
 

 

 

 

NOVEL EVASION STRATEGIES OF  

STAPHYLOCOCCUS AUREUS 

AGAINST THE HUMAN INNATE IMMUNE RESPONSE 

 

 

 

Dissertation 
 

zur Erlangung des akademischen Grades  

doctor rerum naturalium (Dr. rer. nat.) 

 
 

 
 
 

vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät  

der Friedrich-Schiller- Universität Jena 

 
 
von Diplom Biologin Tina Katrin Koch geb. Enghardt 

geboren am 10. November 1984 in Rochlitz 

 

 

 

 



 

 

ii 

 

 

 

 

Gutachter 

 
PD Dr. Christine Skerka 

Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie  

Hans-Knöll- Institut  

Abteilung Infektionsbiologie 

Beutenbergstr. 11a 

07745 Jena 

 
 
Prof. Dr. Oliver Kurzai 

Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie  

Hans-Knöll- Institut  

Abteilung Fungal Septomics 

Beutenbergstr. 11a 

07745 Jena 

 
Prof. Barbara M. Bröker 

Institut für Immunologie und Transfusionsmedizin 

Universität Greifswald 

Sauerbruchstraße 

D-17487 Greifswald 

 

Disputation: Jena am 24.11.2012 



SUMMARY 

 

iii 

SUMMARY 

There is an ongoing competition between the human host and pathogenic 

microbes. The human immune system, especially the immediately acting innate 

immune response, recognizes pathogens, prevents their spreading, and eliminates 

them from the body. By contrast, certain pathogens have developed sophisticated 

strategies to evade and suppress the host immune response.  

This thesis focuses on the functions of the plasma proteins apolipoprotein E 

(apoE) and plasmin in the interactions between the human host and the pathogen 

Staphylococcus aureus. Here, it is shown that antimicrobial peptides (AMPs) were 

generated from the lipid transporter apoE upon cleavage by neutrophil elastase. 

The antimicrobial activity was located to the heparin-binding site of the LDL-

receptor-binding domain of apoE. The full-length protein had no antibacterial, but 

opsonic activity. Additionally, a new function of the human plasma protease 

plasmin, the key enzyme of fibrinolysis, is reported. The serine protease degraded 

the anaphylatoxin and AMP C3a and the apoE-derived AMP SHL14. Thereby 

plasmin terminated bactericidal activity and may facilitate clearance of effector 

molecules that are no longer needed after infections.  

Plasminogen, the precursor of plasmin, is bound and subsequently activated by 

S. aureus, a common commensal, but also a clinically important pathogen. Here, a 

novel type of plasminogen-binding proteins, unique for S. aureus, is shown. The 

staphylococcal proteins Sbi and Efb recruited plasminogen together with the 

complement component C3. Plasminogen, fixed in these complexes, remained 

accessible to the human activator uPa and staphylokinase for conversion into 

plasmin. In the presence of Sbi or Efb, plasmin-mediated degradation of C3 and 

C3b was accelerated likely due to conformational changes in C3 and C3b induced 

by the staphylococcal proteins. Thus, S. aureus efficiently inactivates complement 

activity. Plasmin and the staphylococcal metalloprotease aureolysin were also 

used by S. aureus to degrade the AMP SHL14 and prevented cell damaging. 

Furthermore, both proteases proteolytically inactivated the anti-opsonic activity of 

apoE. 

Taken together, apoE and plasmin(ogen) have different functions in the 

interactions between host and pathogen. ApoE is part of the immune response 

against S. aureus and thus degraded by the pathogen. By contrast, plasmin 

restricts immune reactions and its activity is therefore exploited by S. aureus. 
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ZUSAMMENFASSUNG 

Der Mensch befindet sich in einem andauernden Wettstreit mit krankheitsauslösenden 

Mikroorganismen. Das humane Immunsystem, insbesondere das schnell agierende 

angeborene Abwehrsystem, erkennt Krankheitserreger, verhindert ihre Ausbreitung und 

beseitigt diese gezielt. Allerdings können bestimmte Pathogene der Immunantwort 

entgegenwirken und diese unterdrücken. 

Diese Promotionsarbeit befasst sich mit den Funktionen der Plasmaproteine 

Apolipoprotein E (apoE) und Plasmin bei den Interaktionen zwischen Mensch und dem 

Pathogen Staphylococcus aureus. Es wurde gezeigt, dass antimikrobielle Peptide 

(AMPs) aus dem Lipid-transportierenden Protein apoE durch Verdau mit Neutrophilen-

Elastase hervorgehen. Die antibakteriell wirkende Sequenz war in der 

Heparinbindestelle der LDL-Rezeptor-bindenden Domäne von apoE lokalisiert. Das 

ungeschnittene Protein hatte keine antimikrobielle Aktivität, wirkte aber als Opsonin. 

Weiterhin wurde eine neue Funktion für die Serinprotease Plasmin, das Hauptenzym 

der Fibrinolyse, beschrieben. Plasmin zerschnitt das Anaphylatoxin und AMP C3a und 

das von apoE-abgeleitete AMP SHL14. Dadurch inhibierte Plasmin die zellschädigende 

Aktivität, was vermutlich nach einer abgelaufenen Infektion von Bedeutung ist. 

Plasminogen, der Vorläufer dieser Protease, wird von S. aureus gebunden und zu 

Plasmin aktiviert. S. aureus ist ein weitverbreiteter Kommensale, der jedoch auch eine 

Vielzahl von schweren Erkrankungen hervorrufen kann. In dieser Arbeit wurde ein 

neuer Typ von Plasminogen-Bindung, der einzigartig für S. aureus ist, gezeigt. Die 

Staphylokokkenproteine Sbi und Efb banden Plasminogen zusammen mit der 

Komplementkomponente C3. Plasminogen, welches in diesem Komplex fixiert war, 

konnte durch den humanen Aktivator uPa und durch Staphylokinase zu Plasmin 

umgewandelt werden. Durch die Anwesenheit von Sbi und Efb wurde der Abbau von 

C3 und C3b durch Plasmin verstärkt. Es ist davon auszugehen, dass dieser Effekt 

durch Konformationsänderungen in C3 und C3b, die durch Sbi und Efb verursacht 

wurden, ausgelöst wird. Folglich inaktiviert S. aureus in effizienter Weise das 

Komplementsystem. Plasmin und die Staphylokokkenprotease Aureolysin wurden auch 

von S. aureus genutzt um das AMP SHL14 abzubauen und damit die durch AMPs her-

vorgerufene Zellschädigungen zu verhinderte. Weiterhin degradierten beide Proteasen 

apoE und verhinderten damit die opsonisierende Wirkung dieses Lipoproteins. 

Zusammenfassend wurde gezeigt, dass apoE und Plasmin(ogen) unterschiedliche 

Aufgaben bei den Interaktionen zwischen Wirt und Pathogen übernehmen. ApoE ist Teil 

der Immunantwort gegen S. aureus und wird deshalb vom Pathogen abgebaut. Plasmin 

hingegen kontrolliert verschiedene Immunreaktionen und seine proteolytische Aktivität 

wird von S. aureus. ausgenutzt. 
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ABBREVIATIONS 

Ab  antibody 

AMP   antimicrobial peptide  

ApoE  apolipoprotein E 

Au   Aureolysin  

C  complement protein  

C1IN  C1 inhibitor 

C3aR   C3a-receptor  

C5aR   C5a-receptor/CD88 

CD   cluster of differentiation  

CFUs  colony forming units 

CHIPS  chemotaxis inhibitory protein of S. aureus  

CR   complement receptor  

CRASP  complement regulator acquiring surface protein  

CRP  C- reactive protein  

C-terminus  carboxy-terminus  

DNA  deoxyribonucleic acid 

εACA  epsilon aminocaproic acid 

ECM  extracellular matrix 

Efb   extracellular fibrinogen-binding protein  

Efb-C   Efb carboxy-terminal fragment  

e.g.  exempli gratia, for example 

Ehp   Efb-homologous protein  

F  coagulation factor 

FH  factor H 

HMWK high molecular weight kininogen 

HNE  human neutrophil elastase 

HNP  human neutrophil peptide 

HSA  human serum albumin 

Ig   immunoglobulin  

IL   interleukin  

kDa   kilo Dalton 

LDL  low density lipoprotein 

LPS   lipopolysaccharide  
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LSM  laser scanning microscopy 

M  molar 

MASP  MBL-associated serine protease  

MBL  mannan-binding lectin  

MΦ  macrophage 

MRSA  methicillin-resistant Staphylococcus aureus 

NK  natural killer  

N-terminus amino-terminus 

PAI  plasminogen activator inhibitor 

PAMP   pathogen-associated molecular pattern 

PDB  protein data bank 

PL  plasmin 

PLG  plasminogen 

PMN  polymorphonuclear neutrophil 

PRR   pattern recognition receptors  

RNA  ribonucleic acid 

SAK  staphylokinase  

Sbi  staphylococcal binder of IgG  

SCIN   staphylococcal complement inhibitor  

SHL14 apoE-derived AMP 

SpA   staphylococcal protein A  

SPR   surface plasmon resonance  

SSL   staphylococcal superantigen-like protein  

TED  thioester containing domain 

TCC   terminal complement complex  

tPa  tissue type plasminogen activator 

TNFα   tumor necrosis factor alpha  

uPa  urokinase type plasminogen activator 

VRSA  vancomycin-resistant Staphylococcus aureus 
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1 INTRODUCTION 

1.1 Arms race  

Every day, the human immune system is attacked by a variety of microorganisms 

including bacteria, viruses, fungi, and parasites. Although some microbes harmlessly 

colonize our body and are important for supporting our immune defense (1), others take 

part in the ongoing competition between the human host and pathogens. This process 

is termed evolutionary “arms race”. Originally, the term “arms race” was defined as 

“competition among nations in which each tries to become militarily stronger than the 

other” (Oxford Advanced Learners Dictionary). But today the term is used more 

generally to describe the situation, when two parties with equal powers face each other, 

and struggle to gain advantage over the opponent.  

On one hand, the human immune system fights unwanted intruders by numerous 

defense mechanisms including innate and adaptive immune responses. On the other 

hand, pathogens like Staphylococcus aureus have developed sophisticated strategies 

to successfully evade those defense mechanisms (2). In addition to the human immune 

response, antibiotics are used to kill pathogenic bacteria. But again, some bacteria have 

evolved resistance. Certain S. aureus strains have acquired multiple-drug resistance (3) 

illustrating the importance of research on this bacterium. This study focuses on the 

innate immune response and the evasion mechanisms used by S. aureus.  

1.2 The immune system versus pathogens 

The immune system is based on several effector mechanisms, such as physical barriers 

including epidermis, respiratory epithelium, vascular endothelium, and mucosal 

surfaces. Whenever these barriers are breached, e.g. due to an injury, host innate and 

adaptive immune defenses target foreign intruders (4). Adaptive immunity is mediated 

by T- and B-cells, which present a unique antigen receptor out of a large and diverse 

repertoire on their surface. However, activation, differentiation, and amplification of cells 

carrying a specific receptor (clonal expansion) takes three to five days (5). During this 

time, the host is protected by the actions of the fast acting innate immunity, which uses 

a defined repertoire of germline-encoded antigen receptors. These receptors recognize 

a limited number of evolutionarily conserved microbial structures termed pathogen 

associated molecular patterns (PAMPs) that are essential for the survival of the 

microorganisms. PAMPs are invariant and not associated with mammalian cells, such 

as LPS, peptidoglycan, and sugar mannose (4). PAMP-recognition receptors (PRRs) 
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are found on a variety of human cells, including macrophages, dendritic cells, and B-

cells, but also soluble pattern recognition receptors circulate in the blood, such as 

complement proteins that initiate the complement cascade or act as opsonins. Key 

players of the innate immune response are cationic antimicrobial peptides (AMPs), 

phagocytes, and complement proteins (5). 

1.2.1  Antimicrobial peptides  

Peptides that exert cytotoxic activity against diverse microorganisms including bacteria, 

fungi, some viruses, and eukaryotic parasites are found in plants, animals, and some 

bacteria. In humans, AMPs are synthesized by cells within the epithelial barriers or 

circulating white blood cells (6, 7). Additionally, AMPs can be generated by proteolysis 

of plasma proteins. During infections, neutrophils are recruited to the site of infection 

and they subsequently release proteases, such as elastase (HNE) (8), which cleaves 

e.g. β2-glycoprotein I or high molecular weight kininogen (HMWK) into AMPs (9, 10). 

Interestingly, structural motifs associated with heparin affinity confer antimicrobial 

activity. Thus, synthetic peptides derived from the heparin-binding motifs XBBBXXBX or 

XBBXBX (X represents hydrophobic and B represents basic amino acids; proposed by 

Cardin and Weintraub) act antibacterial (11). 

AMPs mostly have a positive net-charge caused by lysine and arginine residues and 

vary in size, structure, and mode of action. These peptides contain 12 to 50 amino acids 

(12) and are, based on their structure, categorized into four classes: (i) linear α-helical 

peptides, (ii) peptides that contain disulfide-linked β-sheets, (iii) β-hairpins or loops, and 

(iv) extended peptides. The most abundant AMPs contain an α-helical structure, such 

as LL-37, or β-sheets like defensins (FIG. 1) (13, 14). LL-37 consists of 37 amino acids 

and is derived from the 18 kDa precursor CAP18, which is secreted by several cells 

including neutrophils, monocytes, NK-cells, and epithelial cells (15). Defensins are 3.5-

6 kDa peptides that are characterized by three disulfide bridges between six conserved 

cysteine residues e.g. the α-defensin HNP-1 (human neutrophil peptide 1) (16). 
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linear αααα-helix cystine-stabilized ββββ-sheet

LL-37 HNP-1

A                                                    B

 

FIG. 1: Secondary structures of LL-37 and HNP-1. 
Three-dimensional models of the secondary structures of the α-helical peptide LL-37 (A) and 
the α-defensin HNP-1. (B) The backbones of the molecules are shown in blue and disulfide 
bridges are shown in red. These images were prepared from Protein Data Bank (PDB) files 
2K6O (17) and 3HJ2 (Wei et al. to be published) using Chimera software. 

AMPs target microorganisms by their negative net charge caused by anionic 

components, such as peptidoglycan, teichoic acids, lipid A, and phospholipids. Upon 

membrane interaction, AMPs often form amphipathic structures and induce killing by 

perturbation of the cytoplasmic membrane bilayer or by acting on anionic intracellular 

targets, such as DNA or RNA (12, 18-20). The bactericidal activity of AMPs can be 

affected by physiological salt concentrations and the presence of plasma proteins (21, 

22). However, mice lacking the analogue of LL-37 displayed a higher susceptibility to 

necrotic skin infections caused by Streptococcus (15). Furthermore, several AMPs were 

identified to exert additional immunomodulatory functions including chemotaxis of 

leukocytes, induction of histamine release from mast cells, and secretion of cytokines 

and chemokines. Besides these proinflammatory functions, some AMPs also possess 

immune suppressive activity by neutralizing LPS and other bacterial products (12). 

AMPs can act against multidrug-resistance microorganisms, and are therefore 

considered as new antibiotics. AMPs possess several positive features like selective 

toxicity to the pathogenic target, broad spectrum of activity, neutralization of endotoxins, 

and the unaffectedness by classical antibiotic resistance. However, AMP therapeutics 

have certain disadvantages, such as the high production costs, susceptibility to 

proteolytic degradation, and the very high doses necessary for effective killing of 

microorganisms (14).  

1.2.2  Phagocytes 

Macrophages, dendritic cells, and polymorphonuclear neutrophils (PMNs) are 

professional phagocytes, which recognize and eliminate infectious agents and remove 
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apoptotic cells. Phagocytes detect their targets directly or indirectly by opsonins using 

PRRs, such as Toll-like receptors, scavenger receptors or opsonin receptors. Classical 

opsonins are components of the complement system like C1q, mannose-binding lectin 

(MBL), C3b, iC3b, and immunoglobulins (IgGs). In addition, serum proteins, such as 

CRP, β2-glycoprotein I, protein S, fibronectin, and vitronectin are bridging molecules, 

which bind to apoptotic cells and phagocyte receptors to facilitate phagocytosis (23, 24).  

Upon binding, the targets are internalized and trapped in a phagosome that fuses with a 

lysosome to form the phagolysosome. The lysosome contains proteolytic enzymes like 

elastase or lysozyme, cationic antimicrobial peptides and proteins, reactive oxygen 

species, several lipases, nucleases, glycosidases, and phosphatases, which lead to the 

destruction of large complex structures, such as microbial intruders (25). Among all 

phagocytes, PMNs are the best equipped and the first to arrive at the site of infections 

(26).  

1.2.3  The complement system 

The complement system was originally discovered as the heat-labile part of immune 

reactions that “complement” the killing of bacteria in serum. This immune surveillance 

system comprises over 30 plasma and cell-bound proteins. Complement is the first line 

of defense against microbial intruders. It also links innate and adaptive immunity by 

helping T- and B-cells to eliminate pathogens and facilitates the clearance of apoptotic 

cells, as well as immune complexes, from the circulation (27-30).  

The alternative pathway is constantly activated by spontaneous hydrolysis (tick over) of 

C3 to C3(H2O), which recruits factor B. Bound factor B is cleaved by the plasma 

protease factor D into Ba and Bb forming the fluid-phase C3 convertase C3(H2O)Bb. In 

addition, the classical pathway is activated by the recognition of immune complexes on 

target cells by C1q. Thereby the C1q associated serine proteases C1r and C1s are 

activated. The lectin pathway is initiated when MBLs or ficolins recognize carbohydrate 

moieties leading to auto-activation of MBL-associated serine proteases (MASPs). The 

activated serine proteases of the classical and lectin pathways proteolytically activate 

C4 to C4a and C4b. The cleavage product C4b covalently attaches to the target 

surface, binds C2, which is also cleaved, and assembles the C3 convertase (C2a4b). All 

three complement activation pathways merge in the formation of C3 convertases, which 

cleave the central component C3 into C3a and the opsonin C3b (29-31). C3a has 

several physiological functions such as antimicrobial activity against Gram-positive and 

–negative bacteria. The molecule shares features of α-helical AMPs and defensins. C3a 
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is a cationic peptide of 77 amino acid residues containing four α-helical structures linked 

by three disulfide-bridges (FIG. 2). Additionally, C3a acts as potent chemoattractant for 

phagocytes, causes histamine release, and induces oxidative burst from neutrophils 

(30, 32, 33).  

 

 
 
FIG. 2: Secondary structure of C3a. 
Three-dimensional model of the C3a 
secondary structure based on PDB file 2A73 
(34). The backbone is shown in orange and 
disulfide bridges are colored in red.  

