Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 13/10
A new competitive ratio of the Harmonic algorithm for a k-server problem with parallel requests and unit distances

Regina Hildenbrandt

Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677 69-3621
Fax: +493677 69-3270
http://www.tu-ilmenau.de/math/

Preprint No. 13/10

A New Competitive Ratio of the Harmonic Algorithm for a k-Server Problem with Parallel Requests and Unit Distances

R. Hildenbrandt, TU Ilmenau, Inst. f. Mathematik

1 Introduction

In this paper a generalized k -server problem with parallel requests where several servers can also be located on one point is discussed. The investigation of the generalized k -server problem was initiated by an operations research problem which consists of optimal conversions of machines or moulds (see [4] or [8]). It is sensible in the case of parallel requests to distinguish the surplus-situation where the request can be completely fulfilled by means of the k servers and and the scarcity-situation where the request cannot be completely met.

The k-server problem was introduced by Manasse, McGeoch and Sleator [11]. Meanwhile it is the most studied problem in the area of competitve online problems. Historical notes on k -server problems can be found in the book by A. Borodin and R. El-Yaniv [3] (sections 10.9 and 11.7) or also in the paper by Y. Bartal and E. Grove [2]. There the two important results are the competitiveness of the deterministic work-function algorithm (see E. Koutsoupias and C. Papadimitriou [9]) and of the randomized Harmonic k-server algorithm against an adaptive online adversary (see Y. Bartal and E. Grove [2]).

The work-function algorithm is an inefficient algorithm (with a good competitive ratio). In contrast the Harmonic k-server algorithm is memoryless and time-efficient. For this reason we first want to focus on a corresponding Harmonic k-server algorithm for the generalized k -server problem.

If one tries to generalize the proof by Y. Bartal and E. Grove [2] several subchains with different length must be considered and one will see that the computation of the weights $f(j)$ is not possible. In this paper we consider the general k -server problem in the case of unit distances. Using rough estimations of numbers of certain partitions we have shown in [7] that a corresponding Harmonic algorithm is competitive. The (usual) kserver problem with unit distances is known as the paging problem and the Harmonic k-server algorithm as RAND algorithm (see [3], chapters 3 and 4). Raghavan and Snir have shown that the RAND algorithm is k competitive against an adaptive online adversary. Although there can occur a
lot more feasible requests in the case of the generalized k-server problem we will show in this paper (using detailed considerations related to sets of certain partitions) that the corresponding Harmonic k-server algorithm is $\max \{k, R(k)-k+1\}$ competitive (where $R(k)$ is a bound of the requests related to the scarcity-situation, see Theorem 1) and k competitive (just as RAND), if only the surplus-situation is allowed.

2 The formulation of the model

${ }^{1}$ Let $k \geq 1$ be an integer, and $M=(M, d)$ be a finite metric space where M is a set of points with $|M|=N$. An algorithm controls k mobile servers, which are located on points of M. Several servers can be located on one point. The algorithm is presented with a sequence $\sigma=r^{1}, r^{2}, \cdots, r^{n}$ of requests where a request r is defined as an N-ary vector of integers with $r_{i} \in\{0,1, \cdots, k\}$ ("parallel requests"). The request means that r_{i} server are needed on point $i(i=1,2, \cdots, N)$. We say a request r is served if $\left\{\begin{array}{l}\text { at least } \\ \text { at most }\end{array}\right\} r_{i}$ servers lie on $i(i=1,2, \cdots, N)$ in case $\left\{\begin{array}{l}C[r, k] \\ C[k, r]\end{array}\right\} \cdot C[r, k]$ denotes the case $\sum_{i=1}^{N} r_{i} \leq k$ (surplus-situation, the request can be completely fulfilled) and $C[k, r]$ denotes the case $\sum_{i=1}^{N} r_{i} \geq k$ (scarcity-situation, the request cannot be completely met, however it should be met as much as possible). By moving servers, the algorithm must serve the requests $r^{1}, r^{2}, \cdots, r^{n}$ sequentially. For any request sequence σ and any generalized k-server algorithm $A L G_{p(\text { arallel })}, A L G_{p}(\sigma)$ is defined as the total distance (measured by the metric d) moved by the $A L G_{p}$'s servers in servicing σ.

In this paper we will show that the corresponding Harmonic k-server algorithm attains a competitive ratio of $\max \{k, R(k)-k+1\}$ (see Theorem 1) against an adaptive online adversary in the case of unit distances (for the definitions of competitive ratio and adaptive online adversary see [2] or [3], sections 4.1 and 7.1). Analogous to [3], p. 152 working with lazy algorithms $A L G_{p}$ is sufficient. For that reason we define the set of feasible servers positions with respect to s and r in the following way

$$
\begin{align*}
& \hat{A}_{N ; k}(s, r) \\
& \quad=\left\{\begin{array}{l|l}
s^{\prime} \in P_{N}(k) & \begin{array}{l}
r_{i} \leq s_{i}^{\prime} \leq \max \left\{s_{i}, r_{i}\right\}, i=1, \cdots, N, \text { in } C[r, k] \\
\min \left\{s_{i}, r_{i}\right\} \leq s_{i}^{\prime} \leq r_{i}, i=1, \cdots, N, \text { in } C[k, r]
\end{array}
\end{array}\right\} \tag{1}
\end{align*}
$$

[^0]\[

$$
\begin{equation*}
\text { where } P_{N}(k):=\left\{s \in \mathbb{Z}_{+}^{n} \mid \sum_{i=1}^{N} s_{i}=k\right\} \tag{2}
\end{equation*}
$$

\]

The metric d implies that $\left(P_{N}(k), \hat{d}\right)$ is also a finite metric space where \hat{d} are the optimal values of the classical transportation problems with availabilities s and requirements s^{\prime} of $P_{N}(k): \sum_{i=1}^{N} \sum_{j=N}^{N} d(i, j) x_{i j} \rightarrow$ min subject to $\sum_{j=1}^{N} x_{i j}=s_{i} \forall i, \sum_{i=1}^{N} x_{i j}=s_{j}^{\prime} \forall j, x \in \mathbb{Z}_{+}^{n} \times \mathbb{Z}_{+}^{n}($ see [6], Lemma 3.6).

