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Abstract

A passive vibrissa (whisker) is modeled as an elastic bending rod
that interacts with a rigid obstacle in the plane. Aim is to see details of
what happens in quasistatically scanning the obstacle. To this end the
differential equations emerging from Bernoulli’s rod theory are solved
by elliptic integrals followed by numerical evaluation. As a supplement
we consider the analogous scanning problem using a simple rigid body
model for the vibrissa.
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MSC: 92C10, 74L15, 74K10

1 Introduction

Most mammals like mice, cats, and seals are equipped with vibrissae. These
are special tactile sensor organs which contribute to the perception of the
environment by noticing environmental vibrations or contact with an external
obstacle. A vibrissa is hair-like and it is subcutaneously anchored in the so-
called follicle-sine-complex. The latter contains mechano-receptors and a
chamber filled with blood of controllable pressure, and it is surrounded by
various muscles. Thereby both stiffness and viscosity of the anchoring can
be controlled, certain external mechanical excitations can be recognized and
transmitted to the central nervous system, and the outer hair can be kept in
relative movement via respective nerves. There are two modes the vibrissa
can work in: in the passive mode the vibrissa is kept mainly at rest and the
effects (like bending or fluttering) of external perturbations are recognized,
whereas in the active mode the vibrissa is kept in permanent vibration in
order to scan the environment.

It is obvious that artificial vibrissae could play an important role in
robotics. To this end mathematical descriptions of properties and behavior
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of vibrissae are inevitable. They must be based on results out of biological
fields which in the first instance suggest appropriate physical models leading
to corresponding mathematical framework. Plenty of papers on this topic
can be found in literature, we just quote some local theses: The 2008 (bio-
logically flavored) doctoral thesis by Kathrin Carl [2], the 2011 master thesis
by Tonia A.Schmitz [3], and the (still unpublished) habilitation thesis by
Carsten Behn [1], they all present also a lot of references. The mechanical
models proposed therein are for the most part rigid body systems of degree
of freedom one, two, or three (multiple pendulums with compliant support)
to be evaluated by means of, e.g., Lagrange’s equations. As far as theory
is in the foreground, investigations of continuum models (flexible rods) are
concentrated to small amplitude vibrations and treated within a linear the-
ory, see also the 1998 paper by Ueno et al. [6]. Somewhat deviating in the
way of treatment is the 2004 paper by Scholz and Rahn [4] about profile
sensing by means of vibrissa sweep past an object. Here the authors exploit
an experimental set-up and enter the measured data into the (non-linear)
to-be-integrated bending rod equations. In 2010, Solomon and Hartmann
revisit this sweep method in an improved way [5].

In the following we envisage a vibrissa in passive mode which is to scan
an external obstacle. Opposite to [4] this is not done by sweep but while
passing by. The rod is modeled as an elastical Euler-Bernoulli bending rod,
the process is confined to R2 and runs slow (quasistatically), the profile of
the obstacle is assumed to be smooth and convex. Aim is at a far-reaching
analytical treatment, attempting to characterize certain process marks (like
the final ’snap off’). Evaluation by computer (using Maple 15) is put to
the end and this then yields a sketch of the process and the course of the
observables.

Just for the sake of comparison the same problem is tackled with the help
of the simplest rigid body model.

The conclusion offers some problems to be tackled in near future. An
Appendix gives some hints to elliptic integrals.

2 The continuum model

We shall consider the vibrissa as an elastic rod of length L and of constant
bending stiffness EIz . Let its original unperturbed position be vertical with
clamped lower end and free upper end. Let the lower end move along a
horizontal straight line, whereby the upper flexible part eventually contacts
an obstacle. Passing the obstacle slow, a quasistatic deformation of the rod
occurs which induces certain reactions in the clamp (where the real vibrissa
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ends in the follicle-sine-complex). These reactions can be observed and are
hoped to admit some conclusions about the shape of the obstacle.

In order to do all calculations in a form as clear as possible we introduce
once for all the following units of measure:

[length] = L ; [force] = EIzL
−2 ; [moment] = EIzL

−1 .

These units are conform to the general problem, make all formulas free of
ballast (e.g., the vibrissa now has formal length 1), and the formulas match
any special problem of what dimension ever.

