
 
 

Roy Mennicke: 

Propositional Dynamic Logic with Converse and Repeat for 
Message-Passing Systems 

Original published in: 
Logical Methods in Computer Science, 9 (2013), 2, paper 12, 35 p.  
ISSN Online: 1860-5974 
DOI: 10.2168/LMCS-9(2:12)2013 
URL: http://www.lmcs-online.org/ojs/viewarticle.php?id=1298 
(Visited: 2013-08-05) 
 

 
This work is licensed under a  Attribution-NoDerivs 2.0 License. 
[http://creativecommons.org/licenses/by-nd/2.0/] 

  
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224753478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.2168/LMCS-9(2:12)2013
http://www.lmcs-online.org/ojs/viewarticle.php?id=1298
http://creativecommons.org/licenses/by-nd/2.0/


Logical Methods in Computer Science
Vol. 9(2:12)2013, pp. 1–35
www.lmcs-online.org

Submitted Dec. 21, 2012
Published Jun. 28, 2013

PROPOSITIONAL DYNAMIC LOGIC WITH CONVERSE AND REPEAT

FOR MESSAGE-PASSING SYSTEMS

ROY MENNICKE

Ilmenau University of Technology, Germany
e-mail address: roy.mennicke@tu-ilmenau.de

Abstract. The model checking problem for propositional dynamic logic (PDL) over mes-
sage sequence charts (MSCs) and communicating finite state machines (CFMs) asks, given
a channel bound B, a PDL formula ϕ and a CFM C, whether every existentially B-bounded
MSC M accepted by C satisfies ϕ. Recently, it was shown that this problem is PSPACE-
complete. In the present work, we consider CRPDL over MSCs which is PDL equipped
with the operators converse and repeat. The former enables one to walk back and forth
within an MSC using a single path expression whereas the latter allows to express that
a path expression can be repeated infinitely often. To solve the model checking problem
for this logic, we define message sequence chart automata (MSCAs) which are multi-way
alternating parity automata walking on MSCs. By exploiting a new concept called con-
catenation states, we are able to inductively construct, for every CRPDL formula ϕ, an
MSCA precisely accepting the set of models of ϕ. As a result, we obtain that the model
checking problem for CRPDL and CFMs is still in PSPACE.

1. Introduction

Automatic verification is the process of translating a computer system to a mathematical
model, formulating a requirements specification in a formal language, and automatically
checking the obtained model against this specification. In the past, finite automata, Kripke
structures, and Büchi automata turned out to be suitable formalisms to model the behavior
of complex non-parallel systems. Two of the most common specification languages are the
temporal logics LTL [21] and CTL [3]. After deciding on a modeling and a specification for-
malism, automatic verification melts down to the model checking problem: Given a model A
with behavior L(A) and a specification ϕ representing the expected behavior L(ϕ), does
L(A) ⊆ L(ϕ) hold?

Distributed systems exchanging messages can be modeled by communicating finite-
state machines (CFMs) which were introduced in [2]. A CFM consists of a finite number of
finite automata communicating using FIFO channels. Each run of such a machine can be
understood as a message sequence chart (MSC). The latter is an established ITU standard
and comes with a formal definition as well as a convenient graphical notation. In a simplified

2012 ACM CCS: [Theory of computation]: Logic—Verification by model checking.
Key words and phrases: message sequence charts, alternating automata, communicating finite-state ma-

chines, propositional dynamic logic.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(2:12)2013

c© Roy Mennicke
CC© Creative Commons

http://creativecommons.org/about/licenses


2 ROY MENNICKE

model, an MSC can be considered as a structure consisting of send and receive events which
are assigned to unique processes where the events of each process are linearly ordered. For
every send event, there exists a matching receive event and vice versa. Unfortunately, the
model checking problem for CFMs is undecidable even for very simple temporal logics –
this is a direct consequence of the undecidability of the emptiness problem for CFMs. One
solution to this problem is to establish a bound B on the number of messages pending on
a channel. The bounded model checking problem of CFMs then reads as follows: given
a channel bound B, a specification ϕ and a CFM C, does every existentially B-bounded
MSC M accepted by C satisfy ϕ? An existentially B-bounded MSC is an MSC which
admits an execution with B-bounded channels. Using this approach several results for
different temporal logics were obtained in [16, 10, 9, 1].

In [1], a bidirectional propositional dynamic logic (PDL) was proposed for the automatic
verification of distributed systems modeled by CFMs. This logic was originally introduced
by Fischer and Ladner [5] for Kripke structures and allows to express fundamental properties
in an easy and intuitive manner. PDL for MSCs is closed under negation, it is a proper
fragment of the existential monadic second-order logic (EMSO) in terms of expressiveness
(but it is no syntactic fragment) [1], and the logic TLC− considered by Peled [20] is a
fragment of it. PDL distinguishes between local and global formulas. The former ones are
evaluated at a specific event of an MSC whereas the latter are Boolean combinations of
local formulas quantifying existentially over all events of an MSC. Consider for example the
local formula α = p!q ∧ ¬ 〈proc∗〉 p?q. An event satisfies α if it is a send event of a message
from process p to q which is not followed by a reply message from q to p. The global formula
Eα expresses that there exists such an event v.

By a rather involved translation of PDL formulas into CFMs, Bollig, Kuske, and Mei-
necke demonstrated in [1] that the bounded model checking problem for CFMs and PDL
can be decided in polynomial space. However, by means of this approach, Bollig et al. were
not able to support the popular converse operator. The latter, introduced in [22], is an
extension of PDL which allows to walk back and forth within an MSC using a single path
expression of PDL. For example one can specify a path expression (proc−1;msg)∗ describing
“zigzag-like” paths going back on a process and traversing a send event in an alternating
manner. It is an open question whether PDL formulas enriched with the converse operator
can be translated into CFMs. Bollig et al. only managed to provide an operator which
enables path expressions to either walk backward or forward.

In the present work, we consider CRPDL over MSCs which is PDL equipped with the
operators converse ( −1) and repeat ( ω) [23]. The latter allows to express that a path
expression can be repeated infinitely often. For example, an event v on process p satisfies
〈proc〉ω if there are infinitely many events on p succeeding v. We are able to demonstrate that
the bounded model checking problem of CFMs and CRPDL is in PSPACE and therefore
generalize the model checking result from [1]. In order to obtain this result, we define
multi-way alternating parity automata over MSCs which we call local message sequence
chart automata (or local MSCAs for short). Local MSCAs are started at specific events of
an MSC and accept sets of pointed MSCs which are pairs of an MSC M and an event v
of M . Using a game theoretic approach, it can be shown that local MSCAs are closed
under complementation. We demonstrate that every local formula α of CRPDL can be
translated in polynomial space into an equivalent local MSCA whose size is linear in the
size of α — this can be done independently from any channel bound. We also define global
MSCAs consisting of a local MSCA M and a set of global initial states. A global initial



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 3

state is a tuple of states (ι1, ι2, . . . , ιn) where n is the number of processes. If, for every
process p, there exists an accepting run of M starting in the minimal event of p and the
initial state ιp, then the global MSCA accepts the whole MSC. For every global formula ϕ,
we can construct in polynomial space a global MSCA G such that G precisely accepts the set
of models of ϕ. After fixing a channel bound B, the automaton G is then transformed into
a two-way alternating word automaton and, after that, into a Büchi automaton recognizing
the set of all B-bounded linearizations of the models of ϕ.

In the literature, one can basically find two types of approaches to turn a temporal
formula into a Büchi automaton. On the one hand, Vardi and others [25, 8] transformed
LTL formulas into alternating automata in one single step and, afterwards, these alternating
automata were translated into Büchi automata. On the other hand, there were performed
inductive constructions which lead to a Büchi automaton without the need for an interme-
diate step [13, 6, 7, 1]. In the present work, we combine these two approaches to obtain a
very modular and easy to understand proof. For a given CRPDL formula, we inductively
construct an alternating automaton which is later translated into a Büchi automaton. In
this process, we utilize a new concept called concatenation states. These special states allow
the concatenation of local MSCAs. For example, if M is the local MSCA obtained for the
formula 〈proc〉 tt, then we can concatenate two copies of M to obtain an automaton for the
formula 〈proc; proc〉 tt.

Outline. We proceed as follows. In Sect. 2, we define MSCs, CRPDL, MSCAs, and give
introductory examples. In Sect. 3, we show that local MSCAs are effectively closed under
complementation. In Sect. 4, we construct, for every local CRPDL formula α, a local
MSCA which precisely accepts the models of α. In Sect. 5, we effectively show that, for
every global CRPDL formula ϕ, the set of models of ϕ is the language of a global MSCA.
In the sections 6 and 7, we prove that the bounded satisfiability problem for CRPDL and
the bounded model checking problem for CRPDL and CFMs both are PSPACE-complete.

A conference version of this paper was published as [18].

Acknowledgements. The author likes to express his sincere thanks to his doctoral adviser
Dietrich Kuske for his guidance and valuable advice. Furthermore, he is grateful to Benedikt
Bollig for comments leading to a considerable technical simplification. This paper also
greatly benefits from the detailed reviews and helpful remarks of the anonymous referees.

2. Preliminaries

We let poly(n) denote the set of polynomial functions in one argument. For every natural
number n ≥ 1, we set [n] = {1, 2, . . . , n}.

We fix a finite set P = {1, 2, . . . , |P|} of processes. Let Ch = {(p, q) ∈ P2 | p 6= q}
denote the set of communication channels. For all p ∈ P, we define a local alphabet
Σp = {p!q, p?q | q ∈ P \ {p}} which we use in the following way. An event labelled by p!q
marks the send event of a message from process p to process q whereas p?q is the label of
a receive event of a message sent from q to p. We set Σ =

⋃
p∈PΣp. Since P is finite, the

local alphabets Σp and Σ are also finite.



4 ROY MENNICKE

1 2

Figure 1: An example of a finite MSC.

2.1. Message Sequence Charts. Message sequence charts model the behavior of a finite
set of parallel processes communicating using FIFO channels. The following example shows
that they come with a convenient graphical representation.

Example 2.1. Figure 1 shows a finite MSC M over the set of processes P = {1, 2}.

In the graphical representation of an MSC M over the set of processes P, there is a
vertical axis for every process from P. On the edge for process p ∈ P, the events occurring
on p are drawn as small black circles. Thus, a linear ordering �M

p on the set of events from
process p is implicitly defined. In the formal definition of an MSC, which we give in the
following, the direct successor relation induced by the linear ordering �M

p is given by procMp .
For technical convenience, we force processes to contain at least one event. Messages sent
between two processes are depicted by arrows pointing from the send event to the matching
receive event. Formally, messages are represented by the binary relation msgM and, for
every send event, there exists a matching receive event and vice versa.