The corresponding $H A R M O N I C_{p}$ k-server algorithm operates as follows: Serve a (not completely covered) request r with randomly chosen servers so that for the (new) server positions $s^{\prime} \in \hat{A}_{N ; k}(s, r)$ is valid with respect to the previous server positions s and the request r. More precisely, $H A R M O N I C_{p}$ leads to $s^{\prime} \in \hat{A}_{N ; k}(s, r)$ with probability

$$
\begin{equation*}
\frac{\frac{1}{\hat{d}\left(s, s^{\prime}\right)}}{\sum_{s^{\prime \prime}: s^{\prime \prime} \in \hat{A}_{N ; k}(s, r)} \frac{1}{\frac{d}{d}\left(s s^{\prime \prime}\right)}} . \tag{3}
\end{equation*}
$$

3 The competitiveness of $H A R M O N I C_{p}$ in case of unit distances

Unit distances means that $d(i, j)=1 \forall i \neq j$. Thus, $\hat{d}\left(s, s^{\prime}\right)=\sum_{i=1}^{N} \frac{1}{2}\left|s_{i}-s_{i}^{\prime}\right|$ for $s, s^{\prime} \in P_{N}(k)$ follows and (1) yields $\hat{d}\left(s, s^{\prime}\right)=\left\{\begin{array}{c}\sum_{i: r_{i}^{t}>s_{i}}\left(r_{i}^{t}-s_{i}\right) \text { in } C[r, k] \\ \sum_{i: r_{i}^{t}<s_{i}}\left(s_{i}-r_{i}^{t}\right) \text { in } C[k, r]\end{array}\right.$ for every $s^{\prime} \in \hat{A}_{N ; k}(s, r)$. Then $s^{\prime} \in \hat{A}_{N ; k}(s, r)$ is chosen randomly and uniformly with probability $\frac{1}{\left|\hat{A}_{N ; k}(s, r)\right|}$ among all elements of $\hat{A}_{N ; k}(s, r)$ by HARMONIC 。

In [7] can be found an example which shows that in order to prove the competitiveness an additional assumption (as $\sum_{i \in M} r_{i}^{t} \leq R(k)$ in the following theorem) in the case $C\left[k, r^{t}\right]$ is necessary.

Theorem 1. The HARMONIC ${ }_{p}$-server algorithm attains a competitive ratio of $C(k)=\max \{k, R(k)-k+1\}$ against an adaptive online adversary in case of unit distances if $\sum_{i \in M} r_{i}^{t} \leq R(k) \forall t$ for given $R(k)>k$. 2

[^1]Proof. We will use a potential function (see [2]) to prove the statement. In case of unit distances it is sufficient to use the following simple potential function

$$
\begin{equation*}
\Phi\left(s, s^{\prime}\right):=\hat{f} \sum_{i=1}^{N} \frac{1}{2}\left|s_{i}-s_{i}^{\prime}\right|\left(=\hat{f} \hat{d}\left(s, s^{\prime}\right)\right), s, s^{\prime} \in P_{N}(k) \tag{4}
\end{equation*}
$$

At the beginning let $\hat{f} \geq 0$. We will solve for \hat{f} later. More precisely and analogous to Bartal and Grove, let Φ_{t} denote the value of Φ at the end of the t-th step (corresponding to the t -th request r^{t} in the request sequence) and let Φ_{t}^{\sim} denote the value of Φ after the first stage of the t-th step (i.e., after the adversary's move and before the algorithm's move). In cases $C\left[r^{t}, k\right]$ and $C\left[k, r^{t}\right]$ we will show the following properties (see [2], pages 4 and 5)

$$
\begin{gather*}
\Phi \geq 0 \tag{5}\\
\Phi_{t}^{\sim}-\Phi_{t-1} \leq C(k) D_{t} \tag{6}
\end{gather*}
$$

where D_{t} denotes the distance moved by the offline servers (controlled by the adversary) to serve the request in the t-th step.

$$
\begin{equation*}
E\left(\Phi_{t}^{\sim}-\Phi_{t}\right) \geq E\left(Z_{t}\right) \tag{7}
\end{equation*}
$$

where Z_{t} represents the cost which incurred by the online algorithm to serve the request in the t-th step.

If we can show that the potential function satisfies these properties then $H A R M O N I C_{p}$ is $\mathrm{C}(\mathrm{k})$ competitive.
In the following let
$\bar{s}\left(\in P_{N}(k)\right)$ denote the (offline) servers position controlled by the adversary at the end of the ($\mathrm{t}-1$)-th step (i.e., at the beginning of the t-th step)
$s\left(\in P_{N}(k)\right)$ denote the (online) servers position controlled by the algorithm at the beginning of the t-th step
$s^{\prime}\left(\in \hat{A}_{N ; k}\left(s, r^{t}\right)\right)$ denote the (online) servers position at the end of the t-th step and
$\bar{s}^{\prime}\left(\in P_{N}(k)\right)$ denote the (offline) servers position controlled by the adversary after the first stage of the t-th step.

Proof of (5) and (6):
(5) is straightforward if $\hat{f} \geq 0$. (6) follows by means of the triangleequation of the metric \hat{d} :

$$
\hat{f} \hat{d}\left(s, \bar{s}^{\prime}\right)-\hat{f} \hat{d}(s, \bar{s}) \leq \hat{f} \hat{d}\left(\bar{s}, \bar{s}^{\prime}\right)=\hat{f} D_{t} \leq C(k) D_{t} \text { if } C(k) \geq \hat{f}
$$

In this case we will show that $\hat{f}=k$ (and hence each $\hat{f} \geq k$) satisfies the property (7).

For unit distances it follows that

$$
\begin{equation*}
\Phi_{t}^{\sim}\left(s, \bar{s}^{\prime}\right)=\hat{f} \sum_{i: \bar{s}_{i}^{\prime}>s_{i}}\left(\bar{s}_{i}^{\prime}-s_{i}\right)=\hat{f} \sum_{i: \bar{s}_{i}^{\prime}<s_{i}}\left(s_{i}-\bar{s}_{i}^{\prime}\right) \forall s^{\prime} \in \hat{A}_{N ; k}\left(s, r^{t}\right) \tag{8}
\end{equation*}
$$

as well as

$$
\begin{gather*}
Z_{t}\left(s, s^{\prime}\right)=\sum_{i: r_{i}^{t}>s_{i}}\left(r_{i}^{t}-s_{i}\right) \forall s^{\prime} \in \hat{A}_{N ; k}\left(s, r^{t}\right) \tag{9}\\
=: Z_{t}\left(s, r^{t}\right)
\end{gather*}
$$

and (7) is equivalent to

$$
\begin{equation*}
\Phi_{t}^{\sim}-E\left(\Phi_{t}\right) \geq Z_{t} \tag{7a}
\end{equation*}
$$

We will reduce the problem in several steps and consider, firstly, certain cases for which the proof is simple. Finally, a remaining reduced problem will be investigated using properties of certain partitions of integers.