Supposition:
Let the profile of the obstacle be a smooth strictly convex schlicht
curve over the x−axis (where the vibrissa clamp at low speed moves in
negative direction) with maximum distance > 1 and minimum distance
p0 ∈ (0, 1). Due to strict convexity the profile curve can be given in a
parametrization by its slope α ∈ (−π

2
, π
2
)

x = ξ(α), y = η(α), ξ(0) = 0, η(0) = p0, curvature κp > 0,
arc length : σ =

∫ α

0
[ξ′(α)2 + η′(α)2]1/2dα,

with respect to a fixed (x, y)-coordinate system.

As an example take a parabola: ξ = tan(α), η = p0 +
1
2
tan2(α).

For the vibrissa in passing that obstacle from the right to the left one
should expect a scenario like this: A preceding phase 0 without contact is
followed by a phase 1 of tangent touch with the contact point first going
down the vibrissa and then again up to the vibrissa tip. During a phase 2
the vibrissa tip touches the profile under a non-zero angle until this angle
equals π

2
, then the vibrissa snaps back to the vertical position.

The analysis quickly shows that the phase 2 as described above is not
correct, it terminates earlier.

Anyway, we start with an investigation of the elastica in contact with the
obstacle under the

Supposition: The contact vibrissa - obstacle is ideal, i.e., the correspond-
ing contact force is normal to the profile (no friction).

We represent the elastica as a curve in the (x, y)−plane, parameterized
by its arc-length, s ∈ [0, 1], foot at s = 0. The following investigations are
based on the

Working Hypothesis WH1: The elastica is nowhere left-handed.
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Hence we have the normal description

x′ = cos(φ), y′ = sin(φ), φ′ = κ ≤ 0, s ∈ (0, 1),

where φ is the slope, and the curvature κ is determined by the actual bending
moment. The latter is caused by a force acting upon the vibrissa at the
contact point (reaction force to contact), say at s1 ∈ (0, 1], in the opposite
direction of the normal to the profile. In phase 1 the contact is mainly at
some s1 < 1 and the bending moment equals zero for s ∈ [s1, 1], whereas in
phase 2 contact is at s1 = 1 throughout.

2.1 Phase 1

Phase 1 starts at the very first contact of the vertical vibrissa with the profile.
This is at the profile point (ξ(α0r), η(α0r)) with η(α0r) = 1, α0r ∈ (0, π

2
). Let

α < α0r be any given touch point, then the contact force is f = f ·(sin(α)ex−
cos(α)ey) with unknown f > 0, and it acts upon the vibrissa at an unknown
point s1. The bending moment is

m(s, α) =

{
f{[y(s)− η(α)] sin(α) + [x(s)− ξ(α)] cos(α)} < 0, s ∈ [0, s1),
0, s ∈ (s1, 1].

(1)
The natural bending equation then is κ = m.1 It is more convenient to
increase the order of the differential equation, coming up with the splitting
boundary value problem on (0, s1)

1) x′ = cosφ , (a1) x(s1) = ξ(α),
2) y′ = sinφ , (b) y(0) = 0 , (b1) y(s1) = η(α),
3) φ′ = κ , (c) φ(0) = π

2
, (c1) φ(s1) = α ,

4) κ′ = f cos(φ− α) , (d1) κ(s1) = 0 .

(2)

The boundary value problem shows up with two unknown parameters, f
and s1 (remind that α is considered prescribed).

The position of the vibrissa’s clamp is at x0 = x(0) which follows from
the solution of the boundary value problem. We do not need to consider
the moment-free part of the vibrissa since it appears just as a straight line
smoothly prolonging the first part.

The advantage of this 4th order formulation is obvious: the subproblem
(3,4,c1,d1) admits a first integral,

κ2 = 2f sin(φ− α),

1Holds for phase 2, too. Hence a sketch shows that this equation together with WH1
excludes the configuration expected above to end phase 2.
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which serves as the basis for tackling the remaining equations.
As κ is negative, φ(s) runs monotonically from π

2
down to α, hence φ−α ∈

(0, π), and therefore

κ = φ′ = −
√
2f

√
sin(φ− α) (3)

We observe that the reaction moment of the clamp follows with φ(0) = π
2
as

m0 =
√
2f cos(α).

Regarding the boundary condition (c), separation of variables in (3) yields
the 2nd integral by means of the elliptic integral F (see Appendix). For the
sake of brevity in the sequel we introduce the auxiliary function

H1 : x 7→ H1(x) := F(
√
2 sin(

π

4
− x

2
),

1√
2
), (4)

and we put

h(α) := H1(
π

2
− α) = F(

√
2 sin(

α

2
),

1√
2
) .

