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Summary  
 

Cellular ion homeostasis and pH regulation critically depend on the activity of ion exchangers. 

This is of special importance in the brain, where pH modulates neuronal excitability and 

neuronal activity in turn can cause changes in pH. The objective of this thesis was the 

investigation of the physiological function of the Na
+
-coupled anion-exchanger Slc4a8 in the 

mammalian brain and kidney, as well as a comparative analysis of the closely related 

transporter Slc4a10 with the help of knockout mouse models that had previously been 

generated in the group. 

 

Slc4a8 showed a broad neuronal expression pattern but was absent from glial cells. Supporting 

an important role of Slc4a8 for neuronal pH regulation, cultured hippocampal neurons of mice 

with a targeted disruption of Slc4a8 showed a reduced steady-state pHi and recovered more 

slowly from an acute acid load. In accordance with enrichment of Slc4a8 in presynaptic nerve 

endings of pyramidal neurons, the electrophysiological analysis revealed a pH-dependent 

presynaptic defect with impaired glutamate release. Whereas, release of the inhibitory 

neurotransmitter GABA was not affected. The decrease of hippocampal excitability in   

Slc4a8
-/-

 slices in vitro was reflected by an increased seizure threshold in vivo. Accordingly, 

these results propose that Slc4a8 in the brain modulates glutamate release and thus synaptic 

strength in a pH-dependent way.  

 

In contrast, Slc4a10 is mostly localized postsynaptically in excitatory pyramidal cells and it 

was also abundantly expressed in most interneurons. Electrophysiological analysis revealed an 

increase in field excitability in the Slc4a10
-/-

 hippocampal slices and a more pronounced 

GABAB-receptor mediated short term plasticity in the cortex of Slc4a10
-/-

 mice. 

 

Besides the neuronal expression, Slc4a8 transcripts and protein were also detected in other 

murine tissues including the renal cortex. The renal expression of Slc4a8 was up-regulated 

under conditions of increased salt reabsorption. However, Slc4a8
-/-

 mice were able to adapt 

normally to a low sodium diet, which most likely is caused by a compensatory up-regulation 

of the Na
+
/Cl

-
 co-transporter NCC.  
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The results of this thesis suggest important roles of Slc4a8 and Slc4a10 for brain function and 

support their importance as possible targets for clinical applications e.g. in the future treatment 

of epilepsy. Besides its neurobiological function, Slc4a8 is also involved in Na
+
 transport in 

the renal cortex.  

 

 

  



3 

 

Zusammenfassung 
 

Ionenhomöostase sowie zelluläre pH-Regulation hängen stark von der Aktivität einzelner 

Ionenaustauscher ab. Von besonderer Bedeutung ist dies im Gehirn, da hier der zelluläre pH 

die Erregbarkeit von Neuronen beeinflusst, aber neuronale Aktivität wiederum auch 

Veränderungen im pH hervorrufen kann. Ziel dieser Arbeit war die Untersuchung der 

physiologischen Bedeutung des Na
+
-abhängigen Anionenaustauschers Slc4a8 im Säugerhirn 

und der Niere, sowie die vergleichende Analyse des verwandten Transporters Slc4a10. Dies 

geschah mit Hilfe von Knockout-Mausmodellen für beide Gene, die im Vorfeld in der 

Arbeitsgruppe generiert worden. 

Slc4a8 zeigte ein breites neuronales Expressionsmuster, wurde aber nicht in Gliazellen 

nachgewiesen. Erste Hinweise für eine wichtige Rolle von Slc4a8 bei der neuronalen pH-

Regulation lieferten kultivierte hippokampale Neurone von Mäusen mit einer gezielten 

Deletion des Slc4a8-Genes. Diese wiesen einen verminderten basalen intrazellulären pH auf 

und erholten sich langsamer als Wildtyp-Neurone von einer Ansäuerung. In Übereinstimmung 

mit dem Nachweis von Slc4a8 an präsynaptischen pyramidalen Nervendigungen ergaben 

elektrophysiologische Untersuchungen zudem einen pH-abhängigen Defekt der Präsynapse.  

Dieser zeichnete sich durch eine gestörte Freisetzung des exzitatorischen Neurotransmitters 

Glutamat aus. Die Abgabe des inhibitorischen Neurotransmitters GABA blieb hingegen 

unverändert. Die verminderte Erregbarkeit in Slc4a8
-/-

-Hirnschnitten in vitro spiegelte sich 

auch in einer erhöhten Krampfschwelle in vivo wieder. Diese Ergebnisse weisen auf eine 

wichtige Funktion von Slc4a8 für die Glutamat-Ausschüttung im Gehirn hin. Slc4a8 moduliert 

somit die synaptische Transmission über den intrazellulären pH.   

Slc4a10 hingegen lokalisierte hauptsächlich an Postsynapsen von exzitatorischen 

Pyramidenzellen, wird jedoch auch von den meisten inhibitorischen Interneuronen exprimiert. 

Erste elektrophysiologische Untersuchungen ergaben eine Steigerung der Erregbarkeit in 

Slc4a10
-/-

-Hirnschnitten des Hippokampus und eine verstärkte GABAB-Rezeptor-vermittelte 

Kurzzeitplastitzität im Kortex von Slc4a10
-/-

-Mäusen.  

Neben der neuronalen Expression konnte Slc4a8 auf Transkriptions- und Proteinebene auch in 

anderen Geweben der Maus nachgewiesen werden, unter anderem im Kortex der Niere. Die 
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renale Expression von Slc4a8 wurde unter Bedingungen verstärkter Salzrückresorption herauf 

reguliert. Trotzdem konnten sich Slc4a8
-/-

-Mäuse normal an eine Niedrig-Salz-Diät anpassen. 

Diese Adaptation wird wahrscheinlich durch eine kompensatorische Regulation des Na
+
/Cl

-
-

Kotransporters NCC ermöglicht.  

Die Ergebnisse dieser Arbeit weisen auf eine wichtige Rolle von Slc4a8 und Slc4a10 für die 

Hirnfunktion hin und unterstützen deren Bedeutung als mögliche Ziele für therapeutische 

Anwendungen z.B. bei der zukünftigen Behandlung von Epilepsien. Neben der 

neurobiologischen Funktion ist Slc4a8 auch am Na
+
-Transport in der  Niere beteiligt.  
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Introduction 

 

Cellular pH regulation  

 

The regulation of cellular pH is a vital homeostatic function of all cell types. pH is defined as 

the negative decadic logarithm of the proton (H
+
)
 
concentration:  

 

            
  . 

 

Because of its paramount importance, intracellular pH (pHi) is regulated at various levels: 

 

                  

 

     (ßi-buffering capacity; Jex-acid extrusion; Jload-acid load). 

 

The first line of regulation is the inherent buffering capacity (ßi) of the intracellular and 

extracellular space that helps to reduce rapid localized pH shifts (Casey et al., 2010). The most 

important intracellular buffer is bicarbonate (HCO3
-
), which is generated by hydration of 

carbon dioxide (CO2) and subsequent deprotonation of carbonic acid (Cordat and Casey, 

2009). This generation of HCO3
-
 from CO2 is catalyzed by carbonic anhydrases (CAs), which 

thereby help to dissipate local pH gradients (for review see Supuran, 2008). 

16 CAs have been described in mammals (Gilmour, 2010). CA activity was first described in 

red blood cells (Nyman, 1961) and later became evident in many other organs. In the 

mammalian brain at least 10 catalytically active isoforms or CAs have been described, which 

differ in cellular (Agnati et al., 1995; Parkkila et al., 2001) and sub-cellular (Langley et al., 

1980; Tong et al., 2000) localization.  

 

Furthermore, active H
+
 and HCO3

-
 transport mechanisms play a key role for intra- and 

extracellular pH regulation in many organs ( Kopito et al., 1989; Gluck et al., 1996; Romero et 

al., 1997; Karmazyn et al., 1999; , including the brain (Chesler, 2003). Depending on the 
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transport direction and the transported ions, mostly HCO3
-
 and H

+
, transporters are classified 

as acid extruders (Jex) and acid loaders (Jload).  

 

Ion transporters regulate cellular pH  

 

Transport mechanisms are necessary to maintain ion concentration gradients which are 

essential prerequisites for the function of most mammalian cells, e.g. epithelial cells in the 

kidney or neurons in the central nervous system. For almost all cellular functions a tight 

regulation of asymmetric ion gradients is of great importance. The transport of H
+
 and HCO3

- 

across the cell membrane regulates the pH homeostasis. The well-balanced ion and pH 

homeostasis is facilitated by many different cellular transport mechanisms. In general, cellular 

transport can be classified as active and passive transport.  

 

Passive and active transport  

Passive transport enables the movement of molecules along its concentration gradient and ion 

fluxes along their electrochemical gradient. Thus, passive transport does not directly require 

energy. Diffusion, osmosis and filtration facilitate the membrane passage of only a minor 

fraction of molecules. But, passive transporters aid the translocation of molecules that cannot 

diffuse freely across membranes and thereby accelerate the overall transport rate. Passive 

transporters, such as ion channels can transport ions at rates approaching several thousand ions 

per second (Berg et al., 2002).  

In contrast to the fast mode of action of passive transporters, energy consuming active 

transport mechanisms depend on the complex formation with the transported ions and are 

therefore relatively slow processes with a transport rate of a 10-10
3
 ions per second (Lodish et 

al., 2000).  

In mammalian cells one can distinguish two different types of active ion transporters, which 

differ in their primary energy source. On the one hand, ion pumps use adenosine-5'-

triphosphate (ATP) as their direct energy source to carry ions against the electrochemical 

gradients (Purves et al., 2001). The most important ion pumps are the main determinants of the 

neuronal resting membrane potential, the sodium/potassium (Na
+
/K

+
) ATPase (Lingrel, 1992), 
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and the calcium/proton (Ca
2+

/H
+
) ATPase, which regulates pH in different cellular 

compartments (Schwiening et al., 1993).  

The second class of active transporters on the other hand comprises of coupled carriers which 

are called ion exchangers. Ion exchangers use the electrochemical gradient of one co-

transported ion to actively transport another. They can be classified as uniporters, symporters 

and antiporters depending on the number and the transport direction of the transported ions 

(Alberts et al., 2002).  

 

 

Figure 1. Cellular transport mechanisms. A, Ion channels enable passive transport of ions along 

their electrochemical gradient. Active transport against the gradient is mediated via ATP-dependent ion 

pumps or transporters. B, Transporters can be divided into uniporters, allowing the transport of single 

ions along their gradient and antiporters, which facilitate transport of ions against the gradient by 

concurrent transport of ions along its gradient. Symporters allow rectified transport of two or more 

ions, one along and the other against its gradient. 

 

Proton Transporters  

In general, ATP-dependent ion pumps can extrude protons from the cell, e.g. the vacuolar type 

H
+
 ATPase (Blake-Palmer and Karet, 2009) or p-type H

+
/K

+
 ATPase in epithelial cells of the 

kidney (Codina and DuBose, 2006). ATPases also serve to acidify cellular organelles, e.g. the 
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H
+
 ATPase in synaptic vesicles or vacuolar ATPases in the Golgi complex (Buch-Pedersen et 

al., 2009).  

In contrast, most protons are extruded from the cell by ion transporters via counter-transport 

with cations, mostly of Na
+
 or K

+
. 11 orthologues  of H

+
 transporters are described in humans, 

9 distinct isoforms of Na
+
-H

+
 exchangers (NHE1-9) and two isoforms of the Na

+
-H

+
 antiporter 

(NHA1/2) (Casey et al., 2010). The ubiquitously expressed  Nhe1/Slc9a1 is a multifunctional 

protein that is shown to be important not only for ion exchange and intracellular pH regulation 

but also for cell volume regulation, cell migration and cytoskeletal anchoring (Malo and 

Fliegel, 2006).   

Additionally, protons are co-transported with monocarboxylic acids, predominantly with 

lactate, mediated by monocarboxylate transporters (MCTs), a mechanism of special 

importance in tissues  with high energy demands like brain, muscles or tumors (Halestrap and 

Meredith, 2004).  

 

Bicarbonate transporters and the Slc4 family  

The constant production of CO2 by cellular respiration and concomitant generation of HCO3
-
 

renders the HCO3
-
 concentration in the extracellular space of mammalian cells relatively high 

(approximately 25 mM) (Casey, 2006). In contrast to the membrane permeable CO2, transport 

mechanisms are necessary for the larger, anionic HCO3
-
 ions. An inward transport increases 

intracellular pH by increasing the buffering capacity for protons. The outward transport is of 

special importance when the impermeable HCO3 accumulates due to rise in CO2 concentration 

and jeopardizes cellular osmolarity and electroneutrality e.g. in erythrocytes or under 

conditions of alkaline shifts in neurons (Casey, 2006).  

Known transporters for HCO3
-
 mediate either Na

+
/HCO3

-
 co-transport (NBC), anion exchange 

(AE) of HCO3
-
 and chloride (Cl

-
) or Na

+
-dependent exchange of Cl

-
 and

 
HCO3

-
 (NDCBE) and 

can be divided into two families by their sequence homology, the Slc4 and the Slc26 family  

(Sterling and Casey, 2002).  
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Four members of the Slc26 family have been shown to mediate HCO3
-
 transport:  

Dra/Slc26a3, Pendrin/Slc26a4, Sat-1/Slc26a1 and Pat-1/Slc26a6. At least three further 

homologues of this family (Slc26a7, Tat1/Slc26a8 and Slc26a9) may mediate HCO3
-
 transport 

(Sterling and Casey, 2002). Slc26 family members transport sulfate or share homology with 

sulfate transporters (Markovich, 2001) and mutations in some of the family members are 

connected to rare genetic diseases, e.g. Pendred syndrome with mutations in PENDRIN 

(Everett et al., 1997) or congenital chloride diarrhea with mutations in the SLC26A3 gene 

(Höglund et al., 1996). 

The largest group of HCO3
-
 transporters belongs to the Slc4 family which includes 10 different 

members (see Fig. 2). Most of the Slc4 members catalyse either Na
+
-independent  Cl

-
/HCO3

- 

exchange (Slc4a1-a3) or Na
+
-dependent HCO3

- -transport (Slc4a4-a8 and Slc4a10). Additional 

members of this group are the borate transporter Btr1/Slc4a11 (Park et al., 2004) and 

Ae4/Slc4a9, a kidney specific homologue (Ko et al., 2002). The topology of all family 

members is relatively similar: each containing 10-14 transmembrane segments, long N- and C-

terminals with hydrophilic and intracellular domains. All show similar glycosylation patterns 

and most are inhibited by stilbene derivatives such as 4,4’-diisothiocyanatostilbene-2,2’-

disulfonate (DIDS, for review see Romero et al., 2004 or Alper, 2006).  
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Figure 2. The Slc4 gene family. Phylogenetic analysis of representative human splice variants for all 

members of the SLC4 gene family. Note the close phylogenetic proximity of SLC4A8 and SLC4A10. 

Adapted from Romero et al. (2004).  

 

 

pH regulation in the brain  

 

pH homeostasis as a prerequisite for brain function  

Given that numerous ion channels are influenced by pH ( Tombaugh and Somjen, 1996; Kiss 

and Korn, 1999), a role of intra- and extracellular pH transients in relation to membrane 

potential and excitability has often been  considered (Somjen and Tombaugh, 1998). This is of 

particular relevance in the brain, where changes in pH can on one hand influence neuronal 

activity and neuronal activity on the other hand can elicit rapid changes of pH. As a general 

rule, it appears that a rise in brain pH is associated with increased neuronal excitability, 

whereas a fall in pH has been shown to have the opposite effect (Chesler, 2003). The high 

energy demand of the brain and the concomitant production of metabolic acids as well as the 

negative membrane potential, which drives protons in and anions out of the cell aggravate the 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=aggravate&trestr=0x8002
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need for a tight pH regulation in the brain. In this respect, the mechanisms that generate and 

regulate changes in pH are of considerable neurobiological interest. 

CO2 is constantly produced by metabolism, readily traverses biological membranes and can be 

controlled by ventilation. Importantly, hyperventilation and the associated decrease of the 

partial pressure of CO2 (pCO2) results in an increase of the pH in the blood and thus appears to 

be a key event in the induction of febrile seizures in the immature brain (Schuchmann et al., 

2006). Febrile seizures are defined as epileptic convulsions which occur in association with 

febrile illness in children (peak incidence 18 month) and affect approximately 5-10 % of 

children in Western countries (Shinnar and Glauser, 2002). In general, epilepsies are 

characterized by recurrent seizures caused by abnormal neuronal activity mostly in cortical 

brain regions which can cause sensory, motor, cognitive, psychological or autonomic 

disturbances. Albeit seizure incidence in adults is generally lower than in children, epilepsies 

are still the most common neurological disease in humans (Hirtz et al., 2007). Interestingly, 

hypercarbic acidosis can terminate epileptic activity in humans (Lennox, 1928) or rodents 

(Mitchell and Grubbs, 1956; Ziemann et al., 2008) and might be used as a therapeutic option 

in the future (Tolner et al., 2011).  

 

Regulators of neuronal pH 

Because of the continuous generation of acid equivalents together with the transport of ions 

that alter pH, dynamic and sustained mechanisms are required to ensure long-term pH 

homeostasis in neurons. The neuronal regulatory machinery in principal comprises Na
+
/H

+
 

exchange (Luo and Sun, 2007), monocarboxylate transport (Hertz and Dienel, 2005), Ca
2+

/H
+
-

ATPase activity (Schwiening et al., 1993), passive Cl
-
/HCO3

-
 exchange (Alper, 2009), Na

+
-

driven Cl
-
/HCO3

-
 exchange and Na

+
/HCO3

-
 co-transport (Boron et al., 2009). A schematic 

overview is shown in figure 3 (Casey et al., 2010).  

The acid regulation machinery may differ among different types of neurons; however, the 

overlapping expression of pH-relevant transporters and the lack of specific inhibitors have 

precluded a detailed analysis to date. Nevertheless, indirect studies have suggested that Na
+
-

driven Cl
-
/HCO3

- exchange contributes to acid extrusion mechanisms in hippocampal neurons 

(Baxter and Church, 1996; Bevensee et al., 1996; Schwiening and Boron, 1994;Bonnet et al., 

2000), but the molecular correlate and its physiological relevance remained unclear. Both 
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Ndcbe/Slc4a8 (encoded by Slc4a8) and Ncbe/Slc4a10 (encoded by Slc4a10) are members of 

the Slc4a family of solute carriers (for review, (Alper, 2009) and have been shown to mediate 

Na
+
-driven Cl

-
/HCO3

- exchange ( Wang et al., 2000; Grichtchenko et al., 2001;  Damkier et 

al., 2010). The inward bicarbonate transport classifies Slc4a8 and Slc4a10 to the group of acid 

extruders.  

The intracellular HCO3
-
 concentration, which is much higher in neurons as expected on the 

basis of a passive distribution, further contributes to the significant depolarizing HCO3
-
 current 

across γ-aminobutyric acid- type A receptors (GABAA) 
 
receptors (Kaila and Voipio, 1987). 

Hence, changes in neuronal HCO3
-
 concentration modulate the neuronal excitation-inhibition 

balance in a comparable manner as it was previously shown for Cl
-
 transporters ( Hübner et 

al., 2001; Ben-Ari, 2002; Dzhala et al., 2005). Accordingly, intracellular CAs  have been 

shown to be essential for synchronous firing of hippocampal neurons by enabling tonic 

GABAergic excitation (Ruusuvuori et al., 2004), whereas the functional importance of HCO3
-
 

transporters for GABAergic signalling remains unclear. Since HCO3
-
 transporters often 

catalyze concomitant transport of Cl
-
, their activity can influence transmembrane Cl

-
 gradients 

and thus also the Cl
-
 dependent GABAA signalling. By both mechanisms, activity of acid 

extruding HCO3
-
 transporters such as Slc4a8 can influence neuronal excitability.  
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Figure 3. Intracellular and membrane-bound regulators of neuronal pH. Due to the concomitant 

production of metabolic acids several acid extrusion mechanisms counteract the intracellular acid load. 

Intracellular CAs catalyze the rapid inter-conversion of carbon dioxide and water to bicarbonate and 

protons. Protons are extruded from the cytoplasm mainly via the plasma membrane NHEs or co-

transported with monocarboxylates by the MCTs. Inwardly directed bicarbonate transporters such as 

Na
+
/HCO3

-
 co-transporters or Na

+
-dependent HCO3

-
/Cl

-
 exchangers increase the intracellular buffering 

capacity and thereby elevate intracellular pH. The topology of the Na
+
-dependent HCO3

-
/Cl

-
 exchanger 

Slc4a8 with its intracellular N- and C-terminal domains and the 12 transmembrane stretches is 

illustrated in the inset. Counterbalancing acid loading mechanism ensure the pH homeostasis mainly 

via anion exchangers as well as the  plasma membrane Ca
2+

/H
+ 

ATPase (PCMA), which is activated 

under conditions of increased intracellular Ca
2+

 load. Adapted from (Casey et al., 2010).  
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Slc4a10 in the brain  

The Slc4a10 gene was first cloned in 2000 (Wang et al., 2000) and is mainly expressed in the 

central nervous system as shown at ribonucleic acid (RNA) and protein levels on adult and 

embryonic tissues of mouse, rat and human (Hübner et al., 2004; Praetorius et al., 2004b; 

Damkier et al., 2007; Chen et al., 2008b; Jacobs et al., 2008). Besides strong expression in the 

choroid plexus, expression was confirmed in the cerebellum, cortex and the hippocampus 

(Praetorius et al., 2004b; Chen et al., 2008b).  

The hippocampus is part of the limbic formation in the mammalian brain and has a 

fundamental role in the formation of long-term memory. It is organized in a strict laminar 

manner with a well-defined neuronal architecture in three major areas which include the 

regions of the cornu ammonis (CA1-3), the dentate gyrus (DG) and the subiculum (Fig. 4).  

 

 

Figure 4. The hippocampal formation. The hippocampus is a c-shaped elaboration of the cerebral 

cortex. All major components (CA1-3 and the DG) and intrinsic connections (Mossy fibres, mf, 

Schaffer collaterals, sc, and parts of the perforant path, pp) are preserved in hippocampal slice 

preparations. Cell bodies form the stratum pyramidale (SPyr). The sc terminates in the stratum 

radiatum (SRad) and the pp in the stratum lacunosum-moleculare (SL-M). Adapted from Amaral and 

Witter (1989). 
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 Neurons in the hippocampus can be divided into excitatory principal cells (called granule 

cells in DG or pyramidal cells in the CA regions) and different classes of inhibitory 

interneurons (for review see Mann and Paulsen, 2007). The major neurotransmitter used by 

excitatory principal neurons is glutamate and the major inhibitory neurotransmitter is GABA. 

The hippocampus is further surrounded by the parahippocampal region (e.g. ento-, peri-and 

postrhinal cortices), which mainly conveys output and input information between neocortex 

and the hippocampal formation (Burwell, 2000). The input to the hippocampus is processed 

through the entorhinal cortex and sent via the direct temporoammonic path or through the 

well-characterized trisynaptic pathway to the CA1 pyramidal cells. In the trisynaptic pathway 

signals enter the hippocampus via the perforant path on DG granule cells, are transmitted from 

DG to CA1 pyramidal neurons via the Mossy fibres and finally reach CA1 pyramidal neurons 

via the Schaffer collaterals. Ascending projections originate in the CA1 and the subicular 

region and project to the neocortex and subcortical regions (for review see van Strien et al., 

2009). 

 On the sub-cellular levels, SLC4A10 protein is enriched at the postsynaptic side, in dendrites 

and dendritic spines (Jacobs et al., 2008). Disruption of the Slc4a10 gene in mice (Slc4a10
-/-

) 

drastically reduced brain ventricle volume and protected from fatal seizures in vivo. On the 

cellular level, disturbances in intracellular pH regulation were shown in Slc4a10 knockout 

(KO) epithelial cells of the choroid plexus and in CA3 pyramidal neurons (Jacobs et al., 2008). 

In contrast, previous reports from patients with heterozygous deletions in genomic regions 

spanning the SLC4A10 locus reported epileptic phenotypes and mental retardation (Gurnett et 

al., 2008; Krepischi et al., 2010). 

 

Slc4a8 in the brain  

From early pH recordings in the squid giant axon and in snail neurons it became evident, that 

Na
+
-dependent Cl

-
/HCO3

- exchange was the first described acid-base transport mechanism 

shown to play a role in pHi regulation of neurons (Boron and De Weer, 1976; Thomas, 1976). 

The molecular correlate of Na
+
-dependent Cl

-
/HCO3

-
 transport was first cloned from 

Drosophila (ndae1; Romero et al., 2000) and later also cloned as  Slc4a8/Ndcbe  from  human 

and mouse brain (Grichtchenko et al., 2001; Wang et al., 2000). Whereas the stochiometry of 
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Slc4a10 transport activity is under debate (Parker et al., 2008b; Damkier et al., 2010), 

transport activity of Slc4a8 was shown to be electroneutral with the stochiometry 1:2:1 

(Na
+
:HCO3

−
:Cl

−
)(Grichtchenko et al., 2001). 