Next the set $M=\{i=1, \cdots, N\}$ of points is partitioned in relation to $s, \bar{s}_{i}^{\prime}, r^{t}, s_{i}^{\prime}$ in case $C\left[r^{t}, k\right]$ where $r_{i}^{t} \leq s_{i}^{\prime} \leq \max \left\{r_{i}^{t}, s_{i}\right\}$ for $i=1, \cdots, N$:

$$
\begin{aligned}
& M_{I}=\left\{i \in M \mid s_{i}>s_{i}^{\prime} \geq \bar{s}_{i}^{\prime}=r_{i}^{t} \text { or } s_{i} \geq s_{i}^{\prime}>\bar{s}_{i}^{\prime}=r_{i}^{t}\right\} \\
& M_{I I a}=\left\{i \in M \mid s_{i}>s_{i}^{\prime} \geq \bar{s}_{i}^{\prime}>r_{i}^{t} \text { or } s_{i} \geq s_{i}^{\prime}>\bar{s}_{i}^{\prime}>r_{i}^{t}\right\} \\
& M_{I I b}=\left\{i \in M \mid s_{i}>\bar{s}_{i}^{\prime}>s_{i}^{\prime} \geq r_{i}^{t}\right\} \\
& M_{I I I}=\left\{i \in M \mid r_{i}^{t} \leq s_{i}^{\prime}<s_{i} \leq \bar{s}_{i}^{\prime} \text { or } r_{i}^{t}<s_{i}^{\prime}=s_{i} \leq \bar{s}_{i}^{\prime}\right\} \\
& M_{I V}=\left\{i \in M \mid s_{i} \leq r_{i}^{t}=s_{i}^{\prime} \leq \bar{s}_{i}^{\prime}\right\}=\left\{i \in M \mid s_{i} \leq r_{i}^{t}\right\}
\end{aligned}
$$

A first reduced model (reduction in 3 steps):
The quantities of the property (7a) will not change by the following manipulations. Particularly, the essential structure of $\hat{A}_{N ; k}$ (see (1)) and $\left|\hat{A}_{N ; k}\right|$ will also not change. k must be reduced in corresponding way.

1. $\Delta_{i}:=\min \left\{s_{i}, r_{i}^{t}, \bar{s}_{i}^{\prime}\right\}$ for $i \in M, k:=k-\sum_{i \in M} \Delta_{i}$,
$s_{i}:=s_{i}-\Delta_{i}, \bar{s}_{i}^{\prime}:=\bar{s}_{i}^{\prime}-\Delta_{i}, s_{i}^{\prime}:=s_{i}^{\prime}-\Delta_{i}, r_{i}^{t}:=r_{i}^{t}-\Delta_{i}$ for $i \in M$
2. $\bar{s}:=\sum_{i \in M_{I I I}}\left(\bar{s}_{i}^{\prime}-s_{i}\right)+\sum_{i \in M_{I V}}\left(\bar{s}_{i}^{\prime}-r_{i}^{t}\right)$,
$\bar{s}_{i}^{\prime}:=s_{i}$ for $i \in M_{I I I}, \quad \bar{s}_{i}^{\prime}:=r_{i}^{t}\left(=s_{i}^{\prime}\right)$ for $i \in M_{I V}$. Temporarily,
we set $s_{i^{\prime}}=s_{i^{\prime}}^{\prime}=r_{i^{\prime}}^{t}:=0, \bar{s}_{i^{\prime}}^{\prime}:=\bar{s}$ for an additional $i^{\prime} \in\left\{i^{\prime}\right\}=: M_{V}$.
3. We replace the elements of $M_{I V}$ by one element i where

$$
r^{*}:=\sum_{i \in M_{I V}} r_{i}^{t}=: s_{i}^{\prime}=: \bar{s}_{i}^{\prime}
$$

Then with regard to $s, s^{\prime}, \bar{s}^{\prime}, r^{t}$ the following possibilities remain for the reduced model:

$$
s_{i}>s_{i}^{\prime} \geq \bar{s}_{i}^{\prime}=0=r_{i}^{t} \text { or } s_{i} \geq s_{i}^{\prime}>\bar{s}_{i}^{\prime}=0=r_{i}^{t} \text { for } i \in M_{I}
$$

$$
\begin{aligned}
& s_{i}>s_{i}^{\prime} \geq \bar{s}_{i}^{\prime}>0=r_{i}^{t} \text { or } s_{i} \geq s_{i}^{\prime}>\bar{s}_{i}^{\prime}>0=r_{i}^{t} \text { for } i \in M_{I I a}, \\
& s_{i}>\bar{s}_{i}^{\prime}>s_{i}^{\prime} \geq r_{i}^{t}=0 \text { for } i \in M_{I I b} \\
& r_{i}^{t}=0 \leq s_{i}^{\prime}<s_{i}=\bar{s}_{i}^{\prime} \text { or } r_{i}^{t}=0<s_{i}^{\prime}=s_{i}=\bar{s}_{i}^{\prime} \text { for } i \in M_{I I I}, \\
& s_{i}=0<r^{*}=s_{i}^{\prime}=\bar{s}_{i}^{\prime} \text { for } i \in M_{I V}=\{i\}, \\
& s_{i^{\prime}}=s_{i^{\prime}}^{\prime}=r_{i^{\prime}}^{t}=0, \bar{s}_{i^{\prime}}^{\prime}=\bar{s} \text { for } i^{\prime} \in M_{V}=\left\{i^{\prime}\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
r^{*}=\sum_{i \in M_{I} \cup M_{I I a} \cup M_{I I b} \cup M_{I I I}}\left(s_{i}-s_{i}^{\prime}\right) \tag{10}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
Z_{t}\left(s, s^{\prime}\right)=r^{*} \forall s^{\prime} & \in \hat{A}_{N ; k}(s, r)(\operatorname{see}(9)) \\
& \Phi_{t}^{\sim}\left(s, \bar{s}^{\prime}\right)=\hat{f}\left(r^{*}+\bar{s}\right)(\operatorname{see}(8)) \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
& (0 \leq) \Phi_{t}\left(s^{\prime}, \bar{s}^{\prime}\right)=\hat{f}\left(\sum_{i \in M_{I I b} \cup M_{I I I}}\left(\bar{s}_{i}^{\prime}-s_{i}^{\prime}\right)+\bar{s}\right) \\
& =\hat{f}\left(\sum_{i \in M_{I I b}}\left(s_{i}-s_{i}^{\prime}\right)-\sum_{i \in M_{I I b}}\left(s_{i}-\bar{s}_{i}^{\prime}\right)+\sum_{i \in M_{I I I}}\left(s_{i}-s_{i}^{\prime}\right)+\bar{s}\right) \\
& =\hat{f}\left(r^{*}-\sum_{i \in M_{I} \cup M_{I I a}}\left(s_{i}-s_{i}^{\prime}\right)-\sum_{i \in M_{I I b}}\left(s_{i}-\bar{s}_{i}^{\prime}\right)+\bar{s}\right)\left(\leq \hat{f}\left(r^{*}+\bar{s}\right)\right) \tag{12}
\end{align*}
$$

follow (the last equation by means of (10)).
$\hat{f} \bar{s}$ vanishes in the difference $\Phi_{t}^{\sim}\left(s, \bar{s}^{\prime}\right)-\Phi_{t}\left(s^{\prime}, \bar{s}^{\prime}\right)$. That's why we consider an unbalanced reduced model without M_{V} and with the difference of \bar{s} between $\sum_{i \in M} s_{i}$ and $\sum_{i \in M} \bar{s}_{i}^{\prime} . Z_{t}\left(s, s^{\prime}\right)=r^{*} \forall s^{\prime} \in \hat{A}_{N ; k}(s, r)$ remains valid. We set $\Phi_{t}^{\sim}\left(s, \bar{s}^{\prime}\right)=\hat{f} r^{*}$ and $\Phi_{t}\left(s^{\prime}, \bar{s}^{\prime}\right)=\hat{f} \hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)$ where

$$
\begin{equation*}
\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)=\sum_{i \in M_{I I b} \cup M_{I I I}}\left(\bar{s}_{i}^{\prime}-s_{i}^{\prime}\right) \text { for } s^{\prime} \in \hat{A}_{N ; k}(s, r) . \tag{13}
\end{equation*}
$$