There holds H1(0) = h(π
2
) = K( 1√

2
) ≈ 1.854 . The 2nd integral then writes

√
f · s = H1(φ− α)− h(α). (5)

Since H1 is monotonic this equation solves for φ,

φ = α +H−1
1 (

√
fs+ h(α)). (6)

This describes the slope of the elastica completely 2 as soon as we know f .
But no more than √

fs1 = h(
π

2
)− h(α) (7)

follows from (5). Clearly, to get knowledge of s1, i.e., about where the
contact point is located on the vibrissa, the solution (x(·), y(·)) of the first
two differential equations in (2) has to be considered.

Using (6) this solution follows by quadrature

x(s) = x0 +
∫ s

0
cos(α+H−1

1 (
√
ft+ h(α))dt,

y(s) =
∫ s

0
sin(α +H−1

1 (
√
ft+ h(α))dt,

2For evaluations it is recommended to give H−1
1 a polynomial approximation of low

degree, say, equal to 4.
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or, equivalently

x(s) = x0 +
1√
f

∫ √
fs+h(α)

h(α)
cos(α +H−1

1 (τ))dτ ,

y(s) = 1√
f

∫ √
fs+h(α)

h(α)
sin(α+H−1

1 (τ))dτ .

(8)

Putting s = s1 and again using (7) we obtain from the remaining bound-
ary conditions

y(s1) =
1√
f

∫ h(π
2
)

h(α)

sin(α+H−1
1 (τ))dτ = η(α), (9)

which is an equation for f in configuration α,

f(α) = [
1

η(α)

∫ h(π
2
)

h(α)

sin(α+H−1
1 (τ))dτ ]2, (10)

and then

x(s1) = x0 +
1√
f(α)

∫ h(π
2
)

h(α)

cos(α+H−1
1 (τ))dτ = ξ(α), (11)

which now gives x0(α). Finally, s1 follows from (7),

s1(α) = η(α){h(π
2
)− h(α)}[

∫ h(π
2
)

h(α)

sin(α +H−1
1 (τ))dτ ]−1. (12)

The open domain of phase 1 is {α : s1(α) < 1}. While (physically) the
foot coordinate x0 monotonically displaces from ξ(α0r) > 0 to the left, α
decreases monotonically, and the simultaneous ride of the touch point s1 on
the elastica is 1 ↘ s11 < 1 ↗ 1. Hence phase 1 terminates at α1 = inf{α ∈
(α0l, α0r) | s1(α) < 1}3. This parameter α =: α1 that terminates phase 1 is
now a solution of the equation∫ h(π

2
)

h(α)

sin(α+H−1
1 (τ))dτ = η(α){h(π

2
)− h(α)}, (13)

which follows from (12) with s1 → 1.
It is easy to calculate that α1 = 0 (mind η(0) = p0) iff

p0 = p0 := .4569465811

3α0l < 0 characterizes the utmost left possible touch point, η(α0l) = 1.
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whereas α1 R 0 if p0 R p0.
The contact force given by (10), is, so far, that one (of slope π

2
−α) which

brings the point of its action upon the elastica to the altitude η(α) with
local slope φ = α of the elastica. The foot coordinate x0 given by (11) then
ensures that this point is at (ξ(α), η(α)) on the obstacle (now touch point).
Finally, the location of that point on the elastica is given by (12).

2.2 Phase 2

During this phase the vibrissa tip contacts the profile at some point
(ξ(α), η(α)) with α < α1, with vibrissa (end-)slope φ(1) =: φ1 > α. The
contact force is again normal to the profile, so the bending moment is

m(s, α) = f{[y(s)− η(α)] sin(α) + [x(s)− ξ(α)] cos(α)}, s ∈ [0, 1].

The boundary value problem now is

1) x′ = cosφ , (a1) x(1) = ξ(α),
2) y′ = sinφ , (b) y(0) = 0 , (b1) y(1) = η(α),
3) φ′ = κ , (c) φ(0) = π

2
,

4) κ′ = f cos(φ− α) , (d1) κ(1) = 0 .

(14)

Again, the subproblem (3,4,d1) has a first integral which, taking into
account φ(1) = φ1 with still unknown φ1 > α, now reads

κ2 = 2f [sin(φ− α)− sin(φ1 − α)]. (15)

About domains:
In phase 2 we have −π

2
< α0l < α < α1, α < φ1 ≤ φ ≤ π

2
. Hence (15) is

with

0 ≤ φ1 − α ≤ φ− α ≤ π

2
− α

{
≤ π

2
− α0l ≤ π, if α < 0

≤ π
2
, if α ≥ 0

.