 

pH regulation in the brain differs among different types of neurons. The existence of a Na
+
-

dependent Cl
-
/HCO3

-
 transport was shown in 1994 in hippocampal neurons of the rat. It has 

already then been concluded that besides a less active Na
+
 dependent, HCO3

-
 independent 

transport mechanism, a DIDS-sensitive, Na
+
-dependent Cl

-
/HCO3

-
 transport is the major 

physiological pathway of recovery from acid load and increases steady-state pHi (Schwiening 

and Boron, 1994). The physiological importance of Na
+
 dependent Cl

-
/HCO3

-
 transport for 

hippocampal pHi regulation was confirmed by later studies, albeit the molecular correlate 

remained unknown (Baxter and Church, 1996; Bevensee et al., 1996). Cloning of the human 

SLC4A8 homologue and expression analysis demonstrated SLC4A8 transcripts in the human 

brain (Grichtchenko et al., 2001). Several studies confirmed expression of the Slc4a8 protein 

in different areas of the human, mouse and rat brain, amongst others in pyramidal neurons of 

the hippocampus (Chen et al., 2008a; Damkier et al., 2007; Kougioumtzes, 2006).  A 

previously generated constitutive KO mouse model for Slc4a8 (Slc4a8
-/-

) showed no obvious 

phenotype, but closer behavioral analysis revealed a prolonged latency till seizure onset in 

different in vivo models of epilepsy, as well as an increased body weight due to a decrease in 

locomotor activity.  

The well-described expression of Slc4a8 and Slc4a10 in the hippocampus and the detailed 

characterization of neurons and connections in the hippocampus (see Fig.4) are suggestive of 

in vitro experiments on acute brain slice as used in this study amongst other techniques for the 

analysis of the role of Slc4a8 and Slc4a10 for nerve cell function. 
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Na
+
 and HCO3

-
 transporters in the kidney  

 

The extracellular volume is the main determinant of arterial blood pressure and it is tightly 

controlled by the kidney. In the kidney blood is filtrated and the primary filtrate is then 

modified during its passage along the nephron. Approximately 14,000 nephrons in the cortex 

of the mouse kidney and approximately 1 million nephrons in a human kidney warrant the 

fluid and electrolyte homeostasis in the mammalian body. Paracellular transport of ions along 

the nephron is limited to specific segments of the nephron (proximal tubulus, and the thick 

ascending loop of Henle). Therefore most ions are transported transcellularly (Boron and 

Boulpaep, 2003). Transport mechanisms for Na
+ 

and HCO3
-
 vary on the apical and basolateral 

side of the epithelial cells and also differ in the various sections of each nephron as well as 

their regulatory mechanisms (e.g. for Na
+
 transport, see Fig. 5) (Boron and Boulpaep, 2003). 

Especially the reabsorption of Na
+
 plays an important role for the maintenance of the body 

extracellular fluid volume and thereby impacts the systemic blood pressure by regulating 

blood volume (Dahl and Love, 1954; Guyton et al., 1984). Increased salt retention can cause 

abnormal increases in blood pressure (hypertension), which are normally counteracted by the 

so-called pressure-natriuresis (Guyton et al., 1972; Franco et al., 2008). Hypertension affects 

approximately 20-50 % of the population in economically developed countries today and the 

worldwide prevalence is believed to increase strongly in the future (Kearney et al., 2004; 

Kearney et al., 2005) .  Persistent hypertension is a major risk factor for stroke, myocardial 

infarction, as well as heart- and kidney failure (Pierdomenico et al., 2009). Therefore, 

pharmacological regulators of ion transporters are of great clinical relevance. Drugs that block 

renal ion transport and thereby increase urinary volume are called diuretics. Thiazides e.g. 

hydrochlorthiazides (HCTZ) or thiazide-like drugs like chlortalidone are still first line anti-

hypertensive treatments (Chobanian et al., 2003). Nevertheless the development of more 

specific and effective diuretics in the future requires a detailed understanding of ion transport 

mechanisms in the kidney as well as the molecular targets of diuretics already in clinical use.  
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Renal Na
+
 transport  

As epithelial cells in the kidney have to absorb massive amounts of sodium chloride (NaCl) 

from the ultrafiltrate, e.g. 1.7 kg per day in humans, several transport mechanisms facilitate 

the Na
+
 reabsorption and secretion along the nephron (Greger, 2000). 

In the proximal part of the mammalian nephron two transporters reabsorb approximately 90 % 

of Na
+
: the Na

+
/H

+
 exchanger 3 (NHE3) in the proximal tubulus and the Na

+
/K

+
/2 Cl

-
 co-

transporter 2 (NKCC2) in the thick ascending loop of Henle. In the distal part of the nephron 

the ‘classical’ Na
+
- transporters are the Na

+
/Cl

-
 co-transporter (NCC) in the distal convoluted 

tubule (DCT) and the epithelial Na
+
-channel (ENaC) in the cortical collecting duct (CCD; Fig. 

5; (Eladari and Hübner, 2011; Greger, 2000). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic overview of Na
+
 reabsorption in the nephron.  A, Illustration of a mammalian 

kidney. B, Most of the NaCl is reabsorbed from the ultrafiltrate in the proximal part of the nephron, by 

NHE3 in the proximal tubulus and by NKCC2 in the ascending limb of the loop of Henle. In the distal 

part, NCC and ENaC are the classical transport mechanisms. Adapted from 

http://www.ronenvet.com/kidneydz/ and http://www.aic.cuhk.edu.hk/web8/Kidney.htm. 

http://www.ronenvet.com/kidneydz/
http://www.aic.cuhk.edu.hk/web8/Kidney.htm
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Only approximately 3 % of Na
+
 is reabsorbed in the collecting duct. Nevertheless,  it is of 

great physiological significance since it is tightly regulated by the mineralocorticocoid 

aldosterone (for review see, Eladari and Hübner, 2011). The renal collecting duct is a highly 

specialized epithelium that is mainly formed by two cell types: principal and intercalated cells 

(Frömter, 1988). Intercalated cells, which can be divided into α-, β- and non α-non β type 

cells, are important regulators of the urinary pH (Wagner et al., 2009). Principal cells express 

the channel ENaC on the apical side and the Na
+
/K

+
 ATPase on the basolateral side, which 

together form the major mechanism of Na
+
 reabsorption in this segment of the nephron. Na

+
 

transport by ENaC is electrogenic and therefore generates a driving force for K
+
 secretion via 

the apical K
+ 

channel ROMK (Konstas et al., 2002).  

Different pharmacological diuretics target the described Na
+
 transport mechanism and thereby 

increase the urinary salt and water concentration. For example, so-called loop diuretics target 

the NKCC2 transporter in the loop of Henle (Shankar and Brater, 2003), amiloride blocks 

ENaC activity (Hummler, 2003) and the already mentioned thiazides are thought to target 

NCC in the CCD (Glover et al., 2011).  

Although the major Na
+
 transport mechanisms are well-described and already useful targets in 

the clinic, Slc4a8 transport activity might play an additional, yet unknown, role for renal salt 

reabsorption. Thus, a better understanding of the renal Slc4a8 function could improve clinical 

treatments in the future.  

 

Na
+
 coupled HCO3

-
 transporters 

Transepithelial Na
+
 transport in the kidney is also often coupled to HCO3

-
 transport via several 

ion transporters which are mainly involved in renal acid-base regulation. The extrusion of acid 

with the urine formed in the kidney combined with the excretion of CO2 by the lungs ensures 

external pH regulation of the body.  

Reabsorption of bicarbonate e.g. by α-intercalated cells in the cortical collecting duct or the 

excretion of fixed acids, both result in a strong acidification of the urine (Wagner and Geibel, 

2002). Active HCO3
-
 transport mechanisms in conjunction with carbonic anhydrase activity 
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therefore play an important role in the regulation of intracellular pH in the epithelial cells but 

also of blood and urinary pH. 

Besides Cl
-
/HCO3

-
 exchange, Na

+
/HCO3

-
 co-transport and Na

+
 dependent Cl

-
/HCO3

-
 exchange 

are described in the kidney (Aalkjaer et al., 2004). Slc4a4/NBCe1 and Slc4a5/NBCe2 

facilitate Na
+
/HCO3 co-transport mostly in the proximal tubules with a stoichiometry of 1:2 or 

1:3 and thus are electrogenic (Abuladze et al., 2004; Boron and Boulpaep, 1983; Maunsbach 

et al., 2000). Also, the electroneutral Na
+
/HCO3 co-transporter Slc4a7/NBCn1 and the Na

+
 

dependent Cl
-
/HCO3

- 
exchanger Slc4a8/NDCBE (also named kNBC3) are expressed in the 

kidney albeit their exact localizations and their physiological role remain unclear (Praetorius et 

al., 2004a; Pushkin et al., 1999b; Wang et al., 2001). Transport activity of Slc4a8 could 

theoretically support a role in renal pH regulation. But coupling of different ion transporters is 

a common mechanism in the kidney. Thus, Slc4a8 could also function as a sole Na
+
 and/or Cl

-
 

transporter and influence urinary and blood osmolarity as well as arterial blood pressure.  
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Aim of this study 
 

A tight regulation of intra- and extracellular pH is of special relevance in the brain, where on 

one hand neuronal activity can evoke changes in pH and on the other hand alterations in pH 

influence excitability. Na
+
 dependent Cl

-
/HCO3

-
 exchange has repeatedly been shown to be a 

key regulator of neuronal pH ( Schwiening and Boron, 1994; Baxter and Church, 1996; 

Bonnet et al., 2000). Indeed, mice with a targeted disruption of either the Na
+
 dependent        

Cl
-
/HCO3

-
 exchanger Slc4a10 or Slc4a8 displayed an increased seizure threshold (Jacobs et 

al., 2006; Kougioumtzes, 2006). Similar transport characteristics and overlapping expression 

of Slc4a10 and Slc4a8 in the brain suggested a comparative analysis of the closely related 

transporters. 

A major aim of this thesis therefore was to unravel the physiological significance of the Na
+
 

dependent Cl
-
/HCO3

-
 exchanger Slc4a8 for neuronal pHi regulation. For this purpose the 

cellular and sub-cellular localization of Slc4a8 protein in the brain had to be resolved. In the 

next step its role for the regulation of the intracellular pH of neurons should be addressed. In 

addition the impact of disruption of Slc4a8 on synaptic transmission should be analyzed by 

electrophysiological characterization of acute brain slices. 

 As Slc4a8 had already been shown to be expressed in the kidney (Pushkin et al., 1999a; Wang 

et al., 2001; Praetorius et al., 2004a), part of this thesis was the basic characterization of 

kidney function in mice with a targeted disruption of the Slc4a8. 
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Material and methods  

 

Molecular biology  

 

Genotyping  

Genomic deoxyribonucleic acid (DNA) was isolated from tail biopsies of mice by alkaline 

lysis (25 mM NaOH, 0.2 mM EDTA; 30 min; 95°C). The alkaline buffer was neutralized by 

adding 40 mM Tris-HCl (2 min; 0°C) and DNA was stored at 4°C. Appropriate amounts of 

solved DNA were used for genotyping by polymerase chain reaction (PCR).  

 

 

Figure 6. Genotyping strategy for Slc4a8 and Slc4a10 knockout mice. 

 A, In WT mice, primers amplified a 320 bp PCR product and genomic DNA of Slc4a8-/-
 mice without 

exon 12 allowed amplification of a 423 bp long product. B, Genotyping PCR for Slc4a10-/- 
mice was 

designed to yield a 598 bp product on WT DNA and a longer (694 bp) product on DNA from tail 

biopsies of Slc4a10-/- 
mice.  
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PCR (35 cycles with 95°C for 30 sec, 59°C for 30 sec and 1 min for 72°C) with the respective 

primers (Slc4a8 rev, Slc4a8 forw 1, Slc4a8 forw 2; see table 1) results in amplification of a 

423 bp band for the Slc4a8 KO allele and of 320 bp fragment for the Slc4a8 wild-type (WT) 

allele (Fig. 6A). For genotyping of the conditional Slc4a8 mouse line PCR was performed 

using the Slc4a8 rev and the Slc4a8 forw cond primer, and the resulting bands were 674 bp for 

the WT allele and 708 bp for the floxed allele. 

 

Table 1. Overview of used PCR primers.  

Primer Sequence (5’-3’) 

Slc4a8 rev ggcaatccccgtcatgcacg 

Slc4a8 forw 1 tgtagtggtgggaactacatc 

Slc4a8 forw 2 ggctaggcagttcttatctttccc 

Slc4a8 forw cond gcctgcatgtcgcccgttatc 

Slc4a10 forw 1 ctgcaagcaatgtgtgaggag 

Slc4a10 rev 1 gagcagcccagatgtacaccagc 

Slc4a10 rev 2 ctccctacagacctccaacagcg 

Slc4a4 forw realtime aggaatctgacatcctccagtctc 

Slc4a4 rev realtime  cagttctctgtagttcttcacagtca 

Gapdh forw realtime  gatgcccccatgtttgtgatg 

Gapdh rev realtime  tggcatggactgtggtcatga 

Scl4a10 forw realtime  cgcaatcgatctgccaatct 

Slc4a10 rev realtime  gagctgtggttgcctttgtca 

Slc9a1 forw realtime  gatgaagcaggccattgagct 

Slc9a1 rev realtime gcaagatgccgtctgaagtca 

Slc4a3 forw realtime  ttcatgccagcaaagcacc 

Slc4a3 rev realtime  agaagtgcaatgcagccca 

Slc4a7 forw realtime  tgcacctcccattcgaaag 

Slc4a7 rev realtime  ggcagttttggccatatcat 

Slc4a8 forw realtime  gcctaaaaccacggtctggaa 

Slc4a8 rev realtime  ggcacctcatggtccaaatct 

Slc4a8 forw reverse transcription PCR   cgtgcaagtagcatagaggag 

Slc4a8 rev reverse transcription PCR  gtatccacctctcccaccag 

Gapdh forw reverse transcription PCR  caacagcaactcccactcttc 

Gapdh rev reverse transcription PCR  aaggagtaagaaaccctggacc 
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Mice from the constitutive KO mouse line for Slc4a10 (Slc4a10
-/-

) were genotyped with one 

forward and two reverse primers (see table) and the resulting PCR products were 598 bp for 

the WT allele and 694 bp for the Slc4a10 KO allele (Fig. 6B).  

PCR products were separated by horizontal gel electrophoresis (1-1.5 % agarose in running 

buffer, containing 40 mM Tris, 0.11 % acetic acid and 1 mM EDTA). DNA fragments were 

visualized by addition of ethidium bromide to the gel (0.05 ng/ml). Samples were added with 

loading dye (25 % ficoll 400, 100 mM EDTA, 0.25 % bromphenolblue) and gels were loaded 

in tris acetate EDTA buffer. Fragment sizes were determined by application of a 1 kb-ladder 

(Gene graft, Germany). Depending on fragment sizes, bands were separated at constant 

voltage of 120 V for 30-60 min and evaluated under ultraviolet light.  

 

Isolation of RNA from murine tissue  

Brains of adult mice were removed and rinsed with ice-cold phosphate-buffered solution 

(PBS; 140 mM NaCl, 3.2 mM Na2HPO4, 2.7 mM KCl, 1.5 mM KH2PO4; pH 7.4). Tissue was 

grinded with mortar and pestle in liquid nitrogen and trizol reagent (1 ml/50 mg tissue, 

Invitrogen, USA) was added (5 min, room temperature, RT). Cell debris was removed by 

centrifugation (5,000 g, 8 min, RT). Chloroform (200 µl/ml; Merck, Germany) was added (2 

min RT), the mixture centrifuged (13,000 g, 15 min, 4°C), and the aqueous phase was 

collected. To precipitate the RNA, isopropanol was added (13,000 g; 10 min). The pellet was 

rinsed with 75 % ethanol and the RNA dissolved in diethylpyrocarbonate-treated H2O. RNA 

was flash frozen in liquid nitrogen and stored at -80°C until use.  

 

Reverse transcription  

RNA concentration was determined by spectrometric absorption measurement of 260 nm with 

a Nanodrop system (ThermoScientific, USA) and 1 µg of RNA was used for reverse 

transcription. First strand complementary DNA (cDNA) synthesis was performed using 

random hexanucleotide primers and the Superscript III kit according to the manufacturer’s 

instructions (Invitrogen, USA). cDNA was diluted with DEPC-treated H2O to 5 ng/µl 

transcribed RNA and stored at -20°C.  
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Realtime PCR  

cDNA of 40 ng transcribed RNA of whole brains, primers (each 5 pmol; see also Table 1) and 

the QuantiTect SYBR Green PCR Kit (Quiagen, Netherlands) were used for quantitative real 

time  analysis with the Lightcycler 2 (Roche, Switzerland). Transcript abundance in tissue of 

three independent animals per genotype was analyzed.  

Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) served as a reference. All PCR reactions 

were completed with a melting-curve analysis to confirm the amplification specificity. The 

relative quantification was calculated with the analysis software of the Lightcycler 2. For 

analysis the 2 (-Delta Delta C(T)) method was used and the standard error was determined as 

described by Livak and Schmittgen (2001).  

 

Reverse transcription PCR 

Semi-quantitative PCR was performed on cDNA using intron-spanning primers (Slc4a8 forw 

reverse transcription PCR, Slc4a8 rev reverse transcription PCR, Gapdh forw reverse 

transcription PCR, Gapdh rev reverse transcription PCR; see table 1) and a standard PCR 

program (35 cycles; 94 °C for 20 s, 57 °C for 30 s and 72 °C for 30 s). Amplified fragments 

(Slc4a8 376 bp, Gapdh 164 bp) were visualized on a 2 % agarose gel as described for analysis 

of genotyping. 

 

http://en.wikipedia.org/wiki/Reverse_transcription_polymerase_chain_reaction
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Protein biochemistry 

 

Protein preparation for Western blot analysis 

Membrane fractions were isolated from tissue lysates by addition of ice cold homogenization 

buffer (125 mM NaCl, 18 mM Tris, 4.5 mM EDTA), sonification and brief centrifugation (2x 

1,000 g; 10 min; 4°C) to remove cell debris and nuclei. Ultracentrifugation of the supernatant 

(13.500 g; 30 min; 4°C) was performed and the pellet was dissolved in lysis buffer (1% Triton 

X-100 in PBS) or RIPA buffer (25 mM Tris, 250 mM NaCl, 1% NP-40, 0.1% sodium dodecyl 

sulfate, SDS).  

Preparation of membrane fractions from renal cortices were performed as described previously 

(Quentin et al., 2004). In short, kidneys were cut into 5-mm slices and the renal cortex was 

excised under a stereoscopic microscope and placed into ice-cold isolation buffer (250 mM 

sucrose, 20 mM Tris-HEPES, pH 7.4) containing protease inhibitors (1x complete protease 

inhibitor cocktail, Roche, Switzerland). Minced tissues were homogenized with a teflon 

douncer (Sartorius, Germany). The homogenate was centrifuged at 1,000 g for 10 min and the 

supernatant was centrifuged at 100,000 g for 20 min at 4°C. The pellet was resuspended in 

isolation buffer.  

Total lysates from cell culture were prepared by applying RIPA buffer to detach and solve the 

cells. Cell lysates were centrifuged (1,000 g; 10 min; 4°C) to remove the cell debris.  

All buffers were substituted with complete protease inhibitor cocktail (1x) and pefabloc         

(4 mM, both Roche, Switzerland) according to the manufacturer’s instructions. Protein 

amounts were determined by use of the bicinchoninic acid protein assay (Pierce, USA) and 

subsequent spectral measurements with the Nanodrop system. Protein concentration was 

adjusted with the respective buffer. Laemmli buffer (63 mM Tris-HCl, 10 % glycerol, 2 % 

SDS, 0.0025 % bromphenol Blue, 1 % ß-mercaptoethanol) was added and proteins were 

denatured at 60 °C for 20 min.  

 

Subcellular fractionation  

Synaptic proteins were prepared as described previously (Carlin et al., 1980) with minor 

modifications. Whole brains of adult mice (≥2 brains per preparation) were homogenized in 
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homogenization buffer (0.32 M sucrose, 5 mM HEPES, pH 7.4) with a teflon douncer and 

centrifuged twice (1,000 g, 10 min at 4°C) to remove cell debris and nuclei. For all following 

centrifugation steps except the final step, a preparative ultracentrifuge (L-90K, rotor JA25.50, 

Beckman Coulter, USA) was used. The crude membrane fractions were pelleted from the 

supernatants (12,000 g, 20 min) and solved in homogenization buffer. The cytosolic fractions 

were harvested from the supernatant by ethanol precipitation and ultracentrifugation (100,000 

g, 1 h at 4°C). The synaptosome fractions were isolated from the membrane fractions by a 

discontinuous sucrose gradient (0.85/1/1.2 M sucrose; 85,000 g; 2 h at 4°C) and harvested in 

the interface of 1.0 M and 1.2 M sucrose. The synaptosomal membrane fractions were 

prepared by osmotic lysis (1 mM Tris-HCl, pH 8.1, 30 min at 0°C) and centrifugation (33,000 

g; 30 min at 4°C). Synaptic junction plasma membranes were enriched by a subsequent second 

sucrose gradient (0.85/1/1.2 M sucrose; 85,000 g; 2 h at 4°C). For the final isolation of the 

postsynaptic density (PSD) fraction, two triton X-100 purification steps (0.32 M Sucrose, 0.5 

mM EDTA, 7.5 mM Tris-HCl, 0.5 % triton X-100, pH 8.1; 15 min at 0°C) were performed 

with subsequent centrifugation of the insoluble (PSD) fractions (32,000 g; 30 min at 4°C). To 

isolate the final PSD fraction, the pellet was resuspended (0.32 M Sucrose, 1 mM EDTA, and 

5 mM Tris-HCl), applied on 1.5 M Sucrose and centrifuged for at least 2 h at 202,000 g 

(Optima™ TLX, rotor SW 41, Beckman Coulter, USA). The final pellets as well as all other 

fractions were solved in RIPA buffer substituted with protease inhibitors and prepared for 

Western blot analysis as described.   

 

Immunoblotting 

For immunoblotting, 10 µg of protein (or otherwise indicated) was separated by reducing SDS     

8 % polyacrylamide gel electrophoresis and transferred to nylon membranes (Mini Trans-Blot 

Cell, Biorad, USA). After blocking with 5 % non-fat dry milk in Tris-buffered solution added 

with tween 20 (Sigma-Aldrich; TBST) for 1 h at RT, blots were incubated
 
with the respective 

primary antibodies (over-night, 4°C). Detection was achieved using peroxidase-coupled 

secondary antibodies (2 h, RT). The signals were visualized with an enhanced 

chemoluminescence Kit (Amersham Biosciences, Germany) and autoradiography films 

(AGFA, Medical X-Ray films, Germany). The following primary antibodies were used: rabbit 

anti-Slc4a8 (1:500), mouse monoclonal anti-PSD-95 (1:1,000; Abcam, USA) and mouse 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=autoradiography&trestr=0x801
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monoclonal anti-synaptophysin (1:1,000; Millipore). β-Actin (1:40,000; Santa Cruz, USA) 

served as a loading control. If needed, quantification of bands was performed by densitometry 

using the National Institute of Health Image software (Image J, USA). Densitometric values 

were normalized to the mean for the control group that was defined as 100 %. 

 

Immunohistochemistry 

Immunhistochemical stainings were performed mostly as described previously (Jacobs et al., 

2008). For immunohistochemistry, the brain of an adult mouse (WT or Slc4a8 
-/-

, 6-8 weeks of 

age) was removed after transcardial, consecutive perfusion of anesthetized mouse with 

phosphate buffer (PB; 155 mM Na2HPO4, 22.6 mM NaH2PO4) and 2 % 

paraformaldehyde/0.25 % glutaraldehyde in PB. The tissue was postfixed for 2 h at RT. Tissue 

was incubated in 30 % sucrose overnight for cryoprotection. Free-floating cryosections (50 

µm) were cut with a sliding microtome (-20 °C; Leica, Germany) and stored in PB (4 °C) until 

used for immunostainnigs. Non-specific staining was avoided by incubating the slices in 

blocking solution (1 h, RT). Blocking solution contained 5 % normal goat serum (Millipore, 

USA) in wash buffer (PBS with 0.25 % Triton X-100, Sigma-Aldrich, Germany). Slices were 

stained with the primary antibody diluted in blocking solution overnight at 4 °C. For most 

stainings polyclonal antibodies against SLC4A8 protein (Leviel et al., 2010) were used, which 

were raised in rabbits immunized against a c-terminal epitope (ALSINSGNTKEKSPFN-

COOH) encoding exon 24 (aa 1074-1089) of Slc4a8 and (accession number Q8JZR6, 

UniProt) and affinity purified (Eurogentech, Belgium). For diaminobenzidine (DAB) staining, 

coronal and sagittal brain sections were incubated with a biotinylated anti-rabbit 

immunoglobulin G secondary antibody using the vectastain ABC-kit (Vector Laboratories, 

USA). The peroxidase stain was visualized by 0.05 % DAB, 0.04 % nickel ammonium sulfate 

and 0.03 % H2O2 dissolved in 0.01 M PB.  

