known. For example,

from βFW00
0

(
λFW

)
and the corresponding coupling constant cFW00

(
λFW

)
all SH bands

which interact with the FW00 band can be measured. A scheme of the FW and SH

bands and the suggested measurement procedure is shown in Fig. 3.8. A very narrow

spatial spectrum of FW00 supermodes (ideally only single κFW) is excited by a cw-

laser. The laser wavelength is sweeped and hence states with different longitudinal

wavenumbers k0 (visualized by the black line in Fig. 3.8) are excited. If the excited

FW supermode has a vanishing phase mismatch to an SH band, efficient SHG takes

place. SH power is generated according to Eq. (3.19) (green line) and recorded with a

suitable detector. This procedure is repeated for many transverse wavenumbers. The
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Figure 3.9: Normalized measured SH power in dependence on the FW wavelength and
transverse wavenumber for the interactions of the FW00 band with (a) the SH00 band
and (b) different higher SH bands. (c) SH power at κFW = 0 as indicated by the dashed
line in (b). The insets show SH mode profiles measured at the wavelengths which are
indicated by the dotted lines. (d) Same as (c) for κFW = −π.

minimal range of FW transverse wavenumbers which allows for the determination of

the complete SH band is 0 ≤ κFW ≤ π. Eq. (3.20) is fulfilled at the wavelengths of

maximum SH power for each κFW, and the longitudinal wavenumbers of the SH band

at the corresponding wavelengths can be determined according to

kν
0

(
2κ, λSH

PM

)
= 2kFW

0

(
κ0, λ

FW
PM

)
+

2π

ΛQPM
. (3.21)

This scheme is realized with the setup for automatic beam angle tuning described in

Section 2.4.2. The vertical width of the elliptical beam is 110 μm, which ensures a

narrow spatial spectrum of the FW after excitation. The experiments are carried out

at room temperature, avoiding additional inhomogeneities introduced by the oven’s

temperature profile. Compared to other results presented in this thesis, this results in

smaller phasematching wavelengths.

In Figs. 3.9(a,b) the SH power measured in dependence on the FW wavelength and

the transverse wavenumber is shown for SHG with different SH bands for an array

with d = 12.5 μm. The measured data shows clear continuous traces which, however,

cannot readily be assigned to interactions with a certain SH band. To relate the

measured signal to specific SH bands we measure the mode profile
∣∣eνarray (x, y, κFW

)∣∣2
of the generated SH supermodes for a few values of κFW. In Figs. 3.9(c,d) we show the

measured SH powers for κFW = 0 and −π corresponding to the marked cuts across the

data of Fig. 3.9(b). The insets show mode profiles of the supermodes measured at the

marked wavelengths, which in each waveguide match to the mode profiles |eν (x, y)|2
of single waveguides found in Section 3.1.1. Hence, we conclude that traces visible for

all κFW ∈ {−π, π} in Fig. 3.9(b) stem from nonlinear interaction of the FW00 band

with the SH10 and SH02 bands, whereas the SH in Fig. 3.9(a) is generated in the SH00
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Figure 3.10: (a) Measured (blue dots) and fitted (red plane) longitudinal wavenumbers
kSH02 in dependence on wavelength and transverse wavenumber for the SH02 band. (b)
2D view of the data from (a). (c,d) Retrieved wavenumber βν

0 (λ) for the SH10 (red),
SH02 (green), and SH00 (solid blue) bands compared to the bulk propagation constant
(black) derived from [172]. The dotted blue line in (d) shows numerically calculated
propagation constants for the SH00 mode.

mode. The additional signals in Fig. 3.9(b) are due to excitation of the FW01 mode,

which is guided only for higher transverse wavenumbers. These higher order FW mode

enables additional degenerate or non-degenerate interactions together with the FW00

mode. Hence, various SH modes similar to the observations in Section 3.1.2 are excited.

For transverse wavenumbers κFW close to zero, the FW01 mode is not excited and not

guided and hence does not take part in efficient nonlinear interactions.

To quantitatively characterize the measured SH bands, the known FW00 band is

used. Section 3.1.1 showed, that the dispersion of the eigenmodes is mostly determined

by the host material lithium niobate. The refractive index dispersion due to the tita-

nium indiffusion and the mode dispersion can be neglected. Hence, the longitudinal

FW00 wavenumbers from Eq. (3.11) are approximated using the propagation constant

in bulk lithium niobate, which is known from measurements [172], instead of the prop-

agation constant of the FW00 mode in a single waveguide. The FW coupling constants

of cFW00 = 237/m for λFW = 1475 nm and cFW00 = 280/m for λFW = 1534 nm are

determined by measuring the Green’s function of the WGA [20,49,174] in dependence

on the wavelength. This allows for the calculation of the longitudinal wavenumbers

of the SH modes at the phasematching wavelengths according to Eq. (3.21). This

set of points is fitted with the analytical model Eq. (3.11) for the SH wavenumbers,

assuming that cν (λ) = const. and βμ
0 (λ) = F μλ + F μ

0 in the measured wavelength

range. In Fig. 3.10(a) the measured and fitted slowly varying longitudinal wavenum-
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period d SH00 SH02 SH10 SH00 SH02 SH10
experiment simulation

12.5 μm 34 329 19 0.5 225 17
13.0 μm 5 172 16 0.2 120 12
13.5 μm 3 81 1 0.1 63 8

Table 3.1: Measured and simulated coupling constants cν in 1/m of the SH00, SH02
and SH10 modes for three different WGAs.

ber kν = kν
0 − β0 for the SH02 mode is plotted in dependence on the wavelength and

transverse wavenumber. In Fig. 3.10(b) only the dependence of the same quantities on

the transverse wavenumber is plotted. The cos-shape of the measured values is obvious

and underlined by the good correspondence to the fitted function. From the fit we de-

termine the coupling constant of the SH02 mode in this array to cSH02 = (329± 10) /m.

The error in the coupling constant results from imperfections in the QPM structure of

the used sample, which leads to broader tuningcurves without a well defined maximum

[see Figs. 3.10 (c,d)].

The derived propagation constants βν
0 for the three SH bands detected in Fig. 3.9

are shown in Figs. 3.10(c,d) in comparison to the propagation constant in bulk lithium

niobate [172]. Since the SH00 mode (solid blue line) has the highest effective index, its

propagation constant has the largest difference to the bulk value, which is the cut-off

for waveguiding in a single waveguide. The dotted blue line in Fig. 3.10(d) indicates

values for βSH00
0 which are calculated with the finite element method according to

Section 3.1.1. The used diffusion parameters are Dx = 3.8 μm and Dy = 4.45 μm. The

difference between measured and simulated propagation constants is approximately

104/m for the whole covered wavelength range and is mainly due to the use of the bulk

propagation constant for the FW modes in the analysis.

The bands in WGAs with different periods d are measured. The results for the

coupling constant of various SH bands are summarized in Tab. 3.1 and compared with

simulation results. The simulations are conducted for the whole periodic system, where

the coupling constants are determined by fitting a cos function to the calculated bands.

We find that the simulated values for the coupling constant are in general smaller than

the measured ones, even when the accuracy of the measurement procedure of ≈ ±10/m

is considered. The reason for this may be threefold. First, to determine the diffusion

constants (as described in Section 3.1.1) we have to measure the mode profile with

a CCD camera which is limited in both sensitivity and dynamic range. This leads

to an underestimation of the mode widths and hence the diffusion constants, which

finally yields smaller calculated modes and coupling constants. Second, the cos-shape

of the bands itself is an approximation, as seen in Section 2.2. Derivations of the

FW bands from the cos-shape will lead to errors and hence to a systematic deviation
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from the simulation result. Third, inhomogeneities in the diffusion profiles may lead

to additional scattering in neighboring waveguide, thus increasing the coupling in the

experiment especially for the modes with small coupling constants.

The presented method for band characterization can be used for bands of any shape

as long as one reference band is known. The only condition for the reference band is

that it is truly three-dimensional in the space of {λ, κμ, kμ
0}. For example, in the system

with essentially linear dispersion treated experimentally above, a reference band with

cFW = 0 is not sufficient, since information obtained in the 2D subspace defined by this

band is not enough to reconstruct fully three-dimensional bands.

In the experimental demonstration above we extract only data at the phasematching

wavelengths λFW
PM . This limits the applicability of the method to wavelengths very close

to the phasematching wavelengths. However, since the tuningcurve Eq. (3.5) has well

defined minima for fixed phase differences of ΔβνL = 2mπ,m ∈ N, the unknown band

could in principle be measured at each of these minima. Hence, the spectral bandwidth

of the measurements can be enhanced for sufficiently sensitive detection schemes. This

makes the presented method interesting for systems other than WGAs which have

a quadratic nonlinearity, e.g. photonic crystals [175–177]. Methods to measure the

bands in photonic crystals exist, but usually require complicated techniques [39,178] to

precisely excite the guided mode under test. The excitation of guided modes is achieved

by disturbing the evanescent tails of the modes and therefore introduce coupling to

external radiation. In turn, also the dispersion relation of the measured system will

be perturbed. Alternative measurement methods use specialized samples [179] or are

restricted to radiating modes [180]. Additionally, all of these methods can only retrieve

bands for the excitation wavelength and are therefore not ideally suited for parametric

systems. The method described here is relatively easy to implement, does almost not

disturb the bands due to the weak nonlinear excitation mechanism and can characterize

all guided modes.

We note, that in order to determine only the coupling constants of bands in weakly

coupled WGAs, a far easier measurement is sufficient. We just need to compare the

phasematching wavelengths to a certain SH mode ν in a single waveguide λFW
PM with

that in a WGA λFW
PM + Δλ, which has to be measured with κFW = 0. In the former

case Δβν
(
λFW
PM

)
= 0 is fulfilled, whereas in the latter situation

4cFW − 2cν +Δβν
(
λFW
PM +Δλ

)
= 0 (3.22)
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holds [see Eq. (3.20) and Eq. (3.10)]. For small Δλ we assume

Δβν
(
λFW
PM +Δλ

) ≈ d (Δβν)

dλ

∣∣∣∣
λFW
PM

Δλ

≈ − πΔλ

(λFW
PM)

2

d

dλ

[
2n
(
λFW

)− n

(
λFW

2

)]∣∣∣∣
λFW
PM

, (3.23)

where we again neglect the modal dispersion. As shown in Fig. 3.10 this is well justified

and the quantity Eq. (3.23) can be calculated from measured values of the refractive

indices for bulk lithium niobate [172]. Hence the coupling constant cν can be calculated

according to Eq. (3.22). An additional measurement of the same tuningcurve for κFW =

π allows for the calculation of both cFW and cν from the two obtained shifts of the

phasematching wavelengths.

Chapter summary

In this chapter first the properties of single waveguides, which are the building blocks of

the later used WGAs, were reviewed. The different guided FW and SH modes and their

dispersion relations were calculated numerically. The numerical results were confirmed

by SHG measurements in single waveguides, revealing that SH is generated in higher

order modes if phasematching occurs. The maximum efficiency of these interactions

was shown to depend on the mode symmetry and the mode overlap.

For SHG in WGAs it was shown, both theoretically and experimentally, that the

transverse SH wavenumber is twice the transverse FW wavenumber. Similar to the

single waveguide, in WGAs efficient SHG in forward direction is only possible if the

longitudinal wavenumbers of FW and SH coincide. However, in WGAs the wavelengths

where this condition is fulfilled depend on the FW transverse wavenumber. This was

used to map SH bands in WGAs by measuring the SH output intensity in dependence

on the FW wavelength and transverse wavenumbers. The result is used to characterize

the SH bands [FS26]. The presented method can be expanded to determine the linear

bands in other periodic systems with parametric interactions. Finally, an easy to use

method to determine only the coupling constants of the SH bands in weakly coupled

WGAs was devised. This method is utilized throughout the present thesis.



Chapter 4

Multiple mode interactions

In the last chapter very weak nonlinear interactions taking place for small phase mis-

matches were studied. In this case only energy exchange from one frequency component

to another is induced. The feedback of the SH to the FW was neglected and the dif-

ferent FW-SH interactions were treated independently from each other. Additionally,

the investigations were restricted to the propagation and nonlinear interaction of plane

waves in WGAs. In this chapter we will treat the more general case of spatially finite

beams propagating with strong nonlinear interactions in waveguide arrays with several

SH modes. The WGAs used in the experiments support only one FW mode across

the whole range of transverse wavenumbers (see Section 3.2) and hence, the investi-

gations are restricted to one FW band. In contrast, the number of guided SH modes

is much larger, as was shown in Chapter 3. However, to obtain a general insight into

the properties of nonlinear propagation for several SH modes, it is not useful to start

from the complete SH bandstructure as shown in Fig. 3.6, which will be different for

each waveguide array. Rather we will concentrate on two closely spaced SH bands with

somewhat generalized properties as sketched in Fig. 4.1, which are likely to exists for

different sample geometries. The difference of the propagation constants of the two

modes taken into account is assumed to be much smaller than the mismatch to other

SH modes. This allows for the neglect of other SH modes. Nonlinear effects in systems

with more SH bands can be extrapolated if the propagation in the two-band WGA is

understood.

The model is realized experimentally for the SH10 and SH02 modes in the used

samples. Fig. 4.1 introduces the system investigated in this chapter, together with all

relevant (normalized) parameters. In Fig. 4.1(a) we plot a sketch of the array together

with the mode profiles of the considered modes. The numerically calculated phase

mismatches are shown in Fig. 4.1(b). Depending on the wavelength, the mismatches

either have the same or different signs. Finally, Fig. 4.1(c) shows sketches of the bands

of the participating modes to clarify their relative position to each other. The modes

again obey the limitations of the coupled mode equations, where especially direct linear

48
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Figure 4.1: (a) Sketch of the experimental system with the refractive index profile of
the periodically poled waveguide structure and the array modes. (b) Simulated phase
mismatch between FW00 and SH02 (solid) or SH10 (dotted) mode versus the FW
wavelength. (c) Bands of FW (left) and SH (right) modes.

interactions between the SH modes are neglected. The difference between the phase

mismatches of the two modes is approximately constant, since the mode dispersion is

mainly induced by the dispersion of the host material, which is the same for all SH

modes. However, the phase mismatches can be adjusted by changing the wavelengths

or sample temperatures.

To understand the nonlinear effects described later, in Section 4.1 the properties of

linear propagation of beams with finite width in WGAs are reviewed. In Section 4.2

solitons are described, the stationary localized solutions of the propagation equations,

which can be seen as fixed points of the nonlinear beam evolution. From these results,

predictions for more general cases of dynamic beam evolution are deduced and tested

experimentally in Section 4.3.

4.1 Linear propagation of finite beams

In Section 3.2 we found, that the wavenumbers of discrete plane waves in WGAs

obey the diffraction relation Eq. (3.10), which describes a cosine dependence of the

longitudinal on the transverse wavenumber. The discrete plane waves, which are also

eigenmodes of the linear WGA, are spatially infinite. In the experiments described in

Chapter 3 a very narrow spatial spectrum was excited by using broad beams, which

was treated as a single plane wave. However, the experimentally more common and

scientifically also very interesting schemes feature the excitation of only one or a few

waveguides. In this case several discrete plane waves are excited and have to be taken

into account.

The amplitudes in the real space and the spatial spectrum are connected by the

Fourier transform Eq. (3.8). Hence, for narrower excitation the spatial spectrum is

getting wider. For the excitation of only a single waveguide, the spatial spectrum
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ũμ (κ, 0) is constant for all transverse wavenumbers κ. In this case, the solution of the

propagation equation Eq. (3.9) is [20, 174]

uμ
n,n′ (z) = in−n′

Jn−n′ (2cμz) , (4.1)

where the n and n′ denote the excited and observed waveguide, respectively and Jn−n′

is the Bessel function of the first kind of (n− n′)th order. This result describes the well

known phenomenon of discrete diffraction and represents the Green’s function of the

waveguide array. Hence, it can in principle be used to calculate the amplitudes in the

waveguide array for arbitrary input conditions with the Green’s function approach [20].

However, except for very narrow excitations, a different approach, which also yields

precise results, is more intuitively understandable.

Following Ref. [37], spatial linear beam propagation in waveguide arrays is approx-

imated analog to the description of pulse dispersion in Section 2.1. For beams with

a narrow spatial spectrum the diffraction relation Eq. (3.10) is expressed as a Taylor-

expansion to the 2nd order around the central transverse wavenumber κ0,

kμ (κ) = kμ (κ0) +
dkμ

dκ

∣∣∣∣
κ0

(κ− κ0) +
1

2

d2kμ

dκ2

∣∣∣∣
κ0

(κ− κ0)
2 . (4.2)

Inserting this approximation in Eq. (3.9) and transforming back to the real domain

with Eq. (3.8) we obtain an equation which formally describes linear beam dynamics

in the spatial domain

[
i
∂

∂z
+ kμ (κ0)− i

dkμ

dκ

∣∣∣∣
κ0

∂

∂n
− 1

2

d2kμ

dκ2

∣∣∣∣
κ0

∂2

∂n2

]
uμ (z, n) = 0, (4.3)

where n now appears as a continuous variable and uμ (z, n) = uμ
n exp (−iκ0n). Similar

to Eq. (2.31) we conclude that the first derivative

dkμ

dκ

∣∣∣∣
κ0

= −2cμ sin (κ0) (4.4)

describes the transverse velocity of the beam and the second derivative

d2kμ

2dκ2

∣∣∣∣
κ0

= −2cμ cos (κ0) (4.5)

determines the beam broadening or diffraction and is hence termed the diffraction

coefficient. The linear beam dynamics under this kind of diffraction relation has been

discussed in great detail in Refs. [36, 37]. A few characteristic features are important

for the nonlinear effects which we will study later. For a transverse wavenumber κ0 = 0

the transverse velocity is zero and the diffraction has its minimum value of −2cμ. The
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sign of the diffraction is the same as in natural materials which consequently is termed

normal diffraction. Anomalous diffraction, which is not possible in natural materials,

occurs in waveguide arrays for transverse wavenumbers of κ0 = π/d, where the value

of the diffraction coefficient is 2cμ. As we will see later, the sign of the diffraction will

critically influence the structure and excitation of nonlinear wave patterns. In the next

sections solitons will be studied, which emerge when the diffraction induced by the

band structure is balanced by nonlinear effects.