C3b covalently attaches to the target cell surface, amplifies complement activation by 

forming the solid-phase C3 convertase (C3bBb), and labels the cells to support 

phagocytosis (opsonization). Furthermore, C3b deposition leads to formation of C5 

convertases, which cleave C5 into C5a and C5b. C5a is a potent anaphylatoxin, which 

attracts phagocytes to infection sites and is also involved in activation of phagocytes, 

generation of oxidants, and release of granule-based enzymes (35). C5b associates 

with C6, C7, C8, and C9 and forms the terminal complement complex (TCC) on the 

target cell surface leading to lysis of certain cells, such as Gram-negative bacteria (FIG. 

3) (27-29).  
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FIG. 3: Scheme of the human complement system. 
The complement system is initiated by three different pathways. The alternative pathway is 
continuously activated by spontaneous hydrolysis of C3, the lectin pathway is activated by 
binding of mannan-binding lectin (MBL) to mannose residues, and the classical pathway is 
initiated by binding of the C1-complex to antigen bound antibodies. All pathways converge in 
the cleavage of C3 by C3-convertases. The cleavage product C3a exerts antimicrobial activity. 
C3b deposits on targets cells, marking them for phagocytosis, and forming C5-convertases, 
which cleave C5 into C5a and C5b. C5a and C3a are small chemoattractant molecules that 
recruit phagocytes to the site of infection. C5b together with C6, C7, C8 and multiple C9 
molecules forms a lytic terminal complement complex (TCC). Schematic illustration is modified 
after (29) and (31). 

To protect host cells from the deleterious effects of complement, the cascade is tightly 

regulated. Initiation, amplification, and effector functions are supervised by soluble and 

membrane-bound regulators. The amplification of C3 convertases and the subsequent 
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cleavage of C3 are especially tightly regulated. C3 is a 187 kDa protein that consists of 

an α- and β-chain linked by two disulfide bridges. The molecule is arranged in 8 

macroglobulin domains, a linker domain, an anaphylatoxin domain, a CUB (complement 

C1r/C1s, Uegf, Bmp1) domain, a thioester containing domain (TED), and the C345c 

domain. In the intact protein the reactive thioester group is buried in the molecule. Upon 

complement activation C3 and its fragments undergo various conformational changes 

(FIG. 4). C3 convertases release C3a, the anaphylatoxin domain (shown in orange), from 

the molecule. The remaining 12 domains, especially the CUB domain (shown in cyan) 

and TED (shown in green), rearrange and the thioester moiety covalently attaches to the 

target surface or reacts with water. In contrast to the rather inert C3, C3b interacts with 

factor B to initiate the amplification loop of the alternative pathway or binds complement 

regulatory proteins, such as the main fluid phase regulator of the alternative pathway 

factor H (31). Factor H is a 150 kDa glycoprotein that is continuously produced by liver 

cells and circulates with a concentration between 500-800 µg/ml in human plasma. This 

protein has three complement regulatory functions, factor H (i) inhibits the alternative 

convertase assembly, (ii) accelerates the decay of the C3 convertase, and (iii) serves 

factor I as cofactor for the proteolytic inactivation of C3b yielding iC3b (36). iC3b is 

recognized by complement receptors 3 and 4 (CR3/CD11b-CD18 and CR4/CD11c-

CD18), or further degraded by factor I and the membrane-bound cofactor CR1 (CD35) 

into C3c, and C3dg (31, 37). C3dg remains covalently linked to the target surface and is 

recognized by CR2 (CD21) expressed on B-cells, follicular dendritic cells, and immature 

T-cells. Antigen-bound C3dg lowers the threshold for B-cell activation by the antigen 

receptor and thereby accelerates adaptive immunity (38). 

C3aCUB

TED

C3(H2O) C3 C3b iC3b C3c

C3dg

C3 convertase   Factor I
+ cofactor

Factor I
+ cofactor

surface
 

FIG. 4: Schematic presentation of the structures of C3 and its fragments.  
Spontaneous hydrolysis of C3 leads to C3(H2O). C3 is cleaved by the C3 convertase into C3a 
and C3b, which attaches to a target surface. Processing by factor I and an appropriate cofactor 
generates iC3b and C3f (not shown), and then C3c and C3dg. This figure is adopted from (31) 
with minor modifications.  
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1.2.4  The coagulation system 

Besides the classical components of innate immunity, coagulation is believed to be also 

involved in the host response to bacterial infections (39, 40). Coagulation is a cascade 

of plasma proteases that forms blood clots at the site of injury to stop extensive 

bleeding. Additionally, these clots trap bacteria and impair their spreading (FIG. 5). 

Blood coagulation is initiated via an intrinsic pathway (all components are present in 

blood) or by an extrinsic pathway (one component is required in addition to the 

circulating components). The extrinsic pathway is activated when tissue factor, normally 

hidden in the subendothelial layer, is exposed to blood due to tissue damage. Tissue 

factor nonproteolytically activates FVII to FVIIa and, complexed with FVIIa, converts FX 

and FIX to the active forms FXa and FIXa, respectively. The intrinsic activation pathway 

is initiated by contact to an anionic or hydrophilic solid surface, which converts the 

zymogen FXII (Hageman factor) into the active form FXIIa in a kallikrein-HMWK-

dependent fashion. Sequentially, the coagulation factors FXI, FIX, and FVIII are 

activated and a tenase complex is formed. Extrinsic and intrinsic pathways merge into 

the activation of FX to FXa, which forms a prothombinase complex with FVa leading to 

the proteolytic activation and conversion of prothrombin to thrombin. In the final step, 

thrombin hydrolyzes fibrinogen to fibrin, which oligomerizes and causes plasma 

coagulation. Activated FIXa together with FVIIIa amplifies the clotting reaction through 

acceleration of FX activation (39, 41).  
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FIG. 5: Scheme of the human coagulation system. 
Blood coagulation can be initiated by tissue damage (extrinsic pathway) or anionic surfaces 
(intrinsic pathway). Activation culminates in generation of thrombin. Thrombin cleaves fibrinogen 
yielding cross-linked fibrin clots, which stop bleeding and trap pathogens. Scheme is modified 
after (39) and (40). 

To prevent uncontrolled bleeding or thrombosis, pro- and anticoagulant factors need to 

be balanced. Coagulation is negatively regulated by the anticoagulation system 

including regulators at each level which prevent or slow the propagation of fibrin clots. In 

addition, the fibrinolytic system, also known as plasminogen-plasmin system, plays a 

key role in maintaining the equilibrium between coagulation and fibrinolysis (39, 42). 

1.2.5  The plasminogen-plasmin system 

The primary function of the fibrinolytic system is the dissolution of existing fibrin clots to 

allow wound healing processes. Additionally, plasmin, the main fibrinolytic enzyme, 

degrades components of the extracellular matrix (ECM) to facilitate eukaryotic cell 
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migration, and proteolytically activates prohormones, growth factors and 

metalloproteases (39, 43, 44). 

The human plasma protein plasminogen is the zymogen of the serine protease plasmin. 

Plasminogen is primarily synthesized by liver cells (45), and circulates in plasma with a 

concentration of ~2 µM (46). Plasminogen, whose three-dimensional structure was 

recently solved by Law et al. (47), has a molecular weight of 92 kDa and consists of five 

kringle domains and a protease domain ( 

 

FIG. 6) (48). Each of the kringle domains, which are named after the Danish pastry, 

consists of 78-80 conserved residues that form a triple-loop structure linked by disulfide 

bridges. The kringle domains contain the binding site for lysine residues in fibrin, 

components of the ECM, and several cell receptors. The proteolytic domain is 

composed of 230 residues containing the catalytic triad His603, Asp646, and Ser741  

Conversion of plasminogen to plasmin is facilitated by human or bacterial activators 

(43). The two human activators uPa (urokinase-type) and tPa (tissue-type) are serine 

proteases that cleave the Arg561-Val565 bond in plasminogen. The resulting plasmin 

consists of two disulfide-linked polypeptide chains (49). Plasmin preferably cleaves 

peptide bonds next to lysine or arginine residues (50) and has a broad-substrate 

specificity including fibrinogen, fibrin, components of the ECM (laminin, vitronectin, 

fibronectin), and complement components, such as C1, C2, C3, C3b, C4, and C5 (51-

55).  

Plasminogen occurs in various modifications. The native form Glu-plasminogen 

contains an N-terminal 8 kDa preactivation peptide that is released by plasmin resulting 

in Lys-plasminogen. Lys-plasminogen binds with higher affinity to target molecules and 

receptors and also facilitates conversion to plasmin (56). Additionally, limited proteolysis 

of plasminogen yields mini-plasminogen comprising kringle 5 and the protease domain. 

Plasminogen is also subject to posttranslational modification that consists of Asn289
-, 

Thr346
-, Ser248

-, Thr339-linked glycosylation, and O-linked phosphorylation (44). The 

plasminogen-plasmin system is tightly regulated by inhibition of plasminogen activators 

(plasminogen activator inhibitor (PAI)-1 and -2) or by inhibition of the activated protease 

plasmin (α2-antiplasmin and α2-macroglobulin) (57). 
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FIG. 6: Structure of 
plasminogen. 
(A) Three-dimensional structure 
of plasminogen prepared from 
PDB file 4DUR (47). The pre-
activation peptide is shown in 
grey, kringle domains are green, 
and the serine protease domain 
is yellow. (B) The schematic 
structure of plasminogen is 
modified after (44). Cleavage 
sites for plasmin, uPa, and tPa 
are indicated by scissors.  

 

1.2.6  Cross-talk between complement, coagulation, and fibrinolysis 

Complement, coagulation, and its antagonist, the fibrinolytic system, have several 

crossover points linking the three protein networks together (40, 52, 58, 59). In 

particular, the classical complement activation pathway is also initiated by clotting factor 

FXIIa, which activates the C1-complex (60). Complement C5a induces tissue factor 

activity and may therefore be involved in the initiation of the extrinsic coagulation 

pathway (61). Additionally, serine proteases of the coagulation and fibrinolytic system 

were reported to cleave components of the complement cascade e.g. thrombin, 

kallikrein, FXa, FXIa, FIXa, and plasmin nontraditionally activate complement by 

cleaving C3 and C5 resulting in C3a and C5a generation (52). Moreover, C1 inhibitor 

(C1IN) regulates both, the complement and coagulation cascades, by inhibiting C1r, 

C1s, MASP2, plasma kallikrein, and FXIIa (62). 

1.2.7  Apolipoprotein E 

Apolipoprotein E (apoE) is a 34 kDa glycoprotein expressed by many tissues including 

liver, brain, skin and tissue macrophages. This protein is associated with a variety of 

diseases including the Alzheimer’s disease, dementia, diabetes, kidney- and 

cardiovascular disorders. ApoE is composed of two distinct functional domains that are 
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linked by a region of random like structure. The N-terminal domain forms a four-helix 

bundle, in which helix 4 contains the binding site for heparin and for receptors of the 

LDL-receptor family. The C-terminal domain consists of amphipathic α-helices that 

constitute the major lipid-binding site and an additional heparin-binding site. ApoE is 

polymorphic and exhibits three isoforms, apoE2, the most abundant E3, and E4, which 

differ at the two residues 112 and 158 (E3: cys112, arg158, E4: arg112, arg158, E2: cys112, 

cys158) (FIG. 7). Although there is only a single amino acid substitution, the structure 

and thus the function of apoE2 and E4 are dramatically changed. ApoE2 binds less to 

the LDL-receptor and apoE4 preferentially binds VLDLs instead of HDLs. Both 

dysfunctions are associated with diseases, apoE2 with the genetic disorder type III 

hyperlipoproteinemia and atherosclerosis and apoE4 with atherosclerosis and the 

Alzheimer’s disease (63, 64). 

Cys112

Arg158

N- -CLDL-receptor lipid

A

B

 

 
FIG. 7: Structure of apoE3.  
(A) Three-dimensional structure of 
apoE prepared from PDB file 2L7B 
(65). The LDL-receptor domain is 
shown in blue (LDL-receptor-
binding site in aquamarine) and the 
lipid-binding domain in black. 
Residue 112 and 158 are shown in 
orange. (B) Schematic structure of 
apoE. Heparin-binding motifs are 
white.  

ApoE was originally described as a component of triglyceride-rich lipoproteins. The 

protein transports and delivers triglycerides and cholesterol to extrahepatic cells or the 

liver (66). Over the last 30 years further functions are discussed. Mice lacking apoE 

display susceptibility to bacterial infections indicating that apoE contributes to immunity 

(67-69). ApoE was found to modulate NO, IL-12, TNF-α production, MHCs expression 

(70), lipid antigen presentation by CD1d (71), uptake of apoptotic cells (72) and β-

amyloid (73) by macrophages. Additionally, synthetic peptides derived from the LDL-

receptor-binding site showed antibacterial (74) and antiviral activity (75, 76). However, 

their natural occurrence remained unclear. Recently, apoE was detected on the surface 

of S. aureus (77). 
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1.3 Pathogens versus the innate immune response 

1.3.1  Staphylococcus aureus 

S. aureus is a Gram-positive coccus-shaped bacterium that lives as a commensal on 

the skin, nose and throat. Approximately 30% of humans are asymptomatically 

colonized by this bacterium. However, S. aureus also causes diverse complications 

including minor skin infections, endocarditis, and sepsis. Furthermore, S. aureus is a 

major cause of food poising caused by the heat resistant enterotoxin A (78). The 

bacterium belongs to the leading cause of nosocomial infections and rapidly develops 

antibiotic resistance. The most severe infections are caused by the increasing number 

of MRSA strains, which are resistant to the entire class of β-lactam antibiotics including 

methicillin (79). These staphylococcal infections are treated with vancomycin, an 

antibiotic that disrupts the synthesis of the cell wall component peptidoglycan. However, 

some S. aureus strains (VRSA) have already been reported to be resistant (3). In order 

to catch up with the bacteria in the evolutionary “arms race” and develop new 

antibacterial substances, the staphylococcal pathogenicity needs to be understood. 

1.3.2  Staphylococcal evasion strategies – an overview 

To establish in the human host, S. aureus circumvents the immune defenses, especially 

the immediately acting innate immunity. The bacterium targets all branches of innate 

immune response using an arsenal of virulence factors including (i) small nonproteolytic 

molecules that directly inhibit host effector proteins, (ii) proteases and activators for host 

proteases, and (iii) surface-bound molecules that acquire and exploit host regulators (2, 

26, 80). 

S. aureus counteracts AMPs by at least four mechanisms: (i) alteration of membrane 

structure and fluidity e.g. by increase of longer chain unsaturated fatty acids, (ii) 

reduction of the negative surface net charge by modification of teichoic acids with D-

alanine or phospholipids with L-lysine, (iii) secretion of trapping molecules like 

staphylokinase (SAK), which binds and inhibits α-defensins, and (iv) proteolytic 

degradation of AMPs by secreted proteases ( 

FIG. 8) (7, 19). 
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FIG. 8: Staphylococcal evasion 
strategies against AMPs. 
S. aureus counteracts AMPs by 
several mechanisms. The 
pathogen modifies its membrane 
structure or net charge and 
secretes trapping molecules or 
proteases that inactivate AMPs 
(19).  

 

Moreover, S. aureus thwarts phagocytes in multiple ways. S. aureus secretes CHIPS 

(chemotaxis inhibitory protein of staphylococci), which blocks neutrophil receptors for 

the major chemoattractants C5a and fMLP (N-formyl-methionine-leucine-phenylalanin) 

(81). To evade opsonization, S. aureus expresses IgG-binding proteins, such as 

staphylococcal protein A (SpA), superantigen-like protein-10 (SSL-10), and 

staphylococcal binder of IgG (Sbi), which all sequester the Fc-region of IgGs (82-85). 

Most clinical isolates express a capsule, which reduces the uptake by neutrophils in 

vitro (86). Additionally, S. aureus has the ability to survive in phagocytes, e.g. by 

scavenging oxygen free radicals through its yellow pigment (87). By blocking the 

complement cascade, the bacterium inhibits chemotaxis caused by the anaphylatoxins 

C3a and C5a, as well as opsonization by the complement-derived opsonins C3b and 

iC3b. 

S. aureus is a master at evading the complement system as the pathogen expresses 

specific small proteins and proteases to influence nearly every step of the cascade 

(FIG. 9). Initiation of the classical pathway is inhibited by IgG-binding proteins (26, 85, 

88) or degradation of IgGs by SAK-activated plasmin (1.3.5). S. aureus interferes with 

complement at the C3 level by producing (i) C3-binding proteins (reviewed in chapter 

1.3.3), (ii) the C3 convertase stabilizer SCIN (staphylococcal complement inhibitor) (89), 

and (iii) aureolysin (Au), which degrades C3 (1.3.4). The bacterium also (iv) activates 

the C3-degrading host protease plasmin by SAK (1.3.5), and (v) exploits the activity of 

the host complement regulators factor I and factor H (90-92). Moreover, staphylococcal 

superantigen-like protein-7 (SSL-7) binds to C5 and thereby inhibits TCC formation (93).  
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FIG. 9: Complement evasion by staphylococcal inhibitors. 
S. aureus secretes a variety of small complement inhibitory molecules (shown as pink 
pentagons) that target certain steps of the cascade or bind the complement regulatory protein 
factor H (FH).  

1.3.3  The C3-binding proteins Sbi and Efb 

To date, three structurally related C3-binding proteins secreted by S. aureus have been 

identified (94): Sbi, extracellular fibrinogen-binding protein (Efb), and its homolog Ehp. 

Sbi is a ~50 kDa protein that comprises four structural domains, a proline repeat-

containing linker (P) and tyrosine-rich region (Y) (FIG. 10). The protein is detected in the 

extracellular fractions and on the bacterial surface. Sbi was originally identified as the 

second IgG-binding protein of S. aureus and the binding site was mapped to the two N-

terminal domains Sbi 1 and 2 (I-II). Pull-down experiments further showed that domains 

3 and 4 (III-IV) bind complement C3d in native C3, iC3b, and C3dg and that these 

domains inhibited all complement pathways (90, 95, 96). Burman et al. proposed that 

Sbi 3-4 causes fluid phase consumption of C3 (95). Additionally, Sbi was found to form 



INTRODUCTION 

 

16 

a tripartite complex with C3 (C3b, C3d) and the complement regulator factor H, to 

exploit factor H cofactor activity for factor I-mediated inactivation of C3b (90).  

N- -C

Sbi IV
C3

A                                                                             B

 

FIG. 10: Structure of Sbi. 
(A) Sbi consists of four globular domains (I-IV), a proline-rich (P) and tyrosine-rich (Y) region. 
The N-terminal domains bind IgGs and Sbi 3 and 4 (III-IV) interact with C3. This illustration is 
derived from (95) and (90). (B) The three-dimensional structure of domain 4 displays an α-
helical bundle. This image is prepared from PDB file 2JVG (94). 