In this way $\Phi_{t}^{\sim}\left(s, \bar{s}^{\prime}\right)-\Phi_{t}\left(s^{\prime}, \bar{s}^{\prime}\right)$ does not change.
Clearly that

$$
\begin{equation*}
k=\sum_{i \in M_{I} \cup M_{I I a} \cup M_{I I b} \cup M_{I I I}} s_{i} \geq r^{*}+\sum_{i \in M_{I I a} \cup M_{I I b} \cup M_{I I I}} \bar{s}_{i}^{\prime} \tag{14}
\end{equation*}
$$

is right for the unbalanced model.
We can then conclude from (12) that

$$
\begin{equation*}
\Phi_{t}\left(s^{\prime}, \bar{s}^{\prime}\right)=r^{*} \Leftrightarrow s_{i}-s_{i}^{\prime}=0 \text { for } i \in M_{I} \cup M_{I I a}, M_{I I b}=\varnothing \tag{15}
\end{equation*}
$$

thus

$$
\begin{equation*}
\Phi_{t}\left(s^{\prime}, \bar{s}^{\prime}\right)=r^{*} \Leftrightarrow r^{*}=\sum_{i \in M_{I I I}}\left(s_{i}-s_{i}^{\prime}\right)(\text { see }(10)) \Rightarrow \sum_{i \in M_{I I I}} s_{i} \geq r^{*} \tag{16}
\end{equation*}
$$

With regard to the reduced model (7a) is equivalent to

$$
\hat{f} r^{*}-\hat{f} \underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \geq r^{*} \text { and hence also to } \frac{r^{*}}{r^{*}-} \underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \quad \leq
$$ \hat{f}.

Finally the conjecture $\hat{f}=k=C(k)^{3}$ in case $C\left[r^{t}, k\right]$ leads to the following representation of (7a):

$$
\begin{equation*}
\underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \leq r^{*} \frac{k-1}{k} . \tag{17}
\end{equation*}
$$

The inequality

$$
\begin{equation*}
\underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \leq r^{*}-1 \tag{18}
\end{equation*}
$$

is sufficient for the validity of (17) since $k \geq r^{*}$, see (14).
Case: $\exists s^{\prime} \in \hat{A}_{N ; k}(s, r): M_{I I b} \neq \varnothing$
Let $\hat{A}_{N ; k}^{I}(s, r)=\left\{s^{\prime} \in \hat{A}_{N ; k}(s, r) \mid M_{I I b}=\varnothing\right\}$ and $\hat{A}_{N ; k}^{I I}(s, r)=\hat{A}_{N ; k}(s, r) \backslash \hat{A}_{N ; k}^{I}(s, r)$.
Then (15) implies that $\underset{s^{\prime} \in \hat{A}_{N ; k}^{I}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \leq r^{*}-1$.
Using the relation

$$
\underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right)=\underset{s^{\prime} \in \hat{A}_{N ; k}^{I}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \frac{\left|\hat{A}_{N ; k}^{I}(s, r)\right|}{\left|\hat{A}_{N ; k}(s, r)\right|}+\underset{s^{\prime} \in \hat{A}_{N ; k}^{I}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \frac{\left|\hat{A}_{N ; k}^{I I}(s, r)\right|}{\left|\hat{A}_{N ; k}(s, r)\right|}
$$

we get
a) $\underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \leq r^{*}-1$ if $\underset{s^{\prime} \in \hat{A}_{N ; k}^{I}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \leq r^{*}-1$ and
the conjecture (17) is true according to (18),
b) $\underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right)<\underset{s^{\prime} \in \hat{A}_{N ; k}^{I}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right)$ if $\underset{s^{\prime} \in \hat{A}_{N ; k}^{N}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right)>r^{*}-1$ and it is sufficient to consider a reduced model with $M_{I I b}=\varnothing \forall s^{\prime} \in \hat{A}_{N ; k}(s, r)$.
Case: $M_{I I b}=\varnothing \forall s^{\prime} \in \hat{A}_{N ; k}(s, r)$
In this case we can use a further reduction step:

$$
s_{i}:=s_{i}-\bar{s}_{i}^{\prime}, s_{i}^{\prime}:=s_{i}^{\prime}-\bar{s}_{i}^{\prime}, \bar{s}_{i}^{\prime}:=0 \text { for } i \in M_{I I a}, k:=\sum_{i \in M_{I} \cup M_{I I a} \cup M_{I I I}} s_{i} .
$$

Then the set $M_{I I a}$ can be integrated into the set M_{I} and a reduced model with the following possibilities in relation to $s, s^{\prime}, \bar{s}^{\prime}, r^{t}$ remains:

$$
s_{i}>s_{i}^{\prime} \geq \bar{s}_{i}^{\prime}=0=r_{i}^{t} \text { or } s_{i} \geq s_{i}^{\prime}>\bar{s}_{i}^{\prime}=0=r_{i}^{t} \text { for } i \in M_{I},
$$

[^2]\[

$$
\begin{aligned}
r_{i}^{t} & =0 \leq s_{i}^{\prime}<s_{i}=\bar{s}_{i}^{\prime} \text { or } r_{i}^{t}=0<s_{i}^{\prime}=s_{i}=\bar{s}_{i}^{\prime} \text { for } i \in M_{I I I}, \\
s_{i} & =0<r^{*}=s_{i}^{\prime}=\bar{s}_{i}^{\prime} \text { for } i \in M_{I V}
\end{aligned}
$$
\]

The union of sets in the formulas (14) and (10) must then be replaced by $M_{I} \cup M_{I I I}$ or $M_{I I I}$. Furthermore (10) leads to

$$
\begin{equation*}
k \geq r^{*} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i \in M_{I}} s_{i} \geq r^{*} \tag{20}
\end{equation*}
$$

If $\sum_{i \in M_{I I I}} s_{i} \leq r^{*}-1$ then $\underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \leq r^{*}-1$ follows from (16) and the conjecture (17) is true according to (18). Hence it remains to investigate the reduced problem with $M_{I I b}=\varnothing$ where (20) and

$$
\begin{equation*}
\sum_{i \in M_{I I I}} s_{i} \geq r^{*} \tag{21}
\end{equation*}
$$

are assumed.
Let us set: $M_{I}=\{1, \cdots, m\}, M_{I I I}=\{m+1, \cdots, m+n\}$, $M_{I V}=\{m+n+1\}$ and $s^{I}=\left(s_{m+1}, \cdots, s_{m+n}\right), s^{I I}=\left(s_{1}, \cdots, s_{m}\right)$.