4.2 Stationary solutions

Bright spatial solitons are localized stationary solutions of the nonlinear propagation

equations for cw-light, in contrast to nonlinear plane waves, which are spatially ex-

tended. Solitons are important for the analysis of nonlinear beam propagation since

they represent fixed points in the phase space of dynamic solutions. They exist for

parameters where the diffraction of finite beams is canceled by a nonlinearity induced

phase shift.

In quadratic nonlinear interactions, phase shifts in the different frequency compo-

nents can be achieved by utilizing subsequent frequency mixing processes, so-called

cascaded interactions [113]. In this thesis, the involved processes are SHG and differ-

ence frequency generation (DFG) of SH and FW photons. Specifically, SH photons are

generated and converted back to the FW by DFG after a certain propagation distance.

In the case of phase mismatched propagation these processes lead to nonlinear phase

shifts in both components due to the different phase velocities [64]. If only FW is

present at the input, the SH wave is periodically generated and converted back to FW

(as in Fig. 3.3). For very large mismatches, the effective cascading nonlinearity for

the FW beam is similar to a Kerr nonlinearity [68, 69] with tunable sign and strength

depending on the phase mismatch. However, for smaller mismatches qualitative dif-

ferences to Kerr systems appear, since a larger amount of FW is converted to SH and

back and the phase of the FW does not change continuously but stepwise [64].

To propagate as spatial solitons, the phase velocities of all frequency components in

all spatial parts of the beam have to be equal. This is achieved if the phase distortions

introduced to the localized beam by diffraction are balanced by the phase shifts due

to cascading [181]. The influence of the linear and nonlinear phase shifts on the prop-

agation of cw light in a homogeneous lossless WGA with two SH modes is described
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by the normalized coupled mode equations

i
∂AFW

n

∂z
+ CFW(AFW

n+1 + AFW
n−1) +

(
γSH1ASH1

n + γSH2 ASH2
n

) (
AFW

n

)∗
= 0, (4.6)

i
∂ASH1

n

∂z
+ CSH1(ASH1

n+1 + ASH1
n−1)−ΔSH1ASH1

n + γSH1
(
AFW

n

)2
= 0,

i
∂ASH2

n

∂z
+ CSH2(ASH2

n+1 + ASH2
n−1)−ΔSH2ASH2

n + γSH2
(
AFW

n

)2
= 0.

To get insight into the mechanism of the two SH processes acting on the same FW

it is instructive to analyze Eqs. (4.6) in the limit of large mismatches. We assume, that

the SH coupling is vanishing (CSH1 = CSH2 = 0), such that the effective nonlocality of

the cascaded nonlinear processes [182] can be neglected. Then, following a standard

procedure developed for cascaded quadratic nonlinear interactions [113], we derive a

discrete nonlinear Schrödinger equation [47] with effective Kerr-type nonlinearity for

the FW amplitudes

i
∂AFW

n

∂z
+ CFW(AFW

n+1 + AFW
n−1) + Γ

∣∣AFW
n

∣∣2 AFW
n = 0. (4.7)

The strength of the effective nonlinearity is

Γ =

(
γSH1

)2
ΔSH2 +

(
γSH2

)2
ΔSH1

ΔSH1ΔSH2
. (4.8)

The resulting effective nonlinearity is focusing (Γ > 0) or defocussing (Γ < 0) when

both mismatches are positive (ΔSH1,ΔSH2 > 0) or negative (ΔSH1,ΔSH2 < 0), respec-

tively. For focusing [47,49] and defocusing [149,183,184] third-order nonlinearities the

existence of spatial discrete solitons was shown in WGAs with Kerr- and photorefractive

nonlinearity, respectively. Hence, we also expect the existence of solitons in these pa-

rameter ranges. However, for mismatches of different signs [sgn
(
ΔSH1

) �= sgn
(
ΔSH2

)
]

the coefficient Γ may have either sign and crosses zero for

(
γSH1

γSH2

)2

= −ΔSH1

ΔSH2
. (4.9)

The vanishing of the nonlinear coefficient is a feature which is not possible in a system

with Kerr nonlinearity or cascaded nonlinearity involving only one SH mode. Hence,

in this parameter region, where the signs of the two mismatches are different, the

nonlinear propagation will be defined through the competition between the two SH

interactions, and the beam’s self-interaction and soliton formation are expected to

demonstrate novel features.

In the following the stationary solutions of Eqs. (4.6) are analyzed first for a simpli-

fied case without linear coupling and later for the complete system. Although all equa-
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tions are derived for general values of the linear and nonlinear coupling strengths, in the

calculated examples CFW = CSH1 = CSH2 and equal normalized nonlinear strengths of

γSH1 = γSH2 = 1 are assumed. This is justified also experimentally, since these param-

eters are, even if they are not exactly equal, of the same order. The difference of the

phase mismatches is fixed to ΔSH1 − ΔSH2 = 9. This value is of the same magnitude

than realized in the experiment, yet is somewhat smaller to allow for more detailed

numerical calculations.

4.2.1 Stationary solutions for single waveguides

To get physical insight into the properties of the stationary solutions of Eqs. (4.6),

we first consider the case of CFW = CSH1 = CSH2 = 0. This describes the situation

of a single waveguide, but may also serve as an approximation for the case of strong

nonlinear interactions, when the solitons are effectively localized in a single waveguide

(see e.g. [102,106]). Then,

i
∂AFW

∂z
+
(
γSH1ASH1 + γSH2 ASH2

) (
AFW

)∗
= 0, (4.10)

i
∂ASH1

∂z
−ΔSH1ASH1 + γSH1

(
AFW

)2
= 0,

i
∂ASH2

∂z
−ΔSH2ASH2 + γSH2

(
AFW

)2
= 0.

Since the neighboring waveguides are decoupled, the waveguide number n is dropped.

The stationary solutions have the following form

AFW (z) = AFW
0 exp (ibz) , (4.11)

ASH1 (z) = ASH1
0 exp (2ibz) ,

ASH2 (z) = ASH2
0 exp (2ibz) .

The real parameter b defines the propagation constant of all three components due to

nonlinear synchronization and AFW
0 , ASH1

0 , and ASH2
0 are the real valued stationary am-

plitudes. After inserting this ansatz into Eqs. (4.10), we derive the following solutions

for the amplitudes

(
AFW

0

)2
=

2b
(
b−ΔSH1/2

) (
b−ΔSH2/2

)
[
(γSH1)2 + (γSH2)2

]
(b− B0)

, (4.12)

ASH1
0 =

b
(
b−ΔSH2/2

)
γSH1[

(γSH1)2 + (γSH2)2
]
(b− B0)

,

ASH2
0 =

b
(
b−ΔSH1/2

)
γSH2[

(γSH1)2 + (γSH2)2
]
(b− B0)

,



CHAPTER 4. MULTIPLE MODE INTERACTIONS 54

Figure 4.2: Existence and stability domains of stationary solutions for a single uncou-
pled waveguide with CFW = CSH1 = CSH2 = 0. Stable solutions are indicated by blue
and unstable by red shading. In the white domains no stationary solutions exist. The
dashed lines indicate the soliton families shown in Fig. 4.3.

with

B0 =

(
ΔSH1Ψ+ΔSH2 (1−Ψ)

)
2

and Ψ =

(
γSH2

)2[
(γSH1)2 + (γSH2)2

] . (4.13)

As will become evident later, B0 is the propagation constant where the contributions

of the two SH processes cancel each other. Real valued stationary solutions, which we

are interested in, exist only when
(
AFW

0

)2 ≥ 0. Regions of existence of real valued

stationary solutions are plotted in Fig. 4.2 in dependence on the propagation constant

b and the mismatch ΔSH2. For all ΔSH2, real solutions can be found in three domains

of the parameter b. For the two semi-infinite domains b < min
(
0,−ΔSH1/2

)
and

b > max
(
0,−ΔSH2/2

)
, the solutions resemble those of a system with only one SH

resonance [101]. Both nonlinear processes act in the same way, mimicking a single

nonlinear resonance and we call the ensuing localized states cumulative solitons. A new

solution domain is introduced due to competition between the two nonlinear processes

for −ΔSH1/2 < b < −ΔSH2/2 and |b| ≤ |B0| and consequently solutions in this domain

are called competitive solitons. For ΔSH2 = −ΔSH1 (ΔSH2 = −4.5 in the depicted

examples) this solution domain becomes a δ-distribution since B0 = 0. The δ-peak

coincides with the linear propagation constant of the FW mode, and hence competitive

solitons do not exist for this mismatch.

In Fig. 4.3 we plot properties of the calculated families of stationary solutions for

(a,b,c) ΔSH2 = −7.5 and (d,e,f) ΔSH2 = −4.5. The powers of the individual components

μ, P μ = |Aμ|2 and of the complete solution P = PFW + P SH1 + P SH2 are plotted in

Fig. 4.3(a,d). For ΔSH2 = −7.5 three branches of the solutions exist for distinct ranges

of the propagation constant. The powers of all components asymptotically go to infinity

for b → B0 due to the competition between the two SH processes. For propagation

constants close to B0 the remaining effective nonlinear strength is very weak and large
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Figure 4.3: Families of stationary solutions for the single uncoupled waveguide with
CFW = CSH1 = CSH2 = 0 for (a,b,c) ΔSH2 = −7.5, and (d,e,f) ΔSH2 = −4.5. (a,d)
Total power (black dotted line) and power of the FW (blue solid), SH1 (green dashed),
and SH2 (red dash-dotted) components. (b,e) Imaginary part and (c,f) real part of the
instability parameter σ. Stable solutions are indicated by blue and unstable solutions
by red shading.

powers are necessary to maintain the soliton. This is in sharp contrast to normal SHG

(only one SH component, γSH2 = 0), where all powers are finite for finite propagation

constants. A boundary of the existence domain and a singularity in the power are

features also found for solitons in WGAs with saturable nonlinearity [185]. Hence, in

the vicinity of a propagation constant where the nonlinearities compensate each other,

they mimic a saturable system. Here an increase of the power does not lead to an

increase in the soliton propagation constant.

The cumulative solution branches for the mismatches shown in Fig. 4.3 both bifur-

cate from the SH modes and hence exhibit a nonzero power threshold [22, 101]. The

solution branch introduced through competition extends to zero power, where it bifur-

cates from the FW band. For all families with − (ΔSH1 −ΔSH2
)
< ΔSH2 < 0 the only

branch of solutions with zero power threshold is generated through competition of the

two phase-mismatched SHG processes. However, for ΔSH2 = − (ΔSH1 −ΔSH2
)
/2 only

the solutions on the cumulative branches exist, and no thresholdless solution can be

obtained [see Fig. 4.3(d)]. This corresponds to the condition in Eq. (4.9), obtained in

the cascading approximation, for γSH1 = γSH2 = 1.

We investigate the stability of the calculated solutions by linear stability analysis
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using the ansatz

AFW (z) = exp (ibz)
(
AFW

+ eiσ
∗z + AFW

− e−iσz + AFW
0

)
, (4.14)

ASH1 (z) = exp (2ibz)
(
ASH1

+ eiσ
∗z + ASH1

− e−iσz + ASH1
0

)
,

ASH2 (z) = exp (2ibz)
(
ASH2

+ eiσ
∗z + ASH2

− e−iσz + ASH2
0

)
,

where the (AFW
0 , ASH1

0 , ASH2
0 ) are the stationary solutions, variables with superscripts

‘±’ denote small perturbations, and the instability parameter σ characterizes the per-

turbation dynamics. Inserting this ansatz in Eqs. (4.10) and taking into account only

the first order terms of the small perturbations leads to an eigenvalue problem for the

value of σ which we solve numerically. In our case we obtain six generally complex

eigenvalues for each propagation constant, which are distributed symmetrically with

respect to the real axis. Depending on the value of the eigenvalues, the obtained so-

lutions fall into different categories [186]. If the eigenvalue is real, the perturbation

in ansatz Eqs. (4.14) is not growing and the corresponding eigenmode is called stable.

Purely imaginary eigenvalues σ correspond to unstable and complex σ to oscillatory

unstable eigenmodes. The initial soliton is called unstable for a certain propagation

constant b if one of the eigenvalues for this b has a positive imaginary part, � (σ) > 0.

Regions of instability exist for the solution branch with competition and are plotted

with red shading in Figs. 4.2 and Fig. 4.3. The imaginary part of the instability param-

eter � (σ) is shown in Fig. 4.3(b). The instability appears due to the collision of two

eigenvalues σ at b � 1, as seen in the real part � (σ), which is presented in Fig. 4.3(c).

The point of collision marks an upper boundary for the propagation constant of sta-

ble competitive solitons. The corresponding upper boundary for their power, as seen

in Fig. 4.3(a), depends on the mismatch. Physically, this instability is rooted in the

competitive balance of the two SH processes. For the high powers close to B0, even a

small change in the powers leads to excess phase shifts induced by one of the nonlinear

processes. This disturbs the balance and leads to soliton decay.

4.2.2 Discrete spatial solitons

In the last section we deduced the basic properties of the stationary solutions of

Eqs. (4.6) for the analytically solvable case of decoupled equations. Now the full

coupled system is analyzed. The ansatz for localized stationary solutions reads

AFW
n (z) = AFW

0n exp (ibz) , (4.15)

ASH1
n (z) = ASH1

0n exp (2ibz) ,

ASH2
n (z) = ASH2

0n exp (2ibz) .



CHAPTER 4. MULTIPLE MODE INTERACTIONS 57

Figure 4.4: Soliton existence domains for (a) CFW = CSH1 = CSH2 = 0.2 and (b)
CFW = CSH1 = CSH2 = 1.0. Stable solutions are indicated by blue and unstable
solutions by red shading. In the white domains no stationary solutions exist. Light
and dark gray shading indicates the FW and SH bands, respectively. The dashed line
indicates the soliton family shown in Fig. 4.5.

Insertion of this ansatz into Eqs. (4.6) leads to a nonlinear system of equations which

is solved numerically for AFW
0n , ASH1

0n , and ASH2
0n . Here only odd solitons are treated.

Even solitons for quadratic nonlinear interactions with only one SH component have

been shown to exist in the same parameter regions as their odd counterparts, however

they are always unstable [101,105]. Even discrete solitons always decay in odd solitons

and hence, beam dynamics is in general determined by the odd solutions. It is noted

though, that the decay length may be long enough to detect characteristic features of

even solitons in experiments.

The linear stability of the obtained odd stationary solutions is investigated similar

to the single waveguide by inserting the perturbed solution

AFW
n (z) = exp (ibz)

(
AFW

+n e
iσ∗z + AFW

−n e
−iσz + AFW

0n

)
, (4.16)

ASH1
n (z) = exp (2ibz)

(
ASH1

+n eiσ
∗z + ASH1

−n e−iσz + ASH1
0n

)
,

ASH2
n (z) = exp (2ibz)

(
ASH2

+n eiσ
∗z + ASH2

−n e−iσz + ASH2
0n

)
,

into Eqs. (4.6) and solving the eigenvalue problem for the instability parameter σ,

taking into account only the first order terms in the small perturbations.

Fig. 4.4 shows the domains of soliton existence and stability for two different

coupling strengths, where domains of stable (unstable) solutions are blue (red) and

the linear bands are gray. Similar to the case of the isolated waveguide analyzed

in Section 4.2.1 above, we find three different solution branches for a wide do-

main of the mismatches. Cumulative solutions, which resemble the staggered or

unstaggered solitons of a WGA with only one SHG resonance [101], are found for

b < min
(−2CFW,−ΔSH1/2− 2CSH1

)
or b > max

(
2CFW,−ΔSH2/2 + CSH2

)
, respec-

tively. The third branch is formed due to nonlinear competition for −ΔSH1/2+CSH1 <
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Figure 4.5: Soliton families for CFW = CSH1 = CSH2 = 0.2 and ΔSH2 = −7.5 (dashed
line in Fig. 4.4). (a) Power and (b) width of the calculated solutions. Plotted are
the overall power (black dotted line) and the respective quantities for the individual
components, FW (blue solid), SH1 (green dashed), and SH2 (red dash-dotted). Stable
solutions are indicated by blue and unstable solutions by red background. (c) Imaginary
and (d) real part of the instability parameter for the competitive solutions.

b < −ΔSH2/2 − CSH2 and |b| ≤ |B0|. However, solutions in this domain can now only

exist for |b| > 2
∣∣CFW

∣∣ due to the extended linear bands, which prevent the formation

of nonlinear localized states. This leads to a gap in the existence of solutions for the

competitive branch and hence to a range of mismatches where no solutions with zero

power threshold exist.