The 19 kDa Efb consists of an N-terminal fibrinogen-binding domain and a C-terminal 

C3-binding domain. The protein is secreted and also present on the bacterial surface 

(97, 98). In addition to Efb, Ehp, a ~10 kDa homologue protein (44% identity), is 

secreted by S. aureus. Efb and Ehp, like Sbi, bind various forms of C3 containing the 

C3d fragment (98-100). Furthermore, Efb induces conformational changes in C3 and 

C3b that allosterically inhibit the participation of C3 and C3b in downstream activation 

processes of the complement cascade (100-102). Efb-C, Ehp, and Sbi 4 mainly bind to 

the same residues in C3d (100, 103) and contain a three helix domain (shown in orange 

FIG. 10 and FIG. 11) that is also present in other staphylococcal complement inhibitors, 

such as SCIN (94). Efb, Ehp, and Sbi block the interaction of C3d with CR2 to inhibit a 

crucial link between the innate and adaptive immunity (104, 105).  

N- -C Efb-C

C3d

A                                               B

C3

 

FIG. 11: Structure of Efb. 
(A) Efb consists of an N-terminal fibrinogen-binding domain and a C-terminal C3-binding 
domain. (B). Three-dimensional structure of Efb-C in complex with C3d. Efb-C, like Sbi 4, 
consists of three α-helices. Figure was adapted from PDB file 3D5S (106). 
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1.3.4  Staphylococcal proteases 

Pathogenic proteases are believed to play an important role during infections (1). The 

staphylococcal arsenal comprises serine (e.g. V8 protease), cysteine (staphopains) and 

metalloproteases (aureolysin). The V8 protease has narrow substrate specificity; 

however the protease inactivates the plasma protease inhibitor α1-proteinase inhibitor, 

which protects tissues from enzymes of inflammatory cells, such as HNE. Additionally, 

V8 protease, like staphopain A/B, targets the intrinsic coagulation pathway by releasing 

kinins, which facilitate spreading of microorganisms and may promote influx of plasma 

containing nutrients (1, 107, 108). 

Aureolysin is an EDTA-sensitive metalloprotease, which is secreted throughout the 

bacterial growth cycle to target bacterial and host proteins (109). The protease activates 

V8 (110) and releases a variety of surface-bound staphylococcal proteins, such as SpA, 

to facilitate the transition from adherent to invasive phenotype. Among the host 

substrates are the α-helical AMP LL-37, protease inhibitors, and components of the 

fibrinolytic and complement system (107, 111). For example, aureolysin activates the 

precursor of the human plasminogen activator pro-uPa to uPa, inactivates the plasmin 

inhibitor α2-antiplasmin (112), and cleaves C3 leading to inhibition of complement-

mediated phagocytosis and neutrophil activation (113). 

1.3.5  Hijacking plasmin(ogen) 

S. aureus, like numerous other bacteria, acquires the host regulatory protein 

plasminogen (2, 26, 43, 114) and uses activated plasmin to create uncontrolled 

proteolysis that facilitates bacterial migration across tissue barriers and accommodates 

nutritional demands (115). In addition, S. aureus benefits of plasmin-mediated 

degradation of the opsonins C3b and IgG (116). 

Previously, three staphylococcal plasminogen-binding proteins have been identified: 

inosine 5′-monophosphate dehydrogenase, α-enolase, and ribonucleotide reductase 

(117). Remarkably, S. aureus activates plasminogen by several strategies: (i) the 

bacterium enhances the production of uPa in mammalian cells (57), (ii) secretes the 

proteases aureolysin, which activates the host plasminogen activator uPa (112), and (iii) 

produces the nonproteolytic plasminogen activator staphylokinase (SAK) (118, 119).  
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FIG. 12: Structure of SAK in complex 
with SP (plasminogen). 
SAK, shown in orange, forms a complex 
with the serine protease domain (SP) of 
plasminogen, two SPs are shown in 
yellow, and non-proteolytically 
generates plasmin. Image is adapted 
from PDB file 1BUI (120). 

 

SAK is a ~16 kDa single chain protein whose three-dimensional crystal structure 

consists of a central α-helix, five β-sheets, and a connecting loop (121). SAK is 

synthesized during the late exponential growth phase by 67% of S. aureus strains and 

detected in the supernatant as well as on the bacterial surface (122). The protein forms 

a complex with the serine protease domain of plasminogen leading to a conformational 

change in plasminogen that facilitates the activation by spontaneously formed plasmin. 

SAK binds stronger to substrate-bound plasminogen, especially in complex with fibrin, 

than to soluble plasminogen (121). Due to its thrombolytic and clot-cleaving activity, 

SAK is a potential therapeutic for treatment of arterial thromboses and myocardial 

infarctions (119). Furthermore, SAK was found to have an additional immune evasion 

function. The protein binds the α-defensins HNP-1 and -2, and inhibits their bactericidal 

activity (123). 
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1.4 Aims of the study 

S. aureus is one of the major human pathogens that cause several severe diseases. 

The bacterium is a specialist in immune evasion and rapidly acquires resistance to 

antibiotics. To develop new antibacterial therapies, a deeper understanding of the 

human immune response as well as the evasion mechanisms involving staphylococcal 

virulence factors is required. Therefore, the functions of apoE and plasmin in the 

interactions between the human host and S. aureus will be investigated. 

ApoE-deficient mice show an increased susceptibility to bacterial infections, but the 

underlying mechanisms is not completely understood. Thus, the role of apoE in innate 

immunity will be characterized. One aim of the study is to investigate the antimicrobial 

activity of apoE, as this plasma protein harbors amphipathic α-helices and heparin-

binding motifs that are common features of AMPs. In addition, apoE was detected on 

the surface of S. aureus after exposure to human plasma. Therefore, the function of 

apoE on the bacterial surface will be assessed. 

S. aureus successfully evades the innate immune response using several virulence 

factors including complement inhibitors and proteases. S. aureus traps and activates 

the host protease plasmin for degradation of the complement-derived opsonin C3b. 

Controversially, plasmin can also initiate complement by generating C3a; thus, the 

effect of plasmin on complement activity at the C3 level and the consequences for 

S. aureus will be investigated. In addition to the proteolytic inactivation of C3/C3b, the 

bacterium expresses the C3-binding proteins Sbi and Efb. However, it is not clear 

whether these proteins influence the proteolysis of C3/C3b, therefore the impact of Sbi 

and Efb on plasmin-mediated C3/C3b degradation will be assessed.  

As some AMPs are sensitive to proteolytic degradation, plasmin activity against AMPs 

is analyzed and compared to aureolysin, a metalloprotease secreted by all S. aureus 

strains that degrades the α-helical AMP LL-37. Furthermore, the effects of plasmin and 

aureolysin on apoE-mediated immune reactions will be investigated.  

The results are expected to deepen our knowledge about the functions of apoE and 

plasmin in innate immunity and immune evasion and provide insight into some of the 

mechanisms deployed by S. aureus to counteract the human innate immune responses. 
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2 MATERIALS & METHODS 

2.1  Chemicals and Reagents 

Unless specified otherwise, chemicals and reagents were purchased in the highest 

available quality from Sigma or Roth. 

2.2  Proteins, peptides, and enzymes 

Plasminogen (PLG) and urokinase type activator (uPa) were purchased from 

Haemochrom Diagnostica, and plasmin (PL) from Calbiochem. Complement protein 3 

(C3) and its fragments: C3b, iC3b, C3c, and C3a from Comptech. Apolipoprotein E 

(apoE) was obtained from Acris or BioVision and HSA from Cleveland, Ohio. The 

synthetic peptides LGR11; SHL14; WGE23, and LRV30 were synthesized by Peptide 

2.0 (USA); LL-37 by Sigma, and FITC-labeled SHL14 by Biomatik (Canada). Human 

neutrophil elastase (HNE) was obtained from Scipac and aureolysin from BioCentrum.  

2.3  Media and supplements 

All E. coli strains were cultivated in LB (Luria Broth) medium (10 g bacto-tryptone, 5 g 

bacto-yeast extract, 10 g NaCl, pH adjusted to 7.2; autoclaved) or LB agar plates (LB 

medium, 15 g/l agar) at 37°C.  

To select for clones containing the desired plasmid LB medium was supplemented with 

50-100 µg/ml ampicillin (Invitrogen) or 100 µg/ml kanamycin (Roth). 

S. aureus was grown in LB medium or on blood agar plates (Merck) at 37°C. 

For viable OD assays, E. coli or S. aureus was grown in 3% TSB (tryptic soy broth) 

medium (Fluka). 

2.4  Bacterial strains  

Escherichia coli  

E. coli DH5α was used for antimicrobial assays. 

One Shot® TOP10 competent E. coli (Invitrogen) that lacks T7 RNA polymerase was 

used for characterization, propagation, and maintenance of the plasmid construct.  

The E. coli expression strain BL21 Star™ (DE3) (Invitrogen) was used for protein 

expression. 
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Staphylococcus aureus  

S. aureus Newman was used for antimicrobial assays, phagocytosis assays, and its 

DNA was used as template for cloning SAK and Sbi 1-2. 

2.5  Plasmids and primers 

TOPO Expression plasmids 

 

FIG. 13: Expression 
plasmid used for cloning of 
SAK and Sbi 1-2. 
pET101/D-TOPO contains a 
GTGG overhang sequence 
that base pairs with the 
desired insert. Expressed 
proteins contain a C-terminal 
His-tag. 

 

 

The expression plasmid pET101/D-TOPO® (Invitrogen) (FIG. 13) contains a C-terminal 

6x His-tag coding sequence, an ampicillin resistance gene, and its expression is 

controlled by the T7 promoter region. 

The expression plasmid pET200® (Invitrogen) contains an N-terminal 6xHis-tag coding 

sequence, an ampicillin as well as a kanamycin resistance gene, and its expression is 

controlled by the T7 promoter region. pET200 containing sbi 1-4, sbi 3-4, efb, or efb-C 

was previously constructed in this laboratory (M. Reuter, S. Böhm). 

Primer 

Sak and the sbi 1-2 constructs were amplified using the following oligonucleotide 

primers (Invitrogen):  

SAK   Fwd: CACCATGCTCAAAAGAGGTTTATTATTTTTAAC 

Rev: TTTCTTTTCTATAATAACCTTTGTAATTAAGTTG 

Sbi1-2   Fwd: CACCATGACAACTCAAAACAACTACGTAAC 

Rev: ATTTTGACGTTCTTTAGCTTTAGAAGATTGTACTG 

The forward primers contained CACC at the 5´end to allow directional cloning and ATG 

as start codon. The reverse primer did not include the stop codon to allow expression of 

the C-terminal His-tag. 
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2.6  Molecular biology 

Cloning strategy 

Cloning of sak and sbi 1-2 into pET101/D-TOPO® were performed according to 

manufacturer´s instructions (Invitrogen). Crucial steps are shown in FIG. 14: 

 

 
 
FIG. 14: Cloning strategy of SAK 
and Sbi 1-2. 
(I) Blunt-end PCR products containing 
sak or sbi 1-2 were amplified. (II) PCR 
products were inserted into the 
expression vector pET101/D-TOPO 
(III) and the resulting vectors were 
transformed into TOP10 E. coli cells. 
(IV) Colonies were analyzed by colony 
PCR. (V) Plasmid DNA was isolated 
from a positive transformant and 
sequenced. (VI) The desired plasmids 
were transformed into the expression 
strain BL21 Star. 

PCR 

A blunt-end PCR product of sak or sbi 1-2 was amplified (GeneAmp® PCR System 

9700-Applied Biosystems) using the appropriate primers, heat inactivated S. aureus 

Newman DNA as template, Phusion DNA polymerase (Finnzymes), and the following 

temperature cycle: 

98°C 30s  

35 cycles of: 98°C 20 s, 60°C 30 s, 72°C 30 s 

72°C 7 min. 

Agarose gel electrophoresis 

Agarose gel electrophoresis was used to analyze the amplified DNA fragments. 

Samples were mixed with 6x DNA loading dye solution (Fermentas) and separated 

using 1% TBE (890 mM tris, 890 mM boric acid, 20 mM EDTA) agarose gel containing 

0.1 µg/ml ethidium bromide. SmartLadder (Erogentec) was used as marker. DNA bands 

were visualized under UV light in a gel documentation system (BioRad). 
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TOPO cloning reaction and transformation 

For the TOPO cloning reaction 2 µl of successfully amplified sak or sbi 1-2 PCR 

reaction were mixed with 1 µl salt solution, 2 µl sterile water, and 1 µl TOPO vector and 

incubated for 5 min before the reaction mixture was transformed into One Shot TOP10 

E. coli competent cells. Transformed bacteria were then cultivated on LB plates 

containing 50 µg/ml ampicillin. 

Colony screening 

Colonies were analyzed for positive clones using colony PCR with 2 µl of heat 

inactivated cell lysate, 1.5 µl of the appropriate forward and reverse primers, 7.5 µl 

sterile water, and 12.5 µl Hot Start Master Mix (Quiagen) in the following temperature 

cycle: 

95°C 15 min 

25 cycles of: 94°C 30 s, 60°C 40 s, 72°C 60 s 

72°C 10 min. 

Plasmid isolation & sequencing 

PCR products were analyzed by agarose gel electrophoresis and sak or sbi 1-2 

containing clones were cultivated for plasmid isolation in 3 ml LB medium 

(supplemented with ampicillin) overnight at 37°C with shaking. Plasmids were isolated 

using Spin Plasmid Mini Two Kit (Invitek) following the manufacturer’s instructions. 

Briefly, cells were harvested, resuspended in 250 µl of the supplied resuspension 

buffer, and lysed by lysing buffer. Thereafter a neutralization buffer was added and the 

mixture was centrifuged at 3000 g for 10 min. The supernatant was applied to a 

QIAprep spin column and the plasmid DNA was bound to the column through 

centrifugation at 3000x g for 30 s. Before elution of the plasmid DNA in 30 µl water, the 

column was washed with wash buffer. 

In order to confirm that sak or sbi 1-2 was in frame with the C-terminal His-tag and to 

exclude mutations in the sequence, plasmids containing the construct were sequenced 

via Sanger sequencing using an ABI PRISM® 3130x Genetic Analyzer (Applied 

Biosystem).  
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Storage of strains 

For long term storage, glycerol stocks of the E. coli strains containing the desired pET 

constructs were prepared. Therefore 750 µl of an overnight culture was mixed with 

250 µl sterile glycerol and frozen at -80°C. 

Transformation of BL21 Star (DE3) 

Plasmids containing the correct sak or sbi 1-2 sequence were used to transform BL21 

Star (DE3) cells. Therefore, 10 ng plasmid DNA (in 2 µl water) were added to thawed 

BL21 Star cells and incubated for 30 min on ice. After heat-shock, the cells were 

incubated in SOC medium (Invitrogen) and plated on LB plates containing ampicillin.  

2.7  Protein Methods 

(Glycine-) SDS-PAGE 

Protein mixtures were resolved by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) according to the method of Laemmli (124) using a 

Biometra system. Protein samples were diluted in loading buffer (0.31 M tris/base pH 

6.8, 5% SDS, 50% glycerol, 0.001% bromphenol blue) or denatured by β-

mercaptoethanol-containing Roti®-Load 1 (Roth) at 95°C for 5 min. Electrophoresis was 

performed using 4% stacking gels (3.0 ml distilled water, 1.25 ml 0.5 M tris/HCl pH 6.8 

plus 0.4% SDS, 0.650 ml acrylamide-bisacryamide 30%, 25 µl 10% ammonium 

persulfate (APS), 5 µl N,N,N',N'- tetramethylendiamine (TEMED)) and 8% or 12% 

running gels (for 12%: 5.25 ml distilled water, 5.25 ml 1.5 M tris/base pH 8.8 plus 

0.4% SDS, 5.0 ml acrylamide-bisacryamide 30%, 50 µl 10% APS, 10 µl TEMED) in 

running buffer (3% tris/base, 14.4% glycine, 1% SDS). 

Tricine-SDS-PAGE 

For resolving low molecular weight proteins and peptides, Tris-Tricine acrylamide gels 

were used. 4% stacking gels (0.81 ml acrylamide-bisacryamide 40%, 1.55 ml 3 M 

tris/HCl pH 8.4 plus 0.3% SDS, 3.89 ml distilled water, 40 µl 10% APS, and 15 µl 

TEMED) and 10% running gels (4.9 ml acrylamide-bisacryamide 40%, 5.0 ml 3 M 

tris/HCl pH 8.4 plus 0.3%, 1.15 ml distilled water, 3.95 ml 40% glycerol, 50 µl 10% APS, 

and 10 µl TEMED) were prepared using a Biometra system. The samples were 

electrophoresed at 80 V using anode buffer (0.2 M tris/HCl pH 8.9) and cathode buffer 

(0.1 M tris/HCl, 0.1 M tricine, 0.01% SDS). 
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Silver staining 

To detect proteins after protein electrophoresis, silver staining was performed. Gels 

were fixed in 30% acetic acid plus 20% ethanol for 45 min, washed twice with 20% 

ethanol, and sensitized in 0.02% sodium thiosulfate for 2 min. The gels were then rinsed 

twice for 1 min in distilled water, stained for 20 min with 0.2% silver nitrate, and rinsed 

twice in distilled water again. Gels were developed using developer (0.00007% 

formaldehyde (37%), 3% sodium carbonate, 0.001% sodium thiosulfate), and the 

reaction was stopped by applying stop solution (2.5% acetic acid, 50% tris/base). 

Coomassie staining 

Coomassie staining (Page Blue, Fermantas) was performed according to the 

manufacturer’s instructions. 

Western blotting 

To detect specific proteins after SDS-PAGE, Western blotting was performed. Gels 

were transferred to a nitrocellulose membrane (Protran) by placing them in the transfer 

cassette, immersed in transfer buffer (0.045 M tris, 0.039 mM glycine, 20% methanol, 

0.1% SDS), and run at 48 mA for 70 min. Membranes were then blocked with blocking 

buffer (1% BSA, 4% milk powder, 0.1% Tween20) for 1 h at room temperature or 

overnight at 4°C, and incubated with appropriate primary and secondary antibodies (Ab) 

for 1 h at room temperature, washed with wash buffer (0.05% Tween in phosphate 

buffered saline (PBS) II (137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 

1.46 mM KH2PO4)), and developed with ECL-substrate solution (AppliChem) with a 

DNR BioImaging System (MF-ChemBIS 3.2). 

Proteolytic generation of peptides derived from apoE 

ApoE (0.5 µg) was incubated with 0.5–100% PMN lysate (from freeze/thaw disrupted 

polymorphonuclear neutrophils 106 cells/ml) or HNE (20 ng) at 37°C for 20 min. 

