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Abstract

The main underlying theme of this PhD thesis is the study of the commod-

ity market. We first begin by pricing Asian options based on the Schwartz

(1997) model. Asian options have been widely used in the global commodity

market for its unique feature of using the average price instead of the price

at maturity to determine the payoff function. We attempt to price Asian

options written on commodity related future contracts under the model of

three stochastic factors, namely, the spot price, the convenience yield, and

the interest rate. We obtain closed-form solutions of geometric average Asian

options, which will serve as control variates to price arithmetic average Asian

options by Monte Carlo simulation. Our results show significant improve-

ments in terms of simulation accuracy. We also manipulate the parameters

of the model to see how the options prices behave accordingly. Next, a jump

diffusion process is introduced to the model. Although analytical solution is

unobtainable, a new numerical method is found to price arithmetic average

Asian options with jumps, which lead to observable accuracy improvements.

During our journey to further explore the behaviour of the commodity fu-

tures prices, we found a new seasonality pattern. The traditional idea of sea-

sonality in the future market relates to the maturity date of a future contract.

However, we find a new seasonal pattern in the futures prices that relates to

the trading dates. We decide to explore such phenomenon in three energy

commodity markets, namely, natural gas, gasoline, and crude oil. To conduct

our initial empirical research, we design the so-called backward curve, as oppo-

site to the forward curve, to visually illustrate the pattern of the trading-date

seasonality. We find that when the prices of a collection of future contracts

with the same maturity month can be averaged over the different years, the

seasonality of trading dates is obvious to observe. We also find an interest-

ing change of behaviour in the natural gas futures prices. Then, we conduct

multiple statistical tests to further confirm our findings, which include the

Kruskal-Wallis test, the autocorrelation test, and the power spectrum test.

The results show strong evidence to support the existence of the trading-date

seasonality.

In light of what we find in the second chapter, we decide to look further

into the new seasonality that relates to the trading dates, by constructing a

trading strategy that is designed specifically to profit from the new seasonal

pattern in three commodity markets. The results show promising profit over

the long run for all three commodities, with relatively low risks. Then, we

establish a model based on the Sorensen (2002) model, with the introduction

of an arbitrage factor to capture the trading-date seasonality. We calibrate the



model using the Kalman filter in the state space form, and the results suggest

that the vast majority of the parameters are highly statistically significant in

explaining the movement of the futures prices in the three commodity markets.



Pricing Asian Options with Stochastic

Convenience Yield and Jump Diffusions

Abstract

We attempt to price Asian options written on commodity related future

contracts under the model of three stochastic factors, namely, the spot price,

the convenience yield, and the interest rate. We obtain closed-form solutions

of geometric average Asian options, which will serve as control variates to price

arithmetic average Asian options by Monte Carlo simulation. Our results show

significant improvements in terms of simulation accuracy. We also manipulate

the parameters of the model to see how the options prices behave accordingly.

Next, a jump diffusion process is introduced to the model. Although analytical

solution is unobtainable for geometric average Asian options, a new numerical

method is found to price them with jumps, which lead to observable accuracy

improvements to price the arithmetic counterparts.
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1 Introduction

Option pricing of commodity related financial instruments has always been a popular

topic among both academics and industry. A large amount of efforts has been

devoted by academics to this realm, and yet the true behaviour of commodity prices

remains puzzling and unpredictable. A number of methods have been developed

to price the financial products with commodities as their underlying assets. For

example, one important family of such methods starts from Heath et al (1992), or

the HJM model in the following content, where the authors take as given the prices of

the zero-coupon bond, and then attempt to price contingent claims that are interest

rate sensitive. In other words, it intends to directly price the entire forward curve

of the interest rate. A significant amount of researches has been developed under

the HJM framework, such as Inui and Kijima (1998), Jong and Clara (1999) and

Agca (2005), to name a few. Another group of methods to price contingent claims

is with the help of a finite number of parameters that carry verifiable economic

meanings, or the so called state variables. Our paper falls into the second group,

where we attempt to price Asian options written on commodity futures with the

state variables of the spot price, the convenience yield and the interest rate.

What lays the foundation of our paper is the theory of storage, which attempts

to deconstruct the difference between the instantaneous spot price and the price

of future contracts of the same underlying asset. Early work on theory of storage

constructed a solid foundation on identifying the three factors that constitute the

difference between the spot price and the futures price of the same underlying,

namely, the interests forgone for keeping the commodity, the storage cost of the

commodity, and the convenience yield1.

In commodity market, the convenience yield has been argued to play one of the

major roles in interpreting the movements of futures prices, and has thus inspired

a large number of studies to reveal its true nature. To name a few, Fama and

French (1987) find statistical evidence to support the theory of storage, and that

seasonality plays a significant role in explaining futures prices. Fama and French

(1988) test and confirm the hypothesis from the theory of storage that the marginal

1The convenience yield represents the advantage of physically owning and storing the commodity

asset, over holding some financial contract of the same asset as the underlying. An example could

be that the owner of gold could store his asset as inventory, making it into some jewellery when

the price is too low to make a profit from selling it, or selling it when the price is high. However,

the owner of a financial contract of gold only has the option to keep it or sell it based on its price.

See Kaldor (1939); Working (1948); Brennan (1958); Telser (1958).
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convenience yield falls at a decreasing rate with the increase of inventory, by studying

the variability differences between the spot and futures prices. Heinkel et al (1990)

confirm the negative relationship between the level of aggregate inventory and the

convenience yield, and also find two additional determinants of the convenience yield,

namely, marginal production costs, and spot prices of the commodity. Routledge

et al (2000) find a positive relationship between the convenience yield and the spot

prices, and a time-varying correlation between them. Casassus and Dufresne (2005)

construct a three-factor model where the convenience yield depends on both the spot

prices and the interest rate, and a time-varying risk premia is embedded. Researchers

also treat the convenience yield as a resemblance of plain vanilla call option, since

the convenience yield mainly represents the value of the option that the owner of an

physical asset carries over that of a financial contract (see Milonas and Thomadakis

(1997)).

We conduct our study following a specific research route where the convenience

yield are treated to carry the characteristics of dividend to a stock, and modelled

by a stochastic process (as in Gibson and Schwartz, 1990; Schwartz, 1997; Miltersen

and Schwartz, 1998). We base our model largely on Schwartz (1997), where three

stochastic factors are embedded, including the spot price, the convenience yield, and

the interest rate. The stochastic process of the convenience yield and the interest

rate are assumed to follow a mean-reverting processes, in light of the study by Gibson

and Schwartz (1990) and Vasicek (1977).

We further extend the Schwartz (1997) model to price Asian options, which is

commonly traded in the commodity market all over the world. Its unusual feature

of using the average of the underlying prices over the option period instead of the

spot price at the maturity to calculate the option price gives it unique advantages

over plain vanilla options, such as preventing some hostile manipulation of the spot

price when close to maturity date. However, it is also well known that most com-

monly traded Asian options use arithmetic average of the spot price to calculate

the price, which leads to no analytical solution. This is because although the spot

prices are assumed to follow the log-normal distribution, its arithmetic average does

not. As a result, researchers seek for numerical solutions such as Monte Carlo sim-

ulation to price arithmetic average Asian options. Kemna and Vorst (1990) suggest

using geometric average Asian option that adopts the geometric average to calculate

the option’s price as a control variate to reduce the simulation error to yield more

accurate results. This is feasible because the geometric average of the spot prices

is still log-normally distributed, and is arguably closely related to the arithmetic
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counterpart. Accordingly, we follow the same procedure of Kemna and Vorst (1990)

to first find the analytical solution to the geometric average Asian option, then em-

ploy it as a control variate to price arithmetic average Asian option using Monte

Carlo simulation. Our results show significant improvement of accuracy, in com-

parison with standard Monte Carlo simulation with no variance reduction method,

and with antithetic method (see Boyle et al (1997) for the references of variance

reduction methods in Monte Carlo simulation, including the antithetic and control

variate methods). Then, we manipulate the parameters of the model in pairs to

discover how the Asian option prices react to changes of the parameters.

Our next step is to include jump diffusions in our model. A jump could be

referred to as a spike in the price movement. It is usually triggered by the sudden

arrival of some unexpected news that has an immediate and profound effect on the

underlying price. Merton (1976) was arguably the first to introduce jumps into

options pricing, where a closed-form solution is derived for plain vanilla European

options. Hilliard and Reis (1998) add jump diffusions to the Schwartz (1997) model,

and also obtain analytical solution to European options. Given the important role

that commodities play in the development of the modern world, the supply and

demand of many commodities are prone to geopolitical conflicts between different

countries, which could trigger some huge movement of the prices in a blink of an

eye. Hence, we aim to extend the model of three stochastic factors to include

a jump diffusion in the spot price to price Asian options written on commodity

futures. The difficulty lies in that there appears to be no closed-form solutions for

either arithmetic average or geometric average Asian options. This is because Asian

options are path-dependent, while plain vanilla options are not. As a result, the

price of plain vanilla options only depends on the jump size and the accumulated

effect of all the jumps on the spot price at maturity, but not the time of each jump

occurrence. Nevertheless, Asian options are path-dependent and, hence, the time of

each jump matters. When the average of the spot prices is calculated to obtain the

price of an Asian option, a jump that occurs at the beginning of an option’s period

obviously affects the price differently than if it occurs near the end.

Provided such challenges, we argue that conditional on knowing when each jump

occurs during the option period, there is a unique analytical solution to a geometric

average Asian option. The reason is that if the timing of each jump could be

assumed as known, then the only unknown random variable of the jump process

is the jump size, which follows log-normal distribution, and so are the spot price

and the geometric average of it. Therefore, a closed-form solution is feasible for
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such geometric average Asian option, which will serve as a control variate to price

the corresponding arithmetic average Asian option using Monte Carlo simulation.

Nonetheless, the result is conditional upon a specific set of jumping times over the

option period that we assumed as known. Hence, the next step would be to simulate

a large number of different sets of jumping times, each of which lead to a unique

solution to an arithmetic average Asian option. The unbiased final result emerges

by taking the mean of all these solutions. We compare our method of control variate

with standard Monte Carlo with no variance reduction method and with antithetic

method. The results show observable improvement in terms of simulation accuracy.

The remainder of this paper is organized as follows. Section 2 introduces the

Schwartz (1997) model that we adopt in this paper. We derive analytical solutions of

geometric average Asian options as well as the results of pricing arithmetic average

Asian options using Monte Carlo simulations. In Section 3, we manipulate the

parameters of the model to see how the Asian option prices behave under different

parameters. The model with jump diffusions is discussed in Section 4. Conclusions

are drawn in Section 5.

2 The Model

We follow Schwartz (1997) to construct the two-factor and three-factor models for

Asian options written on future contracts, respectively. General conditions of option

pricing apply here, including log-normal property for the underlying price, contin-

uous time framework, and no transaction costs, taxes, or any limitation on short

sale.

2.1 Two-Factor Model

In the two-factor model, both the underlying spot price and instantaneous conve-

nience yield are driven by the following stochastic processes, namely,

dS = (µ− δ)Sdt+ σ1SdZ1 , (1)

dδ = κ(α− δ)dt+ σ2dZ2 , (2)

dZ1dZ2 = ρdt . (3)

Equation (1) shows the stochastic process for the underlying price, where the drift

indicates a theoretically negative effect of instantaneous convenience yield, δ, on its
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long-term growth rate, µ. This is consistent with the role convenience yield plays

in the theory of storage. The instantaneous convenience yield follows an Ornstein-

Uhlenbeck stochastic process as shown in equation (2), which is in line with Gibson

and Schwartz (1990). κ and α denote the speed of adjustment and the long-term

mean of the convenience yield, respectively. σ2
1 and σ2

2 represent the variances of the

underlying prices and the convenience yield, respectively. Both dZ1 and dZ2 are the

increments of standard Brownian motion, with ρ being the correlation coefficient.

Under the two-factor model, we assume a constant interest rate, r. It is also

worth noting that the convenience yield is not a tradable asset, or it cannot be

hedged. As a result, it must carry a market price of risk after adjusting for risk,

λ, which we assume as a constant. The resulted stochastic processes under the

risk-neutral measure, Q∗, are expressed as,

dS = (r − δ)Sdt+ σ1SdZ
∗
1 , (4)

dδ = κ(α̂− δ)dt+ σ2dZ
∗
2 , (5)

dZ∗
1dZ

∗
2 = ρdt . (6)

where

α̂ = α− λ

κ
.

It is easy to observe the change in the drift term of the spot underlying process,

where µ has been replaced by the risk-free rate, r, under the risk-neutral measure.

The effect of λ on the long term mean of the instantaneous convenience yield, α,

has also been absorbed and addressed when the risk-adjusted long term mean, α̂,

takes the place of α.

By constructing a no-arbitrage portfolio including two future contracts with

different maturities and the spot underlying asset, allowing one non-traded vari-

able, namely the convenience yield, Schwartz (1997) shows that the futures prices,

F (S, δ, τ), with time till maturity τ = T − t, must follow the partial differential

equation,

1

2
σ2
1S

2FSS + σ1σ2ρSFSδ +
1

2
σ2
2Fδδ + (r − δ)SFS + (κ(α̂− δ))Fδ − Fτ = 0 , (7)

subject to the boundary condition,

F (S, δ, 0) = S .

The solution of the futures price to the above equations can be given as follows,

F (S, δ, τ) = S exp(A(τ)) , (8)
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where

A(τ) = − δ
κ

(1− e−κτ ) + (r − α̂ +
σ2
2

2κ2
− σ1σ2ρ

κ
)τ

+
σ2
2(1− e−2κτ )

4κ3
+ (α̂κ+ σ1σ2ρ−

σ2
2

κ
)
1− e−κτ

κ2
.

Jamshidian and Fein (1990) and Bjerksund (1991) independently derived the above

solution in their unpublished notes.

We now turn to pricing Asian options written on future contracts. It is well

known that under most circumstances, arithmetic average Asian option does not

yield closed-form solution, because the arithmetic average of the log-normal under-

lying prices does not follow log-normal distribution. However, it is not the same with

geometric average Asian option. Equation (8) clearly shows that the price of a future

contract is proportional to the underlying price, indicating that the futures price also

follows log-normal distribution, and so is the geometric average of the futures price.

Hence, the derivation of closed-form solution for geometric average Asian option is

feasible. As a result, Kemna and Vorst (1990) suggest pricing arithmetic average

Asian options using numerical methods such as the Monte Carlo simulation, with

the analytical solution of geometric average Asian option as a control variate for

variance reduction purpose. The method leads to unbiased results and is extremely

effective, because the structural similarity between the two types of Asian options

guarantees a high covariance between their prices and thus significantly reduces the

variance of the simulated prices of arithmetic average Asian options.

Therefore, we seek for analytical solutions of geometric average Asian options

written on future contracts, whose prices are driven by the stochastic processes

described by equation (4) to (6). The price of the geometric average Asian option

with maturity T written on future contracts with maturity time T̂ at time t under

the risk-neutral measure can be represented by the following equation,

GA(t, T, T̂ ) = e−r(T−t)E∗ max(G(t, T, T̂ )−K, 0) , (9)

where

G(t, T, T̂ ) = exp(
1

T

∫ T

0

lnF (S(u), δ(u), T̂ − u) du) . (10)

It is assumed that 0 ≤ t ≤ T ≤ T̂ , or the underlying futures contract cannot expire

before the Asian option does. It is also interesting to see how the current time

may change the calculation of equation (10). Assuming t is strictly larger than 0,
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equation (10) could be decomposed into two parts,

G(t, T, T̂ ) = exp{ 1

T
[

∫ t

0

lnF (S(u), δ(u), T̂ − u) du

+

∫ T

t

lnF (S(v), δ(v), T̂ − v) dv]} , (11)

where the first part of the exponent in equation (11) is already known at time t

and could easily be taken out from the expectation part of equation (9). As a

result, the strike, K, and the discount factor in equation (9) will change its value

correspondingly, while the technical problem remains to solve the second part of

equation (11). For notational simplicity, it is assumed that the current time, t,

coincide with the starting point of the Asian option. In other words, t = 0. The

extension to any t > 0 is fairly straightforward.

Given that the futures prices follow log-normal distribution and a fixed interest

rate, Kemna and Vorst (1990) show that equation (9) must lead to the following

solution,

GA(0, T, T̂ ) = e−rT [eE+ 1
2
VN(

E − ln(K) + V√
V

)−KN(
E − ln(K)√

V
)] , (12)

where E and V denote the expectation and variance of the geometric average of

the log-normal futures prices , and N represents the standard normal distribution

function. The solution to E and V is, respectively,

E2−factor = ln(S0)−
δ0
κ

+
1

2
(r − σ2

1

2
− α̂)T + (δ0T − α̂T −

α̂

κ
)
e−κT̂

κT

+ α̂
e−κ(T̂−T )

κ2T
+ (r − α̂ +

σ2
2

2κ2
− σ1σ2ρ

κ
)(T̂ − T

2
)

+
σ2
2

4κ3T
(T − e−2κ(T̂−T ) − e−2κT̂

2κ
)

+
α̂κ+ σ1σ2ρ− σ2

2

κ

κ2T
(T − e−κ(T̂−T ) − e−κT̂

κ
) , (13)

V2−factor =
1

T 2
(
1

3
σ2
1T

3 +
σ2
2

κ2
(

1

4κ3
e−2κ(T̂−T ) − 4

κ3
e−κ(T̂−T )

− (
T 2

2κ
+

T

2κ2
+

1

4κ3
)e−2κT̂ + (2

T 2

κ
+ 4

T

κ2
+

4

κ3
)e−κT̂ +

T 3

3
)

+
2σ1σ2ρ1

κ
(

2

κ3
e−κ(T̂−T ) − (

T 2

κ
+

2T

κ2
+

2

κ3
)e−κT̂ − T 3

3
)) ,

(14)
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where S0 and δ0 denote the spot price and the instantaneous convenience yield at

the start of the Asian option period, when t = 0.