In Fig. 4.5 we show numerically calculated properties of the soliton family at

ΔSH2 = −7.5 for a coupling strength of CFW = CSH1 = CSH2 = 0.2. In Fig. 4.5(a) we

plot the power of the solutions and the powers of its constituents vs. the propagation

constant b. The solution power is determined by summing up the powers in the indi-

vidual waveguides. Again we find a power threshold for the cumulative branches of the

solutions, which bifurcate from the SH bands. Close to the bands the power of these

solutions grows with decreasing propagation constants. According to the Vakhitov-

Kolokolov criterion [187], we expect that such solutions with dP
d|b| ≤ 0 are unstable,

which is confirmed by the linear stability analysis. The existence of the only branch of

solutions with zero power threshold, bifurcating from the FW band, is again induced by

the competition between the two phase-mismatched nonlinear processes. For increas-

ing propagation constant, the power of the competitive solitons increases monotonically

and diverges for b → B0. Here, the increasing propagation constant moves towards the

center between the two SH bands where the effects of the two competing nonlinear

processes are almost compensated by each other and higher powers are necessary to

maintain a soliton.

In Fig. 4.5(b) we plot the width of the components of the solutions, which we
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calculate as the second moment of the power distribution in the waveguides. Close to

the linear bands, the solitons resemble linear waves, hence their width is diverging when

b approaches these boundary of the existence domains. In the competitive solitons, the

width of all components is large close to the linear bands and first decreases with

increasing propagation constant b. It increases to a finite value when b approaches the

upper existence boundary. This is explained by a cascaded saturation of the effective

nonlinearity in the different waveguides. Close to B0, the large central amplitude of

the odd soliton can not grow any larger due to the competition induced saturation

of the nonlinearity. Consequently the power in neighboring waveguide grows and the

solitons are getting wider. The same effect was reported for spatial solitons in WGAs

with saturable nonlinearities [185].

The imaginary and real parts of the perturbation eigenvalue, � (σ) and � (σ), are

plotted in detail for the competitive branch in Figs. 4.5(c) and (d), respectively. Similar

to the case of the single uncoupled waveguide analyzed in Section 4.2.1 above, we find

a range of propagation constants between b = 1 and b = 1.5 where collisions between

the eigenvalues lead to instability. This is again due to disturbances of the balance

between the competing SHG processes. Additionally, for a small band of propagation

constants around b = 0.85 we reveal soliton instability due to coupling to a linear

band [188, 189]. Here the propagation constant 2b − � (σ) of the instability mode is

phase-matched to the SH band defined by CSH2, hence energy exchange between the

soliton and the linear band can take place. We note, that due to the spatially extended

nature of the linear states, the numerical calculation for the instability growth rate

� (σ) is sensitive to the finite number of waveguides of the simulated WGA, which is

128 here. For larger coupling constants, many small domains of instability appear, as

seen in Fig. 4.4(b). These are induced by the three mechanisms described above, where

the Vakhitov-Kolokolov type instabilities are only found close to the bifurcation points

of the solutions from the SH bands (dark gray).

The different instabilities have physically different origins, resulting in different

typical soliton decay scenarios. This is shown by numerically solving Eqs. (4.6) with

slightly perturbed stationary solutions as starting conditions:
(
AFW

n , ASH1
n , ASH2

n

)
=(

AFW
0n , ASH1

0n , ASH2
0n

) ± 0.01
(
AFW

0n , ASH1
0n , ASH2

0n

)
, where either plus or minus is applied to

all components of the excitation. The intensity distributions of all three components

are plotted in Fig. 4.6 vs. the propagation distance for typical instability regimes of

the soliton family at CFW = CSH1 = CSH2 = 0.2 and ΔSH2 = −7.5 (as in Fig. 4.5).

Fig. 4.6(a) shows results for the Vakhitov-Kolokolov type instability at b = −0.95

and an input with decreased power. The perturbed soliton input is quickly decaying

into linear waves. A completely different dynamics is observed for the same stationary

solution with slightly raised input power, plotted in Fig. 4.6(b). Here the intensity oscil-

lates during propagation. These two types of instability dynamics have been described
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Figure 4.6: Evolution of
∣∣AFW

n

∣∣2 (left panels),
∣∣ASH1

n

∣∣2 (center panels), and
∣∣ASH2

n

∣∣2
(right panels) of perturbed solutions for CFW = CSH1 = CSH2 = 0.2 and ΔSH2 = −7.5.
Shown are the dynamics for the Vakhitov-Kolokolov type instability at b = −0.95 for
input powers (a) smaller and (b) larger than the powers of the solutions. (c) Dynamics
for the band instability at b = 0.89 and (d) for the collision induced instability at
b = 1.43.

earlier for the Vakhitov-Kolokolov type instability of quadratic solitons with one SH

component in bulk lithium niobate [190]. The oscillation for raised input power can be

explained as pulsation around a new stable solution, which can be excited due to the

higher power. The other types of instabilities show qualitatively the same behavior for

increased and decreased input power, hence we plot only results for decreased power.

At b = 0.89 [Fig. 4.6(c)] the solution interacts with an SH band. The energy oscillates

rapidly between the different components of the soliton without evident changes in the

shape of the excitation. Only after long propagation one can recognize that energy is

slowly radiating away from the soliton via linear waves in the ASH2
n component. This is

consistent with the very small calculated values of � (σ) for this case [see Fig. 4.5(c)].

For the collision caused instability at b = 1.43 we plot the propagating intensities in

Fig. 4.6(d). Here the soliton decays abruptly through all three components after initial

propagation without apparent changes.

The dynamics of perturbed stable spatial solitons is also investigated. They always

show small oscillations in the initial stages of the propagation, resulting in radiation

losses of light. However, these losses always result in the propagation of a stationary

localized wavepacket. A complete decay or long-lasting oscillations are not be observed.

4.3 Spatial dynamics

The analysis of the preceding section revealed, that stable solitons with two SH com-

ponents exist for large domains of the mismatch. The aim of this section is the experi-

mental verification of this finding. The main experimental problem is the excitation of

the stationary states, which consist of phase locked FW and SH components. Like in

the setup used here, most experiments excite only with the FW wave (with Ref. [106]
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being the exception). The reason for this is the necessity of a fixed phase difference

between FW and SH that is hard to stabilize experimentally. An FW only beam ini-

tially excites states on the linear FW bands, which can dynamically shape into solitons

during the nonlinear propagation. Since the solitons bifurcate from the upper or lower

edges of the linear bands, the most common excitation schemes feature excitation at

κFW = 0 and κFW = π. To shape the Gaussian excitation towards a soliton, the neces-

sary SH components have to be generated and the diffraction has to be arrested [105].

The latter is accomplished, if the phase shifts induced by cascaded nonlinear processes

balance the diffraction Eq. (4.5). For κFW = 0, where the diffraction is normal, the

effective nonlinearity acting on the FW needs to be focusing. The sign of the combined

effective nonlinearity is estimated in the large mismatch limit Eq. (4.7). It is focusing

for Γ > 0, which is fulfilled if both mismatches are positive for wavelengths above the

phasematching resonances or between the two resonances close to the low wavelength

phasematching resonance. The focusing nonlinearity increases the propagation con-

stant of the FW beam. Thus, nonlinear states with propagation constants above the

linear FW band (see Fig. 4.4) are accessible for excitation with κFW = 0. Along the

same line of arguments we conclude that solitons below the linear FW band can only

be generated when we excite states with κFW = π and use defocusing nonlinearity. It

is noted, that the specific way of excitation may be different for solutions not discussed

here, e.g. flat-top or truncated nonlinear Bloch-waves [111,191,192].

From the discussion above we conclude, that in typical experiments solitons are

generated in a dynamical process. This favors the excitation of solitons which are close

to the exiting FW beam. Hence, broad solitons with a small SH component and a

propagation constant close to the linear FW band are most likely excited. However,

other localized states can be generated, depending on the input power, beam shape,

and mismatch, though the excitation efficiency might be very small [193]. Also dynamic

nonlinear propagation effects appear, which do not result in soliton excitation.

4.3.1 Simulations with fundamental wave excitation

The experimental excitation is modeled by numerically integrating Eqs. (4.6) with an

input FW distribution of Gaussian shape. The aim of the simulations is to allow for

the comparison of the dynamical beam self-action with the results of the stationary

analysis. Hence, all parameters are similar to the last section and only cw light is

considered. The FWHM of the intensity profile is 4 array periods and the phase

difference between adjacent waveguides is set to either 0 or π. As in the dynamical

simulations of Section 4.2.2 we consider the case of CFW = CSH1 = CSH2 = 1. The

propagation is simulated over 10 coupling lengths.

The results of the numerical experiments for the excitation with κFW = 0 are sum-
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Figure 4.7: (a) Width of the FW output signal in dependence on the mismatch and
input peak power for excitation with κFW = 0. (b,c,d) Output intensity distributions
in dependence on the input peak power for ΔSH2 = −9, ΔSH2 = −7, and ΔSH2 = 0,
denoted by the dotted lines in (a).

marized in Fig. 4.7. To comprehensively describe the nonlinear effects in dependence

on input peak power and input mismatch, the output width as the second moment of

the output intensity distribution is calculated and plotted in Fig. 4.7(a). Focusing of

the beam during propagation is a sign for soliton excitation and is observed for two

ranges of mismatches, ΔSH2 ≈ −9 and ΔSH2 ≥ −1. This corresponds to the regions

of mismatches where we showed the existence of stationary solutions bifurcating from

the upper edge of the FW band in Section 4.2.2 [see Fig. 4.4(b)]. The output intensity

distributions in dependence on the input peak power for several mismatches are shown

in Figs. 4.7(b-d). For the mismatches ΔSH2 = −9 and ΔSH2 = 0 the diffraction induced

broadening is clearly counteracted by the nonlinearity, and the output beam width is

becoming smaller with increasing peak power. Here spatial solitary waves are excited.

The case depicted in Fig. 4.7(b) corresponds to the competitive soliton described in

the preceding section, whereas in Fig. 4.7(d) the excitation of a cumulative soliton is

shown. The cumulative solitons are narrower than their competitive counterpart for

similar powers. This results from the different widths of the stationary solutions and

from the different effective nonlinear strengths. In the cumulative case, larger nonlinear

phase shifts can be achieved and hence solitons with larger propagation constants and

smaller width are accessible for the investigated excitation powers.

For a fixed power and mismatches between −9 and −2 an increase of the output

width with increasing ΔSH2 is observed. At ΔSH2 ≈ −2 the excited linear FW states are

phasematched to the SH2 mode, which marks the boundary of the competitive regime.

The oscillations in the width stem from interferences between the original propagating

FW and parts of the FW backconverted from SH components which are not locked to

the FW radiation [194–196]. This effect is avoided with pulsed light, due to the group

velocity mismatch between SH and FW. For one particular mismatch, ΔSH2 = −7 in

our case, the output FW width stays the same regardless of the input power due to the
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Figure 4.8: (a) Width of the FW output signal in dependence on the mismatch and
input peak power for excitation with κFW = π. (b,c,d) Output intensity distributions
in dependence on the input peak power for ΔSH2 = −6, ΔSH2 = 0, and ΔSH2 = 3.5,
denoted by the dotted lines in (a).

competition of the two nonlinear processes. The corresponding output intensity distri-

butions are shown in Fig. 4.7(c). This behavior can be understood easily in the large

mismatch approximation. If condition Eq. (4.9) is fulfilled, the propagation equation

Eq. (4.7) becomes linear and diffraction is the only effect remaining. Consequently, the

beam behaves like a linear beam and diffracts for all powers. If the strong assump-

tion of large phase mismatch is lifted, step-like phase shifts of the FW are induced by

both SH components [64]. In general they do not compensate completely, however, the

beam periodically undergoes small positive and negative phase shifts and no noticeable

spatial effects remain.

Similar results for the excitation with κFW = π are plotted in Fig. 4.8, where the

width of the output FW distribution is shown in Fig. 4.8(a). For κFW = π the diffrac-

tion of the linear beam is anomalous, in contrast to the case discussed above. Hence, to

achieve similar nonlinear effects, a different sign of the effective nonlinearity is neces-

sary. In accordance with our theoretical findings this leads to the result in Fig. 4.8(a),

which qualitatively is flipped with respect to Fig. 4.7(a). Again two mismatch regions

with focusing nonlinear effects can be observed. The corresponding power dependences

of the output distributions are shown in Fig. 4.8(b) for the cumulative and in Fig. 4.8(d)

for the competitive case, respectively. Compensation and the inhibition of spatial re-

shaping is found for ΔSH2 = 0 between the phasematching resonances. The power

dependence for this mismatch is depicted in Fig. 4.8(c).

In this section the possibility of exciting the solitons found in Section 4.2.2 with FW

only input was investigated. Characteristic features in the width of the propagating

wave packets were described and attributed to the solutions found before. Both cumu-

lative and competitive solitons were excited. Additionally, a dynamic regime showing

the complete suppression of spatial nonlinear effects was described. In the next section

these phenomena will be studied experimentally.
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4.3.2 Experimental realization

For the experimental verification of the phenomena discussed in the preceding sections

we use a 71mm long waveguide array with a period of d = 15 μm. In the necessary

wavelength range around 1500 nm, this translates into a coupling constant for the FW00

mode of cFW = 80m−1. With a normalization length of L0 = 1/cFW = 12.5mm the

corresponding normalized coupling constant is CFW = 1. The utilized SH modes are

the SH02 and SH10 modes, which in a single waveguide are phasematched to the FW00

mode at wavelengths of 1500.77 nm and 1503.28 nm, respectively. This corresponds to

a normalized difference in the mismatches of the two modes of ΔSH02 − ΔSH10 = 20.

According to the measured phasematching wavelengths, the SH10 mode in the sample

under investigation corresponds to the SH2 mode of the theoretical section. In contrast

to the examples discussed above the coupling strengths of the SH modes differ from the

one of the FW mode and from each other. With the techniques described in Chapter 3,

the coupling constants are determined to be cSH02 = 63m−1 and cSH10 = 16m−1, which

in normalized units is CSH02 = 0.79 and CSH10 = 0.2. According to our previous

findings, this will slightly shift the lower boundaries of the regions of soliton existence,

as was discussed in Section 4.2.2.

A more pronounced effect is expected from the difference of the nonlinear overlap

integrals Kν and hence the nonlinear coefficients γν of the two interactions in the

experiment. With the measurement method described in detail in Appendix B, we

find for the SH10 mode that KSH10 ≈ 2.9 · 108V3/m and for the SH02 mode that

KSH02 ≈ 1.9 · 108V3/m. This translates to normalized quantities of γSH10 = 1 and

γSH02 = 0.66, respectively. The imbalance in the nonlinear strengths will shift the

existence boundary for the competitive solitons closer to the linear band of the weaker

SH02 mode, according to both the cascading approximation Eq. (4.9) and the analytic

condition for the existence boundary B0, Eq. (4.13). Thus, the existence domain for

competing solitons with b ≥ 0 shrinks, whereas it is larger for b ≤ 0.

To experimentally characterize the beam dynamics we use pulses of 5.3 ps length.

It has been shown, that for moderate powers the spatial dynamics of the beam is only

weakly influenced by the temporal structure [196–198]. Specifically, the SH necessary

for the nonlinear phase shifts is trapped under the FW pulse. Hence, although there

always exists a small amount of SH generated at the sample input and propagating

freely [196], spatial effects induced by GVM and GVD can be neglected. Thus, the

sample output is interpreted as if it is generated by a cw beam. The same approach

was used in Ref. [105].

The input beam is shaped into an elliptical input spot of 60 (3) μm horizontal (verti-

cal) FWHM width. This corresponds to an FWHM of the excitation of 4 array periods.

The captured output profiles of FW and SH in dependence on the FW input wave-
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Figure 4.9: Measurement result for normal incidence (κFW = 0). Output width of the
(a) FW and (b) SH beams measured in array periods in dependence on the input FW
peak power and the FWwavelength. The upper abscissa gives the normalized mismatch
of the SH10 mode for better comparison to the theoretical results of Section 4.2.2.
(c) Power dependence of the FW output profile for the wavelength of nonlinearity
inhibition, 1501.6 nm. (d) Power dependence of the FW output profile showing focusing
for a wavelength of 1506 nm. The dotted lines in (a) mark the wavelengths of (c) and
(d).

length and peak power are used to derive the width of the beam, again by calculating

the second moment. Additionally, FW and SH mode profiles are evaluated to better

understand the beam dynamics.

Fig. 4.9 shows experimental results for an excitation under normal incidence, corre-

sponding to a transverse wavenumber of κFW = 0, where Fig. 4.9(a) shows the second

moment width of the FW output intensity distribution. These results are qualitatively

comparable to the result of the simulations in Section 4.3.1 for the same case, depicted

in Fig. 4.7(a). Two wavelengths with increasing width already for small peak powers

are identified at 1500.3 nm and 1502.8 nm. These are the phasematching wavelengths

for this excitation. They are shifted to smaller wavelengths with respect to the sin-

gle waveguide, as has been discussed in Section 3.2.3. The increase in width at the

phasematching is due to the generation of SH, and hence energy extraction from the

FW beam, predominantly in the center of the FW beam where the peak intensity is

initially higher. Since the used sample is not exactly homogeneous, the phasematching

regions are broader than expected from the cw simulations.

Focusing is found only for wavelengths above both phasematching resonances, which

corresponds to the excitation of cumulative solitons with both SH modes. The cor-

responding dependence of the FW output intensity on the input power is shown in

Fig. 4.9(d). Notably, the experimental results do not indicate the excitation of compet-

ing solitons. No decreasing width is measured between the phasematching resonances.