In order to prove the conjecture for the reduced problem we use ordered restricted partitions of integers x (compositions) into exactly n non-negative parts (written as vectors):

$$
P_{s}^{n}(x):=\left\{\bar{x} \in \mathbb{Z}_{+}^{n} \mid 0 \leq \bar{x}_{i} \leq s_{i} \text { for } i=1, \cdots, n, \sum_{i=1}^{n} \bar{x}_{i}=x\right\}, p_{s}^{n}(x):=
$$ $\left|P_{s}^{n}(x)\right|$ for $x \in \mathbb{Z}_{+}$and given $n \in \mathbb{N}, s \in \mathbb{Z}_{+}^{n}$.

A one-to-one correspondence between the elements of the sets $\hat{A}_{N ; k}(s, r)$ and $P_{\left(s^{I I}, s^{I}\right)}^{n+m}\left(r^{*}\right)$ is defined by:

$$
\begin{equation*}
\left\{s^{\prime} \leftrightarrow \bar{x}\right\} \Leftrightarrow\left\{s_{i}-s_{i}^{\prime}=\bar{x}_{i} \text { for } i=1, \cdots, n+m\right\} . \tag{22}
\end{equation*}
$$

$$
\left|\hat{A}_{N ; k}(s, r)\right|=p_{\left(s^{I I}, s^{I}\right)}^{n+m}\left(r^{*}\right)=\sum_{x=0}^{r^{*}} p_{s^{I}}^{n}(x) p_{s^{I I}}^{m}\left(r^{*}-x\right) \text { (pay attention to }
$$

(21) and (20)) and $\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)=\sum_{i \in M_{I I I}}\left(\bar{s}_{i}^{\prime}-s_{i}^{\prime}\right)=\sum_{i=m+1}^{m+n}\left(s_{i}-s_{i}^{\prime}\right)=\sum_{i=m+1}^{m+n} \bar{x}_{i}$ (see (13)) imply the following representation of the conjecture (17):
where (20) and (21) are assumed.

In order to prove (23) we use the following properties of $p_{s}^{n}(x)$ and the following relationship (29):

$$
\begin{equation*}
p_{s}^{n}(x)=p_{s}^{n}\left(\sum_{i=1}^{n} s_{i}-x\right)(\text { symmetry }) \tag{24}
\end{equation*}
$$

- $\quad p_{s}^{n}(x)$ is monotonically increasing for

$$
\begin{equation*}
x \in\left\{0,1, \cdots, \max \left\{s_{n},\left\lceil\frac{1}{2} \sum_{i=1}^{n} s_{i}\right\rceil\right\}\right\} \tag{25}
\end{equation*}
$$

- $p_{s}^{n}(x)$ is strictly increasing for $x \in\left\{0,1, \cdots, \min \left\{\sum_{i=1}^{n-1} s_{i} ;\left\lfloor\frac{1}{2} \sum_{i=1}^{n} s_{i}\right\rfloor\right\}\right\}$
- $\quad\left(r^{*}+1\right) p_{s}^{n}\left(r^{*}+1\right) \leq n \sum_{x=0}^{r^{*}} p_{s}^{n}(x), r^{*} \in \mathbb{Z}_{+}$
- $\quad \frac{(x+1) p_{s}^{n}(x+1)+y p_{s}^{n}(y)}{p_{s}^{n}(x+1)+p_{s}^{n}(y)} \leq \frac{(y+1) p_{s}^{n}(y+1)+x p_{s}^{n}(x)}{p_{s}^{n}(y+1)+p_{s}^{n}(x)}(\leq y+2)$

$$
\begin{equation*}
\text { for } x<y \text { and } y+1(y+2) \leq \max \left\{s_{n},\left\lceil\frac{1}{2} \sum_{i=1}^{n} s_{i}\right\rceil\right\} \tag{28}
\end{equation*}
$$

Let $a_{i}>0$ for $i=0, \cdots, l, b_{0} \geq b_{1} \geq \cdots \geq b_{l}>0$ and $A_{0} \leq A_{1} \leq \cdots \leq A_{l}$. Then $\frac{A_{0} a_{0} b_{0}+\cdots+A_{l} a_{l} b_{l}}{a_{0} b_{0}+\cdots+a_{l} b_{l}} \leq \frac{A_{0} a_{0}+\cdots+A_{l} a_{l}}{a_{0}+\cdots+a_{l}}$ is valid.
(See the following Remarks 1 for (24), $\cdots,(27)$ and (29). Simple computations yield (28).)

Case $p_{s^{I}}^{n}\left(r^{*}-1\right)>p_{s^{I}}^{n}\left(r^{*}\right)$:
Together with (24) and (26) the relations $r^{*}>1$ and $p_{s^{I}}^{n}\left(r^{*}-2\right) \geq p_{s^{I}}^{n}\left(r^{*}\right)$ follow. The last inequality implies $p_{s^{I}}^{n}\left(r^{*}-2\right) p_{s^{I I}}^{m}(2) \geq p_{s^{I}}^{n}\left(r^{*}\right)=p_{s^{I}}^{n}\left(r^{*}\right) p_{s^{I I}}^{m}(0)$ and $\frac{\left(r^{*}-2\right) p_{s I}^{n}\left(r^{*}-2\right) p_{s I I}^{m}(2)+r^{*} p_{s I}^{n}\left(r^{*}\right) p_{s I I}^{m}(0)}{p_{s^{I}}^{n}\left(r^{*}-2\right) p_{s I I}^{m}(2)+p_{s I}^{n}\left(r^{*}\right) p_{s I I}^{m}(0)} \leq r^{*}-1$.
Hence $\underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right)=\frac{\sum_{x=0}^{r^{*}} x p_{s^{I}}^{n}(x) p_{s^{I I}}^{m}\left(r^{*}-x\right)}{\sum_{x=0}^{r^{*}} p_{s^{I}}^{n}(x) p_{s^{I I}}^{m}\left(r^{*}-x\right)} \leq r^{*}-1$, and (23) is valid in this case (see (18)).

Case $p_{s^{I}}^{n}\left(r^{*}-1\right) \leq p_{s^{I}}^{n}\left(r^{*}\right)$:
We show:
I

$$
\begin{equation*}
\frac{\sum_{x=0}^{r^{*}} x p_{s^{I}}^{n}(x) p_{s^{I I}}^{m}\left(r^{*}-x\right)}{\sum_{x=0}^{r *} p_{s^{I}}^{n}(x) p_{s^{I I}}^{m}\left(r^{*}-x\right)} \leq \frac{\sum_{x=0}^{r^{*}} x p_{s I}^{n}(x)}{\sum_{x=0}^{r^{*}} p_{s I}^{n}(x)} \tag{30}
\end{equation*}
$$

(this means $\left|M_{I}\right|=m=1$ yields an upper bound)

II

$$
\begin{equation*}
\frac{\sum_{x=0}^{r^{*}} x p_{s I}^{n}(x)}{\sum_{x=0}^{r_{0}^{*}} p_{s I}^{n}(x)} \leq r^{*} \frac{k-1}{k} . \tag{31}
\end{equation*}
$$