The analytical solution to geometric average Asian option will serve as a control

variate to help reduce the error of Monte Carlo simulation for pricing arithmetic

average Asian option numerically. To prove its effectiveness, we compare the results

of pricing an arithmetic average Asian option by standard Monte Carlo simulation

with no variance reduction method, with antithetic method, and with control variate

method. The antithetic method provides another easy and effective way to reduce

simulation error, by simply adding a negative sign in front of all the simulated

Brownian motion increments to create a new stream of random variables with the

same expectation and variance at minimal extra computational cost. Each stream of

random variables produces one unbiased estimates of the arithmetic average Asian

options price. The average of these two estimates is also unbiased, but with a much

shrunken variance (see Boyle et al (1997) for references).

The results from the three Monte Carlo methods are shown in Table 1, where

parameters are given with different values as indicated in the first two columns.

Column 3 to 5 illustrates options prices and the standard deviations incurred by

the simulation (listed in the brackets) using different Monte Carlo methods. It is

apparent to see that control variate method consistently yields much shrunk stan-

dard deviation. Given 20,000 simulations in our demonstration, for an Asian option

contract worth around $2 - $3, the standard errors incurred by standard Monte

Carlo simulation could be as large as 2 to 3 cents, or 1% to the price. In the case

of antithetic method, they tend to shrink to as low as 0.5%. However, when control

variate method is applied, the standard errors are usually around 0.1 cent, or 0.05%.

On average, the standard errors from simulations with control variate is more than

16 times smaller than those from the standard Monte Carlo method, and 8.5 times

smaller than from the antithetic method.

2.2 Three-Factor Model

The assumption of constant interest rate is relaxed in the three-factor model, where

we adopt a Ornstein-Uhlenbeck stochastic process for the instantaneous interest rate,

inspired by Vasicek (1977) when the mean-reverting feature of the interest rate was

first captured. The stochastic process is very similar to that of the convenience yield.

Under the risk-neutral measure, Q∗, the stochastic processes for the underlying spot

price, the instantaneous convenience yield and the instantaneous interest rate can
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be represented as follows,

dS = (r − δ)Sdt+ σ1SdZ
∗
1 , (15)

dδ = κ(α̂− δ)dt+ σ2dZ
∗
2 , (16)

dr = a(m̂− r)dt+ σ3dZ
∗
3 , (17)

dZ∗
1dZ

∗
2 = ρ1dt , dZ∗

2dZ
∗
3 = ρ2dt , dZ∗

1dZ
∗
3 = ρ3dt , (18)

where

α̂ = α− λ1
κ
, m̂ = m− λ2

a
.

Here, a and m̂ denote the speed of adjustment and the risk-adjusted long term

mean of the interest rate, respectively. λ1 and λ2 represent the market price of

convenience yield risk and interest rate risk, respectively. The three-factor model is

a simple extension from the two-factor model, where the interest rate fluctuations

can be rigorously modelled with the flexibility to change its value in the short run.

This is of particular interests when certain commodities are empirically related to

or heavily influenced by monetary policy change (see Frankel (2006)).

Schwartz (1997) shows that the futures prices under the three-factor model,

F (S, δ, r, τ), must satisfy the following partial differential equation,

1

2
σ2
1S

2FSS +
1

2
σ2
2Fδδ +

1

2
σ2
3Frr + σ1σ2ρ1SFSδ + σ2σ3ρ2Fδr + σ1σ3ρ3SFSr

+ (r − δ)SFS + κ(α̂− δ)Fδ + a(m̂− r)Fr − Fτ = 0 , (19)

subject to the boundary condition,

F (S, δ, r, 0) = S .

The solution to the above equation can be shown as,

F (S, δ, r, τ) = Sexp(A(τ) +B(τ) + C(τ)) , (20)

where,
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A(τ) = − δ(1− e−κτ )
κ

B(τ) =
r(1− e−aτ )

a

C(τ) =
(κα̂ + σ1σ2ρ1)((1− e−κτ )− κτ)

κ2

− σ2
2(4(1− e−κτ )− (1− e−2κτ )− 2κτ)

4κ3

− (am̂+ σ2σ3ρ3)((1− e−aτ )− aτ)− aτ
a2

− σ2
3(4(1− e−aτ )− (1− e−2aτ )− 2aτ)

4a3

+ σ2σ3ρ2(
(1− e−κτ ) + (1− e−aτ )− (1− e−(κ+a)τ )

κa(κ+ a)

+
κ2(1− e−aτ ) + a2(1− e−κτ )− κa2τ − aκ2τ

κ2a2(κ+ a)
) .

The price of the geometric average Asian option at time t with maturity T

written on a future contract with maturity T̂ under Q∗ is represented by the following

equation,

GA(t, T, T̂ ) = E∗ [e−r(T−t)max(G(t, T, T̂ )−K, 0)] , (21)

where

G(t, T, T̂ ) = exp(
1

T

∫ T

0

lnF (S(u), δ(u), r(u), T̂ − u) du) . (22)

To find out the solution to equation (21), we perform a change of numeraire, where

the risk-neutral measure, Q∗, will be transformed into the T-forward measure, QT ,

using a zero-coupon bond with maturity T as numeraire (the process of the trans-

formation will be provided in the Appendix). The solution to the Asian option price

at time t = 0 is given by the following equations,

GA(0, T, T̂ ) = P (0, T )ETmax(G(0, T, T̂ )−K, 0)

= P (0, T )[eE+ 1
2
VN(

E − ln(K) + V√
V

)−KN(
E − ln(K)√

V
)]

(23)

where P (t, T ), the price of the zero-coupon bond with maturity T at time t, are

provided by the following equations,

P (0, T ) = A(0, T )e−r0B(0,T ) , (24)
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where

B(0, T ) =
1− e−aT

a

A(0, T ) = exp[(m̂− σ2
3

2a2
)(B(0, T )− T )− σ2

3

4a
B2(0, T )] (25)

And the expectation, E, and variance, V , in equation (23), are

E3−factor =
1

T
{[ln(S0) +

r0
a
− δ0
κ

]T − 1

2
(
1

2
σ2
1 − m̂+ α̂)T 2

+
δ0 − α̂
κ

Te−κT̂ +
α̂

κ2
e−κT̂ (eκT − 1)− r0 − m̂

a
Te−aT̂ − m̂

a2
e−aT̂ (eaT − 1)

+
κα̂ + σ1σ2ρ1

κ2
(l1 − κT T̂ +

1

2
κT 2)− σ2

2

4κ3
(4l1 − l3 − 2κT T̂ + κT 2)

− am̂+ σ1σ3ρ3
a2

(l2 − aT T̂ +
1

2
aT 2)− σ2

3

4a3
(4l2 − l4 − 2aT T̂ + aT 2)

+
σ2σ3ρ2

κa(κ+ a)
(l1 + l2 − l5) +

σ2σ3ρ2
κ2a2(κ+ a)

[κ2l2 + a2l1 − aκT (T̂ − 1

2
T )(a+ κ)]

− σ1σ3γ1
a

[
T 2

2
− 1

a2
+ (

T

a
+

1

a2
)e−aT ]− σ2σ3γ2

κa
[e−κT̂ (−T

κ
+
eκT − 1

κ2
)

− e−κT̂−aT (− T

κ+ a
+
e(κ+a)T − 1

(κ+ a)2
)− T 2

2
+

1

a2
− T

a
e−aT − e−aT

a2
]

+
σ2
3γ3
a2

[e−aT̂ (−T
a

+
eaT − 1

a2
)− e−a(T̂+T )(− T

2a
+
e2aT − 1

4a2
)

− T 2

2
+

1

a2
− T

a
e−aT − e−aT

a2
]} , (26)

where

l1 = T − e−κT̂

κ
(eκT − 1)

l2 = T − e−aT̂

a
(eaT − 1)

l3 = T − e−2κT̂

2κ
(e2κT − 1)

l4 = T − e−2aT̂

2a
(e2aT − 1)

l5 = T − e−(κ+a)T̂

(κ+ a)
(e(κ+a)T − 1)
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V3−factor =
1

T 2
{1

3
T 3σ1(α

2
1 + β2

1 + γ21)

+
σ2
2(β2

2 + γ22)

κ2
(
T 3

3
+

1

4κ3
e−2κ(T̂−T ) − 4

κ3
e−κ(T̂−T ) −m1 +m2)

+
σ2
3γ

2
3

a2
(
T 3

3
+

1

4a3
e−2a(T̂−T ) − 4

a3
e−a(T̂−T ) −m3 +m4)

+
2σ1σ2(β1β2 + γ1γ2)

κ
(

2

κ3
e−κ(T̂−T ) − 1

2
m2 −

T 3

3
)

− 2σ1σ3γ1γ3
a

(
2

a3
e−a(T̂−T ) − 1

2
m4 −

T 3

3
)

− 2σ2σ3γ2γ3
κa

[(
2

(κ+ a)3
e−(κ+a)(T̂−T ) −m5 −

T 3

3
)

− (
2

κ3
e−κ(T̂−T ) − 1

2
m2 −

T 3

3
)− (

2

a3
e−a(T̂−T ) − 1

2
m4 −

T 3

3
)]}

, (27)

where

m1 =
1

2κ
(T 2 +

T

κ
+

1

2κ2
)e−2κT̂

m2 =
2

κ
(T 2 +

2T

κ
+

2

κ2
)e−κT̂

m3 =
1

2a
(T 2 +

T

a
+

1

2a2
)e−2aT̂

m4 =
2

a
(T 2 +

2T

a
+

2

a2
)e−aT̂

m5 =
1

κ+ a
(T 2 +

2T

κ+ a
+

2

(κ+ a)2
)e−(κ+a)T̂

Similar to the two-factor model, we use the closed-form solution of the geometric

average Asian option as a control variate to price the corresponding arithmetic

average Asian option. Table 2 lists the comparison of the results from standard

Monte Carlo simulation with no variance reduction means, with antithetic method,

and with control variate method. The results resemble what we observe in two-factor

model, that control variate technique gives the most accurate performance, followed

by antithetic method. It is easy to observe that most of the options prices lie in the

range of $2 - $4. The standard deviations from standard Monte Carlo, antithetic

method and control variate method are mostly about 2 cents, 1 cents, and one tenth

of a cent, or 1%, 0.5% and 0.05% to the price. On average, control variate method

produces the results of option prices with 23 times smaller standard errors than the

standard Monte Carlo method, and 9 times smaller than the antithetic method.
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3 Options Payoffs in Response to Parameter Changes

3.1 Two-Factor Model

Option prices change correspondingly to the parameters in the model. In this section

we will show how and to what extent they change when the parameters in our model

are manipulated. The price of the underlying asset and convenience yield follow

equations (4) to (6). We manipulate the parameters in pairs to see how they jointly

influence the price of an arithmetic average Asian option with 1 year to maturity,

written on a futures contract of 2 year to maturity. The valuation is carried out by

Monte Carlo simulation, with the analytical solution of the corresponding geometric

average Asian option as a control variate for variance reduction purpose. 20,000

paths are generated for each pair of parameters. The interest rate is fixed at 5%.

The basic setting of the values for all the parameters are exactly the same as in

Table 1 and Table 2, unless being changed and indicated in the graph.

Figure 1 illustrate all the results for each pair of the parameters, and some

interesting patterns can be easily identified here. For example, the first graph shows

that the Asian option price seems to be rather sensitive to changes of either σ1 or

κ when the other parameter is relatively low. However, when either of them carries

higher values, we can hardly see any price movement when we manipulate the value

of the other. The first graph of Figure 1 also suggests that given a relatively lower

speed of adjustment for the convenience yield (κ), a more volatile market reduce the

price of Asian options, and a higher κ given a low level of σ1 also reduces the price

of the Asian option, implying that a more stable inventory level for the commodity

lead to a lower option prices, given the relationship between the convenience yield

and inventory level (Fama and French, 1988). Similar pattern can be observed in

the second graph of Figure 1. When σ2 is low, the option price fluctuates to a

larger extent subject to the change of α. Also, higher volatility of the convenience

yield bring the Asian options prices down. The joint influence of the two volatility

parameters, σ1 and σ2, on the Asian option prices can be observed in the third graph,

which reveals convex shape for both parameters. In the final graph of Figure 1, we

can also observe a convex shape for λ1, while option prices monotonically increase

with σ1.
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3.2 Three-Factor Model

Under the three-factor model, the Asian option prices react to varying values of

parameters in a different way. The price of the underlying asset, convenience yield

and interest rate follow equations (15) to (18). Figure 2 shows how the prices change

in response to the change of the parameters. In the first graph, α and m are long-

term mean of the convenience yield and the interest rate respectively (unadjusted by

market price of risk). It is easy to notice that when m is higher than 5%, the price

movement becomes very subtle regardless of how α changes. This is plausible since

a high discount factor would certainly lower the option price. On the other hand,

the Asian option price rises monotonically with the increase of α, given a relatively

low level of interest rate over the option period. This is obviously different from the

results under two-factor model in Figure 1, where the option price forms a convex

shape with the change of α. Hence, the introduction of the third stochastic factor

apparently altered the way Asian options prices react to changes of the long-term

mean of convenience yield.

The second graph of Figure 2 shows how options prices move subject to the

different values of the speed of adjust for both convenience yield, κ, and interest

rate, a, respectively. It is obvious to see that higher values of κ and lower values

of a will result in higher options prices. This is also inconsistent with our results

in two-factor model. While option prices rises dramatically with the decrease of κ

given a low value of σ1, the influence of κ on option prices seems to be the opposite,

provided a relatively large σ1. In Figure 5, the option price appear to increase

monotonically with κ, and drops monotonically with a.

The third to fifth graph of Figure 2 are dedicated to show the relationship be-

tween the Asian option price and the volatility of the underlying spot price, σ1, the

convenience yield, σ2, and the interest rate, σ3. The third graph clearly shows that

the option price form convex shape in response to the changes of σ1 and σ2. This

is similar to the results from two-factor model in Figure 1. It is also apparent to

see from the forth and fifth graphs that the option prices form a convex shape when

the volatility of interest rate (σ3) changes its value. However, in neither of the two

graphs could we identify any observable changes in option prices when the volatility

of the underlying spot (σ1) and convenience yield (σ2) are manipulated with differ-

ent values, given a fixed σ3. The last graph of Figure 2 demonstrates the response

of option prices subject to changes in the market prices of both convenience yield

risk, λ1, and interest rate risk, λ2. Option prices drop with λ1, but rise with λ2.
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4 Jump Diffusion

In this section, a jump diffusion is added to the stochastic process of the underlying

spot price. The concept of jumps in financial asset pricing starts from Merton (1976),

where he questions the critical consumption of continuity and log-normality in the

classic Black-Scholes option pricing model. Specifically, although the Black-Scholes

model assumes that the movement of the spot price is log-normally distributed in a

continuous time framework, there is strong evidence to suggest fat-tails in the real

distribution of asset prices. In other words, extraordinarily large movements of the

underlying price do happen in the real market. Hence, Merton’s model allows these

spikes to be captured by a jump diffusion, which, for example, could be caused by a

demand or supply shock, or the arrival of some important news, leading to a sudden

and profound effect on the underlying spot price. This is extremely important in

pricing commodity related products for various reasons. First, although most of the

commodities are consumed worldwide, they are particularly rich and thus produced

on a large scale in only a handful of areas around the world. Hence, any information

of new sources being discovered or existing plants found exhausted can send a shock

to the price. Furthermore, due to the importance of the role commodities play

in modern country development, they are usually prone to geopolitical conflicts

between countries, which can cause dramatic price changes that no one can foresee.

It therefore makes sense to add the jump diffusion into our model, where the

underlying price follows the stochastic process with a jump diffusion. We also de-

cide to include jump diffusions only in the three-factor model. The rationale is the

following. First, as in Schwartz (1997), the three factor model seems to outperform

the two-factor model when the corresponding futures contracts carry a longer ma-

turity, probably because the interest rate becomes more volatile in the long run.

Thus, modelling the interest rate with a stochastic process for the futures contracts

or Asian options with longer maturity (as in the three-factor model) fits the real

market condition better than using a fixed rate (as in two-factor model), which

might be more efficient in the short run. Meanwhile, jumps also occur more often

in the long run, and hence their accumulated effects are more obvious and profound

when the futures or Asian options carry relatively longer maturity. Accordingly, it

is logical to include the jump diffusion in the three-factor model rather than in the

two-factor model.