This results from the inhomogeneity of the sample, which completely closes this ex-

istence window. Nevertheless, between the phasematching resonances, a wavelength

where the width of the output beam is almost independent from the input power is



CHAPTER 4. MULTIPLE MODE INTERACTIONS 66

Figure 4.10: Measurement result for tilted incidence (κFW = π). Output width of the
(a) FW and (b) SH beams measured in array periods in dependence on the input FW
peak power and the FWwavelength. The upper abscissa gives the normalized mismatch
to the SH10 mode for better comparison to the theoretical results of Section 4.2.2.
(c) Power dependence of the FW output profile showing focusing for a wavelength
of 1498.8 nm. (d) Power dependence of the FW output profile for the wavelength of
nonlinearity inhibition, 1502.3 nm. The dotted lines in (a) indicate the wavelengths of
(c) and (d) whereas the dashed lines in (b) mark phasematching to the SH11 and SH03
modes.

clearly visible and marked by the dashed line in Fig. 4.9(a). The measured intensity

distributions for this wavelength are shown in Fig. 4.9(c), indeed confirming that no

reshaping takes place and the beam propagates as if no nonlinearities were present in

the system.

The width of the generated SH signal is depicted in Fig. 4.9(b). The dependence

of the SH width on power and wavelength is in general similar to the FW results.

However, due to quadratic dependence of the SH power on the FW power, the SH

width is smaller than the FW width. The only discrepancy between FW and SH

width occurs at the lowest measured wavelengths, where the FW width is increasing

constantly with increasing powers whereas the SH width is staying constant but higher

than for other wavelengths. The SH responsible for this large width is generated in the

SH11 mode, which is found by separate measurements of the SH mode profiles. Almost

no SH from the targeted modes SH02 and SH10 is found. The SH11 mode is strongly

coupled and therefore spreads quickly across the array. However, the odd SH11 can not

be generated by the even FW00 mode. Since no other guided FW supermodes exist in

the array for κFW = 0, this can only be explained by non-degenerated interactions of

the FW00 and odd radiating FW supermodes to the SH11 mode.

A measurement of the beam output width for different mismatches and input pow-

ers is also conducted for tilted excitation with κFW = π and the main results are

summarized in Fig. 4.10. As expected in Fig. 4.10(a) we again find a wavelength

region of nonlinear focusing, now below both phasematching wavelengths, and a wave-

length where the width stays almost constant for all powers. The corresponding FW



CHAPTER 4. MULTIPLE MODE INTERACTIONS 67

Figure 4.11: FW output profiles for linear propagation (blue), the inhibition of spatial
nonlinear effects (green), and a cumulative soliton (red) for (a) κFW = 0 and (d)
κFW = π. SH profiles at (b) 0.05 kW and (c) 1.3 kW for the wavelength of 1506 nm.
SH profiles at (e) 0.05 kW and (f) 1.3 kW for the wavelength of 1498.8 nm.

intensities are shown in Fig. 4.10(c) and (d), respectively. We do not excite compet-

ing solitons. Although these measurements mostly confirm the predictions of the cw

simulations from Section 4.3.1, the results are not as clear as in the case of incidence

with κFW = 0. This is due to the fact that at the edge of the Brillouin zone the array

supports two modes for the FW, which enables the generation of odd SH modes with

high efficiency. The respective phasematching wavelengths are indicated by the dashed

lines in Fig. 4.10(b). The large constant SH width in these regions is due to the large

coupling constants of the generated SH modes SH11 and SH03.

In Figs. 4.11(a) and (d) we show FW output profiles of the described characteristic

types of nonlinear beam propagation under the influence of two SH modes. For the

case of κFW = 0 in Fig. 4.11(a) we find perfect agreement between the low power case

(blue) and the case of nonlinearity inhibition (green) at 1.3 kW. Corresponding to the

soliton (red) at 1506 nm, we also measured the mode profile of the generated SH beam

at low and high peak powers, shown in Figs. 4.11(b) and (c), respectively. Although

for the smaller power only very little SH is generated and the SH mode can not be

clearly identified, the image shows that the generated SH modes are all even. For high

power we clearly see, that the SH profiles are an interference of SH02 and SH10 modes,

as expected. This serves as a proof that both SH modes are part of the cumulative

soliton excited for κFW = 0 and that no other SH modes have a significant influence

on the beam dynamics.

For the output profiles with κFW = π in Fig. 4.11(d) we see, that the profiles

for the linear case (blue) and the case of nonlinearity inhibition (green) are different.

However, the spatial reshaping with competing nonlinearities is considerably smaller

than for the cumulative case, where we again excite a soliton (red). The low power

SH mode profiles for the soliton wavelength 1498.8 nm in Fig. 4.11(e) show, that the
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generated SH mode is different from the ones taken into consideration up to now.

Instead, the measured profiles correspond to the odd SH11 mode. This mode can only

be generated if both FW00 and FW01 are present in the system, which is very likely

with our type of excitation. The measured phasematching wavelength for this non-

degenerated interaction is 1498.2 nm, very close to the soliton wavelength. Another

non-degenerated SH resonance (SH mode profile not shown) is found at 1502.8 nm,

which is very close to the inhibition wavelength. The differences between the results

from Fig. 4.10 and the theoretical predictions and simulations can be explained by

additional phaseshifts created by the two described non-degenerate interactions, which

are not included in our theoretical model. However, the cumulative solitons can still be

excited as predicted. In Fig. 4.11(f) we show the corresponding SH mode profiles, which

in the center of the beam are an interference of SH02 and SH10 modes. The additional

even SH11 mode can only be recognized in the wings of the SH beam. Differences in

the mode profiles in the beam centers of Figs. 4.11(d) and (f) stem from unequal phase

differences of the two SH modes which form the interference pattern.

Chapter summary

This chapter was devoted to the study of nonlinear beam propagation in WGAs with

several SH modes. The analysis was simplified by taking into account only two modes,

a scenario which is common in the experimentally investigated LiNbO3 samples. First,

the stationary solutions as fixed points of nonlinear dynamics were analyzed. They

could be calculated analytically for single waveguides and numerically for WGAs. In

both cases we found novel properties which do not appear for just one SH mode

[FS9,FS25,FS29]. Two types of solitons where identified, cumulative solitons with

larger magnitude of the propagation constants than both SH modes and competitive

solitons where the propagation constants are between both SH modes. Cumulative

solitons are qualitatively similar to solitons with just one SH mode, although both SH

modes are part of the stationary solution. For competitive solitons we identified an

upper boundary of the propagation constant for their existence. Close to this boundary

the solitons are qualitatively similar to solitons in WGAs with saturable nonlinearity.

Additionally, the existence region of competitive solitons shows a gap, resulting in

soliton families with an energy threshold for soliton existence, which is not known in

systems with just one SH mode. The stability of all identified solutions was studied as

well. We found, that close to the existence boundary competitive solitons are unstable.

Experimentally, cumulative solitons could be excited and the participation of both

SH modes in the soliton was confirmed [FS7,FS16]. For specific mismatches, spatial

nonlinear beam-reshaping could be arrested completely due to the nonlinear compe-

tition [FS3,FS17]. This results in quasi-linear beam propagation even for high input

power, and may be of significance also for applications trying to avoid nonlinear effects.



Chapter 5

Linearly coupled second harmonic

modes

In the preceding chapter the influence of several SH modes on the nonlinear propagation

of finite beams inWGAs was investigated. However, these investigations were limited to

the existence, stability, and excitation of spatial solitons and related dynamic processes.

The properties of these solitons and beams have been described only with rather general

parameters such as power and width. The influence of specific parameters of the utilized

SH modes was also only discussed in terms of how they influence soliton existence.

The topic of this chapter is the investigation of the impact of the specific properties

of higher order SH modes on nonlinear beams, where the structure of solitons will be

discussed in particular. A special emphasis is put on the topology of the SH parts

of the beams, which are shown to possess novel features. Since the behavior of each

SH component depends only on the properties of the guided mode it is propagating

in, the analysis can be sufficiently carried out for only one SH mode. This allows for

the precise determination of the effects induced by a particular higher order SH mode,

without the added complexity of effects induced by mutual interactions of the FW with

several SH modes. Experimentally, interaction with mainly one mode can be achieved,

if the corresponding phase mismatch is much smaller than mismatches to other modes.

To focus the investigation on spatial effects, we restrict the theoretical description

to the cw case. The dispersion coefficients not taken into account are similar for all

modes, hence higher modes are not expected to result in different temporal effects. In

this case, light propagation in a homogeneous lossless WGA is described by

i
∂

∂z̄
AFW

n + CFW
[
AFW

n+1 + AFW
n−1

]
= −γAFW*

n ASH
n ,

i
∂

∂z̄
ASH

n + CSH
[
ASH

n+1 + ASH
n−1

]−ΔASH
n = −γ

[
AFW

n

]2
.

(5.1)

In this equation two parameters appear, which strongly depend on the SH mode prop-

69
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erties, namely the nonlinear coefficient γ and the linear coupling strength CSH. Differ-

ences in these coefficients for the various SH modes and their influence on the propaga-

tion will be the major subjects of our investigations. The mismatch Δ can be controlled

by the experimental conditions, e.g. by the input wavelength.

The nonlinear coefficient γ can be changed significantly due to vastly different SH

mode profiles and overlap integrals with the FW mode. However, the extreme case

γ = 0, which can be achieved with modes of different symmetry (see Section 3.1.2),

instantly leads to decoupling of the two equations of Eqs. (5.1) and hence to the well

known linear propagation. On the other hand, a mere change of the magnitude of γ

can be compensated by a change in the used power levels without the appearance of

new effects. We will appreciate this fact by setting γ = 1 in the following. Thus, the

only property of the SH modes with a nontrivial influence on the beam propagation is,

as we will show, the linear coupling constant CSH.

For a vanishing SH coupling (CSH = 0) the spatial dynamics of the SH part of an

evolving nonlinear beam is completely determined by the FW wave. SH photons can

be generated from and converted to the FW wave and thus create the phase shifts

necessary for spatial nonlinear effects. However, they cannot travel across the WGA.

In this scenario the beam dynamics is very similar to that in a Kerr nonlinear medium,

an analogy which finds its formal expression in the cascading approximation for large

mismatches as derived in Section 4.2. Differences to Kerr media lie mainly in the

changeable strength and sign of the nonlinearity due to the adjustable mismatch and

the more involved form of the phaseshifts for smaller mismatches [64]. All experiments

undertaken before this thesis were conducted in this limited case, since the linear cou-

pling constant of the used SH00 can be considered zero for experimentally available

sample lengths due to the strong mode confinement [105,106]. However, as we showed

experimentally in Section 3.2, the coupling constants for accessible higher order SH

modes can be one or two orders of magnitude larger than for the SH00 mode. This

results in the introduction of a kind of nonlocality in the nonlinear processes, since

now SH photons generated in one waveguide can create nonlinear phaseshifts in differ-

ent waveguides due to linear coupling independent from the FW. This system is now

fundamentally different from the case with CSH = 0 discussed above and it cannot

be ascribed to a simple Kerr medium for any mismatch. For bulk media, where the

SH wave diffracts, this nonlocality of the nonlinearity has been pointed out in various

works [182,199–201].

The aim of this chapter is to establish a basic understanding of the effects arising

in nonlinear beam dynamics from the coupling of the SH modes. To this end in

Section 5.1 the stationary solutions are derived and analyzed, first for the simplified

system of Eqs. (5.1). After the explanation of the structure of the spatial solitons

in this special case, we will show that the new characteristic effects remain also in
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systems with more SH modes. The experimental proof for the predicted new effects of

SH coupling is given in Section 5.2. To understand deviations between the predicted

stationary solutions and the experimentally measured transient behavior, a thorough

study of spatio-temporal pulse propagation in the WGA is carried out in Section 5.3.

5.1 Stationary solutions

Analog to the approach in Chapter 4, first discrete solitons are analyzed as fixed points

of the system of Eqs. (5.1). The investigation will be restricted to solitons with real

amplitudes, thus including only solutions with either 0 or π phase difference between

fields in adjacent waveguides, which are called unstaggered or staggered. It is well

established, that in a system with only one phasematching resonance solitons with un-

staggered FW exist for propagation constants above the linear bands whereas solitons

with staggered FW have propagation constants below the linear bands [22, 101, 105].

This was shown theoretically also for solutions with linearly coupled SH components.

Nevertheless, the structure of the SH has never been studied comprehensively, although

Refs. [22,101,202] found solutions with staggered FW and both unstaggered and stag-

gered SH components. In the following the conditions for staggered or unstaggered

soliton components are derived for the low power tails of the solitons, which can be

treated analytically.

5.1.1 The structure of the soliton tails

To derive the condition for staggered or unstaggered soliton components first the solu-

tions for linear waves propagating outside the linear bands are analyzed. The results

can be applied to the low power soliton tails, which are only weakly nonlinear. A

discrete linear plane wave of the WGA with constant amplitudes Aμ
0 is propagating

according to

AFW
n = AFW

0 exp
(
iκFWn+ ikFWz

)
,

ASH
n = ASH

0 exp
(
iκSHn+ ikSHz

)
.

(5.2)

The transverse wavenumbers κμ and longitudinal wavenumbers kμ are connected by

the diffraction relations for FW and SH (see Eq. (3.10) in Section 3.2), which in the

current case are

kFW = 2CFW cos
(
κFW

)
, kSH = 2CSH cos

(
κSH
)−Δ. (5.3)

With Eq. (5.3) we can eliminate the transverse wavenumbers in Eq. (5.2). For propa-

gation constants outside the bands, i.e.
∣∣kFW

∣∣ ≥ 2CFW and
∣∣kSH

∣∣ ≥ 2CSH −Δ we find



CHAPTER 5. LINEARLY COUPLED SECOND HARMONIC MODES 72

an exponential decay for waves in the transversal direction. This reads as

AFW
n =

(
ηFW
)−|n|

and ASH
n =

(
ηSH
)−|n|

, (5.4)

with

ηFW =
kFW

2CFW

⎛
⎝1 +

√
1−
(
2CFW

kFW

)2
⎞
⎠ ,

ηSH =
kSH +Δ

2CSH

⎛
⎝1 +

√
1−
(

2CSH

kSH +ΔSH

)2
⎞
⎠ .

(5.5)

The amplitudes ημ are positive for propagation constants above the linear bands and

negative for propagation constants below the linear bands. Thus, for kFW ≤ −2CFW

or kSH ≤ −2CSH−Δ the respective wave amplitude switches its sign between adjacent

waveguides, i.e. it is staggered.

To solve for stationary localized solutions of Eqs. (5.1) we use the exponential ansatz

AFW
n (z) = AFW

0n exp (ibz) , (5.6)

ASH
n (z) = ASH

0n exp (2ibz) ,

with the propagation constant of the soliton b. Plugging this ansatz into Eqs. (5.1)

results in the following system of equations

−bAFW
0n + CFW

(
AFW

0n−1 + AFW
0n+1

)
+ AFW*

0n ASH
0n = 0, (5.7)

−2bASH
0n + CSH

(
ASH

0n−1 + ASH
0n+1

)
+ΔASH

0n +
[
AFW

0n

]2
= 0.

In general, these equations have to be solved numerically, which we will do in the next

section. However, the tails of the localized solutions can still be analyzed analytically.

Here, for |n| � 1,
∣∣AFW

0n

∣∣ → 0 and
∣∣ASH

0n

∣∣ → 0 for localized states. Then the solution

for the FW is approximately the same as for linear waves outside the linear bands,

AFW
0n ≈ (ηFW)−|n|

. (5.8)

However, for the SH equation of Eqs. (5.1) we cannot neglect the nonlinear term even in

the small amplitude limit, since it represents an effective FW driving force. Hence, we

have to perform an asymptotic analysis, thus determining the dominating contribution
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Figure 5.1: Threshold propagation constant bs− in dependence on the mismatch Δ for
CFW = 1 and different CSH.

to the SH amplitudes for large |n|. For the SH beam tails this is

ASH
0n ≈ (ηSH)−|n|

if
∣∣ηSH∣∣ ≤ (

ηFW
)2

, (5.9)

ASH
0n ≈ (ηFW)−2|n|

if
∣∣ηSH∣∣ ≥ (

ηFW
)2

.

In the first case the profile of the SH tails corresponds to the linear wave solution,

whereas in the second case the SH is completely determined by the FW wave. We

immediately see, that in this second situation the sign of the SH amplitudes is always

positive, hence it cannot be staggered.

The transition between the two cases takes place when
∣∣ηSH∣∣ = (ηFW)2, which leads

to a threshold propagation constant expressed as

bs± = −CFW2

CSH
±
√

CFW4

CSH2 + 2CFW2 −Δ
CFW2

CSH
. (5.10)

For solitons with larger propagation constants than all linear states, the transition is

rather trivial, since FW and SH are always unstaggered. However, ημ < 0 if the prop-

agation constant is below the bands, b < min
(−2CFW,−CSH −ΔSH/2

)
. Hence, the

FW tails are always staggered whereas the SH component can switch from unstaggered

to staggered tails. For b < bs− and b > bs+ the SH tails are staggered and unstaggered

for bs− < b < bs+.

In Fig. 5.1 the threshold propagation constant bs− for CFW = 1 is plotted for various

values of the SH coupling constant. The minimum threshold is determined by the FW

band, since the solitons propagation constant has to be outside of the linear bands.

In the shown examples CFW = 1 leads to a minimum threshold of bs− = −2. The

magnitude of bs− constantly grows with increasing magnitude of the mismatch. Also, a

decrease of the SH coupling constant leads to an increase of the threshold propagation

constant. Moreover we can deduce from Eq. (5.10) that bs± diverges for CSH → 0.

Hence, the described effect was previously not experimentally observable due to the

negligible coupling constant of the utilized SH00 mode.
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Δ Δ Δ

Figure 5.2: Parameter regions for different soliton topologies. In the linear FW (light
gray) and SH (dark gray) bands, no solitons exist. We find solitons with unstaggered SH
(white), staggered SH tails and unstaggered beam centers (light blue) and completely
staggered SH (dark blue). Shown are odd solutions for (a) CSH = 1 and (b) CSH = 0.5
as well as (c) even solutions with CSH = 1.