To I: Let us set $l=\min \left\{r^{*},\left\lfloor\frac{1}{2} \sum_{i=1}^{m} s_{i}^{I I}\right\rfloor\right\}, L=\max \left\{0,2 r^{*}-\sum_{i=1}^{m} s_{i}^{I I}\right\}$,
$\bar{L}=\left\lfloor\frac{L}{2}\right\rfloor=\max \left\{0, r^{*}-\left\lceil\frac{1}{2} \sum_{i=1}^{m} s_{i}^{I I}\right\rceil\right\}, \bar{i}=i+\left\lceil\frac{L}{2}\right\rceil$ for $i=0, \ldots, l$,
$b_{i}=p_{s^{I I}}^{m}\left(r^{*}-\bar{i}\right)$ for $i=0, \ldots, l$ and

$$
\left.\begin{array}{l}
A_{i}=\frac{\bar{i} p_{s_{I}^{\prime}}^{n}(\bar{i})+(L-\bar{i}) p_{s_{I}}^{n}(L-\bar{i})}{p_{s^{I}}^{n}\left(\bar{i}+p_{s^{I}}^{I} L-\bar{i}\right)} \text { for } i=0, \cdots, \bar{L}, \\
a_{i}=p_{s^{I}}^{(}\left(\bar{i}+p_{s^{I}}^{n}(L-\bar{i}) \text { for } i=0, \cdots, \bar{L} \text { if } L\right. \text { is odd or } \\
a_{0}=p_{s^{I}}^{n}\left(\frac{L}{2}\right), a_{i}=p_{s^{I}}^{n}(\bar{i})+p_{s^{I}}^{n}(L-\bar{i}) \text { for } i=1, \cdots, \bar{L} \text { if } L \text { is } \\
\text { even }
\end{array}\right\} \text { if } L>
$$

0 ,

$$
\left.\begin{array}{rl}
A_{i}=i+\left(r^{*}-l\right) \text { and } a_{i} & =p_{s^{I}}^{n}\left(i+\left(r^{*}-l\right)\right) \\
\text { for } i & =0, \ldots, l \text { if } L=0 \text { or } \\
\text { for } i & =\bar{L}+1, \ldots, l \text { if } L>0
\end{array}\right\} \text { if } \bar{L}<l .
$$

It is clear that $A_{\bar{L}}=\frac{L p_{s_{s}^{n}}^{n}(L)+0 p_{s I}^{n}(0)}{p_{s I}^{n}(L)+p_{s I}^{n}(0)}$ and

$$
A_{\bar{L}+1}=\bar{L}+1+r^{*}-l=r^{*}-\left\lceil\frac{1}{2} \sum_{i=1}^{m} s_{i}^{I I}\right\rceil+1+r^{*}-\left\lfloor\frac{1}{2} \sum_{i=1}^{m} s_{i}^{I I}\right\rfloor=L+1
$$

if $L>0\left(\Rightarrow l=\left\lfloor\frac{1}{2} \sum_{i=1}^{m} s_{i}^{I I}\right\rfloor\right)$ and $\bar{L}<l$.
The symmetry $b_{i}=p_{s^{I I}}^{m}\left(r^{*}-\bar{i}\right)=p_{s^{I I}}^{m}\left(\sum_{i=1}^{m} s_{i}^{I I}-r^{*}+\bar{i}\right)=p_{s^{I I}}^{m}\left(r^{*}-\right.$ $(L-\bar{i}))$
for $i=0, \cdots, \bar{L}$ if $L>0$ (see (24)) leads to $\frac{\sum_{x=0}^{r^{*}} x p_{s I}^{n}(x) p_{s I I}^{m}\left(r^{*}-x\right)}{\sum_{x=0}^{r *} p_{s I}^{n}(x) p_{s I I}^{m}\left(r^{*}-x\right)}=$ $\frac{A_{0} a_{0} b_{0}+\cdots+A_{l} a_{l} b_{l}}{a_{0} b_{0}+\cdots+a_{l} b_{l}}$.

Using $r^{*}-\bar{i} \leq r^{*}-\left\lceil\frac{L}{2}\right\rceil \leq\left\lfloor\frac{1}{2} \sum_{i=1}^{m} s_{i}^{I I}\right\rfloor$ for $i=0, \ldots, l$ together with with (24) implies that $\left\{b_{i}\right\}$ is monotonically decreasing.

Obviously, $\left\{A_{i}\right\}$ is monotonically increasing if $L=0$. In case $L>0$ the
monotonicity follows from (28) since $p_{s^{I}}^{n}\left(r^{*}-1\right) \leq p_{s^{I}}^{n}\left(r^{*}\right)$ implies $r^{*} \leq \max \left\{s_{n},\left\lceil\frac{1}{2} \sum_{i=1}^{n} s_{i}\right\rceil\right\}$ (see (25)).

We can now apply (29) and

$$
\begin{aligned}
& \quad \frac{\sum_{x=0}^{r^{*}} x p_{s^{I}}^{n}(x) p_{s^{I I}}^{m}\left(r^{*}-x\right)}{\sum_{x=0}^{r^{*}} p_{s^{I}}^{n}(x) p_{s^{I I}}^{m}\left(r^{*}-x\right)}=\frac{A_{0} a_{0} b_{0}+\cdots+A_{l} a_{l} b_{l}}{a_{0} b_{0}+\cdots+a_{l} b_{l}} \leq \frac{A_{0} a_{0}+\cdots+A_{l} a_{l}}{a_{0}+\cdots+a_{l}}=\frac{\sum_{x=0}^{r^{*}} x p_{s^{I}}^{n}(x)}{\sum_{x=0}^{r^{*}} p_{s^{I}}^{n}(x)} \text { is } \\
& \text { proved. }
\end{aligned}
$$

To II: Firstly, $k=s_{1}+\sum_{i=2}^{n+1} s_{i} \geq n+1$ follows from $\left|M_{I}\right|=m=1$ and (14).

Then it is sufficient to show that $\frac{\sum_{x=0}^{r^{*}} x p_{s^{I}}^{n}(x)}{\sum_{x=0}^{r^{*}} p_{s I}^{n}(x)} \leq r^{*} \frac{n}{n+1}$. This inequality can be proved by a simple mathematical induction using (27).