Further restrictions arise from the demand κ2 ≥ 0 for all φ ∈ [φ1,
π
2
). To find

these out we rewrite (15)

κ2 = 4f · sin(φ− φ1

2
) · cos(φ+ φ1 − 2α

2
).

a) Both trigonometric factors ≤ 0: already the first one demands

−2π ≤ φ− φ1 ≤ 0 ∨ 2π ≤ φ− φ1 ≤ 4π
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which contradicts the inequalities above.
b) Both trigonometric factors ≥ 0: then

0 ≤ φ− φ1 ≤ 2π ∧ −π ≤ φ+ φ1 − 2α ≤ π,

together with the restrictions at the beginning entail

α < φ1 ≤ min{π
2
,
π

2
+ 2α} =

{
π
2
+ 2α, if α < 0,

π
2
, if α ≥ 0,

(16)

or, equivalently,

0 < φ1 − α ≤ π

2
− | α | . (17)

Obeying these restrictions of φ1 we get the curvature of the elastica from
(15) in the form

κ(φ, φ1, α) = −
√

2f [sin(φ− α)− sin(φ1 − α)]1/2, (18)

with f certainly depending on φ1 and α.
Now separation of variables in the initial value problem φ′ = κ, φ(0) = π

2

yields the second integral 4

√
f · s = F( 1

k
sin(π

4
− 1

2
(φ− α)), k)− F( 1

k
sin(α

2
), k),

with k = sin(π
4
− 1

2
(φ1 − α)).

(19)

For brevity and following the lines in Section 1.1 we introduce the function

H2 : (x, u) 7→ F(
sin(π

4
− x

2
)

sin(π
4
− u

2
)
, sin(

π

4
− u

2
))

for 0 ≤ u ≤ x ≤ π
2
− α. Then (19) writes√

f · s = H2(φ− α, φ1−α)−H2(
π

2
− α, φ1 − α). (20)

At s = 1, φ(1) = φ1 we get an expression for the contact force f ,√
f(φ1, α) = H2(φ1−α, φ1−α)−H2(

π

2
− α, φ1 − α). (21)

Remark 1 Mind that the close relation of phases 1 and 2 shows up by the
identity H1(x) = H2(x, 0); compare (5) and (19). While in phase 1 the touch
point coordinate s1 on the elastica was unknown and the touch angle φ1 = α
was given, we have now s1 = 1 given whereas φ1 appears as unknown.

40 ≤| α | /2 ≤ 1
2 (

π
2 − (φ1 − α)) < π

4 by(17), implies k > 0.
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In regard of the second argument ofH2 it is not recommendable to proceed
on the first way used in Section 1.1. That is since the inverse (H2(·, u))−1

would now appear as a family of functions.
So let us turn to a different way of treatment (which could have been

followed in Section 1.1, too). Rewrite the upper two lines in (14) in the
respective form for φ 7→ (x, y)(φ) with κ taken from (18) and f from (21),

dx

dφ
=

1

κ(φ, φ1, α)
cos(φ), x(φ1) = ξ(α),

dy

dφ
=

1

κ(φ, φ1, α)
sin(φ), y(φ1) = η(α), y(

π

2
) = 0.

As a first step, we solve the y initial value problem ignoring the first
boundary condition while letting φ1 and α as parameters,

y(φ, φ1, α) = − 1√
2f(φ1, α)

∫ φ

π/2

sin(t)[sin(t− α)− sin(φ1 − α)]−1/2dt.

By (21) f is known as dependent on φ1 and α. In order to find the correct
φ1 belonging to α, we exploit the condition y(φ1) = η(α) as an equation for
φ1 = φ1(α):

−
∫ φ1

π/2

sin(t)[sin(t− α)− sin(φ1 − α)]−1/2dt = η(α)
√
2f(φ1, α). (22)

Putting y(φ, φ1(α), α) =: y(φ, α) and f(α) := f(φ1(α), α) the elastica is
now described as

x(φ, α) = ξ(α)− 1√
2f(α)

∫ φ

φ1(α)
cos(t)[sin(t− α)− sin(φ1(α)− α)]−1/2dt,

y(φ, α) = − 1√
2f(α)

∫ φ

π/2
sin(t)[sin(t− α)− sin(φ1(α)− α)]−1/2dt.

(23)
The vibrissa’s foot is at x0(α) = x(π

2
, α).

The observables (clamp reactions) are

−f(α) and m0(α) = κ(
π

2
, φ1(α), α) = −

√
2f(α)[cos(α)−sin(φ1(α)−α)]1/2.