5.1.2 Parameter regions for soliton existence

In the last section we deduced an analytic expression for a transition of the soliton

topology of spatial solitons with propagation constants below the linear bands of FW

and SH. In this case the FW component is always staggered [101]. However, the analytic

derivation of Eq. (5.10) was restricted to the tails of the localized solutions. Now the

existence of the transition is shown also for the complete soliton by solving Eqs. (5.7)

numerically [203]. Odd as well as even modes are calculated, which can be determined

by choosing the appropriate initial conditions in the numerical iteration algorithm and

an even or odd number of waveguides, respectively. For all numerical calculations

CFW = 1, which can always be achieved by normalization with the appropriate length

L0. Additionally γ = 1 is assumed, which in the system of Eqs. (5.1) can be assured by

an adequate transformation of the amplitudes, however, might be subject to changes

in systems with more SH modes. To categorize the found solutions, the signs of the SH

amplitudes in two neighboring waveguides are compared. Different signs imply that

the SH part of the solution is staggered at the position of the two test waveguides. This

topology test is applied at the edge of the calculation domain to monitor the soliton

tails and at the maximum of the amplitude distribution.

The results of the numerical calculations and subsequent topology tests are sum-

marized in Fig. 5.2. Here regions where no solitons exist due to the linear bands are

marked in light (FW band) and dark (SH band) gray. All other colors are used to denote

different soliton topologies. In white regions the SH is completely unstaggered, light

blue marks staggered tails and dark blue a completely staggered SH wave. Fig. 5.2(a)

shows odd solutions with CSH = 1. Clearly solitons bifurcating from the FW bands

undergo the transition with increasing magnitude of the propagation constant. The

threshold for the soliton tails agrees with the analytical predictions of Eq. (5.10) and
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π

Figure 5.3: Odd soliton family for Δ = 1. Quantities in the upper row belong to the FW
and in the lower row to the SH component. (a) Absolute values of the mode amplitudes,
(b) phases, where white corresponds to 0 and black to π, and (c) spatial spectral
amplitudes. The dotted lines mark the analytical threshold propagation constant bs−.

Fig. 5.1. The complete change of the SH topology happens for slightly larger propaga-

tion constants, which will be explained later when we analyze the intensity profiles of

the soliton families. In Fig. 5.2(b) the odd solitons with CSH = 0.5 are analyzed. As

expected, for any mismatch the threshold propagation constant for the tails is larger

than in the more strongly coupled case in Fig. 5.2(a). Additionally, the transition in

the beam center takes place for larger propagation constant and hence the parameter

domain of staggered tails and unstaggered beam center is much larger.

Remarkably, odd solutions bifurcating from the SH band always have a completely

staggered SH component. This can be explained considering the power of the SH fre-

quency component. For soliton families bifurcating from the SH band (in our examples

for mismatches larger than the intersection point of FW and SH bands), the SH com-

ponent always has a larger power than the FW. This is also known for quadratic spatial

solitons in bulk media [204]. Hence, according to Eq. (5.9), the SH is always staggered.

Results for even solitons are plotted in Fig. 5.2(c). Here the transition in the tails

exists as well and the transition propagation constant is the same as for the odd case.

However, the transition in the center of the soliton is not taking place. This is a result

of the symmetry constraints as will be shown later when we analyze the profiles of the

solitons in more detail. We note that the even solutions are unstable [101] and decay

into odd solitons when perturbed.

To better understand the mechanism of the topology transition, the intensity pro-

files of the solutions are evaluated. Fig. 5.3 shows the amplitudes of the odd soliton

family with Δ = 1. Other parameters are the same as in Fig. 5.2(a). In Fig. 5.3(a) the

intensities of FW and SH components are shown. At low magnitudes of the propaga-

tion constants, close to the linear FW band, the stationary solutions are very wide and

resemble linear waves. In this parameter regime also the power of the solution is small
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and the fraction of SH energy in the soliton is very small. This is in accordance with

earlier studies [101] and with the results for cumulative solitons from Section 4.2.2. For

increasing propagation constants the solution is getting narrower and simultaneously

total power, peak power, and SH power fraction are increasing. In Fig. 5.3(b) the

phases of the two frequency components are shown. Since only real solutions are con-

sidered, the possible values of the phase are either 0 or π. The phase profile of the FW

is staggered by default for all propagation constants below the linear bands. For the

SH phase we confirm the results presented earlier. For smaller propagation constants

the SH is unstaggered and abruptly switches to the staggered state at the transition

threshold. The transition starts in the tails of the localized state and evolves towards

the beam center.

The transformation of the SH is also manifested in the spatial spectra in Fig. 5.3(c).

For wide solutions, the SH is generated according to the phasematching relation

Eq. (3.13) for the transverse wavenumbers, which was proven experimentally in Sec-

tion 3.2.1. This relation demands the transverse wavenumber of the SH to be twice

the FW transverse wavenumber. We showed, that for wide staggered FW beams which

have κFW = π the corresponding SH has κSH = 0. This is fulfilled also for the wide

stationary solutions. However, as the solitons become narrower the SH is driven at a

decreasing number of waveguides. Hence, it becomes independent of the FW phase

structure and propagates in its own preferred state. According to the linear solution

Eq. (5.5), for propagation constants below the linear bands this is the staggered state.

Thus, the onset of the SH phase transition can be explained by an increased localization

of the stationary solution.

It has to be noted, that although other types of multicolor discrete spatial solitons

with staggered phase profiles have been described [59,60,205], the existence of the phase

transition is coupled to the parametric interaction between the different frequency

components. Only this interaction enables one of the frequency components to be

either determined by the other or to oscillate freely and hence allows switching between

this two states. In the cited examples, the coupling between different frequencies was

incoherent and consequently no transition was observed.

An even family of stationary solutions of Eq. (5.1) is plotted in Fig. 5.4. The

dependence of the solution’s width on the propagation constant is almost the same as

for the odd solutions. The most prominent difference to odd solutions is the equality

of the two central waveguides of each intensity distribution. As for the phases of the

individual waveguides, we see that the FW is completely staggered as well. In the SH

component the transition starts to emerge in the beam tails at the same threshold as in

the odd case (not visible in the image due the the finite number of shown waveguides).

However, the transition is not completed, even for large propagation constants. This

results from the fact that due to the even symmetry of the solitons the localization is not
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π

Figure 5.4: Even soliton family for Δ = 1. Quantities in the upper row belong to the
FW and in the lower row to the SH component. (a) Absolute values of the mode ampli-
tudes, (b) phases, where white corresponds to 0 and black to π, and (c) spatial spectral
amplitudes. The dotted lines mark the analytical threshold propagation constant.

as strong as for the odd solutions. Instead of being compressed to a width of almost only

one waveguide, the minimum allowed width of the FW is two waveguides. Since the

two central FW amplitudes have different phases, the corresponding SH amplitudes are

forced to have the same phase. Hence they cannot be staggered. The incompleteness of

the SH transition for even solitons can also be found in the spatial spectra. Here again

the FW is centered at propagation constants of κFW = π. However, the maximum

of the SH spatial spectrum is always at κSH = 0, even for a larger magnitude of the

propagation constant where the SH tails are staggered. This results from the properties

of the Fourier transformation.

In this section we confirmed the existence of a nontrivial topology transition of the

SH component of discrete spatial solitons. By analyzing the soliton profiles the degree

of localization of the soliton could be identified as a crucial property that determines

in which state the soliton exists. In the next section the transition will be shown

experimentally after we verified that it still exists in more realistic systems with several

SH modes.

5.2 Soliton transition in multimode systems

One of the main results of the preceding section was, that the phase transition of the

spatial solitons is directly linked to the linear coupling of the SH modes. It has already

been pointed out, that for array periods which do not violate the approximation of

weak coupling for the FW, the coupling coefficient of the SH00 mode is negligible.

This entails, that the SH00 mode cannot be used experimentally to show the phase

transition. Instead, higher order SH modes, having a larger mode area and hence an

increased linear coupling coefficient, are utilized. As was described in Chapter 3, the
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SH02 mode can have coupling constants which are in the same range or even larger

than the ones for the FW00 mode for reasonably small array periods. Thus, among

the easily accessible SH modes the SH02 mode is the best candidate to experimentally

show the soliton phase transition. However, the SH02 and SH10 modes usually have

similar wavenumbers, resulting in closely spaced phasematching wavelengths to the SH

mode.

In Chapter 4 the existence of solitons in a system with two SH modes was exten-

sively discussed. Especially the cumulative solitons, which exist for mismatches above

or below both SH bands were found to be very similar to solitons in a system with

only one SH mode. Hence, they are very likely to also undergo the topology transition

if linearly coupled SH modes are involved. However, the SH02 and SH10 modes usu-

ally have different coupling constants, with the SH10 mode being coupled to a much

lesser degree. In Section 5.1 it was concluded that the transition happens for smaller

wavenumbers if the mismatch is small. Hence, it will be beneficial for its observation if

the phasematching wavelength to the SH02 is closer to the excitation wavelength. For

the necessary negative mismatches this requires the phasematching wavelength of the

FW00 mode to the SH02 mode to be smaller than to the SH10 mode.

All formulated requirements for the experimental realization are fulfilled in the

sample already used for the experiments in Chapter 4. Hence, we choose the same

WGA with a period of 15 μm, resulting in coupling constants of cFW = 80m−1,

cSH02 = 63m−1, and cSH10 = 16m−1, respectively. These are not ideal parameters,

since the coupling of the SH02 mode is somewhat smaller than for the FW00. How-

ever, these numbers represent a reasonable trade-off. For arrays with larger coupling

constants the SH bands will disturb each other, violating the condition of weak linear

mode mixing, formulated in Section 2.2.2, and thus rendering the used coupled mode

equations inappropriate to describe light propagation. Other available samples with

different refractive index profiles and larger coupling constants show a reversed order

of the two SH modes in demand, as in Section 3.2.3.

5.2.1 Stationary solutions

Before the measurement results concerning the soliton phase transition are described,

we will again analyze the stationary solutions in a system which models the exper-

imental conditions more precisely. As explained above, in the WGA we use in the

measurements the SH10 mode is phasematched very close to the sought after SH02

mode. The phasematching wavelengths of all other SH modes with the SH02 are very

far away, and hence other modes can be neglected. Thus, cw beam propagation is
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Figure 5.5: Soliton solutions with (a,d) FW, (b,e) SH02, and (c,f) SH10 components.
For all plots, the mismatches are ΔSH02 = −1 and ΔSH10 = −21. The propagation
constants are (a,b,c) b = −3.45 and (d,e,f) b = −3.65. The circles show the mode
amplitudes and the shading denotes the phase where white corresponds to a phase of
0 and gray to a phase of π. The connecting lines are guides to the eye.

described by the system of equations already analyzed in Chapter 4, which reads

i
∂AFW

n

∂z
+ CFW(AFW

n+1 + AFW
n−1) +

(
γSH02ASH02

n + γSH10 ASH10
n

) (
AFW

n

)∗
= 0, (5.11)

i
∂ASH02

n

∂z
+ CSH02(ASH02

n+1 + ASH02
n−1 )−ΔSH02ASH02

n + γSH02
(
AFW

n

)2
= 0,

i
∂ASH10

n

∂z
+ CSH10(ASH10

n+1 + ASH10
n−1 )−ΔSH10ASH10

n + γSH10
(
AFW

n

)2
= 0.

Again, spatial solitons are stationary solutions of this system of equations which

are found with the ansatz Eq. (4.15) with constant amplitude and a common propaga-

tion constant b for all frequency components. However, in contrast to the analysis in

Chapter 4 now the normalized coefficients in Eqs. (5.11) are calculated from the coeffi-

cients of the experimental system. The normalized coupling coefficients are CFW = 1,

CSH02 = 0.79, and CSH10 = 0.2, respectively. In the same normalization the differ-

ence between the normalized mismatches is ΔSH02 −ΔSH10 = 20. The used normalized

nonlinear coefficients are γSH10 = 1.51 and γSH02 = 1.

The stationary solutions of Eqs. (5.11) are again calculated numerically. Profiles of

these spatial solitons with the aforementioned parameters for a mismatch of ΔSH02 =

−1 are plotted in Fig. 5.5. The threshold propagation constant for the SH02 mode

with CSH02 = 0.79, calculated according to Eq. (5.10), is bs− = −3.47. Since other

potentially interacting SH modes do not change the asymptotic considerations leading

to Eq. (5.10), the threshold should remain the same. This is confirmed by the numerical

results. Figs. 5.5(a-c) show a soliton profile just below the threshold at b = −3.45. Here

none of the SH components is staggered. In Figs. 5.5(d-f) the stationary solution at
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b = −3.65 is depicted, where the SH02 mode is staggered. The threshold propagation

constant is determined to bs− = −3.50 ± 0.05, thus corresponding to the analytic

prediction. The SH10 amplitudes in Figs. 5.5(c,f) are unstaggered for both plotted

propagation constants. With Eq. (5.10) the respective threshold propagation constant

is calculated to be bs− = −16.5.

In short, the phase transition of the SH components of spatial solitons also exists

in systems with realistic parameters and two SH modes. However, the transition point

strongly depends on the SH coupling constants and the mismatch, leading to different

threshold propagation constants for the various SH components.

5.2.2 Experimental demonstration

For the experimental confirmation of the soliton phase transition its manifestation in

the spatial spectrum is used. According to the results from Fig. 5.3 for odd solitons,

upon the transition the intensity maximum moves from the center of the SH Bril-

louin zone to its edge. The spatial spectrum of the SH can be measured with the setup

discussed in Section 2.4.2. To confirm the phase transition, solitons with different prop-

agation constants and different widths have to be excited and a change in the spatial

spectrum has to be recorded. This cannot be achieved directly, since the propagation

constant of a soliton cannot be set externally. Additionally, the experiments are again

carried out with FW only excitation and a fixed beam width. Although spatial solitary

waves in lithium niobate WGAs have been successfully excited in spite of these exper-

imental shortcomings [105], their width always was very close to the width of the wide

incident beam. A number of studies investigating the excitation problem of quadratic

spatial solitons in bulk crystals has already been undertaken [83, 193, 206–208]. They

show that increasing the input power increases the parameter range of solitons acces-

sible with a fixed input beam. Hence, also solitons with profiles very different from

the input beam can be excited, although the fraction of energy transferred to that

soliton may be very small. This effect is used here for the controlled excitation of

states with staggered SH. The absolute power P =
∑

n

∣∣AFW
n

∣∣2 + ∣∣ASH02
n

∣∣2 + ∣∣ASH10
n

∣∣2
of the stationary solutions of Eqs. (5.11) for realistic parameters is plotted in Fig. 5.6

in dependence on the propagation constant for different mismatches. The threshold for

the transition is marked by the crosses. For increasing magnitude of the propagation

constant, the necessary power is always increasing. Hence, for small powers the solu-

tions with staggered SH can never be excited, whereas for increasing power it should

be possible to transfer energy from the exciting beam to the sought after solitary wave.

The necessary power levels, which are in the range of 10 kW, are generated by short

optical pulses of 5.3 ps FWHM length. Due to the high peak powers and consequently

large amounts of SH radiation, temporal effects have to be taken into account when
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Figure 5.6: Absolute power of stationary solutions for real parameters in dependence
on the propagation constant for different mismatches ΔSH02. The crosses mark the
analytically calculated threshold propagation constants.

the experimental results are analyzed. This is in contrast to Section 4.3.2, where

the weaker SH was assumed to be trapped under the FW pulse. Complete temporal

trapping of the SH cannot readily be postulated here. Furthermore, spatio-temporal

solitons, which may show the same spatial SH topology transition as the spatial solitons,

do not exist in the used samples [95]. This is due to the large difference in the GVD

of FW and SH. Hence, a complicated temporal dynamics is expected to take place

during propagation, which cannot be directly resolved with the existing measurement

equipment. To interpret the measurement results and to additionally study the pulse

dynamics inside the sample leading to the measured output, simulations which model

the experiment as exactly as possible are carried out.

The experiments now aim to confirm the existence of the phase transition in a

dynamic system, where stationary states are not necessarily excited. First, we will

discuss the results of temporally integrated spatial measurements, double-checked by

simulations. The spatio-temporal dynamics of the propagating pulses is revealed in the

following section.

In all experiments described here, the FW input beam has an FWHM width of

Figure 5.7: (a) Typical result of time integrated measurements in the spatial SH Fourier
domain. The used input wavelength is λFW = 1499 nm with an input peak power of
10 kW. (b) Vertically integrated SH spatial spectra for the same wavelength as in
(a) for different levels of FW peak power. The high power curve corresponds to the
measurement in (a).
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60 μm, corresponding to 4 array periods, and is tilted to achieve a phase difference

κFW = π between adjacent waveguides. The input beam is adjusted to have its max-

imum exactly at the location of a waveguide, thus exciting a wavepacket with odd

symmetry. The SH output of the WGA is filtered spatially. To this end in the image

plane of the coupling objective an aperture is included in the setup which blocks all but

the 5 central waveguides. This is necessary to reduce the influence of SH modes from

non-degenerate nonlinear interactions on the measurement results. A typical measure-

ment result in the SH Fourier plane is depicted in Fig. 5.7(a). Since the measuring

CCD camera uses exposure times in the range of milliseconds, the measurement is

averaged over the temporal envelope of several pulses. The image in Fig. 5.7(a) is

measured for an input FW peak power of 10 kW at a wavelength of 1499 nm. The

periodic nature of the spatial spectrum is clearly visible in the horizontal direction. To

accommodate for vertical inhomogeneities, the 2D data is integrated vertically. The

resulting spatial spectra for 10 kW and 0.05 kW FW input peak power are shown in

Fig. 5.7(b). For the lower FW power the SH is completely localized at wavenumbers

of κSH = 2mπ,m ∈ N, corresponding to the centers of the different Brillouin zones and

hence to unstaggered SH. Here the transverse wavenumber κSH is used to describe the

spatial spectrum of both modes simultaneously, since we cannot distinguish between

them. Measurements at low power are also used to calibrate the wavenumber axis in all

experimental images. For the larger FW input power of 10 kW, additional SH maxima

at κSH = (2m+ 1) π,m ∈ N are visible. They clearly indicate, that staggered SH is in-

deed generated for these experimental conditions. A noticeable feature of all measured

Fourier spectra is the very large maximum at κSH = 0. The intensity there is inflated,

since all SH radiation which is produced in the sample but not in a guided mode of

the array is generated at very small transverse wavenumbers. This may include SH

spawned from non-guided FW waves, from the sample edges, and from interactions

with very high order non-guided SH modes. To avoid this excessively large peak in

the following only the SH spatial spectrum with 2π ≤ κSH ≤ 4π will be evaluated.