Definition 2.2. A message sequence chart (MSC ) is a structure

M =
(
V M , (procMp )p∈P,msgM , λM

)

where

• V M is a set of events,
• procMp ,msgM ⊆ (V M × V M ) for all p ∈ P,
• λM : V M → Σ is a labeling function,
• for all p ∈ P, the relation procMp is the direct successor relation of a linear order �M

p on

V M
p := {v ∈ V M | λ(v) ∈ Σp},

• (V M
p ,�M

p ) is non-empty and finite or isomorphic to (N,≤),

• for all v,w ∈ V M , we have (v,w) ∈ msgM if and only if there exists (p, q) ∈ Ch such that
λM (v) = p!q, λM (w) = q?p, and

|{u ∈ V M | λM (u) = p!q, u �M
p v}| = |{u ∈ V M | λM (u) = q?p, u �M

q w}| ,

• for every v ∈ V M there exists w ∈ V M such that (v,w) ∈ msg ∪msg−1.

If v ∈ V M , then we denote by PM (v) the process at which v is located, i.e., PM (v) = p if
and only if λM (v) ∈ Σp. Finally, if v ∈ V M , then the pair (M,v) is called a pointed MSC.



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 5

Definition 2.3. We fix the setM = {proc, proc−1,msg,msg−1, id} of directions. An MSCM
induces a partial function ηM : (V M × V M ) → M. For all v, v′ ∈ V M , we define

ηM (v, v′) =





proc if (v, v′) ∈ procM

proc−1 if (v′, v) ∈ procM

msg if (v, v′) ∈ msgM

msg−1 if (v′, v) ∈ msgM

id if v = v′

undefined otherwise

where procM =
⋃

p∈P proc
M
p .

2.2. Propositional Dynamic Logic with Converse and Repeat. In this section, we in-
troduce a new logic called propositional dynamic logic with converse and repeat (or CRPDL
for short). In CRPDL, we distinguish between local and global formulas. The former ones
are evaluated at specific events of an MSC. The latter are positive Boolean combinations
of properties of the form “there exists an event satisfying a local formula” or “all events
satisfy a local formula”.

Definition 2.4. Local formulas α and path expressions π of CRPDL are defined by the
following grammar, where D ∈ M and σ ranges over the alphabet Σ:

α ::= σ | ¬α | 〈π〉α | 〈π〉ω

π ::= D | {α} | π;π | π + π | π∗

Formulas of the form 〈π〉α are called path formulas. The size of a local formula α is the
length of the string α.

Note that proc−1 and msg−1 form the converse operator [22] which allows to walk back
and forth within an MSC using a single path expression. The formula 〈π〉ω provides the
functionality of the repeat operator [23]. It allows to express that a path expression can be
repeated infinitely often.

Intuitively, a path formula 〈π〉α expresses that one can move along a path described
by π and then α holds. In the following formal definition of the semantics of local formulas,
we write reachM (v, π) to denote the set of events which can be reached from v using a path
described by π. A formal definition of reachM (v, π) is given at the end of Definition 2.5.



6 ROY MENNICKE

Definition 2.5. Let (M,v) be a pointed MSC, σ ∈ Σ, D ∈ M, α be a local formula,
π, π1, π2 be path expressions. We define:

M,v |= σ ⇐⇒ λM (v) = σ

M, v |= ¬α ⇐⇒ M,v 6|= α

M, v |= 〈D〉α ⇐⇒ there exists v′ with ηM (v, v′) = D and M,v′ |= α

M, v |= 〈{α}〉 β ⇐⇒ M,v |= α and M,v |= β

M, v |= 〈π1 + π2〉α ⇐⇒ M,v |= 〈π1〉α or M,v |= 〈π2〉α

M, v |= 〈π1;π2〉α ⇐⇒ M,v |= 〈π1〉 〈π2〉α

M, v |= 〈π∗〉α ⇐⇒ there exists an n ≥ 0 with M,v |= (〈π〉)nα

M, v |= 〈π〉ω ⇐⇒ there exist infinitely many events v0, v1, . . . such that

v0 = v and vi+1 ∈ reachM (vi, π) for all i ≥ 0

where reachM (v, π) is inductively defined as follows:

reachM (v,D) =

{
{v′} if ηM (v, v′) = D

∅ otherwise

reachM (v, {α}) =

{
{v} if M,v |= α

∅ otherwise

reachM (v, π1;π2) =
⋃

v′∈reachM (v,π1)
reachM (v′, π2)

reachM (v, π1 + π2) = reachM (v, π1) ∪ reachM (v, π2)

reachM (v, π∗) = {v} ∪
⋃

n≥1 reachM (v, πn)

By L(α) we denote the set of pointed MSCs which satisfy α.

We set tt = σ ∨ ¬σ for some σ ∈ Σ. If α = 〈π〉 tt, then we define

reachM (v, α) = reachM (v, π) .

Furthermore, we use α1 ∧ α2 as an abbreviation for 〈{α1}〉α2 and write α1 ∨ α2 for the
formula ¬(¬α1 ∧¬α2). Finally, for all q ∈ P, we define Pq =

∨
p∈P,q 6=p(q!p∨ q?p). For every

pointed MSC (M,v), we have M,v |= Pq if and only if PM (v) = q.

Remark 2.6. It can be easily seen that M,v |= 〈π〉α if and only if M,v |= 〈π; {α}〉 tt.
Because of this fact, every time we are dealing with path formulas in the future, we will
assume that α = tt.

Example 2.7. The existential until construct αEUβ [12] can be expressed by the local
formula 〈({α}; (proc +msg))∗〉 β.

We now define global formulas which are positive Boolean combinations of properties
of the form “there exists an event satisfying a local formula α” or “all events satisfy a local
formula α”.

Definition 2.8. The syntax of global formulas is given by the grammar

ϕ ::= Eα | Aα | ϕ ∨ ϕ | ϕ ∧ ϕ



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 7

where α ranges over the set of local formulas. Their semantics is as follows: If M is an
MSC, α is a local formula, and ϕ1, ϕ2 are global formulas, then

M |= Eα ⇐⇒ there exists v ∈ V M with M,v |= α ,

M |= Aα ⇐⇒ M,v |= α for all v ∈ V M ,

M |= ϕ1 ∨ ϕ2 ⇐⇒ M |= ϕ1 or M |= ϕ2 , and

M |= ϕ1 ∧ ϕ2 ⇐⇒ M |= ϕ1 and M |= ϕ2 .

We define the size of a global formula ϕ to be the length of the string ϕ. By L(ϕ), we
denote the set of MSCs M with M |= ϕ.

Note that even though there are no negation operators allowed in global formulas,
the expressible properties are still closed under negation. This is because conjunction and
disjunction operators as well as existential and universal quantification are available.

Example 2.9 ([1]). Let βp = 〈proc∗;msg; proc∗;msg〉Pp. If (M,v) is a pointed MSC such
that M,v |= βp, then process p can be reached from v with exactly two messages. If M is
the MSC from Fig. 1, then M,v |= β1 if and only if v is one of the first three events on
process 1. The global formula ϕp = Aβp states that βp holds for every event of an MSC M
(which in particular implies that M is infinite).

Example 2.10. An MSC M satisfies E
∧

p∈P(
〈
(proc+msg + proc−1 +msg−1)∗

〉
Pp) if and

only if the graph (V M , procM ∪msgM ∪ (procM )−1 ∪ (msgM )−1) is connected.

Example 2.11. Now, let πp = ((proc+msg)∗; {Pp}) for every p ∈ P. Imagine that M is an
MSC which models the circulation of a single token granting access to a shared resource.
Then M |= E

〈
π1;π2; . . . ;π|P|

〉ω
if and only if no process ever gets excluded from using the

shared resource.

2.3. Message Sequence Chart Automata (MSCA). In this section, we give the defi-
nition of MSCAs which basically are multi-way alternating parity automata walking forth
and back on the process and message edges of MSCs. We first define local MSCAs which
are started at individual events of an MSC. They also come with a so called concatenation
state. This type of state is used to concatenate local MSCAs in order to obtain more com-
plex local MSCAs. Using this technique, we will show in a subsequent section that every
local formula of CRPDL can be transformed into a local MSCA.

Definition 2.12. If X is a non-empty set, then B+(X) denotes the set of all positive
Boolean expressions over X together with the expression ⊥. The latter expression is always
evaluated to false. We say that Y ⊆ X is a model of E ∈ B+(X) and write Y |= E if E is
evaluated to true when assigning true to every element contained in Y and assigning false
to all other elements from X \ Y . The set Y ⊆ X is a minimal model of E if Y |= E
and Z 6|= E for all Z ( Y . We denote the set of all models of E by mod(E) whereas we
write JEK for the set of all minimal models of E.

For instance, {a, b, c}, {a, b}, {a, c}, {b, c}, and {a} are all models of the positive Boolean
expression a ∨ (b ∧ c) ∈ B+({a, b, c}). However, only {a}, and {b, c} are minimal models.

Definition 2.13. A local message sequence chart automaton (local MSCA) is a quintuple
M = (S, δ, ι, c, κ) where



8 ROY MENNICKE

s1 | 1 s2 | 1 s3 | 0

Σ, proc Σ, proc

Σ msg {q!p | q 6= p} id

Figure 2: The local MSCA M from Example 2.14.

• S is a finite set of states,
• δ : (S × Σ) → B+(M× S) is a transition function,
• ι ∈ S is an initial state,
• c ∈ S is a concatenation state, and
• κ : S → N is a ranking function.

The size of M is |S|+ |δ|. If we do not pay attention to the concatenation state c, then we
sometimes write (S, δ, ι, κ) instead of (S, δ, ι, c, κ). If s ∈ S, σ ∈ Σ, and τ ∈ Jδ(s, σ)K, then
τ is called a transition.

For example, the transition τ = {(proc, s1), (msg, s2)} which is a minimal model of the
expression (proc, s1)∧ ((msg, s2)∨ (msg−1, s2)) can be interpreted in the following way: Let
us assume that M is in state s ∈ S at an event v. If it performs the transition τ , then
it changes, in parallel, from the state s into the states s1 and s2, i.e., the run splits. In
the case of state s1, it moves to the event succeeding the event v on the current process.
For s2, the automaton walks along a message edge to the receive event of the message
sent in v. Hence, the conjunctive connectives implement universal branching whereas the
disjunctive connectives realize existential branching and nondeterminism, respectively. As
a consequence, local MSCAs are alternating automata and their runs may split. Therefore,
in order to be able to define runs of local MSCAs, we first introduce labelled trees.

Later, in the construction of local MSCAs from local formulas, the concatenation state c
of M will be used to concatenate local MSCAs for simple local formulas in order to obtain
automata which are equivalent to more complex formulas.

