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Abstract We study linear differential-algebraic multi-input multi-output systems
which are not necessarily regular and investigate the asymptotic stability of the
zero dynamics and stabilizability. To this end, the concepts of autonomous zero dy-
namics, transmission zeros, right-invertibility, stabilizability in the behavioral sense
and detectability in the behavioral sense are introduced and algebraic characteri-
zations are derived. It is then proved, for the class of right-invertible systems with
autonomous zero dynamics, that asymptotic stability of the zero dynamics is equiv-
alent to three conditions: stabilizability in the behavioral sense, detectability in the
behavioral sense, and the condition that all transmission zeros of the system are in
the open left complex half-plane. Furthermore, for the same class, it is shown that
we can achieve, by a compatible control in the behavioral sense, that the Lyapunov
exponent of the interconnected system equals the Lyapunov exponent of the zero
dynamics.
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Nomenclature

r

N, Ng the set of natural numbe®y = NU {0}

Ci(CL) open set of complex numbers with positive (negative) real
resp.

INE the ring of polynomials with coefficients iR

R(s) the quotient field oR[g]

R>m the set ofh x mmatrices with entries in a ring

Gln(R) the group of invertible matrices R™"

[1X] = VxTx, the Euclidean norm of € R"

M| =max{|[Mx|| |x € R™, ||x|| = 1}, induced norm oM € R"™*™

¢~ (R;R") the set of infinitely-times continuously differentiable functidmns
R—R"

LL(R;R")  the set of locally Lebesgue integrable functiohs R — R",
where [, || f(t)]| dt < oo for all compacK C R

f (f0) the (-th) weak derivative off € #2 (R;R"), i € No, see [1,
Chap. 1]

loc
a.e.
f =

Ved @R ={ f e ZLRRY | 10 € ZLRR,i=0,... .k |, ke Ng

f(t) =g(t) foralmostall (a.a) e R

ess-sup||f||  the essential supremum of the measurable functio® — R"
overl CR

meansthaf,g e ,,Sfl})c(R; R") are equal “almost everywhere”, i.e.,

bart,

fl, the restriction of the functioi : R — R"tol CR

1 Introduction

We consider linear constant coefficient DAEs of the form
JEX(t) = AX(t) + Bu(t)

y(t) = Cx(t), )

whereE, A € R*", B e R‘*™ C € RP*", The set of these systems is denoted by
Zinmp and we write[E,A,B,C] € %, nmp. In the present paper, we put special

emphasis on the non-regular case, i.e., we do not assumeRghat is regular,
that is¢ = nand defsk — A) € R[g]\ {0}.
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The functionsu: R — R™ andy : R — RP are calledinput and output of the
system, resp. A trajectoiix,u,y) : R — R" x R™x RP is said to be aolution of (1)
if, and only if, it belongs to théehavior of (1):

loc

11 . ol
o 1 m.mh o mmo mpy | EXE 5 (R;RY) and(x,u,y)
Bw: {(x,u,y) € Loc(RiRT x RTX RY) solves (1) for a.a € R '

Recall that any functiom € 7, (R;R’) is in particular continuous.
Particular emphasis is placed on thero dynamics of (1). These are, for

[E,A, B,C] € Z€7n7m7p, deflﬂed by

Z9q) = { (x,u,y) € B ‘ y"ﬁ'o }

By linearity of (1), 2°%(y) is a real vector space.
The zero dynamics of (1) are calladtonomousif, and only if,

Ywi, W, € Z Py V1 C R openinterval : wi|, 2wyl = wi Ewp;
andasymptotically stable if, and only if,
V(xuy) € Z%q): tIH)TDLess-sulrp’m) [[(x,u)|] = 0.

Note that the above definitions are within the spirit of thehavioral ap-
proach [15] and take into account that the zero dynami€¥/(;) are a linear be-
havior. In this framework the definition for autonomy of a general behavior is given
in [15, Sec. 3.2] and the definition of asymptotic stability in [15, Def. 7.2.1].

(Asymptotically stable) zero dynamics are the vector space of those trajectories
of the system which are, loosely speaking, not visible at the output (and tend to
ZEero).