With a jump diffusion, the stochastic process for the underlying spot price sat-
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isfies the following equation under T-forward measure, QT ,

dS = (r − δ − θγ1 − λTJ κ̄TJ )Sdt+ α1SdW
T
1 + β1SdW

T
2 + γ1SdW

T
3 + κTJ dq

T , (28)

where θ, α1, β1, γ1 are identical to equation (A6) and equation (A2) in the Ap-

pendix. κTJ dq
T represents the jump part, governed by two random variables. The

first random variable, qT , is the Poisson process, with λTJ as its intensity. Hence, the

probability that a jump occurs per unit time is λTJ (Prob(dqT = 1) = λTJ dt when a

jump occurs, and Prob(dqT = 0) = 1 − λTJ dt when there is no jump). The second

random variable, κTJ , denotes the percentage jump size of the underlying spot price,

conditional upon the occurrence of a jump. Then, κTJ + 1 follows a log-normal dis-

tribution, or ln(κTJ + 1) ∼ N (ln(κ̄TJ + 1) − 0.5v2J , v
2
J). Hence, for most of the time

when no jump occurs, dq∗ = 0 and the stochastic process for the underlying price

is analogous to the standard Brownian motion. When it does, the underlying price

move abruptly by a random percentage. It is assumed that these jump random

variables are pairwise uncorrelated with each other, and with the Brownian motion

of the underlying price.

Under the three-factor model with jump diffusion, the stochastic process of the

futures price under QT follows

dF = −(λTJ κ̄
T
J − h4h3)Fdt+ h1FdW

T
1 + h2FdW

T
2 + h3FdW

T
3 + κTJ dq

T , (29)

where

h1 = σ1α1

h2 = σ1β1 −
σ2β2
κ

(1− e−κ(T̂−t))

h3 = σ1γ1 −
σ2γ2
κ

(1− e−κ(T̂−t)) +
σ3γ3
a

(1− e−a(T̂−t))

h4 = − σ3
a

(1− e−a(T−t)) .

(30)

The introduction of jump diffusion adds certain complication to the pricing of

Asian options, because there will be no closed-form solutions for either arithmetic

average or geometric average Asian options. The reason is as follows. Although the

random jump percentage size is log-normal and so is its product with the log-normal

spot price, the jumping time is not. This is not a problem for pricing plain vanilla

European options, because it is path independent. As a result, only the underlying

price at maturity is relevant, and it is log-normal regardless of the jumping times.

Nevertheless, Asian options are path dependent, and hence when the price jumps
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during the option period matters to its average over that period. A jump at the

beginning of the option period clearly affects the options price differently than a

jump near the maturity date. Since the jumping time is Poisson distributed, the

average of the underlying spot price is no longer log-normal.

Nonetheless, we are able to find a unique analytical solution of geometric aver-

age Asian option, conditional on knowing when the jumps occur during the option

period. This is because if we know when the jumps occur during the option pe-

riod, we are left with only one random variable, the percentage jump size. It is

log-normally distributed, and so is its product with the futures price. Hence, the

geometric average of the futures prices also follows a log-normal distribution. Then,

the solution of the geometric average Asian option can be used as a control variate

to price arithmetic average Asian option by Monte Carlo simulation. We follow the

same approach as in the three-factor model discussed earlier to find the solution,

which is to find the mean and variance of the geometric average of the futures prices

over the option period, namely EJump and VJump, respectively, under the T-forward

measure. We use NJ and TJi(i = 1, 2, ..., NJ) to denote the total number of jumps

and the exact time of each jump, respectively, which are both assumed to be known.

The closed-form solutions to the geometric average Asian option at time 0, given

NJ and TJi, are presented in the following equation,

GA(0, T, T̂ ) = E[e−rTmax(G(0, T, T̂ )−K, 0) | NJ , TJi] ,

= P (0, T )ETmax(G(0, T, T̂ )−K, 0 | NJ , TJi)

= P (0, T )[eEJ+
1
2
VJN(

EJ − ln(K) + VJ√
VJ

)−KN(
EJ − ln(K)√

VJ
)]

(31)

where G(0, T, T̂ ) follows equation (22).

The solution to the expectation, EJ , and variance, VJ , are given as follows,

EJ =
1

T
(E1 + E2), VJ =

1

T 2
(V1 + V2) , (32)

where both E2 and V2 are related to and conditional on the jumps.
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E1 = T ln(F0)−
1

2
κ̄TJλ

TT 2

− 1

2
[
1

2
σ2
1T

2(α2
1 + β2

1 + γ21) +
σ2
2

κ2
(β2

2 + γ22)(
1

2
T 2 − 2n1 + n3)

+
σ2
3γ

2
3

a2
(
1

2
T 2 − 2n2 + n4)−

2σ1σ2
κ

(β1β2 + γ1γ2)(
1

2
T 2 − n1)

+
2σ1σ3γ1γ3

a
(
1

2
T 2 − n2)−

2σ2σ3γ2γ3
κa

(
1

2
T 2 − n1 − n2 + n5)]

− σ1σ3γ1
a

(
1

2
T 2 − n6) +

σ2σ3γ2
κa

(
1

2
T 2 − n1 − n6 + n7)

− σ2
3γ3
a2

(
1

2
T 2 − n6 − n2 + n8)

(33)

E2 = (NJT −
i=NJ∑
i=1

TJi)(ln(κ̄TJ + 1)− 1

2
vJ) (34)

where

n1 =
e−κT̂

κ
[
1

κ
(eκT − 1)− T ]

n2 =
e−aT̂

a
[
1

a
(eaT − 1)− T ]

n3 =
e−2κT̂

2κ
[

1

2κ
(e2κT − 1)− T ]

n4 =
e−2aT̂

2a
[

1

2a
(e2aT − 1)− T ]

n5 =
e−(κ+a)T̂

κ+ a
[

1

κ+ a
(e(κ+a)T − 1)− T ]

n6 =
e−aT

a
[
1

a
(eaT − 1)− T ]

n7 =
e−aT−κT̂

κ+ a
[

1

κ+ a
(e(κ+a)T − 1)− T ]

n8 =
e−aT−aT̂

2a
[

1

2a
(e2aT − 1)− T ]
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and

V1 =
1

3
T 3σ1(α

2
1 + β2

1 + γ21)

+
σ2
2(β2

2 + γ22)

κ2
[

1

4κ3
e−2κ(T̂−T ) − 4

κ3
e−κ(T̂−T ) −m1 +m2 +

T 3

3
]

+
σ2
3γ

2
3

a2
[

1

4a3
e−2a(T̂−T ) − 4

a3
e−a(T̂−T ) −m3 +m4 +

T 3

3
]

+
2σ1σ2(β1β2 + γ1γ2)

κ
[

2

κ3
e−κ(T̂−T ) − 1

2
m2 −

T 3

3
]

− 2σ1σ3γ1γ3
a

[
2

a3
e−a(T̂−T ) − 1

2
m4 −

T 3

3
]

− 2σ2σ3γ2γ3
κa

[(
2

(κ+ a)3
e−(κ+a)(T̂−T ) −m5 −

T 3

3
)

− (
2

κ3
e−κ(T̂−T ) − 1

2
m2 −

T 3

3
)− (

2

a3
e−a(T̂−T ) − 1

2
m4 −

T 3

3
)]

(35)

V2 =

i=NJ∑
i=1

(T − TJi)2 vJ (36)

where

m1 =
1

2κ
(T 2 +

T

κ
+

1

2κ2
)e−2κT̂

m2 =
2

κ
(T 2 +

2T

κ
+

2

κ2
)e−κT̂

m3 =
1

2a
(T 2 +

T

a
+

1

2a2
)e−2aT̂

m4 =
2

a
(T 2 +

2T

a
+

2

a2
)e−aT̂

m5 =
1

κ+ a
(T 2 +

2T

κ+ a
+

2

(κ+ a)2
)e−(κ+a)T̂

Note that V1 is exactly the same as V3−factor, the solution of variance to the

three-factor model. It also implies that the solution is only intermediate to reach

the final result of pricing arithmetic average Asian option, because it is based on one

unique series of jumping times over the option period. The next step is to simulate

a large number of different series of jumping times, each with a unique analytical

solution to the geometric average Asian option as a control variate, leading to a

unique numerical solution of arithmetic average Asian option. The final unbiased

solution of the arithmetic average Asian options can be derived by averaging all the

intermediate results.
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Table 3 lists the results from the Monte Carlo simulation. By comparing the

results and standard deviations from different methods, it is easy to see that control

variate method outperforms the standard Monte Carlo simulation and antithetic

method. This is consistent with our results without jump diffusions. It is also

observable that the antithetic method hardly improves the simulation accuracy, since

the standard errors are very close to those with standard Monte Carlo. Nevertheless,

a comparison between Table 3 and Table 2 show that the control variate method

can improve the simulation accuracy in both cases, but to a much more limited

extent with jumps. This is mainly due to the fact that in the three-factor model

without jumps, only one closed-form solution to the geometric average Asian option

is generated and used as a control variate. However, in our jump model, for every

specific series of jumping times, there is a unique analytical solution as a control

variate. Since we need to simulate different series of jumping times, the number

of control variates grow accordingly. As a result, the control variate method is

effective and outperforms the standard Monte Carlo and the antithetic method, but

to a limited extent with jump diffusion in the spot price.

5 Conclusion

We extend the Schwartz (1997) model of stochastic spot prices, convenience yield and

interest rates to price Asian options. Given that analytical solutions are unattain-

able for arithmetic average Asian options, we use numerical methods such as the

Monte Carlo simulation to price them. Furthermore, we obtain closed-form solu-

tions of geometric average Asian options and use them as control variates to reduce

simulation errors and thus improve the accuracy. The comparison of the results

derived from the standard Monte Carlo simulation without any variance reduction

methods, with the antithetic method and with the control variate methods show a

significant improvements when control variates method is implemented. Next, we

manipulate the parameters of the model to see how the options prices behave ac-

cordingly. The results show that option prices react to changes of parameters very

differently from the two-factor model to the three-factor model. Then, we add a

jump diffusion to the spot price process. Since Asian options are path-dependent,

there appears to be no analytical solutions for either the arithmetic average or the

geometric average Asian options. However, we find that conditional upon knowing

when jumps occur over the option period, there is a unique closed-form solution to

the geometric average Asian option. This solution is then used as a control variate
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to price arithmetic average Asian option numerically with Monte Carlo simulation.

The result is intermediate, because it is conditional on a specific series of jumping

times over the option period. We then simulate a large number of different series

of jumping times and repeat the previous step, which finally leads to the unbiased

final result by taking the average of all intermediate results. Our methods of control

variate shows observable but relatively limited improvement in terms of accuracy

over the standard Monte Carlo without any variance reduction methods and with

antithetic method.

However, our paper is also not without limits, one of which is that the approach

to price Asian option with Monte Carlo simulation is arguably outdated. A fairly

large number of new methods have been introduced by different academics, such as

Novikov and Kordzakhia (2014), Cai et al (2015) and Susai and Kyriakou (2016).

We believe that further investigations should be conducted to compare different

methods and see how ours differ from the others in terms of accuracy and efficiency.

Furthermore, since Asian options, like most of the exotic options, are traded over-

the-counters, lacking market data to calibrate our model remains to be a challenge.

However, we hope that pricing Asian options using Monte Carlo simulation with

control variate for variance reduction purpose can shed some light on further exten-

sion in the realm of commodity options pricing. A vast number of different financial

instruments other than the usual futures, forwards and plain vanilla options have

been invented for trading and hedging purposes. Exotic options, such as Asian op-

tions and lookback options, draw significant attentions for their unique feature that

carry significant values for market participants to construct their investment port-

folios and hedge against risks. Hence, we also appeal for further efforts to extend

our research on wider range of exotic options under similar pricing models.

Appendix

Recall that the price of the geometric average Asian option at time t with maturity

T written on a future contract with maturity T̂ under the risk-neutral measure, Q∗,

is represented by equation (21),

GA(t, T, T̂ ) = E∗ max[e−r(T−t)(G(t, T, T̂ )−K, 0)] . (21)

Since the interest rate is now a stochastic process that appears in both the discount

factor and the underlying price, solving equation (21) requires a change of numeraire,

where we transform the risk-neutral measure to the T-forward measure, QT , where
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the zero-coupon bond is used as the new numeraire. Accordingly, equation (21) is

equivalent to equation (23).

We first attempt to decompose the three correlated Brownian motions in equation

(15) to (18) into three independent Brownian motions, namely dW ∗
1 , dW ∗

2 , dW ∗
3

under Q∗. The result is shown as follows,

dZ∗
1 = α1dW

∗
1 + β1dW

∗
2 + γ1dW

∗
3

dZ∗
2 = β2dW

∗
2 + γ2dW

∗
3

dZ∗
3 = γ3dW

∗
3 (A1)

where

α1 =

√
1− ρ23 − (

ρ1 − ρ2ρ3√
1− ρ22

)2

β1 =
ρ1 − ρ2ρ3√

1− ρ22
β2 =

√
1− ρ22

γ1 = ρ3

γ2 = ρ2

γ3 = 1 (A2)

We then attempt to derive the corresponding Brownian motion under the T-

forward measure QT . In our model where the stochastic interest rate process is

governed by equation (17), the price of the zero-doupon bond at time t with maturity

T , P (t, T ), satisfies the following stochastic process under Q∗,

dP (t, T ) = r(t)P (t, T )dt− σ3B(t, T )P (t, T )dZ∗
3 , (A3)

where

B(t, T ) =
1− e−a(T−t)

a
, (A4)

Define the discount factor D(t) at time t, then the discounted price of the zero-

coupon bond can be represented by the following stochastic equation,

d(D(t)P (t, T )) = θD(t)P (t, T )dZ∗
3 , (A5)

where

θ = −σ3B(t, T ) , (A6)

Hence, according to the rules of changing numeraire, the following process,

dW T
3 = θdt+ dW ∗

3 , (A7)
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is a Brownian motion under QT , and so are dW ∗
1 , dW ∗

2 , because they are independent

of dW ∗
3 or the interest rate process, and will be denoted as dW T

2 , dW T
3 in the

following context. Hence, the three stochastic processes in our model can now be

shown as follows,

dS = (r − δ − θγ1)Sdt+ α1SdW
T
1 + β1SdW

T
2 + γ1SdW

T
3 , (A8)

dδ = [κ(α̂− δ)− θγ2]dt+ β2dW
T
2 + γ2dW

T
3 , (A9)

dr = [a(m̂− r)− θγ3]dt+ γ3dW
T
3 , (A10)

where

α̂ = α− λ1
κ
, m̂ = m− λ2

a
.

Under the T-forward measure, Equation (A8) to (A10) will then be used to

calculate the price of the geometric average Asian option, represented by equation

(23).
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Table 1

Comparison of Monte Carlo Simulation Results∗

(Two-Factor Model)

Standard Antithetic Control Variate

α 0.1 2.306617 (0.025629) 2.289985 (0.013974) 2.271700 (0.001324)

0.2 0.457325 (0.010928) 0.452497 (0.007369) 0.448185 (0.001082)

0.3 0.046903 (0.003081) 0.046883 (0.002180) 0.046227 (0.000656)

0.4 0.002167 (0.000558) 0.002028 (0.000431) 0.002377 (0.000257)

κ 1 3.845916 (0.033409) 3.886217 (0.014462) 3.887534 (0.001377)

1.4 2.713750 (0.027067) 2.761657 (0.013609) 2.768098 (0.001212)

1.8 2.205209 (0.024835) 2.254735 (0.013818) 2.267960 (0.001264)

2.2 1.968732 (0.024265) 2.021045 (0.014214) 2.038581 (0.001384)

σ1 0.3 2.478853 (0.021796) 2.486202 (0.009646) 2.461492 (0.000671)

0.4 2.294381 (0.025333) 2.299143 (0.013970) 2.269943 (0.001298)

0.5 2.393610 (0.030962) 2.398914 (0.018597) 2.372258 (0.002401)

0.6 2.607746 (0.037780) 2.614441 (0.023671) 2.588267 (0.004024)

∗The basic setting is as follows, unless indicated otherwise: S0 = 40, K = 40, δ0 = 0.2,

κ = 1.8, α = 0.1, λ1 = 0.3, ρ = 0.8, σ1 = 0.4, σ2 = 0.5. The interest rate is fixed at 5%.

