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Preprint No. 13/10

A New Competitive Ratio of the Harmonic Algorithm for a
k-Server Problem with Parallel Requests
and Unit Distances

R. Hildenbrandt, TU Ilmenau, Inst. f. Mathematik

1 Introduction

In this paper a generalized k-server problem with parallel requests where se-
veral servers can also be located on one point is discussed. The investigation
of the generalized k-server problem was initiated by an operations research
problem which consists of optimal conversions of machines or moulds (see
[4] or [8]). It is sensible in the case of parallel requests to distinguish the
surplus-situation where the request can be completely fulfilled by means of
the k servers and and the scarcity-situation where the request cannot be
completely met.

The k-server problem was introduced by Manasse, McGeoch and Sleator
[11]. Meanwhile it is the most studied problem in the area of competitve
online problems. Historical notes on k-server problems can be found in the
book by A. Borodin and R. El-Yaniv [3] (sections 10.9 and 11.7) or also in
the paper by Y. Bartal and E. Grove [2]. There the two important results
are the competitiveness of the deterministic work-function algorithm (see
E. Koutsoupias and C. Papadimitriou [9]) and of the randomized Harmonic
k-server algorithm against an adaptive online adversary (see Y. Bartal and
E. Grove [2]).

The work-function algorithm is an inefficient algorithm (with a good com-
petitive ratio). In contrast the Harmonic k-server algorithm is memoryless
and time-efficient. For this reason we first want to focus on a corresponding
Harmonic k-server algorithm for the generalized k-server problem.

If one tries to generalize the proof by Y. Bartal and E. Grove [2] se-
veral subchains with different length must be considered and one will see
that the computation of the weights f(j) is not possible. In this paper we
consider the general k-server problem in the case of unit distances. Using
rough estimations of numbers of certain partitions we have shown in [7]
that a corresponding Harmonic algorithm is competitive. The (usual) k-
server problem with unit distances is known as the paging problem and the
Harmonic k-server algorithm as RAND algorithm (see [3], chapters 3 and
4). Raghavan and Snir have shown that the RAND algorithm is £ com-
petitive against an adaptive online adversary. Although there can occur a



lot more feasible requests in the case of the generalized k-server problem
we will show in this paper (using detailed considerations related to sets of
certain partitions) that the corresponding Harmonic k-server algorithm is
max {k, R(k) — k + 1} competitive (where R(k) is a bound of the requests
related to the scarcity-situation, see Theorem 1) and k competitive (just as
RAND), if only the surplus-situation is allowed.

2 The formulation of the model

L' Let k > 1 be an integer, and M = (M, d) be a finite metric space where
M is a set of points with |M| = N. An algorithm controls & mobile ser-
vers, which are located on points of M. Several servers can be located on
one point. The algorithm is presented with a sequence o = !, r2 ...  r™ of
requests where a request r is defined as an N-ary vector of integers with
ri € {0,1,---,k} ("parallel requests”). The request means that r; server
are needed on point i (i = 1,2,---,N). We say a request r is served if

at least A ) o . Clr
{ at most } ri servers lieon i (1 =1,2,--- , N) in case { Clo] } Clr, ]

N
denotes the case Y r; < k (surplus-situation, the request can be completely
i=1

N
fulfilled) and C[k,r] denotes the case > r; > k (scarcity-situation, the re-

i=1
quest cannot be completely met, however it should be met as much as possi-
ble). By moving servers, the algorithm must serve the requests r!, 72, - 7"

sequentially. For any request sequence o and any generalized k-server algo-
rithm ALG ) 4ratter), ALGp(0) is defined as the total distance (measured by
the metric d) moved by the ALG)’s servers in servicing o.

In this paper we will show that the corresponding Harmonic k-server
algorithm attains a competitive ratio of maz {k, R(k) — k + 1} (see Theorem
1) against an adaptive online adversary in the case of unit distances (for
the definitions of competitive ratio and adaptive online adversary see [2]
or [3], sections 4.1 and 7.1). Analogous to [3], p. 152 working with lazy
algorithms ALG), is sufficient. For that reason we define the set of feasible
servers positions with respect to s and r in the following way

AN;k(S,’l‘)

=<s e PN(k)

r; < si <max{s;,ri}, i=1,---,N, in C|r, k]
min{s;,m} < s <ry, i=1,---, N, in C[k,7]

(1)

'For basic knowledge of (usual) k-server problems see also [3], chapters 10 and 11 for
example.