Example 2.14. Let p ∈ P be fixed. Consider the local MSCA M = (S, δ, s1, κ) which is
depicted in Fig. 2. Its set of states S consists of the three states s1, s2, and s3 where s1
is the initial state. Each state is depicted by a circle. The label of the circles also tells us
the rank of each state. For example, s1 | 1 expresses that κ(s1) = 1. Furthermore, we have
κ(s2) = 1 and κ(s3) = 0. Transitions are depicted by arrows. For instance, the arrow from
s1 to s2 labelled by Σ and msg says that the automaton can make a transition from s1 to
s2 by following a message edge and going to the matching receive event, respectively. We
write Σ because this transition can be executed no matter what the label of the current
event is. Alternatively, the automaton can stay in state s1 by going to the successor of the
current event — this is expressed by the loop at s1. More formally, for all σ ∈ Σ, we have
δ(s1, σ) = (proc, s1) ∨ (msg, s2), δ(s3, σ) = ⊥, and

δ(s2, σ) =

{
(id, s3) if σ = q!p where q ∈ P \ {p}

(proc, s2) otherwise.

Note that the above example makes use of existential branching only whereas the MSCA
of the next example also implements universal branching.



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 9

t1 | 1

t2 | 0

s1 | 1 s2 | 1 s3 | 0

Σ, proc Σ, proc

Σ msg {q!p | q 6= p} id

Σ

id

id

proc

Σ

Figure 3: The local MSCA M′ from Example 2.15.

Example 2.15. Consider the local MSCA from Fig. 3. Note that universal branching
is depicted by forked arrows. We have M′ = (S ∪ {t1, t2}, δ ∪ δ′, t1, κ ∪ κ′) where M =
(S, δ, s1, κ) is the local MSCA from Example 2.14, κ′(t1) = 1, κ′(t2) = 0, and δ(t1, σ) =
(id, t2) ∧ (id, s1) and δ(t2, σ) = (proc, t1) for all σ ∈ Σ.

Definition 2.16. A tree is a directed, connected, cycle-free graph (C,E) with the set of
nodes C and the set of edges E such that there exists exactly one node with no incoming
edges (which is called root) and all other nodes have exactly one incoming edge.

We now define so-called S-labelled trees over pointed MSCs where S is an arbitrary
set. Later, the set S will be the set of states of a local MSCA.

Definition 2.17. Let S be an arbitrary set, M be an MSC, and v ∈ M . An S-labelled tree
over (M,v) is a quintuple ρ = (C,E, r, µ, ν) where

(1) (C,E) is a tree with root r,
(2) µ : C → S is a labeling function,
(3) ν : C → V M is a positioning function with ν(r) = v,
(4) µ(y1) 6= µ(y2) or ν(y1) 6= ν(y2) for all (x, y1), (x, y2) ∈ E with y1 6= y2, and
(5) ηM (ν(x), ν(y)) is defined for all (x, y) ∈ E.

The elements of C are called configurations. If x ∈ C, then Eρ(x) = {y ∈ C | (x, y) ∈ E}
denotes the set of the direct successor configurations of x in ρ. For convenience, we identify µ
with its natural extension, i.e., µ(x1x2x3 . . .) = µ(x1)µ(x2)µ(x3) . . . ∈ S∗ ∪ Sω.

We use S-labelled trees to define runs of local MSCAs. The condition (4) has no influ-
ence on the expressiveness of local MSCAs but simplifies the proofs in Section 4. Intuitively,
it prevents a local MSCA from doing unnecessary work. By item (5), we ensure that an
MSCA cannot jump within an MSC but must move along process or message edges.

Definition 2.18. Let S be a set, (M,v) be a pointed MSC, and ρ = (C,E, r, µ, ν) be an
S-labelled tree over (M,v). A path in ρ of length n ∈ N∪{ω} is a sequence x1x2x3 . . . ∈ Cn

such that xi+1 ∈ Eρ(xi) for all 1 ≤ i < n. It is a branch of ρ if x1 = r and Eρ(xn) = ∅
(provided that n ∈ N).

That means every branch of ρ begins in the root of ρ and either leads to some leaf of
ρ or is infinite.

Definition 2.19. If C ′ ⊆ C such that (C ′, E ∩ (C ′ × C ′)) is a tree with root r′, we
denote by ρ ↾ C ′ the restriction of ρ to C ′, i.e., the S-labelled tree (C ′, E′, r′, µ′, ν ′) where
E′ = E ∩ (C ′ ×C ′), µ′ = µ ↾ C ′, and ν ′ = ν ↾ C ′.



10 ROY MENNICKE

We want the runs of local MSCAs to be maximal. That means that, during a run, a
local MSCA is forced to execute a transition if it is able to do so. If the MSCA is unable
to proceed, we say that it is stuck.

Definition 2.20. Let M be an MSC and M = (S, δ, ι, κ) be a local MSCA. The automa-
ton M is stuck at v ∈ V M in the state s ∈ S if for every transition τ ∈ Jδ(s, λM (v))K there
exists a movement (D, s′) ∈ τ such that there exists no event v′ ∈ V M with ηM (v, v′) = D.

We are now prepared to define runs of local MSCAs.

Definition 2.21. Let M = (S, δ, ι, κ) be a local MSCA and ρ = (C,E, r, µ, ν) be an S-
labelled tree over a pointed MSC (M,v). We define trρ : C → 2M×S to be the function
which maps every x ∈ C to the set

{(
ηM (ν(x), ν(x′)), µ(x′)

)
| x′ ∈ Eρ(x)

}
.

The tree ρ is a run of M on (M,v) if µ(r) = ι and, for all x ∈ C, the run condition is
fulfilled, i.e.,

• if Eρ(x) 6= ∅, then trρ(x) ∈ Jδ(µ(x), λM (ν(x)))K, and
• if Eρ(x) = ∅, then M is stuck at the event ν(x) in state µ(x).

Definition 2.22. Let (si)i≥1 ∈ S∗ ∪ Sω be a sequence of states. By inf((si)i≥1), we denote
the set of states occurring infinitely often in (si)i≥1. If (si)i≥1 is finite, then it is accepting
if it ends in a state s whose rank κ(s) is even. If it is infinite, it is accepting if the minimum
of the ranks of all states occurring infinitely often is even, i.e., min{κ(s) | s ∈ inf((si)i≥1)}
is even.

If ρ is a run of M, and b is a branch of ρ, then b is accepting if its label µ(b) is accepting.
A run ρ of M is accepting if every branch of ρ is accepting. By L(M), we denote the set
of all pointed MSCs (M,v) for which there exists an accepting run of M. Furthermore,
for all p ∈ P, Lp(M) is the set of MSCs M with (M,v) ∈ L(M) where v is the minimal

element from V M
p with respect to �M

p .

Example 2.23. Let M and M′ be the MSCAs from the Examples 2.14 and 2.15, respec-
tively. It can be easily checked that, for every pointed MSC (M,v), we have (M,v) ∈ L(M)
if and only if M,v |= βp where βp = 〈proc∗;msg; proc∗;msg〉Pp is the formula from Exam-
ple 2.9. In contrast, a pointed MSC (M,v) is accepted by M′ if and only if M,v′ |= βp for
all v′ ∈ V M with v �M

p v′.

We also introduce the notion of global MSCAs which come as a local MSCA together
with a set of global initial states.

Definition 2.24. A global message sequence chart automaton (global MSCA) is a tuple

G = (M, I) where M = (S, δ, ι, κ) is a local MSCA and I ⊆ S|P| is a set of global initial
states. The language of G is defined by

L(G) =
⋃

(s1,...,s|P|)∈I

⋂

p∈P

Lp(S, δ, sp, κ) .

The size of G is the size of M.

Intuitively, an MSC M is accepted by G if and only if there exists a global initial state
(s1, s2, . . . , s|P|) ∈ I such that, for every p ∈ P, the local MSCA M accepts (M,vp) when
started in the state sp where vp is the minimal event on process p.



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 11

Example 2.25. Let G = (M′, {(t1, . . . , t1)}) be the global MSCA where M′ is the local
MSCA from Example 2.15. We have M ∈ L(G) if and only if M |= ϕp where ϕp is the
global formula from Example 2.9.

3. Closure under Complementation

If M is a local MSCA, then a local MSCA M# recognizing the complement of L(M) can be
easily obtained. Basically one just needs to exchange ∧ and ∨ in the image of the transition
function of M and update the ranking function.

To make this more precise, let us first define the dual expression Ẽ of a positive Boolean
expression E.

Definition 3.1. Let X be a set and E ∈ B+(X). Then the dual expression Ẽ of E denotes
the positive Boolean expression obtained by exchanging ∧ and ∨ in E.

Let us state the following two easy lemmas on positive Boolean expressions and their
dual counterparts.

Lemma 3.2. Let X be a set and E ∈ B+(X). Then, for all Y ∈ mod(E) and Z ∈ mod(Ẽ),
we have Y ∩ Z 6= ∅.

Proof. If E = a for some a ∈ X, then the lemma easily follows. For the induction step, let

us assume that E = E1 ∧ E2 such that, for all i ∈ [2], Y ∈ mod(Ei), and Z ∈ mod(Ẽi),

we have Y ∩ Z 6= ∅. If Y ∈ mod(E) and Z ∈ mod(Ẽ), then, without loss of generality,

Y |= E1 and Z |= Ẽ1. It follows from the induction hypothesis that Y ∩ Z 6= ∅. The case
E = E1 ∨ E2 is shown analogously.

Lemma 3.3. Let X be a set and E ∈ B+(X). If Z ⊆ X such that Z ∩ Y 6= ∅ for all

Y ∈ mod(E), then Z ∈ mod(Ẽ).

Proof. If E = a for some a ∈ X, then the lemma easily follows. For the induction step, let
E1, E2 ∈ B+(X) such that, for all i ∈ [2], the following holds: if Z ⊆ X and Z ∩ Y 6= ∅ for

all Y ∈ mod(Ei), then Z ∈ mod(Ẽi).
For the case E = E1 ∨ E2, let Z ⊆ X such that Z ∩ Y 6= ∅ for all Y ∈ mod(E). If

i ∈ [2] and Y ∈ mod(Ei), then Y |= E. Hence, Z ∩ Y 6= ∅ for all i ∈ [2] and Y ∈ mod(Ei).

From our induction hypothesis it follows that Z |= Ẽ1 and Z |= Ẽ2 and, therefore, Z |= Ẽ.
Now, let us consider the case E = E1 ∧ E2. Towards a contradiction, suppose that there

exists a Z ⊆ X such that Z ∩ Y 6= ∅ for all Y ∈ mod(E) and Z 6|= Ẽ. Since Ẽ = Ẽ1 ∨ Ẽ2,

we have Z 6|= Ẽ1 and Z 6|= Ẽ2. From our induction hypothesis it follows that there exist
Y1 ∈ mod(E1) and Y2 ∈ mod(E2) with Z∩Y1 = Z∩Y2 = ∅. Since we also have Y1∪Y2 |= E,
this is a contradiction to our definition of Z.

We are now prepared to dualize local MSCAs.

Definition 3.4. Let M = (S, δ, ι, c, κ) be a local MSCA. The dual MSCA M# is the local
MSCA (S, δ#, ι, c, κ#) where

• κ#(s) = κ(s) + 1 for all s ∈ S and

• δ#(s, σ) = δ̃(s, σ) for all s ∈ S and σ ∈ Σ.