In the present paper, we show for the class of right-invertible systems with au-
tonomous zero dynamics, that asymptotic stability of the zero dynamics is equiva-
lent to the three conditions: stabilizability in the behavioral sense, detectability in
the behavioral sense and the condition that all transmission zeros are in the open left
complex half-plane. Furthermore, we show that we can achieve, by a compatible
control in the behavioral sense, that the Lyapunov exponent of the interconnected
system equals the Lyapunov exponent of the zero dynamics. In Section 2 we collect
some basic control theoretic concepts such as transmission zeros, right-invertibility,
stabilizability in the behavioral sense and detectability in the behavioral sense, and
give algebraic characterizations of them. The first main result of the present paper,
that is Theorem 3.1, is then stated and proved in Section 3 and some consequences
for regular systems are derived. In Section 4 we introduce the concepts of compati-
ble control (in the behavioral sense) and Lyapunov exponent for DAE systems and
prove the second main result, namely Theorem 4.4.
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2 Some control theoretic concepts

In this section we recall the concepts used in the present paper in a control theoretic
way and give useful algebraic characterizations. These concepts include transmis-
sion zeros, right-invertibility, stabilizability in the behavioral sense and detectability

in the behavioral sense. We start with characterizations of autonomous and asymp-
totically stable zero dynamics, which have been introduced in Section 1.

Lemma 2.1 (Autonomous and stable zero dynamickkt [E,A,B,C] € X/ nmp.
Then we have the following equivalences:

sE—A-B
AE-A-B

() Z 9 areautonomous <= rkg(gy [
(i) Z %) areasymptotically stable <= VA €C, : rke [

Proof. (i) follows from [4, Prop. 3.6] and (ii) from [4, Lem. 3.14]. a

The autonomy of the zero dynamics allows for a decomposition of the system,
provided thaiC has full row rank. The main result of the present paper (see Sec-
tion 3) is based on this decomposition.

Lemma 2.2(System decomposition [4, Thm. 4.6])et [E,A,B,C] € X/ nmp With
autonomous zero dynamics and rkC = p. Then there exist S€ GI|(R) and T €
Gln(R) such that

SE-AB] _[SO][sE-AB][T 0 @
¢ o] 7|0l ¢ 0f|0lm|
where
Ik 0 O Q A O [0
= |O0BEx2BExs| z [|A2A20| 5 |Im| &_

E=loEx N[*A7 |0 0 1p[ B [0 C=0ORO O

0 Es2 Es3 0 Az O |0
k=dimZ %y, (4)

and N € R®*™ ng =n—k— p, is nilpotent with NV = 0and NV £ 0, v € N,
Eo2, Axo € R™P and all other matrices are of appropriate sizes.

An important characterization of asymptotically stable zero dynamics is the fol-
lowing.

Lemma 2.3 (Stable zero dynamics [4, Cor. 4.10]et [E,A B,C] € 5/ nmp With
autonomous zero dynamics and rkC = p. Then, using the notation from Lemma 2.2,
the zero dynamics 2% 1) are asymptotically stable if, and only if, 0(Q) C C_.

Next, in order to define transmission zeros, we introduce the Smith-McMillan
form of a rational matrix function.
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Definition 2.4 (Smith-McMillan form [12, Sec. 6.5.2])Let G(s) € R(s)™P with
rkr(s) G(s) =r. Then there exid) (s) € GIm(R[g]), V(s) € Glp(R[g]) such that

&(s) &(9)

wl(s) PR wr (S) 70(m—r)><(p—r)> ’

wheregi(s), Y (S) € R[g are monic, coprime and satisfy(s)|&+1(S), Wi+1(S)|¢i(s)
fori=1,...,r—1. The numbesg € C is calledzero of G(s) if, and only if, & (s9) =0
andpole of G(s) if, and only if, Y1 (o) = 0.

In the following we give the definition of transmission zeros for the system
[E,A,B,C]. Infact, there are many different possibilities to define transmission zeros
of control systems, even in the ODE case, see [10]; and they are not equivalent. We
go along with the definition given by Rosenbrock [16]: FbtA, B,C] € Znnmp,
the transmission zeros are the zeros of the transfer fun@jein— A)~'B. This
definition has been generalized to regular DAE systems with transfer function
C(sE —A)"'Bin [6, Def. 5.3]. In the present framework, we do not require reg-
ularity of sE — A and so a transfer function does in general not exist. However, it is
possible to give a generalization of the inverse transfer function if the zero dynam-
ics of [E,A,B,C] € 5 nmp are autonomous: Lét(s) be a left inverse of £ 2]
overR(s) (which exists by Lemma 2.1) and define

U(s)G(s)V(s) = diag <

0

H(s) ;== —[0,Im]L(s) [Ip

} € R(s)™P. (5)

It can be shown thatl (s) is independent of the choice of the left invetss) [4,
Lem. A.1] and ifsE — Ais regular andn= p, thenH(s) = (C(sE — A)*lB)_1 [4,
Rem. A.4],i.e.H(s) is indeed the inverse of the transfer function in case of regular-
ity. The fact that the zeros ¢f(s)~* are the poles dfi (s) and vice versa motivates
the following definition.