where Py (k) := {s ez | z 5 = k:} 2)

The metric d implies that (Py(k),d) is also a finite metric space where d
are the optimal values of the classical transportation problems with availa-

N N
bilities s and requirements s’ of Py (k): >~ > d(i,7) zi; — min
i=1j=N

subject to Z T = 8; Vi, Z x5 = 85 Vj, x € L} x 2 (see [6], Lemma 3.6).
j=1 =1
The corresponding HARMONIC), k-server algorithm operates as fol-
lows: Serve a (not completely covered) request r with randomly chosen ser-
vers so that for the (new) server positions s' € Ay.(s,r) is valid with
respect to the previous server positions s and the request r. More precisely,
HARMONIC, leads to s' € A.1(s,7) with probability

1
d(s,s’)

1 (3)
= d(s,s’")
s//:s//EAN;k(s,r)

3 The competitiveness of HARMONIC), in case of
unit distances

. N
Unit distances means that d(i, j) = 1 Vi # j. Thus, d(s,s') = 3 |s;—s]| for
i=1
> (rf—s;) in Clr, k]
i:rﬁ>s,
S (si—rt) in Clk, 7]

i:r§<si

s,s' € Py(k) follows and (1) yields d(s,s’) =

for every §' € Anu(s, 7). Then s’ € An.y(s,r) is chosen randomly and

uniformly with probability m among all elements of Ap.(s,7) by
N;k\S

HARMONIC,,

In [7] can be found an example which shows that in order to prove the com-

petitiveness an additional assumption (as Y r! < R(k) in the following
ieM
theorem) in the case Clk,r!] is necessary.

Theorem 1. The HARMONIC,, k-server algorithm attains a compe-
titive ratio of C(k) = max{k, R(k) — k + 1} against an adaptive online ad-
versary in case of unit distances if Y rf < R(k) Vt for given R(k) > k.

ieM
2

2This condition is important for case C[k,r']. (According to the introduced model

3 7t < kis true in case C[r', k].) See also the above mentioned example.
ieM



Proof. We will use a potential function (see [2]) to prove the state-
ment. In case of unit distances it is sufficient to use the following simple
potential function

D(s,s) := f]z:v:lysl — 8| (= fd(s,s)), s,5 € Py(k). (4)

At the beginning let f > 0. We will solve for f later. More precisely and
analogous to Bartal and Grove, let ®; denote the value of ® at the end of the
t-th step (corresponding to the t-th request r in the request sequence) and
let 7 denote the value of ® after the first stage of the t-th step (i.e., after
the adversary’s move and before the algorithm’s move). In cases C[r', k] and
Clk,r'] we will show the following properties (see [2], pages 4 and 5)

>0 (5)

®; — &, < C(k)Dy, (6)

where D, denotes the distance moved by the offline servers (controlled
by the adversary) to serve the request in the t-th step.

E(®F — @) > E(Z), (7)

where Z; represents the cost which incurred by the online algorithm
to serve the request in the t-th step.

If we can show that the potential function satisfies these properties then
HARMONIC, is C(k) competitive.

In the following let

5 (€ Pn(k)) denote the (offline) servers position controlled by the
adversary at the end of the (t-1)-th step (i.e., at the
beginning of the t-th step)

s (€ Py(k)) denote the (online) servers position controlled by the
algorithm at the beginning of the t-th step

s (e AN;k(s, r!)) denote the (online) servers position at the end of
the t-th step and

§ (€ Py(k)) denote the (offline) servers position controlled by the
adversary after the first stage of the t-th step.

Proof of (5) and (6):
(5) is straightforward if f>o0. (6) follows by means of the triangle-
equation of the metric d:

fd(s,8) — fd(s,5) < fd(s,5) = fD, < C(k)D, if C(k) > f.




Proof of (7) in case C[rt, k|:
In this case we will show that f = k (and hence each f > k) satisfies the

property (7).
For unit distances it follows that

A =f T G-s)=f 5 (- W ednplor) (g
i:§;>si i:§;<5i
as well as .
Zi(s,s')= > (rl—si) Vs € Any(s, 1)
©ri>s; (9)
=: Zy(s,r")
and (7) is equivalent to
(7a)

Oy —E(®,) > 7.