For immunofluorescence studies on sagittal and coronal brain sections (n≥6 from at least two 

independent preparations and stainings), the Slc4a8 signal was amplified with a tyramide 

signal amplification (TSA) kit according to the manufacturer’s instructions (Invitrogen, 

Germany). For co-stainings, the following primary antibodies were used: monoclonal mouse 

anti-neurofilament 68 (NF68; 1:500, Sigma-Aldrich), monoclonal mouse anti- glutamate 

decarboxylase 67 (GAD67; 1:500, Millipore), polyclonal guinea pig anti-vesicular glutamate 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=anesthesia&trestr=0x2001
http://www.uniprot.org/uniprot/Q8JZR6
http://www.google.de/url?sa=t&source=web&cd=4&ved=0CEsQFjAD&url=http%3A%2F%2Fprobes.invitrogen.com%2Fmedia%2Fpis%2Fmp22185.pdf&ei=W0y5TdrYBIXysgboofTqAw&usg=AFQjCNG9Iz3VJaHpgNFpDbuMxz_TSVJ5CQ
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transporter 1 (vGLUT1; 1:500, Synaptic Systems, Germany), monoclonal mouse anti-vGLUT 

2 (1:250; Millipore), monoclonal mouse anti-vGLUT3 (1:5,000; Millipore), polyclonal guinea 

pig anti-vesicular GABA transporter (vGAT; 1:500; Synaptic Systems), monoclonal mouse 

anti-synaptophysin (1:500; Millipore), mouse anti-parvalbumin (1:2,000; Swant, Switzerland), 

monoclonal mouse anti-microtubule-associated protein 2 (MAP2; 1:500; Sigma-Aldrich), 

monoclonal mouse anti-PSD protein 95 (PSD-95; 1:1,000; Abcam; USA), monoclonal mouse 

anti-glial fibrillary acidic protein  (GFAP; 1:500; Chemicon; Germany) and a rabbit polyclonal 

antibody against Slc4a10 protein (1:500). The Slc4a10 antiserum was raised in rabbits against 

the epitope KHRKRDRERDSGLED (amino acids 71–85 of the SLC4A10 protein; accession 

no. NM 033552), coupled by a C-terminal cysteine to keyhole limpet hemocyanin and 

affinity-purified (Jacobs et al., 2008).  

For co-stainings with primary antibodies of different specificity raised in the same species, 

slices were sequentially stained with the two different antibodies similar as described 

previously by (Tóth and Mezey, 2007). First, staining against the first epitope was performed 

using the TSA kit as described. After this staining, the antibodies were removed by heating the 

slices (5 min, 100°C) in citrate buffer (0.1 M Na2HPO4, 0.1 M citric acid, pH 6.0). Slices were 

then stained with antibodies against the second epitope and fluorescently labeled by 

corresponding secondary antibody.  

Alexa Fluor 488- and 555-coupled goat anti-rabbit, goat anti-guinea pig and goat anti-mouse 

(1:500 or 1:1,000 in blocking buffer, Molecular Probes, Netherlands) were used as secondary 

antibodies (2 h, RT) and slices were washed with washing buffer (3x 10 min) between and 

after the incubation with the secondary antibodies. Cell nuclei were stained by 4',6-diamidino-

2-phenylindole (DAPI; 1 µg/mL; Sigma-Aldrich). Analysis was performed by confocal 

microscopy (LSM 510; Zeiss, Germany) and representative pictures were chosen.  

 

Freeze-fracture replica immunolabeling 

The ultrastructural analysis was performed in close collaboration with PD Dr. Martin 

Westermann from the Electron Microscopy Center of the University of Jena. 

For freeze-fracture replica immunogold labeling aliquots of isolated synaptosomes were 

enclosed
 
between two 0.1 mm copper sandwich profiles. The profiles were rapidly frozen

 
by 

plunge-freezing in liquid ethane/propane (1:1) cooled by liquid nitrogen.
 
Freeze-fracture was 



30 

 

performed in a BAF400T (BAL-TEC, Liechtenstein)
 
freeze-fracture unit at -150°C using a 

double-replica
 
stage. The fractured samples were replicated by perpendicularly evaporation of 

carbon (15-25 nm) as first layer, followed by platinum/carbon (2 nm) shadowing at an angle of 

35°. The SDS freeze-fracture replica labeling technique was performed as described 

(Westermann et al., 2005), using specific primary antibodies against Slc4a8 (1:100), Syntaxin 

(mouse monoclonal, 1:50 Sigma-Aldrich) and the synaptosomal-associated protein 25 

(SNAP25; guinea pig polyclonal, 1:50; Synaptic Systems) followed by gold-conjugated 

second antibodies goat anti-rabbit (diameter 10 nm), goat anti-mouse (diameter 5 nm) or goat 

ant-guinea pig (diameter 5nm) (British Biocell International, UK). After immunolabeling the 

replicas were fixed with 0.5 % glutaraldehyde, washed with distilled water and finally picked 

onto Formvar coated grids. Images were taken as digital pictures in an EM 902 A electron 

microscope (Zeiss, Germany) using a 1 k FastScan-CCD-camera (TVIPS camera and 

software, Germany). 
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Cell culture and live cell imaging  

 

Hippocampal neuron culture 

Mixed hippocampal cultures were prepared similar as described previously (Kaech and 

Banker, 2006). Mice from homozygous WT or Slc4a8 
-/-

 matings were sacrificed at postnatal 

day 0.5–1.5. Brains were removed and hippocampi dissected in ice-cold Hank's buffered salt 

solution (HBSS) supplemented with penicillin-streptavidin/HEPES (pH 7.25). Hippocampi 

were rinsed three times with HBSS and trypsinized with 0.05 % trypsin/EDTA (Invitrogen) 

for 25 min at 37°C. The supernatant was removed and rinsed with HBSS. The tissue was 

placed in 2 mL of HBSS containing 20 µL DNAse (1 µg/µL in HBSS) and dissociated into 

single cells by trituration with folded Pasteur pipettes of decreasing diameters. Approximately 

50,000 cells were plated onto coated coverslips (ø 18 mm) in plating medium (Modified eagle 

medium, GIBCO, Germany;   10 % horse serum, 0.6 % glucose). Coverslips were coated with 

poly-L-lysine (1 mg/ml, Sigma-Aldrich) overnight and subsequently washed three times with 

HBSS before use.  

Cells were allowed to settle for 10–20 min at 37 °C/5 % CO2. Finally, coverslips were 

transferred to 6 cm culture dishes containing neurobasal medium (GIBCO) supplemented with 

1 mM L-glutamine (Invitrogen), 0.2 % horse serum and B27 supplement (Invitrogen). 

Neurobasal medium supplemented with B27 was added once a week to maintain the initial 

volume. For pure glial culture, astrocytes were cultured with Dulbeccos modified eagle 

medium supplemented with 10 % fetal calf serum and penicillin-streptavidine and split at least 

3 times. pH measurements were performed after 21–28 days in culture, analysis of cell volume 

regulation after 7-14 days and FM measurements at day 14 in vitro. 

 

Intracellular pH recordings 

The fluorescent indicator 2’,7’-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF; 

Rink et al., 1982) was used for  non-invasive measurement of pHi in cultured hippocampal 

neurons. BCECF is a commonly used dual-excitation indicator, which is pH sensitive when 

excited by light of a wavelength of 495 nm, and nearly pH insensitive when the excitation 

wavelength is shifted to 440 nm (isobestic point). It thereby allows ratiometric monitoring of 
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the pHi independent of photobleaching and dye leakage in cell culture (Boyarsky et al., 1988). 

All carboxylate groups of BCECF are estered by acetoxymethyl (AM) groups which are 

removed by unspecific intracellular esterases and thereby render the lipophilic, fluorescent dye 

trapped within the cell (Grynkiewicz et al., 1985).  

Primary hippocampal cultures were loaded with BCECF-AM (Molecular Probes, Netherlands) 

at a final concentration of 1 µM with 0.002 % Pluronic F127 in bicarbonate-buffered solution 

(BBS, containing in mM: 125 NaCl, 3 KCl, 1.2 CaCl2, 1.2 MgSO4, 1.25 NaH2PO4, 10 glucose 

and 26 NaHCO3, gassed with 95 % O2/5 % CO2, pH 7.3; (Yao et al., 1999)) for 5–10 min at 37 

°C. For recordings, coverslips were mounted onto a perfusion chamber (350 µl volume, 

Chamlide EC, Live Cell Instruments, Korea) and superfused with BBS (32±0.2°C) at a linear 

flow rate of 1.5–2.0 ml/s corresponding to ~4 bath changes per min. A subset of experiments 

was performed in the nominal absence of bicarbonate and presence of 30 mM HEPES (pH 

adjusted to 7.3 with NaOH). Light emission (510–535 nm) upon alternating excitation with 

495 nm and 440 nm was recorded with a 10× objective every 10 s with a charge-coupled 

device camera (AxioCam MRm, Zeiss). The F495/F440 ratio was converted into pHi values 

using the nigericin single-point calibration technique (Boyarsky et al., 1988). After defining 

the region of interest (somata of pyramidal neurons) and 10 min of baseline recordings, the 

basal pHi was calculated as mean pHi over 30 s. Cells were acid loaded by the ‘rebound 

acidification’ technique (Boron and De Weer, 1976) with a 20 mM ammonium chloride 

(NH4Cl) pulse (BBS with equimolar substitution of Na
+
 by NH4

+
) and NH4Cl induced 

alkalosis was quantified as pHMaximum-pHBaseline. The rate of pHi recovery (dpHi/dt) was 

determined over the first minute after peak acidification upon withdrawal of NH4Cl and at pHi 

7.7-7.8. Data from ≥20 neurons (2–7 cells/experiment) cultured from at least three 

independent preparations per genotype were averaged. For NH4Cl pulse experiments in the 

presence of HEPES ≥10 cells were analyzed from at least two independent preparations per 

genotype. 

 

Calibration of BCECF fluorescence signal  

The calibration curve was constructed using HEPES-buffered solutions (containing in mM: 

105 KCl, 20 N-methyl-D-glucamin, 5 MgSO4, 10 glucose, 30 HEPES, 0.010 nigericin). The 

proton ionophore nigericin allows exchange of H
+
 for K

+
 ions across their concentration 
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gradients. Thus, if external K
+
 concentration is strongly increased protons can move freely 

across the cell membrane and equilibrate intracellular pH with the extracellular pH (Thomas et 

al., 1979).  

The pH of the calibration solution was adjusted to different pH values in the range of 6.0 to 

8.0 with HCl. Calibration data from ≥8 experiments were analyzed and a common equation 

was obtained from a regression fit. The non-linear regression analysis for the construction of a 

calibration curve (Fig. 7) was performed with the help of Prof. Dr. Alt (Institute for Applied 

Mathematics, University Jena) and yielded the following equation: pHi=7-(1/(TAN((6,29* 

F495nm/F400nm)/(4* F495nm pH 7.0/F400nm pH 7.0)))).  

For conversion of F495nm/F400nm values into actual pHi values, F495nm/F400nm at pH 7.0 in the 

presence of nigericin was determined after each measurement and the entire set of 

F495nm/F400nm values from a single cell was then normalized to the F495nm/F400nm ratio at pH 7.0 

via the above mentioned equation (one-point calibration; Boyarsky et al., 1988) 

 

 

 

Figure 7. Calibration curve for the conversion of the fluorescence ratio F495nm/F400nm into pHi 

values. A, Ratios of F495nm/F400nm gathered by different measurements (closed circles) and mean values 

at distinct extracellular pH values (crossed open circles) in the presence of nigericin. In grey, non-

linear regression analysis resulted in good fit and allowed conversion of F495nm/F400nm into actual pHi 

values by the help of a one-point calibration after each measurement. 



34 

 

Analysis of cell volume regulation 

Mixed hippocampal cultures were loaded with AM ester of calcein blue (Molecular Probes, 

Invitrogen, 4 µM, pre-diluted in dimethyl sulfoxide) for 30-40 min at 37°C. During the 

measurement, cells were continuously superfused with isotonic BBS (containing in mM: 135 

NaCl, 5 KCl, 1 CaCl2, 1.2 MgCl2, 1.7 KH2PO4, 5 glucose and 26 NaHCO3, 32±2°C gassed 

with  5 % CO2/ 95 % O2; flow rate 2 ml/min). For hypo- and hyper-osmotic conditions, NaCl 

concentration was decreased or increased by 50 mM NaCl, respectively. Optical recordings 

were performed as described for pH measurements except for changes in the excitation 

(Exc = 370 nm) and emission wavelength (Em = 445 ± 25 nm, Zeiss filterset 49) and use of a 

25x objective. Fluorescence intensity was corrected for bleaching by negative slope analysis. 

Two regions of interests within the soma were analyzed for each pyramidal neuron. For 

analysis of cell volume (V), mean fluorescence intensity over time per region of interest (F(t)) 

and the fluorescence intensity under iso-osmotic, resting conditions (F(0)) were used to 

calculate the relative cell volume (V(t)) following the equation : V(t) = (F(0)/F(t))/1 (Loo and 

McNamara, 2006).  

 

FM recordings 

For analysis of presynaptic vesicle release in WT and Slc4a8
-/-  

hippocampal neurons, synaptic 

vesicles were labeled with a fluorescent FM dye and vesicle exocytosis upon electrical field  

stimulation was investigated by quantification of fluorescence intensity decline (Gaffield and 

Betz, 2006). 

Coverslips with hippocampal cultures at day 14 in vitro were mounted onto an optical 

recording chamber supplied with a pair of platinum electrodes for field stimulation (Chamlide 

EC). During the recording cells were continuously superfused with BBS (pH 7.3, flow rate 1.1 

ml/min at room temperature) supplemented with 6-cyano-7-nitroquinoxaline-2,3-dione 

(CNQX, 10 µM, Tocris, UK) and (2R)-amino-5-phosphonovaleric acid (D/L-APV, 50 µM, 

Sigma-Aldrich) in an optical recording chamber supplied with a pair of platinum electrodes 

for field stimulation. After 5 min, the cells were exposed to high potassium BBS (containing 

in mM: 68 NaCl, 60 KCl, 1.2 CaCl2, 1.2 MgSO4, 1.25 NaH2PO4, 10 glucose and 26 NaHCO3) 

supplemented with 10 µM FM1-43 (Molecular Probes) for 1 min followed by 1 min BBS 

supplemented with 5 µM FM1-43 and washed with BBS for 10 min. Fluorescence was 
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recorded with a 63× water-immersion objective at a frequency of 1 Hz (Exc=480 nm, 

Em=445±25 nm). Following the baseline recording, 1 ms current pulses were applied for 150 s 

at a frequency of 10 Hz (corresponding to ~1,500 action potentials). Sub-threshold stimulus 

intensity (80 V) was determined in a subset of pilot experiments in which hippocampal cells 

were loaded with the calcium-sensitive dye Oregon-green BAPTA-AM (Molecular Probes, 

Netherlands) and stimulation intensity was increased till each stimulus resulted in an uniform 

increase in calcium, representing an action potential. Regions of interest corresponding to 

nerve terminals (≥25, ø 1.5 µm) were analyzed (6 recordings from three independent 

preparations per genotype). Bleaching effects were corrected by negative slope analysis. 

Puncta that did not show a reduction of the corrected fluorescence intensity of more than 30% 

after stimulation or that could not be fitted by a mono-exponential fit were excluded from 

analysis of the destaining time constant (τ). 
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Electrophysiology  

 

Slice preparation for electrophysiological recordings 

Immediately after decapitation, brains from adult mice (WT, Slc4a8
-/-

 or Slc4a10
-/-

; 4-8 weeks 

or 3-6 weeks of age, males and females) were removed from the
 
skull and chilled (at ~4°C) in 

artificial cerebrospinal fluid (aCSF) containing (in mM): NaCl 120, KCl 3.5, MgSO4 1.3,
 

NaH2PO4 1.25, CaCl2 2.5, D-glucose 10 and NaHCO3 25, gassed
 
with 95 % O2/5 % CO2, pH 

7.3. Frontal lobes and cerebellum were removed.
 
Coronal slices were prepared with

 
a 

vibroslicer (VT 1000S, Leica Instruments,
 
Germany) as described previously (Liebmann et al., 

2009). Slices (350 µm) were stored at RT in aSCF for at least 1h until use.  

 

Field potential recordings 

After a 1 h equilibration period, slices were transferred to an interface recording chamber and 

perfused with gassed aCSF (2–3 mL/min) at 32°C. Slices were allowed to equilibrate to the 

recording conditions for 1 hr. Bipolar stimulating electrodes with a tip diameter of 100 µm 

(SNE-200X, Science-Products, Germany) were placed onto the sc fibers in the hippocampus 

or in layer 6, close to the corpus callosum, of the cortex (see also Fig. 8). Data of field 

potential recordings were collected with an extracellular amplifier (EXT-02, NPI, Germany), 

low pass filtered at 4 kHz and digitally stored with a sample frequency of 10 kHz. Data 

acquisition and analysis of population spike amplitudes were performed using the software 

Signal (Cambridge Electronic Design, UK). Upon stimulation (pulse duration 50 µs), field 

excitatory postsynaptic potentials (fEPSPs) were recorded using glass microelectrodes (2–5 

MΩ, filled with aCSF) impaled into the SPyr or the SRad of hippocampal CA1 region, as well 

as layer 2/3 of the corresponding cortical positions. Slopes of fEPSPs were determined for 

recordings in the SRad and for all other recoding positions amplitudes were analyzed using the 

Signal software.  

The maximal population spike amplitude was determined by gradually increasing the stimulus 

intensity (0-70 V) for each experiment (interstimulus interval 30 s) until the responses 

saturated. The relationship between stimulus intensity and the evoked response was fitted by a 
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sigmoid function: R(i)=Rmax/1+exp(i–ih), where R(i) is the response at intensity (i), Rmax is the 

maximal response and ih is the intensity at which half-maximal response was observed. 

Following determination of the half-maximal stimulation intensity, paired-pulse stimuli were 

applied with interstimulus intervals of 15, 20, 30, 50, 80, 120, 180, 280, 430, 650 and 1,000 

ms to investigate possible changes in short term plasticity. Depending on timing and brain 

region the response to the second stimulus can be 5 times in size of the response to the first 

stimulus. In the hippocampus a conditioning pulse (fEPSP1) leads to an increase of 

intracellular calcium via voltage dependent calcium channels in the nerve terminals of neurons 

(Katz and Miledi, 1968; Wu and Saggau, 1994). A sustained increase in intracellular calcium 

levels then facilitates a second fEPSP. In the cortex, response to the second stimulus is smaller 

than the first response (paired-pulse depression). The paired pulse ratio (fEPSP2/fEPSP1) is 

therefore a measure for the paired pulse paradigm.  

 

 

 

Figure 8. Stimulation and recording sites of field potentials. Cortical positions depicted on right site 

and hippocampal sites on the left sites. Stimulation sites are indicated by flashes.  
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Patch clamp recordings 

Single cell recordings were performed in close collaboration with Dr. Lutz Liebmann from the 

Institute of Clinical Chemistry/Human Genetics at the University Hospital Jena.  

Hippocampal slices were placed in a submerged-type recording chamber mounted
 
on an 

upright microscope (BX51WI, Olympus, Germany). Slices were continuously superfused with 

gassed aCSF (5% CO2/95 % O2, 2–3 mL/min, 32°C, pH 7.2). Patch clamp recordings were 

performed under visual control with differential interference contrast and a 40x water-

immersion
 
objective. CA1 neurons with a pyramidal-shaped cell body were selected for 

recordings. The membrane patch under the electrode was ruptured by gentle suction after seal 

formation (resistance >1 GΩ). Only recordings with an access resistance of <15 MΩ and a 

resting membrane potential more negative than –55 mV were included in this study. Signals 

were recorded using
 
a patch clamp amplifier (Multiclamp 700B, Molecular Devices, USA). 

Responses were filtered at 4 kHz and digitized at
 
20 kHz (Digidata 1440, Molecular Devices). 

All data were acquired,
 
stored and analyzed on a PC using pClamp 10.2 and Clampfit 10.2

 

(Axon Instruments). Patch pipettes with an impedance of 3–4 MΩ were pulled from 

borosilicate glass
 

(outer diameter 1.5 mm, Science Products, Germany) on a Sutter 

micropipette puller (P-97, Sutter Instrument, USA). Spontaneous miniature excitatory currents 

(mEPSCs) and spontaneous miniature inhibitory currents (mIPSCs) were recorded at a holding 

potential of –70 mV for at least 5 min. Data analysis was performed off-line with the detection 

threshold
 
levels set to 5 pA for mEPSCs and mIPSCs. mEPSCs were isolated by adding 

tetrodotoxin (0.5 µM, Tocris) and bicuculline methiodide (20 μM, Biomol, Germany) to block 

action potential-induced glutamate release and GABAA receptor-mediated mIPSCs, 

respectively. D/L-APV (30 µM) was added to suppress N-methyl-D-aspartic acid (NMDA) 

currents. The pipette solution contained (in mM): 120 CsMeSO4, 17.5 CsCl, 10 HEPES, 5 

BAPTA, 2 Mg-ATP, 0.5 Na-GTP, 10 QX-314, pH 7.3, adjusted with CsOH. 

Recordings of mIPSCs were performed using a CsCl-based intracellular solution (in mM): 122 

CsCl, 8 NaCl, 0.2 MgCl2, 10 HEPES, 2 EGTA, 2 Mg-ATP, 0.5 Na-GTP, pH adjusted to 7.3 

with CsOH. D/L-APV (30 µM), CNQX (10 µM) and tetrodotoxin (0.5 µM) were added to the 

perfusate. The currents were identified as event
 
when the rise time was faster than the decay 

time. The following parameters were determined:
 
inter-event interval, frequency, rise time, 

peak amplitude
 
and τ of decay. The decay of each event was fitted with

 
a mono-exponential 
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curve in pClamp. Only residual standard deviations below 0.3 were accepted as a criterion for 

the quality of the fit. In a subset of mEPSC recordings, the extracellular pH was adjusted to 

6.9 or 7.5 using aCSF gassed with carbogen containing 10 or 2.5 % CO2, respectively. In a 

subset of experiments, pHi was alkalinized by substitution of 20 mM NaCl by trimethylamine-

chloride (TriMA, Sigma-Aldrich). 

To study the regulation of presynaptic release, the open-channel blocker of the NMDA 

receptor MK-801 maleate (40 µM, Tocris) was used. CNQX (10 µM) was added to block 2-

amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA) receptor responses. 

NMDA receptor-mediated excitatory postsynaptic currents (eEPSCs) were evoked in CA1 

pyramidal neurons by electrical stimulation (Stimulator Model 2100, A-M-Systems, USA) of 

Schaffer collaterals with a frequency of 0.1 Hz. EPSCs were recorded in response to 

stimulation with half-maximal stimulus intensity at +40 mV holding potential. MK-801 was 

added after establishment of a stable baseline. Stimulation was resumed and eEPSCs were 

recorded for an additional 100 stimuli. Pulses were normalized to the first pulse given in the 

presence of MK-801. τ of NMDA-receptor blockade were estimated by mono-exponential fit 

and defined as timepoint where amplitudes dropped to 37% of baseline. Furthermore, action 

potential properties and spike frequency accommodation were recorded under current clamp 

conditions. Prolonged current steps (600 ms) were applied from the resting membrane 

potential in the range of 0 to 560 pA with 40 pA increments. Patch pipettes were filled with (in 

mM): 140 K-methane-sulfonate, 10 HEPES, 0.1 EGTA, 4 Mg-ATP and 0.3 Na-GTP, pH 7.3. 

 

 

  



40 

 

In vivo analysis  

 

All physiological studies on the renal function of Slc4a8 were performed in close 

collaboration with Dr. D. Eladari and Dr. R. Chambrey at the INSERM U872/ University Paris 

Descartes in Paris (France).   

 

Physiological studies  

Physiological experiments were performed at the Institute des Cordeliers (INSERM U652, 

IFR58, Paris, France) and all animals used in this study were treated in full compliance with 

the French government animal welfare policy. Mice were housed at constant room 

temperature (24±1°C) with 12 h light/dark cycle. For convenience, the 12:12 light/dark cycle 

was inverted. Mice were given deionized water ad libitum and pair-fed with standard 

laboratory chow containing 0.3 % of Na
+
 (Institut National de la Recherche Agronomique, 

France). 

 

NaCl restriction  

WT mice were divided into three groups (n=6 animals per group). One group received 1.7 mg 

desoxycorticosterone (DOCP; diluted in 0.3 % NaCl, Ciba-Geigy Animal
 
Health, Novartis, 

Switzerland) by intramuscular injection 7 days before sacrifice. The second group of treated 

mice received a low sodium diet (0.009 % Na
+
). Control mice were fed ad libitum with 

standard laboratory mouse chow and all mice had free access to distilled water for the same 

period of time. After 7 days mice were sacrificed and kidney cortices were removed and used 

for preparation of protein extraction as described earlier. 

 

Metabolic experiments 

All experiments were performed by using age- and sex-matched Slc4a8 
-/-

 mice (3 to 5 months 

of age). Animals were housed in metabolic cages (Techniplast, Italy) and were first allowed to 

adapt for 5 d to the cages. Food and water intake as well as body weight were monitored 

throughout the experiment. At steady-state, urine collection was performed daily under 
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mineral oil in the urine collector for electrolyte measurements. Urine creatinine (modified 

kinetic Jaffé colorimetric method) was measured with a Konelab 20i auto-analyzer (Thermo 

Scientific) and urinary Na
+
 and K

+
 concentrations were measured by flame photometry 

(IL943; Instruments Laboratory). Experimental outline for Na
+
 restriction and phenotypical 

analysis is depicted in Fig. 9. Urinary aldosterone was measured under baseline (day -1) or 

low Na
+ 

(day +5) conditions by radioimmunoassay (DPC Dade Behring, France). After two 

weeks on low Na
+
 diet, blood was sampled from the tail vein and blood pH, pCO2 and oxygen 

pressure (pO2) were measured with an ABL 77 1 pH/blood-gas analyzer (Ratiometer, 

Denmark).  