12 ROY MENNICKE

Remark 3.5. Let M = (S,∆, ι, κ) be a local MSCA and (si)i≥1 ∈ S∞ be a sequence of
states. Because of our definition of κ#, a state s ∈ S has an even rank in M if and only if
it has an odd rank in M#. It follows that (si)i≥1 is accepting in M if and only if it is not
accepting in M#.

If (M,v) is a pointed MSC, ρ is a run of M on (M,v), and ρ# is a run of M# on
(M,v), then one can observe that ρ contains a branch x1x2x3 . . . and ρ# contains a branch
x′1x

′
2x

′
3 . . . such that µ(x1x2x3 . . .) = µ(x′1x

′
2x

′
3 . . .), i.e. they are labelled by the same

sequence of states. Because of the fact stated in Remark 3.5, x1x2x3 . . . is accepting in M
if and only if x′1x

′
2x

′
3 . . . is not accepting in M#. By means of this observation, a result on

parity games, and the ideas presented in [19], we prove the following theorem:

Theorem 3.6. If M is a local MSCA and (M,v) is a pointed MSC, then

(M,v) ∈ L(M) ⇐⇒ (M,v) /∈ L(M#) .

The rest of this section prepares the proof of the above theorem. The actual proof can
be found on page 15.

Definition 3.7. Let M = (S, δ, ι, c, κ) be a local MSCA and (M,v) be a pointed MSC.
With M and the pointed MSC (M,v), we associate a game G(M,M, v) played by the two
players Automaton and Pathfinder in the arena (CA, CP , EA, EP ) where CA = V M × S,
CP = V M × 2M×S , EA ⊆ CA × CP , EP ⊆ CP × CA,
(
(v, s), (v, τ)

)
∈ EA ⇐⇒ τ ∈ Jδ(s, λM (v))K and, for all (D, s′) ∈ τ , there exists

an event v′ ∈ V M such that ηM (v, v′) = D ,

and
(
(v, τ), (v′, s)

)
∈ EP ⇐⇒ there exists D ∈ M such that (D, s) ∈ τ and ηM (v, v′) = D .

CA is the set of game positions of the player Automaton. Analogously, at a position from
CP it is Pathfinder’s turn. The game position (v, ι) is called the initial position.

A play of G(M,M, v) starts at the initial position (v, ι) from the set CA, i.e., the player
Automaton has to move first. He chooses a transition τ from Jδ(ι, λM (v))K resulting in a
game position (v, τ) ∈ CP . Now, it is Pathfinder’s turn who has to pick a movement (D, s)
from τ . This leads to the game position (v′, s) ∈ CA with ηM (v, v′) = D. After that,
Automaton has to move next and so on. More formally, we define:

Definition 3.8. Let M = (S, δ, ι, κ) be a local MSCA and (M,v) be a pointed MSC. A
partial play ξ of G(M,M, v) is a sequence of one of the following two forms:

(1) ξ =
(
(vi, si)(vi, τi)

)
1≤i≤n

∈ (CACP )
n where

• n ≥ 1
• (v1, s1) = (v, ι)
• ((vi, si), (vi, τi)) ∈ EA for all 1 ≤ i ≤ n
• ((vi, τi), (vi+1, si+1)) ∈ EP for all 1 ≤ i < n

(2) ξ =
(
(vi, si)(vi, τi)

)
1≤i<n

(vn, sn) ∈ (CPCA)
n−1CA where

• n ≥ 1
• (v1, s1) = (v, ι)
• ((vi, si), (vi, τi)) ∈ EA for all 1 ≤ i < n
• ((vi, τi), (vi+1, si+1)) ∈ EP for all 1 ≤ i < n



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 13

The sequence (si)1≤i≤n ∈ Sn is called the label of ξ. By ξ ↾ CA we denote the sequence
(v1, s1)(v2, s2) . . . which is obtained by restricting ξ to the positions from CA.

The sequence ξ = (v1, s1)
(
(vi, τi), (vi+1, si+1)

)
1≤i<n

with n ∈ (N \ {0}) ∪ {∞} is a play

of G(M,M, v) if the following conditions are fulfilled:

•
(
(vi, si)(vi, τi)

)
1≤i≤j

(vj+1, sj+1) ∈ (CACP )
jCA is a partial play for all 0 ≤ j < n

• if n ∈ N, then there does not exit a (v, τ) ∈ CP such that
(
(vn, sn), (v, τ)

)
∈ EA, i.e., the

player Automaton cannot move any more.

If ξ is a play, then the label of ξ is the sequence s1s2s3 . . . ∈ S∞. Automaton is declared
the winner of the play ξ if the label of ξ is accepting in M. Otherwise, the play is won by
Pathfinder.

We define (memoryless) (winning) strategies in the usual way:

Definition 3.9. A strategy of player Automaton in the game G(M,M, v) is a total function
f : ((CACP )

∗CA) → CP . A (partial) play ξ = (v1, s1)
(
(vi, τi)(vi+1, si+1)

)
1≤i<n

is called a

(partial) f -play if (vi, τi) = f
(
(v1, s1)(v1, τ1) . . . (vi, si)

)
for every 1 ≤ i < n. The strategy

f is called memoryless if f(ξ1) = f(ξ2) for all (v, s) ∈ CA and ξ1, ξ2 ∈ (CACP )
∗{(v, s)}.

Furthermore, f is a winning strategy if every f -play of G(M,M, v) is won by the player
Automaton — no matter what the moves of Pathfinder are.

A (memoryless) (winning) strategy for player Pathfinder is defined analogously. Note
that we can consider a memoryless strategy f as a function f : CA → CP . Even though
we require a strategy to be a total function, we often define a concrete strategy only par-
tially and assume that all other (uninteresting) values are mapped to a fixed game position
from CP .

In the following, let M = (S, δ, ι, κ) be an MSCA and (M,v) be a pointed MSC.

Furthermore, let (CA, CP , EA, EP ) be the arena of G(M,M, v) and (CA, C
#
P , E#

A , E#
P ) be

the arena of G(M#,M, v). Firstly, let us state the fact that parity games enjoy memoryless
determinacy.

Proposition 3.10 ([15]). From any game position in G(M,M, v), either Automaton or
Pathfinder has a memoryless winning strategy.

We now establish a connection between accepting runs of M and winning strategies of
the player Automaton.

Lemma 3.11. If (M,v) is accepted by M, then Automaton has a winning strategy in the
game G(M,M, v).

Proof. Let ρ = (C,E, r, µ, ν) be an accepting run of M on (M,v). We construct a strategy f
for Automaton which ensures that, for every f -play ξ of G(M,M, v), the label of ξ is also
a label of a branch of ρ. Let x ∈ C be a configuration with Eρ(x) 6= ∅ and b = x1x2 . . . xn
be the unique path from the root r to x in ρ. Consider the finite sequence

ξ = (v1, s1)(v1, τ1)(v2, s2) . . . (vn, sn) ∈ (CACP )
n−1CA

where vi = ν(xi), si = µ(xi), τj = trρ(xj) for all i ∈ [n] and j ∈ [n − 1]. The sequence ξ
is a partial play of G(M,M, v). We define f(ξ) = (vn, trρ(xn)). The partial function f
becomes a total function and, therefore, a strategy for the player Automaton by mapping
every value, for which we did not define f , to a fixed game position from CP .



14 ROY MENNICKE

We show that every f -play develops along a branch of ρ. Every play of G(M,M, v)
starts in the initial position (ι, v) = (ν(r), µ(r)). For the induction step, let

ξ = (v1, s1)(v1, τ1)(v2, s2) . . . (vn, sn) ∈ (CACP )
n−1CA

be a partial f -play and b = x1 . . . xn ∈ Cn be the prefix of the branch of ρ such that
µ(xi) = si, ν(xi) = vi for all i ∈ [n] and trρ(xj) = τj for all j ∈ [n− 1]. If M is stuck in xn,
then we have Eρ(xn) = ∅ and the player Automaton cannot proceed in ξ. Otherwise, we
have Eρ(xn) 6= ∅ and f(ξ) is defined. After Automaton’s f -conform move we are at game
position f(ξ) = (vn, trρ(xn)) ∈ CP . For every move (D, s) ∈ trρ(xn) of Pathfinder, there
exists a configuration x ∈ Eρ(xn) with µ(x) = s and ηM (ν(xn), ν(x)) = D. Hence, every
f -play ξ develops along a branch b of ρ. Since b is accepting and b and ξ are labelled by the
same sequence over S, ξ is a play won by Automaton. Therefore, f is a winning strategy
of Automaton in the game G(M,M, v).

Lemma 3.12. If the player Automaton has a winning strategy in the game G(M,M, v),
then the pointed MSC (M,v) is accepted by M.

Proof. Let us assume that there exists a winning strategy f for Automaton in G(M,M, v).
By Prop. 3.10, we can assume that f is memoryless. We inductively construct an accepting
run ρ of M on (M,v). Firstly, we set ρ1 = (C1, E1, r, µ1, ν1) where C1 = {r}, E1 = ∅,
µ1(r) = ι, and ν1(r) = v. Now, let us assume that the S-labelled tree ρi = (Ci, Ei, r, µi, νi)
is already defined. Let {x1, x2, . . . , xn} be the set of all leaves of ρi in which M is not
stuck, i.e., for all j ∈ [n], the local MSCA M is not stuck in state µi(xj) at position
νi(xj). For every j ∈ [n], let τj be the transition such that f(νi(xj), µi(xj)) = (νi(xj), τj).
We set ρi+1 = (Ci+1, Ei+1, r, µi+1, νi+1) to the smallest (with respect to the size of the
set of configurations Ci+1) S-labelled tree such that ρi+1 ↾ Ci = ρi and, for all j ∈ [n],
trρi+1

(xj) = τj.
Let ρ = (C,E, r, µ, ν) =

⋃
i≥1 ρi. It can be easily checked that ρ is a run of M on

(M,v). Now, let b = x1x2x3 . . . ∈ C∞ be a branch of ρ. Consider the play

ξ =
(
ν(x1), µ(x1)

)(
ν(x1), trρ(x1)

)(
ν(x2), µ(x2)

)(
ν(x2), trρ(x2)

)
. . .

of G(M,M, v). It follows from the construction of ρ that ξ is an f -play. Since f is a winning
strategy for player Automaton, ξ is won by Automaton. Since ξ and b share the same label,
the branch b is accepting in M. Hence, ρ is an accepting run of the local MSCA M.

The next two lemmas state that a player has a winning strategy in the current game if
and only if there exists a winning strategy for its opponent in the dual game.

Lemma 3.13. If Automaton has a winning strategy in G(M,M, v), then Pathfinder has a
winning strategy in the game G(M#,M, v).