We will reduce the problem in several steps and consider, firstly, certain
cases for which the proof is simple. Finally, a remaining reduced problem

will be investigated using properties of certain partitions of integers.
Next the set M = {i =1,---, N} of points is partitioned in relation to

Lort, s in case C[rt, k] where rf < s, < maz{r!,s;} fori=1,---,N:

S, S5 T
={ieM|s; > s > 5 =rlors; > s > & = rt},
MHQ:{Z'GM\si>s§2§;>rforsi28;>§i> t}
My, = {ieM|s; > 8 > s, > i},
Mip = {ieM|r} < s; < s < Forrt < s) = s <35,
My = {ieM|s; <rf=s; <35} ={ieM]|s <1}

A first reduced model (reduction in 3 steps):
The quantities of the property (7a) will not change by the following mani-
pulations. Particularly, the essential structure of Ay (see (1)) and |An|
will also not change. £ must be reduced in corresponding way.

1. A .—mln{sl,rl,s}forZEM k:=k— > A
€M

sii=s8i— N, 5 =8 — N, s, =8 —Ajrli=rl — A forie M

2.5:= > (s—sz)—i— Z (8, —rl),
i€Myrrr Mry
s, :=s; for i € Mypy, §§ :=rl(=s}) for i € Myy. Temporarily,

we set sp = s, =rl, :=0,8, := 5 for an additional i’ € {7} =: My
3. We replace the elements of My by one element ¢ where
rei= Y rl=:d =13,
€My
Then with regard to s,s’, 5, r! the following possibilities remain for the re-

duced model:

s;i > st >5=0=rlors; > s, > 35 =0=r! forie M,



s; > 85 >58>0=rlors; > s, > 5 >0 = rlforie€ M,
S; > §{L» > S; > TfZOfOIiEMIIb,
rh=0<s <s =5ori=0<s =s = 8 forie My,
;=0 < r* = S; = §§f0r2‘EM[V:{Z‘},
sy =8, =1, =0, 8, =5fori € My ={i'}
where
r* = > (si —s)). (10)
€M UMy UMppUMrr
Furthermore,
Zi(s,s') = 1* Vs’ € Ang(s,r) (see (9)),
o7 (s,8) = f (r* +5) (see (8)) (11)
and

0 )0u(,5) = f ( S G-+ st)
t€EMrpUMprg

:f( > (si—s)— X (si—s)+ X (Si—S§)+8>

€My €My €My

= f <7“*— X (sims)— X (Si—§§)+§> (< f(r+9)
1EMUMprq, i€EMrrp
(12)
follow (the last equation by means of (10)).
f5 vanishes in the difference @} (s, 5')—®;(s', §). That’s why we consider
an unbalanced reduced model without My and with the difference of s
between Y s; and Y 8. Zi(s,s') = * Vs’ € An(s,r) remains valid. We
ieM iEM

set ®7(s,5) = fr* and (s, 5) = f d'(s',5) where

d(s',§)= > (5 —sj) fors € Ayu(s,r). (13)
€M UMy

In this way ®;°(s, ) — ®.(s’,§') does not change.
Clearly that

k= > si > 1"+ > 5i (14)
tEMTUM 1o UM s UMy €M1 UMrpUMyrg
is right for the unbalanced model.
We can then conclude from (12) that
q)t(sl,gl) =r* & s — S/i =0forie MU M, M, = 9, (15)
thus
Qu(s,8)=1" & "= 3 (si—s)) (see (10)) = > s;>r"

€M1 €My



With regard to the reduced model (7a) is equivalent to

frr f E d'(s',5")) > r* and hence also to T <
f fsleAN'k(s T)( ( ) )) - r*_ L E (d/(s/’gl)) —
; ’ s EAN;k(s,r)

*

Finally the conjecture f = k = C(k) 3 in case C[r!, k] leads to the
following representation of (7a):

(d'(s',8)) < rr gt (17)

The inequality

is sufficient for the validity of (17) since k > r*, see (14).
Case: 35" € An(s,r): M # @
Let A{V;k(s,r) = {s’ € AN;k(s,T) | Mirp = @} and
Al (s,7) = Ang(s,m) \ AL (s,7).
Then (15) implies that E  (d(s,5)) <r*—1.

s’eA{V{k(s,r)