 

 

 

Figure 9. Experimental outline of metabolic experiments. Days of urinary analysis denoted in black, 

time points of additional aldosterone measurements in red and the time point of blood withdrawal in 

blue. 

 

For the analysis of possible compensatory mechanisms, 50 mg/kg body weight HCTZ or 

amiloride (1.45 mg/kg of body weight) were injected subcutaneously in mice after adaptation 

to low Na
+
 diet. Analysis of urinary content as described earlier was performed 18, 12 and 0 

hours prior to injection of pharmacological blockers and 6, 12 and 24 hours after treatment.  
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Statistics  

 

Data analysis 

Data are presented as mean±standard error of mean (SEM). Statistical analysis of two 

experimental groups was performed using the un-paired, parametric two-tailed Student’s t-test. 

If more than two groups were compared, one-way analysis of variance (ANOVA) and 

subsequent Newman-Keuls tests for post-hoc analysis were performed. In experiments, which 

include repeated measurements, differences between groups were tested by repeated measures 

ANOVA. In a subset of experiments two-way ANOVA was applied. Cumulative distributions 

were tested using the Kolmogorov-Smirnov test. Significance was considered at p-values 

<0.05 (* indicates p<0.05; ** indicates p<0.01; *** indicates p<0.001). 
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Results  

 

Expression of Slc4a8 in non-neuronal, murine tissues 

Previous data on Slc4a8 expression obtained by Northern blot and in situ hybridization 

showed strong expression of Slc4a8 in the murine central nervous system and in the testis. 

Lower expression was also detected in parts of the intestinal tract as well as renal and lung 

tissue amongst others (Kougioumtzes, 2006; Leviel et al., 2010). The expression of Slc4a8 

messenger ribonucleic acid (mRNA) was analysed in more detail by semi-quantitative PCR on 

cDNA of different murine tissues. Besides strong expression of Slc4a8 in total RNA isolated 

from brain, lower expression levels were confirmed in samples from kidney, thyroid and aorta 

of adult mice. No Slc4a8 mRNA could be detected in pancreas samples from adult or neonatal 

mice (Fig.10A). At the protein level, Slc4a8 was detected in lysates from murine WT kidney 

(Fig.10B), as well as lysate from kidney cortices (Fig. 11) and from isolated cortical collecting 

ducts. No specific signals for Slc4a8 were obtained in immunhistochemical stainings of 

kidney sections with any of the protocols tested. Thus, the cellular as well as the sub-cellular 

localization of Slc4a8 in the kidney remain unclear. However, the expression data together 

with functional evidence from in vitro analysis of transport activity in cortical collecting ducts 

(Leviel et al., 2010) prompted us to analyse the role of Slc4a8 for kidney function in more 

detail. 

                                                                                   

 

Figure 10. Expression of Slc4a8 in non-neuronal, 

murine tissues. A, PCR on cDNA from different 

murine tissues confirmed expression of Slc4a8 in 

brain, kidney, thyroid and aorta, but not in the 

pancreas of newborn or adult mice. B, Slc4a8 protein 

was detected in whole kidney lysates of WT mice, but 

not of a Slc4a8
-/-

 mouse by Western Blot analysis.                                                             
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Slc4a8 mediates an electroneutral Na
+
 reabsorption in the murine kidney  

 

Results of this thesis in collaboration with Dr. D. Eladari suggest an important role of Slc4a8 

for thiazide-sensitive Na
+
 reabsorption in the renal collecting ducts of mice (Leviel et al., 

2010). Differences in ion transport activity between genotypes in isolated cortical collecting 

ducts described in this study were most prominent in Na
+
 depleted mice. Considering that in 

general renal Na
+
 reabsorption under normal feeding conditions is relatively low and that only 

1-3 % of filtrated sodium enters the connecting tubule and the collecting duct, we decided to 

analyze expression of Slc4a8 in kidneys of mice under conditions of NaCl restriction. Cortices 

of kidneys of WT mice were dissected after 7 days under Na
+
 free diet, or 7 days after 

injection of the aldosterone analogue DOCP and Slc4a8 protein amount was analysed by 

Western blot analysis (Fig. 11A). In both conditions a significant up-regulation of Slc4a8 

protein expression could be detected (Fig. 11B, Relative expression of Slc4a8 protein: control 

100.00±3.15 %; low Na
+
 122.69±4.93 %; Students t-test: p=0.005; n= 5/6; control 

100.00±4.46 %; DOCP treatment 154.81±10.04 %; Students t-test: p=0.001; n=5/6). These 

results corroborate the functional importance of Slc4a8 for salt reabsorption in the kidney.  

 

 

 

 

 

 

Figure 11. Renal expression of Slc4a8 is increased 

under Na
+
 restriction. A, Under conditions of increased 

Na
+
 reabsorption, induced by application of the aldosterone 

analogue, DOCP, or by maintenance of mice under Na
+
 

restriction, Slc4a8 protein expression was increased in 

Western Blot analysis. B, Quantification of expression 

levels (n=5/5/5; p<0.001/p<0.01).  
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To test the functional significance of Slc4a8 for kidney function, in vivo metabolic 

experiments were performed in which we monitored food and water intake as well as blood 

and urinary composition under normal and Na
+
 restricted diet. No differences in food (basal 

KO: 3.00±0.19 g; WT: 2.95±0.19 g; Students t-test: p>0.05; low Na
+
 KO: 3.32±0.28 g; WT: 

3.37±0.09; Students t-test: p>0.05; n =10/10) and water intake (basal KO: 4.89±0.55 ml; WT: 

4.30±0.52 ml; Students t-test: p>0.05; low Na
+
 KO: 4.92±0.38 ml; WT: 4.05±0.63; Students t-

test: p>0.05; n =10/10) were detected. Mice of both genotypes were able to maintain their 

weight under both experimental conditions. However, the previous finding of an increased 

bodyweight in Slc4a8
-/-

 mice was confirmed. WT and Slc4a8
-/- 

mice were both able to 

conserve Na
+
 rapidly after Na

+
 depletion (Fig. 12A; repeated measures ANOVA: F=4.01, 

p=0.06). Also, urinary K
+
 concentration during the treatment was monitored, as alterations in 

urinary K
+
 excretion can indicate compensatory mechanisms in Slc4a8

-/- 
mice. Slc4a8

-/- 
mice 

did not show long-lasting alterations of urinary K
+
 excretion, although there was a 

significantly increased K
+
 excretion in Slc4a8

-/- 
mice at day 5 under NaCl restriction (Fig. 

12B; repeated measures ANOVA: F=4.56, p=0.046; Bonferroni post test: D5 p<0.01; all other 

time points: p>0.05).  

 

Figure 12. Slc4a8 deletion does not alter urinary Na
+
 or K

+
 composition under Na

+
 restriction. A, 

Slc4a8
-/- 

and WT mice did not differ significantly in the amount of excreted Na
+
 under normal 

conditions and both genotypes were able to adapt normally to Na
+
 restriction (n=10/10; p=0.06). B, 

Urinary K
+
 excretion was normal in Slc4a8

-/-
 mice at most time points during the metabolic 

experiments (n=10/10; p=0.05).  
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Additionally, different blood parameters (e.g. pH, pCO2, pO2) were analysed under Na
+
 

restricted conditions (day 13) but no significant differences between WT and Slc4a8
-/-

 mice 

could be detected in any of the parameters analysed (Tab. 2). 

Table 2. Blood and plasma composition under Na
+
 restricted conditions. 

 KO (n=10)  WT (n=10) p-value 

Blood          

pH 7.25 ± 0.01  7.24 ± 0.01  0.45 

pCO2 (mmHg) 53.20 ± 1.81  58.90 ± 1.99  0.23 

pO2 (mmHg) 84.30 ± 7.19  86.80 ± 6.86  0.83 

HCO3
- 
(mM) 22.70 ± 0.70  24.20 ± 0.70  0.36 

          

Plasma          

[Na
+
] (mM) 146.70 ± 1.08  143.90 ± 2.69  0.56 

[K
+
] (mM) 3.74 ± 0.15  3.65 ± 0.13  0.33 

[Cl
-
] (mM) 116.60 ± 1.09  116.50 ± 0.97  0.94 

[Ca
2+

] (mM) 1.29 ± 0.02  1.31 ± 0.02  0.18 

Hematocrit (%) 44.6 ± 3.71  42.30 ± 3.77  0.56 

 

It is well established that a sodium-deficient diet stimulates aldosterone biosynthesis in 

mammals (Müller, 1995). Accordingly, a rise in relative aldosterone content in urine samples 

under low Na
+
 diet compared to baseline was measured in both genotypes (Fig. 13; urinary 

aldosterone excretion WT baseline: 1.97±0.24 mmol/mmol creatinine; WT low Na
+
: 

7.73±1.00 mmol/mmol creatinine; KO baseline: 2.45±0.59 mmol/mmol creatinine; KO low 

Na
+
: 15.95±2.8 mmol/mmol creatinine; two-way ANOVA: F=21.13, p<0.0001; n=9/9/5/5). 

Interestingly, the aldosterone concentration under Na
+
 restriction was significantly increased 

in Slc4a8
-/- 

mice (two-way ANOVA: F=18.46, p<0.0001; Bonferroni post test: basal: p>0.05, 

low Na
+
: p<0.001).  

In conclusion, the data suggest that Slc4a8 is expressed in kidney cortices of WT mice under 

basal conditions and that its expression is up-regulated under conditions of increased Na
+
 

reabsorption. Albeit in vitro results from recordings on isolated cortical collecting ducts 

propose that Slc4a8 is an essential component for NaCl reabsorption, Slc4a8
-/- 

mice adapted 

normally to NaCl
 
restriction in vivo. The normal adjustment of Slc4a8

-/- 
mice may be 

facilitated by compensatory changes.   
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Figure 13. Na
+
 restriction increases urinary aldosterone concentration more strongly in Slc4a8 

depleted mice. A, Na
+
 restriction increased urinary aldosterone in WT and Slc4a8

-/- 
mice (n=9/9/5/5; 

p<0.0001), but to a larger extent in Slc4a8
-/-

 mice (p<0.001).  

 

Compensatory changes in Slc4a8
-/-

 mice under Na
+
 restricted conditions  

 

An impaired activation of Slc4a8 could be compensated by increased activity of NCC in the 

distal convoluted tubule or of ENaC in the CCD. To analyse the physiological activity of both 

ion transport proteins in vivo pharmacological blockers, amiloride to block ENaC and HCTZ 

to inhibit NCC, were acutely injected under Na
+
 restricted conditions and the acute Na

+
 

excretion in the urine was compared between genotypes. An increase in Na
+
 excretion 

indicates an increased activity of the transport mechanism blocked.  

Acute injection of amiloride resulted in a strong increase in urinary Na
+
 excretion in both 

genotypes (Urinary Na
+
 excretion 0-6 hours post injection KO 29.63±7.8 mmol/mmol 

creatinine; WT 43.14±7.2 mmol/mmol creatinine; Students t-test WT: p<0.001; KO: p<0.01; 

n=10/10), but there was no significant difference between genotypes in the magnitude of the 

increase (Students t-test: p=0.21). Similar results were observed 6-12 hours and 12-24 hours 

after injection (see also Fig. 14B). To analyze the activity of NCC, HCTZ was injected (Fig. 

14B). Under Na
+
 restricted conditions, HCTZ injection increased the amount of excreted Na

+
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in both genotypes, Slc4a8
-/-

 (Urinary Na
+
 excretion 0-6 hours post injection KO 55.44±7.24 

mmol/mmol creatinine; Students t-test: p<0.05, n=10) and WT mice (WT 31.71±5.06 

mmol/mmol creatinine; p<0.001; n=10). Interestingly, the increase in urinary Na
+
 

concentration was significantly higher in Slc4a8
-/-

 animals compared to WT within the first 6 

hours after injection (Students t-test: p=0.02).  

 

 

Figure 14. Administration of thiazides under Na
+
 restriction evokes stronger response in Slc4a8

 -/-
 

mice. A, Acute injection of HCTZ under Na
+
 restricted conditions results in excretion of a significantly 

larger amount of urinary  Na
+
 in KO compared to WT (p<0.001). B, No differences between genotypes 

were detected in urinary Na
+
 excretion upon blockade of ENaC upon injection of amiloride. 

These results suggest an increased activity of thiazide-sensitive transport mechanisms, 

probably mainly mediated via NCC, in Slc4a8
-/-

 mice under Na
+
 restricted conditions, which 

may explain why Slc4a8
-/-

 mice adapt normally to Na
+
 restriction.  
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Expression of Slc4a8 in the murine brain  

 

Broad expression of Slc4a8 in neurons, but not in glial cells of the WT mouse brain 

DAB stainings of WT brain sections demonstrated that Slc4a8 was broadly expressed in the 

central nervous system (Fig. 15AB). Signals were most prominent in cortical and midbrain 

structures, whereas large fiber tracts like the corpus callosum were almost spared. In the 

hippocampus, all layers stained positive including the SPyr and the SL-M of the CA1 region 

(Fig. 15C). The specificity of our antibody and the staining procedure was confirmed by the 

absence of signals on tissue of Slc4a8
-/-

 mice (Fig. 15D). 

 
 

Figure 15. Expression of Slc4a8 in mouse brain. A, DAB staining of a coronal WT brain section 

with an antibody raised against Slc4a8 protein (scale bar 1000 µm). B, Slc4a8 staining of a sagittal WT 

brain section (scale bar 1000 µm). C, All hippocampal layers stained positive for Slc4a8 (scale bar 500 

µm; SOr: stratum oriens). D, The specificity of the antibody was verified by the absence of signals in 

brain sections of Slc4a8
-/-

 mice (scale bar 1000 µm).  

Slc4a8 protein was detected in protein lysates of mixed neuron/glia cell cultures, but not of 

cultured glia cells (Fig. 16). The neuronal localization of Slc4a8 in different areas of the brain 

was confirmed by fluorescent immunostainings of brain sections. Accordingly, no overlap of 

Slc4a8 protein was noted in a fluorescent double staining with the astrocyte marker GFAP. 

Thus, the neuron-specific expression of Slc4a8 in the mouse brain was confirmed and 
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subsequently the sub-cellular expression pattern in the hippocampus was analysed in more 

detail. 

 

Figure 16. Neuronal expression of Slc4a8. A, The ~120 kD band for Slc4a8 protein was absent in 

Slc4a8
-/-

 brain lysate. Slc4a8 protein was detected in mixed hippocampal cultures, but was not 

detectable in lysates from pure glia cell cultures from WT mice. 

 

Slc4a8 localizes to presynaptic, glutamatergic nerve endings in the hippocampus 

The somata of Slc4a8 stained neurons were labelled variably, most displaying a clear plasma 

membrane bound signal and some a more intracellular vesicular staining (see close up from 

SPyr Fig. 17H). Slc4a8 did not co-localize with the dendritic marker MAP2 (Fig 17A). Co-

staining with the axonal marker NF68 revealed that Slc4a8 rather localized to axons than 

dendrites (Fig. 17B). Slc4a8 overlapped with the presynaptic marker synaptophysin (Fig. 17C, 

close up from SRad C’-C’’’) and, more specifically, with glutamate transporters vGLUT1 

(Fig. 17D) and vGLUT2 (Fig. 17E), but much less with the postsynaptic marker PSD-95 (Fig. 

17F).  
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Figure 17. Presynaptic localization of Slc4a8 in the hippocampus. A, A´-A´´´, Co-staining for 

Slc4a8 (green) and the dendritic marker MAP2 showed no significant overlap (scale bar 200/5 µm). 

Slc4a8 localized along axons labeled with NF68 (B, scale bar 5 µm). C, C’-C’’’, Staining with the 

presynaptic marker synaptophysin revealed a significant overlay (scale bar 200/5 µm). D, D’-D’’’, 

Slc4a8 overlapped with the vesicular glutamate transporter vGLUT1 (, scale bars 50/5 µm). Similar 

results were obtained for vGLUT2 (E, E’- E’’’, scale bars 50/5 µm). F, F`–F```, Slc4a8 and the 

postsynaptic protein PSD-95 (SRad, scale bars 50/5 µm) did not co-localize. G, G’- G’’’, Co-staining 

of Slc4a8 and GAD revealed that Slc4a8 was not detected in most GABAergic nerve endings (scale 

bars 200/5 µm). H, Parvalbumin-positive interneurons did not express Slc4a8 (scale bar 50 µm). 

Nuclei were labeled with DAPI (blue). 
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Overlap between Slc4a8 and GAD67 as a marker of GABAergic presynapses in the 

hippocampus was marginal (Fig. 17G) and Slc4a8 protein was absent from most parvalbumin-

positive inhibitory interneurons in the hippocampus (Fig. 17H).  

The presynaptic localization of Slc4a8 was further confirmed by fractionation studies from 

mouse brain lysates. Slc4a8 protein was increasingly enriched in synaptosomes, synaptosomal 

membranes and synaptic junction plasma membranes but absent from the postsynaptic density 

(Fig. 18).  

 
 

Figure 18. Enriched expression of Slc4a8 in synaptic fractions. A, Immunoblot analysis of a density 

fractionation of WT mouse brain lysates. Slc4a8 protein was enriched in synaptosomes, synaptosomal 

membranes and the synaptic junction plasma membrane fraction, but was not detectable in the 

postsynaptic density fraction. The postsynaptic protein PSD-95 and the presynaptic marker 

synaptophysin served as positive controls and β-actin as a loading control. 

In collaboration with Dr. Martin Westermann immunogold labeling of freeze-fractured 

synaptosome preparations from WT and Slc4a8
-/-

 mice were performed and those confirmed 

strong expression of Slc4a8 in isolated nerve terminals (Fig. 19AB). Finally, double labeling 

studies in WT synaptosome preparations proved that Slc4a8 localized to the same 

compartment as the well-established presynaptic proteins syntaxin (Bennett et al., 1992) and 

SNAP-25 (Oyler et al., 1989) (Fig. 19CD). 
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Figure 19. Expression of Slc4a8 in synaptosomes. A-D, Transmission electron microscopy of a 

freeze-fractured WT (A) synaptosome immunogold labeled for Slc4a8 (large grains, 10 nm). B, KO 

control confirmed specificity of Slc4a8 antibody. C, Co-labeling of Slc4a8 (10 nm, white arrow) and 

the presynaptic marker syntaxin (small grains, 5 nm, black arrow) of freeze fractured WT 

synaptosomes confirmed presynaptic localization of Slc4a8 protein. Inset: higher magnification; scale 

bar 100 nm. D, Similar results were obtained by double labelling of SNAP25 and Slc4a8. All images 

show the protoplasmic fracture face of a synaptosome membrane. All scale bars correspond to 100 nm. 

 

Slc4a8 is important for the regulation of pHi in hippocampal neurons 

 

Since Slc4a8 appeared to be broadly expressed in neurons and sodium-dependent chloride-

bicarbonate exchangers had repeatedly been proposed to be key regulators of neuronal pHi 

(Bevensee et al., 1996; Romero et al., 2000; Russell and Boron, 1976; Schwiening and Boron, 
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1994), the role of Slc4a8 in neuronal pH homeostasis was investigated by BCECF 

fluorescence imaging of cultured hippocampal neurons from Slc4a8
-/-

 and WT mice.  

In bicarbonate-buffered solutions, the resting pHi of Slc4a8
-/-

 neurons was significantly lower 

compared to WT (Fig. 20AB; pHi KO: 6.88±0.02; WT: 6.97±0.03; one-way ANOVA: F=7.65, 

p=0.0001; Newman-Keuls test: p<0.05; n=35/35), whereas it was unchanged in HEPES-

buffered and nominally bicarbonate-free solution (pHi KO: 6.75±0.05; WT: 6.78±0.03; 

Newman-Keuls test: p>0.05; n=9/16). To challenge neuronal pHi regulation, cells were alkali 

loaded with an extracellular NH4Cl pulse. Entry of NH3 causes a rise in pHi, which is followed 

by a slower, variable fall in pH caused by the slower, passive entry of NH4
+
 as well as efflux 

of bicarbonate via membrane transporters. Upon withdrawal of NH4
+
 from the extracellular 

solution, pHi falls drastically, as the intracellular NH4
+
 exits the cells in form of NH3 and 

leaves a cytosolic H
+ 

load behind. This acid load is then counteracted by acid extruders (Roos 

and Boron, 1981). In the presence of bicarbonate, NH4Cl-induced peak alkalosis compared to 

baseline (∆pHMaximum-Basal) was significantly raised in Slc4a8
-/-

 neurons compared to WT (Fig. 

20C; ∆pHMaximum-Basal KO: 0.50±0.03; WT: 0.33±0.02; one-way ANOVA: F=30.88; p<0.0001; 

Newman-Keuls tests: p<0.001; n=35/35), whereas rebound acidosis upon withdrawal of 

NH4Cl compared to baseline (∆pHBasal-Minimum) was unaltered (Fig. 20C; ∆pHBasal-Minimum KO: 

0.22±0.03; WT: 0.17±0.03; one-way ANOVA: F=0.08; p=0.97; n=35/35) albeit the absolute 

minimum pHi (pHMinimum) was slightly more acidic in Slc4a8
-/-

 neurons (pHMinimum KO: 

6.67±0.03; WT: 6.79±0.03; Students t-test: p=0.005; n=35/35). 

Acid extrusion within the first minute after the maximal acid load was diminished in the 

absence of Slc4a8 (Fig. 20D; ∆pH/min1min KO: 0.09±0.01; WT: 0.15±0.01; Students t-test: 

p<0.001; n=35/35) as was the recovery in a time frame of two minutes (∆pH/min2min KO: 

0.10±0.01; WT: 0.13±0.01; Students t-test: p=0.019; n=35/35).  To evaluate the net proton 

fluxes independently of the pHi, the mean  slope for both genotypes was additionally 

calculated between pHi 6.7 and 6.8, which was decreased as well  (∆pH/minpH6.7-6.8 KO: 

0.11±0.01; WT: 0.15±0.01; one-way ANOVA: F=4.24, p=0.007; Newman- Keuls test: 

p<0.01).  

In the nominal absence of bicarbonate no significant differences were observed between 

genotypes in any of the parameters analysed (NH4Cl-induced alkalosis ∆pHMaximum-Basal KO: 
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0.83±0.08; WT 0.74±0.07; Newman-Keuls test: p>0.05; acid load ∆pHBasal-Minimum KO: 

0.24±0.06; WT 0.38±0.07; Newman-Keuls test: p>0.05; recovery from acid load ∆pH/minpH 

6.7-6.8 KO: 0.09±0.01; WT: 0.10±0.01; Newman-Keuls test: p>0.05; n=9/16). 

   

Figure 20. Impaired pH regulation in cultured hippocampal neurons of Slc4a8
-/-

 mice. A, Mean 

pHi of Slc4a8
-/-

 and WT neurons challenged with NH4Cl (n=9/35/35). B, Steady-state pHi was only 

reduced in Slc4a8
-/-

 neurons in the presence of bicarbonate (bicarbonate: p<0.05; n=35/35; HEPES: 

p>0.05; n=9/16). C, Peak alkalosis by NH4Cl was increased in Slc4a8
-/-

 neurons (∆pHMaximum-Basal 

p<0.001; n=35/35) but net acid load upon withdrawal of NH4Cl did not differ between genotypes 

(∆pHBasal-Minimum p=0.97; n=35/35). D, Recovery from acid load in the first min after maximal acid load 

was slower in Slc4a8
-/-

 neurons compared to WT (∆pH/min1min p=0.0001, n=35/35).  

These results did not suggest a major compensatory regulation of other acid extruders in 

Slc4a8
-/-

 mice. In accordance, transcript abundance of Slc9a1, Slc4a3, Slc4a4, Slc4a7 and 

Slc4a10 quantified by real-time PCR did not differ significantly between genotypes (fold 

changes in transcript abundance KO vs. WT: Slc9a1 0.92±0.2; Slc4a3 1.14±0.08; Slc4a4 

1.15±0.43; Slc4a7 0.85±0.12; 1.21±0.15; one-way ANOVA: F=2.526, p=0.875; n=3/3). 
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Slc4a8 transcript abundance served as a control (KO vs. WT: 0.0007±0.0006; Students t-test: 

p<0.0001). 

 In conclusion, acid extrusion via Slc4a8 appears to play an important role for the steady state 

pHi and for the control of pHi to an acute acid load. 

 

Normal cell volume regulation in Slc4a8
-/-

 neurons 

 

Slc4a8 transports one Na
+
 and two HCO3

-
 ions in exchange for one Cl

-
 ion into the cell 

(Grichtchenko et al., 2001). As a result Slc4a8 activity could theoretically affect cell volume. 

Therefore, cell volume regulation in response to exposure to hypo- and hyperosmolar 

bicarbonate buffered solution was analysed in cultured hippocampal neurons from WT and 

Slc4a8
-/-

 mice by calcein fluorescence imaging.  