Mind that for φ1 = α (characterizing phase 1) these expressions coincide
with the respective ones from Section 2.1.

Still to be cleared at the very end: Which α = α2 terminates phase 2 ?
We sketch three seemingly reasonable scenarios for terminating phase 2.
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(a) Phase 2 terminates at the first contact point that makes the reaction
moment at the vibrissa foot vanish. This means that the contact force f aims
at the foot.
Criticism: The zero moment in both the clamp and the contact point shows
the configuration like one of buckling between two pivots. Then φ |s=0=

π
2

entails φ1 = 0 due to symmetry. On the other hand we see from the observ-
ables formula above that m0 vanishes at α = −π

4
if φ1 = 0. Furthermore

it must hold (ξ(α) − x0(α))
2 + η(α)2 = L2, where L is the distance of the

supports of a buckling rod with boundary slope α = α2. And this had to be
true for every profile! This scenario turns out to be dubious!

(b) Phase 2 ends at an α2 s.t. for α < α2 a negative f is needed to
ensure contact (pulling the vibrissa tip). For the sake of continuity this
entails f(α2) = 0.
Criticism: The complete (last contact) configuration at α2 is then governed
by f = 0, i.e., κ = 0 and φ = π

2
for all s ∈ [0, 1], and this would imply

α2 = α0l (no ”early” end of phase 2).
(c) Wellknown from (21) and (22): for each α ∈ (α0l, α1] there is a force

f(α) of slope α − π
2
s.t. y |s=1= η(α). Then there exists a unique x0(α)

ensuring x |s=1= ξ(α).
Now remind that (physically) the primary ”drive” is a motion of the vib-
rissa’s foot monotonically to the left. Starting each step in calculation with
a prescribed α (instead of a foot coordinate) is only a trick to simplify things
to do!
So, if the function x0(·) - which is calculated pointwise on a decreasing
α−sequence - shows a local minimum at some α2, then the physical pro-
cess x0 ⇓ breaks down and α2 terminates phase 2.

Most likely, this last α2 is the correct one, its determination needs a
procedure as follows.
For each α running along a sufficiently dense sequence (α(i) = α1+i·δα, δα <
0) do this chain of calculations:
1) from (21) take the function f(φ1, α);
2) consider the equation (22) for φ1 = φ1(α); there are two options (to be
verified by computing):
a) with α = α(i) the equation has no solution φ1(α) ∈ (α, π

2
−α−), i.e., at α(i)

no equilibrium configuration exists: α2 has been passed, phase 2 has ended;
b) there is a solution φ1(α), i.e., under the force f(α) := f(φ1(α), α) the tip
of the elastica is at height η(α); then
3) find x0(α) = x(π

2
, α) from (23) and check whether this current x0(α(i)) < 0

is smaller than x0(α(i−1)), if not, then α2 has been passed and the process
must be stopped.

This item deserves further more detailed consideration.
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2.3 Examples

In the following two worked examples are presented: scanning a catenary
profile and an asymmetric profile composed of two circles. The figures show
the configurations and the behavior of some observables.

Figure 2.1: Scanning a catenary

Figure 2.2: Observables m0 (solid)

and f (dash) vs. foot coordinate x0

Figure 2.3: Observables fx (solid)

and fy (dash) vs. foot coordinate x0
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Figure 2.4: Scanning a profile composed of two circles

Figure 2.5: Observables m0 (solid)

and f (dash) vs. foot coordinate x0

Figure 2.6: Observables fx (solid)

and fy (dash) vs. foot coordinate x0

3 About discrete models

It is natural that a flexible thin rod is the appropriate model of a vibrissa.
Nevertheless, models of finite degree of freedom found their place in the
theses [1] and [3] and in foregoing more biologically flavored papers as well.
Principally, they are controlled multiple pendulum systems with visco-elastic
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joints and support. In the following we give a sketch of the simplest one of
these models, appearing as a pendulum of degree of freedom equal to 1, which
serves for quasistatically scanning an obstacle as in the preceding section.

Now we consider the vibrissa as a rigid rod of length L in an (x, y)−plane
with original unperturbed vertical position. Let its lower end be elastically
pivoted to the x−axis and moving slow along it. Eventually, the rod may be
in ideal contact with an obstacle as described in Section 2. Let c be the stiff-
ness of the elastical pivot. Then we use here the following units of measure:

[length] = L; [moment] = c; [force] = cL−1.