However, the plot labels will still refer to the first Brillouin zone, which is justified

because of the periodicity. Additionally we note, that the SH intensity is not dropping

to zero between the peaks. This is due to the limited spectral resolution induced by

the spatial filtering. In the following analysis the minimum low power SH intensity in

the investigated part of the spatial spectrum is always subtracted.

The upper row of Fig. 5.8 shows experimental results for a number of mismatches.

The stationary solutions corresponding to these mismatches show the phase transition

in the SH02 wave. In each experiment the FW input peak power is increased from about

500W to 8.5 kW. Due to the limited dynamic range of the automatic power control

in our setup, the low power boundary cannot be set to smaller powers. In Fig. 5.8

each measurement of the SH intensity (corresponding to one FW peak power) has
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Figure 5.8: Spatial spectrum of the SH component in dependence on the FW input
peak power for an input FW wavelength λFW (input mismatch ΔSH02) of (a) 1498 nm
(−23), (b) 1499 nm (−15), (c) 1500 nm (−7), and (d) 1501 nm (1). The upper row
shows experimental results, which are compared to the corresponding simulations in
the lower row. The dotted lines mark the approximate transition powers.

been normalized to the SH peak intensity for that input power in the shown interval

of the spatial spectrum. In all measurements we find that at low powers the SH

intensity is localized at κSH = 0, 2π. With increasing power, an additional maximum

appears at κSH = π, corresponding to staggered SH. Hence, these experimental results

confirm the existence of a partial transition of the SH from unstaggered to staggered

for odd beams. The threshold power, for which the staggered SH intensity reaches

approximately one half of the maximum SH intensity in this measurement, is marked

by the dotted lines. The threshold power is decreasing for decreasing magnitude of the

negative mismatch, which is due to the larger nonlinearity closer to phasematching.

This is also in agreement with the stationary solutions, where we found a decrease in

the threshold propagation constant (roughly proportional to the power, see Fig. 5.6)

for decreasing magnitude of the mismatch. The threshold slightly increases for λFW =

1501 nm. An increase of the threshold power is expected for wavelengths above the

phasematching wavelength 1501.5 nm. Here stationary states have a higher SH content.

Hence, the excitation efficiency is lower with FW only excitation and higher powers are

necessary to generate states with staggered SH. Due to inhomogeneities of the sample

and the spectral width of the used pulses the excitation for λFW = 1501 nm is partially

in this regime.

To further corroborate these observations, we conduct simulations of the experi-

ments by integrating the complete set of equations Eqs. (2.58) with the parameters of

Tab. 5.1 using the split-step algorithm [209]. In the simulations the sample inhomo-

geneities are taken into account as linear detuning ΔSH02
lin (z) and ΔSH10

lin (z). Simulation

results are shown in the lower row of Fig. 5.8, where the sum of the intensities of both
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description FW00 SH10 SH02 FW00 SH10 SH02

real values normalized values

GVD Dμ [ ps2m−1] 0.14 0.53 0.68 D̄μ 0.0061 0.024 0.030

group velocity 1
vμg

[ nsm−1] 7.34 7.70 7.70 δν - 0.85 0.85

nonlinearity χν
eff [ asm

−1] - 8.3 5.5 γν - 1.50 1.0

damping αμ [ m−1] 4.7 9.2 9.2 ᾱμ 0.029 0.058 0.058

coupling cμ [ m−1] 80 62 16 Cμ 1 0.79 0.2

Table 5.1: Parameters of the sample. The normalized values have been obtained with a
normalization length of L0 = 1/cFW = 1.25 cm and a normalization time of T0 = 5.3 ps,
which is the input pulse duration.

SH components is plotted. The simulations qualitatively agree with the measurement

results, also showing the transition for all mismatches. However, the threshold power,

above which a significant fraction of the SH is staggered, differs considerably between

measurements and simulations. In the experiments this threshold is much larger than

in the simulations. The dependence of the transition power on the mismatch is similar

to the measurements, a decrease with increasing mismatch and a slight increase for

ΔSH02 = 1. However, in the measurements we also find weak staggered SH for input

peak powers much below the threshold power. This is visible in Figs. 5.8(a) and (c).

Hence, in accordance with the simulations, staggered SH may be generated for much

lower powers.

To investigate the trigger mechanism for the appearance of staggered SH in the

dynamic experimental situation, we analyze the spatial output of experiment and sim-

ulation in Fig. 5.9(a) and (b). In the images the FW spatial output intensity is plotted

in dependence on the input peak power for λFW = 1500 nm. We observe focusing of

the beam at a power of around 1 kW in accordance with earlier measurements from

Section 4.3.2. This focusing corresponds to the excitation of spatial solitons with un-

staggered SH components, where the output beam width equals the input beam width.

In the experiments, further increase of the power broadens the beam, whereas it is

focused to almost only one waveguide in the simulation. In the simulation, this strong

focusing triggers the excitation of states with staggered SH at powers between 1.5 and

2 kW, seen in Fig. 5.8(c). For higher powers (not shown in Fig. 5.9(a) and (b)), the

output FW beam width nearly stays the same in experiment and simulation. Here the

propagating pulse is focused inside the sample and broadens upon further propaga-

tion. It can be concluded from the simulations, that similar to the stationary solutions

the focusing of the beam to a small number of waveguides is necessary to generate

staggered SH. Hence, we assume that staggered SH is generated in the experiment as

well for lower powers, but cannot be detected with the time integrated measurement

method due to a low generation efficiency and a large background signal. By analyzing
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Figure 5.9: (a) Measurement of the spatial FW intensity distribution at the array
output in dependence on the FW input peak power and (b) corresponding simulation.
The input FW wavelength is λFW = 1500 nm, meaning the mismatch is ΔSH02 − 7. (c)
Comparison of the measured and calculated powers of the different components for the
same parameters as in (a) and (b). The powers are normalized to the overall power for
each input peak power.

the pulse dynamics in the next section, the generation of staggered SH will be further

clarified. Spectrally resolved measurements will also clear the discrepancies between

simulation and experiment.

An additional problem of the experiments results from not distinguishing between

the intensities belonging to different participating SH modes. Although this would be

possible with specially designed optical elements [210], this method is not suitable for

implementation in the used setup. Fig. 5.9(c) shows the simulated and measured pow-

ers at the array output as fractions of the absolute power for λFW = 1500 nm. Here, the

absolute power is P =
∑

μ

∑
n |Aμ

n|2 with μ again running over all modes at all frequen-

cies. The partial powers then are PFW =
∑

n

∣∣AFW
n

∣∣2, P SH =
∑

n

∣∣ASH02
n

∣∣2 + ∣∣ASH10
n

∣∣2,
and P ν =

∑
n |Aν

n|2 for the SH mode ν. In the experiments we can only determine PFW

and P SH. A good agreement between simulated and measured powers is found, with

almost half of the power transferred to the SH frequency at the highest input power.

The normalized FW (SH) power in the experiment is always a bit larger (smaller) than

in the simulation, which can be attributed to the excitation of the FW01 mode. The

FW01 mode does not strongly participate in nonlinear interactions at this wavelength,

but is measured as FW power. The good agreement leads to the conclusion, that in

the experiments the maximum power in the SH10 mode is around 30% of the SH02

power. For SH generated at κSH = π the simulated SH10 component is even weaker.

A striking feature of the soliton phase transition is the vanishing of staggered SH

intensity in the spatial spectrum for even solutions. To also prove this feature experi-

mentally, the SH spatial spectrum is recorded for odd and even FW excitation for an

input peak power of 10 kW. The result for λFW = 1500 nm is compared to correspond-

ing simulations in Fig. 5.10(a). Clearly, the SH spatial spectrum is affected by the

change of the excitation. For odd excitation, staggered SH is generated, whereas the
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Figure 5.10: Spatial SH spectra for (a) odd and (b) even FW excitation. The input
FW wavelength is λFW = 1500 nm, the mismatch ΔSH02 = −7, and the FW input peak
power is 10 kW.

intensity at κSH = π is minimal in the even case. The experimental verification of the

difference between even and odd beams is surprising, since even beams are known to

be unstable and tend to decay into odd beams [101, 105]. Nevertheless, the instabil-

ity develops slow enough that some characteristic features of even beam propagation

survive and are measurable.

Summarizing the experimental results described until now, the power dependent

topology transition of the SH wave in nonlinear parametric beam propagation was

shown with time integrated measurements. A mismatch dependent power threshold

for the generation of staggered SH was identified. However, in the experiments most

staggered SH was generated for powers where the beam was shown to be relatively

broad. Hence, stably propagating spatial solitons with staggered SH have not been

shown, even not in the sense of Ref. [197], where the beam profile of pulsed beams

is still determined by the underlying spatial solitary wave. We conclude, that the SH

topology transition is not restricted to solitons, but a generic feature of parametric

beam propagation in WGAs. Additionally, the dependence of the phase transition on

the beam symmetry was experimentally verified.

5.3 Spatio-temporal dynamics

After investigating the temporally integrated output of the WGA for various mis-

matches and FW input peak powers we concluded, that the predicted transition of the

SH wave from staggered to unstaggered is a generic property of parametric nonlinear

beam propagation. However, although staggered SH was detected only for beams un-

dergoing focusing, the generation mechanism could not be completely uncovered. To

this end one needs to directly study the spatio-temporal dynamics of the propagating

pulses. A number of standard techniques to experimentally characterize short optical

pulses exist [211]. However, these methods are not very suitable to characterize the
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Figure 5.11: Spatio-temporal (left) and spectral (right) representations of simulated
FW, SH02, and SH10 output intensities for (a) 1.3 kW and (b) 2.0 kW FW input peak
power. The wavelengths are given as the corresponding FW wavelengths relative to
the central input wavelength of 1499 nm.

output pulses of the experimentally investigated WGAs, since every waveguide has to

be measured separately for each investigated power level. A spatially resolved cross-

correlation technique [212] would be feasible, however, it relies on a pump pulse much

shorter than is available with the laser system used here. Consequently we will follow a

different approach. First, the pulse propagation in the array will be analyzed using sim-

ulation results which show the pulses in the spatio-temporal as well as in the spectral

domains. This analysis is used to identify distinct features indicating the generation of

staggered SH, which we measure in the spectrally resolved spatial spectrum. In turn,

these measurements are utilized to verify the simulations.

5.3.1 Simulation of pulse dynamics

In the last section results of time integrated measurements have been presented for a

number of different phase mismatches. Since these results did not show qualitative dif-

ferences, it is sufficient to carry out the detailed analysis of the spatio-temporal dynam-

ics only for one wavelength or mismatch. The wavelength of interest is determined by

experimental constraints. The results at wavelengths close to the phasematching wave-

length between FW00 and SH02, λFW = 1501.5 nm, are strongly influenced by sample

inhomogeneities. Hence, they may not be very representative. At λFW = 1498 nm the

experiments are complicated by non-degenerated phasematching to the SH11 mode,

which is not simulated. A suitable wavelength is λFW = 1499 nm, corresponding to a

normalized mismatch of ΔSH02 = −15, which is further used.

First, we simulate and analyze the power dependence of the output of the WGA af-
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ter 71mm of propagation. The same simulation results presented already in Fig. 5.8(b)

are used, albeit not integrated over time. Results for input peak powers of 1.3 kW and

2 kW are shown in Fig. 5.11, below and just above the threshold power defined in

Fig. 5.8(b). 1.3 kW also corresponds to the power where the time integrated beam

is focused to its smallest width. For each power (one row of Fig. 5.11), the spatio-

temporal intensities as well as the intensity in dependence on wavelength and trans-

verse wavenumber for all three frequency components are plotted. The wavelengths in

this and the following figures are labeled with the wavelength relative to the FW input

wavelength, which is λrel = λFW − λFW
in for the FW and λrel = 2λSH − λFW

in for the SH.

Hence, equal relative wavelengths of FW and SH figures correspond to each other. The

phasematching wavelengths are 1501.5 nm to the unstaggered SH02 and 1503.8 nm to

the unstaggered SH10 wave, corresponding to relative wavelengths λrel of 2.5 nm and

4.8 nm, respectively.

For 1.3 kW in Fig. 5.11(a), the pulses are compressed spatially to almost one wave-

guide. Front and tail of the FW pulse are still broader, since the lower power in this

regions is not enough to generate the necessary phase shifts for spatial focusing [213].

We note, that this effect is used in WGAs with Kerr-nonlinearity to excite X-shaped

waves [214–216]. Both SH components show the same features. They consist of a

trailing pulse, which was already generated at the input, and SH trapped by the FW

pulse [194–196, 217, 218], although the free radiation is very weak for the SH02. The

trapped SH photons are constantly generated by SHG and subsequently reabsorbed

via DFG and by this cascading are responsible for the nonlinear phase shifts. The

FW spectrum is broadened due to effective self-phase modulation. Since the cascading

phase shifts depend on the wavelength, the spectral broadening is not symmetric as

in a process driven by Kerr-nonlinearity [219]. The FW shifted to longer wavelengths

comes very close to the phasematching wavelength with the SH02 wave and hence is ef-

ficiently transferred to the SH frequency. As a consequence, for powers above the power

of strongest focusing SHG strongly increases, as is also documented in Fig. 5.9(b) for

a slightly smaller mismatch than considered here. The SH is not generated exactly

at λrel = 2.5 nm, which would correspond to the phasematching wavelength, but a bit

below. This originates from the sample inhomogeneity, since at the end of the sample

the local phasematching wavelength is lower. Although the beams in the spatial do-

main are strongly localized and thus in the spatial-spectral domain are rather broad,

the maximum of the SH02 component is still unstaggered. The SH10 spectrum is con-

centrated around the excitation wavelength, here a beating between the components

traveling with the FW pulse and the ones propagating freely behind is observed.

For an input peak power of 2 kW in Fig. 5.11(b) the spatial representations are

already broadened with respect to Fig. 5.11(a). The FW pulse maintains its X-shape,

but with more pronounced wings. The SH10 wave mainly travels with the FW pulse. In
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Figure 5.12: Spatio-temporal (left) and spectral (right) representations of simulated
FW, SH02, and SH10 output intensities for (a) 5.0 kW and (b) 8.5 kW FW input peak
power. The wavelengths are given as the corresponding FW wavelengths relative to the
central input wavelength of 1499 nm. The right column shows the sum of the spectral
SH02 and SH10 intensities.

contrast, the SH02 component radiates away from the FW pulse and diffracts. This is a

consequence of the efficient SHG at the phasematching wavelength. The large amount

of generated SH cannot be retained under the FW pulse since it travels with the same

phase velocity and thus is not subject to cascading. Hence, it is radiating away and

consequently diffracts due to linear coupling. Now staggered SH02 at κSH02 = π is

generated, even though this takes place in the SH radiation cone and is not part of

a stationary state. This generation is restricted to approximately the phasematching

wavelength to the SH02 wave, which however is now shifted to higher wavelengths

with respect to Fig. 5.11(a). This has two reasons. First, the SH presumably is now

generated at a different place in the sample, where the local phasematching wavelength

is higher than at the end. Secondly, due to phaseshifts generated by the FW00-SH10

phasematching resonance, the FW00 travels effectively with a different phase velocity.

Thus, the phasematching wavelength to the SH02 is nonlinearly detuned to larger

values [77]. The SH10 wave does not show staggered waves due to its smaller coupling

constant, larger mismatch and hence larger threshold power.

For higher input peak powers the output pulses, shown in Fig. 5.12, are more

complex. However, we see that for both powers, 5 kW in Fig. 5.12(a) and 8.5 kW

in Fig. 5.12(b), the SH waves do not propagate locked to the FW. Instead, both SH

components radiate away, forming cones of different width correlating to the coupling

strengths. Consequently, now also the SH10 has significant components generated

close to the relative low power phasematching wavelength of λrel = 4.8 nm. The SH02

wave is mostly generated in the staggered state, whereas the SH10 component shows

staggered portions only for 8.5 kW. However, as evident in the images combining both

SH components, the SH02 is still dominant. This is a consequence of the generation
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Figure 5.13: (a) Simulated SH output spectrum in dependence on the input power
for λFW = 1499 nm. The dotted lines mark the input and phasematching wavelengths
relative to the FW input wavelength as indicated by the labels. (b) Wavelength of the
maximum SH02 intensity for κSH02 = π in dependence on input FW wavelength and
power.

mechanism, since only FW which is shifted across the SH02 phasematching resonance

without being transformed can contribute to the phasematched SH10. Hence, for all

simulated powers the main contribution to the staggered SH comes from the SH02

wave.