Proof. Let fA be a winning strategy of Automaton in the game G(M,M, v). We show that
there exists a strategy fP for Pathfinder such that, for every fP -play ξ# in G(M#,M, v),
there exists an fA-play ξ in G(M,M, v) such that ξ ↾ CA = ξ# ↾ CA. Note that the initial
positions of the games G(M,M, v) and G(M#,M, v) are the same. For the induction

step, let n ≥ 0, ξ# ∈ (CAC
#
P )n{(w, s)(w, τ#)} be a partial play of G(M#,M, v), and

ξ ∈ (CACP )
n{(w, s)(w, τ)} be a partial fA-play of G(M,M, v) such that ξ# ↾ CA = ξ ↾ CA.

From Lemma 3.2 it follows that there exists a movement (D, s′) ∈ τ∩τ#. Pathfinder chooses
(D, s′) as his next move resulting in a game position (w′, s′) where ηM (w,w′) = D, i.e.,



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 15

fP (ξ
#) = (w′, s′). Clearly, the sequences ξ(w′, s′) and ξ#(w′, s′) are equal when restricting

them to positions from CA.
Thus, for every fP -play ξ# in G(M#,M, v), there exists an fA-play ξ in G(M,M, v)

such that µ(ξ#) = µ(ξ). Since fA is a winning strategy, ξ is a play won by Automaton
in G(M,M, v). From Remark 3.5 it follows that the play ξ# in G(M#,M, v) is won
by Pathfinder. Hence, we showed that Pathfinder has a winning strategy in the game
G(M#,M, v).

Lemma 3.14. If Pathfinder has a winning strategy in G(M#,M, v), then Automaton has
a winning strategy in the game G(M,M, v).

Proof. Let fP be a winning strategy of Pathfinder in the game G(M#,M, v). We show
that there exists a winning strategy fA of Automaton ensuring that, for every fA-play ξ in
the game G(M,M, v), there exists an fP -play ξ# in G(M#,M, v) such that ξ# ↾ CA =
ξ ↾ CA. The initial positions of the games G(M,M, v) and G(M#,M, v) are the same.
For the induction step, let ξ ∈ (CACP )

n{(w, s)} be a partial play of G(M,M, v), and

ξ# ∈ (CAC
#
P )n{(w, s)} be a partial fP -play in G(M#,M, v) such that ξ ↾ CA = ξ# ↾ CA.

We define

X = {(D, s′) ∈ S ×M | there exists τ# ∈ Jδ#(s, λM (w))K and w′ ∈ V M

such that fP (w, τ
#) = (w′, s′) and ηM (w,w′) = D}

to be the set of the possible fP -conform moves of Pathfinder after Automaton’s next move
in the play ξ#. We claim that there exists a transition τ ∈ Jδ(s, λM (w))K with τ ⊆ X.

Towards a contradiction, suppose there is no such τ . Then, for all τ ′ ∈ Jδ(s, λM (w))K,
there exists a movement (Dτ ′ , sτ ′) ∈ τ ′ with (Dτ ′ , sτ ′) /∈ X. If Z = {(Dτ ′ , sτ ′) | τ ′ ∈
Jδ(s, λM (w))K}, then Z ∩ Y 6= ∅ for all Y ∈ mod(δ(s, λM (w))). From Lemma 3.3 it follows
that Z ∈ mod(δ#(s, λM (w))). Hence, there exists a transition τ ′′ ∈ Jδ#(s, λM (w))K with
τ ′′ ⊆ Z. However, we have τ ′′ ∩X = ∅ which is a contradiction to our definition of X.

Automaton chooses the above transition τ with τ ⊆ X as his next move resulting in a
game position (w, τ) in the game G(M,M, v), i.e., fA(ξ) = (w, τ). For every move (D, s′)
of Pathfinder in G(M,M, v), there exists a τ# ∈ Jδ#(w, s)K with fP (ξ

#(w, τ#)) = (w′, s′)
and ηM (w,w′) = D. This follows from the fact that (D, s′) ∈ X. Clearly, the sequences
ξ(w, τ)(w′, s′) and ξ#(w, τ#)(w′, s′) are equal when restricting them to positions from CA.

Let ξ be an fA-play in G(M,M, v). There exists an fP -play ξ# in G(M#,M, v) with
ξ ↾ CA = ξ# ↾ CA. Since µ(ξ) = µ(ξ#) and since ξ# is a play won by Pathfinder in
G(M#,M, v), the play ξ in G(M,M, v) must be won by Automaton (by Remark 3.5).
Thus, fA is a winning strategy for Automaton in G(M,M, v).

We are now able to prove our main theorem from this section.

Proof of Theorem 3.6. By Lemma 3.11 and Lemma 3.12, the pointed MSC (M,v) is ac-
cepted by M if and only if Automaton has a winning strategy in G(M,M, v). By the
lemmas 3.13 and 3.14, the latter is the case if and only if Pathfinder has a winning strategy
in the game G(M#,M, v). From Prop. 3.10 it follows that this is the case if and only
if Automaton has no winning strategy in G(M#,M, v) respectively M# does not accept
(M,v) (again by the Lemmas 3.11 and 3.12).



16 ROY MENNICKE

ι | 1 c | 0
{σ} id

ι | 1 c | 0
Σ proc

Figure 4: Illustrations of the local MSCAs Mσ (left side) and M〈proc〉tt (right side).

M〈π1〉tt M〈π2〉ttι1 | 1 c1 | 0 ι2 | 1 c2 | 0
Σ id

Figure 5: Illustration of M〈π1;π2〉tt.

4. Translation of Local CRPDL Formulas

In this section, we show that, for every local CRPDL formula α, one can compute a local
MSCA Mα in polynomial time which exactly accepts the set of models of α. More formally:

Theorem 4.1. From a local formula α, one can construct in time poly(|α|) a local MSCA
Mα such that, for all pointed MSCs (M,v), we have M,v |= α if and only if (M,v) ∈
L(Mα). The size of Mα is linear in the size of α.

The rest of this section prepares the proof of the above theorem. The actual proof can
be found on page 23.

4.1. Construction. If α is a local formula, then we distinguish the following cases:

Case α = σ. We define Mσ = ({ι, c}, δ, ι, c, κ) where κ(ι) = 1, κ(c) = 0, and

δ(s, σ′) =

{
(id, c) if σ = σ′ and s = ι

⊥ otherwise

for all s ∈ {ι, c} and σ′ ∈ Σ. The local MSCA Mσ is depicted on the left side of Fig. 4.

Case α = ¬β. We define M¬β to be the dual automaton of Mβ (cf. Definition 3.4).

Case α = 〈D〉 tt with D ∈ M. We defineM〈D〉tt = ({ι, c}, δ, ι, c, κ) where κ(ι) = 1, κ(c) = 0,
and

δ(s, σ) =

{
(D, c) if s = ι

⊥ otherwise

for all s ∈ {ι, c} and σ ∈ Σ. On the right side of Fig. 4, there is an illustration of M〈proc〉tt.



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 17

Mβ

ι | 1 c | 0

ι′ | 1

Σ id

id

Figure 6: Illustration of the local MSCA M〈{β}〉tt.

M〈π1〉tt

M〈π2〉tt

ι | 1 c | 0

ι1 | 1 c1 | 0

ι2 | 1 c2 | 0

Σ

Σ

id

id

id

id

Σ

Σ

Figure 7: Illustration of M〈π1+π2〉tt.

Case α = 〈π1;π2〉 tt. If M〈πi〉tt = (Si, δi, ιi, ci, κi) for i ∈ [2] and δ1(c1, σ) = ⊥ for all
σ ∈ Σ, then we define M〈π1;π2〉tt to be the local MSCA (S, δ, ι1, c2, κ) where S = S1 ⊎ S2,
κ = κ1 ∪ κ2, and

δ(s, σ) =





(id, ι2) if s = c1

δ1(s, σ) if s ∈ S1 \ {c1}

δ2(s, σ) if s ∈ S2

for all s ∈ S and σ ∈ Σ. Figure 5 shows an illustration of M〈π1;π2〉tt.
The automaton M〈π1;π2〉tt is the concatenation of the local MSCAsM〈π1〉tt andM〈π2〉tt.

Intuitively, M〈π1;π2〉tt starts a copy of M〈π1〉tt and, when this copy changes into its concate-
nation state c1, the automaton M〈π1;π2〉tt proceeds with starting a copy of the local MSCA
M〈π2〉tt. Note that M〈π1;π2〉tt is forced to start the copy of M〈π2〉tt since runs of local
MSCAs are maximal by definition (see Definition 2.21) and we have {(id, ι2)} ∈ Jδ(c1, σ)K
for every σ ∈ Σ.

Case α = 〈{β}〉 tt. If Mβ = (S′, δ′, ι′, c′, κ′), then we define M〈{β}〉tt = (S, δ, ι, c, κ) where
S = S′ ⊎ {ι, c}, κ = κ′ ∪ {(ι, 1), (c, 0)}, and

δ(s, σ) =





(id, ι′) ∧ (id, c) if s = ι

⊥ if s = c

δ′(s, σ) if s ∈ S′

for all s ∈ S and σ ∈ Σ. The automaton M〈{β}〉tt is depicted in Figure 6.
Intuitively, the local MSCA M〈{β}〉tt starts Mβ to test whether M,v |= β holds and,

at the same time, changes into its concatenation state.



18 ROY MENNICKE

M〈π〉tt

ι | 1 c | 0

ι′ | 1 c′ | 1

id

Σ

Σ

id

id
Σ

Figure 8: Illustration of the local MSCA M〈π∗〉tt.

Case α = 〈π1 + π2〉 tt. If M〈πi〉tt = (Si, δi, ιi, ci, κi) and δi(ci, σ) = ⊥ for all i ∈ [2] and
σ ∈ Σ, then we defineM〈π1+π2〉tt to be the local MSCA (S, δ, ι, c, κ) where S = S1⊎S2⊎{ι, c},
κ = κ1 ∪ κ2 ∪ {(ι, 1), (c, 0)}, and

δ(s, σ) =





(id, ι1) ∨ (id, ι2) if s = ι

(id, c) if s = ci and i ∈ [2]

δi(s, σ) if s ∈ Si \ {ci} and i ∈ [2]

⊥ if s = c

for all s ∈ S and σ ∈ Σ. The local MSCA M〈π1+π2〉tt is visualized in Fig. 7.

Case α = 〈π∗〉 tt. If M〈π〉tt = (S′, δ′, ι′, c′, κ′) and δ′(c′, σ) = ⊥ for all σ ∈ Σ, then we set

M〈π∗〉tt = (S, δ, ι, c, κ) where S = S′ ⊎ {ι, c}, κ and κ′ coincide on S′ \ {c′}, κ′(s) = 1 if
s ∈ {ι, c′}, κ′(c) = 0, and

δ(s, σ) =





(id, ι) if s = c′

(id, ι′) ∨ (id, c) if s = ι

⊥ if s = c

δ′(s, σ) if s ∈ S′ \ {c′}

for all s ∈ S and σ ∈ Σ. See Fig. 8 for a visualization of M〈π∗〉tt.
Intuitively, the local MSCA M〈π∗〉tt executes a copy of the automaton M〈π〉tt and, every

time this copy changes into its concatenation state c′, the local MSCA M〈π∗〉tt nondeter-
ministically decides whether it restarts this copy again or changes into the concatenation
state c.