20,000 paths are simulated. Standard deviations are put in brackets.
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Table 2

Comparison of Monte Carlo Simulation Results∗

(Three-Factor Model)

Standard Antithetic Control Variate

a 0.8 2.510291 (0.023235) 2.493358 (0.010638) 2.489474 (0.001039)

1.2 2.595693 (0.023585) 2.578850 (0.010587) 2.574607 (0.001041)

2 2.707930 (0.024027) 2.691050 (0.010510) 2.686557 (0.001044)

3 2.788461 (0.024334) 2.771541 (0.010448) 2.767069 (0.001046)

λ2 0.15 4.814316 (0.031320) 4.843531 (0.009310) 4.836389 (0.001140)

0.2 3.481873 (0.027644) 3.506576 (0.010758) 3.498777 (0.001114)

0.25 2.374521 (0.023415) 2.396399 (0.011613) 2.386823 (0.001088)

0.3 1.514725 (0.018927) 1.533245 (0.011079) 1.523934 (0.001057)

σ3 0.01 3.469342 (0.027471) 3.478973 (0.010552) 3.498801 (0.001098)

0.1 3.546264 (0.028072) 3.564702 (0.010790) 3.581590 (0.001149)

0.3 4.263503 (0.033618) 4.304707 (0.012688) 4.313600 (0.001693)

0.5 5.585277 (0.042904) 5.651460 (0.015322) 5.650241 (0.002837)

∗The basic setting is as follows, unless indicated otherwise: S0 = 40, K = 30, δ0 = 0.2,

r0 = 0.05, κ = 1.8, α = 0.1, a = 1.2, m = 0.05, λ1 = 0.3, λ2 = 0.2, ρ1 = 0.8, ρ2 = −0.01,

ρ3 = −0.02, σ1 = 0.4, σ2 = 0.5, σ3 = 0.01. 20,000 paths were simulated. Standard deviations

are put in brackets.
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Table 3

Comparison of Monte Carlo Simulation Results∗

(Three-Factor Model with Jump Diffusion)

Standard Antithetic Control Variate

λJ 20 10.544340 (0.059832) 10.509634 (0.058269) 10.496171 (0.026282)

40 10.397485 (0.075554) 10.378429 (0.074805) 10.269188 (0.031691)

60 12.631421 (0.104631) 12.606723 (0.104180) 12.505597 (0.042692)

80 13.902382 (0.126056) 13.884201 (0.125444) 13.585535 (0.053697)

125 15.790436 (0.185479) 15.780606 (0.185122) 15.637354 (0.087090)

175 16.611694 (0.259135) 16.599103 (0.258992) 16.408216 (0.144561)

250 17.593515 (0.304078) 17.592879 (0.303905) 17.515748 (0.159361)

∗The basic setting is as follows, unless indicated otherwise: F0 = 40, K = 40, r0 = 0.01,

κ = 1.3, a = 0.2, ρ1 = 0.9, ρ2 = −0.01, ρ3 = −0.02, σ1 = 0.3, σ2 = 0.4, σ3 = 0.01,

κ̄TJ = 0.05, vJ = 0.01. 40,000 paths were simulated. Standard deviations are put in brackets.
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Figure 1: Payoff of Asian Option, under varying parameters (two-factor

model)
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Figure 2: Payoff of Asian Option, under varying parameters (three-factor

model)



Study of A New Seasonality Pattern in the

Futures Prices of the Commodity Market

Abstract

The traditional idea of seasonality in the future market relates to the

maturity date of a future contract. However, we find a new seasonal pattern

in the futures prices that relates to the trading dates. We decide to explore

such phenomenon in three energy commodity markets, namely, natural gas,

gasoline, and crude oil. To conduct our initial empirical research, we design

the so-called backward curve, as opposite to the forward curve, to visually

illustrate the pattern of the trading-date seasonality. We find that when the

prices of a collection of future contracts with the same maturity month can be

averaged over the different years, the seasonality of trading dates is obvious

to observe. We also find an interesting change of behaviour in the natural gas

futures prices. Then, we conduct multiple statistical tests to further confirm

our findings, which include the Kruskal-Wallis test, the autocorrelation test,

and the power spectrum test. The results show strong evidence to support

the existence of the trading-date seasonality.
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1 introduction

Commodity trading has always been one of the major aspects in the financial market,

which could, to a very large extent, help major commodity producers and consumers

control their risk exposure to the market fluctuation. In light of this, understanding

the behaviour of the commodity prices becomes increasingly important. Of all the

factors that can influence the market prices of the commodities, seasonality could be

a major one. However, its causes and effects differ for different types of commodities.

For example, some agriculture products may show very strong seasonal pattern due

to its supply side, because its price level in a year could largely been determined

by whether it is the harvest season or not. On the other hand, the seasonality of

some energy commodities usually occur thanks to the demand of its consumers,

such as the increase of the natural gas price during the winter time when more is

needed for heating purpose, or the fact that the gasoline price usually rises during

the summer time when more people may choose to travel and thus consume more

fuel for transportation.

A vast amount of researches has been dedicated to this specific realm of finan-

cial study. Early work include Samuelson (1965), which identifies what later known

as the Samuelson effect, where volatility of a future contract with longer time till

maturity tend to be lower than one closer to mature. Although this is not directly

related to seasonality, it arguably starts the discussion in the academia regarding

the price movement of a future contract over time during its active trading period.

Sorensen (2002) confirms the Samuelson effect by the empirical study on agricul-

ture products which carries significant seasonality impact, and further extends the

Schwartz (1997) and Schwartz and Smith (2000) models by adding a deterministic

seasonal factor, governed by a linear combination of trigonometric functions, and

tests the new model with agriculture commodity futures prices. Lucia and Schwartz

(2002) and Cartea and Figueroa (2005), among others, attempt to price the spot

and forward prices in the electricity market, where seasonality plays a crucial role

in determining the price. The paper of Lucia and Schwartz (2002) proposes a one-

factor and a two-factor models with seasonal components, while a mean-reverting

model with jump diffusion is introduced in Cartea and Figueroa (2005). The en-

ergy commodity market has also been largely studied. For example, Mirantes et al

(2012, 2013) proposes several pricing models with seasonality as a stochastic factor.

Borovkova and Geman (2006) specifically studies the seasonal pattern in the forward

curves of the commodity prices. Furthermore, there are also papers such as Suenaga

and Smith (2011) and Back et al (2013) that attempt to model seasonality in the
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volatility of the commodity prices. Shao et al (2015) develop a model to include

time-varying and seasonal risk premiums in the US natural gas market.

In this paper, we focus on energy commodities and their prices. To begin with,

the seasonal factor affects both their spot prices and futures prices. Given the brief

description above, it is fairly straightforward to see how the spot price is affected.

As for the futures prices, previous studies suggest that seasonality must be closely

related to the maturity dates of the future contracts, since this is very close to the

time when the product is delivered to the customers. As a result, although one can

only speculate the price at a future delivery time, it is fairly reasonable to assume

a higher or lower price if the maturity time of the contract coincides with the peaks

or troughs of the prices in a year according to the seasonality pattern.

Nevertheless, there has been no theory to suggest a relation between seasonality

and the trading dates. In other words, when a contract is traded should, in theory,

have no influence on the price, with all other factors fixed. However, during our

exploration of seasonality in some energy commodities, we find that the reality

appears to contradict such conventional belief. We study the futures prices of Henry

Hub natural gas, gasoline and generic crude oil, and all of them reveal evidence to

suggest that the trading months actually influence the prices to a very observable

extent, independent of the maturity dates. This even includes crude oil, which, in

the past literature, is believed to carry no seasonality. In the case of crude oil, on

average, the futures prices are always the highest when traded in July, and lowest in

December, regardless of when the contract matures. On the other hand, the highest

and lowest prices of the gasoline futures usually appear in July and December,

respectively. In light of this, we create the backward curves, as opposed to the

forward curves in the past literature, to further study the new seasonal pattern.

When we aggregate all the prices of the future contracts that represent the delivery

of one of the twelve months across our observation period and take average, the

results show very clear and strong seasonal pattern. All of the findings are further

tested by various statistical tests, which lead to some very promising results. We

believe that this could be a very interesting and important contribution to the

existing literature, and help understand the behaviour of commodity prices.

The rest of this paper is organized as follows. Section 2 briefly describes the raw

data that we are going to use in this paper. Next, we discuss all the empirical results

in section 3, including the preliminary findings of the data, and the introduction of

the backward curves, which could significantly help visualize the seasonal pattern

that relates to the trading dates in the futures prices. We also discuss a very
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interesting finding of the change of behaviour in the natural gas price during our

observation period. Then, in section 4, we use multiple statistical tests, including

the Kruskal Wallis test, the autocorrelation function, and the power spectrum to

further confirm our finding of a new seasonality feature in the future prices. We draw

our conclusions in Section 5, with limitations of this paper explained and appeal for

further investigations.

2 The Data

The data we use consists of the daily futures prices of three energy commodities

obtained from Bloomberg Terminal1, including the Henry Hub natural gas, gasoline,

and generic crude oil. Since we focus on seasonality, we decide to take the average

of all daily observed prices over a month to derive the monthly price that we use

in this paper. Our notation for the future contracts in most of the paper follows

F1, F2, F3, ..., where F1 indicates the future contracts that mature in the next

month, F2 in two months time, and so on. In the case of natural gas, we have

the data from 1997 to 2017. However, from 1997 till 2002, only futures contracts

with maturity dates expanding to the next 36 months from the trading dates (F1

∼ F36) were traded. From 2002 till 2008, F37 ∼ F72 were added. Since 2008,

the futures contracts with maturity dates up to 144 months from the trading dates

(F73 ∼ F144) have become available. As a result, we divide the natural gas data

into three groups accordingly. The first one includes all the futures prices of F1

∼ F36 from April, 1997 till March, 2017. The second group is constituted by the

futures contracts from January, 2002 to April, 2017, with maturity dates expanding

to the next 60 months2. The third group includes the futures contracts from March,

2008 to October, 2017, with maturity dates up to 144 months. As for the contracts

of gasoline and crude oil, the data we use are from March, 2007 and March, 2006

respectively to December, 2017, with maturity dates up to 36 and 60 months ahead.

Table 1 shows the brief statistical summary of the data set, after taking monthly

average of the raw daily observations.

1What we use for the prices is called “closing price one day ahead”.
2we do not include F61 ∼ F72 due to a large number of missing data of these longer term

contracts in the early years
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3 The Empirical Results

In this section, we show the empirical evidence we gather from the analysis of our

data to prove our findings of a new pattern of seasonality that is related to the

trading dates.

3.1 Preliminary Findings

To demonstrate the preliminary findings of seasonality in our three observed energy

commodities, Figure 1 to 3 show the average futures prices of natural gas, gasoline

and crude oil with respect to the different maturity months and trading months.

It is easy to see from the left part of Figure 1 that the futures prices of natural

gas tend to be higher when maturing during the winter time such as December and

January, and remains relatively low during the rest of the year. The opposite is

true for gasoline, as shown in the left hand side of Figure 2, when the prices is

higher in the summer time, and lower in the winter time. This is consistent with

the previous research of both commodities. When it comes to the effects of the

trading months, as demonstrated from the right hand side of Figure 1 and 2, both

of natural gas futures and gasoline futures appear to reach their peak price of a

year when being traded around the summer time in around June or July, and drop

to their lowest when traded in the cold season, regardless of their maturity dates.

The most interesting case here seems to be that of crude oil, which, according to

the conventional theory, possesses no seasonality. This can easily be confirmed by

the left part of Figure 3, which shows an almost completely flat line. It means that

generally the different maturity months have nearly no impact on the futures prices

of crude oil. However, the right hand side of Figure 3 clearly show that the crude

oil futures share very similar seasonal pattern with natural gas and gasoline. The

highest price of the contracts is usually reached when being traded in July, and the

lowest price in December.

Also, in each year, there are twelve months when a contract can be traded or

mature in. Hence, in the twelve months of each year, there is a trading month and

a maturity month, respectively, with the highest price of the year, and one with the

lowest price. We decide to count how many times a maturity or trading month has

the highest or lowest price in each year over the observation period. The results,

as illustrated in from Figure 4 to 8, seem to be less conclusive. We first look at

the three groups of natural gas. The upper left graphs in Figure 4, 5, and 6 show
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that almost all of the maximum prices appear when the contracts mature in the

winter time (December or January). However, the upper right graphs in these three

figures suggest that the minimum prices in a year frequently occur in April as well as

November, which is slightly inconsistent from the traditional theory that the lowest

prices usually happen in the summer time. When it comes to the trading months,

the evidence is less clear as no one particular month seem to have a dominant number

to produce the highest prices of that year, as illustrated in the lower left graphs of

Figure 4, 5, and 6. Nevertheless, it is quite obvious that contracts traded in January

and December often have the lowest price of that year for all three groups. This is

also slightly inconsistent with our observations in Figure 1, where the lowest average

prices are usually found when being traded in February.

As for gasoline, the evidence is also mixed, as shown in Figure 7. From the

upper left graph, it can be seen that for more than 60 times, a contract that mature

in April has the highest price of that year. However, other than April, February,

March, October and November, the rest of the maturity months seem to share similar

proportion to have the maximum price of the year. The upper right graph, on the

other hand, shows that the majority of the contracts that mature in December and

January have the lowest price. As for the trading months, the two lower graphs in

Figure 7 shows no discernible pattern across a year, as the maximum or minimum

prices can occur in any month of a year.

The most interesting case is again the crude oil. The traditional idea believes

that there should be no seasonality pattern for crude oil. This is further confirmed

by our research, shown in the left graph of Figure 3, which turns out to be a complete

flat line. However, it is very obvious to see in the two upper graphs of Figure 8 that,

for some reason, the contracts that mature in winter months, especially December

and January, consistently produce both the highest and lowest price of that year.

As for the trading months, there seems to be no discernible pattern, as shown by

the two lower graphs in Figure 8.

3.2 The Forward and Backward Curves

In this section, we adopt the idea of forward and backward curves to further inves-

tigate seasonality in our three commodities. First, the forward curve has been used

for a long time in the past literature to describe the expected future price movements

on the trading date, which can easily be drawn by using the different contracts that

are traded on the same day (see Borovkova and Geman (2006)). The price shown on
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a forward curve indicates the expected price of a particular maturity month. Denot-

ing F (ti, Tj) as the price of a future contract that is traded on ti and matures on Tj,

a forward curve illustrates the series of contracts F (t∗, T1), F (t∗, T2), . . . , F (t∗, TN),

where j = 1, 2, . . . , N . Given the existence of maturity-date seasonality, the forward

curve should present a wave and periodic pattern. Since most energy commodities

carry annual seasonality, the pattern should repeat itself after every 12 months.

Each of Figure 9 to 11 demonstrates four examples of forward curves of some ran-

domly selected trading months for the three commodities. It is very easy to observe

the seasonal pattern for natural gas and gasoline, and the lack of any seasonality for

crude oil.

However, the forward curves fail to capture any seasonality that relates to the

trading dates, since its x-axis represents the maturity dates. Hence, we introduce

the so-called backward curve. The only technical difference between the forward

and the backward curve is that the latter includes all the contracts that are traded

on different dates but mature on the same date in one graph. As a result, each

contract marked on the x-axis now indicates the different trading dates, prior to the

maturity date. To be more specific, the series of contracts that appear on a backward

curve can be denoted as F (t1, T
∗), F (t2, T

∗), . . . , F (tN , T
∗), where i = 1, 2, . . . , N .

As can be seen clearly, all the contracts in one backward curve mature in the same

month, but they are traded i months before the maturity date. The larger the i

is, the earlier the contract was traded. Therefore, following the x-axis, the curve

illustrates a backward-looking view of the futures prices of contracts that are traded

on different months and have the same maturity date. As a result, if there is a

seasonality that relates to the trading date, it should be captured and shown in the

backward curve.

Nevertheless, in the case of the backward curves, the trading-date seasonal effect

seems very hard to detect, as shown in Figure 12 to 14. Each of the figures includes

four backward curves of some randomly chosen maturity months, and none of the

twelve backward curves show any obvious seasonal pattern. Therefore, although our

preliminary findings of Figure 1 to 3 suggest the existence of seasonality that relates

to the trading dates independent of the maturity dates, the backward curves fail to

provide any discernible evidence.

Nonetheless, despite the failure, we decide to take a further look at the forward

and backward curve. According to our knowledge, in the past literature, the forward

curves are usually based on a single specific day, or a specific month, as shown in

Figure 9 to 11. By the same definition, our backward curves are also based on a
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single maturity months. We wonder, however, if the effect of trading-date seasonality

would be more conspicuous, when we plot the backward curves based on the average

price of a collection of the contracts that are going to mature in one of the twelve

months of a year over our entire observation periods. The same procedure is also

applied to obtain the new forward curves.

To explain how to obtain the new forward curves as an example, let us change

our notation of the future price to Fti(K), where ti here indicates the month t of

year i when the contract is traded. To be more specific, t = 1 for January, t = 2 for

February and so on, and i = 1 for the first year in our observation period, i = 2 for

the second year and so on. K here indicates the lengths of time till maturity. We

take the average of the prices of all the contracts that are traded in month t over the

observation period to plot the new forward curve. The x-axis is the series of K, or

time till maturity. Each point on the new forward curve of month t now represent

the averaged futures prices with the maturity dates t+K over the years from i = 1

to N , which is calculated by
∑N

i=1 Fti (K)

N
, where N here represents the latest year in

our observation period. A similar procedure is implemented on the new backward

curves, with the only difference being to gather all the contracts that mature in the

same month. If the future price can be marked as FTi
(K), where Ti here represents

the maturity month T of year i. Then, each point on the new backward curve of

month T are calculated by
∑N

i=1 FTi
(K)

N
. The x-axis represents the trading date that

is K months before the maturity date.

Figure 15 to 19 show the new forward curves of all three commodities, including

the three groups of natural gas. Each figure has 12 graphs, indicating the 12 months

in a year. It is very easy to see the seasonal pattern for all three groups of natural

gas as well as gasoline, of which the wave pattern repeats for every 12 months. A

closer look at each graph shall prove that the peak and bottom of the price during

a calender year is consistent with Figure 1 and 2. As for crude oil, its new forward

curve shows almost no fluctuation, which further proves the conventional idea that

crude oil possesses no seasonal feature. An interesting finding can also be observed

in Figure 17 of natural gas group 3, where there is obviously a trend of prices rising

with respect to time till maturity. This is consistent with a phenomenon of contango,

where futures prices exceeds the expected spot price in the future. On average, since

the futures prices must converge to the spot price at maturity, they would drop over

time when the contracts approach maturity. However, such trend does not seem

to exist in group 1 or 2 of natural gas. We will discuss about this in a separate

subsection below. In summary, the new forward curve of collective months provides



Chapter 2 Page 8

consistent evidence with the existing literature about seasonality for natural gas and

gasoline, and lack of seasonality for crude oil.