Proof of (7) in case $C\left[k, r^{t}\right]$:
In this case it must be showed that $\hat{f}=\max \{k, R(k)-k+1\}=: C(k)$ satisfies the property (7).
We can use many ideas from case $C\left[r^{t}, k\right]$ in a similar way.
For this we replace $\left\{\begin{array}{c}< \\ (-) \\ > \\ (-)\end{array}\right\}$ by $\left\{\begin{array}{c}> \\ (-) \\ < \\ (-)\end{array}\right\}$ in (9), (14) and in the definitions
of the sets $M_{I}, \cdots, M_{I V}$ and furthermore $\bullet-o$ by $o-\bullet$ in (9), (10), (12), (13), (15) and (22) (and in corresponding formulas without numbers) where $\bullet=0$ is possible and the corresponding terms are shorter.
These manipulations implicate that r and s change roles in a way.
Moreover we substitute k by $C(k)$ in the conjectures.
In case $C\left[k, r^{t}\right]$ we must also keep $R(k)$ and $R(k)-k$ in mind.
The above mentioned manipulations lead to

$$
Z_{t}\left(s, s^{\prime}\right)=\sum_{i: r_{i}^{t}<s_{i}}\left(s_{i}-r_{i}^{t}\right) \forall s^{\prime} \in \hat{A}_{N ; k}\left(s, r^{t}\right)
$$

The considered subsets of M are

$$
\begin{aligned}
& M_{I}=\left\{i \in M \mid s_{i}<s_{i}^{\prime} \leq \bar{s}_{i}^{\prime}=r_{i}^{t} \text { or } s_{i} \leq s_{i}^{\prime}<\bar{s}_{i}^{\prime}=r_{i}^{t}\right\} \\
& M_{I I a}=\left\{i \in M \mid s_{i}<s_{i}^{\prime} \leq \bar{s}_{i}^{\prime}<r_{i}^{t} \text { or } s_{i} \leq s_{i}^{\prime}<\bar{s}_{i}^{\prime}<r_{i}^{t}\right\} \\
& M_{I I b}=\left\{i \in M \mid s_{i}<\bar{s}_{i}^{\prime}<s_{i}^{\prime} \leq r_{i}^{t}\right\} \\
& M_{I I I}=\left\{i \in M \mid r_{i}^{t} \geq s_{i}^{\prime}>s_{i} \geq \bar{s}_{i}^{\prime} \text { or } r_{i}^{t}>s_{i}^{\prime}=s_{i} \geq \bar{s}_{i}^{\prime}\right\} \\
& M_{I V}=\left\{i \in M \mid s_{i} \geq r_{i}^{t}=s_{i}^{\prime} \geq \bar{s}_{i}^{\prime}\right\}=\left\{i \in M \mid s_{i} \geq r_{i}^{t}\right\}
\end{aligned}
$$

in case $C\left[k, r^{t}\right]$.
The first reduction steps also include the reduction of $R(k)$:
$R(k)=R(k)-\sum_{i \in M} \Delta_{i}$. (Note that the difference $R(k)-k$ remains the original one.)

Since $\Delta_{i}:=\min \left\{s_{i}, r_{i}^{t}, \bar{s}_{i}^{\prime}\right\}$ are others in case $C\left[k, r^{t}\right]$ the steps 2 and 3 are realized in the following way

$$
\begin{aligned}
& \text { 2. } \bar{s}:=\sum_{i \in M_{I I I}}\left(s_{i}-\bar{s}_{i}^{\prime}\right)+\sum_{i \in M_{I V}}\left(r_{i}^{t}-\bar{s}_{i}^{\prime}\right)=\sum_{i \in M_{I I I}} s_{i}+\sum_{i \in M_{I V}} r_{i}^{t} \\
& s_{i}:=0\left(=\bar{s}_{i}^{\prime}\right), r_{i}^{t}:=r_{i}^{t}-s_{i}, s_{i}^{\prime}:=s_{i}^{\prime}-s_{i} \text { for } i \in M_{I I I} \\
& s_{i}^{\prime}=r_{i}^{t}:=0\left(=\bar{s}_{i}^{\prime}\right), s_{i}:=s_{i}-r_{i}^{t} \text { for } i \in M_{I V} \text {. Temporarily, } \\
& \text { we set } s_{i^{\prime}}=s_{i^{\prime}}^{\prime}=r_{i^{\prime}}^{t}:=\bar{s}, \bar{s}_{i^{\prime}}^{\prime}:=0 \text { for an additional } i^{\prime} \in\left\{i^{\prime}\right\}=: M_{V} .
\end{aligned}
$$

3. We replace the elements of $M_{I V}$ by one element i where

$$
s^{*}:=\sum_{i \in M_{I V}} s_{i}, r_{i}^{t}:=s_{i}^{\prime}:=\bar{s}_{i}^{\prime}:=0
$$

Then s^{*} takes the place of r^{*}.
An equation related to $R(k)$ must be added to (14):

$$
\begin{equation*}
k=s^{*} \leq \sum_{i \in M_{I} \cup M_{I I a} \cup M_{I I b}} \bar{s}_{i}^{\prime} \leq \sum_{i \in M_{I} \cup M_{I I a} \cup M_{I I b} \cup M_{I I I}} r_{i}^{t}=R(k) \tag{32}
\end{equation*}
$$

Furthermore $\sum_{i \in M_{I I I}} s_{i} \geq r^{*}\left(\right.$ see (16)) is replaced by $\sum_{i \in M_{I I I}} r_{i}^{t} \geq s^{*}$.
$\underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right) \leq s^{*}-1$ is sufficient $\quad($ see $(18))$ since $s^{*} \leq k \leq C(k)$ according to (32).

Finally the reduced model with

$$
\begin{aligned}
& 0=s_{i}<s_{i}^{\prime} \leq \bar{s}_{i}^{\prime}=r_{i}^{t} \text { or } 0=s_{i} \leq s_{i}^{\prime}<\bar{s}_{i}^{\prime}=r_{i}^{t} \text { for } i \in M_{I} \\
& r_{i}^{t} \geq s_{i}^{\prime}>s_{i}=\bar{s}_{i}^{\prime}=0 \text { or } r_{i}^{t}>s_{i}^{\prime}=s_{i}=\bar{s}_{i}^{\prime}=0 \text { for } i \in M_{I I I} \\
& s^{*}>r_{i}=s_{i}^{\prime}=\bar{s}_{i}^{\prime}=0 \text { for } i \in M_{I V}
\end{aligned}
$$

is considered where the difference $R(k)-k$ calculated by the reduced $R(k)$ and k is less or equal to the original difference.

Analogous to (19) and (20)

$$
k=s^{*}
$$

and

$$
s^{*} \leq \sum_{i \in M_{I}} \bar{s}_{i}^{\prime}=\sum_{i \in M_{I}} r_{i}^{t}
$$

are valid in case $C\left[k, r^{t}\right]$. In addition

$$
\begin{equation*}
\sum_{i \in M_{I I I}} r_{i}^{t} \leq R(k)-k \tag{33}
\end{equation*}
$$

A one-to-one correspondence between the elements of the sets $\hat{A}_{N ; k}(s, r)$ and $P_{\left(r I^{I I}, r^{I}\right)}^{n+m}\left(s^{*}\right)$ is defined by:

$$
\left\{s^{\prime} \leftrightarrow \bar{x}\right\} \Leftrightarrow\left\{s_{i}^{\prime}-s_{i}=s_{i}^{\prime}=\bar{x}_{i} \text { for } i=1, \cdots, n+m\right\}
$$

where $r^{I}=\left(r_{m+1}^{t}, \cdots, r_{m+n}^{t}\right), r^{I I}=\left(r_{1}^{t}, \cdots, r_{m}^{t}\right)$.
(23) is replaced by

$$
\underset{s^{\prime} \in \hat{A}_{N ; k}(s, r)}{E}\left(\hat{d}^{\prime}\left(s^{\prime}, \bar{s}^{\prime}\right)\right)=\frac{\sum_{x=0}^{s^{*}} x p_{r I}^{n}(x) p_{r I I}^{m}\left(s^{*}-x\right)}{\sum_{x=0}^{s^{*}} p_{r I}^{n}(x) p_{r I I}^{m}\left(s^{*}-x\right)} \leq s^{*} \frac{C(k)-1}{C(k)}
$$

Finally we use $C(k) \geq R(k)-k+1 \geq\left|M_{I I I}\right|+\left|M_{I}\right|=n+1$ which follows from (33) in order to prove II.