As done before we introduce the arc-length s ∈ [0, 1] along the rod, (s = 0:
lower end). If the lower pivoted end is placed at x0, then it is pure geometry
to describe the configuration of the rod being in contact with the obstacle.
There are again two modes of configuration:
Mode 1: tangential touch at s1 ≤ 1 with the profile at α, angle of inclination
of the rod equals φ = α;
Mode 2: non-tangential touch at s1 = 1 with the profile at α, angle of
inclination of the rod is φ > α.

In both cases a reaction force f0 and a moment m0 = π
2
− φ at s = 0

and a reaction force f at s = s1 act upon the rod in equilibrium; under ideal
contact the force f is in outer normal direction to the profile. The general
geometry is simply

s1 sin(φ) = η(α), s1 cos(φ) = ξ(α)− x0(α),

and the statics comprises in

m0 − fs1 cos(φ− α) = 0 , f ≥ 0; f + f0 = 0.

So, mode 1 is characterized by sin(α) > η(α) (implies α > 0, and its domain
is bounded by α1 and α2 : η(α) = sin(α)) with f(α) = (π

2
− φ) sin(α)/η(α).

Mode 2 is characterized by sin(α) < η(α), tan(φ) = η(α)/
√

1− η(α)2 and

f(α) = (
π

2
− φ)[

√
1− η(α)2 cos(α) + η(α) sin(α)]−1.

The scanning process begins at x0 = ξ(α0), η(α0) = 1, α0 > 0 at time
t = 0, say, and proceeds in accordance with x0 = ξ(α0) − v0t (v0 > 0 small
velocity). Start is in mode 1 if α0 = π

2
or in mode 2 if α0 < π

2
. The

process ultimately terminates and is followed by a ’snap back’ when the rod
is orthogonal to the profile, i.e., for

φ = α +
π

2
, cos(α) = η(α)
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(yields f(α) = +∞, which has a flair of irreality, maybe this is caused by
the absence of friction, i.e., omitting any profile roughness from the model;
anyway, it is a hint to the inadequacy of this model).

3.1 Example

As an example we present the scanning of an obstacle with parabolic profile:

Figure 3.1: Scanning a parabola.

Besides f the main obervable might be the moment m0 in dependence on
the foot coordinate x0 . Moreover, also the contact coordinate on the rod, s1,
could be observed if the rod was endowed with a series of sensors:

Figure 3.2: : m0 vs. x0 Figure 3.3: : s1 vs. x0
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4 Conclusion

The foregoing investigations are to be understood as a starting-point of fur-
ther advances in the theory of (artificial) vibrissae. We sketch some urgent
tasks for improvement.

For a better approach to real vibrissae the basic differential equations
should be expanded to cover rods with non-constant bending stiffness (hollow
conical rod) and a pre-curvature. The corresponding ODEs may then demand
a purely numerical treatment and a specially tailored software. Another
access should be to model the vibrissa by means of super-elements from
multi-body dynamics and to utilize corresponding software like ALASKA.

Any reasonable implementation and application need an answer to the
question ’how to infer the shape of the scanned profile from the determined
function x0 7→ observables’.

In order to scan a 3-dimensional obstacle a 2-dimensional field of vibrissae
is necessary. The vibrissae have to be modeled as rods which deform in R3.
The outputs of all vibrissae of the field have to undergo a simultaneous
coupled analysis and comparison.

Some experiments and measures with a simple set-up should be done in
order to validate the theoretical results.
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Appendix

Elliptic integral of 1st kind:

F(z, k) :=
∫ z

0

1√
1− t2

√
1− k2t2

dt, (k < 1).

Complete elliptic integral of 1st kind:

K(k) := F(1, k).

Elliptic integral of 2nd kind:

E(z, k) :=
∫ z

0

√
1− k2t2

1− t2
dt, (k < 1).

By experience, within Maple procedures it is sometimes recommendable
to rewrite integrals in a representation using these standard elliptic integrals.
An example (occurring in solving (3)):

I(x) :=
∫ x dt√

sin(t)
=

∫ x dt√
cos(π

2
−t)

= −
∫ π

2
−x du√

cos(u)
;

z :=
√
2 sin(u

2
), dz = 1√

2

√
1− 1

2
z2du, cos(u) = 1− z2 ;

=⇒ I(x) = −
√
2
∫ √

2 sin(π
4
−x

2
)
[(1− z2)(1− 1

2
z2)]−1/2dz

I(x) = −
√
2F(

√
2 sin(π

4
− x

2
), 1√

2
) + const.
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