Case α = 〈π〉ω. If M〈π〉tt = (S, δ′, ι, c, κ) and δ′(c, σ) = ⊥ for all σ ∈ Σ, then we set
M〈π〉ω = (S, δ, ι, c, κ) where

δ(s, σ) =

{
(id, ι) if s = c

δ′(s, σ) if s ∈ S \ {c}

for all s ∈ S and σ ∈ Σ.



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 19

4.2. Concatenation States. In this section, we prove a technical proposition stating that,
for all path formulas α, every accepting run of the local MSCA Mα exhibits exactly one
configuration labelled by the concatenation state. It will be of use in Sect. 4.3 to show the
correctness of our construction.

Firstly, we introduce the notion of main states. A state s is called a main state if
the concatenation state can be reached from s. The intuition of this type of states is the
following: If π is a path expression and ρ is an accepting run of M〈π〉tt, then ρ exhibits
one main branch b by which M “processes” the path expression π. The label of b solely
consists of the not yet formally defined main states. In all the other branches of ρ, i.e.,
in the branches which fork from b, M basically executes tests of the form {α}. All these
branches are labelled by non-main states.

Definition 4.2. Let M = (S, δ, ι, c, κ) be a local MSCA and s ∈ S. We inductively define
the set of main states ms(M) of M: ms(M) is the least set such that, for all s ∈ S, we
have s ∈ ms(M) if and only if

(1) s = c or
(2) there exist s′ ∈ ms(M), σ ∈ Σ, D ∈ M, and τ ∈ Jδ(s, σ)K such that (D, s′) ∈ τ .

By examining our construction, one can make the following two simple observations.

Remark 4.3. If α is a path formula and Mα = (S, δ, ι, c, κ), the following conditions hold:

(1) we have δ(c, σ) = ⊥ for every σ ∈ Σ
(2) for all s ∈ ms(Mα), we have

κ(s) =

{
0 if s = c

1 otherwise

If α is a path formula of the form 〈π1;π2〉 tt, then in our construction of Mα, we required
δ1(c1, σ) = ⊥ for all σ ∈ Σ where δ1 is the transition relation and c1 is the concatenation
state of M〈π1〉tt. It follows from the above observation (1) that our construction can be
applied to all formulas of the form 〈π1;π2〉 tt. Similarly, this holds for our construction
of Mα in the cases α = 〈π1 + π2〉 tt, α = 〈π∗〉 tt, and α = 〈π〉ω.

Lemma 4.4. If α is a path formula and Mα = (S, δ, ι, c, κ), then the following two condi-
tions hold:

(a) ι ∈ ms(Mα)
(b) for all s ∈ ms(Mα), σ ∈ Σ, and τ ∈ Jδ(s, σ)K, we have

|τ ∩ (ms(Mα)×M)| = 1 (4.1)

Intuitively, the above lemma states that every run of Mα exhibits exactly one branch
labelled solely by main states and that all other configurations of this run which are not
part of this path are labelled by non-main states.

Proof. By simple inspection, our claim follows for the cases α = 〈D〉 tt with D ∈ M and
α = 〈{β〉}tt. As our induction hypothesis, let us assume that the above lemma holds for
M〈πi〉tt = (Si, δi, ιi, ci, κi) where i ∈ [2]. If α = 〈π1;π2〉 tt, then it can be easily checked
that ms(Mα) = ms(M〈π1〉tt) ∪ms(M〈π2〉tt). Hence, ι1 ∈ ms(Mα) and, therefore, property
(a) is fulfilled. Now, let τ ∈ Jδ(s, σ)K for some s ∈ S and σ ∈ Σ. Then τ = {(id, ι2)} (if
s = c1), τ ∈ Jδ1(s, σ)K, or τ ∈ Jδ2(s, σ)K. Together with our induction hypothesis it follows



20 ROY MENNICKE

that (4.1) holds for τ . Now, let us consider the case α = 〈π1 + π2〉 tt. By easy inspection it
follows that

ms(Mα) = {ι, c} ∪ms(M〈π1〉tt) ∪ms(M〈π2〉tt) .

Hence, property (a) follows. If τ ∈ Jδ(s, σ)K for some s ∈ S and σ ∈ Σ, then τ = {(id, ι1)},
τ = {(id, ι2)}, τ = {(id, c)}, τ ∈ Jδ1(s, σ)K, or τ ∈ Jδ2(s, σ)K. Property (b) follows from our
induction hypothesis.

Finally, we need to deal with the case α = 〈π∗〉 tt. For this, we assume that the
above lemma holds for M〈π〉tt = (S′, δ′, ι′, c′, κ′). Again, it can be easily verified that
ms(Mα) = {ι, c} ∪ ms(M〈π〉tt). Thus, property (a) holds. Now, let τ ∈ Jδ(s, σ)K for some
s ∈ S and σ ∈ Σ. We have τ = {(id, ι)}, τ = {(id, ι′)}, τ = {(id, c)}, or τ ∈ Jδ′(s, σ)K.
Property (b) follows from our induction hypothesis.

Proposition 4.5. Let α be a path formula and ρ = (C,E, r, µ, ν) be an accepting run of
Mα = (S, δ, ι, c, κ). There exists exactly one configuration from C denoted by cs(ρ) with
µ(cs(ρ)) = c.

Proof. It follows from Lemma 4.4 that all configurations x ∈ C with µ(x) ∈ ms(Mα) form
a unique branch b = x1x2x3 . . . ∈ C∞ of ρ. Since ρ is accepting, b must be accepting. It
follows from Remark 4.3 that µ(b) ∈ (ms(Mα) \ {c})

∗{c}. Therefore, every accepting run
of Mα contains exactly one configuration labelled by c.

4.3. Correctness. Let α be a local formula. We show by induction over the construction
of α that L(Mα) = L(α). The following claim is used as the induction hypothesis of our
proof. Recall that reachM (v, π) is the set of all events which can be reached from v by a
path described by π in the MSC M .

Claim 4.6. Let α be a path formula. For all MSCs M , events v, v′ ∈ V M , we have
v′ ∈ reachM (v, α) if and only if there exists an accepting run ρ of Mα on (M,v) with
ν(cs(ρ)) = v′.

The following four technical lemmas deal with the correctness of the constructions of
the local MSCAs M〈π1;π2〉tt and M〈π∗〉tt.

Lemma 4.7. Let M be an MSC, v1, v
′ ∈ V M , and π1, π2 be path expressions. If Claim 4.6

holds for 〈π1〉 tt and 〈π2〉 tt and we have v′ ∈ reachM (v1, π1;π2), then there exists an accept-
ing run ρ = (C,E, r, µ, ν) of M〈π1;π2〉tt on (M,v1) with ν(cs(ρ)) = v′.

Proof. Let M〈π1;π2〉tt = (S, δ, ι, c, κ) and M〈πi〉tt = (Si, δi, ιi, ci, κi) for all i ∈ [2]. If we

have v′ ∈ reachM (v1, π1;π2), then, by definition, there exists an event v2 ∈ V M such that
v2 ∈ reachM (v1, π1) and v′ ∈ reachM (v2, π2). It follows from our assumption that there
exists an accepting run ρ1 = (C1, E1, r1, µ1, ν1) of the local MSCA M〈π1〉tt on (M,v1) with
ν1(cs(ρ1)) = v2 and that there exists an accepting run ρ2 = (C2, E2, r2, µ2, ν2) of M〈π2〉tt on
(M,v2) with ν2(cs(ρ2)) = v′. Consider the S-labelled tree ρ = (C1 ⊎ C2, E, r1, µ, ν) where
E = E1 ∪ E2 ∪ {(cs(ρ1), r2)}, µ = µ1 ∪ µ2, and ν = ν1 ∪ ν2. It can be easily checked that ρ
is a run of the local MSCA M〈π1;π2〉tt on (M,v1) with cs(ρ) = cs(ρ2). In Fig. 9, the run ρ
is depicted where cs(ρi) is denoted by xi for i ∈ [2].

It remains to show that ρ is accepting. Let b be a branch of ρ. We distinguish two cases:
If b ∈ C∞

1 , then b is also a branch from ρ1. Since ρ1 is accepting, the branch b is accepting
in M〈π1〉tt. Since κ1 ⊆ κ and µ1 ⊆ µ, b is accepting in M〈π1;π2〉tt, too. Otherwise (i.e., if



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 21

ρ1r1
ι1 x1

c1
ρ2r2

ι2

x2

c2

Figure 9: The run ρ of M〈π1;π2〉tt.

b ∈ C+
1 {r2}C

∞
2 ), there exists a suffix of b which is an accepting branch in ρ2. Because of

this fact, µ2 ⊆ µ, and κ2 ⊆ κ, the branch b is also accepting in M〈π1;π2〉tt. Hence, ρ is an
accepting run of the automaton M〈π1;π2〉tt on (M,v1) with ν(cs(ρ)) = ν(cs(ρ2)) = v′.

Lemma 4.8. Let M be an MSC, v, v′ ∈ V M , and π1, π2 be path expressions. If Claim 4.6
holds for 〈π1〉 tt and 〈π2〉 tt and there exists an accepting run ρ = (C,E, r1, µ, ν) of M〈π1;π2〉tt

on (M,v) with ν(cs(ρ)) = v′, then v′ ∈ reachM (v, π1;π2).

Proof. Let M〈π1;π2〉tt = (S, δ, ι, c, κ) and M〈πi〉tt = (Si, δi, ιi, ci, κi) for all i ∈ [2]. Since
µ(cs(ρ)) = c and c = c2 ∈ S2, there has to exist a configuration r2 ∈ C with µ(r2) = ι2.
Towards a contradiction, let us assume that there exists another configuration r3 ∈ C with
µ(r3) = ι2. Because ι2 is a main state in M〈π1;π2〉tt (see the proof of Lemma 4.4) and
due to Lemma 4.4, r2 and r3 must occur in a branch of ρ. This is a contradiction to
ι2 /∈ srcM〈π1;π2〉tt

(ι2), i.e., ι2 is not reachable from ι2 in M〈π1;π2〉tt. The latter fact follows by

simple inspection of the transition relation of M〈π1;π2〉tt. Let C2 = {y ∈ C | (r2, y) ∈ E∗}
and C1 = C \ C2. It can be easily checked that the S-labelled tree ρi = ρ ↾ Ci is a run of
M〈πi〉tt for all i ∈ [2]. From the definition of the transition function δ, it follows that there
exists a configuration x1 ∈ C1 with µ(x1) = c1, Eρ(x1) = {r2}, ν(x1) = ν(r2). Figure 9
shows a depiction of the run ρ consisting of ρ1 and ρ2 where cs(ρ) = x2.