Definition 2.5 (Transmission zeros)Let [E,A,B,C|] € X, mp With autonomous
zero dynamics. Lek(s) be a left inverse of £ " 2] overR(s) and letH(s) be
given as in (5). Thery € C is calledtransmission zero of [E, A, B,C] if, and only if,
S is a poleH (s).

Now we recall the definition of right-invertibility of a system from [17, Sec. 8.2].

Definition 2.6 (Right-invertibility). [E,A,B,C] € X, nm is calledright-invertible
if, and only if,

Vy € €% (R;RP) 3(x,u) € ZE(R;R") x ZL(R;R™) = (x,u,y) € By
Right-invertibility may be characterized for systems with autonomous zero dy-

namics in terms of the form (3).

Lemma 2.7 (Right-invertibility and system decomposition [4, Prop. 4.110gt
[E,A,B,C] € 2/ hm p With autonomous zero dynamics. Then, using the notation from
Lemma 2.2,
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rkC=p, E42=0, Ay2=0 and

E,A B,C]isright-invertible <= - .
| ] g {E43NJE32:OforJ:O,...,v—l.

We are now in a position to characterize the transmission zeros in terms of the
form (3).

Corollary 2.8 (Transmission zeros in decompositiohkt [E,A,B,C] € %, m be

right-invertible and have autonomous zero dynamics. Let L(s) be a left inverse of

[£ A 5] over R(s) and let H(s) be given asin (5). Then, using the notation from

Lemma 2.2,
H(S) = SE22— Aoz — Aoa(Slk— Q) A1z — SE2a(SN — Ing) *Esz
and sp € Cisatransmission zero of [E, A, B,C] if, and only if, 55 isa pole of
Ay (sl — Q) 1A

Proof. The representation ¢ (s) follows from [4, Lem. A.1] and the characteriza-
tion of transmission zeros is then immediate sigEg — Ay — 52E23(5N —1)1Es,
is a polynomial ad is nilpotent and hence

(N—1)t=—1—sN—...—g" "INV (6)
O

In the remainder of this section we introduce and characterize the concepts of
stabilizability and detectability in the behavioral sense. (Behavioral) stabilizability
for systemsE, A B,C] € 3, mp is well-investigated, see e.g. the survey [7]. De-
tectability has been first defined and characterized for regular systems in [2]. For
general DAE systems, a definition and characterization can be found in [11]; see
also the equivalent definition in [15, Sec. 5.3.2]. The latter definition is given within
the behavioral framework, however it is yet too restrictive for our purposes and it is
not dual to the respective stabilizability concept. We use the following concepts of
behavioral stabilizability and detectability.

Definition 2.9 (Stabilizability and detectability)[E,A,B,C] € 5/ nm is called
(i) stabilizablein the behavioral senseif, and only if,

V(% u,y) € B 3(Xo, Uo,Yo) € By :
(Vt<0: (x(t),u(t)) = (xo(t), uo(t)) A tlmeSS-SuP,m> [| (X0, Uo) || = 0.

(ii) detectablein the behavioral senseif, and only if,

V(X7 0, 0) S %(1) 3 (Xo,o7 0) S %(1) :
(Vt<0: x(t) =x0(t)) A tIiﬁm eSS-SUP.,) [[%ol| = 0.
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In order to derive duality of the above concepts it is useful to consideE farc
RYM, the DAE

GEX(t) = AX(t) (7)
without inputs and outputs. The behavior of (7) is given by

loc

L 1 N
%(7) = { Xe éﬁoc(R’R ) solves (7) fora.a. e R

Ex e 7 Y(R;R’) andx }

Definition 2.10(Stabilizability [7, Def. 5.1]) LetE,Ac R*". Then[E,A] is called
stabilizable in the behavioral sense if, and only if,

VX e BryIx € Bry: (VE<0: X(t) =Xo(t)) A tliﬁngoess-supym) |Ixo0]| = O.

We are now in a position to derive a duality result.

Lemma 2.11(Duality). Let [E,A,B,C] € % nmp. Thenthefollowing statements are
equivalent:

() [E,A B,C]isstabilizable in the behavioral sense.
(i) [[E,OQ],[A,B]] isstabilizable in the behavioral sense.
(i) HEH , [/Bﬂ” is stabilizablein the behavioral sense.
(iv) [ET,AT,CT B']isdetectablein the behavioral sense.
Proof. It follows from the definition that (8=(ii) and (iii)<(iv). By [7, Cor. 5.2],
(ii) is equivalent to
VA €Cy: tkg[AE — A, —B] = rkg(g[SE— A, —B].