We then move on to the new backward curves, which is exhibited from Figure

20 to 24. It is very clear to see strong graphical evidence of seasonality that is

related to the trading dates in most of the figures, which includes crude oil that

is previously deemed as a non-seasonal commodity. Hence, crude oil, just like the

other two commodities, also features seasonality in its prices, but is subject to the

trading dates, instead of the maturity dates. In all the cases, the seasonal pattern

repeats itself on an annual basis. This is obviously in contrast to what we observe in

the old backward curves in Figure 12 to 14. As a result, although the trading-date

seasonality effect may be very hard to find in the old backward curves of a specific

maturity month, it is very obvious to be observed in the new backward curves. We

also speculate if this is why the trading-date seasonality seems to be largely ignored

by the previous researches. Moreover, only Figure 22 of natural gas group 3 shows

evidence that is consistent with contango, which is similar to the forward curves in

Figure 17 above. We will discuss this phenomenon in detail in the next subsection.

We also attempt to find potential explanations behind the trading-seasonality,

which turns out to be less fruitful than expected. First of all, as far as our knowledge

extends, no existing literature appear to focus on the relation between seasonality

in prices and the trading dates in any commodity market. Samuelson (1965) is one

of the first papers to discuss the effect of time till maturity on the futures volatility

and price. Although the Samuelson effect does no indicate strong seasonal pattern

during the futures life time, it does identify the volatility changes over the course

of the future contract. Recent papers such as Suenaga and Smith (2011) and Back

et al (2013) model seasonal volatility in their study, and Shao et al (2015) develop

models with seasonal risk premium. However, neither of their papers indicate that

the trading date of a contract should have any influence on the volatility or the

futures prices. We believe that the relation between volatility, risk premium, or

other factors and the future prices could still hold valuable secrets to be discovered

to explain what we observe in this paper.

We then decide to speculate the possible reasons in reality. The first one that we

can think of is related to the major commodity producers or consumers and their

timing of establishing their portfolios of financial products to hedge their existing

positions. Given their enormous scales, if a group of major market participants such

as major oil producers or airlines decide to build their financial portfolios at the

same time of a year, the volume of the financial contracts to build such portfolios
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could increase of decrease the price of the underlying commodity to a very large

extent. It is very hard to simply claim a mere coincidence that for all three of

our energy commodities, their prices tend to be higher during the summer time.

We speculate that maybe it is because the large companies mostly decide to build

their portfolios during such time when trading is more active and thus liquidity is

abundant. Nevertheless, it is extremely difficult to prove such claim, due to the

difficulty to obtain relevant information from any of these companies at this stage.

Although the data of the market trading volume might, in theory, reveal some traces

of their trading activities during a year, we are unable to obtain consistent and long-

term data on trading volume.

3.3 From Backwardation to Contango for Natural Gas Price

during 1997 and 2017

This subsection is dedicated to discuss what we observe as a change of behaviour of

the future price verses the time till maturity of the three natural gas groups in the

above subsection. It is easy to see that both the forward and backward curves of

natural gas group 1 and group 2 in Figure 15, 16, 20, 21 show no discernible trend of

price against time to maturity. Nonetheless, Figure 17 and 22 of natural gas group

3 reveals an obvious trend of increase of future price with longer maturity term.

Since one of the two major differences among the three groups of natural gas is

the observation period3, we decide to look deeper into group 1 and 2, by breaking

both of them into several sub-groups, and then compare them to group 3. Group 1

is divided into three sub-groups: group 1.1 involves the observation period of 1997

∼ 2002, group 1.2 of 2002 ∼ 2008 and group 1.3 of 2008 ∼ 2017. Group 2 is broken

into two sub-groups: group 2.1 covers the observation period of 2002 ∼ 2008, and

group 2.2 of 2008 till 2017. The reason for dividing the groups in such a way is

because of the time when new contracts are introduced into the market to trade.

As we have mentioned in the Data section, F37 ∼ F72 started to trade only after

2002, and F73 ∼ F144 only after 2008. Hence, we speculate if the introduction of

new contracts may have any effects on the behaviour of prices, albeit no confirmed

theory to prove such relation.

Figure 25 to 34 demonstrate all the new forward and backward curves of the 5

sub-groups. We would like to mention 2 points from our observations. First, Figure

3The other difference is the maximum length of time to maturity, which should play no role

here.
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28 of the new backward curves of sub-group 1.1 seems to show almost no identifiable

seasonality, as oppose to Figure 25, where the seasonal effects in the new forward

curve is very clear during the same observation period. Also, in contrast to almost

no trading-day seasonality in Figure 28 for natural gas contracts of F1 ∼ F36 during

1997 and 2002, Figure 29, Figure 30, Figure 33 and Figure 34 that covers more recent

observation periods reveal clear seasonal pattern that relates to the trading dates.

Hence, the seasonal effect of trading dates may be more significant only in recent

years after 2002.

The second, and arguably more interesting, observation is that before 2008, there

seems to be either no apparent trend of natural gas prices verses time till maturity,

or a slight decreasing one, as can be seen from both the forward and backward

curves of Figure 25, 26, 28, 29, 31 and 33. In other words, there are either moderate

signs that are consistent with normal backwardation, or neither backwardation nor

contango in the natural gas market before 2008. However, after that, natural gas

prices seem to rise significantly with the maturity term, as shown in Figure 27,

30, 32, and 34. In other words, after 2008, market participants seem to give higher

premium to futures contracts traded with longer maturity term. Therefore, when we

combine all the sub-groups together into three groups to cover the entire observation

period as we have done in the previous section, the joined result show almost no

signs of any trend in the forward or backward curves (Figure 15, 16, 20 and 21

of group 1 and 2), but very obvious rising trend after 2008 (Figure 17 and 22 of

group 3). Unfortunately, the reason behind such change of the natural gas price

behaviour appears hard to ascertain and beyond the scope of this paper. Although

our research shows that the change may happen in around 2008 when the longer

term future contracts were introduced, we fail to find any solid evidence or theory

to suggest a strong relationship between them. We appeal for further investigations

into this rather interesting phenomenon.

4 The Statistical Tests

In this section, we use multiple statistical tests to further confirm our findings of

seasonality that is related to the trading dates of the futures contracts in all three

commodities. Although the graphical evidence in the previous sections seems strong

to suggest the new seasonality exists in the energy future market, we would like to

conduct further statistical tests to consolidate previous findings. The tests include

the Kruskal-Wallis test, the autocorrelation tests, and the power spectrum tests.
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We adopt multiple tests to have a comprehensive analysis, because each of them

involves different techniques and tests the existence of seasonality from a different

perspective. Also, in this section, we will mostly omit the forward curves, for the

reason that the maturity-related seasonality, shown by the forward curves, has been

well confirmed and studied in the past literature. Hence, we will focus on the

maturity-date seasonality, and the backward curves in this section. Furthermore, we

adopt the autocorrelation and power spectrum tests on both the old backward curves

of some randomly selected dates where the seasonality pattern is hard to observe,

and the new backward curves derived from the averaged prices of a collection of

contracts over our entire observation period.

First, we perform the Kruskal-Wallis test, which is a non-parametric one-way

analysis of variance (ANOVA) for testing two or more groups of samples of data if

they follow the same distribution. Since we have 12 months in a year, our samples

will be in 12 groups, hence a degree of freedom of 11. The null hypothesis is that

there is no seasonality related to trading date in our sample. The results of the

Kruskal-Wallis test are listed in Table 2, which clearly show the rejection of null for

natural gas group 2 and 3, gasoline and crude oil. However, we fail to reject the

null for natural gas group 1. Since the Kruskal-Wallis test is adopted directly on

the monthly data averaged from the raw daily observations of prices without any

further manipulation of the data, the conclusion here largely confirms our findings

that there exists a trading-date seasonal pattern in natural gas (group 2 and 3),

gasoline and crude oil.

Next, one of the most popular tests for seasonality is the autocorrelation function,

which is to find if there is a pattern in the time series of data that repeat itself by

various time lags. To perform the autocorrelation test, we detrend all the data

first. Figure 35 to 37 show the results of the autocorrelation functions on the old

backward curve of some randomly selected maturity dates. In all cases of natural

gas, there is almost no sign in the autocorrelation curves to suggest any annual

seasonality. When it comes to gasoline and crude oil, although some autocorrelation

curves show some periodic evidence, none of them corresponds to a 12-month time

lag. Nevertheless, when the new backward curves are tested (Figure 38 to 42), the

results are completely different, where figures of natural gas group 2 and 3 (Figure

39 and 40), gasoline (Figure 41) and crude oil (Figure 42) show very strong signs

of annual seasonality that is consistent with our previous findings. In figure 38

of natural gas group 1, although not every graph produces statistically significant

evidence to support seasonality, almost all of them show signs of periodic repetition
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to a certain degree.

The third technique we use is the power spectrum test, which is based on the

Fourier transformation (see Wei (2006), Chapter 12, for detailed explanations.), of

which the results are shown in Figure 43 to 534. Each point on the spectrum distri-

bution graph indicates the power with respect to its frequency. First, we calculate

and plot the power spectrum of the old backward curves of four randomly selected

maturity months in Figure 43 to 45. Although almost all the figures show a peak

in the spectral curve, very few of them coincide with the frequency of 1. In other

words, though there seems to be evidence of some periodic pattern hidden in the

data, it almost never repeats itself after one calender year. As a matter of fact,

many of the peaks appear with a frequency of lower than 1, meaning that the pe-

riodic pattern has a longer period than 1 year. In contrast, we also plot the power

spectrum of the old forward curves of the same four months to compare in Figure

46 to 48. In both cases of natural gas and gasoline, there are obvious peaks in the

spectral curve that coincide with the frequency of 1, indicating a strong evidence of

annual maturity-date seasonality in the data. Also, there is no peak in Figure 48

of crude oil, since it carries no seasonality that would show in the forward curve.

Nevertheless, the power spectrum tests of the new backward curves appear to tell a

completely different story, as illustrated in Figure 49 to 53. All of the graphs in each

of the figures provide very strong evidence to suggest the existence of seasonality in

the new backward curve, which proves the existence of seasonality that relates to

the trading dates. The conclusion here is again the same with the autocorrelation

function, that when it comes to the old backward curves, we can hardly find any ev-

idence to suggest the existence of any seasonal pattern in the data. However, when

we further investigate the new backward curves, there are very strong evidence to

prove that seasonality related to the trading dates exists.

5 Conclusion

In this paper, we present our findings of a new seasonal pattern that relates to the

trading dates in three commodities, namely, natural gas, gasoline, and crude oil. We

discover that the trading date of a future contract appears to have rather significant

influence on its price level. This is especially interesting in the case of crude oil,

which is believed in the previous literature to have no seasonality in its prices. The

preliminary findings suggest that the peaks and troughs of prices during a calender

4The data is not detrended for the power spectrum test.
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year differ slightly among different commodities. For example, the highest prices

being traded usually appear in June for natural gas, and July for both gasoline and

crude oil. Then, we introduce the backward curves. After some data manipulation,

it provides strong evidence of seasonality when we collect and take average of the

futures prices over our observation period. Next, we adopt multiple statistical tests

to confirm the existence of the trading-day related seasonality in the three com-

modities. The Kruskal-Wallis test provide solid evidence to suggest the existence

of the trading-date seasonality. Both the autocorrelation tests and power spectrum

tests fail to confirm the trading-date seasonal effect on the old backward curves,

but show strong support of the seasonal pattern in the new backward curves. We

conclude that the trading-date seasonality may be hard to observe on an individual

old backward curve, but does exist and can easily be identified on a collection of

contracts that mature in the same month over a long period of time.

However, in light of our new discovery in the commodity market, we appeal for

further investigations. For example, the cause of the new seasonality that relates

to the trading dates remains unidentified. It is rather straightforward to explain

the conventional seasonal pattern that relates to the maturity dates, since the time

that the futures contracts mature is also exactly, or very close to, the time when

the commodity is harvested or mined, produced, delivered and consumed. Hence,

some simple knowledge of supply or demand is enough to explain such seasonality.

Nevertheless, the same knowledge fails to explain why the trading dates have any

influence on the futures prices. We speculate that it may be related to the time

when some large market participants such as the major commodity producers or

traders build their portfolio for the purpose of hedging, investing or speculating.

Although the evidence to support such claim remains to be found, and the data

needed to conduct the research could be very hard to obtain, the journey to unravel

such mystery of the commodity futures prices will not end here.
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Table 2

Results of Kruskal-Wallis test

Commodity Chi-Square (P-value) Sample Size (N)

Natural Gas, Group 1 6.8572 (0.8105) 8640

Natural Gas, Group 2 26.938 (0.004695)∗∗ 10800

Natural Gas, Group 3 282.98 (< 2.2E-16)∗∗∗ 15552

Gasoline 107.91 (< 2.2E-16)∗∗∗ 4320

Crude Oil 96.014 (1.10E-15)∗∗∗ 7920

a: Degree of Freedom: 11

b: 10% significance *, 5% significance **, 1% significance *** .
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Figure 7: No. of Counts w.r.t. maturity and trading months, Gasoline

(F1 ∼ F36, 2007 ∼ 2017)
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Figure 8: No. of Counts w.r.t. maturity and trading months, Crude Oil

(F1 ∼ F60, 2006 ∼ 2017)
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Figure 9: Forward Curve of a Specific Month, Natural Gas
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Figure 10: Forward Curve of a Specific Month, Gasoline
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Figure 11: Forward Curve of a Specific Month, Crude Oil
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Figure 12: Backward Curve of a Specific Month, Natural Gas
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Figure 14: Backward Curve of a Specific Month, Crude Oil
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Figure 15: New Forward Curve, Natural Gas, Group 1 (F1 ∼ F36, 1997 ∼
2017)



Chapter 2 Page 31

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Jan

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Feb

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Mar

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Apr

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

May

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Jun

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Jul

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Aug

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Sep

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Oct

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Nov

0 10 30 50

4.
5

5.
5

6.
5

F1 ~ F60

F
ut

ur
es

 P
ric

e

Dec

Figure 16: New Forward Curve, Natural Gas, Group 2 (F1 ∼ F60, 2002 ∼
2017)
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Figure 17: New Forward Curve, Natural Gas, Group 3 (F1 ∼ F144, 2008

∼ 2017)
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Figure 18: New Forward Curve, Gasoline (F1 ∼ F36, 2007 ∼ 2017)
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Figure 19: New Forward Curve, Crude Oil (F1 ∼ F60, 2006 ∼ 2017)
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Figure 20: New Backward Curve, Natural Gas, Group 1 (F1 ∼ F36, 1997

∼ 2017)
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Figure 21: New Backward Curve, Natural Gas, Group 2 (F1 ∼ F60, 2002

∼ 2017)
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Figure 22: New Backward Curve, Natural Gas, Group 3 (F1 ∼ F144, 2008

∼ 2017)
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Figure 23: New Backward Curve, Gasoline (F1 ∼ F36, 2007 ∼ 2017)
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Figure 24: New Backward Curve, Crude Oil (F1 ∼ F60, 2006 ∼ 2017)
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Figure 25: New Forward Curve, Natural Gas, Sub-Group 1.1 (F1 ∼ F36,

1997 ∼ 2002)
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Figure 26: New Forward Curve, Natural Gas, Sub-Group 1.2 (F1 ∼ F36,

2002 ∼ 2008)
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Figure 27: New Forward Curve, Natural Gas, Sub-Group 1.3 (F1 ∼ F36,

2008 ∼ 2017)
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Figure 28: New Backward Curve, Natural Gas, Sub-Group 1.1 (F1 ∼ F36,

1997 ∼ 2002)
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Figure 29: New Backward Curve, Natural Gas, Sub-Group 1.2 (F1 ∼ F36,

2002 ∼ 2008)
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Figure 30: New Backward Curve, Natural Gas, Sub-Group 1.3 (F1 ∼ F36,

2008 ∼ 2017)
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Figure 31: New Forward Curve, Natural Gas, Sub-Group 2.1 (F1 ∼ F60,

2002 ∼ 2008)
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Figure 32: New Forward Curve, Natural Gas, Sub-Group 2.2 (F1 ∼ F60,

2008 ∼ 2017)
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Figure 33: New Backward Curve, Natural Gas, Sub-Group 2.1 (F1 ∼ F60,

2002 ∼ 2008)
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Figure 34: New Backward Curve, Natural Gas, Sub-Group 2.2 (F1 ∼ F60,

2008 ∼ 2017)
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Figure 35: Autocorrelation Function on (Detrended) Old Backward Curves

of 4 Specific Months, Natural Gas (F1 ∼ F60, 2002 ∼ 2008)
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Figure 36: Autocorrelation Function on (Detrended) Old Backward Curves

of 4 Specific Months, Gasoline (F1 ∼ F36, 2007 ∼ 2017)
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Figure 37: Autocorrelation Function on (Detrended) Old Backward Curves

of 4 Specific Months, Crude Oil (F1 ∼ F60, 2006 ∼ 2017)
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Figure 38: Autocorrelation Function on (Detrended) New Backward

Curve, Natural Gas, Group 1 (F1 ∼ F36, 1997 ∼ 2017)
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Figure 39: Autocorrelation Function on (Detrended) New Backward

Curve, Natural Gas, Group 2 (F1 ∼ F60, 2002 ∼ 2017)
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Figure 40: Autocorrelation Function on (Detrended) New Backward

Curve, Natural Gas, Group 3 (F1 ∼ F144, 2008 ∼ 2017)
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Figure 41: Autocorrelation Function on (Detrended) New Backward

Curve, Gasoline (F1 ∼ F36, 2007 ∼ 2017)



Chapter 2 Page 57

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

Jan

0 5 10 15

−
0.