If b is a branch of ρ2 and b′ is the unique path in ρ from r1 to x1, then b′b is a branch
of ρ. Since ρ is accepting, µ2 ⊆ µ, and κ2 ⊆ κ, b is accepting in M〈π2〉tt. Hence, ρ2 is
an accepting run of M〈π2〉tt on (M,ν(x1)) with cs(ρ2) = cs(ρ). Now, let b be a branch of
ρ1. If b ∈ (C \ {x1})

∞, then b is a branch of ρ with µ(b) ∈ S∞
1 . Since ρ is accepting,

µ1 ⊆ µ and κ1 ⊆ κ, b is accepting in M〈π1〉tt. Otherwise (i.e., if b ∈ C∗{x1}), b ends in a
configuration labelled by c1. By Remark 4.3, κ1(c1) is even and, therefore, b is accepting
in ρ1. Hence, ρ1 is an accepting run of M〈π1〉tt on (M,v) with cs(ρ1) = x1. By our
assumption, it follows that ν(x1) ∈ reachM (v, π1) and v′ ∈ reachM (ν(x1), π2). Therefore,
we have v′ ∈ reachM (v, π1;π2).

Lemma 4.9. Let M be an MSC, v, v′ ∈ V M , and π be a path expression. If Claim 4.6
holds for 〈π〉 tt and we have v′ ∈ reachM (v, π∗), then there exists an accepting run ρ =
(C,E, r, µ, ν) of M〈π∗〉tt on (M,v) with ν(cs(ρ)) = v′.

Proof. Let M〈π∗〉tt = (S, δ, ι, c, κ) and M〈π〉tt = (S′, δ′, ι′, c′, κ′). Since v′ ∈ reachM (v, π∗),

there exist an n ≥ 0 and events v1, v2, . . . , vn+1 ∈ V M such that v1 = v, vn+1 = v′, and
vi+1 ∈ reachM (vi, π) for all i ∈ [n]. If n = 0, then the lemma follows by easy inspection
of the construction of M〈π∗〉tt. Now, let us assume that n ≥ 1. Since Claim 4.6 holds for
〈π〉 tt, we can assume that there exist, for all i ∈ [n], accepting runs ρi = (Ci, Ei, ri, µi, νi)
of the automaton M〈π〉tt on the pointed MSC (M,vi) with νi(cs(ρi)) = vi+1. Without loss



22 ROY MENNICKE

y1

ι
ρ1r1

x1 y2

c′
ι′

ι
ρ2r2

x2 y3

c′
ι′

ι
ρ3r3

x3 y4

c′
ι′

ι
z
c

Figure 10: The run ρ of M〈π∗〉tt consisting of three runs of M〈π〉tt (n = 3).

of generality, we may assume that Ci ∩ Cj = ∅ for all i, j ∈ [n] (note that we can enforce
Ci ∩ Cj = ∅ by renaming the nodes of the Ci’s). Let xi = cs(ρi) for all i ∈ [n]. The
S-labelled tree ρ = (C,E, y1, µ, ν) where

C =
⋃

i∈[n]Ci ⊎ {y1, y2, . . . , yn+1, z} ,

E =
⋃

i∈[n]Ei ∪ {(yi, ri) | i ∈ [n]} ∪ {(xi, yi+1) | i ∈ [n]} ∪ {(yn+1, z)} ,

µ =
⋃

i∈[n] µi ∪ {(yi, ι) | i ∈ [n+ 1]} ∪ {(z, c)} ,

ν =
⋃

i∈[n] νi ∪ {(yi, vi) | i ∈ [n+ 1]} ∪ {(z, v′)}

is a run of M〈π∗〉tt on (M,v) with cs(ρ) = v′ — this follows by an easy inspection of the
construction of M〈π∗〉tt. Figure 10 shows a depiction of ρ for the case n = 3.

It remains to show that ρ is accepting. Let b be a branch of ρ. If b ∈ (C \ {z})∞, then
there exist a suffix b′ of b and an index i ∈ [n] such that b′ is a branch of ρi. Note that we
have µ(b′) ∈ (S′ \ {c′})∞. Since ρi is accepting, b

′ is accepting in M〈π〉tt. Since µi ⊆ µ and
κ′ ↾ (S′ \ {c′}) ⊆ κ, it follows that b is accepting in M〈π∗〉tt. Otherwise (i.e., if b ∈ C∗{z}),
we have µ(b) = S∗{c}. Since κ(c) is even, b is accepting in M〈π∗〉tt. Hence, ρ is an accepting

run of M〈π∗〉tt on the pointed MSC (M,v) with ν(cs(ρ)) = v′.

Lemma 4.10. Let M be an MSC, v, v′ ∈ V M , and π be a path expression. If Claim 4.6
holds for 〈π〉 tt and there exists an accepting run ρ = (C,E, y1, µ, ν) of M〈π∗〉tt on (M,v)

with ν(cs(ρ)) = v′, then v′ ∈ reachM (v, π∗).

Proof. Let M〈π∗〉tt = (S, δ, ι, c, κ) and M〈π〉tt = (S′, δ′, ι′, c′, κ′). Let R be the set of all

configurations from C labelled by ι′. If R = ∅, then ρ consists of exactly one branch b = y1z
with µ(b) = ιc and ν(y1) = ν(z). This can be easily verified by inspecting the transition
function δ. From ν(y1) = v and ν(z) = ν(cs(ρ)) = v′, it follows that v = v′. Hence,
v′ ∈ reachM (v, π∗).

Now, let us assume that R 6= ∅. It follows from ι′ ∈ ms(M〈π∗〉tt) (see the last paragraph
of the proof of Lemma 4.4) and Lemma 4.4 that all configurations from R occur in a
unique finite branch b = z1z2 . . . zℓ of ρ. Without loss of generality, we can assume that
R = {r1, r2, . . . , rn} such that there exist i1 < i2 < . . . < in with zik = rk for all k ∈ [n].
By examining the transition function δ, one can see that:

• For every i ∈ [n], there exists a yi ∈ C with Eρ(yi) = {ri} and µ(yi) = ι.
• There exists a configuration yn+1 ∈ C with Eρ(yn+1) = {cs(ρ)} and µ(yn+1) = ι.
• For every i ∈ [n], there exists a configuration xi with Eρ(xi) = {yi+1} and µ(xi) = c′.

Let Ci = ({x ∈ C | (ri, x) ∈ E∗} \ {x ∈ C | (yi+1, x) ∈ E∗}) for all i ∈ [n]. It can be
easily verified that the S-labelled tree ρi = (Ci, Ei, ri, µi, νi) = ρ ↾ Ci is a run of M〈π〉tt on



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 23

(M,ν(ri)) with cs(ρi) = xi. Figure 10 shows a depiction of the runs ρ1, ρ2, . . . , ρn forming
the run ρ for the case n = 3.

We now show that ρi is an accepting run for every i ∈ [n]. Let i ∈ [n] and b be a branch
of ρi. If b ∈ (Ci \{xi}), then there exists a path b′ from y1 to yi in ρ such that b′b is a branch
of ρ. Since ρ is accepting, b′b is accepting in M〈π∗〉tt. Because of µi ⊆ µ, µ(b) ∈ (S′ \{c′})∞

and κ′ ↾ (S′ \ {c′}) ⊆ κ, b is accepting in M〈π〉tt. If b ∈ C∗{xi}, then µ(b) ∈ S′∗{c′}. By
Remark 4.3, κ′(c′) is even and, therefore, b is accepting in M〈π〉tt. Hence ρi is an accepting
run of M〈π〉tt on (M,ν(ri)) with cs(ρi) = xi.

Since Claim 4.6 holds for 〈π〉 tt, we can assume that ν(xi) ∈ reachM (ν(ri), π). By
checking the definition of the transition function δ, one can easily verify that ν(xi) = ν(yi+1)
and ν(yi) = ν(ri) holds for every i ∈ [n]. Hence, we have ν(yi+1) ∈ reachM (ν(yi), π) for
every i ∈ [n]. From ν(yn+1) = ν(cs(ρ)) it follows that v′ ∈ reachM (v, π∗).

The following lemma dealing with the correctness of the construction of M〈π〉ω finishes
the preparatory work needed in order to proof Theorem 4.1.

Lemma 4.11. Let M be an MSC, v ∈ V M , and π be a path expression. If Claim 4.6 holds
for 〈π〉 tt, then

M,v |= 〈π〉ω ⇐⇒ (M,v) ∈ L(M〈π〉ω)

Proof. Let us assume that M,v |= 〈π〉ω. There exist v1, v2, v3, . . . ∈ V M such that v1 = v
and vi+1 ∈ reach(vi, π) for all i ≥ 1. Since Claim 4.6 holds for 〈π〉 tt, there exists an accepting
run ρi = (Ci, Ei, ri, µi, νi) of M〈π〉tt on (M,vi) with ν(cs(ρi)) = vi+1 for every i ≥ 1. The
S-labelled tree ρ = (C,E, r1, µ, ν) with C =

⊎
i≥1 Ci, E =

⋃
i≥Ei ∪ {(cs(ρi), ri+1) | i ≥ 1},

µ =
⋃

i≥1 µi, and ν =
⋃

i≥1 νi is a run of M〈π〉ω on (M,v). Let b be a branch of ρ. If there

exists an i > 1 such that b ∈ (C \ {ri})
∞, then there exists a suffix b′ of b such that b′ is

an accepting branch of ρj for some j with 1 ≤ j < i. Hence, b is accepting in ρ. Otherwise
(i.e., b is a branch going through ri for every i ≥ 1), it follows from Remark 4.3 that we
have min{κ(s) | s ∈ inf(b)} = κ(c) = 0. Hence, b is accepting and, therefore, ρ is accepting.
The converse can be shown analogously.

We are now able to prove our main theorem of this section.

Proof of Theorem 4.1. By an easy analysis of our construction, one can see that, for all
local formulas α, the automaton Mα can be constructed in polynomial time and that its
size is linear in the size of α.

Now, we inductively show that L(α) = L(Mα) for every local formula α. Let us first
consider the base cases. If α = σ with σ ∈ Σ, then it is easily checked that L(α) = L(Mα).
By simple inspection, it also follows that Claim 4.6 holds for α = 〈D〉 tt with D ∈ M.
Regarding the induction step, we need to distinguish the following cases: If α = ¬β, the
claim follows from Theorem 3.6. By Lemma 4.11, we have L(α) = L(Mα) for α = 〈π〉ω.
Claim 4.6 holds for α = 〈π1;π2〉 tt and α = 〈π∗〉 tt because of the lemmas 4.7, 4.8, 4.9, and
4.10. Analogously, it can be shown that Claim 4.6 is also true for the cases α = 〈{β}〉 tt
and α = 〈π1 + π2〉 tt. Note that we have M,v |= α if and only if reachM (v, α) 6= ∅ for all
pointed MSCs (M,v). Hence, L(α) = L(Mα) holds for the above path formulas.