Since ranks are invariant under matrix transpose, we find that (ii) is equivalent to

_ T _ AT T _ AT
VA E(CJr: rk(c |:)\E A :| :rkR(s) [SE A :|,

-BT -BT
which, again by [7, Cor. 5.2], is equivalent to (iv). This completes the proof.O

In view of Lemma 2.11 and [7, Cor. 5.2] we may infer the following.

Corollary 2.12 (Characterization of stabilizability and detectabilitygt [E, A,B,C| €
Z¢nmp- Then the following holdstrue.

() [E,A,B,C]isstabilizable in the behavioral senseif, and only if,
VA € Cy: tkg[AE— A, —B] = rkg(s)[SE — A, —B].
(i) [E,A,B,C]isdetectablein the behavioral senseif, and only if,

VA €Ty 1 rhe [)‘E_A} SE_A].

¢ | = ke [ _C
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3 Stable zero dynamics

In this section we state and prove one of the main results of the present paper and
derive some consequences for regular systems.

Theorem 3.1(Characterization of stable zero dynamickgt [E,A,B,C] € X/ nmp
be right-invertible and have autonomous zero dynamics. Then the zero dynamics
Z 91y are asymptotically stableif, and only if, the following three conditions hold:

() [E,A,B,C]isstabilizablein the behavioral sense,
(i) [E,A,B,C]isdetectablein the behavioral sense,
(i) [E,A,B,C] hasno transmission zerosin C...

Proof. Since right-invertibility of[E, A, B,C] implies, by Lemma 2.7, that (k= p,
the assumptions of Lemma 2.2 are satisfied and we may assume that, without loss
of generality|E, A,B,C] is in the form (3).

=: Step 1: We show (i). Let

Ik 0 0 O
0 I 0 O

—Ao1 SExp — Aop SE3 —Im
and observe that, sindg, = Aso = 0 by Lemma 2.7,

slk—Q—-A, 0 O
0 0 0 Im
0 sEz SN—Ip, O
0 0 sE3 O

[SE— A, —B|Ti(s) =

Then, with
lk (Slk—Q)™*A12 0 0
0 | 0 O
TZ(S) = 0 8 Ih. O € G|n+m(R(S))7
3
0 0 0 —In
and
I 0 0 O
0 | 0 O
T3(S) = 0 7S(SN . |pn3)_lE32 |n3 0 S GIn+m(R[S]),
0 0 0 —Im

where we note that it follows from (6) th@(s) is a polynomial, we obtain

dk—-Q O 0 O
0 0 0 Im
0 0 sN—Ip 0}
0 X(S) sEsz O

[SE — A, —B|Ti(s)T2(9)Ta(s) =
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whereX(s) = —*E43(SN — In;) “*E32 = 0 by Lemma 2.7 and (6). Finally,

Ik O 0 0

s9= [0 0 0 | €Ghnim(®ls)
N3
00 —5E43(5N_|n3)71 —Im
yields

d-Q0 0 0
0 0 0 In
SUYIE-A—BMERTE = | 5 gen_iy, 0
0 0 0 O

and hence rKg)[sE — A, —B] = k+ng+m=n+m-p, sinceny =n—k—p by
Lemma 2.2. Now leA € C, and observe that, by Lemma 28l — Q is invert-
ible. Hence, the matrice®; (A),T2(A), T3(A) and S;(A) exist and are invertible.
Thus, using the same transformations as above for ixedC.. now, we find that
rkc[AE — A, —B] = n+m— p. This proves (i).
Sep 2: We show (ii). Similar to Step 1 it can be shown that
VA €Ty : rhe F - A} ~ thags {SE—CA] —n.

Sep 3: We show (iii). By Corollary 2.8, the transmission zerosBfA, B,C] are
the poles of

F(9) = Axi(slk— Q) A

Every pole ofF(s) is also an eigenvalue @. In view of Lemma 2.3, we have that
0(Q) C C_ and so (iii) follows.

<: By Lemma 2.3, we have to show thatife g(Q), thenA € C_. LetA €
g (Q). We distinguish two cases:

Case 1: A is a pole ofF(s). Then, by Corollary 2.8) is a transmission zero of
[E,A,B,C] and by (iii) we obtaim € C_.