Samples were analyzed under nonreducing conditions using Tricine gels. Proteins were 

stained by Coomassie or transferred to nitrocellulose membranes. After blocking for 1 h 

at room temperature, membranes were incubated with anti-apoE polyclonal Ab (1:5000; 

Calbiochem), and the subsequent horseradish peroxidase (HRP)-coupled secondary Ab 

(1:5000; DAKO). Additionally, apoE (5 µg) was incubated with HNE (50 ng) for 5; 10 

and 20 min. To assay the cleavage of the apoE-derived peptides LRV30 or SHL14, 

25 µM peptide was incubated with 0.7 µM HNE for 1 h at 37°C. To analyze time- and 



MATERIALS & METHODS 

 

26 

dose-dependency of HNE-mediated cleavage of LRV30, 25 µM LRV30 was incubated 

with 0.34 µM HNE for 0.5, 1, and 5 h, or 25 µM LRV30 was incubated with 0.034–

3.4 µM HNE for 1 h. All samples were separated using Tricine gels and proteins were 

stained with Coomassie. 

Plasmin-mediated C3/C3b degradation 

To characterize C3 cleavage products generated by plasmin-mediated C3, C3b, iC3b or 

C3c degradation, fluid phase assays were performed. 15 µg/ml PLG was mixed with 

2 µg/ml uPa, 7 µg/ml C3 (or C3 fragment), and incubated for 3 h at 37°C. In order to 

compare plasmin- and factor I-mediated cleavage of C3 fragments, 10 µg/ml PL or 

5 µg/ml factor I plus 10 µg/ml factor H were incubated with 7 µg/ml C3, C3b or iC3b for 

1 h at 37°C. Protein mixtures were separated by SDS-PAGE and C3 cleavage products 

were analyzed by Western blotting using anti-C3 pAb. 

To assess C3 or C3b degradation within a complex of plasmin and Sbi or Efb, 

0.2 µM PLG together with either 0.04 µM C3 or C3b were added to immobilized Sbi, 

Efb, and the control proteins CRASP-5 or HSA overnight at 4°C. After extensive 

washing, 0.5 µM SAK or 0.06 µM uPa were added for 3 h at 37°C. Samples were 

reduced with Roti-Load for 5 min at 95°C, separated by SDS-PAGE, and transferred 

onto a nitrocellulose membrane. C3/C3b and their cleavage products were detected 

with anti-C3-Fab-HRP (1:1000).  

The effect of Sbi, Efb or their truncated constructs on the plasmin-mediated C3 

degradation was analyzed by incubating 0.04 µM C3, C3b or iC3b with either 0.15 µM 

PLG plus 0.04 µM uPa or 0.2 µM PLG plus 0.5 µM SAK in the absence or presence of 

1 µM Sbi, Efb, CRASP-5 or HSA for 3 h at 37°C. Additionally, the same assays were 

performed using 0.2-2 µM Sbi 1-2, Sbi 3-4 or Efb-C instead of the Sbi or Efb. To assess 

the degradation-enhancing effect of Efb-C on aureolysin-mediated cleavage, 2 µM Efb-

C was incubated with either 0.15 µM aureolysin or plasmin, and 0.04 µM C3 or C3b, for 

3 h at 37°C. Samples were analyzed by SDS-PAGE and Western blotting using anti-C3-

Fab-HRP (1:1000). 

Degradation of apoE and SHL14 by staphylococcal proteases 

To test the proteolytic activity of aureolysin and plasmin against SHL14, 25 µM SHL14 

was incubated with the indicated amounts of aureolysin or plasmin (FIG. 24) for 10 min. 

Additionally, SHL14 was mixed with 0.22 µM plasminogen plus 0.6 µM SAK for 0.5 h 

and 1 h. In order to assess the degradation of apoE by aureolysin and plasmin, 3 µM 
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apoE was incubated with 0.5 µM aureolysin or 0.22 µM plasminogen plus 0.6 µM SAK 

for 0.5 h and 1 h. Furthermore, the degradation of apoE by different concentrations of 

aureolysin or plasmin (indicated in Fig.6 B) was assessed for 30 min. All samples were 

separated using Tricine gels and proteins were stained with Coomassie. 

Ligand blot 

To analyze binding of Sbi or Efb to plasminogen and to verify the accuracy of the 

recombinant staphylococcal proteins, Sbi and Efb were separated by SDS-PAGE and 

transferred onto a nitrocellulose membrane. After blocking for 1 h at room temperature, 

the membranes was incubated with 1 µg/ml biotin-coupled plasminogen (PLGb) or C3 

overnight at 4°C. Bound PLGb was detected with Streptavidin-Peroxidase (1:1000; 

Sigma), C3 with anti-C3-Fab-HRP (1:1000; Protos Immunoresearch), and to assess 

IgG-binding, anti-goat-HRP (1:1000; DAKO) was applied. All Western blots were 

developed as described above. 

Surface plasmon resonance (SPR)  

Plasminogen binding to Sbi 3-4 or Efb-C was analyzed in real time by surface plasmon 

resonance (Biacore 3000, AB) at 25°C in 150 mM PBS. Sbi 3-4 or Efb-C was 

immobilized on a CMD 500M sensor chip (Xantec) by standard amino coupling 

chemistry following the manufacturer´s protocol. PLG (400 nM) was injected at a flow 

rate of 5 µl/min. 

Enzyme Linked Immunosorbent Assay (ELISA) 

To assess the binding interactions of Sbi, Efb, and their fragments to plasminogen, 

ELISAs were performed. Bacterial proteins were immobilized (equimolar) on a microtiter 

plate (Maxisorb, Nunc) blocked with 0.4% gelatin in DPBS for 2 h at 37°C. PLGb was 

added for 1.5 h at 37°C and bound proteins were detected with Streptavidin-peroxidase 

(1:1000) for 1 h. The reaction was developed with TMB (KEM EM TEC), stopped by 

addition of 0.25 M H2SO4, and measured at 450 nm (SpektraMAX 190, Molecular 

Devices).  

For dose-dependent binding of PLG to Sbi 3-4/Efb-C, 5 µg/ml Sbi 3-4 or Efb-C was 

immobilized on a microtiter plate, blocked with Blocking Solution I (AppliChem) for 2 h at 

37°C, and 25-200 nM PLG was added for 1.5 h at 37°C. Bound proteins were detected 

with anti-PLG Ab (Acris Antibodies; 1:1000) in Cross Down Buffer (AppliChem) and anti-

goat-HRP (1:2000).  
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In competition assays, Sbi 3-4 or Efb-C was immobilized, and incubated with C3 and 

PLG (molar ratio: 1:0; 1:0.5, 1:1, 1:4, and 0:1). C3 binding was detected using 

polyclonal anti-C3 Ab (Comptech; 1:2000) and PLG binding with anti-PLG Ab.  

To analyze the effect of the truncated Sbi 3-4 or Efb-C on the plasmin-mediated C3 

degradation, C3 ELISAs were performed. C3 (0.04 µM) was immobilized on a microtiter 

plate at room temperature, after blocking with 0.4% gelatin, 0.15 µM PLG with 0.04 µM 

uPa or 0.2 µM PLG with 0.5 µM SAK, was incubated for 3 h at 37°C. Sbi 3-4, Efb-C, 

CRASP-5, or HSA (1 µM each) was added in the presence or absence of plasmin. After 

extensive washing, bound C3 was detected using anti-C3a Ab supplemented with 

15 µg/ml plasmin inhibitor aprotinin and then HRP-coupled Ab at 4°C. 

Combined ELISA-Western blot Assay (CEWA) 

Binding of Sbi, Efb, and SAK to plasminogen was analyzed by combining ELISA and 

Western blotting. CEWA was performed according to (90). Briefly, bacterial proteins, 

HSA or buffer were immobilized on a microtiter plate. After blocking with gelatin, 50 nM 

plasma purified PLG was added and incubated overnight at 4°C. Bound PLG was 

eluted using SDS buffer, separated by SDS-PAGE, and analyzed by Western blotting 

using anti-PLG Ab. Borrelia burgdorferi CRASP-5 protein was included as a positive 

control and HSA as a negative control. 

Protein expression & purification 

All recombinant staphylococcal proteins were expressed as shown in FIG. 15: 

 

FIG. 15: Expression and purification of SAK and Sbi 1-2. 
(I) E. coli BL21 Star containing the expression plasmid was cultivated to mid-log. (II) IPTG was 
then added to induce protein expression. (III) Cells containing the desired protein were 
harvested by centrifugation and lysed. (IV) The supernatants were diluted in binding buffer and 
loaded onto a nickel column. After washing, proteins were eluted from the column by imidazole. 
Elute fractions were concentrated, and buffer was exchanged to DPBS. 

200 ml LB medium were inoculated with 10 ml overnight culture and the bacteria were 

grown to mid-logarithmic phase, before expression of the desired staphylococcal protein 

was induced by 1 mM isopropyl-b-D-thiogalactoside (IPTG) for 3 h. Cells were 
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harvested and frozen at -20°C. The cell pellet was resuspended in Lysis Buffer (50 mM 

potassium phosphate, pH 7.8, 400 mM NaCl, 100 mM KCl, 10% glycerol, 0.5% Triton X-

100, 10 mM imidazole), and lysed by repeated freezing and thawing. 

The cell lysate was centrifuged, the cleared supernatant was diluted in buffer A 

(10 mM Na2HPO4, 10 mM NaH2PO4, 0.5 M NaCl, 10 mM imidazole), and loaded onto a 

1 ml HisTrap™ HP column (GE Healthcare). The column was washed with buffer A and 

5% buffer B (10 mM Na2HPO4, 10 mM NaH2PO4, 0.5 M NaCl, 0.5 M imidazole) using an 

AktaPurifier 10 chromatography unit (GE Healthcare). SAK or Sbi 1-2 was eluted from 

the column by 100% buffer B. Elute fractions were concentrated using centrifugal filter 

units (Millipore) and buffer was exchanged to DPBS. Protein concentration of purified 

SAK or Sbi 1-2 was determined by NanoDrop. The purity was analyzed by SDS-PAGE 

and silver staining or Western blotting. 

The borrelial CRASP-5 protein was kindly provided by Prof. Dr. P. Kraiczy. 

Biotinylation 

ApoE and PLG were biotinylated with Sulfo-NHS-LC-Biotin (Thermo Scientific) 

according to manufacturer´s instructions. However, a 10 fold molar excess of biotin was 

used. Unbound biotin was removed by ZebaTM Desalt Spin Columns (Pierce). 

Plasmin activity assay 

PL activation was analyzed by hydrolysis of the PL-specific substrate S-2251 (D-valyl-

leucyl-lysine-ρ-nitroanilide dihydrochloride; Haemochrom Diagnostica). To determine 

functional activity of recombinant SAK, 10 µg/ml PLG was immobilized onto a microtiter 

plate overnight, blocked with 1% bovine serum albumine (BSA) in DPBS, and PLG was 

activated using either 0.08 µg/ml uPa or 1 µg/ml recombinant SAK together with the 

chromogenic substrate S-2251 dissolved in reaction buffer (64 mM tris, 350 mM NaCl, 

0.01% triton-X; pH 7.5). PL activity was recorded at 1 h intervals at 405 nm 

(SpektraMax 190; Molecular Devices). 

The accessibility of Sbi- or Efb-bound PLG for activation by SAK or uPa was assayed 

by immobilizing equimolar amounts of Sbi, Efb, and the control proteins CRASP-5 and 

HSA onto a microtiter plate. After blocking with 0.4% gelatin, 0.2 µM PLG were 

incubated at 4°C overnight. Following washing with PBS+0.05% Tween20, uPa 

(0.08 µg/ml) or recombinant SAK (1 µg/ml) was added together with the chromogenic 

substrate S-2251 dissolved in reaction buffer. PL activity was recorded at 4 h intervals 

at 405 nm. 
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Fibrinogen degradation assay 

PL activation by SAK was further analyzed by degradation of fibrinogen. 20 µg/ml PLG, 

1 µg/ml SAK, and 20 µg/ml fibrinogen were incubated for 24 h at 37°C. Samples were 

reduced with RotiLoad (Roth), separated by SDS-PAGE, and transferred to a 

nitrocellulose membrane. Fibrinogen degradation fragments were identified using anti-

fibrinogen Ab (Calbiochem) and anti-rabbit Ab (DAKO). 

2.8  Microbiological assays 

Antibacterial assays  

Viable Count Analysis: S. aureus Newman or E. coli DH5α was grown to mid-

logarithmic phase in LB medium. Bacteria were washed, diluted in 10 mM tris buffer 

supplemented with 5 mM glucose, and 104 CFUs were incubated with 3 µM apoE plus 

20-29 nM HNE with 1 µM or the indicated amounts (FIG. 17E) of LGR11; SHL14 or 

WGE23. To assess whether heparin-binding sites are essential for the bactericidal 

activity, 10 µg heparin were added to the samples. Bacteria were then diluted in tris 

buffer and plated on LB agar, incubated overnight at 37°C, and colony-forming units 

(CFUs) were determined. 100% survival was defined as total survival of bacteria in the 

same buffer as in the absence of HNE or the peptides.  

To assay the impact of plasmin on C3a antistaphylococcal activity, 104 CFUs of 

S. aureus were incubated with 2 µg C3a alone or with 5 µg PLG and/or 1 µg SAK for 2 h 

at 37°C. Samples were analyzed as described for apoE-derived peptides. 100% 

survival was defined as total survival of bacteria in the same buffer as in the absence of 

C3a. In a parallel setting, supernatants were separated by SDS-PAGE and analyzed by 

Western blotting with anti-C3a Ab (1:1000 Comptech). 

Viable OD Analysis: The antibacterial effects of the apoE-derived peptides were further 

confirmed by viable OD analysis. Samples were prepared as described for the viable 

count analysis, however after 2 h incubation the bacteria were diluted in TSB medium 

and transferred to a microtiter plate (Greiner). All samples were measured in triplicate at 

OD650 over 14 h at 37°C (SpektraMax 190; Molecular Devices). To evaluate the impact 

of aureolysin or plasmin on SHL14 bactericidal activity, S. aureus was incubated with 

2 µM SHL14 together with the indicated amounts (FIG. 25 B) of aureolysin or plasmin, 

and viable OD analysis was performed.  
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Fluorescence Microscopy 

S. aureus was grown to mid-logarithmic phase in LB medium. Bacteria were washed 

and diluted in 10 mM tris buffer. 2.5 x 107 CFUs were incubated with 40 µM FITC-

coupled SHL14 for 30 min on ice. To assess aureolysin- or plasmin-mediated 

degradation of SHL14, 0.33 µM aureolysin, 0.25 µM plasmin or 0.30 µM HNE was 

added together with SHL14-FITC to the bacteria at 20°C. All samples were stained with 

wheat germ agglutinin (WGA)-Texas Red (Invitrogen), and then washed twice with tris 

buffer at 4°C. Stained bacteria were applied onto microscope slides (Roth) and dried for 

2 h at 4°C. The cover glass (VWR) was mounted on a slide using Mount Fluor (Pro 

Taqs). S. aureus was visualized using LSM 710 (Zeiss). 

Flow Cytometry 

The interaction between apoE and the staphylococcal surface was analyzed using flow 

cytometry. S. aureus was washed and incubated with 0.5-2.5 µg biotin-labeled apoE for 

1 h at 37°C. To analyze the impact of aureolysin or plasmin on apoE deposition, 

increasing amounts of aureolysin and plasmin (2.5-10 µg/ml) were incubated together 

with 1.5 µg biotinylated apoE for 1 h at 37°C. After extensive washing, streptavidin-Cy5 

(Invitrogen) was added for 30 min at 4°C. Following washing, bacteria were analyzed by 

flow cytometry using LSR II flow cytometer (BD). All incubation and washing steps were 

performed in PBS II supplemented with 1% BSA. 

The effects of plasmin and Sbi or Efb on C3b deposition were analyzed on the 

staphylococcal surface. S. aureus was heat inactivated for 15 min at 72°C, washed with 

PBS II containing 1% BSA and incubated with 5% serum in HEPES buffer (20 mM 

Hepes, 140 mM NaCl2, 5 mM CaCl2, 25 mM MgCl2; pH 7.4) for 20 min at 37°C. After 

washing, bacteria were incubated with 2 µM Sbi 1-2, Sbi 3-4, Efb-C or HSA in the 

absence or presence of 0.15 µM PL (Calbiochem) for 2 h at 37°C. Supernatants were 

reduced with Roti-Load, separated by SDS-PAGE, and analyzed by Western blotting 

using anti-C3-HRP. Bacteria were washed twice and FITC-labeled anti-C3 Fab (Protos 

Immunoresearch) was added for 20 min at 4°C. Following washing, surface-bound C3b 

was measured by flow cytometry.  

ApoE/Plasma Absorption Assay 

S. aureus was incubated with 1 µg apoE or 15% normal human plasma (NHP) in PBS II 

with 1% BSA for 1 h at 37˚C. After extensive washing, bacteria were treated with elution 

buffer (60 mM tris, 2% SDS, 25% glycerin) for 10 min at 37˚C. The supernatants were 
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separated by SDS-PAGE and transferred to a membrane. ApoE was identified by 

Western blot analysis with anti-apoE pAb together with an appropriate HRP-goat-

antiserum. 

Adhesion & Phagocytosis Assay 

S. aureus was incubated with or without 0.6-1.8 µM apoE for 30 min at 37°C, washed, 

and stained with DiD (Invitrogen). The impact of aureolysin or plasmin on apoE-

mediated phagocytosis was assayed by incubating S. aureus with 10 µg/ml aureolysin 

or plasmin and 60 µg/ml apoE. THP-1 cells, stimulated to become macrophages by 

4 µg/ml phorbol 12-myristate 13-acetate (PMA), were stained with DiO (Invitrogen). 

DiD-stained bacteria were added to the DiO-stained macrophages for 150 min. Free 

bacteria were removed by washing and the macrophages were then detached using 

0.25% trypsin/ 0.05% EDTA solution (Biochrom). The extent of adhesion and 

phagocytosis of S. aureus by macrophages was quantified as DiO/DiD double positive 

macrophages using flow cytometry. 

2.9  Bioinformatical databases 

Protein Knowledgebase (Uniprot) (www.uniprot.org), RCBS Protein Data Bank 

(www.pdb.org), and the National Center for Biotechnology Information 

(www.ncbi.nlm.nih.gov) were used to obtain structure and sequence information.  

2.10 Statistical analyses 

Significant differences between two groups were analyzed by the unpaired Student's t-

test (www.graphpad.com). Values of *p<0.05, **p<0.01, ***p<0.001 were considered as 

statistically significant. 
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3 RESULTS 

3.1 ApoE has antimicrobial and opsonic activities 

The lipoprotein transporter apoE is associated with cardiovascular disorders and 

the Alzheimer’s disease (64, 66). More recently, immunoregulatory functions of 

apoE have been discussed (69, 70, 72, 73). Thus, the aim of this study was to 

characterize the role of apoE in the innate immune system.  