5
0.

5
Lag

A
C

F

Feb

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

Mar

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

Apr

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

May

0 5 10 15

−
0.

5
0.

5
Lag

A
C

F

Jun

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

Jul

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

Aug

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

Sep

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

Oct

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

Nov

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

Dec

Figure 42: Autocorrelation Function on (Detrended) New Backward

Curve, Crude Oil (F1 ∼ F60, 2006 ∼ 2017)
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Figure 43: Power Spectrum on Old Backward Curves of 4 Specific Months,

Natural Gas (F1 ∼ F60, 2002 ∼ 2008)
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Figure 44: Power Spectrum on Old Backward Curves of 4 Specific Months,

Gasoline (F1 ∼ F36, 2007 ∼ 2017)
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Figure 45: Power Spectrum on Old Backward Curves of 4 Specific Months,

Crude Oil (F1 ∼ F60, 2006 ∼ 2017)
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Figure 46: Power Spectrum on Old Forward Curves of 4 Specific Months,

Natural Gas (F1 ∼ F60, 2002 ∼ 2008)
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Figure 47: Power Spectrum on Old Forward Curves of 4 Specific Months,

Gasoline (F1 ∼ F36, 2007 ∼ 2017)
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Figure 48: Power Spectrum on Old Forward Curves of 4 Specific Months,
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Figure 49: Power Spectrum on New Backward Curve, Natural Gas, Group

1 (F1 ∼ F36, 1997 ∼ 2017)
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Figure 50: Power Spectrum on New Backward Curve, Natural Gas, Group

2 (F1 ∼ F60, 2002 ∼ 2017)
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Figure 51: Power Spectrum on New Backward Curve, Natural Gas, Group

3 (F1 ∼ F144, 2008 ∼ 2017)
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Figure 52: Power Spectrum on New Backward Curve, Gasoline (F1 ∼ F36,

2007 ∼ 2017)
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Figure 53: Power Spectrum on New Backward Curve, Crude Oil (F1 ∼
F60, 2006 ∼ 2017)



An Arbitrage Opportunity Based on

Seasonality of the Trading Date in the

Commodity Market

Abstract

In the last paper, we find solid empirical evidence to suggest the existence

of seasonality that relates to the trading date of a future contract in the

commodity market, which indicates a potential arbitrage opportunity. In light

of this, we decide to construct a trading strategy that is designed specifically

to profit from the new seasonal pattern in three commodity markets, namely

natural gas, gasoline, and crude oil. The results show promising profit over

the long run for all three commodities, with relatively low risks. Then, we

establish a model based on the Sorensen (2002) model, with the introduction

of an arbitrage factor to capture the trading-date seasonality. We calibrate

the model using Kalman filter in the state space form, and the results suggest

that the vast majority of the parameters are highly statistically significant in

explaining the movement of the futures prices in the three commodity markets.
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1 Introduction

The global commodity market has become one of the largest, most important and

most active financial market in the world. Billions of dollars worth of commodity

futures and derivatives are traded everyday by the market participants. And the

market is still growing at incredible speed, to fulfil the never-ending needs of the

exploding global population and to build the modern world. Given such a significant

role that commodities are playing these days, it is of extreme importance for both

the traders and the academics to understand the market and its behaviour over

time. With the huge volume of trade that happens everyday, any trading strategy

that may lead to reliable and consistent profit could potentially carry a significant

value.

To design a profitable trading strategy, it is very important to study and under-

stand the market behaviour and be able to identify its features or patterns first. Of

all the features of the commodity market, seasonality is a very common and notice-

able one. It has widely been confirmed that seasonality exists in multiple energy

commodities such as natural gas and gasoline. The conventional idea believes that

the seasonal pattern is closely related to the maturity dates. In other words, the

futures prices of a seasonal commodity may significantly be influenced by when it

matures. For example, the futures prices of natural gas are higher if the contracts

mature in the winter time. This is due to the higher demand for natural gas in the

winter for heating purposes. However, the seasonal pattern for gasoline appears to

be almost the opposite to natural gas, which indicates a higher price in the summer

time, and a lower price in the winter time. The reason is because people seem to

prefer travelling during the hot season, which significantly increases the demand for

gasoline as fuel. However, there are also other commodities such as crude oil, that

presents no seasonality in its price.

A large amount of literature has been devoted to the study of seasonality in the

commodity market. Some of the early work include Fama and French (1987), which

confirms that seasonality exists in the convenience yield that is closely related to

the inventory level of the specific commodity, which is usually subject to seasonal

changes of demand or supply. Kramer (1994), on the other hand, studies the in-

teresting January effect in the stock market, and argue that the source could be a

seasonality that relates to macroeconomy. In recent years, the commodity market

has inspired various pricing models in order to quantitatively measure the futures

prices. Based on some early efforts such as Schwartz (1997) and Schwartz and Smith
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(2000) that are highly successful but embeds no seasonality, Sorensen (2002) devel-

ops a pricing model with a seasonal factor of Fourier form to capture seasonality in

the agriculture market. Lucia and Schwartz (2002) examines the electricity prices

in the Nordic Power Exchange, and also includes a seasonal component in the form

of either some seasonal dummies or a sinusoidal function in their model. Moreover,

unlike most of the previous models with deterministic seasonality factor, Mirantes

et al (2012) and (2013) develop stochastic seasonal components in their model for

commodities based on their empirical tests on the data. Furthermore, seasonality

has not only been embedded in the prices, but also in other factors. For example,

Suenaga and Smith (2011) examines the dynamics of volatility in the energy market

and also found significant evidence of seasonality. Shao et al (2015) studies risk

premium in the natural gas market that is both time-varying and seasonal. Jin

et al (2012) finds seasonal pattern in the long-term structure of commodity future

contracts. Back et al (2013) develops a model with seasonal volatility to price the

commodity options. The large body of previous literature proves that seasonality

plays a significant role in the prices of the commodity market.

One of the application of studying the behaviour of prices in the financial market

is to find a trading strategy for market participants to hedge their risk exposures

or to profit from it. There has been a large volume of literature about this as

well, involving different kinds of trading strategies. One of the most popular ones

is based on the mispricing of the same or very similar underlying assets due to

their geographical differences. Earlier studies include Brown (1997) that study the

arbitrage activities between the London and US silver markets to unravel the relation

between sterling and US dollar interest rate. More recent works include Brown

and Yucel (2009), which investigate the arbitrage opportunities in the natural gas

market in between Europe and America, given the integration between the natural

gas price and the crude oil price. Another type of arbitrage involves the asymmetry

of new information coming to the market. An example could be Edmans et al

(2015), where the authors examine the motivation and behaviour of the market

participants who trade on information. Their analysis reveals asymmetric effect on

the trading behaviour from good and bad news. There are also arbitrage strategies

that are designed for a specific type of financial instruments. For example, Duarte

et al (2007) studies the extremely popular fixed-income strategy in the market that

constitutes a large proportion of the trading volume in the market. Five various

strategies are discussed in the paper, and their results suggest that the strategies

involving more “intellectual capital” seem to generate more alpha-type profit in the

market. In summary, combining the knowledge of the financial market and a well-
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designed and well-executed arbitrage strategy, one could generate considerable and

consistent profit from the financial market, at least until the particular strategy

becomes gradually known and used by other market players and thus eliminating

the remaining profit margin eventually.

However, it is extremely hard to construct a trading strategy based on season-

ality of the commodity futures. This is because the maturity dates of all the future

contracts are already determined and known to the public when they are introduced

to the market to trade. The price of a contract that matures on a specific date may

fluctuate due to some changes of other factors during its life time till maturity, such

as new information coming or unexpected demand shift, but not for the seasonality

factor. Nonetheless, based on the results from our last paper, we believe to have

found a new arbitrage opportunity to exploit profits by trading according to sea-

sonality in the commodity market. However, it is not the seasonality that relates to

the maturity dates of the future contracts that lays the foundation of our strategy,

but instead the seasonality that relates to the trading dates. To be more specific,

futures prices are usually higher when being traded in some months of a year, and

lower in others, independent of the maturity dates. This, in theory, violates the

rule of no-arbitrage in the classic pricing model, and provides a real opportunity

of arbitrage in the market. To be specific, we can sell a contract in the months of

higher prices, and then buy one with the same maturity date in the months of lower

prices, to make a profit. If the two contracts that we have traded in two different

months mature at the same time, their prices must converge to the same spot price

in the maturity month.

Hence, in this paper, we decide to test our theory by constructing a trading

strategy based on the trading-date seasonality in the first part of this paper, and

then quantitatively model the arbitrage opportunity in the commodity market in

the second part. First, to confirm the practicality of our theory in reality, we build a

simple trading strategy of “buy low sell high” in three commodities, namely natural

gas, gasoline, and crude oil. In particular, we buy the future contracts in the month

of their lowest price, and sell those with the same maturity dates in the month of

their highest price. We can profit from the price differences between the contracts of

the two trade, if the trading-date seasonality stands. The results of our strategy show

both positive and negative performances in different years, but the final outcomes

of running the strategy over a long period of time are universally positive across

all three commodities. This confirms not only the existence of the trading-date

seasonality from the perspective of a market participant, but also the practicality of
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an arbitrage trading strategy that based on the new seasonality. Secondly, we build

a quantitative model to capture the trading date seasonality and calibrate the model

with the historical prices of the three commodities. Our model is based on Sorensen

(2002) of long-term and short-term stochastic factors as well as a deterministic

seasonal component, and embeds our own seasonality factor that relates to the

trading date. The empirical results show that the new seasonality factors are mostly

significant in explaining the market prices of the three commodities.

The rest of the paper is organized as follows. Section 2 briefly describes the

data that we are going to use in this paper. The arbitrage trading strategy that we

design to prove the feasibility of profiting from the trading-date seasonality is shown

in Section 3. Then, we build a quantitative model to include the new seasonality

factor in Section 4, and discuss the methodology to calibrate the model in Section

5. In Section 6, we demonstrate and analyse the results from the empirical study.

Section 7 draws the conclusion for our research.

2 The Data

We decide to explore the arbitrage opportunities in three of the commodity markets,

namely, Henry Hub natural gas, gasoline, and generic crude oil. All the data are

daily observed, obtained from Bloomberg Terminal, and the specific price we use are

called “closing price one day ahead”. In the majority part of our paper, we denote

all the future contracts as F1, F2, F3, ..., where F1 indicates the future contract

that is closest to its maturity date, F2 the second closest, so on and so forth. In the

natural gas market, from 1997 till 2002, only futures contracts with maturity dates

expanding to the next 36 months from the trading dates (F1 ∼ F36) were traded.

Since 2002, longer term contracts were added. Accordingly, we decide to divide the

natural gas data into two groups. The first group includes all the data since 1997

till early 2017, from F1 to F36. The second group includes all the data from 2002 to

early 2017, from F1 to F60. As for gasoline and crude oil, the data we use are from

2007 and 2006 respectively, to 2017, with maturity dates up to 36 and 60 months

ahead, respectively. A brief description of the data is illustrated in Table 1, where

the mean and standard deviation of some selected contracts are shown.



Chapter 3 Page 5

3 A Simple Arbitrage Trading Strategy

To explore the possibility of arbitrage based on the trading-day seasonality in the

three commodities, we decide to construct a very simple trading strategy in their

future markets. As our previous paper suggests, there is clear evidence that, on

average, the futures prices of the three commodities are traded at a higher price in

some months of a year, while lower in some other months, regardless of the maturity

dates. Accordingly, we can buy a future contract in the “low price” month, sell one

with the same maturity date in the “high price” month to make a risk-free profit in

theory. The key to the strategy is to pair the contracts that we buy and sell by their

maturity dates. To demonstrate the underlying mechanism, let the futures price be

denoted here as Fi(t, T ), where t and T indicates the trading date and maturity date.

A long trade is marked as i = b, and a short one as i = s. Also, P (T ) represents the

spot price at maturity. If we assume that the position is closed on the maturity date

by a trade of the opposite direction, the payoff of the long position at the closing date,

denoted by Vb(T ), can be written as Vb(T ) = P (T ) − Fb(t1, T ), while the payoff of

the short order can be written as Vs(T ) = Fs(t2, T )−P (T ). Therefore, the collective

payoff of both positions will be V (T ) = Vb(T )+Vs(T ) = Fs(t2, T )−Fb(t1, T ), which is

secured as soon as the second trade of the opposite direction is fulfilled in the market.

Hence, if our theory of the trading-date seasonality stands, or Fs(t2, T ) > Fb(t1, T )

consistently in the long run, we are almost guaranteed to make a profit.

The implementation of the strategy in reality is described as follows. First, to

simplify the strategy, we decide to trade in only two months of each calender year.

We buy in the month of the lowest price, and sell short in the month of the highest

price, in each year. As a result, we view one year as a single period during which

we conduct two trades of opposite directions. According to our analysis in the last

study, the three commodities present different months of highest and lowest prices.

Consequently, for natural gas futures, we buy in February and then sell in June. In

the cases of both gasoline and crude oil, we short first in July, and then take long

position in December. Each contract traded in one month must match another one

in the other trading month with the same maturity date.

In either of the trading month in a single period, we do not buy or sell those

contracts traded in the market that cannot be paired. To explain in detail, assume

that we sell short gasoline futures in July, and go long in December of the same

year. According to the data description in the last section, there are 36 contracts

that we can trade everyday, from F1 to F36. Hence, when we sell in July, the F1 to
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F5 contracts will mature before we can engage in the opposite trade in December.

Therefore, they cannot be paired with any contract in December that has the same

maturity date. Also, when we buy the gasoline futures in December, the F32 to

F36 contracts will not have any short contracts sold back in July to match with the

same maturity date. In other words, in the case of gasoline, only contracts of F6 to

F36 are sold in every July, and F1 to F31 are bought in every December, from 2007

to 2017. For crude oil, F6 to F60 are sold in every July, and F1 to F55 are bought

in every December, from 2006 to 2017. As for natural gas, we have two groups of

its futures prices. In group 1, we buy F5 to F36 in February, and sell F1 to F32 in

June, from 1998 to 2016. In group 2, F5 to F60 are bought in February, and F1 to

F56 are sold in June, from 2002 to 2016. The details of traded contracts for each

commodity in one period are listed in Table 2.

To explain the payoff of each year’s operation in mathematical formulas, let the

futures prices be denoted as F y
i (t, T ) = F y

i (tj, tj + K) here, where i here remains

to represent a buy or sell order, y indicates the specific year of the trade, and j = 1

means the first trade of that year, and j = 2 the second one of the same period

(remember that for natural gas, we buy first and sell later in a single period, while

for gasoline and crude oil, we sell first and buy later), and K is the time till maturity.

Hence, the payoff of year y for each commodity group can be written as follows:

NG1 : V (y) = N ∗ [
32∑
K=1

F y
s (t2, t2 +K)−

36∑
K=5

F y
b (t1, t1 +K)] (1)

NG2 : V (y) = N ∗ [
56∑
K=1

F y
s (t2, t2 +K)−

60∑
K=5

F y
b (t1, t1 +K)] (2)

XB : V (y) = N ∗ [
36∑
K=6

F y
s (t1, t1 +K)−

31∑
K=1

F y
b (t2, t2 +K)] (3)

CL : V (y) = N ∗ [
60∑
K=6

F y
s (t1, t1 +K)−

55∑
K=1

F y
b (t2, t2 +K)] , (4)

where N represents the equal trading volume of each contract of either direction in

every period (in our demonstration below, we set N = 100).

Table 3 illustrates the results of our trading strategy by the year of operation for

the three commodities. To simplify the discussion, we assume no transaction cost

for our entire operation. One could easily apply the relevant expenses according to

real world scenario. The numbers above the lowest column of Total represent the
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payoff of all the contracts traded in the two months of that specific year. First, it

is easy to see that the strategy does not work in every year during our observation

period. It appears to generate profit more consistently for natural gas, since there

have clearly been more profitable years than negative ones. Out of the 19 years of

trading for natural gas group 1 and 15 years for group 2, only 7 and 4 years end

up with a loss, respectively. However, the numbers seem to reveal less promising

annual outcomes for gasoline and crude oil based on the performance of individual

year, where only 4 and 6 out of the 11 and 12 years of the observation period lead

to positive results. Nevertheless, the total payoffs of the entire operation period

for all three commodities result in profits, which means that the earnings from the

profitable years can more than compensate for all the losses in the losing years.

Secondly, it is also worth noting that the annual payoff of all three commodities

seem to fluctuate significantly. It is interesting to note that the most profitable year

for all three commodities is 2008, when the payoff appears to dwarf that of other

periods, contributing to a very large percentage of the total payoff at the end of

the observed period. On the other hand, it is rare to see a single year of extremely

large losses that is comparable to the unusually large profit in 2008 in any of the

three commodities. Furthermore, it is also very interesting to calculate the total

payoff minus the profit from 2008. The result is still positive for both of the natural

gas groups and crude oil, but not for gasoline, which suffers a fairly small loss.

Consequently, we argue that our trading strategy of buying and selling according to

the seasonality of trading dates can result in very promising outcomes in the long

run.