Case 2: A is not a pole of (s). Then [6, Lem. 8.3] applied tiy, Q, A1, A21] and
A yields that

(@) rke[Alk—Q,A2l <k or (b) rkc[Alk—Q",AJy] <k.
If (@) holds, then there existg € CX\ {0} such that
Vi [Alc— Q. A =0.
Letvy € C=M+(P-M pe arbitrary and define
Vg = —AV; Eq3(AN —In,) L.

Now observe that
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Alg=Q  —Ap 0 0
—A21 AExn—Ax ABEx Im
0 AEsz AN-—Ip, O

0 0 AEss O

(vi,0,v3,v}) = (0,w',0,0),

where
W' = —V{ A2+ AV]Ezp = — A%V, E43(AN — In,) 1E32=0

by Lemma 2.7 and (6). This implies that := ker[AE — A, —B]" C C' has dimen-
sion dim#” > (¢ —n) + (p—m) + 1. Therefore,

rkc[AE—A,—B|<{/—dimZ <n+m—-p-1
= I’kR(S> [SE —A, 78] -1< rkR(s> [SE —A 7B], (8)

where rl ) [SE — A, —B] = n+m— p has been proved in Step 1 6&". Hence, (8)
together with (i) implies thad € C_.

If (b) holds, then there existg € CX\ {0} such thatv] [Alx — Q",A;] = 0.
Therefore,

Algk—Q —Agp 0

—Ax1 AExn—Ax AEn;s %l
0 MAEzz AN-—Ip| [ 0] =0
0 0 AE43 0
0 I

and thus A
E—-A sE - A
I’k(c |: _C :| < n:rkR(S) |: _C :| , (9)

where rig [£*] = n has been proved in Step 2 of*. Hence, (9) together
with (i) implies thatA € C_. This completes the proof of the theorem. O

For regular systems with invertible transfer function we may characterize asymp-
totic stability of the zero dynamics by Hautus criteria for stabilizability and de-
tectability and the absence of zeros of the transfer function in the closed right com-
plex half-plane (recall Definition 2.4 for the definition of a zero of a rational matrix
function).

Corollary 3.2 (Regular systems)Let [E, A, B,C] € Zn nmm be such that sE — Ais

regular and G(s) := C(sE — A) !B isinvertible over R(s). Then the zero dynamics

Z 9y are asymptotically stableif, and only if, the following three conditions hold:

(i) VA €Cy: rkc[A\E—A,—B]=n,

AE—-A]
-C o

(iii)y G(s) hasno zerosinC,.

(i) VA eC, : rkc{

Proof. SinceG(s) € GIm(R(s)) it follows from Lemma 2.1 thatZ %,y are au-
tonomous. Furthermore, &= m and hence we may infer from [4, Rem. 4.12]
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that[E, A, B,C] is right-invertible. Now, we may apply Theorem 3.1 to deduce that
Z 9y are asymptotically stable if, and only if,

() [E,A,B,C] is stabilizable in the behavioral sense,
(b) [E,A,B,C]is detectable in the behavioral sense,
(c) [E,A,B,C] has no transmission zeros@h .

Since regularity 06E — A gives that rlg ) [SE — A, —B] = rkg(s) [ £ ] =n, we find
that (ix=(a) and (ii}=(b). (iii) =(c) follows from the fact that by [4, Rem. A.4] we
haveH (s) = G(s)~* for H(s) as in (5) and that transmission zero$BfA, B,C]| are,
by definition, exactly the poles &1 (s). O

4 Stabilization

In this section we consider stabilizing control for DAE systems. More precisely, we
introduce the concepts of Lyapunov exponent and compatible control and show that
for right-invertible systems with autonomous zero dynamics it is possible to assign,
via a compatible control, the Lyapunov exponent of the system to a value specified
by the zero dynamics.

The usual concept of feedback is the additional application of the relatipa-
Fx(t) to the systenﬁ—t Ex(t) = Ax(t) + Bu(t); for instance, high-gain feedback has
been successfully applied to DAEs in [5] in order to achieve stabilization. Feedback
can therefore be seen as an additional algebraic constraint that can be resolved for
the input. Control in the behavioral sense, or control via interconnection [18], gen-
eralizes this approach by also allowing further algebraic relations in which the state
not necessarily uniquely determines the input (see also [7, Sec. 5.3]). That is, for
given (or to be determined = [Ky,Ky] € R¥”" x R™*Mand[E,A,B,C] € Zynmp
we consider

Exe # (R;RY) and,
fora.at e R,

JEX(t) = Ax(t) + Bu(t)
0 = Kyx(t) + Kyu(t)

%I[(E,A,B] =< (xu) € L (R;R" x R™)

We callK thecontrol matrix, since it induces the control lakx+ K,u 2%0. Note
that, in principle, one could make the extreme chdfce- I, to end up with
a behavior

%FE’A’B] g { (X7 u) € zéC(R’Rn X Rm) ‘ (X; u) a:eo }7

which is obviously asymptotically stable. This, however, is not suitable from a prac-
tical point of view, since in this interconnection, the space of consistent initial differ-

ential variables is a proper subset of the initial differential variables which are con-
sistent with the original systenfe, A, B]. Consequently, the interconnected system
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does not have the causality property - that is, the implementation of the controller
at a certain timé € R is not possible, since this causes jumps in the differential
variables. To avoid this, we use the concept of compatible control.