3.1.1  ApoE is degraded by HNE into AMPs 

ApoE contains several amphipathic α-helixes (64). Because these structures are a 

common feature of AMPs, synthetic peptides of several plasma proteins, including 

apoE, were generated and reported to exert antimicrobial activity (74, 76). 

However, the natural appearance and generation of apoE-derived AMPs remained 

elusive. First, we assayed whether native apoE acts antibacterial against 

S. aureus and E. coli. Therefore bacteria were incubated with apoE and colony 

forming units (CFUs) were determined. ApoE had no bactericidal effect (data not 

shown). 

Next, the antibacterial activity of apoE after proteolytic processing was 

investigated. Polymorphonuclear neutrophils (PMNs) are largely recruited to 

infectious sites and subsequently release proteases, such as human neutrophil 

elastase (HNE), cathepsin G, and proteinase 3 (125, 126). Thus, intact apoE was 

incubated with lysates of PMNs or purified HNE, and cleavage of apoE was 

analyzed using Tricine-SDS-PAGE followed by Western blotting or Coomassie 

staining. PMN-lysate and purified HNE degraded apoE into similar apoE fragments 

ranging from 4.6 to 28 kDa (FIG. 16 A+B).Predominantly low-molecular weight 

fragments were detected after 20 min.  

To investigate the bactericidal effects of these apoE-derived peptides, bacterial 

survival was analyzed in viable count assays. S. aureus or E. coli was incubated 

with apoE and HNE, plated on LB plates, and CFUs were determined (FIG. 16 C). 

HNE-cleaved apoE, compared to the intact protein, decreased bacterial survival of 

S. aureus and E. coli (black columns). In addition, HNE alone exhibit minor 

bactericidal activity (white columns). However, in the presence of apoE and HNE, 

survival of S. aureus decreased about 64% and survival of E. coli about 51% 

compared to HNE alone, thus apoE-derived AMPs were generated.  



RESULTS 

 

34 

1.7
4.6

15

25

40

  1    2      3      4      5       6

apoE

10

[kDa]

apoE

HNE

 5      10    20    20      t [min]

  1      2        3        4       5        6       7
1.7
4.6

15

25

40

10

apoE

   apoE
fragments

[kDa] HNEPMN-lysate

apoEA B

C

buffer HNE HNE
0

20

40

60

80

100

apoE

w/o apoE

S. aureus E.coli

** ***

su
rv

iv
al

 [
%

]

   apoE
fragments

 1      10      50    100   100 [%]

 
FIG. 16: HNE cleaves apoE and generates antibacterial peptides. 
(A) Degradation of apoE by PMN lysates or HNE yielded similar apoE fragments 
(indicated by arrows). ApoE was incubated with polymorphonuclear neutrophil (PMN) 
lysate or human neutrophil elastase (HNE), samples were analyzed by Tricine-SDS-
PAGE and Western blotting using anti-apoE Ab. (B) ApoE was degraded by HNE into low-
molecular weight fragments. ApoE was incubated with HNE; samples were drawn at the 
indicated time points, separated by SDS-PAGE, and stained with Coomassie. (C) HNE-
cleaved apoE decreased bacterial survival. S. aureus or E. coli was incubated with apoE 
and HNE under low salt conditions. Bacteria were plated on LB plates, incubated 
overnight, and CFUs were determined. Total survival of bacteria without HNE treatment 
was defined as 100% survival. HNE alone exhibited also bactericidal activity. Data shown 
are mean values of at least three independent experiments; error bars indicate standard 
deviations. **p <0.01 and ***p <0.001. 

3.1.2  ApoE-derived AMPs encompass a heparin-binding site 

Synthetic peptides derived from the heparin-binding sites of human plasma 

proteins have been shown to exert antimicrobial activity (9, 11, 127). To elucidate 

whether HNE-mediated cleavage of apoE generates AMPs containing heparin-

binding sites, heparin was added to bacteria treated with HNE-cleaved apoE and 

viable count assays were performed. Heparin inhibited the bactericidal activity of 

the HNE-generated apoE fragments against S. aureus by ~78% and against 

E. coli by ~75% (FIG. 17 A). By contrast, heparin alone exerted only minor effects 

on HNE activity. Consequently, apoE-derived AMPs encompassed heparin-

binding motifs. 

To investigate which of the two heparin-binding sites in apoE contributes to 

antimicrobial activity, apoE-derived peptides SHL14 and WGE23 were 
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synthesized, containing one of the two heparin-binding sites, flanked by cleavage 

sites for HNE. A fragment encompassing a part of the N-terminal apoE domain 

without a heparin-binding site (LGR11) was included as a negative control (FIG. 

17 B). The antibacterial activities of LGR11, SHL14, and WGE23 were assessed 

by adding the peptides to bacteria, and measuring bacterial growth at OD650 over 

14 h. SHL14, which partly contains the LDL-receptor-binding region, inhibited 

multiplication of both, S. aureus (FIG. 17 C) and E. coli (not shown). By contrast, 

WGE23 and LGR11 exhibited no antibacterial activity. These results were 

confirmed by viable count assays (FIG. 17 D). SHL14 antibacterial activity against 

S. aureus was abolished by the addition of heparin (FIG. 17 D). In addition, SHL14 

dose-dependently decreased survival of S. aureus and E. coli (FIG. 17 E). Thus, 

bactericidal activity of apoE is located in the N-terminal heparin-binding site.  

peptide sequence                                         pI

LGR11 LGRFWDYLRWV                   8.8
SHL14 SHLRKLRKRLLRDA           12.0
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FIG. 17: ApoE-derived AMPs contain a heparin-binding site. 
(A) Heparin inhibited antibacterial activity of HNE-generated apoE fragments. S. aureus or 
E. coli was incubated with apoE and HNE in the presence or absence of heparin, and 
antibacterial activity was determined by viable count assays. (B) Scheme of apoE 
indicating the positions, sequences, and isoelectric points (pI) of the synthetic peptides. 
SHL14 and WGE23 contain a heparin-binding site (labeled in bold letters) and are flanked 
by two potential HNE cleavage sites. LGR11 was included as negative control. (C+D) 
SHL14 acts bactericidal against S. aureus. Antibacterial activity of LGR11, SHL14, and 
WGE23 were tested in antibacterial assays. WGE23 and LGR11 had no bactericidal 
effect. (D) The bactericidal activity of SHL14 was inhibited by the addition of heparin. Dots 
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represent single colonies of S. aureus plated on agar plates. (E) SHL14 killed S. aureus 
and E. coli in a dose-dependent manner. The indicated amounts of SHL14 were incubated 
with S. aureus or E. coli, and viable count assays were performed. (A+C) Data represent 
mean values of at least three independent experiments. Error bars indicate standard 
deviations *p < 0.05 and ***p< 0.001. (D+E) Data shown are representative for three 
independent experiments. 

3.1.3  SHL14 is essential for antibacterial activity  

During the cleavage of apoE by HNE, multiple peptides containing the SHL14 

sequence are presumably generated (FIG. 18 A). Thus, we assayed whether the 

longer peptide LRV30, which was described by Azuma et al. (74), can be further 

degraded by HNE. LRV30 or SHL14 was incubated with HNE, cleavage products 

were separated by Tricine-SDS-PAGE, and stained using Coomassie. LRV30 

(~4 kDa) was further degraded into smaller fragments of ~3 and ~2 kDa. However, 

SHL14 (~2 kDa) was not cleaved (FIG. 18 B). In parallel, the dose- and time-

dependency of HNE-mediated degradation of LRV30 was assessed. LRV30 was 

cleaved into fragments of similar mobility to SHL14 (FIG. 18 B+C). Hence, SHL14 

is likely to be generated by HNE-mediated cleavage of apoE and is included in all 

antibacterial peptides derived from apoE. Thus, the activity of SHL14 was 

characterized in more detail.  
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FIG. 18: SHL14 is essential for antibacterial activity. 
(A) Part of the apoE sequence containing the N-terminal heparin-binding site (labeled in 
bold letters). Potential HNE cleavage sites (after valine and alanine) are shown by arrows. 
LRV30 contains several potential cleavage sites. (B) LRV30, but not SHL14, was further 
cleaved by HNE. LRV30 and SHL14 were incubated with HNE, separated by Tricine-SDS-
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PAGE, and stained with Coomassie. (C) Dose- and time-dependent proteolysis of LRV30. 
Indicated amounts of HNE were used (lane 2-4) or samples were drawn at the indicated 
time points (lane 6-8). (B+C) A representative result out of three independent experiments 
is shown. 

3.1.4  SHL14 binds to S. aureus 

To investigate the interaction between SHL14 and S. aureus, fluorescence 

microscopy was performed. FITC-labeled SHL14 was incubated with Texas Red-

stained bacteria and unbound peptides were removed by washing. SHL14 bound 

to the bacterial surface, as visualized by LSM (FIG. 19 A, panel I). 

To localize the interaction of SHL14 with S. aureus, Z-stacking analysis was 

performed. The data revealed that SHL14 passed through the cell wall and 

presumably interacted with the cell membrane or intracellular targets (FIG. 19 B).  

cell wall SHL14FITC

2 µM2 µM

A BI                                       II

 
FIG. 19: SHL14 binds to S. aureus. 
(A) Texas-Red stained S. aureus (red fluorescence) was incubated with (I) or without (II) 
FITC-labeled SHL14 (green fluorescence). After washing, bacteria were fixed and 
analyzed by fluorescence microscopy. (B) SHL14 passed through the cell wall. Z-Stacking 
was performed to localize SHL14. (A+B) Data shown are representative for three 
independent experiments.  

3.1.5  Properties of SHL14 

SHL14 was depicted in a helical wheel projection (FIG. 20 A) and a space-filling 

model (B) for structural characterization. Positive charged amino acids were 

colored in blue, negative charged in pink, and hydrophobic amino acids remained 

gray. SHL14 showed in both models clusters of hydrophilic and hydrophobic 

residues, demonstrating an amphipathic nature of the peptide. Furthermore, the 

amino acid residues of SHL14 were highlighted in the apoE protein structure 

model, showing that the peptide sequence is partially buried in the intact apoE 

(FIG. 20 C).  
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FIG. 20: Structure of SHL14. 
(A+B) Helical wheel projection and space-filling model of SHL14 revealed an amphipathic 
peptide structure. Positive charged amino acid residues are shown in blue, negative 
charged in pink, and hydrophobic in grey. (C) SHL14 is partially buried in the interior of 
apoE. The backbone of SHL14 is illustrated in blue in the apoE surface model. (A) 
Modified after http://cti.itc.virginia.edu/~cmg/Demo/wheel/wheelApp.html. (B-C) Images 
were prepared with Chimera software using PDB file 2L7B (65).  

3.1.6  ApoE bound to S. aureus enhances phagocytosis 

To confirm the interaction of unprocessed apoE with the staphylococcal surfaces, 

flow cytometry was performed. Biotin-labeled apoE bound dose-dependently to 

S. aureus (FIG. 21 A). Furthermore, unlabeled apoE or normal human plasma was 

incubated with S. aureus, after extensive washing (wash), bound proteins were 

eluted (eluate), separated by SDS-PAGE, and apoE was detected by Western blot 

analysis. Purified apoE and apoE from NHP bound to S. aureus (FIG. 21 B). 

Because apoE modulates uptake of apoptotic bodies (72) and promotes clearance 

of β-amyloid (73), we assessed whether apoE also influences the phagocytosis of 

bacteria. To test this hypothesis, apoE was deposited on S. aureus. Bacteria were 

stained with DID, and added to DIO-labeled THP1 macrophages, subsequently the 

ingested and adsorbed bacteria were measured by flow cytometry. ApoE 

increased the uptake and adhesion of bacteria up to 26.5%. This opsonic effect 

was dose-dependent. SHL14 did not influence phagocytosis, indicating that the 

effect of apoE was specific (FIG. 21 C+D). 
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FIG. 21: Intact apoE binds to S. aureus and facilitates phagocytosis. 
(A+B) ApoE bound to S. aureus. (A) Biotin-labeled apoE was mixed with intact bacteria. 
After washing, the amount of bound apoE was assayed by streptavidin-Cy5 using flow 
cytometry. (B) Nonlabeled apoE was incubated with S. aureus, and bound protein was 
eluted after extensive washing. Samples were analyzed by SDS-PAGE and Western blot 
using anti-apoE Ab. (C) ApoE enhanced adhesion and phagocytosis of S. aureus by 
human macrophages. S. aureus was incubated with buffer (I) or 1.8 µM apoE (II), stained 
with DiO, and added to DiD-labeled THP-1 macrophages. Macrophages with adherent 
and phagocytosed S. aureus were identified as DiO and DiD positive cells (2nd quadrant). 
(D) ApoE increased the adhesion/phagocytosis of S. aureus in a dose-dependent manner. 
Adhesion/phagocytosis of S. aureus without apoE was set to 100% (white bar). (A-C) 
Results are from one representative experiment out of three performed. (D) Values and 
error bars represent average and standard deviation of three independent experiments. 
**p <0.01.  

3.2 Plasmin & aureolysin are used by S. aureus to evade apoE 

immune functions 

S. aureus belongs to the most successful human pathogens owning to the vast 

arsenal of secreted immune evasion molecules. Among these factors are 

proteases and activators of host proteases (26, 128, 129). In this chapter the 

effects of both, aureolysin and the host-derived protease plasmin, which is 

activated by the staphylococcal plasminogen activator SAK, on the apoE-mediated 

immune functions were investigated. 

3.2.1  Cloning, expression, and purification of SAK 

To characterize SAK functions, the protein was recombinantly expressed in E. coli. 

The sak gene was amplified without the signal sequence, resulting in a 493 bp 
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PCR product (FIG. 22 A). This product was cloned into the pET101 vector, and 

transformed into E. coli Top10 cells. Six of the resulted colonies were screened for 

the desired insert using colony-PCR (FIG. 22 B). Plasmids containing a 493 bp 

insert were purified and sequenced. Sequencing showed that sak was correctly 

inserted into pET101. Plasmids were isolated and then used to transform the 

E. coli expression strain BL21 Star.  

SAK expression was induced by IPTG and protein was purified by nickel-chelate 

affinity chromatography as described in chapter 2.7. The elution profile showed 

that protein was eluted from the column (blue line) after increase of imidazole 

concentration (brown line) (FIG. 22C). Recombinant expressed SAK was detected 

by SDS-PAGE, and visualized by silver staining (FIG. 22 D, lane 1) or Western 

blotting using anti-His Ab (lane 2). In both assays a clear band with a mobility of 

~19 kDa was observed.  
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FIG. 22: Cloning, purification, and expression of SAK. 
(A) Sak was amplified by PCR resulting in a 493 bp blunt-end product. (B) PCR screening 
for pET101 sak positive clones. The PCR product was inserted in pET101 and 
transformed into E. coli Top10 cells. Six clones were tested by colony-PCR. One positive 
clone was identified (lane 2). (C) Elution profile of SAK expression. Plasmids were 
transformed into BL21 Star and expression was induced by IPTG. Proteins were purified 
by IMAC. The blue line visualizes UV absorbance, which correlates with protein 
concentration and the brown line shows salt concentrations. (D) Recombinant SAK had a 
mobility of 19 kDa. Purified SAK was separated by SDS-PAGE and visualized by Western 
blotting using anti-HIS Ab (lane 1) or stained with silver (lane 2).  
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3.2.2  Functional characterization of recombinant SAK 

To assess the functional activity of recombinant SAK, binding and activation of 

plasminogen was assayed. SAK bound to plasma purified plasminogen as 

detected by a distinct band with a mobility of 92 kDa in CEWA (FIG. 23 A). SAK-

mediated conversion of plasminogen to plasmin was assayed by visualizing 

proteolysis of two plasmin-sensitive substrates. SAK activated plasminogen to 

plasmin, as shown by the cleavage of a chromogenic substrate (FIG. 23 B, solid 

lines), as well as the degradation of fibrinogen (FIG. 23 C), which was followed by 

SDS-PAGE and Western blot analysis using anti-fibrinogen Ab. However, a higher 

amount of SAK was needed to activate plasminogen compared to uPa.  
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FIG. 23: SAK binds and activates plasminogen to plasmin. 
(A) SAK recruited plasminogen (PLG). SAK, buffer, HSA, and borrelial plasminogen-
binding protein CRASP-5 were immobilized to a microtiter plate and plasminogen was 
added. After extensive washing, bound plasminogen was eluted and visualized by SDS-
PAGE and Western blotting. (B) SAK-activated plasmin cleaved the chromogenic 
substrate S-2251 (solid lines). Plasminogen was immobilized, SAK was added together 
with S-2251, and the cleavage of S-2251 was monitored at 405nm. The human 
plasminogen activator uPa was included as positive control (dashed lines). (C) SAK-
activated plasmin degraded fibrinogen. SAK, plasminogen, and fibrinogen were incubated 
at 37°C, the protein mixture was separated by SDS-PAGE, and fibrinogen was detected 
using Western blot analysis. (A-C) A representative result out of two independent 
experiments is shown. 

3.2.3  Plasmin or aureolysin degrades and inactivates SHL14 

As apoE-derived SHL14 was shown to be a potent AMP, degradation of this AMP 

by host derived plasmin and staphylococcal aureolysin was investigated. 

Increasing amounts of purified plasmin (1:2080 to 1:208) or aureolysin (molar ratio 

enzyme to peptide 1:1000 to 1:50) were incubated with SHL14. The progression of 

the SHL14 degradation was visualized by separating the reaction mixtures by 

SDS-PAGE and staining with Coomassie. Both, plasmin and aureolysin, degraded 

SHL14 (FIG. 24 A-C). Plasmin-mediated SHL14 degradation was blocked by the 

serine protease inhibitor aprotinin (FIG. 24 A, lane 8). In addition to purified 
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plasmin, degradation of SHL14 by SAK-activated plasmin was analyzed. Again, 

complete degradation of the peptide was observed (FIG. 24 B, lane 6).  
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FIG. 24: Plasmin or aureolysin degrades SHL14. 
(A) SHL14 was degraded by plasmin. SHL14 was mixed with the indicated amounts of 
plasmin (PL) and aprotinin. Samples were subjected to SDS-PAGE and stained with 
Coomassie. Plasmin-mediated proteolysis of SHL14 was inhibited by serine protease 
inhibitor aprotinin. (B) SHL14 was also degraded by SAK-activated plasmin. SHL14 was 
incubated with PLG and SAK for 0.5 or 1 h and the cleavage was assayed by SDS-PAGE 
and Coomassie staining. (C) SHL14 was degraded by aureolysin. SHL14 was incubated 
with increasing amounts of aureolysin (Au), separated by Tris-Tricine electrophoresis, and 
stained by Coomassie. (A-C) A representative result out of three independent experiments 
is shown. 