No difference between genotypes was detected in maximal cell shrinkage upon exposure to 

hypoosmolar solution (VMinimum KO: 92.69±0.74 %; WT: 91.78±0.07 %; Students t-test: 

p=0.42; n=13/12) or cell swelling upon application of hyperosmolar solution (VMaximum KO: 

109.04±0.78 %; WT: 109.04±0.40 %; Students t-test: p=0.74; n=17/15). Regulatory cell 

volume increase in response to cell shrinkage was normal in Slc4a8
-/-

 neurons (Fig. 21A; 

repeated measures ANOVA: F=2.58, p=0.12). Also, regulatory cell volume decrease upon 

cellular swelling induced by hyperosmolar solution did not differ in neurons lacking the 

Slc4a8 transporter (Fig. 21B; repeated measures ANOVA: F= 3.426, p=0.08).  

Thus, these results do not suggest a major role of Slc4a8 for cell volume regulation in 

hippocampal neurons. 
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Figure 21. No differences in cell volume regulation between genotypes. A, Calcein-labelled 

neurons. B, Regulatory cell volume increase upon exposure to hypoosmolar solution was normal in 

Slc4a8
-/-

 neurons (n=13/12; p>0.05) as was the regulatory cell volume decrease (n=17/15; p>0.05).  

 

Slc4a8 modulates glutamate release 

 

Altered excitability in Slc4a8
-/-

 pyramidal cells of the hippocampus  

Because of the localization of Slc4a8 to glutamatergic boutons and its impact on neuronal pH 

regulation, field potentials were measured in the CA1 region of acute WT and Slc4a8
-/-

 slice 

preparations upon stimulation of Schaffer collaterals. Fiber volley amplitudes analysed at half-

maximal stimulus intensities (WT: 33.6±2.1 V; KO: 35.5±3.3 V, Students t-test: p=0.65; 

n=22/19) did not differ between the genotypes (Fig. 22A; KO: 0.68±0.06 mV; WT: 0.72±0.08 

mV; Students t-test: p=0.63; n=22/19). Population spike amplitudes in the pyramidal layer 

were strongly decreased in Slc4a8
-/-

 mice (Fig.22B; e.g. at half maximal stimulus intensity KO 

4.27±0.62 mV; WT: 6.81±0.67 mV; Students t-test: p=0.01; and input/output curve: repeated 
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measures ANOVA: F=4.56, p=0.04 n=22/19). In support of a presynaptic defect, paired-pulse 

facilitation was increased in fEPSP recordings of Slc4a8
-/-

 slices (Fig. 22C; repeated measures 

ANOVA: F=5.04, p=0.03). Comparable results were obtained from field potential recordings 

in the SRad, where paired pulse ratios upon stimulation with half-maximal stimulus intensity 

were also increased in Slc4a8
-/-

 slices (Fig. 22D; repeated measures ANOVA: F=4.44, p=0.04; 

n=37/41).  

 

 

Figure 22. Reduction of network excitability in hippocampal slices from Slc4a8
-/- mice. A, Fibre 

volley amplitude at half maximal stimulus intensity was normal in Slc4a8
-/-

 slices (n=22/19/p>0.05).  

B, CA1 population spike amplitudes upon stimulation of Schaffer collaterals were decreased in  

Slc4a8
-/-

 slices (p=0.04; n=22/19). Inset: sample traces of somatic field recordings, stimulus artifacts 

were omitted for clarity. C, Paired-pulse facilitation in the SPyr was significantly increased in slices of 

Slc4a8
-/-

 mice at 30–1,000 ms inter-stimulus intervals (p=0.03; n=22/19). Similar results were found in 

the SRad (D, n=37/41, p=0.04). 
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Passive (input resistance, capacity, resting membrane potential) and active (e.g. action 

potential height, spike frequency accommodation) membrane properties were unaltered in 

CA1 pyramidal neurons (Table 3; n=12/12) patched in the current clamp mode in collaboration 

with Dr. L. Liebmann.  

Table 3. Passive and active membrane properties in principal neurons of the CA1 region. 

   KO (n=12)  WT (n=13)  p-value 

Capacity [pF] 19.1 ± 1.7  17.1 ± 1.1  0.45 

Resting Membrane Potential [mV] -66.5 ± 1.3  -64.4 ± 1.0  0.26 

Input Resistance [MΩ] 62.6 ± 6.1  73.5 ± 7.8  0.28 

Action Potential Threshold [mV] -44.7 ± 1.0  -42.2 ± 2.0  0.28 

Action Potential Height [mV] 97.0 ± 2.9  97.1 ± 2.9  0.98 

Action Potential Halfwidth [ms] 0.7 ± 0.1  0.7 ± 0.0  0.61 

Action Potential Rise Time [ms] 0.5 ± 0.1  0.5 ± 0.1  0.95 

 

The altered paired-pulse ratio of hippocampal field recordings and the presynaptic localization 

of Slc4a8 prompted us to examine synaptic transmission more closely. Presynaptic activity 

can be investigated by measuring evoked or spontaneous vesicle release, both of which 

originate from the same pool of vesicles (Hua et al., 2010). Spontaneous synaptic vesicle 

release was assessed by recording mEPSCs (Fig. 23A–F) and mIPSCs (Fig. 25A-D) in 

collaboration with Dr. L. Liebmann. While the amplitudes of the mEPSCs did not differ 

between genotypes (Fig. 23C; KO: 19.493±1.63 pA; WT: 20.49±1.61 pA; p=0.66; one-way 

ANOVA: F=1.51, p=0.21; n=38/32), the mean frequency was more than halved in pyramidal 

CA1 neurons of Slc4a8
-/-

 mice (23D/inset Fig. 23F; KO: 0.31±0.03 Hz; WT: 1.11±0.25 Hz; 

one-way ANOVA: F=3.70, p=0.01 and Newman-Keuls test: p<0.01; p=0.002). 
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Figure 23. The frequency of mEPSCs is decreased in Slc4a8
-/-

 mice in a pH-dependent manner. 

A, B, Representative traces of mEPSC recordings of WT and Slc4a8
-/-

 CA1 pyramidal cells at pHo 7.2. 

C, Cumulative plots of mEPSC amplitudes at varying pHi did not differ. Inset: means of mEPSC 

amplitudes (p=0.21; n=32/15/38/14/7). D, Cumulative plots of inter-event intervals revealed a shift to 

longer intervals in Slc4a8
-/-

 compared to WT (pHo 7.2 p<0.001; n=38/32). E, Shifting the pHo to 6.9 in 

WT diminished mEPSC frequencies (p<0.0001; n=32/15) F, Increasing pHi by decreasing pCO2 (pHo 

7.5) or by application of the weak base TriMA raised the mEPSC frequency of Slc4a8
-/-

 cells (pHo 7.5 

p=0.03; n=38/14; TriMA p=0.003; n=38/7) towards WT. Inset: means of mEPSC frequencies of WT 

and Slc4a8
-/-

 at different pHi.  
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pH dependent modulation of mEPSC frequency in WT and Slc4a8
-/-

 neurons 

To assess whether the electrophysiological changes could be explained by a compromised 

neuronal pH regulation, we manipulated the pHi by varying pCO2 at a constant extracellular 

bicarbonate concentration. Under these conditions, altering the pCO2 changed extra- and 

intracellular pH in the same direction, with a decrease of pCO2 resulting in an increase of pHi 

and an increase of pCO2 in a decrease of pHi, as demonstrated by previous studies (Dulla et 

al., 2005; Lee et al., 1996) and confirmed by own pH recordings on cultured neurons (Fig. 24; 

∆pHi; 2.5 % CO2: +0.26±0.04; 10 % CO2: -0.19±0.06; one-way ANOVA: F=27.48 

p<0.00001; Newman-Keuls test: p<0.01/p<0.001; n=22/39/17).  

 

 

 

Figure 24. Alteration of pCO2 results in changes in 

intracellular pH. A, Decreasing pCO2 from 5 % to 2.5 % 

increased intracellular pH (n=39/22; p<0.001). In opposite, pHi 

was decreased by raising CO2 concentration to 10 % (n=39/17; 

p<0.01). 

 

 

Lowering pHo decreased the mean frequency of mEPSCs in WT to values obtained from 

Slc4a8
-/-

 slices (Fig. 23E; WT pHo 7.2: 1.11±0.25 Hz; WT pHo 6.9: 0.36±0.05 Hz; Newman-

Keuls test: p>0.05 and Kolmogorov-Smirnov test: p=0.0001; n=32/15), whereas raising the 

pH increased the frequency distribution of mEPSCs in Slc4a8
-/-

 slices (Fig. 23F; KO pHo 7.2: 

0.31±0.03 Hz; KO pHo 7.5: 0.91±0.33 Hz; Kolmogorov-Smirnov test: p=0.028; n=38/14). We 

additionally recorded mEPSCs in slices from Slc4a8
-/-

 mice upon substitution of 20mM NaCl 

by TriMA, a membrane-permeant weak base, which raises the pHi without altering the 

extracellular pHo (Eisner et al., 1989). Again, no significant differences in mEPSC amplitudes 

were observed (Fig.23C, KO: 19.49±1.63 pA; KOTriMA: 25.23±5.61 pA; Kolmogorov-Smirnov 

test: p=0.20; n=38/7), but TriMA raised the mEPSC frequencies in Slc4a8
-/- slices (KO: 
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0.34±0.03 Hz; KOTriMA: 0.84±0.25 Hz; Kolmogorov-Smirnov test: p=0.003; n=38/7) to mean 

values recorded from WT cells under control conditions (Fig.23F; KOTriMA: 0.84±0.25 Hz; 

WT: 1.11±0.25 Hz; Newman-Keuls test: p>0.05 and Kolmogorov-Smirnov test: p=1.00; 

n=7/32). 

In accordance with the immunofluorescence data that GAD and Slc4a8 only partially overlap, 

no differences were noted for mIPSC amplitudes (Fig. 25C; KO pHo 7.2: 38.54±2.39 pA; WT 

pHo 7.2: 39.43±2.10 pA; Students t-test: p=0.78; n=15/16) and frequencies (Fig. 25D; KO pHo 

7.2: 7.07±1.02 Hz; WT pHo 7.2: 5.82±0.46 Hz; Students t-test: p=0.27).  

 

Figure 25. No change in frequency or amplitudes of mIPSC by deletion of Slc4a8. A, B, 

Representative traces of mIPSC recordings of WT and Slc4a8
-/-

 CA1 pyramidal neurons. C,D, 

Cumulative plots and means of mIPSC amplitude and frequencies did not differ between the genotypes 

(pHo 7.2 p=0.78 and p=0.27; n=15/16). 

 

Slc4a8 modulates presynaptic vesicle release  

To finally pinpoint the defect of glutamatergic transmission in Slc4a8
-/-

 mice to the 

presynapse, vesicle release upon field stimulation was subsequently quantified by measuring 
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bouton destaining in FM1-43-labelled cultured hippocampal neurons (Fig. 26). No difference 

was observed in baseline punctual intensity (KO: 476.34±18.02 a.u.; WT: 466.25±18.09 a.u.; 

Students t-test: p=0.69; n=116/134). However, destaining and hence synaptic vesicle release 

upon repetitive stimulation was significantly diminished in Slc4a8
-/-

 cultures after 

approximately 900 action potentials ((F0-F900)/F0; KO: 0.183±0.007; WT: 0.206±0.009; 

Students t-test: p=0.035; n=116/134). Following extensive stimulation with more than 1,500 

action potentials, this difference disappeared ((F0-F1500)/F0); KO: 0.307±0.008; WT: 

0.320±0.010; Students t-test: p=0.31). Fitting single bouton destaining over time mono-

exponentially, allowed the calculation of destaining τ. Analysis of the cumulative probability 

of τ (Fig. 26B) revealed a significantly different distribution between the two groups 

(Kolmogorov-Smirnov test: p=0.002), with an increase of mean τ in Slc4a8
-/-

 (144.59±9.04 s; 

n=54) compared to WT neurons (112.43±7.53s; Students t-test: p=0.0079; n=50) (inset Fig. 

26C).  

 

 

Figure 26. Impaired release of synaptic vesicles in Slc4a8
-/-

 hippocampal neurons. A, Synapses 

labeled with FM1-43 of a cultured hippocampal neuron. B,  Time course of fluorescence destaining 

following field stimulation of cultured hippocampal WT and Slc4a8
-/-

 neurons upon vesicle labeling 

with FM1-43 (n=54/50). C, Cumulative plot of the time constants revealed a shift towards a higher τ in 

Slc4a
-/-

 neurons (p=0.002; n=54/50) equivalent with an increased mean τ. Inset: Mean τ also increased 

in Slc4a8
-/-

 synapses (n=54/50, p<0.01). 
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These findings could be corroborated electrophysiologically in collaboration with Dr. L. 

Liebmann: normalized eEPSC amplitudes decreased more rapidly per stimulus upon 

application of the open-channel NMDA receptor blocker MK-801 in WT compared to    

Slc4a8
-/-

 slices (Fig. 27A). The blocking rate of NMDA receptor eEPSCs was significantly 

delayed in Slc4a8
-/-

 slices (54.59±6.32 stimuli; n=8) compared to WT (27.56±3.64 stimuli; 

Students t-test: p=0.005; n=6) (Fig. 27B), whereas the input/output relationship of evoked 

NMDA current density did not differ between genotypes at all stimulus intensities tested 

(input/output relationship 0-60V: repeated measures ANOVA: F=1.01, p=0.32; n=16/11). 

 

 

Figure 27. Electrophysiological analysis showed reduced released of glutamatergic vesicles in 

Slc4a8
-/-

 slices. A, Time course of the amplitude decrease of normalized NMDA currents in the 

presence of MK-801 (n=8/6). Inset: sample traces of NMDA receptor-mediated eEPSCs recorded from 

CA1 pyramidal neurons in the presence of MK-801 upon repetitive stimulation of Schaffer collaterals. 

Mean τ was increased in CA1 neurons of Slc4a8
-/-

 mice in the presence of MK-801 (B, n=8/6, p<0.01).  

 

Taken together, these experiments show that deletion of Slc4a8 results in a reduction of the 

number of released glutamatergic vesicles, although the pool of releasable vesicles appears to 

be unchanged. 
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Pyramidal cells and interneurons express Slc4a10 

Besides strong expression of Slc4a10 protein in the choroid plexus, Slc4a10 was detected in 

cortical brain regions (olfactory bulbus, cortex, and hippocampus) and the cerebellum (Jacobs 

et al., 2008). On the subcellular level, Slc4a10 mostly localized to dendrites and dendritic 

spines and was often found in juxtaposition of GAD positive presynapses. In contrast to 

Slc4a8, these data suggest a predominant postsynaptic expression of Slc4a10, mostly in 

neurons under GABAergic control. To further clarify the complementary expression patterns 

of Slc4a10 and Slc4a8, double immunfluorescent stainings for both transporters were 

performed as well as co-stainings of Slc4a10 protein with different synaptic markers.  

Expression of Slca410 was confirmed in plasma-membranes of pyramidal cells in all 

hippocampal regions and, in contrast to the expression of Slc4a8, also in most parvalbumin-

positive interneurons of the hippocampus (Fig. 28AB). GABAergic presynapses, labelled with 

VGAT (Fig. 28CD) or GAD (data not shown), were mostly found in juxtaposition to Slc410 

positive dendrites (Fig. 28DE) as described previously (Jacobs et al., 2008). But in the 

pyramidal layer also some co-localization was observed (Fig. 28DF).  

In addition, double immunostainings for Slc4a8 and Slc4a10 protein revealed that both 

transporters were expressed in the pyramidal cell layer but not all cells which expressed 

Slc4a10 were positive for Slc4a8 (Fig. 28G´-G```). Those cells most likely are the 

parvalbumin-positive interneurons, which only express Slc4a10. Expression patterns in other 

hippocampal cell layers differed. Dendrites in SRad stained positive for Slc4a10 protein but 

were not labelled by the Slc4a8 antibody. The Slc4a8 antibodies labelled the S-LM and the 

SOr more intensively, albeit some overlay in these layers (Fig. 28EF) was observed.  

In conclusion, Slc4a10 and Slc4a8 were expressed in plasma-membranes of pyramidal cells of 

all hippocampal regions but only Slc4a10 was expressed in parvalbumin-positive interneurons. 

On the sub-cellular level, Slc4a8 protein was found predominantly in presynaptic, 

glutamatergic compartments, whereas Slc4a10 protein was mostly found in postsynaptic 

regions (dendrites, dendritic spines) of glutamatergic neurons but also in GABAergic neurons 

(e.g. in plasma-membrane and presynaptic terminals).  
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Figure 28. Interneurons and pyramidal cells express Slc4a10 A, B, Apart from expression in 

pyramidal cells, Slc4a10 (green) is expressed in parvalbumin-positive interneurons (red), shown in the 

CA3 region (scale bars 200 µm/50 µm). C, Double staining against Slc4a10 (green) and VGAT (red) as 

a marker for GABAergic presynapses, partially co-localize (scale bar 200 µm). Close up from SPyr of 

the CA1 region (D, scale bar 50 µm). Co-stainings of Slc4a8 (green) and Slc4a10 (red) protein revealed 

that both transporters partly co-localize (E, scale bar 200 mm) but differ in their expression pattern in 

some hippocampal regions e.g. in the SRad of the CA3 region (F, scale bar 100 µm). G`-G``` Also in 

the pyramidal cell layers some neurons are Slc4a8 negative but Slc4a10 positive (white arrow), albeit 

most (pyramidal) neurons express both transporters (black framed white arrow; scale bar 25 µm).  
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Slc4a10 deletion alters field excitability and paired pulse depression 

To examine the role of Slc4a10 in synaptic transmission, field potentials in acute WT and 

Slc4a10
-/-

 slices were recorded in the CA1 region upon stimulation of Schaffer collaterals. In 

contrast to the decreased fEPSP amplitude in Slc4a8
-/-

 slices we found an increased fEPSP 

amplitude in Slc4a10 deficient mice with increasing stimulus intensities (Fig. 29A; repeated 

measures ANOVA: F=5.38, p=0.03; n=23/18) and also at half-maximal stimulus intensity 

(inset Fig. 29A; KO 5.86±0.71 mV WT: 3.74±0.42 mV; Students T-test: p=0.013; n=16/18). 

Paired pulse experiments revealed no change in short term plasticity (repeated measures 

ANOVA: F=2.63, p=0.11; n=16/18).  

 

 

Figure 29. Increase in field excitability in CA1 SPyr but not SRad of Slc4a10
-/- mice. A, Increased 

field-potential amplitude in SPyr upon stimulation with increasing stimulus intensities (n=23/18; 

p=0.03). Inset: At half maximal stimulus intensity fEPSP amplitude was larger in Slc4a10
-/-

 slices 

compared to WT (n=20/20; p=0.01). B, No differences in input/output relationship of fEPSP slope in 

the SRad (n=18/21; p>0.05). C, D, No differences in short term plasticity analysed by the paired pulse 

paradigm in the SPyr and SRad.  
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No significant differences were observed in recordings from the SRad (Fig. 29B; input/output 

relationship; repeated measures ANOVA: F=0.47, p=0.50; n=20/20; half-maximal stimulus 

intensity KO: 1.25±0.14 mV/ms WT: 1.01±0.12 mV/ms; Students t-test: p=0.21; n=18/21; 

paired pulse ratio: repeated measures ANOVA: F=1.38, p=0.25; n=17/18).  

As Slc4a10 is also broadly expressed in the cortex, we recorded field potentials from cortical 

layer 2/3 upon stimulation of layer 6 close to the corpus callosum in the occipital and the 

temporal lobe. No differences were observed in amplitudes of the field potentials, neither with 

increasing stimulus intensities (Fig. 30AB; position 1: repeated measures ANOVA: F=0.70, 

p=0.41; n=23/24; position 2: repeated measures ANOVA: F=0.16, p=0.70; n=21/26), nor in 

the response to half maximal stimulus response (position 1 KO: 3.58±0.39 mV WT: 

3.29±0.38; Students t-test: p=0.61; n=21/26; position 2 KO: 2.78±0.31; WT: 3.54±0.39; 

Students t-test: p=0.11; n=19/24). But in the paired pulse paradigm an increase in the paired 

pulse depression with inter-stimulus intervals around 100 msec was found in the occipital lobe 

of Slc4a10
-/-

 slices (Fig. 30CD; position 1: repeated measures ANOVA: F=4.30, p=0.04; 

n=21/26; position 2: F=2.05, p=0.16; n=19/24).     

Thus, contrary to the decreased excitatory synaptic transmission in Slc4a8
-/-

 mice our initial 

electrophysiological recordings revealed an increased excitability in the pyramidal cell layer 

of the hippocampus of Slc4a10
-/-

 mice and an increase in paired pulse depression with long 

inter-stimulus intervals in the cortex.  
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Figure 30. Altered paired-pulse depression at longer inter-stimulus intervals in the cortex of 

Slc4a10
-/- 

slices. A, B, No differences between genotypes could be detected in the input/output 

relationship at position 1 and 2 of the cortex. C, Paired pulse recordings from cortical position 1 

revealed an increased paired pulse depression around 100 msec (n=21/26; p=0.04). D, A trend towards 

a strengthened paired pulse depression was also notable in recordings at position 2 of Slc4a10
-/-

 slices 

(n=19/24; p=0.16).  
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Discussion 

 

Na
+
 dependent anion exchange has been described in nearly all mammalian cell types. With 

the help of a constitutive KO mouse model for Slc4a8, this thesis addressed the physiological 

function of Na
+
 dependent Cl

-
/HCO3

-
 exchange in the mouse brain and kidney.  

  

 

Physiological role of Slc4a8 in the mouse kidney  

 

Earlier expression data for Slc4a8 from in situ hybridizations and a multiple tissue Northern 

blot suggested a relatively broad expression with the highest expression level in the adult and 

embryonic brain and a smaller splice variant in the testis (Kougioumtzes, 2006). Slc4a8 

mRNA was also detected in adult kidney, lung, intestines, oesophagus and in the thyroid 

gland. The expression in the kidney of adult mice was confirmed on mRNA and protein level. 

Within the mouse kidney Slc4a8 protein was detected in the renal cortex and more precisely in 

the cortical collecting duct.  

 

Renal function of Slc4a8 

Paracellular and transcellular transport mechanisms in the proximal nephron allow 

reabsorption of large parts of the salt and water reabsorption from the ultrafiltrate formed in 

the glomeruli. Transcellular transport of approximately 90 % of filtrated Na
+
 takes place in the 

proximal tubulus mediated by NHE3 and in the ascending loop of Henle mediated by NKCC2.  

However, the regulation of salt reabsorption almost exclusively takes place in the most distal 

part of the nephron, called the aldosterone sensitive distal nephron (for review, see Verrey, 

2001 or Rozansky, 2006). The amiloride-sensitive, thiazide-insensitive ENaC in the principal 

cells of the connecting and collecting tubule and the thiazide-sensitive Na
+
/Cl

-
 co-transporter 

NCC, which is exclusively expressed in the distal convoluted tubules, are well known 

aldosterone targets in this segment. Early studies already showed that Na
+
-reabsorption in the 

cortical collecting duct is also thiazide sensitive (Tomita et al., 1985; Terada and Knepper, 
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1990). The results of this thesis and mainly those from the study performed in collaboration 

with Dr. D. Eladari (Leviel et al., 2010) suggest that the parallel action of Slc4a8 and the        

Cl
-
/HCO3

-
 exchanger Pendrin account for this electroneutral thiazide-sensitive NaCl transport 

in the cortical collecting duct.  

If Slc4a8 is important for salt reabsorption, one could expect a transcriptional up-regulation 

under conditions of increased Na
+
- reabsorption. Indeed, such an up-regulation of Slc4a8 

protein was observed when WT mice were maintained under a Na
+
 restricted diet or when salt 

reabsorption was stimulated by application of the aldosterone analogue DOCP.  

Similar to the situation in humans, where high daily salt intake rather provokes high blood 

pressure due to an increase in extracellular osmolarity (Meneton et al., 2005), Slc4a8 mediated 

Na
+
 reabsorption in mice seems to be of special physiological importance when increased salt 

retention is needed. This is further proven by the fact that no differences in baseline Na
+
-

excretion between genotypes were detected under normal diet. Surprisingly, we observed a 

normal adaptation of constitutive Slc4a8
-/-

 mice to a Na
+
 depleted diet. The only notable 

difference was an increased urinary aldosterone concentration in Na
+
 depleted Slc4a8

-/-
 mice. 

Increased aldosterone concentrations could mediate an increased activation or expression of 

other aldosterone-sensitive pathways, especially of NCC or ENaC (Kim et al., 1998; Loffing 

et al., 2001). 

The most plausible candidate for a compensatory up-regulation of another Na
+
 reabsorption 

mechanisms in Slc4a8
-/-

 is NCC. An up-regulation of the second major Na
+
-transporter in the 

distal nephron, ENaC, would be accompanied by an increase in electrical driving force for K
+
 

secretion through stimulation of ROMK channels. This was not indicated by the normal 

urinary K
+
 excretion of Slc4a8

-/-
 in the metabolic experiments. Increased activity of NCC 

indeed could be confirmed in Slc4a8
-/-

 mice under Na
+
 restriction by monitoring the response 

to acute thiazide injection. In contrast to an indifferent response to the ENaC blocker 

amiloride, an exaggerated response to thiazides in Slc4a8
-/-

 mice by means of an increased 

amount of excreted Na
+
 was observed. These results suggest that the constitutive deletion of 

Slc4a8
 
is compensated by an increased expression or activation of NCC, which in the 

meanwhile has been confirmed by Western blot analysis. 