Definition 4.1 (Compatible control [7, Def. 5.2])Let [E,A,B,C] € %/ nmp- The
control matrixK = [Ky, Ky] € R¥" x R9*™M s calledcompatible for [E, A, B,C] if,
and only if,

Ve {xeR" |3(x.uy) € By : Ex(0)=EX }
F(xu) € Blg g - EX(0) = EX°.

We construct a compatible control which not only results in an asymptotically
stable interconnected system, but also the Lyapunov exponent of the interconnected
system is prescribed by the zero dynamics of the nominal system. In order to get
a most general definition of the Lyapunov exponent, we use a definition similar to
the Bohl exponent in [3, Def. 3.4], not requiring a fundamental solution matrix as
in [13].

Definition 4.2 (Lyapunov exponent)Let E, A € R‘*". The Lyapunov exponent of
[E,A| is defined as

k. (E,A) = inf{ HeR

My, >0Vxe B foraat >s:
()] < MuetSix(s)| |

Note that we use the convention ind+-oo.

The (minimal) exponential decay rate of the (asymptotically stable) zero dy-
namics of a system can be determined by the Lyapunov exponent of the DAE

[[56].[€6]]-

Lemma 4.3 (Lyapunov exponent and stable zero dynamidsgt [E,A,B,C] €
2/.n,m,p With autonomous zero dynamicsand rkC = p. Then, using the notation from
Lemma 2.2 and k asin (4), we have

k(Z2a) = inf{ HeR

)

~ Jmax{ReA [A€0(Q) }, if k>0
T ) —w if k=0.

)

IM, >0Vwe %) foraat>s:
Iw(t)]] < Mye 9 w(s)|

Proof. The first equality follows from a careful inspection of the proof of [4,
Lem. 3.14] and using the quasi-Kronecker form from [8, 9]. The second equality
then follows from using the decomposition (3). a
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Note that it follows from Lemmas 2.3 and 4.3 that asymptotic stability of the
zero dynamics implies exponential stability of the zero dynamics, i.e., any trajectory
tends to zero exponentially.

We are now in a position to prove the main result of this section, which states that
for right-invertible systems with autonomous zero dynamics there exists a compat-
ible control such that the Lyapunov exponent of the interconnected system is equal
to the Lyapunov exponent of the zero dynamics of the nominal system; in particular,
this shows that asymptotic stability of the zero dynamics implies that the system can
be asymptotically stabilized in the sense that every solution of the interconnected
system tends to zero.

Theorem 4.4 (Compatible and stabilizing control)Let [E,A,B,C| € 5/ nmp be
right-invertible with autonomous zero dynamics. If dim 2% (1) > 0, then there exists
a compatible control matrix K = [Kx, Ky] € R¥*" x R¥*™ for [E, A, B,C] such that

([69[er]) —kzze). (10

If dim2°% 1) = 0, then for all u € R there exists a compatible control matrix K =
[Kx, Ky] € R9*" x R*M for [E, A, B,C] such that

(382 =

Proof. Since the Lyapunov exponent is invariant under transformation of the sys-
tem (see e.g. [3, Prop. 3.17]) we may, similar to the proof of Theorem 3.1, assume
that, without loss of generalityE, A B,C] is in the form (3). Then, with similar
transformations as in Step 1 of the proof of Theorem 3.1, it can be shown that

AExn—Axx ABEx3 Im SEoo—Axx sEoz Im
VA eC: rkc AEs3p AN—|n3 0 :rkR(s) sEszo SN—|n3 0 ,
0 AEsz O 0 sEsz O

and hence, by [7, Cor. 4.3], the system

ease = [[BF]. 2] 5] 00]
y My D, = ) ng |, 0|,[lps

82 Es3 0 (50’ 0 P
is controllable in the behavioral sense as in [7, Def. 2.1].

We will now mimic the proof of [7, Thm. 5.4] without repeating all of its ar-
guments: It follows from the above controllability in the behavioral sense and [7,
Cor. 3.4] that in the feedback form [7, (3.10)][&, A, B] we havens = 0. Therefore,
for any givenu € R ande > 0, it is possible to choos&; andK in the proof of 7,
Thm. 5.4] such that the resulting control matkix= [K1,K5] € R x RA*Mis
compatible for[E, A, B,C]| and satisfies
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NI R