The largest amount of SH and especially the staggered SH components are gen-

erated at the phasematching wavelengths. To further underline this, the SH output

spectrum corresponding to the simulated pulse outputs explained above is depicted in

Fig. 5.13(a). Above a power of ≈ 1.0 kW, shortly before the strongest focusing appears,

the SH indeed is generated near the phasematching wavelengths. Differences are due

to sample inhomogeneities and power dependent detuning [77]. The same effects as

described for 1499 nm are found for other FW input wavelengths. In Fig. 5.13(b), the

wavelengths of the maximum SH02 intensity at a transverse wavenumber of κSH02 = π

are compared for different input wavelengths and powers. The differences in the gener-

ation wavelengths are very small and again originate mostly from inhomogeneities and

nonlinear detuning.

To further strengthen the given interpretations, the pulse dynamics along the prop-

agation inside the sample is investigated. To be consistent with the case discussed

above, the FW input wavelength is again 1499 nm with all other parameters staying

the same as well. The input power simulated here is 2 kW. For this power Fig. 5.11(b)

already shows the generation of staggered SH, yet the pulse shapes are still easy to

interpret. The intensities in different stages of the propagation are shown in Fig. 5.14.

Here the SH10 component is omitted, since it does not contribute to the generation

of staggered SH waves. Initially, the FW and SH pulse are spatially narrowing. Af-

ter 20mm of propagation, the SH pulse not retained under the FW pulse is visible,

trailing the FW radiation by ≈ 7 ps. After 38mm, the pulses are strongly focused,

especially the SH wave is localized in only 1 waveguide. This leads to broad spatial

spectra of all components. Also, the effective self-phase modulation of the FW already
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Figure 5.14: Spatio-temporal (left) and spectral (right) representations of simulated
FW (upper row) and SH02 (lower row) intensities for different propagation lengths.
The wavelengths are given relative to the central input wavelength of 1499 nm for the
FW and 749.5 nm for the SH, respectively. The FW input peak power is 2 kW.

broadened the spectra, leading to efficient SHG at the phasematching wavelength of

λrel = 2.5 nm. Notably, for the SHG generated at the phasematching wavelength

a maximum at κSH02 = π can be recognized, signaling SHG primarily of staggered

waves. Indeed, locally the pulses are similar to the stationary solutions calculated in

Section 5.2.1 in terms of the necessary localization and power levels. Finally, after

55mm of propagation the FW is broadened again in the front and tail, whereas the

generated SH is radiating away from the FW pulse. The SH spatial spectrum clearly

shows a maximum for staggered SH. This maximum is rather broad, since due to the

strong spatial localization of the FW wave SH can be generated for a large range

of transverse wavenumbers. However, we note that the SH is not generated at the

same wavelength across the whole Brillouin zone. This can be explained with results

from Chapter 3, where we found that in order to fulfill the phasematching condition

for various FW transverse wavenumbers, the SH is generated at different points of

its dispersion relation and hence at different wavelengths. In the case discussed here,

the FW spectrum is broad enough to enable simultaneous phasematching for differ-

ent transverse wavenumbers. The SH is generated at an isoline of the SH dispersion

relation. In a weakly coupled WGA, these isolines of constant longitudinal wavenum-

ber follow a cosine-shape like the diffraction relation. States which have their energy

distributed along the isolines of the dispersion relation have been described as SH X-

waves [220–222]. In Ref. [220] also the SH radiation cone, which is supported by the

FW pulse at one end, is predicted, exactly as we find it in our simulations.

To conclude this section, we have shown that in our system staggered SH is not

generated in spatial solitons. Instead, a highly dynamical process takes place which

includes spatial and spectral reshaping of the input beam. The staggered SH is only

generated at wavelengths close to the phasematching wavelength. This peculiar feature
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Figure 5.15: Measured spectrally resolved SH spatial spectra for an FW input wave-
length of 1499 nm and (a) 0.1 kW, (b) 2.5 kW, and (c) 9 kW FW input peak power.
The upper row shows the measured 2D spectra whereas the lower row shows cuts at
different wavelengths corresponding to the input wavelength and the phasematching
wavelengths to SH02 and SH10. The dash-dotted lines in the upper row mark the
wavelengths where the cuts are taken.

will be demonstrated experimentally in the next section to corroborate the simulations.

5.3.2 Experimental demonstration

To realize the spectral measurement capabilities necessary to prove the simulation

results described in the preceding section, the same measurement setup as for the

integrated measurements in Section 5.2.2 (described in detail in Section 2.4.2) is used.

However, instead of a CCD camera we use an imaging spectrograph as the detection

instrument in the SH Fourier plane. This allows for the measurement of the SH intensity

distribution in dependence on wavelength and transverse wavenumber. With the used

instrument a spectral resolution of 0.5 nm is achieved.

Here results obtained for an FW input wavelength of 1499 nm are presented, consis-

tent with the simulated case discussed above. Measurements for different input powers

are presented in Fig. 5.15. In Fig. 5.15(a) the input peak power is 0.1 kW, where no

nonlinear effects besides mismatched SHG are expected. The measurements show gen-

erated SH only at the wavelength of 749.5 nm, corresponding to SH of the FW input

wavelength. The lower image of Fig. 5.15(a) shows the SH intensity at this wavelength

only, which however is integrated over a spectral domain corresponding to the spec-

tral resolution of 0.5 nm. Clearly the SH is not staggered, as is expected from the

simulations and the spectrally integrated experiments. Results for an input power of

2.5 kW are shown in Fig. 5.15(b). This power is above the power necessary to obtain

the largest localization of the beam at the array output. Here SH is detected at three

distinct wavelengths, where the lowest again corresponds to the exciting FW. The other
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distinct wavelengths of 751 nm and 752.3 nm correspond roughly to the phasematching

wavelengths of 1501.5 nm and 1503.8 nm to the SH02 and SH10 modes, respectively.

Small deviation from the low power phasematching wavelengths are again due to non-

linear detuning [77]. The intensity cuts at these wavelengths show, that the SH at the

input wavelength is again unstaggered, whereas the SH at the phasematching wave-

lengths has its maximum at κν = π. Qualitatively the same result is obtained at an

input power of 9 kW in Fig. 5.15(c). Again, SH at both phasematching wavelengths

(further shifted) is present and staggered, whereas the maximum intensity at the input

wavelength corresponds to unstaggered SH.

The presented experimental result confirm the main result of the analysis of the sim-

ulations in Section 5.3.1. Staggered SH is indeed only generated at the phasematching

wavelengths, if the input power is larger than necessary for spatial focusing at the ar-

ray output. Besides the general agreement between simulations and experiments, some

discrepancies between the spectral measurements on one hand and the spatio-temporal

simulation and the integrated measurements on the other hand exist. First, the SH10

mode, which was almost not recognizable in the simulations, generates also staggered

SH with an intensity comparable to the SH02 mode. Also, the SH which is generated at

the input wavelength has a much larger intensity than in the simulations. This is visu-

alized in Fig. 5.16(a), where the spectrum integrated over all transverse wavenumbers

is presented in dependence on the input power. The measured result is comparable to

the simulated data in Fig. 5.13(a), however, with the described deviations. These are

linked to the longitudinal inhomogeneity of the sample. This is in principle included

in the simulations, but the resolution with which the inhomogeneity is known is in the

range of several mm, as is described in detail in Appendix B. Smaller scale inhomo-

geneities also play an important role in parametric processes, which depend sensitively

on the phases of the participating frequency components. Unfortunately, they cannot

be experimentally determined for a particular sample. The consequence of the inhomo-

geneity induced dephasing may be, that a larger amount of the self-phase modulated

FW is not transferred to the SH02 but shifted further to the SH10.

To further strengthen this notion a spectrum of the SH at a power of 2.5 kW for a

larger spectral range is presented in Fig. 5.16(b). We notice, that SH is not only gener-

ated at the SH10 phasematching wavelength, but also at the wavelength corresponding

to the SH00 mode. Hence, the frequency conversion of wavelength shifted FW is not

as efficient as in the simulation. The self-phase modulation itself is further reinforced

by the effective cubic nonlinearity induced by higher order QPM terms mentioned in

Section 2.1 [141, 142]. Additionally, the simulations also lack to describe the effects

of cascaded interactions with the SH11 and SH00 modes, which are weak, but may

produce noticeable effects due to additional phase shifts of the FW00 wave.

The described decreased efficiency of the generation of staggered SH also explains
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Figure 5.16: (a) Spatially integrated SH output spectra for λFW = 1499 nm in depen-
dence on the FW input peak power. The dotted lines mark the low power phasematch-
ing and input wavelengths. (b) Extended SH output spectrum for an input power of
2.5 kW. The gray shading denotes the spectral region already plotted in (a). The labels
name the SH modes corresponding to the spectral maxima.

the discrepancies between the integrated and spectrally resolved measurements. For

lower input peak power the generated staggered SH is hidden in a background of the

broad unstaggered SH maxima generated at the input wavelength and additionally at

the phasematching wavelengths to SH00 and SH11 modes.

Chapter summary

The influence of specific properties of higher order SH modes on the nonlinear beam

propagation was investigated in this chapter. Thereby the focus was on the linear

coupling strength, which was zero in all experiments reported previous to the work

conducted in this thesis.

First, discrete solitons were analyzed. Analytically it was shown, that the SH

component of a soliton undergoes a power dependent topology transition from un-

staggered to staggered if the SH is linearly coupled. This was proved by numerically

calculating the corresponding stationary solutions, where the spatial localization was

identified as the trigger mechanism for the transition. The SH topology transition

was confirmed experimentally by showing a power dependent amount of staggered SH

[FS5,FS7,FS11,FS19-22]. The experiments could not excite solitons with staggered SH

but revealed, that the transition is a generic property of nonlinear propagation.

The generation of staggered SH in the dynamic experimental situation was studied

by conducting detailed simulations of the pulse propagation. It could be shown, that

the generation of staggered SH is indeed triggered by a localization of the beams.

However, also a spectral reshaping takes place, which results in the output of staggered

SH always at the phasematching wavelength of the corresponding SH mode [FS27].

This peculiar feature could be confirmed experimentally by spectrally resolving the

spatial SH spectrum [FS8,FS29,FS30].



Chapter 6

Conclusions and Outlook

The aim of this thesis was to establish an understanding of the effects induced by

higher order modes on nonlinear beam propagation in WGAs. To achieve this, light

propagation in multimode WGAs manufactured by titanium indiffusion in periodically

poled lithium niobate was investigated both experimentally and theoretically. These

WGAs provide a second-order nonlinearity, which couples light of different frequencies.

For the theoretical studies the coupled mode equations were used. They are suitable to

describe light dynamics in WGAs under almost all circumstances, given that the linear

modes of the waveguides are independent of the effects taken into account to describe

the dynamics. It was additionally assumed, that the eigenmodes of the WGA are su-

permodes, linear superpositions of only one guided mode of the individual waveguides,

which requires the bands of the modes to be well separated. Under these assump-

tions the resulting set of equations could be easily adapted for a simplified analytical

treatment or the description of complex experimental circumstances.

For the experimental verification of the theoretically described effects, a flexible

experimental apparatus was used. It allowed for the automated control of a larger

number of input parameters and for a computer aided collection of all necessary mea-

surements. Pulsed light generated by a unique cw-seeded NOPA system was utilized.

The computer controlled beam manipulation system enabled parameter scans of wave-

length, input power, and input beam tilt of the beam coupled to the WGA. At the

output of the WGA, the powers and spatial profiles of both FW and SH components

as well as the spectrally resolved spatial spectrum of the SH were detected.

Weak nonlinear processes in the form of SHG were studied for low input powers.

Here the focus was solely on the generation of specific SH modes and its dependence

on the input conditions. The SHG process in general was very well understood be-

fore the work on this thesis started and the experimental results were mainly used to

characterize the higher order SH modes in single waveguides and WGAs. In single

waveguides, an exciting FW wave can, in dependence on the input wavelength, be con-

verted to different SH modes. This was shown by means of tuning curve measurements.

95
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The conversion efficiency for each mode follows the well known sinc-dependence on the

phase mismatch, leading to a resonance-like generation of SH. The measurement of

the mode profiles in the maximum of the SH resonances enabled the adaption of an

analytic model of the waveguide refractive index profile to a particular sample. Thus,

the phasematching wavelengths and mode shapes could be obtained by simulations.

SHG in WGAs was described with the same formalism as in the single waveguide.

Again, a sinc-dependence of the generation efficiencies was obtained. However, the

wavelength of the efficiency maximum in WGAs is not only dependent on the phase-

matching wavelength in the single waveguides, but also on the dispersion relations of

the interacting waves. These dispersive bands lead to different longitudinal wavenum-

bers for waves with differing transverse wavenumbers. It was shown experimentally,

that the transverse wavenumber of the SH is twice the transverse wavenumber of the

FW. The dependence of the phasematching wavelength on the dispersion relations en-

ables the measurement of the SH bands. For this, the FW band has to be known.

The measurement procedure was demonstrated experimentally for waveguide arrays

with different linear coupling constants. It should be emphasized, that the developed

measurement scheme is not restricted to WGAs and can be used in other periodic

systems with parametric nonlinearities. Especially photonic crystals with quadratic

nonlinearity, which were developed recently [176,177], could be characterized with the

presented approach. For weakly coupled WGAs the linear coupling constant is sufficient

to completely determine a band at a fixed wavelength. To measure only these coupling

constants of the SH modes, a simplified characterization technique was devised, which

relies on only two measurements of the phasematching wavelengths.

For higher input powers, an FW wave can interact with several SH components,

even if the phasematching conditions are not fulfilled [77]. In this thesis a simple

system of one FW and two SH modes was studied with emphasis on spatial beam

reshaping. First, spatial solitons were analyzed analytically in a single waveguide and

numerically in WGAs. For each set of phase mismatches between the FW and the SH

waves, solitons exist in three parameter ranges of the propagation constant. This is

in contrast to solitons with only one SH, where a maximum of two different solution

domains can exist. These two existence regions are reproduced for two SH modes,

where they are characterized by cumulative action of both parametric interactions.

The additional soliton existence region forms due to competition between the two SH

components. It is bounded by the linear bands of FW or SH and the propagation

constant in the center between the two SH bands. For soliton propagation constants

approaching the latter existence boundary, the soliton power goes asymptotically to

infinity. This is not possible for solitons with only one SH mode, where the power is

always finite for finite propagation constants. However, a similar behavior was shown

for discrete solitons with saturable nonlinearities. Hence, the nonlinear competition in a
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WGA with two SH modes mimics a saturable system for certain mismatches. In WGAs,

regions of mismatches have been identified where competition solitons do not exist and

the cumulative solitons bifurcate from the SH bands. Here the power threshold for

soliton existence is non-zero, which is not known from systems with only one SH mode.

Furthermore, the calculated solitons were probed for instability and several instability

mechanisms were identified. Especially solutions close to the competition cut-off are

unstable.

Beam propagation with two SH modes was studied experimentally for the inter-

action of the FW00 mode with the SH02 and SH11 modes. A peculiarity of the ex-

periments was, that only the FW was coupled to the sample. Solitons could only be

excited dynamically during the propagation. Nevertheless, the excitation of cumulative

solitons bifurcating from the FW bands could be observed. The measured SH mode

profiles confirmed, that both SH modes participated in the nonlinear interaction. Un-

fortunately, competition solitons could not be excited due to sample inhomogeneities.

However, a region of mismatches was identified experimentally, where the competition

of the SH interactions leads to an inhibition of spatial nonlinear effects. At these mis-

matches, beams propagate in a quasi-linear regime, showing linear diffraction even for

high input powers. This effect may find an application in environments where high

powers have to be delivered without beam reshaping.

The influence of the specific properties of higher order modes on the topology of

nonlinearly propagating beams was also investigated. The impact of the different

parameters of the modes was discussed and the linear coupling constant was identified

as being a qualitative difference between first and higher order SH modes. For the

tails of spatial solitons it was shown analytically, that the SH component may exist

in two different states. For solitons with staggered FW component, the SH tails can

switch between the staggered and unstaggered topology, depending on the FW power

in the soliton tail. The threshold propagation constant for this transition depends

sensitively on the linear coupling constant of the SH mode. For the uncoupled first

order SH mode the transition does not take place. The existence of the transition

was also verified for numerically obtained spatial solitons, confirming the analytically

obtained threshold propagation constants for the soliton tails. However, in the center

of odd solitons the transition takes place only for larger coupling constants, whereas it

is inhibited completely in the center of even solitons due to symmetry constraints. The

numerically calculated intensity profiles allowed for the identification of the localization

of the solitons as the trigger mechanism of the topology transition. Furthermore, the

analysis of the SH spatial spectra revealed, that the topology transition is accompanied

by a shift of the intensity maximum from transverse wavenumbers at the center of

the Brillouin zone to the edge of the Brillouin zone. This feature was used for the

experimental verification of the effect.
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Experiments confirming the topology transition were carried out utilizing the SH02

mode. First, the pulsed output of the WGA was analyzed in a time integrated form.

In these experiments, the shift of the SH intensity from the center to the edge of the

Brillouin zone could be measured in the spatial spectrum. The difference between odd

and even beams could be shown by monitoring the SH spatial spectrum for different

input beam symmetries. For even beams the staggered SH vanishes. Although the

general predictions for the topology transition were reproduced in the experiments,

the measured threshold powers and intensity distributions deviated from simulation

results. This was attributed to the shortcomings of the time-integrated measurement

technique, which cannot discriminate between the different SH modes present in the

experiments.