  

As described earlier from the classical point of view thiazides are believed to reduce vascular 

volume by blocking NCC in the distal convoluted tubulus (Ellison and Loffing, 2009). The 
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presented data suggest that the anti-hypertensive effect of thiazides may, at least partly, occur 

through inhibition of the newly identified Na
+
 reabsorption pathway involving Slc4a8 in the 

cortical collecting duct. Hence, a better understanding of Slc4a8 localization and activity in 

the kidney may pioneer a better treatment of potentially Slc4a8-mediated side effects of 

thiazides and the development of more specific treatment options in the future.  

 

 

Physiological role of Slc4a8 in the mouse brain  

 

Slc4a8 localizes to presynaptic nerve endings 

Antibodies generated to detect Slc4a8 have been reported to label hippocampal pyramidal 

neurons (Damkier et al., 2007; Chen et al., 2008a) but not astrocytes (Chen et al., 2008a). 

With our new antibody (Leviel et al., 2010) various regions of the central nervous system 

including cerebellum, spinal cord, brainstem, hippocampus and cortex were stained. The broad 

neuronal expression of Slc4a8 appeared to be specific as the signals were absent in stainings 

of tissue from Slc4a8
-/-

 mice. Double stainings with GFAP, as well as immunoblot analysis 

from cell cultures, proved that neurons but not glial cells expressed detectable amounts of 

Slc4a8 protein. Co-stainings with pre- (vGLUT1, -2; synaptophysin; NF68) and postsynaptic 

markers (PSD-95; MAP2) were in accordance with a mainly presynaptic localization of the 

Slc4a8 protein. This was corroborated by immunoblot analysis of sub-cellular fractions of 

mouse brain lysates, Slc4a8 being enriched in synaptic junction membranes compared to 

synaptosomes and crude membrane preparations but absent from the postsynaptic density. 

Ultrastructural analysis of co-immuno labelled synaptomsomes finally confirmed that Slc4a8 

protein localizes to the same synaptic compartment as classical presynaptic markers (syntaxin, 

SNAP25). 

 

Role of Slc4a8 in neuronal pHi regulation 

The transport direction of electroneutral transporters like Slc4a8 does not depend on the 

transmembrane potential. Because of the large Na
+
 gradient between the extracellular and 
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intracellular compartment, Slc4a8 mediates an inward transport of HCO3
-
, which is equivalent 

to acid extrusion from the cells and an increase of the intracellular buffering capacity. In 

accordance with a reduction of the buffering capacity, NH4Cl-induced peak alkalosis and the 

concomitant rebound acidosis were increased in Slc4a8
-/-

 neurons. As the steady-state pHi was 

decreased and the recovery from an acid load impaired in the somata of cultured hippocampal 

neurons of Slc4a8
-/-

 mice, Slc4a8 clearly plays an important role in pHi regulation in these 

neurons. This confirms previous data from  rat CA1 hippocampal neurons which displayed 

DIDS-sensitive HCO3
-
-dependent acid extrusion that required external Na

+ as well as internal 

Cl
- (Schwiening and Boron, 1994). Because of minor effects of amiloride on acid extrusion, it 

was further concluded that Na
+
/H

+
 exchange might be less relevant in rat CA1 hippocampal 

neurons. However, as acutely dissociated CA1 pyramidal neurons from Nhe1
 
deficient mice 

displayed a more acidic steady-state pHi and a lower rate of acid extrusion compared with 

cells from WT mice in HEPES-buffered media (Yao et al., 1999), further studies are required 

to resolve to what extent acid extrusion in the absence of Slc4a8
 
depends on Slc9a1, Slc4A10 

or Slc4a7. In CA3 pyramidal neurons devoid of Slc4a10 in acute slice preparations the steady-

state pHi was unchanged but acid recovery was delayed (Jacobs et al., 2008).  

The repeated association and dissociation of intracellular protons with intracellular 

macromolecules results in a surprisingly low diffusion rate in the cytosol (al-Baldawi and 

Abercrombie, 1992). Consequently, pH gradients have been described in cells with a polarized 

expression of pH-relevant transporters (Schwiening and Willoughby, 2002; Stewart et al., 

1999). Because of the enrichment of Slc4a8 in presynaptic nerve endings, one may infer that 

the impact of the disruption of Slc4a8 on pHi regulation may be more pronounced in synaptic 

boutons compared to the soma. However, to our knowledge, a direct analysis of pHi regulation 

in presynaptic boutons has not been possible to date. Quite recently, the pH-sensitive 

properties of the yellow fluorescent protein were successfully used to analyse the presynaptic 

pH in motor endplates (Zhang et al., 2010), but motor endplates are much larger in size (a few 

hundred µm
2
; Albuquerque et al., 1974) compared to the small, central  presynaptic terminals 

(a few tens of µm
2
, Rollenhagen and Lübke, 2010). Focal injections of BCECF-AM in 

combination with slice imaging as used for measuring calcium transients in small synaptic 

compartments with the calcium-sensitive dye Fura (Saggau et al., 1999) may help to establish 

adequate pH imaging in small compartments like central pre- and postsynaptic terminals.  



74 

 

The numerous studies dealing with pH regulation in synaptosomes are difficult to interpret, as  

these preparations include both pre- and postsynaptic compartments (Bai and Witzmann, 

2007). Surprisingly, HCO3
-
-dependent acid extrusion has so far not been described in 

synaptosome preparations, whereas there is wide consensus that synaptosomes display 

amiloride-sensitive Na
+
/H

+
 exchange (Chesler, 2003; Rocha et al., 2008).  

 

Glutamatergic vesicle release is modulated by Slc4a8 

Apart from subtle behavioural changes and the diminished seizure susceptibility 

(Kougioumtzes, 2006), field recordings in hippocampal slices provided the first indication that 

Slc4a8 may be relevant for neuronal excitability, as synchronous firing of CA1 pyramidal 

neurons measured as the population spike amplitude was reduced in Slc4a8
-/-

 slices upon 

stimulation of Schaffer collaterals. The increased facilitation of a second pulse together with 

the localization of Slc4a8 protein pointed to a presynaptic defect of the projection of Schaffer 

collaterals onto pyramidal neurons. As glutamate uptake into synaptic vesicles is driven by the 

electrochemical proton gradient across the synaptic vesicle membrane (Maycox et al., 1988), 

we analysed the amplitudes of spontaneous mEPSCs as an indirect measure for the quantum of 

transmitter released per synaptic vesicle. Whereas the normal amplitude distribution indicated 

that the loading of glutamatergic synaptic vesicles in Slc4a8
-/-

 mice was not affected (Mathews 

and Diamond, 2003), the drastic decrease of mEPSC frequency revealed that synaptic vesicle 

release was impaired in the absence of Slc4a8. It has been shown that effects of varying pCO2 

on excitatory transmission are apparently caused by changes in pHi (Lee et al., 1996). 

Lowering the pHi by increasing pCO2 in WT slices decreased mEPSC frequency to values as 

observed in Slc4a8
-/-

 mice. Whereas the frequency of spontaneous mEPSCs increased with 

increased pH in Slc4a8
-/-

 mice. Thus, these results support our hypothesis that the decrease of 

frequency could be attributed to a decrease of pHi in presynaptic nerve endings.  

Although the optical analysis of synaptic vesicle release could not distinguish between 

glutamatergic and GABAergic presynapses, which are thought to account for a minor fraction 

in cultured hippocampal neurons (Walker and Peacock, 1981; Feng et al., 2002), induced 

synaptic vesicle release upon repetitive field stimulation of cultured hippocampal neurons was 

significantly slowed. However, the overall synaptic vesicle pool appeared to be unaffected by 

disruption of Slc4a8, as the difference disappeared after more than 1,500 pulses. The 
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difference between genotypes was more pronounced in the electrophysiological analysis, 

which was specific for glutamatergic synaptic activity.  

 

How can disruption of Slc4a8 affect neurotransmitter release? 

The machinery for the release of synaptic vesicles is initiated by a rise in [Ca
2+

]i 

(Schneggenburger and Neher, 2000).  Nonetheless, other ions including Na
+
 and H

+
 have also 

been proposed to play a critical role. As Slc4a8 mediates Na
+
-coupled anion exchange, its 

activity increases the [Na
+
]i concentration, which in turn may increase the [Ca

2+
]i via the 

Na
+
/Ca

2+
 exchanger (Mulkey and Zucker, 1992; Reuter and Porzig, 1995). Following this 

scenario, disruption of Slc4a8 may result in a lower [Ca
2+

]i and hence a reduction of 

spontaneous synaptic vesicle release. However, in view of the partial reversibility of the 

decreased synaptic vesicle release by increasing the pH, a direct pH-related effect may be 

more likely. As virtually all proteins depend on pH to maintain their structure and function, 

multiple effects may add up. For example, the opening and the conductivity of presynaptic 

voltage-gated calcium channels, which mediate the presynaptic Ca
2+ 

influx, are strongly 

dependent on both extracellular and intracellular pH (Tombaugh and Somjen, 1997). Protons 

can directly bind to sensors within the pore of the channel and thereby reduce channel 

conductance (Prod'hom et al., 1987; Chen et al., 1996) and shield membrane-bound charges 

and thus shift the channel activation voltage to more positive values (Klöckner and Isenberg, 

1994; Zhou and Jones, 1996). Neurotransmitter release, synaptic short-term plasticity as well 

as spontaneous vesicle release also depend on calcium release from intracellular stores 

(Emptage et al., 2001), which is mediated via inositol 1,4,5-trisphosphate and ryanodine 

receptors, both of which show strong pH dependence (Ma et al., 1988; Tsukioka et al., 1994). 

Ultimately, dysfunction of any of these presynaptic processes due to the decrease in pHi at the 

presynaptic bouton could lead to a slowed release of glutamtergic vesicles in Slc4a8
-/-

 mice 

and thereby diminishes the postsynaptic response, i.e. less glutamate receptors are activated, 

and decrease the overall neuronal excitability (see also Fig. 31A).  
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Figure 31. Possible roles of Slc4a8 and Slc4a10 for synapse physiology. A, Model illustrating the 

consequences of Slc4a8 disruption on glutamate release. Slc4a8 is involved in presynaptic pH 

homeostasis. Upon disruption of Slc4a8 the intracellular pH is diminished and glutamate release 

impaired. Accordingly, less postsynaptic glutamate receptors are activated but the pool of releasable 

vesicles appears to be unchanged. B, Pre- and postsynaptic expression of Slc4a10 on GABAergic 

synapses regulates vesicle release within the presynaptic terminal as well as the GABAA receptor 

conductance on the postsynapse. The postsynaptic modulations may be caused by increasing the 

synaptic cleft pH and altering the Cl
- 
equilibrium potential. As a result, Slc4a10 deletion would render 

GABAergic inhibition less effective.  
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Clinical relevance of these findings 

As neuronal activity can result in sustained decreases of pHi (Chesler and Kaila, 1992), the 

pH-dependent impairment of synaptic vesicle release may be even more relevant in situations 

with increased neuronal activity (Tong and Chesler, 1999; Zhan et al., 1998), including 

epileptic seizures (Xiong et al., 2000). Whereas a decrease of pH generally reduces neuronal 

excitability, it is increased by a rise of pH (Aram and Lodge, 1987). Hyperthermia-induced 

respiratory alkalosis is also considered as a key event in the pathogenesis of febrile seizures. In 

a rat pup model for febrile seizures, ictal activity was induced by respiratory alkalosis with a 

threshold of 0.2–0.3 pH units (Schuchmann et al., 2006) and could be stopped by suppressing 

alkalosis by increasing ambient pCO2. The impaired acid extrusion in  Slc4a8
-/-

 neurons may 

thus explain why Slc4a8
-/-

 mice have reduced seizure susceptibilities in various paradigms, 

including the hyperthermia model (Kougioumtzes, 2006). Likewise, mice with a targeted 

disruption of Slc4a10 were protected from seizure-related mortality (Jacobs et al., 2008), 

whereas the sensitivity to seizure-inducing agents was increased in mice with a disruption of 

the Na
+
-independent Cl

-
/HCO3

-
 exchanger Slc4a3, which imposes an intracellular acid load 

(Hentschke et al., 2006). Some anticonvulsants, such as acetazolamide, reduce extracellular 

pH in the brain (Chen and Chesler, 1992), suggesting that acidosis may contribute to their 

anti-epileptic effects. As an exception to this rule, Nhe1-deficient mice develop slow-wave 

epilepsy (Cox et al., 1997), which may be explained by the secondary increase of the Na
+
 

current density in CA1 pyramidal neurons of these mice (Gu et al., 2001; Xia et al., 2003) or 

selective neuronal death (Cox et al., 1997). Also, an important role of Nhe1 for the regulation 

of synaptic cleft pH at GABAergic synapses has been proposed, where absence of Nhe1-

induced acidosis could render GABAergic inhibition less effective (Dietrich and Morad, 2010) 

The reduced seizure threshold in Slc4a8
-/-

 mice (Kougioumtzes, 2006) suggests that inhibition 

of Slc4a8 may be a target for anti-epileptic therapy. In this context, it is worth noting that 

GABAergic synaptic vesicle release was not affected by disruption of Slc4a8 as judged from 

the amplitude and frequency distribution of mIPSCs in CA1 pyramidal neurons, which 

corresponds with previous data showing that pH regulation in GABAergic presynaptic nerve 

endings was mainly mediated by Nhe1 (Jang et al., 2006) and with our observation that co-

localization of Slc4a8 and GAD was only partial. 
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In conclusion, the results of this thesis show that the broadly expressed neuronal Na
+
-coupled 

anion exchanger Slc4a8 is enriched in presynaptic glutamatergic nerve terminals. As a key 

regulator of intracellular pH, Slc4a8 affects glutamatergic synaptic vesicle release in a pH-

dependent way. Since consensus phosphorylation sites have been predicted for different 

members of the gene family (Boron et al., 2009), including Slc4a8 (Grichtchenko et al., 2001), 

it is tempting to speculate that synaptic strength may be regulated via Slc4a8 in response to 

various signals. Interestingly, a splice variant of Slc4a8 has been shown to include a consensus 

binding site for 14-3-3 proteins (Parker et al., 2008a), which are known to influence 

trafficking (Mrowiec and Schwappach, 2006) and activity (Allouis et al., 2006) of different 

ion transporters
 

and channels. Thereby, Slc4a8 could have important consequences for 

synaptic transmission in both physiological and pathophysiological conditions. 

 

 

Role of Slc4a10 in cortical brain regions  

 

Comparison of hippocampal expression patterns of Slc4a10 and Slc4a8 

Within the family of Slc4 HCO3
-
 transporters Slc4a8 shares the highest homology with the 

Na
+
-HCO3

-
 co-transporter Slc4a7/Nbcn1 (Pushkin et al., 1999a; Bok et al., 2003) and the Na

+
-

coupled anion exchanger Slc4a10/Ncbe (Wang et al., 2000; Damkier et al., 2010) (see Fig. 2). 

Both transporters are shown to be expressed in the central nervous system (Jacobs et al., 2008; 

Park et al., 2010), where they mediate acid extrusion. Slc4a7 protein localizes to the 

postsynaptic side of neurons (Park et al., 2010). The closely related Na
+
-coupled anion 

exchanger Slc4a10 (Damkier et al., 2010; Wang et al., 2000) has mainly been detected in 

dendrites, dendritic spines and postsynaptic membranes (Jacobs et al., 2008), whereas Slc4a8 

colocalized with presynaptic, mostly glutamatergic structures. In contrast to Slc4a10 and 

Slc4a7, it has been suggested that the Na
+
/H

+
 exchanger Slc9a1/Nhe1 is present in GABAergic 

presynaptic nerve endings (Jang et al., 2006). Besides the different sub-cellular localization, 

Slc4a8 and Slc4a10 also differ in their cell-type specific expression. In the hippocampus, the 

major discrimination is between the GABAergic interneurons and the mostly glutamatergic 

pyramidal cells. Whereas Slc4a10 is expressed in both cell types, Slc4a8 is not expressed in 

most parvalbumin-positive interneurons. The expression data indicates that Slc4a10 activity 
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could influence both, postsynaptic responses to GABA in pyramidal cells as well as the 

presynaptic activity of GABAergic interneurons.   

 

Deletion of Slc4a10 alters neuronal excitability antithetic to Slc4a8 

Previous studies of our group revealed an increase in seizure threshold, comparable to the 

observations in the Slc4a8
-/-

 mice, and a diminished mortality upon seizure induction (Jacobs 

et al., 2008). Slc4a10 expressing cells (e.g. choroid plexus cells and CA3 pyramidal neurons) 

show an attenuated recovery to an induced acid load, which in turn can also influence neuronal 

excitability (Jacobs et al., 2008). The severe impairment of cerebrospinal fluid production and 

the resulting malformation of the Slc4a10
-/-

 brains complicate the interpretation of 

electrophysiological results, as morphological differences can always influence functional 

connectivity. Nonetheless neuronal excitability was analysed in the hippocampus and in the 

cortex in more detail.  

In contrast to the results in the Slc4a8
-/-

 slices, increased population spike amplitudes were 

observed in the stratum pyramidale of Slc4a10
-/-

 compared to WT slice, whereas field 

responses in the SRad were unaltered. Considering that only ~6 % of synaptic inputs to 

pyramidal CA1 neurons are inhibitory and that the distal SRad has a very high (glutamatergic) 

spine density and the lowest ratio of inhibitory/excitatory inputs (Megías et al., 2001), the 

altered field response in the SPyr but not in the SRad indicates an altered inhibition in 

Slc4a10
-/-

  mice.  

Interestingly, heterozygous deletions of large genomic regions spanning the human SLC4A10 

gene (2q24) have been associated to idiopathic epilepsies and mental retardation in humans 

(Gurnett et al., 2008; Krepischi et al., 2010). Albeit the causality between SLC4A10 gene 

deletion and the phenotype needs to be proven, the present findings in homozygous Slc4a10
-/-

 

mice might suggest that alteration in synaptic inhibition could be the functional correlate for 

these clinical observations. Analysis of heterozygous Slc4a10
+/-

 mice in in vivo epilepsy 

models as well as for the electrophysiological analysis might be helpful in the future.  

The paired pulse paradigm for the analysis of changes in short term plasticity slices revealed 

no significant differences between homozygous Slc4a10
-/-

 and WT slices, neither in SRad nor 

in the pyramidal cell layer. However, paired stimuli with half-maximal  intensity cannot reveal 

minor differences in synaptic inhibition, as it is overlaid by a strong paired pulse facilitation at 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=contrariwise&trestr=0x8004
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most inter-stimulus intervals (Madroñal et al., 2009). Future experiments (e.g. paired pulse 

experiments with low stimulus intensities (< 40 %) will investigate possible disturbances in 

paired pulse depression.  

Field recordings in the occipital as well as the parietal cortex, revealed no differences in the 

amplitude of field responses to increasing stimulus intensities but the paired pulse paradigm 

revealed an increased paired pulse depression at longer inter-stimulus intervals (around 100 

ms). Paired pulse depression in the range of around hundred milliseconds is mediated via 

GABAB receptors (e.g. (Buonomano and Merzenich, 1998). Thus,  these results suggest an 

increase in GABAB-receptor mediated inhibition in Slc4a10
-/-

 mice which might be a 

compensatory change and could be related to the protection from fatal seizures in vivo.   

 

Similar to Slc4a8, Slc4a10 apparently plays an important role in the regulation of neuronal 

activity. Its absence in the homozygous Slc4a10
-/-

 mouse results in an increased seizure 

threshold (Jacobs et al., 2008) whereas heterozygous human mutations have been associated 

with seizures (Gurnett et al., 2008; Krepischi et al., 2010). The predominant postsynaptic 

expression in pyramidal neurons in addition to the expression in GABAergic interneurons, 

complicate the interpretation of field potential results. For example the increased population 

spike amplitude could be due to a postsynaptic increase in excitability as well as a result of a 

decrease in inhibition. The transport capacity of Slc4a10 for HCO3
-
 and Cl

-
 argues more in 

favour of an altered GABAergic inhibition, but this can only be revealed by single cell 

recordings, which allow the dissection of both systems. Interestingly, a relatively recent study 

by Dietrich and Morad (2010) showed that pharmacological inhibition of the Slc9a1/Nhe1, 

which localizes to the presynaptic site of GABAergic terminals (Jang et al., 2006), results in 

an altered postsynaptic response to GABA by modulation of the synaptic cleft pH. Deletion of 

Slc4a10 activity on either synapse site would result in an increased synaptic cleft pH, which 

than in turn would result in an inhibition of postsynaptic GABAA receptors (Krishek et al., 

1996). In contrast, an increase of cleft pH in glutamatergic synapses would accelerate the 

postsynaptic response to glutamate (Traynelis and Cull-Candy, 1990). Thus, besides the effect 

of a deregulation in intracellular pH, which could result in a diminished presynaptic vesicle 

release as described for Slc4a8
-/- 

mice, changes in extracellular pH could influence synaptic 

transmission and thereby the network excitability in toto (see Fig. 31B). To unravel the role of 

Slc4a10 our future plans include recordings of mIPSCs as well as mEPSCs and we are also 
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especially interested in measuring intracellular chloride concentrations, as those are of special 

importance for the GABAergic postsynaptic response.  

 

 

Outlook 

 

Although the relation between neuronal excitability and pH is known for a long time, a good 

understanding of active key players at the synaptic formations was missing. The results of this 

thesis along with results from other recent studies of our group (Hentschke et al., 2006; Jacobs 

et al., 2008) and other groups (Dietrich and Morad, 2010; Jang et al., 2006; Park et al., 2010) 

have advanced our understanding of the functional role of ion exchangers for synapse 

physiology and overall brain function considerably. It is very intriguing that all presynaptic 

ion exchangers identified so far increase pHi. At the same time these ion transporters as well 

as the postsynaptic ones decrease extracellular pH, which seems to be of special importance at 

GABAergic synapses (see also Fig. 32). Yet, we are still lacking information on the exact 

(synaptic) localization and function of some ion exchangers, e.g. Slc4a3 or Slc4a7, and are 

still far from understanding the full machinery. 

 For a thorough understanding of the participant modulators, which is the basis of 

pharmacological targeting for clinical applications in the future, mouse models have been a 

valuable tool. Albeit good but mostly indirect evidence for Slc9a1 function in synaptic cleft 

acidification enabling efficient postsynaptic GABAergic inhibition has been described 

(Dietrich and Morad, 2010). The presented results suggest an additional contribution of 

Slc4a10 in this process. The severe epileptic phenotype in constitutive Slc9a1 KO mice (Cox 

et al., 1997) and the lacking specificity of available inhibitors (e.g. lithium or amiloride) 

prompted us to generate a neuron-specific conditional mouse model for Slc9a1. The analysis 

will hopefully add or finally confirm the physiological role of Nhe1 for (GABAergic) synapse 

physiology.  
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Figure 32. Model displaying ion exchangers possibly involved in synaptic pH regulation. The 

presynaptic localization of Slc4a8 at glutamatergic synapses and its importance for presynaptic pH and 

vesicle release was demonstrated by this thesis. Also, pre- and postsynaptic localization of Slc4a10 at 

mostly GABAergic synapses was shown. Indirect evidence suggests an important role of Slc9a1 at 

GABAergic presynapses, mostly for the synaptic cleft pH. The role of the postsynaptic Slc4a7 is not 

well understood. Whether or not Slc4a3 modulates synaptic activity remains unclear.  

 

Both genes of interest investigated in this study, Slc4a8 and Slc4a10, transport Cl
-
 into the cell 

and consequently increase intracellular Cl
-
. The present experiments mainly focussed on their 

pH regulatory capacity. However, alterations of the transmembrane Cl
-
 gradient can have 

major impact on neuronal excitability by determining the inhibitory GABA response at the 

postsynapse (Ben-Ari, 2002). Since the results of this study suggest that Slc4a10 deletion 

modulates synaptic inhibition it would be very interesting to analyze Cl
-
 concentration in 

Slc4a10
-/-

 neurons, e.g. by analysis of the GABAA reversal potential (Kyrozis and Reichling, 

1995).  

 

It is well known that increased neuronal activity induces a sustained decrease in neuronal pH, 

which is probably due to activation of the Ca
2+/

H
+
 exchanger (Trapp et al., 1996), increased 
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production of metabolic acids (Chesler, 2003) and the short term incorporation of the vesicular 

H
+
-ATPase into the presynaptic membrane (Zhang et al., 2010). Therefore it would be 

interesting to analyse the role of Slc4a8 under conditions of increased neuronal activity in 

more detail. Electrophysiological experiments in which physiological and pathophysiological 

states of increased electrical activity are investigated, e.g. oscillations (Buzsáki, 2002; Colgin 

and Moser, 2010), different in vitro models of epilepsy (Jefferys, 2003; Kilb et al., 2007) or  

learning and memory (Neves et al., 2008) could both be of great interest. A better 

understanding of the role of Slc4a8 under these conditions is also essential for a better 

interpretation of the in vivo results, which showed a prolonged latency till seizure onset upon 

induction of epileptic seizures in the different models used (Kougioumtzes, 2006) and is a 

prerequisite for the potential use of specific Slc4a8 blockers as anticonvulsant treatment 

options in the future.  