Remarks 1 There is lot of theory about ordered restricted partitions of integers into positive parts (see [1] for example). In contrary for the case of ordered restricted partitions into non-negative parts not much results are known. ${ }^{4}$ Therefore we give some basic ideas for the proofs concerning the above used properties.
a) The one-to-one correspondence $\bar{x} \leftrightarrow s-\bar{x}$ between the elements of the sets $P_{s}^{n}(x)$ and $P_{s}^{n}\left(\sum_{i=1}^{n} s_{i}-x\right)$ leads to the symmetry-property (24).
b) The monotonicity (25) (and based on that the strict monotonicity (26)) can be proved by means of mathematical induction using (24) and the following simple recursive formula

$$
p_{\left(s_{1}, \cdots, s_{n+1}\right)}^{n+1}(x+1)=p_{\left(s_{1}, \cdots, s_{n+1}\right)}^{n+1}(x)+p_{\left(s_{1}, \cdots, s_{n}\right)}^{n}(x+1)-p_{\left(s_{1}, \cdots, s_{n}\right)}^{n}\left(x-s_{n+1}\right)
$$

c) We now want to sketch the main idea for the proof of (27). Based on $P_{s}^{n}(x)$ the $r^{*}+1$ sets $M_{P}^{r^{*}+1}(x)\left(x=0, \cdots, r^{*}\right)$ of partitions of $r^{*}+1$ are generated in the following way:
$M_{P}^{r^{*}+1}(x):=\left\{\bar{x}+\left(r^{*}+1-x\right) e_{i} \mid \bar{x} \in P_{s}^{n}(x), \bar{x}_{i}+\left(r^{*}+1-x\right) \leq s_{i}, i=1, \cdots, n\right\}$, where e_{i} is the i-th unit vector. (Each set $M_{P}^{r^{*}+1}(x)$ has at most $n p_{s}^{n}(x)$ elements.) With that it remains to show that every partition of $P_{s}^{n}\left(r^{*}+\right.$ 1) is thereby generated exactly $r^{*}+1$ times.
d) Finally, we want to state the proof of (29):

$$
\begin{aligned}
& 0 \leq \sum_{i=0}^{l} \sum_{j: j<i} a_{i} a_{j}\left(b_{j}-b_{i}\right)\left(A_{i}-A_{j}\right) \\
& 0 \leq \sum_{i=0}^{l} \sum_{j: j<i}\left[a_{i} a_{j} A_{i}\left(b_{j}-b_{i}\right)+a_{j} a_{i} A_{j}\left(b_{i}-b_{j}\right)\right] \\
& \sum_{i=0}^{l} \sum_{j: j<i}\left(a_{i} a_{j} A_{i} b_{i}+a_{j} a_{i} A_{j} b_{j}\right) \leq \sum_{i=0}^{l} \sum_{j: j<i}\left(a_{i} a_{j} A_{i} b_{j}+a_{j} a_{i} A_{j} b_{i}\right)
\end{aligned}
$$

[^3]\[

$$
\begin{aligned}
& \sum_{i=0}^{l} \sum_{\substack{ \\
j \neq i}}^{l} a_{i} a_{j} A_{i} b_{i} \leq \sum_{i=0}^{l} \sum_{\substack{j=0 \\
j \neq i}}^{l} a_{i} a_{j} A_{i} b_{j} \\
& \sum_{i=0}^{l} \sum_{j=0}^{l} a_{i} a_{j} A_{i} b_{i} \leq \sum_{i=0}^{l} \sum_{j=0}^{l} a_{i} a_{j} A_{i} b_{j} \\
& \frac{A_{0} a_{0} b_{0}+\cdots+A_{l} a_{l} b_{l}}{a_{0} b_{0}+\cdots+a_{l} b_{l}} \leq \frac{A_{0} a_{0}+\cdots+A_{l} a_{l}}{a_{0}+\cdots+a_{l}} .
\end{aligned}
$$
\]

Literatur

[1] Andrews, G.E. (1976). The Theory of partitions. Addison-Wesley Publishing Company, London, \cdots.
[2] Y. Bartal and E. Grove, The Harmonic k-Server Algorithm Is Competive. Journal of the ACM, Vol. 47, No. 1 (2000) pp. 1-15.
[3] A. Borodin and R. El-Yaniv, Online computation and competitive analysis, University Press, Cambrigde 1998.
[4] R. Hildenbrandt, Kostengünstige Belegung von Formen im Hinblick auf Bedarfsschwankungen, Wiss. Zeitschrift der TH Ilmenau, 34, Heft 4 (1988).
[5] R. Hildenbrandt, A special stochastic decision problem, Optimization 28 (1993) pp. 95-110.
[6] R. Hildenbrandt, Methoden aus ganzzahliger Optimierung und Verbands- theorie zur Behandlung eines stochastischen dynamischen Transportproblems, Habilitationsschrift, TU Ilmenau 1995, (Libri BoD 2000).
[7] R. Hildenbrandt, DA Stochastic Dynamic Programming, SDDP Problems and Partitions-Requirements-Matrices, research monograph, Cuvillier Verlag, Göttingen 2010.
[8] R. Hildenbrandt, A k-Server Problem with Parallel Requests and Unit Distances, Preprint No. 11/16, TU Ilmenau (2012).
[9] E. Koutsoupias and C. Papadimitriou, On the k-server conjecture, Journal of the ACM, 42(5):971-983, 1995.
[10] M.S. Manasse, L.A. McGeoch and D.D. Sleator, Competitive algorithms for on-line problems, In Proceeding of the 20th Annual ACM Symposium on Theory of Computing, Seite 322-333, 1988 (Journal version).
[11] P. Raghavan and M. Snir, Memory versus randomization in on-line algorithms, In Proceeding of the 16th ICALB. Vol. 372 of Lecture Notes in Computer Sciences, pp. 687-703, 1989.
[12] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Communications of the ACM 28 (1985), no. 2, Seite 202208.

[^0]: ${ }^{1}$ For basic knowledge of (usual) k-server problems see also [3], chapters 10 and 11 for example.

[^1]: ${ }^{2}$ This condition is important for case $C\left[k, r^{t}\right]$. (According to the introduced model $\sum_{i \in M} r_{i}^{t} \leq k$ is true in case $C\left[r^{t}, k\right]$. .) See also the above mentioned example.

[^2]: ${ }^{3}$ It is unproblematic to use the reduced k since the original k is greater or equal than the reduced.

[^3]: ${ }^{4}$ Although the method of the generating function and others can also be applied to ordered partitions into non-negative parts (s. Andrews).