Using the relation

T T | AL . (5,)] T | AR 1 (5,
E o (d(,5)= E  (d(8)g oot B (d(8) 5
s’GAN;k(s,r) SlGA{V;k(sJ‘) |AN;k(5,T)‘ S'GA{VI;k(Sﬁ) |AN;k( 5
we get
a) B (d(s,8)<r*—1if E (d(s,5)) <r*—1and
s'"€AN;k(s,T) SIEA{V;]C(SJ‘)

the conjecture (17) is true according to (18),
by E (d(s,§)< E (d(s,5))if

s’EAN;k(s,T) s'€AN . (s,1)
E  (d'(s,5)) > r*—1and it is sufficient to consider a reduced
s'EA{v;k (s,7)
model with M, = @V s € AN;k(s,r).
Case: M, =@ Vs € AN;k(S,T‘)
In this case we can use a further reduction step:
si=s8;—8, §i=¢;—35,8:=0 forie My, k:= > S;.

10
v 1€EMUMrroUMprr
Then the set M7, can be integrated into the set M; and a reduced model

with the following possibilities in relation to s, s’, 5, r! remains:

s; > sp > 58=0=rlors; > s > 5 =0=r! forie M,

3Tt is unproblematic to use the reduced k since the original k is greater or equal than
the reduced.

s,
Ss,T

)|
)l



rt=0<s <s =58ori=0<s =s = 8 forie My,
$i=0 < r* =g, = § forie M.

The union of sets in the formulas (14) and (10) must then be replaced by
M; U M;jrr or Myrr. Furthermore (10) leads to

kE>r* (19)
and
Z S; 2 7"*. (20)
€M7y
If S s <7r*—1then E (d(s,5)) < r* —1 follows from
i€Mrrr SIEAN;k(S:T)

(16) and the conjecture (17) is true according to (18). Hence it remains to
investigate the reduced problem with M;y, = @ where (20) and

>, s>t (21)
€My

are assumed.

Let us set: My ={1,--- ,m}, My ={m+1,--- ,m+n},
MIV = {m +n+ 1} and SI = (Sm+17 to 78m+n)7 SII = (517 o ,Sm).

In order to prove the conjecture for the reduced problem we use ordered
restricted partitions of integers x (compositions) into exactly n non-negative
parts (written as vectors):

n
P(z) = {EEZV}FOgsﬁigsiforizl,--~,n, Zi‘zzx} , P(x) =
i=1

| P} (x)| for © € Z4 and given n € N,s € Z!.
A one-to-one correspondence between the elements of the sets A Nik(s,7)
and Pj" )(r*) is defined by:

(s11 51

{sfzte{ssi—s,=zifor i=1,--- ., n+m}. (22)

n-+m

~ r*
|Ank(s,m)| = Psit SI)(T*) = 2 Pl () P (r* — x) (pay attention to
’ =0

R m+n m—+n
(21) and (20)) and d'(s,8") = > (S,—s))= > (si—s)= > &
€My 1=m+1 t=m-+1
(see (13)) imply the following representation of the conjecture (17):

. >z p(x) plyp (r*—x)
B (d(s,7) == < i (23)
s'€EAN;K(s,T) > P (@) pTy; (r*—a)

where (20) and (21) are assumed.



In order to prove (23) we use the following properties of p?(x) and the
following relationship (29):

. pi(x) =pi(> _ si — z) (symmetry)
i=1
(24)
o p?(z) is monotonically increasing for
T e {07 ]-7 e ama‘X{STh ’V% Z Si—‘ }}
i=1
(25)
n—1 1 n
e pl(x) is strictly increasing for z € {0,1,--- ,min{z Si; L§ Z sil}}
i=1 i=1
(26)
. 0P+ <0 Y pi ), € 2, (27)
=0
(z+Dpg (e+1)+yps(y)  (y+Dpg(y+D+apy(z)
¢ PN S PR DpE @) (< +3)
for z <yandy+1 (y+2) < max{s,, [ > s}
i=1
(28)
[ ]

Letai>0fori:(),---,l, b02b122b1>0andA0§A1§§Al

Agaobot -+ Ajarby Agaot--+Aja; - .
Then aobo+-+ab, < aot—ta, S valid.