 

The strong expression of Slc4a8 protein in the S-LM, where the direct input from the perforant 

path terminates, suggests that Slc4a8
-/-

 slices show deficits in the mostly glutamatergic signal 

transduction within this region. The perforant path has been shown to modulate synaptic 

plasticity e.g. of the Schaffer collateral synapses and to be essential for the long-term memory 

consolidation (Remondes and Schuman, 2002, 2004). Although Slc4a8
-/-

 mice did not show 

deficits in spatial learning they showed some noticeable abnormalities when spatial memory 

was tested after 24 h (Kougioumtzes, 2006). Therefore, closer analysis of the perforant path 

and testing of long-term memory consolidation in the Slc4a8
-/-

 mice might elucidate the 

physiological role of Slc4a8 in more detail.  
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Conclusions   
 

The Na
+
-dependent Cl

-
-HCO3

-
 exchanger Slc4a8 is expressed in the renal cortex of mice and 

its expression is up-regulated under conditions of increased NaCl reabsorption. Mice devoid of 

Slc4a8 show no differences in urinary composition under standard feeding conditions and can 

adapt  to Na
+
 restriction.  Increased urinary aldosterone concentrations under Na

+ 
restriction as 

well as an exaggerated response to acute thiazide treatment propose compensatory changes 

due to the absence of Slc4a8.  

 

In the hippocampus, Slc4a8 is a key regulator for neuronal pH homeostasis. In the presence of 

extracellular bicarbonate steady state pHi was decreased and acid recovery was impaired in 

Slc4a8 deficient neurons. Different approaches (immunhistochemistry, ultrastructural analysis 

and biochemical fractionation) showed that Slc4a8 protein localizes to excitatory presynaptic 

structures suggesting that Slc4a8 is essential to control presynaptic pHi in principal neurons. 

Disruption of Slc4a8 results in a pH dependent impairment of glutamatergic vesicle release in 

vitro, whereas GABA release is not affected. This finding and the decrease in hippocampal 

field excitability and altered synaptic plasticity in vitro are probably the functional correlate 

for the protection from seizures in vivo.  

 

The closely related transporter Slc4a10 is expressed in pyramidal neurons, but also in 

interneurons. On the sub-cellular level, it localizes to the pre- and postsynaptic site of 

GABAergic synapses. First electrophysiological analysis showed a diminished field response 

in the pyramidal cell layer but not in the stratum radiatum of Slc4a10
-/-

 slices, suggesting 

alterations in the GABAergic inhibition.  

 

  



85 

 

Literature  
 

Aalkjaer, C., Frische, S., Leipziger, J., Nielsen, S., and Praetorius, J. (2004). Sodium coupled 

bicarbonate transporters in the kidney, an update. Acta Physiol Scand 181, 505-512. 

Abuladze, N., Pushkin, A., Tatishchev, S., Newman, D., Sassani, P., and Kurtz, I. (2004). 

Expression and localization of rat NBC4c in liver and renal uroepithelium. Am J Physiol Cell 

Physiol 287, C781-789. 

Agnati, L.F., Tinner, B., Staines, W.A., Väänänen, K., and Fuxe, K. (1995). On the cellular 

localization and distribution of carbonic anhydrase II immunoreactivity in the rat brain. Brain 

Res 676, 10-24. 

al-Baldawi, N., and Abercrombie, R. (1992). Cytoplasmic hydrogen ion diffusion coefficient. 

Biophys J 61, 1470-1479. 

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). Molecular 

Biology of the Cell, 4 edn (New York: Garland Science). 

Albuquerque, E.X., Barnard, E.A., Porter, C.W., and Warnick, J.E. (1974). The density of 

acetylcholine receptors and their sensitivity in the postsynaptic membrane of muscle 

endplates. Proc Natl Acad Sci U S A 71, 2818-2822. 

Allouis, M., Le Bouffant, F., Wilders, R., Péroz, D., Schott, J., Noireaud, J., Le Marec, H., 

Mérot, J., Escande, D., and Baró, I. (2006). 14-3-3 is a regulator of the cardiac voltage-gated 

sodium channel Nav1.5. Circ Res 98, 1538-1546. 

Alper, S. (2009). Molecular physiology and genetics of Na
+
-independent SLC4 anion 

exchangers. J Exp Biol 212, 1672-1683. 

Alper, S.L. (2006). Molecular physiology of SLC4 anion exchangers. Exp Physiol 91, 153-

161. 

Amaral, D.G., and Witter, M.P. (1989). The three-dimensional organization of the 

hippocampal formation: a review of anatomical data. Neuroscience 31, 571-591. 

Aram, J., and Lodge, D. (1987). Epileptiform activity induced by alkalosis in rat neocortical 

slices: block by antagonists of N-methyl-D-aspartate. Neurosci Lett 83, 345-350. 

Bai, F., and Witzmann, F. (2007). Synaptosome proteomics. Subcell Biochem 43, 77-98. 

Baxter, K., and Church, J. (1996). Characterization of acid extrusion mechanisms in cultured 

fetal rat hippocampal neurones. J Physiol 493 ( Pt 2), 457-470. 

Ben-Ari, Y. (2002). Excitatory actions of gaba during development: the nature of the nurture. 

Nat Rev Neurosci 3, 728-739. 

Bennett, M.K., Calakos, N., and Scheller, R.H. (1992). Syntaxin: a synaptic protein implicated 

in docking of synaptic vesicles at presynaptic active zones. Science 257, 255-259. 

Berg, J.M., Tymoczko, J.L., and Stryer, L. (2002). Biochemistry, 5 edn (W H Freeman). 



86 

 

Bevensee, M., Cummins, T., Haddad, G., Boron, W., and Boyarsky, G. (1996). pH regulation 

in single CA1 neurons acutely isolated from the hippocampi of immature and mature rats. J 

Physiol 494 ( Pt 2), 315-328. 

Blake-Palmer, K.G., and Karet, F.E. (2009). Cellular physiology of the renal H
+
ATPase. Curr 

Opin Nephrol Hypertens 18, 433-438. 

Bok, D., Galbraith, G., Lopez, I., Woodruff, M., Nusinowitz, S., BeltrandelRio, H., Huang, 

W., Zhao, S., Geske, R., Montgomery, C., et al. (2003). Blindness and auditory impairment 

caused by loss of the sodium bicarbonate cotransporter NBC3. Nat Genet 34, 313-319. 

Bonnet, U., Leniger, T., and Wiemann, M. (2000). Alteration of intracellular pH and activity 

of CA3-pyramidal cells in guinea pig hippocampal slices by inhibition of transmembrane acid 

extrusion. Brain Res 872, 116-124. 

Boron, W., Chen, L., and Parker, M. (2009). Modular structure of sodium-coupled bicarbonate 

transporters. J Exp Biol 212, 1697-1706. 

Boron, W., and De Weer, P. (1976). Intracellular pH transients in squid giant axons caused by 

CO2, NH3, and metabolic inhibitors. J Gen Physiol 67, 91-112. 

Boron, W.F., and Boulpaep, E.L. (1983). Intracellular pH regulation in the renal proximal 

tubule of the salamander. Basolateral HCO3
-
 transport. J Gen Physiol 81, 53-94. 

Boron, W.F., and Boulpaep, E.L. (2003). Medical Physiology, Vol 1 (Philadelphia: Elsevier 

Science). 

Boyarsky, G., Ganz, M., Sterzel, R., and Boron, W. (1988). pH regulation in single glomerular 

mesangial cells. I. Acid extrusion in absence and presence of HCO3
-
. Am J Physiol 255, C844-

856. 

Buch-Pedersen, M.J., Pedersen, B.P., Veierskov, B., Nissen, P., and Palmgren, M.G. (2009). 

Protons and how they are transported by proton pumps. Pflugers Arch 457, 573-579. 

Buonomano, D.V., and Merzenich, M.M. (1998). Net interaction between different forms of 

short-term synaptic plasticity and slow-IPSPs in the hippocampus and auditory cortex. J 

Neurophysiol 80, 1765-1774. 

Burwell, R.D. (2000). The parahippocampal region: corticocortical connectivity. Ann N Y 

Acad Sci 911, 25-42. 

Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33, 325-340. 

Carlin, R., Grab, D., Cohen, R., and Siekevitz, P. (1980). Isolation and characterization of 

postsynaptic densities from various brain regions: enrichment of different types of 

postsynaptic densities. J Cell Biol 86, 831-845. 

Casey, J., Grinstein, S., and Orlowski, J. (2010). Sensors and regulators of intracellular pH. 

Nat Rev Mol Cell Biol 11, 50-61. 

Casey, J.R. (2006). Why bicarbonate? Biochem Cell Biol 84, 930-939. 

Chen, J., and Chesler, M. (1992). pH transients evoked by excitatory synaptic transmission are 

increased by inhibition of extracellular carbonic anhydrase. Proc Natl Acad Sci U S A 89, 

7786-7790. 



87 

 

Chen, L., Kelly, M., Parker, M., Bouyer, P., Gill, H., Felie, J., Davis, B., and Boron, W. 

(2008a). Expression and localization of Na-driven Cl-HCO(3)(-) exchanger (SLC4A8) in 

rodent CNS. Neuroscience 153, 162-174. 

Chen, L.M., Kelly, M.L., Rojas, J.D., Parker, M.D., Gill, H.S., Davis, B.A., and Boron, W.F. 

(2008b). Use of a new polyclonal antibody to study the distribution and glycosylation of the 

sodium-coupled bicarbonate transporter NCBE in rodent brain. Neuroscience 151, 374-385. 

Chen, X., Bezprozvanny, I., and Tsien, R. (1996). Molecular basis of proton block of L-type 

Ca
2+

 channels. J Gen Physiol 108, 363-374. 

Chesler, M. (2003). Regulation and modulation of pH in the brain. Physiol Rev 83, 1183-

1221. 

Chesler, M., and Kaila, K. (1992). Modulation of pH by neuronal activity. Trends Neurosci 

15, 396-402. 

Chobanian, A.V., Bakris, G.L., Black, H.R., Cushman, W.C., Green, L.A., Izzo, J.L., Jones, 

D.W., Materson, B.J., Oparil, S., Wright, J.T., et al. (2003). Seventh report of the Joint 

National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood 

Pressure. Hypertension 42, 1206-1252. 

Codina, J., and DuBose, T.D. (2006). Molecular regulation and physiology of the H
+
,K

+
 -

ATPases in kidney. Semin Nephrol 26, 345-351. 

Colgin, L.L., and Moser, E.I. (2010). Gamma oscillations in the hippocampus. Physiology 

(Bethesda) 25, 319-329. 

Cordat, E., and Casey, J. (2009). Bicarbonate transport in cell physiology and disease. 

Biochem J 417, 423-439. 

Cox, G., Lutz, C., Yang, C., Biemesderfer, D., Bronson, R., Fu, A., Aronson, P., Noebels, J., 

and Frankel, W. (1997). Sodium/hydrogen exchanger gene defect in slow-wave epilepsy 

mutant mice. Cell 91, 139-148. 

Dahl, L.K., and Love, R.A. (1954). Evidence for relationship between sodium (chloride) 

intake and human essential hypertension. AMA Arch Intern Med 94, 525-531. 

Damkier, H., Aalkjaer, C., and Praetorius, J. (2010). Na
+
-dependent HCO3

-
 import by the 

slc4a10 gene product involves Cl
-
 export. J Biol Chem. 

Damkier, H., Nielsen, S., and Praetorius, J. (2007). Molecular expression of SLC4-derived 

Na
+
-dependent anion transporters in selected human tissues. Am J Physiol Regul Integr Comp 

Physiol 293, R2136-2146. 

Dietrich, C.J., and Morad, M. (2010). Synaptic Acidification Enhances GABAA Signaling. J 

Neurosci 30, 16044-16052. 

Dulla, C., Dobelis, P., Pearson, T., Frenguelli, B., Staley, K., and Masino, S. (2005). 

Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48, 1011-1023. 

Dzhala, V.I., Talos, D.M., Sdrulla, D.A., Brumback, A.C., Mathews, G.C., Benke, T.A., 

Delpire, E., Jensen, F.E., and Staley, K.J. (2005). NKCC1 transporter facilitates seizures in the 

developing brain. Nat Med 11, 1205-1213. 



88 

 

Eisner, D.A., Kenning, N.A., O'Neill, S.C., Pocock, G., Richards, C.D., and Valdeolmillos, M. 

(1989). A novel method for absolute calibration of intracellular pH indicators. Pflugers Arch 

413, 553-558. 

Eladari, D., and Hübner, C.A. (2011). Novel mechanisms for NaCl reabsorption in the 

collecting duct. Curr Opin Nephrol Hypertens. 

Ellison, D.H., and Loffing, J. (2009). Thiazide effects and adverse effects: insights from 

molecular genetics. Hypertension 54, 196-202. 

Emptage, N., Reid, C., and Fine, A. (2001). Calcium stores in hippocampal synaptic boutons 

mediate short-term plasticity, store-operated Ca
2+

 entry, and spontaneous transmitter release. 

Neuron 29, 197-208. 

Everett, L.A., Glaser, B., Beck, J.C., Idol, J.R., Buchs, A., Heyman, M., Adawi, F., Hazani, E., 

Nassir, E., Baxevanis, A.D., et al. (1997). Pendred syndrome is caused by mutations in a 

putative sulphate transporter gene (PDS). Nat Genet 17, 411-422. 

Feng, J., Chi, P., Blanpied, T., Xu, Y., Magarinos, A., Ferreira, A., Takahashi, R., Kao, H., 

McEwen, B., Ryan, T., et al. (2002). Regulation of neurotransmitter release by synapsin III. J 

Neurosci 22, 4372-4380. 

Franco, M., Sanchez-Lozada, L.G., Bautista, R., Johnson, R.J., and Rodriguez-Iturbe, B. 

(2008). Pathophysiology of salt-sensitive hypertension: a new scope of an old problem. Blood 

Purif 26, 45-48. 

Frömter, E. (1988). Mechanisms and regulation of ion transport in the renal collecting duct. 

Comp Biochem Physiol A Comp Physiol 90, 701-707. 

Gaffield, M.A., and Betz, W.J. (2006). Imaging synaptic vesicle exocytosis and endocytosis 

with FM dyes. Nat Protoc 1, 2916-2921. 

Gilmour, K.M. (2010). Perspectives on carbonic anhydrase. Comp Biochem Physiol A Mol 

Integr Physiol 157, 193-197. 

Glover, M., Zuber, A.M., and O'Shaughnessy, K.M. (2011). Hypertension, dietary salt intake, 

and the role of the thiazide-sensitive sodium chloride transporter NCCT. Cardiovasc Ther 29, 

68-76. 

Gluck, S.L., Underhill, D.M., Iyori, M., Holliday, L.S., Kostrominova, T.Y., and Lee, B.S. 

(1996). Physiology and biochemistry of the kidney vacuolar H
+
-ATPase. Annu Rev Physiol 

58, 427-445. 

Greger, R. (2000). Physiology of renal sodium transport. Am J Med Sci 319, 51-62. 

Grichtchenko, I., Choi, I., Zhong, X., Bray-Ward, P., Russell, J., and Boron, W. (2001). 

Cloning, characterization, and chromosomal mapping of a human electroneutral Na(+)-driven 

Cl-HCO3 exchanger. J Biol Chem 276, 8358-8363. 

Grynkiewicz, G., Poenie, M., and Tsien, R.Y. (1985). A new generation of Ca
2+

 indicators 

with greatly improved fluorescence properties. J Biol Chem 260, 3440-3450. 

Gu, X., Yao, H., and Haddad, G. (2001). Increased neuronal excitability and seizures in the 

Na(+)/H(+) exchanger null mutant mouse. Am J Physiol Cell Physiol 281, C496-503. 



89 

 

Gurnett, C.A., Veile, R., Zempel, J., Blackburn, L., Lovett, M., and Bowcock, A. (2008). 

Disruption of sodium bicarbonate transporter SLC4A10 in a patient with complex partial 

epilepsy and mental retardation. Arch Neurol 65, 550-553. 

Guyton, A.C., Coleman, T.G., Cowley, A.V., Scheel, K.W., Manning, R.D., and Norman, 

R.A. (1972). Arterial pressure regulation. Overriding dominance of the kidneys in long-term 

regulation and in hypertension. Am J Med 52, 584-594. 

Guyton, A.C., Manning, R.D., Hall, J.E., Norman, R.A., Young, D.B., and Pan, Y.J. (1984). 

The pathogenic role of the kidney. J Cardiovasc Pharmacol 6 Suppl 1, S151-161. 

Halestrap, A.P., and Meredith, D. (2004). The SLC16 gene family-from monocarboxylate 

transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447, 619-

628. 

Hentschke, M., Wiemann, M., Hentschke, S., Kurth, I., Hermans-Borgmeyer, I., Seidenbecher, 

T., Jentsch, T., Gal, A., and Hübner, C. (2006). Mice with a targeted disruption of the Cl
-

/HCO3
-
 exchanger AE3 display a reduced seizure threshold. Mol Cell Biol 26, 182-191. 

Hertz, L., and Dienel, G. (2005). Lactate transport and transporters: general principles and 

functional roles in brain cells. J Neurosci Res 79, 11-18. 

Hirtz, D., Thurman, D.J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A.R., and Zalutsky, R. 

(2007). How common are the "common" neurologic disorders? Neurology 68, 326-337. 

Hua, Y., Sinha, R., Martineau, M., Kahms, M., and Klingauf, J. (2010). A common origin of 

synaptic vesicles undergoing evoked and spontaneous fusion. Nat Neurosci 13, 1451-1453. 

Hummler, E. (2003). Epithelial sodium channel, salt intake, and hypertension. Curr Hypertens 

Rep 5, 11-18. 

Höglund, P., Haila, S., Socha, J., Tomaszewski, L., Saarialho-Kere, U., Karjalainen-

Lindsberg, M.L., Airola, K., Holmberg, C., de la Chapelle, A., and Kere, J. (1996). Mutations 

of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat 

Genet 14, 316-319. 

Hübner, C., Stein, V., Hermans-Borgmeyer, I., Meyer, T., Ballanyi, K., and Jentsch, T. (2001). 

Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic 

inhibition. Neuron 30, 515-524. 

Hübner, C.A., Hentschke, M., Jacobs, S., and Hermans-Borgmeyer, I. (2004). Expression of 

the sodium-driven chloride bicarbonate exchanger NCBE during prenatal mouse development. 

Gene Expr Patterns 5, 219-223. 

Jacobs, S., Ruusuvuori, E., Sipilä, S., Haapanen, A., Damkier, H., Kurth, I., Hentschke, M., 

Schweizer, M., Rudhard, Y., Laatikainen, L., et al. (2008). Mice with targeted Slc4a10 gene 

disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad 

Sci U S A 105, 311-316. 

Jang, I., Brodwick, M., Wang, Z., Jeong, H., Choi, B., and Akaike, N. (2006). The Na(+)/H(+) 

exchanger is a major pH regulator in GABAergic presynaptic nerve terminals synapsing onto 

rat CA3 pyramidal neurons. J Neurochem 99, 1224-1236. 

Jefferys, J.G. (2003). Models and mechanisms of experimental epilepsies. Epilepsia 44 Suppl 

12, 44-50. 



90 

 

Kaech, S., and Banker, G. (2006). Culturing hippocampal neurons. Nat Protoc 1, 2406-2415. 

Kaila, K., and Voipio, J. (1987). Postsynaptic fall in intracellular pH induced by GABA-

activated bicarbonate conductance. Nature 330, 163-165. 

Karmazyn, M., Gan, X.T., Humphreys, R.A., Yoshida, H., and Kusumoto, K. (1999). The 

myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Circ Res 

85, 777-786. 

Katz, B., and Miledi, R. (1968). The role of calcium in neuromuscular facilitation. J Physiol 

195, 481-492. 

Kearney, P.M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P.K., and He, J. (2005). 

Global burden of hypertension: analysis of worldwide data. Lancet 365, 217-223. 

Kearney, P.M., Whelton, M., Reynolds, K., Whelton, P.K., and He, J. (2004). Worldwide 

prevalence of hypertension: a systematic review. J Hypertens 22, 11-19. 

Kilb, W., Sinning, A., and Luhmann, H.J. (2007). Model-specific effects of bumetanide on 

epileptiform activity in the in-vitro intact hippocampus of the newborn mouse. 

Neuropharmacology 53, 524-533. 

Kim, G.H., Masilamani, S., Turner, R., Mitchell, C., Wade, J.B., and Knepper, M.A. (1998). 

The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad 

Sci U S A 95, 14552-14557. 

Kiss, L., and Korn, S.J. (1999). Modulation of N-type Ca
2+

 channels by intracellular pH in 

chick sensory neurons. J Neurophysiol 81, 1839-1847. 

Klöckner, U., and Isenberg, G. (1994). Calcium channel current of vascular smooth muscle 

cells: extracellular protons modulate gating and single channel conductance. J Gen Physiol 

103, 665-678. 

Ko, S.B., Luo, X., Hager, H., Rojek, A., Choi, J.Y., Licht, C., Suzuki, M., Muallem, S., 

Nielsen, S., and Ishibashi, K. (2002). AE4 is a DIDS-sensitive Cl(-)/HCO(-)(3) exchanger in 

the basolateral membrane of the renal CCD and the SMG duct. Am J Physiol Cell Physiol 283, 

C1206-1218. 

Konstas, A.A., Koch, J.P., Tucker, S.J., and Korbmacher, C. (2002). Cystic fibrosis 

transmembrane conductance regulator-dependent up-regulation of Kir1.1 (ROMK) renal K
+ 

channels by the epithelial sodium channel. J Biol Chem 277, 25377-25384. 

Kopito, R.R., Lee, B.S., Simmons, D.M., Lindsey, A.E., Morgans, C.W., and Schneider, K. 

(1989). Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion 

exchanger. Cell 59, 927-937. 

Kougioumtzes, A. (2006). Herstellung und Charakterisierung einer KO-Maus für einen 

Natrium-abhängigen Anionenaustauscher. In Fakultät für Mathematik, Informatik und 

Naturwissenschaft (Hamburg, Universität Hamburg), p. 131. 

Krepischi, A.C., Knijnenburg, J., Bertola, D.R., Kim, C.A., Pearson, P.L., Bijlsma, E., Szuhai, 

K., Kok, F., Vianna-Morgante, A.M., and Rosenberg, C. (2010). Two distinct regions in 

2q24.2-q24.3 associated with idiopathic epilepsy. Epilepsia 51, 2457-2460. 



91 

 

Krishek, B.J., Amato, A., Connolly, C.N., Moss, S.J., and Smart, T.G. (1996). Proton 

sensitivity of the GABA(A) receptor is associated with the receptor subunit composition. J 

Physiol 492 ( Pt 2), 431-443. 

Kyrozis, A., and Reichling, D.B. (1995). Perforated-patch recording with gramicidin avoids 

artifactual changes in intracellular chloride concentration. J Neurosci Methods 57, 27-35. 

Langley, O.K., Ghandour, M.S., Vincendon, G., and Gombos, G. (1980). Carbonic anhydrase: 

an ultrastructural study in rat cerebellum. Histochem J 12, 473-483. 

Lee, J., Taira, T., Pihlaja, P., Ransom, B., and Kaila, K. (1996). Effects of CO2 on excitatory 

transmission apparently caused by changes in intracellular pH in the rat hippocampal slice. 

Brain Res 706, 210-216. 

Lennox, W. (1928). The effect on epileptic seizures of varying the composition of respired air.  

(Journal of Clinical Investigations), pp. 23-24.                                  

Leviel, F., Hübner, C., Houillier, P., Morla, L., El Moghrabi, S., Brideau, G., Hatim, H., 

Parker, M., Kurth, I., Kougioumtzes, A., et al. (2010). The Na
+
-dependent chloride-

bicarbonate exchanger SLC4A8 mediates an electroneutral Na
+ 

reabsorption process in the 

renal cortical collecting ducts of mice. J Clin Invest 120, 1627-1635.   

Liebmann, L., Karst, H., and Joëls, M. (2009). Effects of corticosterone and the beta-agonist 

isoproterenol on glutamate receptor-mediated synaptic currents in the rat basolateral 

amygdala. Eur J Neurosci 30, 800-807.                                                                              

Lingrel, J.B. (1992). Na,K-ATPase: isoform structure, function, and expression. J Bioenerg 

Biomembr 24, 263-270.            

Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-

time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.      

Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000). 

Molecular Cell Biology, 4th edn (New York: W.H. Freeman and Company).              

Loffing, J., Zecevic, M., Féraille, E., Kaissling, B., Asher, C., Rossier, B.C., Firestone, G.L., 

Pearce, D., and Verrey, F. (2001). Aldosterone induces rapid apical translocation of ENaC in 

early portion of renal collecting system: possible role of SGK. Am J Physiol Renal Physiol 

280, F675-682.                  

Loo, L.S., and McNamara, J.O. (2006). Impaired volume regulation is the mechanism of 

excitotoxic sensitization to complement. J Neurosci 26, 10177-10187.          

Luo, J., and Sun, D. (2007). Physiology and pathophysiology of Na(+)/H(+) exchange isoform 

1 in the central nervous system. Curr Neurovasc Res 4, 205-215.         

Ma, J., Fill, M., Knudson, C., Campbell, K., and Coronado, R. (1988). Ryanodine receptor of 

skeletal muscle is a gap junction-type channel. Science 242, 99-102. 