Having demonstrated that plasmin and aureolysin degrade SHL14, the effect of 

supplemented aureolysin or plasmin on the interaction of SHL14FITC with Texas-

Red-stained S. aureus was analyzed by fluorescent microscopy. SHL14FITC bound 

to bacteria (FIG. 25 A, panel I), but in the presence of plasmin or aureolysin 

SHL14FITC did not interact with S. aureus as shown by lack of green fluorescence 

(panel III or IV). By contrast, the protease HNE did not influence the interaction 

between SHL14 and the staphylococcal surface (panel II).  

Finally, we examined the proteolytic effect of plasmin or aureolysin on SHL14 

antibacterial activity using bacterial survival assays. S. aureus was incubated with 

increasing amounts of plasmin or aureolysin together with SHL14. Both proteases 

significantly reduced SHL14-mediated killing of the bacteria, whereas HNE did not 

influence the bactericidal activity of SHL14 (FIG. 25B).  
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FIG. 25: Plasmin or aureolysin inactivates SHL14 activity. 
(A) SHL14 binding to S. aureus was inhibited by plasmin or aureolysin. Texas-Red stained 
S. aureus was incubated with SHL14FITC in the presence of buffer (I), HNE (II), plasmin 
(III), or aureolysin (IV) and visualized by LSM. (B) SHL14 bactericidal activity was inhibited 
by plasmin or aureolysin. S. aureus was mixed with SHL14 and aureolysin, plasmin, or 
HNE and bacterial growth was followed by measuring OD650 after 9 h. HNE did not affect 
bactericidal activity of SHL14, thus no bacteria survived. Data shown are mean values of 
at least three independent experiments and error bars represent standard deviations. *p 
<0.05; **p <0.01 and ***p <0.001. 

3.2.4  Plasmin or aureolysin degrades and inactivates apoE 

After plasmin and aureolysin were shown to degrade and inactivate apoE-derived 

SHL14, the effect of these proteases was also assessed on full-length apoE. 

Plasmin (PLG+SAK) or aureolysin was incubated with apoE and proteolysis of 

apoE was assayed by SDS-PAGE and Coomassie staining. Plasmin degraded 

apoE into several fragments with mobilities ranging from 6 to 25 kDa (FIG. 26). By 

contrast, aureolysin showed a different cleavage pattern of apoE, as demonstrated 

by the appearance of two cleavage products with mobilities of 18 and 20 kDa. 
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FIG. 26: Plasmin or aureolysin degrades apoE. 
(A+B) ApoE was degraded by plasmin or aureolysin. (A) ApoE was incubated with 
plasmin (PLG+SAK) or aureolysin. Samples were taken after at 0.5 or 1 h, separated by 
SDS-PAGE, and visualized by Coomassie staining. (B) ApoE was incubated with the 
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indicated amounts of aureolysin or plasmin and analyzed as described for A. (A+B) A 
representative result out of three independent experiments is shown. 

To determine whether proteolysis of apoE by plasmin or aureolysin affects apoE 

deposition on S. aureus, increasing concentrations of both proteases were added 

together with biotinylated apoE (apoEb) to the bacteria. After washing, remaining 

surface-bound apoEb was analyzed by flow cytometry. Plasmin or aureolysin 

substantially decreased apoE deposition on S. aureus (FIG. 27 A).  

The impact of the proteolytic activity of plasmin or aureolysin was then 

investigated on apoE-mediated adherence/phagocytosis. S. aureus was incubated 

with apoE and plasmin or aureolysin, stained with DID, added to DIO-labeled 

THP1 macrophages, then ingested and adsorbed bacteria were measured by flow 

cytometry Both proteases inhibited the phagocytosis-enhancing effect of apoE 

(FIG. 27 B). Thus, S. aureus uses plasmin and aureolysin to degrade apoE in 

order to evade adherence/phagocytosis caused by apoE. However, as plasmin 

and aureolysin decreased adherence/phagocytosis below the basal level (dotted 

line) an additional unknown activity of these proteases on phagocytosis is 

anticipated. 

A                                                               B

0.0 2.5 5.0 7.5 10.0
0

25

50

75

100

aureolysin

plasmin

**
*

**

**
*

**
*

**
*

**
*

µg/ml protease

ap
o

E
 d

e
p

o
si

ti
o

n
 [%

]

0

20
80

100

120

ap
o

E

ap
o

E

+
 a

u
ap

o
E

+
 p

l

*
**

ad
h

e
si

o
n

/p
h

ag
o

cy
to

si
s 

[%
]

 

FIG. 27: Plasmin or aureolysin inactivates apoE activity. 
(A) ApoE deposition on the staphylococcal surface was inhibited by plasmin or aureolysin. 
Bacteria were mixed with biotin-labeled apoE and aureolysin or plasmin. After extensive 
washing, surface deposited apoE was determined by flow cytometry. ApoE binding to 
S. aureus (without protease) was set to 100%. (B) ApoE-mediated adhesion/phagocytosis 
is inhibited by plasmin or aureolysin. Phagocytosis assays were performed as described 
before and aureolysin or plasmin was added to apoE treated bacteria. Adhesion/ 
phagocytosis without apoE was set to 100%. (A+B) Data represent mean values ± 
standard deviations of three independent experiments; *p <0.05; **p <0.01 and ***p 
<0.001.  
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3.3 Plasmin & Sbi or Efb act in concert during staphylococcal 

complement evasion  

Plasmin is also exploited by S. aureus to counteract complement attack by 

degrading C3b (116). In the following chapter the plasmin-mediated cleavage of 

C3, C3b, and C3a were investigated. In addition, the impact of the staphylococcal 

C3- and C3b-binding proteins Sbi and Efb on plasmin-mediated cleavage of C3 

and C3b was characterized.  

3.3.1  Plasminogen is recruited by Sbi or Efb 

First of all, it was investigated whether the C3-binding proteins, Sbi and Efb, bind 

to plasminogen. Biotin-labeled plasminogen (PLGb) was incubated with 

immobilized Sbi or Efb and assayed for binding. Plasminogen bound to both 

staphylococcal proteins. The accuracy of recombinant Sbi and Efb was confirmed 

as both bound to C3 and Sbi bound to IgG. Plasminogen binding to Sbi and Efb 

was similar to the previously identified plasminogen ligand CRASP-5 of 

Borrelia burgdorferi (130) (FIG. 28 A+B). To exclude the possibility of nonspecific 

binding of these staphylococcal proteins to the biotin-label of plasminogen, binding 

of also unlabeled plasminogen to Sbi or Efb was tested using a combined ELISA-

Western blot assay (CEWA). Plasminogen was added to immobilized Sbi or Efb, 

washed, and all surface bound proteins were separated by SDS and 

immunoblotted for the detection of plasminogen. Free plasminogen, similar to 

PLGb, bound to Sbi, Efb, and to CRASP-5 (FIG. 28 C). 
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FIG. 28: Plasminogen is recruited by Sbi and Efb. 
(A) Plasminogen bound to Sbi and Efb (lane 1 and 2). The accuracy of the recombinant 
staphylococcal proteins was confirmed; as both, Sbi and Efb, bound to C3 (lane 3 and 4), 
but only Sbi bound IgG (lane 5 and 6). Sbi or Efb was separated by SDS-PAGE, and 
either blotted to a membrane (lane 1-6) or stained with silver nitrate (lane 7-8). 
Membranes were incubated with biotinylated PLG (PLGb), C3, or HRP-coupled Ab and 
bound proteins were detected as indicated. (B) Binding of plasminogen to Sbi or Efb was 
confirmed by ELISA. Bacterial proteins (equimolar) were immobilized; PLGb was applied, 
and detected using streptavidin-HRP. Plasminogen binding to Sbi and Efb was 
comparable to plasminogen binding of the borrelial protein CRASP-5. Plasminogen did 
not bind to HSA or to the plate (buffer). Data represent mean values and standard 
deviations of three independent experiments. (C) Plasminogen was recruited by Sbi and 
Efb. Nonlabeled plasminogen was added to immobilized bacterial proteins. Bound 
plasminogen was eluted, separated by SDS-PAGE, and detected by Western blot 
analysis. Plasminogen was recruited to CRASP-5, and no unspecific binding to HSA or 
the plate (buffer) was detected. A representative result out of three independent 
experiments is shown. 

3.3.2  Characterization of the plasminogen:Sbi/Efb interactions  

To determine the Sbi and Efb domains responsible for interaction with 

plasminogen, plasminogen binding to the structurally related domains Sbi 3-4 and 

Efb-C, in Sbi and Efb, respectively, was assayed. Plasminogen, added to the 

immobilized domain fragments, bound to both Sbi 3-4 (FIG. 29 A) and Efb-C (FIG. 

29  B) in a dose-dependent manner. These binding interactions were also followed 

in real time using surface plasmon resonance. Plasminogen added in fluid phase 

bound to immobilized Sbi 3-4 or Efb-C and confirmed the interaction between 
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plasminogen and these specific Sbi- and Efb-domains. To investigate whether 

plasminogen binding to Sbi and Efb is similar to human proteins, which bind 

plasminogen via lysine residues, the lysine analog εACA, was used in binding 

assays. εACA interfered with plasminogen binding to both, Sbi 3-4 and Efb-C (FIG. 

29 B+C), demonstrating that lysine residues are involved in the interactions with 

plasminogen.  

We next asked whether plasminogen and C3 can bind simultaneously to Sbi and 

Efb. Therefore, increasing amounts of plasminogen were added together with 

constant amounts of C3 to immobilized Sbi 3-4 or Efb-C and plasminogen and C3 

binding were assayed. C3 binding was not reduced when plasminogen binding 

increased. These results indicate that plasminogen does not interfere with the C3 

binding to Sbi 3-4 or Efb-C (FIG. 29 E or F) and that plasminogen and C3 bind 

simultaneously to both staphylococcal molecules. 



RESULTS 

 

48 

0 50 100 150 200
0.00

0.25

0.50

0.75

1.00

buffer

Efb-C
**

PLG [nM]

b
in

d
in

g
 o

f 
P

L
G

 (
O

D
4

5
0

n
m

)

0 50 100 150 200
0.00

0.25

0.50

0.75

1.00

1.25

buffer

Sbi 3-4
**

PLG [nM]

b
in

d
in

g
 o

f 
P

L
G

 (
O

D
4

5
0

n
m

)
Sbi 3-4 Efb-C

A B

C D

PLG

w/o Sbi 3-4

PLG + εεεε ACA

PLG

PLG + εεεε ACA

w/o Efb-C

1:0 1:0.5 1:1 1:2 1:4 0:4
0.0

0.2

0.4

0.6

0.8

1.0
C3 PLG

molar ratio C3:PLG

b
in

d
in

g
 t

o
 S

b
i 3

-4
 (

O
D

45
0

n
m

)

1:0 1:0.5 1:1 1:2 1:4 0:4
0.0

0.2

0.4

0.6

0.8

1.0 C3 PLG

molar ratio C3:PLG

b
in

d
in

g
 t

o
 E

fb
-C

 (
O

D
4

5
0

n
m

)

E F

 

FIG. 29: Characterization of the plasminogen interactions with Sbi 3-4 and Efb-C. 
(A) Plasminogen (PLG) bound to the fragments 3-4 of Sbi and (B) the C-terminus of Efb. 
Sbi 3-4 or Efb-C was immobilized and increasing amounts of plasminogen were added. 
Bound plasminogen was detected with specific antisera. (C) Plasminogen (solid lines) 
associated with Sbi 3-4 or (D) Efb-C determined by surface plasmon resonance. Sbi 3-4 
or Efb-C was immobilized, and plasminogen was applied in fluid phase. Binding of 
plasminogen to Sbi 3-4 or Efb-C was inhibited by εACA (dashed line). A representative 
experiment out of three is shown. (E) Plasminogen (black columns) and C3 (grey 
columns) bound simultaneously to Sbi 3-4 and (F) Efb-C. Sbi 3-4 or Efb-C was 
immobilized, and constant amounts of C3 together with increasing concentrations of 
plasminogen were added. (A, B, E, F) Data represent mean values and standard 
deviations of three independent experiments. *p <0.05 and **p <0.01. 

3.3.3  Plasminogen bound to Sbi or Efb is activated to plasmin 

To exert proteolytic activity, plasminogen is converted to plasmin by interaction 

with a human or bacterial activator. Therefore, activator accessibility of Sbi- or Efb-
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bound plasminogen was investigated. Plasminogen was immobilized with Sbi or 

Efb, treated with the human activator uPa, and the subsequent cleavage of a 

plasmin-specific chromogenic substrate was monitored. Sbi- or Efb-bound 

plasminogen was activated by uPa to plasmin, as demonstrated by the increased 

conversion of the substrate S-2251. Similarly, CRASP-5-bound plasminogen was 

activated to the protease plasmin (FIG. 30 ). 

SAK is known to activate plasminogen via a nonproteolytic mechanism. 

Experiments were performed to determine whether SAK is also able to activate 

Sbi- or Efb-bound plasminogen. SAK and human uPa were shown to activate 

plasminogen bound to Sbi or Efb and the resulting plasmin cleaved the 

chromogenic substrate (FIG. 30 B or C). In summary, plasminogen bound to Sbi 

and Efb is activated by both, staphylococcal and human activators, to form active 

plasmin.   
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FIG. 30: Plasminogen bound to Sbi or Efb is converted to plasmin. 
(A) Plasmin bound to Sbi, Efb, and the borrelial CRASP-5 converted a chromogenic 
substrate, as monitored by measuring absorbance at 405 nm. Equimolar amounts of 
bacterial proteins were immobilized and incubated with plasminogen. After washing, the 
activator uPa was applied together with the chromogenic substrate S-2251. Plasminogen 
did not bind to human serum albumin (HSA), thus no plasmin activation was observed. (B) 
Plasminogen bound to Sbi and (C) Efb was activated by uPa or SAK to plasmin. Plasmin 
activators uPa or SAK were applied to plasminogen bound to Sbi or Efb together with the 
chromogenic substrate. Conversion of S-2251 was assessed at various time points. Data 
represent mean values and standard deviations of three independent experiments. 

3.3.4  Characterization of the plasmin-mediated C3 degradation 

To analyze the impact of Sbi and Efb on plasmin-mediated C3 degradation, at first 

C3 degradation by plasmin was analyzed. C3 and its fragments C3b, iC3b, and 

C3c were incubated with plasmin and the resulting cleavage patterns were 

visualized by SDS-PAGE and Western blotting using anti-C3 Ab. Plasmin 

degraded all C3 fragments, leading to similar cleavage products at 114 (α´), 68, 

40, 27, 20, and 17 kDa (FIG. 31 A). These C3 products indicate that during 
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plasmin-mediated C3 cleavage C3b (114 kDa), iC3b (68 kDa), and C3c (40 and 

27 kDa) intermediates are generated. Plasmin also degraded the β-chain of C3 as 

demonstrated by the reduced amount of the β-chain in lane 6 and 8. 

Additionally, plasmin cleavage was compared to factor I-mediated cleavage of C3 

and its fragments by performing SDS-PAGE and Western blotting using anti-C3 

Ab. Factor I and its cofactor factor H degraded C3 and C3b, but not iC3b (FIG. 31 

B). C3 degradation by factor I is presumable caused by C3(H20) instead of C3 in 

the reaction. The addition of both proteases and factor H resulted in enhanced 

cleavage of C3 and C3b (lane 4 and 8), as less C3 α- and α´-chains were 

detectable. Because iC3b was not cleaved by factor I and factor H, no enhancing 

effect was observed for iC3b cleavage. These results for C3 degradation by 

plasmin were summarized in a schematic overview modified after Nagasawa et al. 

and Mizuno et al. (53, 131) (FIG. 31 C). 
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FIG. 31: Characterization of plasmin-mediated cleavage of C3 and C3 fragments. 
(A) Plasmin degraded C3, C3b, iC3b, and C3c. Plasmin was incubated with C3 and C3 
fragments; samples were separated by SDS-PAGE and Western blotted using anti-C3 
pAb. (B) Plasmin- and factor I-mediated cleavage of C3, C3b, and iC3b. Plasmin or/and 
factor I (FI) plus factor H (FH) were incubated with C3 fragments. Samples were analyzed 
as described for (A). (C) Schema of the C3 cleavage products generated by plasmin. All 
products in white boxes (C3a, C3f, C3dg) are not recognized by anti-C3 pAb or anti-C3-
HRP. 
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3.3.5  Plasmin bound to Sbi or Efb degrades C3 and C3b 

After plasmin(ogen) was shown to form complexes with C3 and Sbi or Efb, the 

proteolytic plasmin activity against complexed C3 was assayed. Plasminogen was 

bound together with C3 to immobilized Sbi or Efb and activated by the addition of 

SAK. The progression of C3 degradation was followed by separating the reaction 

mixture by SDS-PAGE and Western blot analysis using anti-C3 Fab´-fragments. 

Sbi- or Efb-bound plasminogen was activated by SAK to plasmin which 

subsequently cleaved bound C3, as shown by multiple C3-degradation products 

with mobilities of 114, 87, 68, 40, and 27 kDa (FIG. 32 A).  

In a similar assay performed with C3b, plasmin was observed to also degrade 

complexed C3b (FIG. 32 B), as demonstrated by the appearance of cleavage 

products with mobilities of 87, 68, 40, and 27 kDa. When CRASP-5 or HSA was 

used in these assays, instead of Sbi or Efb, no C3 cleavage was observed. Thus, 

plasmin degrades the complement proteins C3 and C3b when complexed with Sbi 

or Efb.  
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FIG. 32: Plasmin complexed with C3/C3b and Sbi or Efb degrades C3 and C3b 
within the complex. 
(A) Plasmin degraded C3 or (B) C3b within the Sbi:plasmin:C3/C3b or 
Efb:plasmin:C3/C3b complexes (lane 1 and 4), and C3/C3b cleavage products (marked 
with arrows) appeared. Bacterial proteins were immobilized (equimolar) and plasminogen 
was added together with C3 or C3b. SAK was applied for 3 h and C3/C3b cleavage was 
analyzed by Western blot analysis using anti-C3-HRP (Fab). The α-/α´- and β-chains of 
C3/C3b and the cleavage products are indicated by arrows. For CRASP-5 and HSA no C3 
cleavage products were observed (lane 7 and 8). Data shown are representative of three 
independent experiments.  

3.3.6  C3 degradation by plasmin is enhanced by Sbi and Efb 

Upon binding, Efb changes the structural conformation of C3, leading to an 

increased susceptibility of C3 to degradation by trypsin (100). To analyze whether 
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C3 degradation by plasmin is also modulated by Sbi or Efb, C3 proteolysis by 

plasmin was compared in the presence or absence of Sbi or Efb. C3 degradation 

by plasmin was clearly enhanced by both staphylococcal proteins, as 

demonstrated by the appearance of additional C3 cleavage products in Western 

blot analysis using anti-C3 Fab´-fragments for protein detection (FIG. 33). By 

contrast, proteolytic cleavage of C3 by plasmin was not affected after addition of 

CRASP5 or HSA.  