We show that
K = [Kx | Ku] := [K2Ao1, Kq | Ko] € RP¥K 5 RIX(MK) 5 gaxm

is compatible fofE, A, B,C] and satisfies (10) or (11), resp.
Sep 1: We show compatibility. Let

XX e { X eR" [ 3(x,uy) € By: Ex(0)=EX }

and partition® = (6&)T,(x3)T) " with X0 € R¥, x§ € R, Then there exist; €
W (R RY), xp € L (R;R"%) andu € L (R; R™) such thaEx, € 7,0 (R; R™K)
and

g 2 Qxq + [Ar2, O]z,
d e L. A2y ~ =
&EXZ = 0 | X1+ Axo+ Bu, (13)
0
Xl(o) = X27
Ex(0) = Ex3

Therefore,

X3 € { X5 € R" | 3(x2,u,Cx0) € B a5 ¢ Exe(0) = Ex) },

where%[,g’g,,gjé] denotes the behavior of (1) corresponding to the syﬁevﬁ B,é],
and by compatibility ofKy,Ko] for [E,A,B,C] there existgx,,V) € %%ElAKé]] such
that . . .
4Ex, T Axo + By, (14)
0 % Kixp + KoV,
andEx,(0) = Ex3. Define
t
xa(t) = €0 1 / Qt-9[A, Oxo(s) ds, tE R,
0

which is well-defined sincex € ﬁgc(R;R”‘k), and letu := v— Ay1X;. Then
(x1,X2,U) solves (13) and satisfies

KoA21X1 + Kixo + Kou ae. KoAo1X1 + KiXo + Kov — KoAgixq a:e07
which proves thafK,Az1, K1, Kp] is compatible fofE, A, B,C].

Sep 2: We show that (11) is satisfied in case that O for k as in (4). This
follows from (12) since
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(5928 (55 ) =

with arbitraryu € R ande > 0.

Sep 3: We show that (10) is satisfied in case that 0. Denote

1=k (Z2w) =" max{ ReA | A € 0(Q) }
and letp > 0 be arbitrary. Then there exist, > 0 such that, for alt > 0, ||e?|| <
Mpe(lv”rp)t_
Sep 3a: We show “>"in (10). Since, for any solutiom; € leél(R;Rk) of %xl =
Qx1 we have
((XI) O)Ta _A21Xl7 0) € %ﬁiA’B] )

(59 [eR]) =

Sep 3b: We show “<” in (10). Let (x,u) € %ﬁz ag) @nd writex = (xI,xg)T with

X1 € # 2L (R;R¥) andx, € Z1 (R;R" ). Then we have

loc oc

it follows that

g = Qxa + [A12, 0%,
o | P2t . B
=" [ 0 | x1+Ax2+Bu,

o

de
aEXZ

0
0% KoA21X1 + Kixo + Kou.

Observe thatxy,w := u+ Az1x1) solves (14) and hence, by (12) farand some
€ > 0, there exist$/; > 0 such that

X2(S)

w(s) /||

<)\j\2/((tt))) H < Myelk-21t-9)
(o) e

)| v

<1/e

fora.at >s: ‘

Therefore,

t
ol < 1291+ 10 A0l

< M€t xq (5]

+M1Mpe<u+p)(t—5> 1[A2,0]]| - ‘

for almost allt,s € R with t > s. This implies that
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(B9 28]

and sincep > 0 is arbitrary the claim is shown. a

Remark 4.5(Construction of the contral)The construction of the contrél in the
proof of Theorem 4.4 relies on the construction used in [7, Thm. 5.4]. Here we make
it precise. We have split up the procedure into several steps.