(29)
(See the following Remarks 1 for (24), ---, (27) and (29). Simple computa-
tions yield (28).)
Case ply (r* — 1) > pl (r*):
Together with (24) and (26) the relations 7* > 1 and p7; (r*—2) > p7 (*)
follow. The last inequality implies p”; (r*—2) p7;(2) > pZ (1) = p%; (r*) pl3;(0)
(7’*_2) p:1 (r*=2) p:}] (2)+7’* pZI (r*) p:}] (0)

and P:I (r*—2) p;'}l(2)+p:»[ ) p:}I 0) <r*—1.
; 5 & @) 711 )
Hence E (d(s,5)) = =2 <1*—1, and (23) is valid

S/GAN;IC(SJ") T{: " (x) py; (r*—1x)
z=0 ° S
in this case (see (18)).
Case ply (r* — 1) < ply (r*):

‘We show:
I * *
S ey @ p ) S ap(@)
= < = (30)
Z::Op:I (z) p:}l(r* —) ;OPZI (z)

(this means |M;| = m = 1 yields an upper bound)



II

¥

5wy @)
S0 ekl (31)

5 o7 (@)
=0
m m
To I: Let us set [ = min{r*, F > Sz‘HJ }, L =max{0,2r* — > s/},
i=1 i=1

L= L%J = max{0, r* — [%iésiﬂ—‘},%:i—i— %W fori=0,...,1,

bi = pt; (r* —i) for i =0,...,1 and

. 1pn1 (E)J"(L_g)p’:] (L_g) . =
Ai P?[ (g)"‘Pn[ (L—i) for 4 = 0’ o lL’
aingjg+pZI(L—5)f0ri:0,-~~,LifLisoddor if L >
ao =" (%), ai =p% (i) +p(L—i) fori=1,---  Lif Lis

even

Ai=i+ (r*—1)and a; = p (i + (r* — 1))

fori =0,...,lif L=0or if L <.
fori=L+1,...,lif L >0

. ~_ Lp? (1)+0p7;(0)
It is clear that AL = W and
_ m m
A 1 =L+14r"—l=1r"— ﬁzlszn—‘ +14+r*— FXESZHJ =L+1
1= 1=
m —
ifL>0(= 1= FES{IJ)andL<l.
i=1
The symmetry b; = p7; (r* — i) = pl; (D2 s —r* +4) = pup(r —
i=1

(L—9) *

Z x p:[ (x) p:}] (T*—:E)

for i = 0,---,Lif L > 0 (see (24)) leads to

=0 —
> p"[ (x) p"}] (r*—x)
z:0 S S
Agagbo+---+Ajab;
apbo+--+arb;

_ m
Using 7* —i <7r* — %W < F > SZHJ for i =0,...,1 together with
i=1

with (24) implies that {b;} is monotonically decreasing.
Obviously, {4;} is monotonically increasing if L = 0. In case L > 0
the

monotonicity follows from (28) since p?; (r* — 1) < p” (r*) implies
n

r* < max{sy, [} 2 si]} (see (25)).

=1
We can now apply (29) and

10



* *
T

IZ::oxpsl(x) Pin ) — Aoaobot+Ajab o AgaottAja _ ;::OxPSI (I) 18
r* apbo+---+ab; — ap+---+a; r*
Zﬁo Py (@) plyp (r*—x) 20 Pl (@)
proved.
n+1
To II: Firstly, k = s1 + > s; > n+ 1 follows from |M;| = m = 1 and
i=2
(14).
>z pl ()
Then it is sufficient to show that zjﬂi < T*HLH. This inequality
Z:Opgl ()

can be proved by a simple mathematical induction using (27).

Proof of (7) in case Clk,r!|:
In this case it must be showed that f = max {k, R(k) — k + 1} =: C(k)
satisfies the property (7).

We can use many ideas from case C[r, k] in a similar way.

< >

) by (;) in (9), (14) and in the definitions
(=) (=)

of the sets My,---, My and furthermore @ — o by o — e in (9), (10), (12),
(13), (15) and (22) (and in corresponding formulas without numbers) where
e = () is possible and the corresponding terms are shorter.

These manipulations implicate that » and s change roles in a way.

For this we replace

Moreover we substitute k£ by C(k) in the conjectures.
In case C[k,r'] we must also keep R(k) and R(k) — k in mind.

The above mentioned manipulations lead to

Zi(s,8) = 3 (si—1h) Vs’ € An(s,rt).

i:r;?<si

The considered subsets of M are

M; = {i€M|si < s <8 =vrtors; < sl <5 :rf},

My, = {iEM‘Si < 8; < 52 < ’I”fOl"Si < S; < 5; < Tf},
M, = {iEM’Si < 52 < Sg < Tf},

M = {iGM]rf > s > s > siorrt > sl =5 > 54},
Mp, = {z’eM\si >l = > 52} = {iEM]si > rf}

in case C[k,r'].