130
95
72

55

36

28

C3
PLSAK

Sbi
 +     -     +     -      +      +

Efb
CRAS

P-5

HSA

1       2       3       4        5        6

[kDa ]
αααα

ββββ
αααα´68

αααα´

αααα´40

αααα´27

 
 
FIG. 33: Plasmin-mediated cleavage 
of C3 is enhanced by Sbi and Efb. 
Sbi or Efb (lane 1 or 3) enhanced 
plasmin-mediated degradation of C3, 
as demonstrated by the decrease of 
the α-chain, and the increase of C3 
cleavage products (indicated by 
arrows). CRASP-5 showed no 
enhancing-degradative effect. C3 was 
incubated with PLSAK (PLG+SAK) in 
the presence of Sbi, Efb, CRASP-5, or 
HSA. Samples were separated by 
SDS-PAGE, and C3 cleavage products 
were visualized by Western blot 
analysis using anti-C3-HRP (Fab). 

3.3.7  Cloning, expression, and purification of Sbi 1-2 

To specify the impact Sbi or Efb exerts on plasmin-mediated C3 degradation, the 

non C3-binding Sbi construct Sbi 1-2 was cloned and expressed. This construct 

comprises the two N-terminal IgG-binding domains and lacks the signal sequence 

(FIG. 34 A). A blunt-end PCR product was generated, with a motility of 343 bp 

(FIG. 34 B), inserted into the pET101 vector, and transformed in E. coli Top10 

cells. Six of the resultant colonies were screened for the presence of the sbi 1-2 

construct. Two plasmids that contained an inserts of 343 bp, were isolated and 

sequenced (FIG. 34 C). Sequence analysis showed that the sbi 1-2 gene was 

correctly inserted into the expression vector. Plasmids were then used to 

transform the E. coli expression strain BL21 Star, and protein expression was 

induced by addition of IPTG. Sbi 1-2 was purified according to section 2.7. Purified 

protein was visualized with SDS-PAGE and Western blotting or silver staining, and 

showed the mobility of the predicted molecular mass of ~16 kDa (FIG. 34 D). 



RESULTS 

 

53 

   1        2        3         4         5        6         7

   1          2

sbi 1-2

sbi 1-2

A B

C D

r Sbi 1-2

Sbi 1-2

Sbi 3-4

Sbi

HIS-

-HIS

17

28
36

[kDa]

1000
800

600

400

200

2000

[bp]

[bp]

200

-HIS

   1          2

400

1500

 
FIG. 34: Cloning, purification, and expression of Sbi 1-2. 
(A) Schema of the Sbi constructs used in this thesis. Sbi 1-2, which encompasses the first 
two IgG-binding domains, was clones and expressed. Sbi 1-4 (in the following referred as 
Sbi) and Sbi 3-4 were cloned previously. (B) The sbi 1-2 construct was amplified by PCR 
and yielded a 343 bp blunt-end product. (C) PCR screening for pET101 sbi 1-2 positive 
clones. The PCR product was inserted in pET101, and transformed into E. coli Top10 
cells. Six clones were tested by colony PCR (lanes 2 to 7) and two positive clones were 
indentified (lane 4 and 7). (D) Recombinant Sbi 1-2 migrated at ~16 kDa (arrow). Purified 
Sbi 1-2 was separated by SDS-PAGE and visualized by immunoblotting (lane 1) using 
anti-goat-HRP (using the IgG-binding property of the Sbi 1-2) or stained by silver nitrate 
(lane 2). 

3.3.8  C3 degradation by plasmin is enhanced by Sbi 3-4 and Efb-C 

To localize the Sbi and Efb domains responsible for the enhancement in C3 

degradation by plasmin, the effect of Sbi 1-2; Sbi 3-4 and Efb-C were investigated. 

C3 cleavage by plasmin was enhanced in the presence of Sbi 3-4 and Efb-C, but 

not in the presence of Sbi 1-2 (FIG. 35 A). To confirm these results, C3 proteolysis 

was also examined using ELISA. C3 was immobilized on a microtiter plate and 

plasmin (converted by uPa or SAK) was added together with the bacterial proteins 

or with HSA. After incubation, the plates were washed, and the amount of bound 

C3 was determined. Smaller amounts of C3 were detected in reactions containing 

plasmin than on those containing plasminogen. The plasmin-dependent effect on 

C3 deposition was enhanced by the addition of Sbi 3-4 and especially Efb-C to the 

reaction mixture, but not by the addition of CRASP5 or HSA (FIG. 35 B). This 
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enhancement by Sbi 3-4 and Efb-C was more clearly demonstrated by using an 

assay in which increasing amounts of the bacterial proteins were used (FIG. 35 D). 

The results indicate that plasmin cleaves C3, and that the staphylococcal proteins 

Sbi or Efb enhance the cleavage by plasmin. The domains responsible for the 

degradation-enhancing effect were located to the domains Sbi 3-4 and Efb-C, 

each of which contains a three-helix bundle motif.  
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FIG. 35: Plasmin-mediated cleavage of C3 is enhanced by Sbi 3-4 and Efb-C. 
(A). Sbi 3-4 (lane 5 and 6) and Efb-C (lane 8 and 9) enhanced C3 cleavage, as shown by 
the increase in C3 cleavage products in Western blot analysis using anti-C3 pAb. The 
IgG-binding Sbi 1-2 (mobility of 16 kDa) did not affect the C3 cleavage pattern (lane 2 and 
3). (B) The degradation-enhancing effect of Sbi 3-4 and Efb-C was confirmed by ELISA. 
C3 was immobilized and plasmin (PLG+uPa or PLG+SAK) together with Sbi 3-4 or Efb-C 
were added. C3 deposition was detected after 3 h with anti-C3a Ab. CRASP-5 and HSA 
did not influence C3 cleavage. (C) Sbi 3-4 and Efb-C enhanced C3 degradation by 
plasmin in a dose dependent manner. C3 incubated only with plasmin was set to 100%. 
Data in B and C represent mean values of three independent experiments and error bars 
represent standard deviations.*p <0.05, **p <0.01, and ***p <0.001.  

3.3.9  C3b degradation by plasmin is also enhanced by Sbi 1-2 and Efb-C 

Having shown that plasmin cleaves C3 more efficiently in the presence of Sbi or 

Efb, the same effect was analyzed for C3b. Plasmin-mediated C3b degradation 

was assayed using again deletion fragments Sbi 1-2, Sbi 3-4 or Efb-C, in the same 

assay as described for C3. The C3b degradation by plasmin was enhanced in the 

presence of Sbi 3-4 or Efb-C, as shown by the increase in C3b degradation 
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products (FIG. 36 A). However, the addition of Sbi 1-2 to C3b resulted in no 

enhancement effect. To investigate whether Sbi and Efb also accelerate plasmin 

activity on the bacterial surface, S. aureus was incubated with human serum to 

allow complement-mediated C3b deposition. The C3b-coated bacteria were then 

washed, incubated with plasmin plus Sbi 3-4 or Efb-C, and C3b deposition was 

analyzed by flow cytometry. Plasmin substantially reduced the C3b opsonization of 

S. aureus by about 37%. In the presence of Sbi 3-4, C3b deposition was further 

decreased to 50% and in the presence of Efb-C to 38% (FIG. 36 B). In parallel 

analyses, supernatants containing the C3b degradation products were 

characterized by SDS-PAGE and Western blotting. C3b cleavage products with 

mobilities of 41 and 27 kDa were identified in the supernatants of those samples 

containing C3b-opsonized S. aureus treated with plasmin (FIG. 36 C). Again C3b 

degradation was accelerated when plasmin cleaved surface-bound C3b in the 

presence of Sbi 3-4 and Efb-C (indicated by arrows). By contrast, the presence of 

Sbi 1-2 showed no effect. These results demonstrate that C3b degradation by 

plasmin is accelerated by interaction with the staphylococcal proteins Sbi and Efb 

on the bacterial surface.  
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FIG. 36: Plasmin-cleavage of C3b is enhanced by Sbi 3-4 and Efb-C. 
(A) Sbi 3-4 (lane 5-6) and Efb-C (lane 8-9) enhanced plasmin-mediated cleavage of C3b, 
as demonstrated by the accumulation of C3b cleavage products. Sbi 1-2 did not influence 
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C3b degradation (lane 2-3). (B+C) Sbi 3-4 and Efb-C enhanced the anti-opsonic activity of 
plasmin. C3b was deposited on S. aureus; bacteria were then incubated with Sbi 1-2, 
Sbi 3-4, Efb-C or HSA in the presence or absence of plasmin. Remaining C3b on 
S. aureus was measured by flow-cytometry The C3b generation in the absences of 
plasmin was set to 100%. Data represent mean values and standard deviations of five 
independent experiments.*p <0.05. (C) In parallel the supernatants were separated by 
SDS-PAGE and analyzed by Western blotting using anti-C3-HRP (Fab). Sbi 3-4 (lane 2) 
and Efb-C (lane 4) increased the plasmin degradation, as shown by the increase in C3b 
cleavage products. However, Sbi 1-2 did not influence the amount of C3b-fragments 
(lane 1). (A+C) A representative result out of three independent experiments is shown. 

3.3.10  Further characterization of the degradation-enhancing effect 

After Sbi 3-4 and Efb-C were identified to enhance plasmin-mediated degradation 

of C3 and C3b, we assessed the effect for the iC3b fragment in the previously 

described assay. Neither Sbi 3-4 nor Efb-C increased the susceptibility of iC3b to 

degradation by plasmin (FIG. 37 A). Thus, the degradation-enhancing activity of 

the staphylococcal protein was restricted to C3 and C3b. 

To further characterize this effect, C3 and C3b degradation by an additional 

protease were assayed in the presence of Efb-C. Aureolysin was incubated with 

C3 or C3b in the presence or absence of Efb-C and plasmin was included as 

control. Samples were analyzed as described before. Efb-C also enhanced 

aureolysin-mediated degradation of C3 and C3b (FIG. 37 B), indicating that the 

degradation-enhancing Efb-C (or Sbi 3-4) also affect C3 and C3b proteolysis by 

additional proteases. However, in contrast to the aureolysin-mediated C3 cleavage 

pattern described by Laarman et al. (113), additional C3 cleavage products were 

observed with mobilities of 40 and 27 kDa (FIG. 37 C+D).  
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FIG. 37: Characterization of the degradation-enhancing effects of Sbi 3-4 and Efb-C. 
(A) Plasmin-mediated iC3b proteolysis is not affected by Sbi 1-2, Sbi 3-4, or Efb-C. 
Plasmin-mediated iC3b degradation was assayed as described for C3 or C3b, but iC3b 
was used instead of C3 or C3b. (B) Schematic overview over the plasmin-mediated 
cleavage of iC3b. (C) Efb-C enhances aureolysin-mediated degradation of C3 and C3b. 
C3 and C3b degradation assays were performed as described before, but besides 
plasmin (PL) also aureolysin (Au) was tested. (D) Schematic cleavage of C3 by 
aureolysin. 

3.3.11  Plasmin degrades C3a 

Plasmin cleaves C3 into functionally active C3a (52, 132) and proteolytically 

inactivates the opsonin C3b (51, 54, 116). Because C3a exhibits antimicrobial 

activity (32, 33) and thus kills S. aureus, we investigated whether S. aureus 

evades this antimicrobial attack by using plasmin to degrade also C3a. S. aureus 

was treated with C3a alone or with C3a together with plasmin (PLSAK). The 

supernatants were analyzed by SDS-PAGE and Western blotting using anti-C3a 

Ab. Plasmin completely degraded C3a, as demonstrated by the absence of 

detectable levels of C3a (FIG. 38 A). When plasminogen was added without SAK 

to S. aureus, the amount of C3a was decreased by about 15%, which may be 

explained by synthesis and secretion of SAK by S. aureus during the assay. In 

parallel, C3a antimicrobial activity against S. aureus was analyzed in survival 

assays. C3a added to growing S. aureus killed the bacteria, but in the presence of 

C3a and plasmin (PLG+SAK) 88% of S. aureus survived. Plasminogen added 
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without SAK resulted in 50% survival of the bacteria, and addition of SAK without 

plasminogen had no effect on the bacteria (FIG. 38 B). Thus, plasmin inhibits the 

bactericidal activity of C3a by degradation of the C3a molecule. 
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FIG. 38: Plasmin degrades and inactivates C3a. 
(A) C3a was completely degraded by plasmin; plasminogen had a weak degrading effect 
on C3a. S. aureus was incubated with C3a in the absence or presence of plasmin 
(PLG+SAK) (lane 4) or plasminogen (lane 6). The supernatants were analyzed by SDS-
PAGE and Western blotting. (B) Plasmin (PLG+SAK) inhibited C3a antibacterial activity, 
and increased the survival of S. aureus by 88% and plasminogen to 50%. S. aureus 
treated with C3a in the absence or presence of plasmin or plasminogen was cultivated 
overnight on LB agar plates. CFUs were counted and the survival without C3a was set to 
100% (white columns). Data represent mean values ± standard deviations of three 
independent experiments. ***p<0.001. 
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4 DISCUSSION 

Infections with pathogens usually result in the activation of the host immune 

response. The immune system recognizes pathogenic microbes and triggers a 

number of reactions counteracting the spreading of the invaders. Complement and 

coagulation are immediately initiated leading to (i) opsonization of the microbial 

intruders, (ii) generation of AMPs, (iii) release of chemotactic C3a and C5a, which 

recruit neutrophils and macrophages to the site of infection, (vi) killing of bacteria 

by TCC, and (v) entrapment of pathogens by fibrin clots. However, pathogenic 

microorganisms, such as S. aureus, have developed sophisticated strategies to 

counteract these host immune defense mechanisms.  

In this study, the roles of apoE and the serine protease plasmin in the host-

pathogen interactions were investigated. ApoE exerted bactericidal activity against 

S. aureus after HNE-mediated proteolysis and the intact protein was shown to 

target S. aureus and facilitate phagocytosis. Both functions of apoE were 

negatively regulated by plasmin. In addition, plasmin also inactivates a variety of 

complement components including C3, C3a, and C3b. Consequently, S. aureus 

hijacks plasminogen and subsequently activates plasmin to evade the apoE-

mediated innate immune response and complement activity. 

In summary, the human plasma proteins apoE and plasmin(ogen) play 

distinguished roles in the host-pathogen interactions. ApoE is part of the innate 

immune response, and is therefore proteolytically inactivated by S. aureus. By 

contrast, the activated plasma protease plasmin terminates innate immune 

reactions and is exploited by S. aureus. 

4.1 Two novel immunomodulatory functions of apoE 

Because apoE knock-out mice are susceptible to bacterial infections, apoE is 

implicated in immunity (64). Here, we characterized two novel immune functions of 

apoE. The protein exerted antibacterial activity against Gram-positive and -

negative bacteria after cleavage by the neutrophil protease HNE and binds to 

S. aureus and facilitates phagocytosis.  

4.1.1 ApoE-derived AMPs are generated by HNE 

Although apoE consists of several amphipathic α-helixes, a common structural 

feature of AMPs (18), the intact apoE molecule exhibited no bactericidal activity. 
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When neutrophils are attracted to the site of infection, they release a variety of 

proteases, such as HNE (125, 126). ApoE was cleaved by proteases of the PMN 

lysate, as well as by purified HNE, into antimicrobial active fragments that kill 

E. coli and S. aureus. Hence, the antimicrobial sequence of apoE is hidden in the 

intact molecule and exposed after proteolytic processing. This observation concurs 

with previous reports showing that cleavage products of other plasma proteins 

including complement C3 (32, 33), HMWK (9), and β2-glycoprotein I (10) exert 

antimicrobial activities after proteolysis of the intact proteins. In addition, HNE itself 

harbors antimicrobial activity (125) and therefore the protease and plasma-derived 

AMPs likely act synergistically in killing microorganisms. 

The antimicrobial activity of apoE-derived AMPs was inhibited by heparin, 

indicating that the generated AMPs contain heparin-binding motifs. Heparin-

binding and antimicrobial motifs share the same features: amphipaticity, 

cationicity, and secondary structures. Andersson et al. reported that synthetic 

peptides derived from heparin-binding sequences of plasma proteins including e.g. 

laminin, fibronectin, von Willebrand factor, and vitronectin exerted antimicrobial 

activity (11). Thus, apoE belongs to a group of heparin-binding plasma proteins 

that are precursors for AMPs. 

Antimicrobial assays using synthetic peptides encompassing the heparin-binding 

sites of apoE were carried out to locate the antimicrobial motif. SHL14 derived 

from the heparin-binding sequence of the N-terminal LDL-receptor-binding domain 

exhibited bactericidal effects against S. aureus and E. coli. By contrast, WGE23, a 

peptide derived from the heparin-binding motif of the apoE lipid-binding domain, 

had no bactericidal effect. Thus, not all heparin-binding sites confer antimicrobial 

activity and all apoE-derived AMPs contain the heparin-binding sites of the N-

terminal domain. 

SHL14 antibacterial activity is in agreement with Azuma et al., who reported 

bactericidal effects of a 30 amino acid peptide derived from the LDL-receptor-

binding site (here referred to as LRV30) (74). SHL14, in contrast to LRV30 (74), 

was not further cleaved by HNE, indicating that proteolysis of apoE by HNE 

generates SHL14. The apoE-derived AMP shares features of other α-helical AMPs 

(18): it contains 6 positively charged lysine and arginine residues, no aromatic 

amino acids, has an isoelectric point (pI) of 12, and possesses an amphipathic 
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structure as demonstrated in the helical wheel projection and the space-filling 

model of the peptide.  

4.1.2  ApoE enhances phagocytosis 

ApoE bound to the surface of S. aureus as demonstrated by flow cytometry and 

serum absorption assays. These results are in line with the findings of Dreisbach 

et al., who characterized the binding of human serum proteins to S. aureus by 

surface shaving (77). However, the functional role of apoE binding to bacteria was 

unknown. 