It is also worth studying if the different contracts that are traded each year may

have any different performances according to our trading strategy. To do so, we

calculate the average profit generated from each pair of the traded contracts over

the entire observation period. The calculation is conducted as follows. For each

commodity, in a single period, there are a total of M contracts being bought or

sold, or M pairs of contracts matched by their maturity date, respectively (M = 32

for natural gas group 1, M = 56 for natural gas group 2, M = 31 for gasoline, and

M = 55 for crude oil). Each pair of matched contracts has a unique time till maturity

since the second trade of every year, denoted as m, m = 1, 2, . . . ,M . If we denote

each pair in year y as PR(m, y), we would like to see how the value of
∑Y

y=1 PR(m,y)

Y

changes with respective to m, where Y is the latest year of our observation period.

We present the results in Figure 1, where the x-axis represents m, or time till

maturity since the second trade of every year. First, it is easy to observe a general
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trend of decreasing payoff with respective to the time till maturity for natural gas,

and especially for crude oil. In other words, the contracts of longer term to maturity

appear to generate lower profit, compared to those that mature sooner in the future.

Nevertheless, it is not entirely true for natural gas, as the contracts with the shortest

term to maturity perform rather poorly. On the other hand, such trend is hard to

confirm for gasoline.

Next, an obvious seasonal pattern can be seen in both graphs of natural gas.

However, although the x-axis indicates the time till maturity for different pairs of

contracts since the second trade in a period, the peaks and troughs of the two graphs

of natural gas in Figure 1 are mostly inconsistent with the seasonality of the futures

prices that relates to the maturity dates. In other words, the maturity month of

the pair of contracts that generates the highest profit in our trading strategy is not

in the winter time when the natural gas prices are usually higher. Regardless, from

the perspective of the speculators, it would still be logical to spend larger amount

of money to invest in the natural gas contracts according to the wave pattern shown

in the upper two graphs of Figure 1, and also avoid the contracts with the shortest

time till maturity.

The graph of gasoline shows a different pattern, which carries only two obvious

peaks of all the 31 contracts. Hence, the peaks and troughs of the payoff from differ-

ent pairs of gasoline contracts seem to have no relationship with the maturity-date

seasonality of its futures prices. Still, traders are able to earn higher profit according

to the graph of gasoline in Figure 1, when larger proportion of the investment should

be put in those contracts with higher payoff. The graph of crude oil in Figure 1

shows an unusually smooth curve. Since it also demonstrates an obvious trend of di-

minishing return with respective to time till maturity, it is definitely more profitable

for traders to engage in those contracts with closer maturity dates.

After the analysis of the potential profit from our strategy, the next step is to

study its risks. One noticeable feature of our strategy is that although the long and

short positions of each year are taken with the same quantity of future contracts

that share the same maturity date, the two trades do not take place at the same

time, but several months apart. This may imply a certain level of risk, since for a

short window of time (4 months for natural gas, and 5 months for gasoline and crude

oil), our initial position after the first trading month in each period is not hedged

by any trade of the opposite direction. However, we believe that the risk exposure

during such short period of time is fairly limited. To investigate in depth, we decide

to calculate the balance in the margin account during the risky period. As a unique
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feature of the future market, the floating gain or loss of a position of a future contract

is marked to market everyday. Remember that in the case of natural gas, we buy

first in February, and sell then in June of each year. For gasoline and crude oil, we

sell first in July, and buy then in December of each period. Denote ∆Bi(t
∗) as the

change of balance in the margin account at current time t∗, t1 < t∗ < t2, where i = b

to indicate a buying month as the first trading month of a year (such as the case of

natural gas), and i = s a selling month first (such as the cases of gasoline and crude

oil). Assume that we have M open positions from time t1 to t∗, then

∆Bb(t
∗) = N ∗

M∑
j=1

[F y
b (t∗, t1 +K)− F y

b (t1, t1 +K)] , (5)

and

∆Bs(t
∗) = N ∗

M∑
j=1

[F y
s (t1, t1 +K)− F y

s (t∗, t1 +K)] . (6)

Table 4 illustrates the lowest balance in the margin account during the risky

period between the first trade and the second trade of each period. The initial

balance of the margin account before the first trade is assumed to be zero, which

means that we either withdraw the profit or compensate any loss in the margin

account during the no-risk period when all the open positions are closed. We would

like to point out two observations from Table 4. First, the floating losses in the

margin account only occurs in about half of the years during our trading operations.

The situation is slightly more severe for gasoline and crude oil. On the other hand,

it also means that the margin account never drops below zero in the other years

during the risky period. Second of all, even the biggest floating losses that we ever

have to bear during these risky months, shown in the bottom column of Table 4, is

relatively small, comparing to the average payoff from running the trading strategy

for the entire observation period in Table 2. Hence, we argue that the amount of

risk to execute our trading strategy during our sample time is fairly limited.

4 A Quantitative Model to Measure Arbitrage

In the last section, we are able to use a simple and straightforward trading strategy

to confirm that the arbitrage opportunity based on the trading-date seasonality

exists and can generate rather considerable profits with limited risk. However, we

would like to take a step further to quantitatively measure the arbitrage opportunity.

Hence, we decide to establish a mathematical model based on the Sorenson (2002)
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model to help identify and analyse how the new seasonality factor affects the prices

in the future markets of the three commodities. The model of Sorensen (2002)

has widely been cited in a large amount of literature, which derives the closed-

form formula for futures prices based on the spot price dynamics, which consists

of two stochastic factors and a seasonality factor. When the seasonality factor

equals to zero, the model reduces to the model of Schwartz and Smith (2000), which

is a variation of Schwartz (1997) 2-factor model with stochastic spot price and

convenience yields.

According to Sorensen (2002) model, there are three factors that constitute the

logarithm of the spot price at time t, denoted as p(t) = log(P (t)), namely, the two

stochastic state variables of a long-term and a short-term factor, and a seasonality

factor. The idea of the long-term and short-term factors are borrowed from Schwartz

and Smith (2000), where the long term factor represents the level of the equilibrium

price in the long run, while the short-term factor captures the unexpected deviation

from the equilibrium price in the short run. The seasonality factor allows the spot

price to be able to exhibit the seasonal pattern that is present in a large number

of commodities, including energy and agricultural commodities. The mathematical

model to represent the spot price and the three factors are as follows:

p(t) = x(t) + y(t) + S(t) , (7)

where

dx = (µ− 1

2
σ2
x)dt+ σxdW1 ,

dy = −κydt+ σydW2 ,

and

S(t) =
K∑
k=1

(γkcos(2πkt) + γ∗ksin(2πkt)) .

Equation (7) describe the stochastic processes of the long term effect on the spot

price, where ex is expected to grow at a constant rate of µ with a volatility of σx.

y represents the short-term deviation from the equilibrium price, which follows a

Urnstein-Uhlenbeck process with zero mean and κ as the speed of mean-reversion.

W1 and W2 are two standard Brownian motions correlated with coefficient ρ. S(t)

indicates the seasonal component in the spot price, with γk and γ∗k as the coefficients.

Since the seasonality of the three commodities in our paper is on an annual basis,

we set K here to be 2, which is the same as in Sorensen (2002). If γk and γ∗k are 0,
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the model reduces to Schwartz and Smith (2000). In this paper, the interest rate is

assumed to be constant. However, a stochastic interest rate is fairly easy to embed.

To price the corresponding futures prices, we introduce the risk-neutral measure

Q∗, under which both of the stochastic factors must carry risk premiums, denoted

as λx and λy. This is because neither of them are tradable assets that can be hedged

to diversity their specific risks. If we let µ∗ = µ− λx, the two state variables can be

written as:

dx = (µ∗ − 1

2
σ2
x)dt+ σxdW̃1 , (8)

dy = −(λy + κy)dt+ σydW̃2 , (9)

where the two Brownian motion W̃1 and W̃2 under the risk neutral measure Q∗

are correlated with coefficient ρ. The seasonal factor, S(t), remains the same.

Under the rules of risk-neutral pricing, the futures prices are calculated as the

expectation of the spot price at maturity date, conditional on all the information

at current time, under Q∗. Hence, let F (t, T ) represent the future price at current

time t that will mature at time T > t, then F (t, T ) = EQt (P (T )), where EQt is the

operator of conditional expectation under risk neutral measure Q∗, conditional upon

all the information until time t. It is easy to see that P (t) here is log-normal, which

lead to the following solution of F (t, T ):

F (t, T ) = exp[S(T ) + x(t) + y(t)e−κ(T−t) + A(T − t)] , (10)

where

A(T − t) = µ∗(T − t) +
λy − ρσxσy

κ
(1− e−κ(T−t)) +

σ2
y

4κ
(1− e−2κ(T−t)) .

It is very easy to observe how the maturity-date seasonality, S(T ), affects the futures

price.

Nevertheless, the above model of Sorensen (2002) is based on no-arbitrage pric-

ing, which is not entirely true in the three commodity markets that we have studied

in the last section. The reality is that the existence of the trading-date seasonality

obviously violates the rule of no arbitrage in the classic pricing model of financial

instruments. Hence, we would like to build a model based on Sorensen (2002), that

also acknowledges and encompasses the arbitrage opportunity in the real market

that is generated by the trading-date seasonality. However, one of the complications

to include the trading-date seasonality is that the spot price must only include one



Chapter 3 Page 12

seasonality factor, since its trading date and maturity date is exactly the same by

definition. Hence, the futures prices derived as the conditional expectation of the

spot price at the maturity date cannot include the second seasonality in any way.

As a result, to include the trading-date seasonality in our model, we decide to intro-

duce an arbitrage factor that influence the futures prices derived from risk-neutral

pricing, or

F ∗(t, T ) = F (t, T ) ∗ eπ(t) , (11)

where the arbitrage factor eπ(t) follows

π(t) =
K∑
k=1

(γ̂kcos(2πkt) + γ̂∗ksin(2πkt)) . (12)

It is easy to see that π(t) is a sum of trigonometric functions of the trading date

t, independent of the maturity date. Both γ̂k and γ̂∗k represents the coefficients for

the trading-date seasonal factor. Since the second seasonality is also repetitive on

an annual basis, we set K in equation (12) as 2. Therefore, F ∗(t, T ) embeds both

the seasonality of maturity dates and trading dates, where either is independent of

another. When both γ̂k and γ̂∗k are zero, the model reduces to the arbitrage-free

model of Sorensen (2002).

5 Calibration Using the State Space Approach

and Kalman Filter

It is easy to see that the spot price is an affine function of the three components,

namely the long-term factor, the short-term factor, and the maturity-date season-

ality factor, and that the logarithm of the futures price is also linear to all of them

plus the trading-date seasonality factor. As a result, it is appropriate to calibrate

the model with the state space approach, where the state variables are the two

unobservable stochastic factors, x(t) and y(t), that are generated by two standard

Brownian motions. Then, after the model can be transformed into the state space

formulas, the calibration can be conducted by using the Kalman filter to estimate

the unknown parameters in the model based on maximum likelihood.

We first briefly review and justify our use of Kalman filter in the calibration

process. The detailed description of the method can be found in Harvey (1989).

Kalman filter was introduced by Dr. R.E. Kalman in 1960 in an attempt to solve
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the problem of linear filtering of time series in engineering. It is a recursive method

that has the capacity to include all the available information at the current time for

the estimation of the state variables. As long as the equations of the state variables

are linear and the residuals can be assumed to be Gaussian, which our model follows,

Kalman filter can be used to generate the optimal outcomes.

To implement the Kalman filter, the state space form includes two equations,

namely the transition equation and the measurement equation. The transition equa-

tion represents the evolution of the unknown state variables following their pre-

determined stochastic processes in discrete time, or equation (7) in our model. Let

∆t = tn−tn−1 be the time distance between two observations, where n = 1, 2, . . . , N ,

with tN being the maturity date. Then, the transition equation can be written as:

Xt = b+BXt−1 + wt , (13)

where

Xt =

(
x(t)

y(t)

)
, b =

(
µ− 1

2
σ2
x

0

)
, B =

(
1 0

0 e−κ∆t

)
,

η =

(
σ2
x∆t

σxσyρ

κ
(1− e−κ∆t)

σxσyρ

κ
(1− e−κ∆t)

σ2
y

2κ
(1− e−2κ∆t)

)
, (14)

where η here is the variance-covariance matrix of the normally distributed, serially

uncorrelated residual, wt. It is also worth noting that E(wt) = 0.

However, the transition equation only constitutes half of the state space form.

Since both of the state variables are unobservable, the transition equation could

only simulate the time series of the state variables. Without anything observable

references to confirm their values from time to time, it could only lead to unreliable

results. Hence, the measure equation is required to complete the state space form,

which governs how the state variables are related to the observable element in the

model. Since the futures prices can be directly observed in the three commodity

market, and we have established the relationship between the futures price, F ∗(t, T ),

and the two state variables, x(t) and y(t), we can form the measurement equation

according to equation (10) to (12):

Yt = ct + CtYt + vt , (15)

where

Yt =


log(F (t, T1))

...

log(F (t, TN))

 , ct =


S(T1) + A(T1 − t) + π(t)

...

S(TN) + A(TN − t) + π(t)

 ,
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Ct =


1 e−κ(T1−t)

...
...

1 e−κ(TN−t)

 , ε(t) = σ2
vI(t∗t) .

Here, F (t, Tn), n = 1, 2, . . . , N indicates the prices of the different future contracts

that are traded on any day in the market. vt is the normal uncorrelated errors to

represent the disturbance for the measurement equation, with zero mean and ε(t)

as the covariance matrix, where I(t∗t) is the identity matrix of dimension t ∗ t. σv is

the standard deviation, or the measurement disturbances. The simple structure of

ε is exactly the same as that in Sorensen (2002) and Schwartz and Smith (2000).

By running the Kalman filter based on a given set of parameters, we are able to

not only obtain the optimal estimates of the unobservable state variable, but also

the distribution of the state variables. Denoting Pt1|t2 and Qt1|t2 as the prediction of

the mean and covariance of the state variables of t1 from t2 (t1 ≥ t2), we have the

following updates for the distribution of the state variables at each time step:

Pt|t−1 = E[(xt, yt)
′|t− 1] = b+BPt−1|t−1 , (16)

Qt|t−1 = V[(xt, yt)
′|t− 1] = BQt−1|t−1B

′ + η , (17)

where ′ indicates the transpose operator of any vector or matrix. We can also

obtain the predicted mean and covariance of the futures prices at time t1, given all

the information at time t2:

Ut|t−1 = E[(F (t, T1), . . . , F (t, TN))′|t− 1] = ct + CtPt|t−1 , (18)

Vt|t−1 = V[(F (t, T1), . . . , F (t, TN))′|t− 1] = CtPt|t−1C
′
t + ε . (19)

Then, by constructing a so-called Kalman gain of the form Kt = Pt|t−1CtV
−1
t|t−1 as

a correction factor to Pt|t−1, we can have the mean and variance of the two state

variables based on all the information available at time t:

Pt|t = E[(xt, yt)
′|t] = Pt|t−1 +Kt(Yt − Ut|t−1) , (20)

Qt|t = V[(xt, yt)
′|t] = Qt|t−1 −KtVt|t−1K

′
t . (21)

See Harvey (1989) for detailed derivation and explanation of equations (16) - (21).

Since the state variables as well as the logarithm of the futures prices follow normal

distribution, and now we know the expression for the mean and variance of the

futures prices, it is fairly easy to obtain the likelihood function, and then find the

optimal estimation for the parameters that maximize the likelihood function.
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6 Empirical Results

We calibrate our model on the data of the four groups of three commodities. ∆t =

1/260, which means that we assume to have 260 trading days in a year. The interest

rate is set at 3%. In each group, we only use some selected contracts to calibrate our

model. For both natural gas group 1 (1997 ∼ 2017) and gasoline (2007 ∼ 2017), we

use a total of 6 contracts, namely F1, F7, F13, F19, F25 and F31. For both natural

gas group 2 (2002 ∼ 2017) and crude oil (2006 ∼ 2017), we use 9 contracts in total,

namely F1, F8, F15, F22, F29, F36, F43, F50 and F57. A brief description of their

statistics are listed in Table 5, in which it can be seen that the standard deviation

of the future contracts seem to decrease with the length of time till maturity, which

is consistent with the Samuelson effect. In the calibration process, the same set of

parameters are estimated for each group of the commodities by the methodology

described in the above section, with the exception of crude oil, where γk = 0 and

γ∗k = 0, k = 1, 2 from equation (7). This is because crude oil does not carry

conventional seasonality, as proved in our last paper.

Table 6 to 9 shows the calibrated results of our model. We list the parameters

that are calibrated for each group of commodity, their calibrated values, the corre-

sponding standard deviation and the t value. We also show the level of significance

in the tables. It can be seen that in each case, the majority of the parameters are

significant, though a limited some are not significantly different from 0. First of all,

in all cases, κ, σx and σy are highly significant. According to the model, κ indicates

the speed of mean reversion. Our result is thus consistent with previous papers

such as Schwartz and Smith (2000) and Sorensen (2002) that embed the feature of

mean reversion in the futures prices. However, the values of κ differ among different

commodities. The price of gasoline has the highest speed of mean reversion, while

that of crude oil is much lower. It is also interesting to note that κ presents different

values for natural gas group 1 and 2, given the different sample period and lengths

of time till maturity of the contracts in the two groups.