(i) The first step is to transform the given syst¢fnA,B,C|] € 3/ p into the
form (3). The first transformation which has to be applied in order to achieve
this is stated in [4, Thm. 3.7] and uses the maxifEalA, B)-invariant subspace
included in ke€C. This subspace can be obtained easily via a subspace iteration
as describedin [4, Lem. 3.4]. The second transformation which has to be applied
is stated in [4, Thm. 4.6]. Denote the resulting system by

ool Lol e8]

(ii) Nextwe have to consider the subsystem

[E,ABC) = Hgii ENZS} , [ASZ 133] : ['g“} ,[lp,O]]

0 Es3 00

and transform it into a feedback form. To this end we introduce the following
notation: Forj € N, we define the matrices

N N N

Further, Iete,m € R/ be theith canonical unit vector, and, for some multi-index
a=(ay,...,q) € N', we define

Ny =diag(Ng,,...,Ng ) € RIO>Ial
Kg =diag(Ka,,...,Kg ) € RIOI-Dxlal,
Lo =diag(Lq,,...,Lq) € Ral=Hxlal
= =diag(eLf’11],...,eLﬁ']) e RO

where|a| = S!_; ai; we will further use the notatioh(a) = | for the length

of a. Then it was shown in [14] that a given system can, via state-space, input-
space and feedback transformation, be put into a feedback canonical form. Here
we use the feedback form from [7, Thm. 3.3], which is not canonical. Since
[E,A,B] is controllable in the behavioral sense as in [7, Def. 2.1] ariti-ekm,

there exisSe Gl;_k(R), T € Glp_k(R),V € Gln(R), F € R™ ("X sych that
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(iii)

~ ~=[T 0
- Ag-ssE-Ag| 0.
where
lqgy 0 0 0 0] [NJ O 0 0 0] [E4 O
0Kg 0 0 0 OLg 0 00 00
[EAAB]=||0 OL) 0 O0f,|0 OK/ O O},|0E||,
0 0 0K, O 0 00L;O 00
0 0 0 O N 0 0 0 0l 00

for some multi-indicesr, 8,y, 9, K.

Let u € R be arbitrary. We construct a compatible control in the behavioral
sense fofE, A B] such that the interconnected system has Lyapunov exponent
smaller or equal tu. Let F1, € RH@*I] be such that

max{ ReA | A € (Ng +EqF11) } < .
This can be achieved as follows: Fpe 1,...,L(a), consider vectors
aj = —[ajg;-1,-..,@jo] € R,

Then, for
Fii=diag(as, ..., (q)) € RU(@)xlal

the matrixNy + EqF11 is diagonally composed of companion matrices, whence,
for
pi(s) =% +ajq, 18" T+ .. +ajp e R[Y

the characteristic polynomial &f, + E4F11 is given by
L(a)
de'(SI\a\ —(Na +EaF11)) = I_L P (s).
=

Hence, choosing the coefficiersts, j = 1,...,L(a),i=0,...,aj such that the
roots of the polynomialgi(s), ..., p.(a)(S) € R[g are all smaller or equal ta
yields the assertion.

Now we find that
lig1 0| [Ng E
k la| a a <.
(189 e =

Furthermore, by the same reasoning as above, for
aj = [ajﬁj_z, ..., ajo, 1] S RlXBJ
with the property that the roots of the polynomials

pi(s) = +ajp 1 T +.. . +ajo € R[s
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are all smaller or equal tg for j = 1,...,L(a), the choice

Kx =diag(ay,...,a g)) € REB)xIB]

<([8] ) =#

Therefore, the control matrix

leads to

Fi1 0 000—Iy

Vg ‘. K 0 x(n— X
K:[Kl,Kz]:[O K.000 O"> JGRQ (n—k) 5 RAxXM

whereq=L(a)+L(B), establishes that

(B 28] =

Since the differential variables can be arbitrarily irlitialized in any of the pre-
viously discussed subsystems, the constructed coKtrekalso compatible for
[E,A B]. 3

(iv) We show thatK leads to a compatible contrl for [E, A, B] such that the in-
terconnected system has Lyapunov exponent smaller or equal @bserve
that

S'o0][E-AB T 0] [ s£-A B
0 lg| | Ki K| [VIFTIV7Y — |[K + KV IFTI Kyt

and hence, by invariance of the Lyapunov exponent under transformation of the
system (see e.g. [3, Prop. 3.17]), we find that for

(K1, K] := [K1+ KoV IFTE KoV 1] € R (K)o gaxm.

(B8]

(V) If k=dimZ %1y =0, then we can choogeec R as we like and obtain

(6 fe i) (o5 [l <»

If k> 0, then we can chooge < k(2 Z(1)) and obtain, with

we have

Ky | Ky] := [K2Ao1, K1 | Kg] € R<K 5 RA* (=K 5 paxm

that
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This is shown in the proof of Theorem 4.4.

(vi) The desired compatible contrilfor [E, A, B,C] is now given by

K == [KXQ_l)KU] .

Acknowledgements | am indebted to Achim lichmann (llmenau University of Technology) for
several constructive discussions.
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