Here, it is demonstrated that apoE enhances phagocytosis of S. aureus by 

macrophages. The opsonic activity of apoE was dose-dependent. Previously, 

Grainger et al. concluded that apoE modulates the clearance of apoptotic bodies 

(72). Apoptotic bodies and microorganisms are often recognized by the same 

opsonins including complement factors (29) and members of the pentraxin family, 

such as CRP (133-136). Thus, apoE acts like a bridging molecule (23) that binds 

to pathogens, as well as apoptotic bodies, and initiates phagocytosis. However, 

the apoE-ligand on the staphylococcal surface is unknown. As apoE binds and 

neutralizes the PAMP LPS on Gram-negative bacteria (137), it is likely that apoE 

also recognizes PAMPS on S. aureus. ApoE interacts with LDL- and LRP-

receptors, which are both implicated in phagocytosis of apoptotic cells (138), and 

may therefore participate in the apoE-mediated opsonization and clearance of 

S. aureus. 

The AMP SHL14, in contrast to full-length apoE, did not enhance phagocytosis; 

hence antimicrobial activity is independent from opsonic activity. However, several 

serum proteins such as thrombospondin, vitronectin, fibronectin, and β2-

glycoprotein I, interact with macrophage receptors, promote phagocytosis (24, 25), 

and also harbor antimicrobial sequences (10, 11, 127).  

Taken together, apoE (i) exerts antimicrobial activity after its proteolytic processing 

and (ii) facilitates phagocytosis (FIG. 39). Thus, the increased susceptibility to 

bacterial infections in mice lacking apoE (67-69) may also be due to reduced 

antimicrobial and opsonic activity. 
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FIG. 39: ApoE has antimicrobial and opsonic activities. 
HNE-mediated proteolysis of apoE yields AMPs (left side). ApoE binds and facilitates 
phagocytosis of S. aureus (right side). PMN = polymorphic neutrophil, MΦ = macrophage. 

4.2 The role of plasmin during and after infections 

Plasmin has been described as a complement activator, because it cleaves C3 

generating functionally active C3a (52, 132, 139, 140). However, as reported in 

this thesis as well as by Barthel et al., and Seya et al., plasmin also has 

complement inhibitory functions (51, 54). C3 degradation assays revealed that 

plasmin degrades C3, C3b, and in contrast to factor I and factor H, also iC3b as 

well as C3c. These observations are in agreement with Nagasawa et al., who 

reported rapid degradation of iC3b (C3b´) by plasmin into C3c and C3d (53) and 

Barthel et al., who showed similar C3b cleavage fragments (51).  

Plasmin- and factor I-mediated cleavage of C3 and C3b acted in concert and 

caused rapid degradation of both complement components. Therefore, plasmin, 

alone or together with factor I, interferes with C3b effector functions by inhibiting 

the alternative pathway amplification loop, C3b-mediated opsonization, and the 

propagation of the complement cascade. Consequently, when plasmin is 

generated it can act together with factor I to protect self cells and tissues from 

damage by complement activity (51, 141).  

Moreover, plasmin degraded AMPs, such as C3a and the apoE-derived SHL14. 

C3a degradation concurs with Amara et al., who observed while plasmin 
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generates C3a, the C3a amount decreased with increasing plasmin concentrations 

(52). Thus, dependent on the amount of plasmin, this protease generates C3a and 

acts as a complement activator or inactivates the complement effector molecules 

C3a and C3b to inhibit complement activity. The plasmin level is tightly regulated 

by inhibition of plasminogen activators and plasmin (57, 142). The fibrinolytic 

protease primarily acts after coagulation and inflammation and may therefore 

inactivate no longer needed AMPs after the immune reaction (FIG. 40).  
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FIG. 40: Plasmin and apoE functions.  
Microbial intruders activate the coagulation system leading to generation of fibrin clots that 
trap microorganisms. Additionally, the complement system is activated resulting in the 
generation of antimicrobial peptides, such as C3a and C4a, opsonins, and chemo-
attractant molecules, which recruit neutrophils and macrophages to infectious sites. 
Neutrophils secrete proteases that generate AMPs like SHL14. Phagocytosis of 
microorganisms is facilitated by apoE and C3b/iC3b. After the immune reaction, plasmin 
degrades fibrin clots and AMPs. 

4.3 Staphylococcal innate immune evasion by proteases 

As part of the evolutionary “arms race”, microbes, such as S. aureus, have 

developed elaborated evasion strategies to escape the host immune defense. 

Here, it is reported that S. aureus recruits human plasminogen by Sbi and Efb and 

subsequently activates the serine protease plasmin. Sbi and Efb were shown to 
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simultaneously bind plasmin together with C3 or C3b and to accelerate the 

degradation of both complement proteins representing a new type of complement 

evasion strategy. In addition, S. aureus exploited the proteolytic activity of plasmin 

and the staphylococcal metalloprotease aureolysin to evade cell damaging by 

AMPs and opsonin-dependent phagocytosis. 

4.3.1  Two novel staphylococcal plasminogen-binding proteins 

Human plasminogen, the zymogen of plasmin, was recruited by the 

staphylococcal complement inhibitory proteins Sbi and Efb. Hijacking plasminogen 

is also reported for several other microbial proteins, summarized in TAB. 1, and 

reflects a major evasion strategy used by a vast number of pathogens.  

The binding of plasminogen to Sbi and Efb was dose dependent and influenced by 

the lysine analogue ε-ACA. This represents the same method of plasminogen 

binding observed in the listed microbial proteins and indicates a similar binding 

strategy to ensure activation of plasminogen to plasmin.  

 

TAB. 1: Plasminogen-binding proteins from human pathogenic bacteria. 
The bacterial plasminogen activators are not included. 

 PLG-binding protein  Abbreviation Species Refs 

α-enolase 

Elongation factor-tu 

Chaperonin-60 kDa 

 

EF-tu 

GroEL 

Bacillus 
anthracis 

(143) 

(144) 

 

Borrelia plasminogen-binding protein 

Outer surface protein A  

Outer surface protein C  

Complement regulator-acquiring  

   surface protein 1;3-5  

 

 

 
 
α-enolase 

BPBP 

OspA 

OspC 

CRASP-1 

CRASP-
3/ErpP 
CRASP-
4/ErpA 
CRASP-
5/ErpC 

Borrelia 
burgdorferi  

(145) 

(146) 

(147) 

(148) 

(130) 

 

 

 

 
(149) 

Flagella 

G-Fimbriae 

 
Escherichia coli 

(150) 

(151) 

Aspertase 

Protein E  

 

PE 

Haemophilus 
influenzae 

(152) 

(153) 

Plasminogen-binding protein A  

Plasminogen-binding protein B  

pgbA 

pgbB 

Helicobacter 
pylori 

(154) 

 

Leptospira endostatin-like protein A  

8 outer membrane proteins  

LenA  

e.g.: LipL32, 

Lp29,  

Leptospira 
interrogans 

(155) 

(156) 
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MPL36, 
rLIC12730… 

α-endolase 

Hsp70 chaperone 

Peroxiredoxin 

 

DnaK 
Neisseria 
meningitidis 

(157) 

Elongation factor Tuf  

 

Tuf 

 

Pseudomonas 
aeruginosa 

(158) 

Fimbriae  Salmonella 
enterica 

(151) 

 

staphylococcal binder of IgG 
extracellular fibrinogen-binding     
   protein 
α-enolase 

Ribonucleotide reductase 

Inosine 5′-monophosphate  

   Dehydrogenase 

Sbi 
Efb 
 

 

 

IMPDH 

Staphylococcus 
aureus 

this 
study 
 

(117) 

 

Glycerinaldehyd-3-phosphat- 

   dehydrogenase 

α-enolase 

Cholin-binding protein E  

Plasminogen- & fibronectin-binding  

   protein B  

GAPDH  

 

Eno 

CBPE  

PfbB 

Streptococcus 
pneumoniae 

(159) 

 

(160) 

(161) 

(162) 

Glycerinaldehyd-3-phosphat-    

   dehydrogenase 

α-enolase  

Plasminogen-binding group A  

   streptococcal M protein  

GAPDH/ SDH 

 

SEN  

PAM  

 

Streptococcus 
pyogenes 

 

 

(163) 

(164) 

 

In contrast to previously identified plasminogen ligands, Sbi and Efb bind C3 in 

addition to plasminogen. Plasminogen binding was mediated by the domains 

Sbi 3-4 in Sbi and Efb-C in Efb, the same domains that interact with C3. Although 

the sequence identity between Sbi 3-4 and Efb-C is rather low (only 19%), both 

fragments contain a three-helix bundle motif, in which the amino acids of the α2-

helixes contribute to C3d binding (103, 106).  

Sbi 3-4 and Efb-C simultaneously recruited plasminogen and C3 and formed a 

trimeric complex. In these complexes, plasminogen remained accessible for the 

staphylococcal activator SAK and the human activator uPa to be converted to 

plasmin. More than 67% of S. aureus strains express the sak gene and produce 

the nonproteolytic SAK (121). In addition, the pathogen can enhance uPa 

production in mammalian cells (165) or activate conversion of pro-uPa to uPa by 

the metalloprotease aureolysin (112) to enhance plasmin generation. These 

different plasminogen activation strategies underline the importance of plasmin 
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activation, and may explain why staphylococcal strains incapable of expressing 

SAK showed no loss of virulence (166). 

Sbi and Efb are surface exposed and detected in extracellular fractions (95-98). 

Thus, complexes of plasmin(ogen), C3, and Sbi or Efb are presumably formed on 

the cell surface and in fluid phase. Conclusively, S. aureus binds plasminogen by 

a number of proteins and activates plasmin by several strategies to exploit the 

proteolytic activity of the serine protease (FIG. 42). 

4.3.2  Proteolytic inactivation of complement C3 

Plasmin complexed with Sbi or Efb and either C3 or C3b degraded both 

complement components, respectively. Interestingly, plasmin-mediated C3 or C3b 

degradation was accelerated in the presence of Sbi or Efb. These functions were 

mediated by the C3-binding domains Sbi 3-4 and Efb-C, and concur with studies 

showing that Efb-C binding to C3 and C3b leads to conformational changes in C3 

as well as in C3b (100, 101). Sbi acts similar to Efb and induces structural 

changes in C3, as predicted in the doctoral thesis of M. Reuter (167), and C3b. 

The presented results provided further information about Efb-C functions. This 

protein affects the structural conformations of C3 and C3b, but not iC3b, because 

iC3b degradation was not influenced. In addition, the degradation-enhancing effect 

of Efb-C was also observed for degradation of C3 and C3b by aureolysin. Thus, 

Efb-C induces an open conformation of C3 and C3b, which increases the 

accessibility of cleavage sites for proteolysis within the complement molecules. In 

contrast to C3 and C3b, iC3b already displays an open conformation and therefore 

its cleavage is not modified. The initial conformational change in C3 presumably 

leads to a C3(H2O)-like conformation, as factor I and factor H cleave C3(H2O), but 

not C3 (31, 168). Additionally, plasmin degrades iC3b more efficiently compared to 

C3b (53), thus the second conformational change may lead to an iC3b-like 

conformation of C3b (FIG. 41). 
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FIG. 41: Proposed model for Sbi and Efb functions. 
Sbi and Efb induce conformational changes in C3 and C3b, but not iC3b (first row). These 
changes accelerate the susceptibility of C3 and C3b to proteolytic degradation by plasmin, 
aureolysin, and factor I (FI) (second row).  

The degradation-enhancing effect of Efb-C was more pronounced, compared to 

Sbi 3-4. This difference is presumably due to the higher affinity of Efb-C for C3 or 

C3b. Clark et al. also reported that Sbi 4 (Sbi IV), in addition to the overlapping 

binding site for Efb-C, has another unique binding site for C3d that influences the 

interaction (103). 

Taken together, Sbi 3-4 and Efb-C have both, redundant and distinct functions. 

The two staphylococcal proteins bind to C3d containing C3 fragments and 

accelerate the degradation of C3 and C3b by plasmin and aureolysin. This 

mechanism represents a novel type of complement evasion strategy and is, to our 

knowledge, unique for S. aureus. In addition, Sbi and Efb were recently shown to 

form tripartite complexes with factor H and inactivate C3 and C3b by factor I ((167) 

(90, 167). Both staphylococcal proteins also competitively inhibited the binding of 

C3d to CR2 (104, 105). However, Sbi induces consumption of C3, whereas Efb 

blocks all C3b-containing convertases (95, 100-102).  

S. aureus used the proteolytic activity of plasmin to inactivate C3 and its active 

cleavage products C3a and C3b. C3a degradation counteracted C3a antimicrobial 

activities and may also prevent C3a-mediated recruitment of neutrophils to 

infectious sites. Degradation of C3b, which is accelerated by Sbi or Efb, prevented 

opsonization and consequently phagocytosis as reported by Rooijakkers et al. 

(116). Thus, extensive degradation of C3 by plasmin leads to C3 consumption 

without generating functionally active C3a and C3b. A similar consumption effect 
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was described for the secreted metalloprotease aureolysin. The metalloprotease 

degrades C3 similarly to the C3 convertase yielding C3a and C3b, which are both 

inactivated in the presence of human plasma (113). In contrast to the aureolysin-

mediated cleavage pattern of C3 reported by Laarman et al. (113), we observed 

additional C3 cleavage fragments, which may be due to higher protease 

concentrations. 

In summary, S. aureus exploits plasmin to proteolytically inactivate complement 

components, such as C3, C3a, C3b, as well as C5 (51) and IgGs (116), fibrinogen 

and other components of the ECM (43) (FIG. 42). These powerful inhibitory effects 

of acquired plasmin against several immune defense mechanisms apparently 

explain why a multitude of pathogenic microbes attach human plasminogen to 

their surface and activate plasminogen to plasmin. 
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FIG. 42: S. aureus binds and activates plasminogen to plasmin for immune evasion. 
Plasminogen is recruited by surface bound and secreted proteins of S. aureus. The 
zymogen is activated by SAK or the host activator uPa to plasmin. Plasmin then degrades 
the complement components C3, C3a, C3b, and C5, as well as FBG, and IgG. 

4.3.3  Proteolytic inactivation of apoE-mediated immune reactions 

In addition to the complement system, S. aureus has to overcome further innate 

immune responses such as apoE-mediated immune reactions (4.1). Here, we 

demonstrated that S. aureus also utilizes host-derived plasmin and aureolysin to 

inhibit the immunoregulatory activity of apoE.  

Proteolytic processing of apoE by HNE yielded AMPs containing SHL14 (4.1.1). 

However, plasmin and the metalloprotease aureolysin completely degraded the 

apoE-derived AMP. Degradation of SHL14 by both proteases impaired surface 

binding and antimicrobial activity. Proteolytic inactivation of α-helical AMPs is in 

agreement with Sieprawska-Lupa et al., who showed that a similar amount of 
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aureolysin degrades and inactivates α-helical AMP LL-37. In addition, aureolysin-

overexpressing strains were less affected by the anti-staphylococcal activity of LL-

37 indicating that the expression level of aureolysin directly affects resistance to α-

helical AMPs (111).  

Besides SHL14, plasmin and aureolysin also degraded full-length apoE. Two 

different cleavage patterns of apoE were observed. The serine protease plasmin-

mediated degradation of apoE yielded a variety of fragments, whereas the 

metalloprotease aureolysin cleaved apoE into two distinct fragments (limited 

proteolysis). Similarly, plasmin degrades C3 into several fragments, while 

aureolysin cleaves C3 at distinct sites (113). Degraded apoE lost its ability to bind 

to S. aureus leading to reduced apoE-mediated phagocytosis by macrophages. 

However, an additional, direct effect of plasmin and aureolysin on phagocytosis 

was observed, as both proteases affected the level of basal phagocytosis. 

In summary, aureolysin and plasmin use different cleavage mechanisms, but 

eventually inactivate SHL14 and apoE. Hence, both proteases block the 

antimicrobial activity of α-helical AMPs and apoE-mediated opsonization for 

phagocytosis.  

S. aureus also pursues other evasion strategies against cationic AMPs and 

opsonins. For example, the bacterium modifies its membrane structure or surface 

net charge to impair recognition by AMPs and thus becomes more resistant (19). 

Furthermore, SAK itself acts as a trapping molecule for the α-defensins HNP-1 

and -2 and neutralizes their bactericidal activity (123). S. aureus resists 

phagocytosis using various secreted molecules. In order to avoid the classical 

opsonin IgG, the bacterium expresses the IgG-binding proteins Sbi, SpA, and 

SSL10, which block the Fc-region of IgGs for recognition by Fc-receptors on 

phagocytes (82-85). Also the complement-derived opsonin C3b is targeted by 

various soluble staphylococcal inhibitors, such as SCIN (89). 

4.3.4  Staphylococcal innate immune evasion strategies 

S. aureus uses a variety of secreted molecules to counteract the human immune 

defense. Remarkably, some of these proteins have overlapping activities. In this 

thesis, it is shown that plasminogen is bound by several staphylococcal proteins 

including Sbi, as well as Efb, and subsequently activated by bacterial or human 

activators to plasmin. Plasmin and the staphylococcal metalloprotease aureolysin 

have overlapping substrates. Both proteolytically inactivate C3, apoE, and the 
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apoE-derived AMP SHL14. In addition, Sbi and Efb also share redundant features, 

such as modification of the C3 and C3b structure. This high level of redundancy 

may partially explain why S. aureus is very successful in immune evasion and 

difficult to treat. For example, inhibition of aureolysin would have no total effect on 

the proteolysis of AMPs and opsonins, as plasmin has similar activity.  

Another striking fact regarding staphylococcal immune evasion is the accumulation 

of C3 inhibitors. Targeting the central complement component C3 is especially 

effective as it inhibits (i) the auto-amplification loop of the alternative pathway, (ii) 

the generation of AMPs (C3a and C4a) and chemoattractants (C3a and C5a), (iii) 

the opsonization by C3b, and (iv) the activation of B-cells via CR2. S. aureus 

targets C3 by several secreted proteins, such as SCIN (89), Efb (98), Sbi (95), and 

aureolysin (113). Additionally, the bacterium hijacks human complement regulators 

like factor H (90) and the protease plasmin (117). Intriguingly, S. aureus combines 

different strategies and multiplies thereby the inhibitory activities. For example, it is 

shown in this thesis that proteolysis of C3 is accelerated by Sbi and Efb.  

4.4 Concluding remarks 

Both human plasma proteins, apoE and plasmin(ogen), interact with the 

staphylococcal surface. However, the results of this thesis demonstrate that both 

proteins play distinguished roles in the host-pathogen interactions. As apoE-

derived peptides exhibited antistaphylococcal activity and the intact protein 

facilitated phagocytosis, apoE is part of the innate immune response against 

S. aureus.  

By contrast, the activated serine protease plasmin has ambiguous functions that 

restrict the innate immune defense; it (i) acts as inhibitor of the complement 

cascade by consuming C3, (ii) terminates the activity of AMPs, (iii) controls 

coagulation by cleavage of fibrin clots, and (iv) facilitates migration by degradation 

of components of the ECM (39, 43, 44). Therefore, S. aureus recruits 

plasminogen, activates it to plasmin and exploits the proteolytic activity of plasmin 

to counteract the immune defense and establish in the host. 

The results presented in this thesis enhance our knowledge of the staphylococcal 

pathogenicity and may help to resolve the mode of action of this clinically relevant 

bacterium.  
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