 Madroñal, N., Gruart, A., and Delgado-García, J.M. (2009). Differing presynaptic 

contributions to LTP and associative learning in behaving mice. Front Behav Neurosci 3, 7.     

Malo, M.E., and Fliegel, L. (2006). Physiological role and regulation of the Na+/H+ 

exchanger. Can J Physiol Pharmacol 84, 1081-1095.           

Mann, E.O., and Paulsen, O. (2007). Role of GABAergic inhibition in hippocampal network 

oscillations. Trends Neurosci 30, 343-349. 



92 

 

Markovich, D. (2001). Physiological roles and regulation of mammalian sulfate transporters. 

Physiol Rev 81, 1499-1533. 

Mathews, G.C., and Diamond, J.S. (2003). Neuronal glutamate uptake Contributes to GABA 

synthesis and inhibitory synaptic strength. J Neurosci 23, 2040-2048. 

Maunsbach, A.B., Vorum, H., Kwon, T.H., Nielsen, S., Simonsen, B., Choi, I., Schmitt, B.M., 

Boron, W.F., and Aalkjaer, C. (2000). Immunoelectron microscopic localization of the 

electrogenic Na/HCO(3) cotransporter in rat and ambystoma kidney. J Am Soc Nephrol 11, 

2179-2189. 

Maycox, P., Deckwerth, T., Hell, J., and Jahn, R. (1988). Glutamate uptake by brain synaptic 

vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J 

Biol Chem 263, 15423-15428. 

Megías, M., Emri, Z., Freund, T.F., and Gulyás, A.I. (2001). Total number and distribution of 

inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 

527-540. 

Meneton, P., Jeunemaitre, X., de Wardener, H.E., and MacGregor, G.A. (2005). Links 

between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. 

Physiol Rev 85, 679-715. 

Mitchell, W., and Grubbs, R. (1956). Inhibition of audiogenic seizures by carbon dioxide. 

Science 123, 223-224. 

Mrowiec, T., and Schwappach, B. (2006). 14-3-3 proteins in membrane protein transport. Biol 

Chem 387, 1227-1236. 

Mulkey, R., and Zucker, R. (1992). Posttetanic potentiation at the crayfish neuromuscular 

junction is dependent on both intracellular calcium and sodium ion accumulation. J Neurosci 

12, 4327-4336. 

Müller, J. (1995). Aldosterone: the minority hormone of the adrenal cortex. Steroids 60, 2-9. 

Neves, G., Cooke, S.F., and Bliss, T.V. (2008). Synaptic plasticity, memory and the 

hippocampus: a neural network approach to causality. Nat Rev Neurosci 9, 65-75. 

Nyman, P.O. (1961). Purification and properties of carbonic anhydrase from human 

erythrocytes. Biochim Biophys Acta 52, 1-12. 

Oyler, G.A., Higgins, G.A., Hart, R.A., Battenberg, E., Billingsley, M., Bloom, F.E., and 

Wilson, M.C. (1989). The identification of a novel synaptosomal-associated protein, SNAP-

25, differentially expressed by neuronal subpopulations. J Cell Biol 109, 3039-3052. 

Park, H., Rajbhandari, I., Yang, H., Lee, S., Cucoranu, D., Cooper, D., Klein, J., Sands, J., and 

Choi, I. (2010). Neuronal expression of sodium/bicarbonate cotransporter NBCn1 (SLC4A7) 

and its response to chronic metabolic acidosis. Am J Physiol Cell Physiol 298, C1018-1028. 

Park, M., Li, Q., Shcheynikov, N., Zeng, W., and Muallem, S. (2004). NaBC1 is a ubiquitous 

electrogenic Na+ -coupled borate transporter essential for cellular boron homeostasis and cell 

growth and proliferation. Mol Cell 16, 331-341. 

Parker, M., Bouyer, P., Daly, C., and Boron, W. (2008a). Cloning and characterization of 

novel human SLC4A8 gene products encoding Na+-driven Cl-/HCO3(-) exchanger variants 

NDCBE-A, -C, and -D. Physiol Genomics 34, 265-276. 



93 

 

Parker, M.D., Musa-Aziz, R., Rojas, J.D., Choi, I., Daly, C.M., and Boron, W.F. (2008b). 

Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) 

with Cl- self-exchange activity. J Biol Chem 283, 12777-12788. 

Parkkila, S., Parkkila, A.K., Rajaniemi, H., Shah, G.N., Grubb, J.H., Waheed, A., and Sly, 

W.S. (2001). Expression of membrane-associated carbonic anhydrase XIV on neurons and 

axons in mouse and human brain. Proc Natl Acad Sci U S A 98, 1918-1923. 

Pierdomenico, S.D., Di Nicola, M., Esposito, A.L., Di Mascio, R., Ballone, E., Lapenna, D., 

and Cuccurullo, F. (2009). Prognostic value of different indices of blood pressure variability in 

hypertensive patients. Am J Hypertens 22, 842-847. 

Praetorius, J., Kim, Y.H., Bouzinova, E.V., Frische, S., Rojek, A., Aalkjaer, C., and Nielsen, 

S. (2004a). NBCn1 is a basolateral Na
+
-HCO3

-
 cotransporter in rat kidney inner medullary 

collecting ducts. Am J Physiol Renal Physiol 286, F903-912. 

Praetorius, J., Nejsum, L.N., and Nielsen, S. (2004b). A SCL4A10 gene product maps 

selectively to the basolateral plasma membrane of choroid plexus epithelial cells. Am J 

Physiol Cell Physiol 286, C601-610. 

Prod'hom, B., Pietrobon, D., and Hess, P. (1987). Direct measurement of proton transfer rates 

to a group controlling the dihydropyridine-sensitive Ca
2+

 channel. Nature 329, 243-246. 

Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.-S., McNamara, J.O., and 

Williams, S.M. (2001). Neuroscience, 2 edn (Sunderland: Sinauer Associates). 

Pushkin, A., Abuladze, N., Lee, I., Newman, D., Hwang, J., and Kurtz, I. (1999a). Cloning, 

tissue distribution, genomic organization, and functional characterization of NBC3, a new 

member of the sodium bicarbonate cotransporter family. J Biol Chem 274, 16569-16575. 

Pushkin, A., Yip, K.P., Clark, I., Abuladze, N., Kwon, T.H., Tsuruoka, S., Schwartz, G.J., 

Nielsen, S., and Kurtz, I. (1999b). NBC3 expression in rabbit collecting duct: colocalization 

with vacuolar H+-ATPase. Am J Physiol 277, F974-981. 

Quentin, F., Chambrey, R., Trinh-Trang-Tan, M.M., Fysekidis, M., Cambillau, M., Paillard, 

M., Aronson, P.S., and Eladari, D. (2004). The Cl
-
/HCO3

-
 exchanger pendrin in the rat kidney 

is regulated in response to chronic alterations in chloride balance. Am J Physiol Renal Physiol 

287, F1179-1188. 

Remondes, M., and Schuman, E. (2002). Direct cortical input modulates plasticity and spiking 

in CA1 pyramidal neurons. Nature 416, 736-740. 

Remondes, M., and Schuman, E. (2004). Role for a cortical input to hippocampal area CA1 in 

the consolidation of a long-term memory. Nature 431, 699-703. 

Reuter, H., and Porzig, H. (1995). Localization and functional significance of the Na
+
/Ca

2+
 

exchanger in presynaptic boutons of hippocampal cells in culture. Neuron 15, 1077-1084. 

Rink, T.J., Tsien, R.Y., and Pozzan, T. (1982). Cytoplasmic pH and free Mg
2+

 in lymphocytes. 

J Cell Biol 95, 189-196. 

Rocha, M., Crockett, D., Wong, L., Richardson, J., and Sonsalla, P. (2008). Na(+)/H(+) 

exchanger inhibition modifies dopamine neurotransmission during normal and metabolic 

stress conditions. J Neurochem 106, 231-243. 



94 

 

Rollenhagen, A., and Lübke, J.H. (2010). The mossy fiber bouton: the "common" or the 

"unique" synapse? Front Synaptic Neurosci 2, 2. 

Romero, M., Henry, D., Nelson, S., Harte, P., Dillon, A., and Sciortino, C. (2000). Cloning 

and characterization of a Na
+
-driven anion exchanger (NDAE1). A new bicarbonate 

transporter. J Biol Chem 275, 24552-24559. 

Romero, M.F., Fulton, C.M., and Boron, W.F. (2004). The SLC4 family of HCO3
-
 

transporters. Pflugers Arch 447, 495-509. 

Romero, M.F., Hediger, M.A., Boulpaep, E.L., and Boron, W.F. (1997). Expression cloning 

and characterization of a renal electrogenic Na
+
/HCO3

- 
cotransporter. Nature 387, 409-413. 

Roos, A., and Boron, W.F. (1981). Intracellular pH. Physiol Rev 61, 296-434. 

Rozansky, D.J. (2006). The role of aldosterone in renal sodium transport. Semin Nephrol 26, 

173-181. 

Russell, J., and Boron, W. (1976). Role of choloride transport in regulation of intracellular pH. 

Nature 264, 73-74. 

Ruusuvuori, E., Li, H., Huttu, K., Palva, J.M., Smirnov, S., Rivera, C., Kaila, K., and Voipio, 

J. (2004). Carbonic anhydrase isoform VII acts as a molecular switch in the development of 

synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci 24, 

2699-2707. 

Saggau, P., Gray, R., and Dani, J.A. (1999). Optical measurements of calcium signals in 

mammalian presynaptic terminals. Methods Enzymol 294, 3-19. 

Schneggenburger, R., and Neher, E. (2000). Intracellular calcium dependence of transmitter 

release rates at a fast central synapse. Nature 406, 889-893. 

Schuchmann, S., Schmitz, D., Rivera, C., Vanhatalo, S., Salmen, B., Mackie, K., Sipilä, S., 

Voipio, J., and Kaila, K. (2006). Experimental febrile seizures are precipitated by a 

hyperthermia-induced respiratory alkalosis. Nat Med 12, 817-823. 

Schwiening, C., and Boron, W. (1994). Regulation of intracellular pH in pyramidal neurones 

from the rat hippocampus by Na(+)-dependent Cl(-)-HCO3- exchange. J Physiol 475, 59-67. 

Schwiening, C., and Willoughby, D. (2002). Depolarization-induced pH microdomains and 

their relationship to calcium transients in isolated snail neurones. J Physiol 538, 371-382. 

Schwiening, C.J., Kennedy, H.J., and Thomas, R.C. (1993). Calcium-hydrogen exchange by 

the plasma membrane Ca-ATPase of voltage-clamped snail neurons. Proc Biol Sci 253, 285-

289. 

Shankar, S.S., and Brater, D.C. (2003). Loop diuretics: from the Na-K-2Cl transporter to 

clinical use. Am J Physiol Renal Physiol 284, F11-21. 

Shinnar, S., and Glauser, T.A. (2002). Febrile seizures. J Child Neurol 17 Suppl 1, S44-52. 

Somjen, G., and Tombaugh, G. (1998). pH modulation of neuronal excitability and central 

nervous system function. In pH and brain function, K. Kaila, and R. BR, eds. (New York: 

John Wiley), pp. 373-393. 

Sterling, D., and Casey, J.R. (2002). Bicarbonate transport proteins. Biochem Cell Biol 80, 

483-497. 



95 

 

Stewart, A., Boyd, C., and Vaughan-Jones, R. (1999). A novel role for carbonic anhydrase: 

cytoplasmic pH gradient dissipation in mouse small intestinal enterocytes. J Physiol 516 ( Pt 

1), 209-217. 

Supuran, C. (2008). Carbonic anhydrases--an overview. Curr Pharm Des 14, 603-614. 

Terada, Y., and Knepper, M.A. (1990). Thiazide-sensitive NaCl absorption in rat cortical 

collecting duct. Am J Physiol 259, F519-528. 

Thomas, J.A., Buchsbaum, R.N., Zimniak, A., and Racker, E. (1979). Intracellular pH 

measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. 

Biochemistry 18, 2210-2218. 

Thomas, R. (1976). The effect of carbon dioxide on the intracellular pH and buffering power 

of snail neurones. J Physiol 255, 715-735. 

Tolner, E.A., Hochman, D.W., Hassinen, P., Otáhal, J., Gaily, E., Haglund, M.M., Kubová, 

H., Schuchmann, S., Vanhatalo, S., and Kaila, K. (2011). Five percent CO₂ is a potent, fast-

acting inhalation anticonvulsant. Epilepsia 52, 104-114. 

Tombaugh, G., and Somjen, G. (1996). Effects of extracellular pH on voltage-gated Na
+
, K

+
 

and Ca
2+

 currents in isolated rat CA1 neurons. J Physiol 493 ( Pt 3), 719-732. 

Tombaugh, G., and Somjen, G. (1997). Differential sensitivity to intracellular pH among high- 

and low-threshold Ca
2+

 currents in isolated rat CA1 neurons. J Neurophysiol 77, 639-653. 

Tomita, K., Pisano, J.J., and Knepper, M.A. (1985). Control of sodium and potassium 

transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and 

deoxycorticosterone. J Clin Invest 76, 132-136. 

Tong, C., and Chesler, M. (1999). Activity-evoked extracellular pH shifts in slices of rat 

dorsal lateral geniculate nucleus. Brain Res 815, 373-381. 

Tong, C.K., Brion, L.P., Suarez, C., and Chesler, M. (2000). Interstitial carbonic anhydrase 

(CA) activity in brain is attributable to membrane-bound CA type IV. J Neurosci 20, 8247-

8253. 

Trapp, S., Lückermann, M., Kaila, K., and Ballanyi, K. (1996). Acidosis of hippocampal 

neurones mediated by a plasmalemmal Ca
2+

/H
+
 pump. Neuroreport 7, 2000-2004. 

Traynelis, S., and Cull-Candy, S. (1990). Proton inhibition of N-methyl-D-aspartate receptors 

in cerebellar neurons. Nature 345, 347-350. 

Tsukioka, M., Iino, M., and Endo, M. (1994). pH dependence of inositol 1,4,5-trisphosphate-

induced Ca
2+

 release in permeabilized smooth muscle cells of the guinea-pig. J Physiol 475, 

369-375. 

Tóth, Z.E., and Mezey, E. (2007). Simultaneous visualization of multiple antigens with 

tyramide signal amplification using antibodies from the same species. J Histochem Cytochem 

55, 545-554. 

van Strien, N.M., Cappaert, N.L., and Witter, M.P. (2009). The anatomy of memory: an 

interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 10, 

272-282. 



96 

 

Verrey, F. (2001). Sodium reabsorption in aldosterone-sensitive distal nephron: news and 

contributions from genetically engineered animals. Curr Opin Nephrol Hypertens 10, 39-47. 

Wagner, C.A., Devuyst, O., Bourgeois, S., and Mohebbi, N. (2009). Regulated acid-base 

transport in the collecting duct. Pflugers Arch 458, 137-156. 

Wagner, C.A., and Geibel, J.P. (2002). Acid-base transport in the collecting duct. J Nephrol 15 

Suppl 5, S112-127. 

Walker, C., and Peacock, J. (1981). Development of GABAergic function of dissociated 

hippocampal cultures from fetal mice. Brain Res 254, 541-555. 

Wang, C., Yano, H., Nagashima, K., and Seino, S. (2000). The Na
+
-driven Cl

-
/HCO3

-
 

exchanger. Cloning, tissue distribution, and functional characterization. J Biol Chem 275, 

35486-35490. 

Wang, Z., Conforti, L., Petrovic, S., Amlal, H., Burnham, C.E., and Soleimani, M. (2001). 

Mouse Na
+
: HCO3

-
 cotransporter isoform NBC-3 (kNBC-3): cloning, expression, and renal 

distribution. Kidney Int 59, 1405-1414. 

Westermann, M., Steiniger, F., and Richter, W. (2005). Belt-like localisation of caveolin in 

deep caveolae and its re-distribution after cholesterol depletion. Histochem Cell Biol 123, 613-

620. 

Wu, L.G., and Saggau, P. (1994). Presynaptic calcium is increased during normal synaptic 

transmission and paired-pulse facilitation, but not in long-term potentiation in area CA1 of 

hippocampus. J Neurosci 14, 645-654. 

Xia, Y., Zhao, P., Xue, J., Gu, X., Sun, X., Yao, H., and Haddad, G. (2003). Na
+ 

channel 

expression and neuronal function in the Na
+
/H

+
 exchanger 1 null mutant mouse. J 

Neurophysiol 89, 229-236. 

Xiong, Z., Saggau, P., and Stringer, J. (2000). Activity-dependent intracellular acidification 

correlates with the duration of seizure activity. J Neurosci 20, 1290-1296. 

Yao, H., Ma, E., Gu, X., and Haddad, G. (1999). Intracellular pH regulation of CA1 neurons 

in Na(+)/H(+) isoform 1 mutant mice. J Clin Invest 104, 637-645. 

Zhan, R., Fujiwara, N., Tanaka, E., and Shimoji, K. (1998). Intracellular acidification induced 

by membrane depolarization in rat hippocampal slices: roles of intracellular Ca
2+

 and 

glycolysis. Brain Res 780, 86-94. 

Zhang, Z., Nguyen, K.T., Barrett, E.F., and David, G. (2010). Vesicular ATPase inserted into 

the plasma membrane of motor terminals by exocytosis alkalinizes cytosolic pH and facilitates 

endocytosis. Neuron 68, 1097-1108. 

Zhou, W., and Jones, S. (1996). The effects of external pH on calcium channel currents in 

bullfrog sympathetic neurons. Biophys J 70, 1326-1334. 

Ziemann, A.E., Schnizler, M.K., Albert, G.W., Severson, M.A., Howard, M.A., Welsh, M.J., 

and Wemmie, J.A. (2008). Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 

11, 816-822. 

 

 



97 

 

Appendix 

 

Curriculum Vitae  

Personal details: 

 

Name:   Anne Sinning                        Adresse:        Kieserstr. 6 

07749 Jena  

 

Date of birth:  10.05.1983                Telephone: 0176 62075572 

Place of birth: Kassel              

Nationality:  German                Email:  A.sinning@gmx.de 

 

Education : 

Academic studies 

February 2008-August 2011   PhD thesis 

     Institute for Clinical Chemistry/ Human Genetics 

     University Hospital Jena  

 

April 2006 – November 2007           Master of sciences in 

 Experimental and Clinical Neurosciences 

University Regensburg / Elitenetwork Bavaria 

Masterthesis:   

Calcium as a mediator between membrane and 

          genes plays a key role in circadian clock functions 

Department Neurophysiology 

Leiden University Medical Center (Niederlande) 

Final degree: Very good (1.2) 



98 

 

November 2005 – March 2006 Biomedicine 

Gutenberg University Mainz  

 

April 2003 – August 2005  Bachelor of sciences in Molecular Biology 

Gutenberg University Mainz 

Bachelor thesis: 

Analysis of the expression and activation of protein 

kinases JNK and Akt after radiation of squamous head 

and neck cancer 

University Hospital Mainz 

Final degree: Very good (1.4) 

Secondary education 

 

1993-2002:                Abitur  

Jacob-Grimm School Rotenburg/Fulda 

                                                            Final degree: 1.9  

 

 

Work experience abroad 

 

Juli 2002- September 2002   Work as guest and children courier for Eurocamps (UK)  

                                                   in La Mole (France)  

 

October 2002- April 2003          Au-pair in Florida (USA)   

  

    

http://www.dict.cc/englisch-deutsch/squamous+epithelium.html


99 

 

Publications  

Leviel F*, Hübner C*, Houillier P, Morla L, El Moghrabi S, Brideau G, Hatim H, Parker M, 

Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy K, Miller R, Hummler E, Shull G, 

Aronson P, Doucet A, Wall S, Chambrey R, Eladari D (2010)                                                                                

The Na
+
-dependent chloride-bicarbonate exchanger Slc4a8 mediates an electroneutral Na

+
 

reabsorption process in the renal cortical collecting ducts of mice.                                                                                                                    

J Clin Invest 120: 1627-1635 

 

Sinning A*, Liebmann L*, Kougioumtzes A, Westermann M, Bruehl C, Hübner C (2011) 

Synaptic glutamate release is modulated by the Na
+
 -driven Cl

-
/HCO3

-
 exchanger Slc4a8.                      

J Neurosci 31: 7300-7311 

 

Koch D, Spiwoks-Becker I*, Sabanov V*, Sinning A, Dugladze T, Stellmacher A, Ahuja R, 

Grimm J, Schuler S, Muller A, Angenstein F, Ahmed T, Diesler A, Moser M, tom Dieck S, 

Spessert R, Boeckers T, Fassler R, Hübner C, Balschun D, Gloveli T, Kessels M, Qualmann B 

(2011)                                                                                                                                    

Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I                                                                                                                                   

EMBO J  in press  

 

*authors contributed equally to this work 

 

  



100 

 

Acknowledgements  

 

Welch ein Privileg Unbekanntes erforschen zu dürfen, mit etwas Glück neues Wissen zu 

schaffen und im besten Falle das Leben ein bisschen verständlicher oder gar besser zu 

machen. Allein dafür lohnt es sich.  

Dass man diesen Weg mit anderen Wissenschaftlern teilt, sich gegenseitig ermutigt nicht 

aufzugeben und das große Ziel gemeinsam verfolgt, macht es einmalig. 

 

Zuerst möchte ich mich bei Prof. Dr. Christian Hübner für das Thema, die andauernde 

Unterstützung meiner Projekte und vor allem für die Betreuung der Doktorarbeit bedanken. 

Ich habe immer die notwendige Anleitung und Unterstützung erhalten und zugleich auch den 

Freiraum bei der Entwicklung meiner eigenen Ideen geschätzt. Zunächst möchte ich mich 

auch bei Prof. Dr. Baniahmad, Prof. Dr. Valentin Stein, Prof. Dr. Witte und Dr. M. Rust für 

die mögliche Begutachtung dieser Arbeit bedanken.  

Dass mein Spaß an der  Wissenschaft gewachsen ist, die alltägliche Laborarbeit nicht 

langweilig wurde und ich die Frustrationen aber auch die Freuden der Forschung mit Euch 

teilen durfte, dafür ein ganz dickes Dankeschön an alle Mitglieder des "Hübner Labors".  

Antje, danke, dass du immer Deine (Labor-) Erfahrung mit mir geteilt hast. Christopher, auch 

wenn mein Chaosprinzip und Deine Ordnungsliebe das ein oder andere Mal kollidiert sind, es 

war mir eine große Freude mit Dir zu arbeiten. Viel Erfolg weiterhin. Mukhran, Deine 

georgische Lebensfreude und Dein "gell" haben mir den ein oder anderen Tag geredet, Dir und 

Deiner Familie alles Gute. Katrin, Du Seele des Labors, danke ganz herzlich, dass Du uns 

immer so aufmerksam und mütterlich umsorgt hast. Alles Liebe! Lutz, dank je well, dafür dass 

unsere Zusammenarbeit so gut geklappt hat. Meera, vielen Dank für die Korrektur der 

Rechtschreibung. Christoph und Ralf, Danke für viel Eis, verlorene Wetten, Schokolade und 

"Mobbing", Ihr habt mir großen Spaß in den Alltag gebracht.  



101 

 

Ingo und seinem Team, den Mitarbeiter der klinischen Chemie, des humangenetischen 

Institutes und des Tierstalles sowie allen, die ich zu erwähnen vergessen habe: vielen lieben 

Dank. 

Für eine tolle Zeit in Paris möchte ich auch Prof. Dr. Dominique Eladari, Dr. Regine 

Chambrey und Dr. Fabien Sohet danken. Merci. In diesem Zusammenhang bedanke ich mich 

auch recht herzlich bei allen weiteren Kollaborationspartnern für die nette Zusammenarbeit 

und vor allem für das großzügige Teilen von Erfahrungen und so manchem Labortrick.  

Am Ende möchte ich mich noch bei meinen Freunden und vor allem bei meiner Familie 

bedanken, die mich wirklich immer unterstützen, an mich glauben und mir vertrauen. Euch 

verdanke ich so viel.  

Zuletzt und doch am tiefsten danke ich Dir, Olli. Du bist mein liebster Weggefährte, mein 

treuester Unterstützer und Beschützer und nun auch meine Familie. Danke für alles. 

  



102 

 

Ehrenwörtliche Erklärung 

Hiermit erkläre ich, dass mir die Promotionsordnung der Medizinischen Fakultät der 

Friedrich-Schiller-Universität bekannt ist, ich die Dissertation selbst angefertigt habe und alle 

von mir benutzten Hilfsmittel, persönlichen Mitteilungen und Quellen in meiner Arbeit 

angegeben sind, mich folgende Personen bei der Auswahl und Auswertung des Materials 

sowie bei der Herstellung des Manuskripts unterstützt haben: Prof. Dr. C.A. Hübner, Dr. L. 

Liebmann, M. Malik und Dr. A. Hübner, die Hilfe eines Promotionsberaters nicht in Anspruch 

genommen wurde und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von 

mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten 

Dissertation stehen, dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche 

oder andere wissenschaftliche Prüfung eingereicht habe und dass ich die gleiche, eine in 

wesentlichen Teilen ähnliche oder eine andere Abhandlung nicht bei einer anderen 

Hochschule als Dissertation eingereicht habe. 

 

 

Jena, 23.08.2011 

 