The first reduction steps also include the reduction of R(k) :
R(k) = R(k) — > A;. (Note that the difference R(k) — k remains the
ieM

original one.)

11



Since A; := min {si, rt, 52} are others in case C[k,r?] the steps 2 and 3 are
realized in the following way

2.5:= 3 (si—d)+ X (rt-d)= 2 s+ X

i€Mrrr €My i€Mirrr iEMry
s;:=0(=8)),rt:=rl —s;,8, :=s, —s; fori € Myys

si=rl:=0(=8}),s :=s; —r! for i € Myy. Temporarily,

we set s; = s, = rl, :=35,8, := 0 for an additional ¢’ € {7’} =: My.
3. We replace the elements of My by one element ¢ where
s i= > s, rii=sl:=35:=0.
€My

Then s* takes the place of r*.
An equation related to R(k) must be added to (14):

— 1 — K3

1€EMUM o UMy €M UM UMpUMrp

Furthermore Y s; > r* (see (16)) is replaced by > rl > s*.
1€Mrrr €My

E (d(s,5)) < s* —1is sufficient (see (18)) since s* < k < C(k)
s'€An;i(s,T)
according to (32).

Finally the reduced model with

0=s; < s, <5 =rlor0=s; < s, <5 = r! forie M,
rt > s > s =38 =0o0rrl > s, = s = 5 =0forie M,
s* > r, = S; = §;:Of0ri€M[V.
is considered where the difference R(k) — k calculated by the reduced R(k)
and k is less or equal to the original difference.

Analogous to (19) and (20)
k=s"

and

S s=y

i€EMy €My

are valid in case C[k,r!]. In addition

> i< R(k)— k. (33)

A one-to-one correspondence between the elements of the sets A Nik(s,T)
and ng@’z,)(s*) is defined by:
{sfozte{s—s=s,=zfor i=1,--- ,n+m},

I 11 t

where r' = (r;l+1,~-- ,rﬁrﬁn), o= (Tﬁa"' ?rm>'

12



(23) is replaced by

s*

Z z pf[ (1’) pﬁ] (8*_97)

B (d(5,5)) = = < s -
SIGAN;k(Svr) Z p:] (.73) p:}[ (8* —$)

Finally we use C(k) > R(k) — k + 1 > |My| + |M;| = n + 1 which
follows from (33) in order to prove IIL. n

Remarks 1 There is lot of theory about ordered restricted partitions of in-
tegers into positive parts (see [1] for example). In contrary for the case of
ordered restricted partitions into mnon-negative parts not much results are
known. * Therefore we give some basic ideas for the proofs concerning the
above used properties.

a) The one-to-one correspondence T < s — T between the elements of the

n
sets PI'(x) and P> si — x) leads to the symmetry-property (24).

i=1

b) The monotonicity (25) (and based on that the strict monotonicity (26))
can be proved by means of mathematical induction using (24) and the
following simple recursive formula

Pt @ D =L @)+ B0+ D =B sas0)

,8n41) (1, ,Snt1)

¢) We now want to sketch the main idea for the proof of (27). Based on
PP (x) the r* +1 sets Ml *H(z) (x =0,--- ,r*) of partitions of r* + 1
are generated in the following way:
My ) = {2+ (r +1—2)e|Z € PMa),Zi + (r* + 1 —z) < s5i=1,--- ,n},
where e; is the i-th unit vector. (Each set M}, T (x) has at most np?(x)
elements.) With that it remains to show that every partition of Pl(r*+
1) is thereby generated exactly r* + 1 times.

d) Finally, we want to state the proof of (29):

0< é > aia;(b; — b)) (A4 — Aj)

i=0 jij<i

l
0< Z Z [aiain(bj — bl) + ajaiAj(bi — b])]

l 1
Z (aiainb,- + aja,-Ajbj) < Z Z (aiainbj + ajaiAjbi)

i=0j:j<i i=0j:j<i

4Although the method of the generating function and others can also be applied to
ordered partitions into non-negative parts (s. Andrews).
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—~

l l
CLiCLinbi S Z Z aiainbj
) =0

l
2
=0

[
= I

=0
(RS
=0

l 1

Do aiajAsby < Y0 > aza;Aib;

i=0 j=0 i=04§=0

Agagbot-+Ajaby  Agaot+Aq -
aobo+—Fab; = aot-+a;
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