To clarify the aforementioned discrepancies and to study the specific dynamic effects

leading to the topology transition, a detailed analysis of the pulse dynamics in the

sample was undertaken. Simulations revealed, that staggered SH is generated due to

strong localization of the beams, however, spatial solitons were not excited. This is due

to the strong group velocity mismatch between FW and SH components, which impedes

the formation of a stable pulse with both FW and SH components. Furthermore,

staggered SH is only generated at the phasematching wavelengths. This characteristic

effect was confirmed in experiments measuring the spatio-temporal spectra of the SH.

In these experiments the same threshold powers for the generation of staggered SH

as in the simulations were obtained. Additionally, the experiments showed, that SH

modes with very large phase mismatch take part in the nonlinear interaction, which

were not taken into account in the simulations.

With the theoretical and experimental work presented in this thesis it was shown,

that utilizing higher order SH modes in quadratic WGAs leads to a number of new

effects. Although the studies explained here are of a fundamental nature, some of

the investigated phenomena have the potential to be used in applications as well.

Examples are the bandstructure measuring technique using SHG or the nonlinearity

inhibition caused by two SH modes. Additionally, also the SH topology transition

may be employed to generate or to switch between specific phase profiles. Effects

similar to the described ones may also exist in other discrete systems. The coupled

mode equations used to describe the evolution of cw-light in homogeneous WGAs in

general describe a set of linearly coupled discrete chains, which interact nonlinearly.

Specifically, one chain which corresponds to the FW, is connected by a second order

nonlinearity to the other chains and can be regarded as a driving force. Although the

specific form of the nonlinear interaction may be different, similar coupled system are

expected to exist also in other fields of science.

Future work on the topic discussed in this thesis will be based on the high quality
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of the described experimental system, which allows for the experimental investigation

of complex nonlinear phenomena. Two different approaches may be considered, which

both have promising scientific perspectives.

First, the complexity of the investigated system may be further increased by consid-

ering effects which have been neglected in the current thesis. The model of the system

could be altered to allow for the description of arbitrary SH modes, including stronger

coupled modes and closely spaced bands. This approach would allow for the description

of effects resulting from the deviation of the bands from the cos-shape considered in

this thesis. Furthermore, nonlinear coupling terms induced by the overlap of FW fields

with SH fields in neighboring waveguides have been neglected in this thesis. In specific

parameter ranges the inclusion of this term may yield interesting results and yet re-

mains to be explored. Effects stemming from the aforementioned interactions could be

easily confirmed experimentally with the existing setup after suitable parameters have

been identified theoretically.

Secondly, more complex types of nonlinear excitations, studied only theoretically

up to now, could be targeted also experimentally. This includes more exotic station-

ary solutions like front or twisted solitons [111, 112], which require higher order SH

modes. Additionally, also interactions of several solitons as described theoretically in

Ref. [101] could be investigated experimentally. To this end, improvements in the ex-

citation scheme are necessary. The continuous excitation by Gaussian beams has to be

substituted by an excitation with separate input spots corresponding to the different

waveguides. This would enable the separate addressing of intensity and phase in each

waveguide, allowing for the mandatory large complexity in the excitation. Practically,

this can be achieved by using a spatial light modulator to shape the input beam. Apart

from the additional freedom this type of excitation would create, it would further in-

crease the quality of the experimental results be reducing the excitation of unwanted

modes.

Finally, also the direct measurement of temporal effects will give additional insight

into the light dynamics in WGAs. To realize an efficient spatio-temporal measurement

scheme, pulse measurement techniques with spatial resolution and suitable reference

laser pulses need to be utilized.
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Zusammenfassung

Ziel der vorliegenden Arbeit sind die Untersuchung und das Verständnis von Effekten,

welche durch die nichtlineare Propagation geführter Moden höherer Ordnung in eva-

neszent gekoppelten Wellenleiterarrays ermöglicht werden. Um dies zu erreichen wurde

die Lichtausbreitung in mehrmodigen Wellenleiterarrays untersucht, welche durch Ein-

diffusion von Titan in Lithiumniobat hergestellt wurden. In diesen Wellenleiterarrays

koppelt die optische Nichtlinearität zweiter Ordnung ein optisches Feld kleiner Fre-

quenz, die sogenannte Fundamentalwelle, mit dem Feld der zweiten Harmonischen bei

der doppelten Frequenz. Für die theoretische Beschreibung der untersuchten Propaga-

tionseffekte wurden die gekoppelten Modengleichungen benutzt, welche sowohl analy-

tische Berechnungen als auch die Simulation der Experimente ermöglichen.

Die Anregung von höheren Moden der zweiten Harmonischen aus einer in die Wel-

lenleiter eingekoppelten Fundamentalwelle wurde für geringe Leistungen sowohl in Ein-

zelwellenleitern als auch in Wellenleiterarrays untersucht. Dabei wurde gezeigt, dass

höhere Moden unter Berücksichtigung der entsprechenden Phasenanpassbedingungen

kontrolliert angeregt werden können. In Wellenleiterarrays ist die Wellenlänge, für wel-

che die Phasenanpassbedingung erfüllt wird, abhängig von der transversalen Wellenzahl

der anregenden Fundamentalmode. Dies wurde ausgenutzt, um die Dispersions- und

Beugungsrelation der höheren Moden der zweiten Harmonischen zu vermessen.

Im Allgemeinen kann eine propagierende Fundementalmode mit mehreren Moden

der zweiten Harmonischen nichtlinear wechselwirken. In der vorliegenden Arbeit wurde

gezeigt, dass diskrete räumliche Solitonen mit zwei verschiedenen Moden der zweiten

Harmonischen existieren. Dabei wurden zwei unterschiedliche Typen räumlicher Soli-

tonen identifiziert, in denen die zwei nichtlinearen Wechselwirkungsprozesse miteinan-

der konkurrieren oder sich gegenseitig verstärken. Die Solitonen mit konkurrierenden

nichtlinearen Prozessen haben ähnliche Eigenschaften wie diskrete Solitonen in Wel-

lenleiterarrays mit sättigbarer Nichtlinearität. Weiterhin konnte experimentell gezeigt

werden, dass für bestimmte Wellenängen der eingekoppelten Fundamentalmode dyna-

mische räumlich-nichtlineare Effekte durch die konkurrierenden Prozesse unterdrückt

werden.

Höhere Moden der zweiten Harmonischen in Wellenleiterarrays haben, im Gegen-

satz zur Grundmode, eine nichtverschwindende lineare Koppelstärke. In der vorliegen-

den Arbeit konnte gezeigt werden, dass diese lineare Kopplung der zweiten Harmoni-

schen einen leistungsabhängigen Phasenübergang der diskreten räumlichen Solitonen

ermöglicht. Dabei ändert sich, ausgelöst durch einen bestimmten Grad von Lokalisie-

rung, die Topologie der zweiten Harmonischen im Soliton. Dieser Prozess wurde für

dynamische Lichtausbreitung experimentell nachgewiesen, sobald räumlich lokalisierte

Strahlen erzeugt wurden.
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[54] R. A. Vicencio, E. Smirnov, C. E. Rüter, D. Kip, and M. Stepić, “Saturable
discrete vector solitons in one-dimensional photonic lattices,” Phys. Rev. A 76,
033816 (2007).
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Appendix A

Symbols and conventions

Symbols

Aμ normalized slowly varying amplitude
Aμ

0 amplitude of stationary solutions
Aμ

+, A
μ
− amplitude of perturbations to stationary solutions

αμ damping of waveguide mode μ
ᾱμ normalized damping of waveguide mode μ
b propagation constant of stationary solution
B0 compensation propagation constant for soliton solutions
β0 propagation constant of waveguide mode μ at frequency ω0

βμ
lin (z) linear detuning of waveguide mode μ

βμ propagation constant of waveguide mode μ
cμ coupling constant of mode μ
Cmix intermode coupling constant
Cμ normalized coupling constant of mode μ
c0 speed of light in vacuum
χ(2) 2nd order susceptibility tensor
χν
eff effective susceptibility of interaction with SH mode ν

d pitch of the waveguide array
Dμ group velocity dispersion of mode μ
D̄μ normalized group velocity dispersion of mode μ
Δβν phase mismatch of interaction with SH mode ν
Δε̂ spatial inhomogeneity defining a waveguide
δν group velocity mismatch between FW mode and SH mode ν
δ̄ν normalized group velocity mismatch between FW mode and SH mode ν
Δν normalized phase mismatch of interaction with SH mode ν
Δε̂ refractive index change defining single waveguide
Δε̂n refractive index change defining nth waveguide in WGA
ΔP perturbation of polarization vector P
ΔP̄ slowly varying envelope of the perturbing polarization
Dx, Dy diffusion constants of titanium in lithium niobate
E, H electric field vector, magnetic field vector
earray electric field profile of array supermode
eμ electric field profile of waveguide mode μ
eμ0 electric field profile of waveguide mode μ at frequency ω0

120



APPENDIX A. SYMBOLS AND CONVENTIONS 121

ε̂ dieelectric tensor of medium
ε0 electric permittivity of vacuum
fe dispersion factor of waveguide refractive index profile
Fe concentration constant of waveguide refractive index profile
Γ effective cascaded nonlinearity
γν normalized nonlinearity
Hext external field exciting a waveguide
kμ longitudinal wave number of mode μ in waveguide array
K nonlinear overlap integral
κμ transverse wave number of mode μ in waveguide array
L sample length
λ wavelength of electric field
λPM phasematching wavelength
λrel wavelength relative to input fundamental wavelength
ΛQPM period of phase-matching grating
μ0 magnetic permeability of vacuum
μ index running over all waveguide modes at any frequency
n waveguide number
N number of waveguides in waveguide array
nμ
eff effective refractive index of mode μ

nFW
ndeg combined effective index of two FW modes

nν
QPM effective index of SH mode ν accounting for periodic poling

ν index running over all waveguide modes with SH frequency
ω radial frequency of electric field
ω0 center frequency of narrow spectrum
ωσ frequency of induced polarization
P polarization vector
P0 power to normalize mode profiles
Φ amplitude in ansatz for linear multimode coupling
ϕμ fast varying amplitude of mode μ
Ψ relative averaged nonlinearity
r,x,y,z coordinate vector in space, Cartesian coordinates
rTi thickness of titanium stripe
ρ concentration of titanium after indiffusion
ρ0 concentration of titanium at origin
σ perturbation in propagation constant of stationary solutions
T0 normalization timespan
τ normalized time in moving time frame
uμ slowly varying amplitude of waveguide mode μ,

uμ (z, t) = ϕμ (z, t) exp (−iβ0z)
vμg group velocity of mode μ
wTi width of titanium stripe
ξ index running over all waveguide modes with FW frequency
z̄ normalized propagation distance
Z0 normalization length
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Conventions

x∗ complex conjugate of x
� (x) real part of x
� (x) imaginary part of x
c.c. complex conjugate of preceding term
x̃ Fourier transform of x
x x is a vector
x̂ x is a tensor
xt transverse components of x



Appendix B

Sample characterization

In this thesis, the coupled mode equations were used to describe light propagation in

WGAs. In this formalism, the properties of the investigated sample are reduced to a

number of scalar coefficients. The precise knowledge of the magnitude of these coeffi-

cients is crucial if experimental result should be explained with the help of simulations.

To achieve this knowledge, a number of techniques have been used to measure the co-

efficients connected to the different effects taken into account. These methods, which

have been known before the work on this thesis begun, are described in the following.

Diffusion constants

The diffusion constants of titanium in lithium niobate in the x- and y-directions, Dx

and Dy, do not directly appear in the coupled mode equations. However, they are

crucial in describing the refractive index profile of the waveguides, which is needed for

simulation of the modal dispersion. The refractive index profile is governed by the

titanium concentration [166–168]

ρ (x, y) =
1

2
ρ0

(
erf

[
wTi

2Dx

(
1 +

2x

wTi

)]
+ erf

[
wTi

2Dx

(
1− 2x

wTi

)])
exp

(
− y2

D2
y

)
, (B.1)

as already explained in Section 3.1.1. Here ρ0 = 6.412 · 1022 cm−3dTi/Dy is the con-

centration at the surface of the substrate with the thickness of the titanium stripe

rTi. wTi is the width of the titanium stripe. Thickness and width are known from

the manufacturing process. The diffusion coefficients need to be determined in every

sample. This is not possible directly. Instead, FW and SH mode profiles of a single

waveguide are measured. From the captured images the widths of the modes in x- and

y-direction are determined. These parameters are compared with the corresponding

values of mode profiles simulated with a certain set of diffusion constants. To calculate

the modes, FEM or the Plane Wave Expansion method are employed. The mode cal-

culations are repeated with iterative changes of the diffusion constants until agreement
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Figure B.1: (a) Scheme of the measurement. The FW beam is shown in red, the SH
signal is denoted by the blue arrows. (b) Measured longitudinal inhomogeneity for the
sample used for the experiments presented in Chapter 4 and Chapter 5. The circles
represent the measured detuning in the different waveguides, the connecting line is just
a guide to the eye.

between measured and simulated modes is achieved.

Sample inhomogeneity

To enable simulations which quantitatively agree with measurement results, it is nec-

essary to know the longitudinal sample inhomogeneities Δμ
lin. These are induced by the

sample fabrication and by the inhomogeneous temperature profile of the sample oven.

To measure the inhomogeneity profile, the peculiar properties of the WGA diffraction

relation are utilized. For transverse wavenumbers κFW = ±0.5π, the transverse velocity

of the beam has its maximum whereas the diffraction coefficient vanishes [37]. Hence

beams can propagate across the WGA without diffraction as sketched in Fig. B.1(a).

In each waveguide the FW beam nonlinearly interacts with the SH. This interaction

takes place at a defined longitudinal position due to the FW transverse velocity. In

the measurements, the interaction with the uncoupled SH00 mode is used. To mea-

sure the inhomogeneity, the FW wavelength is sweeped and the SH power at each

waveguide output is measured. The resulting tuningcurves have their maximum at

the wavelength where the mismatch in the interaction region vanishes. Hence, from

comparing the phasematching wavelengths in the different waveguides an information

about the longitudinal change of the phasematching is derived. Here it is assumed that

the WGA is homogeneous in the transverse direction. The measured changes in the

phasematching wavelengths can be converted in detunings if the dispersion of FW and

SH is known. In the data used here, the dispersion of bulk lithium niobate [172] has

been used to calculate the dependence of the phase mismatch on the detuning. How-

ever, the measurement scheme can not distinguish between detunings ΔFW
lin of the FW
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and ΔSH
lin of the SH. In the simulations discussed in this thesis, the measured detuning

has always been attributed to the SH components. The measured detuning for the

sample used in Chapter 4 and Chapter 5 is shown in Fig. B.1(b). Additionally it was

assumed, that this detuning is the same for all SH modes.

Dispersion coefficients

To determine the modal dispersion, FEM calculations of the modes for different fre-

quencies are utilized. The specific refractive index profile of the sample under in-

vestigation and the known dispersion of bulk lithium niobate are taken into account.

These calculations result in the mode propagation constants βμ (ω). To calculate the

dispersion coefficients for the frequency ω0, the Tailor-expansion

βμ (ω) ≈ βμ
0 +

1

vμg
(ω − ω0) +

Dμ

2
(ω − ω0)

2 . (B.2)

with the coefficients

βμ
0 = βμ (ω0) ,

1

vμg
=

∂βμ

∂ω

∣∣∣∣
ω0

, and Dμ =
∂2βμ

∂ω2

∣∣∣∣
ω0

. (B.3)

is fitted to the propagation constants. Here vμg is the group velocity and Dμ the

group velocity dispersion (GVD) of the mode μ. The results for the coefficients of

group velocity and GVD are precisely determined by this method, as is evidenced

in Section 3.2.3. However, the propagation constant βμ
0 of the modes depends very

sensitively on the mode profile. The error in the determination of the mode profile

leads to errors in the simulated phasematching wavelength, which are in the range of a

few nm. Especially for simulations of processes involving several SH modes this is not

sufficient. Here one of the SH mode propagation constants is adjusted to comply with

the measured differences in the phasematching wavelengths of the SH interactions.

Effective nonlinearity

The effective nonlinear coefficient in the coupled mode equations depend on the non-

linear susceptibility of bulk lithium niobate and on the nonlinear overlap of the par-

ticipating FW and SH modes. The former value is known from the literature [138].

The latter coefficient is different for the various SH modes and is determined utilizing

tuning curve measurements. To this end the SH power in single waveguide is measured

precisely in dependence on the FW wavelengths. These results are then compared

to simulation results, where the nonlinear overlap in the simulation is adjusted itera-

tively until agreement is achieved. The simulations take into account losses and the

longitudinal inhomogeneity of the sample.
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Coupling constants

To determine the linear coupling coefficients, two different methods are employed for

the FW and SH. For the FW, only the coupling constant of the fundamental band

was obtained by measuring the Greens function of the WGA. To this end, a single

waveguide of the WGA with length L is excited and the discrete diffraction pattern at

the output is recorded. The output amplitudes at the output obey [20,174]

uμ
n,n′ (L) = in−n′

Jn−n′ (2cμL) , (B.4)

as was explained in Section 4.1. Here n and n′ denote the excited and observed wave-

guide, respectively and Jn−n′ is the Bessel function of the first kind of (n− n′)th order.

To determine the FW coupling constant, Eq. (B.4) is fitted to the measured output

amplitudes. This scheme is repeated for every desired wavelength.

The SH coupling constants cannot be obtained in the described way, since a specific

mode cannot be linearly excited by excitation from the end-face of the sample in a

reproducible fashion. For the measurement of these coupling constants the procedure

outlined in Section 3.2.3 is used, which relies on nonlinear excitation of certain SH

bands by SHG.
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Ehrenwörtliche Erklärung
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