Volatilities for both of the stochastic factors are highly significant for all three

commodities as well. In the case of natural gas, the results from both groups ob-

viously show a much larger volatility of the short-term factor than the long-term

equilibrium factor, or σy > σx. This is consistent with Sorensen (2002) of the study

of agriculture commodities. For both gasoline and crude oil, however, the difference

between the volatilities of the two factors is very small.

µ∗ captures the growth rate of the long-term factor. The value is positive for
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both groups of natural gas and crude oil, but negative for gasoline. This indicates

a decline of price in the long run for gasoline during the observation period. Also,

given the solution of the futures prices of equation (10), negative µ∗ could mean a

negative relationship between the futures price and time till maturity, (T − t). This

is consistent with the statistics shown in Table 1 and Table 5, where gasoline futures

prices obviously drops with the time to maturity, while no other two of the three

commodities show such trend.

λy is the risk premium for the short-term disturbances in price. It is negative as

well as significant for natural gas group 1, group 2 and crude oil. The value is also

very close to each other for the two commodities. However, we fail to reject the null

hypothesis of λy = 0 for gasoline. ρ indicates the relation between the two Brownian

motions of the two stochastic factors. They are both negative, around −0.3, for the

two natural gas groups, but positive in both cases of gasoline and crude oil. In the

past papers of commodities, it is easy to see that both risk premium and coefficients

of the Brownian motions could vary significantly in different commodities or different

sample periods (see Schwartz (1997), Sorensen(2002), among others).

The four seasonality factors that relate to the maturity dates, or γ1, γ∗1 , γ2, and

γ∗2 , are mostly highly significant for the two natural gas groups and gasoline. This

is very strong evidence to suggest the maturity-date seasonality, which is consis-

tent with the past papers. Also, the majority of all four parameters that links to

the trading-date seasonality, or γ̂1, γ̂∗1 , γ̂2 and γ̂∗2 , are significant. They also share

similar values to the seasonality parameters of maturity dates, which indicates that

the trading-date seasonality influences the futures prices to a very similar extent as

the maturity-date seasonality. As a result, the new seasonality component as an

arbitrage factor that we introduce in our model is able to join the other factors from

the previous model to play its own independent and important role in explaining

the price behaviour in the commodity market. Given that our model could capture

both seasonality factors while inheriting the merits of previous studies, we would

argue that it could largely improve the prediction of market prices, as well as our

understanding of the complicated commodity market, and thus help market partici-

pants engage in both hedging and speculating in the commodity markets with extra

confidence.
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7 Conclusion

In this paper, we further confirm the existence of the new seasonality pattern that

we find in the last paper. We first build a trading strategy based on the new seasonal

pattern, which leads to positive total returns across all our three commodities during

our observation years. Then, a quantitative model is established to capture the new

seasonality factor. The model is based on Sorensen (2002), and embeds a new

deterministic seasonality factor as an arbitrage factor that solely depends on the

trading date. We calibrate the model using the state space approach, with Kalman

filter to project the unobservable state variables. The calibrated parameters are

then presented, with most of them prove to be statistically significant in explaining

the futures prices of the commodities. Thus, we argue that our research not only

confirms the practicality of using the newly discovered seasonal pattern to profit

from the market by a simple but effective trading strategy, but also quantitatively

measures its impact on the futures prices.

However, our paper is not without its own shortages. Firstly, our trading strat-

egy of “buy low sell high” is arguably very rudimentary. Although it proves the

existence of the trading date seasonality from a practical point of view, it faces

several potential issues, such as the transaction cost and liquidity risk. This is espe-

cially true when a large amount of future contracts are being traded and need to be

hedged later in the same year. The transaction fees to conduct such an operation on

a large scale could be potentially huge. Also, since our trading strategy requires a

second trade to perfectly hedge the position of the first trade, liquidity in the market

at the second trade could pose a real threat to our operation. However, the shortage

of our trading strategy can also be improved in different ways, one of which is to buy

and sell specific contracts according to their performance in terms of profitability as

illustrated in Figure 1. Since there are some contracts that yield higher return than

the rest over our observation period, we can choose to trade only these contracts

instead of all of them, which could significantly lower the transaction costs as well

as the potential liquidity risk.

Furthermore, we do not have a satisfyingly abundant sample of data to play

with at the time of this paper. The historical prices of two of the commodities in

this paper, gasoline and crude oil, only dates back slightly over 10 years. Hence, we

do not know how the trading strategy will perform in a longer run. Nevertheless,

we are eager to find out how the trading strategy as well as the arbitrage model

perform when data of longer time becomes available. We are also curious if the
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same seasonality of trading date also exists in other commodity markets. Hence, we

appeal for further investigation to explore this phenomenon.
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Figure 1: Results of the Trading Strategy by Contracts
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Table 2

Details of Trades in Each Period

Commodity First Trading Month Second Trading Month

Position Month Contracts Position Month Contracts

Natural Gas

Group 1
Long Feb. F5 ∼ F36 Short June F1 ∼ F32

Natural Gas

Group 2
Long Feb. F5 ∼ F60 Short June F1 ∼ F56

Gasoline Short July F6 ∼ F36 Long Dec. F1 ∼ F31

Crude Oil Short July F6 ∼ F60 Long Dec. F1 ∼ F55
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Table 3

Results of the Trading Strategy by Year

Natural Gas

Group 1

Natural Gas

Group 2
Gasoline Crude Oil

1998 -19.72

1999 726.05

2000 3,057.05

2001 -2,407.90

2002 2,364.81 3,527.96

2003 2,550.75 4,496.03

2004 3,028.70 3,722.90

2005 3,791.72 6,478.78

2006 -1,265.03 -1,620.85 36,511.50

2007 1,936.83 3,769.18 -99,591.41 -78,992.24

2008 8,987.58 13,583.32 626,767.64 386,418.32

2009 -223.83 220.03 -70,150.09 -45,482.64

2010 -1,939.06 -3,103.6 -77,012.36 -40,981.73

2011 404.86 626.26 105,766.85 47,199.94

2012 -956.23 -1,761.59 -49,281.72 -4,891.46

2013 243.51 175.06 -19,417.11 1,570.51

2014 353.62 1,250.82 248,858.73 130,811.41

2015 -475.55 -1,115.26 90,851.23 63,189.32

2016 1,220.33 1,684.66 -54,871.65 -9,504.89

2017 -76,412.15 -16,328.40

Total 21,378.49 31,933.68 625,507.95 469,519.63
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Table 4

Lowest Balance in the Marginal Account

Natural Gas

Group 1

Natural Gas

Group 2
Gasoline Crude Oil

1998 -63.457

1999 -32.566

2000 543.784

2001 -1,053.780

2002 1,484.738 2,368.544

2003 349.136 365.844

2004 905.900 1,237.587

2005 2,001.440 3,113.090

2006 -319.788 -761.083 -930.713

2007 272.133 923.362 -89,142.995 -66,425.381

2008 1,904.830 2,992.595 118,242.050 94,399.794

2009 -1,436.768 -2,509.826 -86,482.05 -53,553.409

2010 -2,119.508 -2,825.495 -49,055.143 -30,647.714

2011 196.861 616.119 59,284.620 51,739.657

2012 -1,112.485 -1,660.440 -67,734.983 -18,917.925

2013 427.620 467.649 -12,412.273 -7,647.955

2014 84.486 351.794 15,535.591 6,758.045

2015 -597.069 -1,090.911 48,351.089 28,322.606

2016 119.112 168.178 -34,546.121 -10,356.981

2017 -74,186.155 -11,030.229

Minimum -2,119.508 -2,825.495 -89,142.995 -66,425.381



Chapter 3 Page 25

Table 5

Mean and Variance of Future Contracts for Calibration

Natural Gas Group 1 Gasoline

Contracts Mean Std. Contracts Mean Std.

F1 4.557 2.311 F1 221.506 63.169

F7 4.912 2.403 F7 218.220 56.243

F13 4.945 2.311 F13 217.081 54.040

F19 4.960 2.316 F19 215.224 49.180

F25 4.905 2.173 F25 214.567 48.463

F31 4.903 2.172 F31 213.307 45.246

Natural Gas Group 2 Crude Oil

Contracts Mean Std. Contracts Mean Std.

F1 5.002 2.339 F1 75.461 23.242

F8 5.512 2.398 F8 77.451 21.054

F15 5.574 2.276 F15 77.606 19.748

F22 5.556 2.146 F22 77.428 18.791

F29 5.539 2.082 F29 77.258 18.110

F36 5.485 1.928 F36 77.151 17.628

F43 5.499 1.934 F43 77.144 17.316

F50 5.474 1.793 F50 77.219 17.102

F57 5.496 1.776 F57 77.364 16.968
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Table 6

Calibration Results of Natural Gas Group 1

Parameter Value (Std.) t statistics

κ 1.04474 (0.02578)∗∗∗ 40.51983

µ∗ 0.05280 (0.02713)∗ 1.94599

λy -0.19710 (0.02523)∗∗∗ -7.81299

σx 0.12401 (0.00557)∗∗∗ 22.24739

σy 0.39136 (0.01363)∗∗∗ 28.72413

ρ -0.32130 (0.04761)∗∗∗ 6.74851

γ1 -0.00654 (0.00086)∗∗∗ -7.62309

γ∗1 -0.06178 (0.00092)∗∗∗ -67.35968

γ2 -0.00931 (0.00325)∗∗∗ -2.86816

γ∗2 -0.00878 (0.00327)∗∗∗ -2.68360

γ̂1 -0.00806 (0.00564) -1.42879

γ̂∗1 0.01434 (0.00603)∗∗ 2.37698

γ̂2 -0.01648 (0.00440)∗∗∗ -3.74341

γ̂∗2 0.02190 (0.00444)∗∗∗ 4.92765

Notes: a. Maximum Likelihood: 38,219

b. No. of Observations each contract: 5,010

c. * 10% significance, ** 5% significance, *** 1% significance
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Table 7

Calibration Results of Natural Gas Group 2

Parameter Value (Std.) t statistics

κ 0.66677 (0.01425)∗∗∗ 46.79867

µ∗ 0.11807 (0.03089)∗∗∗ 3.82219

λy -0.17991 (0.01673)∗∗∗ -10.75110

σx 0.11201 (0.00808)∗∗∗ 13.85976

σy 0.46863 (0.03224)∗∗∗ 14.53514

ρ -0.30561 (0.10760)∗∗∗ -2.84026

γ1 0.06292 (0.00079)∗∗∗ 79.85361

γ∗1 -0.00714 (0.00077)∗∗∗ -9.32955

γ2 0.02537 (0.00080)∗∗∗ 31.71094

γ∗2 0.00444 (0.00079)∗∗∗ 5.57751

γ̂1 -0.02206 (0.00618)∗∗∗ -3.56876

γ̂∗1 -0.00081 (0.00590) -0.13675

γ̂2 0.01186 (0.00325)∗∗∗ 3.64988

γ̂∗2 -0.01061 (0.00318)∗∗∗ -3.33955

Notes: a. Maximum Likelihood: 43,190

b. No. of Observations each contract: 3,842

c. * 10% significance, ** 5% significance, *** 1% significance
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Table 8

Calibration Results of Gasoline

Parameter Value (Std.) t statistics

κ 1.35167 (0.143780)∗∗∗ 9.39974

µ∗ -0.19826 (0.05620)∗∗∗ -3.52758

λy 0.02990 (0.03445) 0.86813

σx 0.17364 (0.00771)∗∗∗ 22.53572

σy 0.18919 (0.01512)∗∗∗ 12.51026

ρ 0.20732 (0.09215)∗∗ 2.24988

γ1 -0.00592 (0.00117)∗∗∗ -5.07942

γ∗1 0.05346 (0.00125)∗∗∗ 42.68482

γ2 -0.01553 (0.00500)∗∗∗ -3.10483

γ∗2 0.00997 (0.00452)∗∗ 2.20705

γ̂1 -0.04228 (0.01118)∗∗∗ -3.78296

γ̂∗1 0.05699 (0.01215)∗∗∗ 4.69203

γ̂2 0.00391 (0.00761) 0.51423

γ̂∗2 -0.02549 (0.00772)∗∗∗ -3.30328

Notes: a. Maximum Likelihood: 21,244

b. No. of Observations each contract: 2,732

c. * 10% significance, ** 5% significance, *** 1% significance
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Table 9

Calibration Results of Crude Oil

Parameter Value (Std.) t statistics

κ 0.49439 (0.02085)∗∗∗ 23.71152

µ∗ 0.29481 (0.06264)∗∗∗ 4.70658

λy -0.02216 (0.01094)∗∗ -2.02528

σx 0.15008 (0.00818)∗∗∗ 18.33839

σy 0.15175 (0.00695)∗∗∗ 21.85048

ρ 0.50442 (0.05535)∗∗∗ 9.11376

γ̂1 -0.02466 (0.00866)∗∗∗ -2.84681

γ̂∗1 0.03807 (0.01019)∗∗∗ 3.73503

γ̂2 -0.01120 (0.00491)∗∗ -2.28410

γ̂∗2 -0.00697 (0.00499) -1.39582

Notes: a. Maximum Likelihood: 34,963

b. No. of Observations each contract: 2,982

c. * 10% significance, ** 5% significance, *** 1% significance
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Thesis Conclusion

This thesis mainly explore the commodity market that constitutes a major part

of the financial world nowadays, and contribute to the existing literature in vari-

ous ways. The first part of the thesis attempts to price Asian options under the

Schwartz (1997) model, where there are three stochastic state variables, namely the

underlying spot price, the convenience yield, and the interest rate. Since there are

no closed-form solutions for the arithmetic average Asian option, we first price the

geometric average Asian option with a closed-form solution, and use it as a con-

trol variate to price the arithmetic counterpart by Monte Carlo simulation. We

are able to significantly improve the accuracy of the simulation without sacrificing

computational effort. Then, we show how the option prices respond to different

values of the parameters. The next main contribution of the first chapter involves

the introduction of a jump diffusion in the spot price. The challenge appears to be

that even the price of the geometric average Asian option is no longer log-normal,

because the jumping time is governed by Poisson Distribution, and that the Asian

option is path-dependent. Hence, no analytical solutions exist for either type of the

Asian options. However, we develop a new approach based on the fact that condi-

tional on knowing the jumping time, the geometric average of the underlying price

remains log-normal. As a result, there exists analytical solution for the geometric

average Asian option, which can be used to price the arithmetic counterpart by

Monte Carlo method. Our results show observable improvement in terms of simula-

tion accuracy. However, one of the drawbacks of the first chapter is that the concept

of pricing Asian options using Monte Carlo simulation has been arguably outdated

in the academia. There have been numerous new and successful methods developed

nowadays to accurately price Asian options. We believe that our technique in the

first chapter is both innovative and practical among all the different approaches,

and a comprehensive comparison between our method and the others could be very

interesting.

The second chapter of the thesis focus on the energy market and their seasonality

feature. In the past literature, seasonality of a commodity future contract is always

related to the maturity date. Nevertheless, we find a new pattern of seasonality

that relates to the trading date of their future contracts in three specific energy

commodities, namely natural gas, gasoline and crude oil. It is particularly interesting

in the case of crude oil, which is believed in the past literature to carry no seasonal

feature. We find unique annual seasonal patterns for all three commodities, that

the prices of the future contracts are relatively higher on average when traded in
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some months, and lower in another. We designed the so called backward curves,

as opposed to the forward curves that have appeared and been studied in the past

literature, to help visualize the new seasonality feature. We further observe an

interesting change of behaviour in the natural gas price over the observation period,

from normal backwardation to contango in around 2008. Next, we adopt different

statistical tests, including the Kruskal-Wallis test, the autocorrelation function, and

the power spectrum test, to further consolidate our finding of a new seasonality

pattern. Nonetheless, one of the main shortage of the second chapter is the lack

of an explanation for such phenomenon. Unlike the conventional maturity-date

seasonality, of which the cause is fairly straightforward to understand, we fail to

find any solid evidence to explain the trading-date seasonality either in the past

literature or in the data that we have, including the daily trading volume data for

different commodities. Hence, we believe that it is of significant value for academics

to conduct further research on discovering the reasons behind the new seasonality

feature in the commodity market.

We further extend our study of the new seasonality finding in the third chapter

of the thesis. First, it appears that if there exists a trading date seasonality, it will

surely violates the rule of no-arbitrage in the financial market. Therefore, we design

a simple “buy low sell high” trading strategy according to our findings in the second

chapter when we buy and sell all the available contracts of the three commodities in

the corresponding lowest and highest months in a year across our observation period.

The results show profit in the long run for all the three commodities, with limited risk

exposure during the operation. Then, in light of the positive result from our trading

strategy, we decide to build an quantitative pricing model that can capture the

arbitrage opportunity to price the future prices of the three commodities. The model

is based on Sorensen (2002) paper, with the introduction of a new arbitrage factor

that captures the new trading-date seasonality pattern. We calibrate the model

with the state space approach, using Kalman filter to estimate the unobservable

variables. The results of the calibration show significant value for the vast majority

of the parameters, includes the parameters, embedded in the new arbitrage factor,

that captures the new seasonal feature related to the trading dates. This indicates

that the new trading-date seasonality appear to carry significant statistical value in

explaining the futures prices. Nevertheless, we also appeal for further research to

extend the third chapter. Firstly, our trading strategy is arguably too rudimentary.

Either high transaction cost or high liquidity risk could eliminate the profitability

of the operation. However, we believe that this can be resolved if further research

could be dedicated to find more sophisticated trading strategy with specific design
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to improve the return with lower fees and risk exposure.
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