24 ROY MENNICKE

Mαι | 1 ι′ | 1 f | 0

Σ, proc

Σ id

Figure 11: Illustration of the local MSCA MEα.

Mα

ι1 | 1 ι2 | 0

ι′ | 1

Σ

proc

id

id

Σ

Figure 12: Illustration of the local MSCA MAα.

5. Translation of Global CRPDL Formulas

In this section, we demonstrate that, for every global CRPDL formula ϕ of the form Eα or
Aα, one can compute a global MSCA Gϕ in polynomial time which exactly accepts the set
of models of ϕ. Let ϕ be a global formula of the above form.

Case ϕ = Eα. If Mα = (S′, δ′, ι′, c, κ′), then we set MEα = (S, δ, ι, c, κ) where S = S′ ⊎
{ι, f}, κ(s) = κ′(s) for all s ∈ S′, κ(ι) = 1, κ(f) = 0, and, for all s ∈ S and σ ∈ Σ,

δ(s, σ) =





(proc, ι) ∨ (id, ι′) if s = ι

⊥ if s = f

δ′(s, σ) otherwise

Intuitively, the automaton MEα (depicted in Fig. 11) moves forward on a process finitely
many times. At some event v, it nondeterministically decides to start the automaton Mα

to check whether (M,v) |= α holds.
Now, GEα = (M, I) is meant to work as follows: it nondeterministically chooses a

process on which it executes a copy of MEα in state ι. On all the other processes it
accepts immediately by starting MEα in the sink state f with rank 0. More formally, we
let GEα = (MEα, I) where

I = {(s1, s2, . . . , s|P|) | there exists p ∈ P such that sp = ι and sq = f for all p 6= q} .



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 25

Case ϕ = Aα. If Mα = (S′, δ′, ι′, c, κ′), we set MAα = (S, δ, ι1, c, κ) where S = S′ ⊎{ι1, ι2},
κ(s) = κ′(s) for all s ∈ S, κ(ι1) = 1, κ(ι2) = 0, and

δ(s, σ) =





(id, ι2) ∧ (id, ι′) if s = ι1

(proc, ι1) if s = ι2

δ(s, σ) otherwise

Informally speaking, the automaton MAα (depicted in Fig. 12) moves forward on a certain
process p and checks, for every event v ∈ V M

p of this process, if (M,v) |= α holds. Note

that, if MAα is in state ι2 at an event v such that there exists a successor v′ of v on the
same process, then MAα is forced to move to v′ and to change into the state ι1. That is
due to the fact that runs of local MSCAs are maximal by definition (see Definition 2.21)
and because we have {(proc, ι1)} ∈ Jδ(ι2, σ)K for every σ ∈ Σ.

We define GAα = (MAα, I) where I = {(ι1, ι1, . . . , ι1)}. That means GAα ensures
(M,v) |= α for every v ∈ M by starting MAα in the state ι1 on every process.

Using Theorem 4.1 and by simple inspection of the above construction, the following theo-
rem can be shown.

Theorem 5.1. From a global formula ϕ of the form ϕ = Eα or ϕ = Aα, one can construct
in time poly(|ϕ|) a global MSCA Gϕ such that, for all MSCs M , we have M |= ϕ if and
only if M ∈ L(Gϕ). The size of Gϕ is linear in the size of ϕ.

If ϕ is an arbitrary global formula, then we can also construct an equivalent global
MSCA Gϕ = (M, I). However, this time the space needed for our construction is exponential
in the number of “global” conjunctions occurring in ϕ. In fact, the size of M is still linear
in ϕ but |I| is exponential in the number of conjunctive connectives occurring outside of
subformulas of the form Eα and Aα, respectively.

When constructing a global MSCA from an arbitrary global formula, we need to dis-
tinguish the following two additional cases:

Case ϕ = ϕ1 ∨ ϕ2. Let Gϕi
= (Mi, Ii) and Mi = (Si, δi, ιi, κi) for all i ∈ [2]. Then we

define Gϕ1∨ϕ2
= (M, I) where M = (S, δ, ι1, κ), S = S1 ⊎ S2, δ = δ1 ∪ δ2, κ = κ1 ∪ κ2, and

I = I1 ∪ I2.

Case ϕ = ϕ1 ∧ ϕ2. Let Gϕi
= (Mi, Ii) and Mi = (Si, δi, ιi, ci, κi) for all i ∈ [2]. We define

Gϕ1∧ϕ2
= (M, I) where

I =
{(

(s1, s
′
1), (s2, s

′
2), . . . , (s|P|, s

′
|P|)

)
| (s1, s2, . . . , s|P|) ∈ I1, (s

′
1, s

′
2, . . . , s

′
|P|) ∈ I2

}
,

M = (S1⊎S2⊎S, δ, ι1, c1, κ), S = {(s1, s2) | s1 ∈ S1, s2 ∈ S2}, κ = κ1∪κ2∪{(s, 1) | s ∈ S},
and, for all s ∈ S1 ∪ S2 ∪ S, s1 ∈ S1, s2 ∈ S2, and σ ∈ Σ:

δ(s, σ) =





(id, s1) ∧ (id, s2) if s = (s1, s2) ∈ S

δ1(s, σ) if s ∈ S1

δ2(s, σ) if s ∈ S2

Together with Theorem 5.1, we obtain:



26 ROY MENNICKE

Corollary 5.2. From a global formula ϕ, one can construct in time 2poly(|ϕ|) a global
MSCA Gϕ such that, for all MSCs M , we have M |= ϕ if and only if M ∈ L(Gϕ). The size
of Gϕ is exponential in the size of ϕ.

6. The Satisfiability Problem

We strive for an algorithm that decides, given a global formula ϕ, whether L(ϕ) 6= ∅ holds.
Unfortunately, the satisfiability problem of CRPDL is undecidable. This follows from results
concerning Lamport diagrams which can be easily transferred to MSCs [17]. However, if
one only considers existentially B-bounded MSCs [20, 16, 10, 9], then the problem becomes
decidable. Intuitively, an MSC M is existentially B-bounded if its events can be scheduled
in such a way that at every moment no communication channel contains more than B
pending messages (see definition below). The rest of this section prepares the proof of our
main theorem which is stated in the following. The proof itself can be found on page 32.

Theorem 6.1. The following problem is PSPACE-complete:

Input: B ∈ N (given in unary) and a global CRPDL formula ϕ
Question: Is there an existentially B-bounded MSC satisfying ϕ?

6.1. From MSCAs to Word Automata. In order to be able to give uniform definitions
of automata over MSCs and words, respectively, we also consider words over an alphabet Γ
as labelled relational structures. For this, we fix the set W = {prev, next, id} of directions.

Definition 6.2. Let Γ be an arbitrary alphabet. A word-like structure over Γ is a structure
W = (V W , nextW , λW ) where

• V W is a set of positions,
• nextW ⊆ (V W × V W ),
• λW : V W → Γ is a labeling function,
• nextW is the direct successor relation of a linear order �W on V W ,
• (V W ,�W ) is finite or isomorphic to (N,≤)

The word-like structure W induces a partial function ηW : (V W × V W ) → W. For all
v, v′ ∈ V W , we define

ηW (v, v′) =





next if (v, v′) ∈ nextW

prev if (v′, v) ∈ nextW

id if v = v′

undefined otherwise

Every finite word W = γ1γ2 . . . γn ∈ Γ∗ gives rise to a unique (up to isomorphism)

word-like structure W where V W = [n], nextW = {(i, i + 1) | 1 ≤ i < n}, and λW (i) = γi
for all i ∈ [n]. Analogously, every infinite word W ∈ Γω induces a word-like structure W .
In the following, we identify W and W for every word W ∈ Γ∞.

We now formalize the notion of existentially B-bounded MSCs.



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 27

Definition 6.3. If M is an MSC and W is a word, then W is a linearization of M if
V M = V W , λM = λW , and (msgM ∪

⋃
p∈P proc

M
p )∗ ⊆ �W . The word W is B-bounded if we

have
|{v′ | v′ �W v, λW (v′) = p!q}| − |{v′ | v′ �W v, λW (v′) = q?p}| ≤ B ,

for every v ∈ V W and (p, q) ∈ Ch. An MSC M is existentially B-bounded if there exists a
B-bounded linearization of M , i.e., if it allows for an execution with B-bounded channels.

Example 6.4. Let M be the MSC from Fig. 1. The word

W = (1!2) (1!2) (1!2) (2?1) (2!1) (2?1) (2!1) (2?1) (2!1) (1?2) (1?2) (1?2) ∈ Σ∗

is a 3-bounded linearization of M . Note that parentheses have been introduced for read-
ability. There is even a 1-bounded linearization of M :

W ′ = (1!2) (2?1) (1!2) (2!1) (2?1) (1!2) (1?2) (2!1) (2?1) (1?2) (2!1) (1?2) ∈ Σ∗

Hence, W ′ witnesses the fact that M is existentially 1-bounded.

We define two-way alternating automata over words in the style of local MSCAs.

Definition 6.5. A two-way alternating parity automaton (or 2APA for short) is a quadruple
P = (S, δ, ι, κ) where

• S is a finite set of states,
• δ : (S × Σ) → B+(W× S) is a transition function,
• ι ∈ S is an initial state, and
• κ : S → {0, 1, . . . ,m− 1} is a ranking function with m ∈ N.
The size of P is |S| + |δ|. If |τ | = 1 for all τ ∈ Jδ(s, σ)K, s ∈ S, and σ ∈ Σ (i.e., P does
not make use of universal branching), then P is called a two-way parity automaton (or
2PA). If W is a word, then the definition of an S-labelled tree over W is analogous to the
definition of an S-labelled tree over a pointed MSC (cf. Definition 2.17). Furthermore, an
(accepting) run of a 2APA is defined in a similar way as it is defined for a local MSCA
(cf. Definitions 2.20, 2.21, and 2.22). By L(P), we denote the set of words W for which
there exists an accepting run of P on (W,v) where v is the minimal element from V W with
respect to �W .

Now, let us fix a channel bound B ∈ N and the alphabet Γ = Σ× {0, 1, . . . , B − 1}.

Definition 6.6. If W is a B-bounded word over Σ, then we associate with W the unique
B-bounded word WB over Γ where V W = V WB , nextW = nextWB , and, for every v ∈ V W ,
we have λWB (v) = (λW (v), i) with i = |{v′ ∈ V W | v′ ≺W v, λW (v) = λW (v′)}| mod B.

That means that, in the second component of the labels in WB, we count events labelled
by the same action modulo B.

Example 6.7. Let W and W ′ be the words from Example 6.4. For instance, W3 is the
word

(1!2, 0) (1!2, 1) (1!2, 2) (2?1, 0) (2!1, 0) (2?1, 1) (2!1, 1) (2?12) (2!1, 2) (1?2, 0) (1?2, 1) (1?2, 2)

whereas W ′
2 is given by:

(1!2, 0) (2?1, 0) (1!2, 1) (2!1, 0) (2?1, 1) (1!2, 0) (1?2, 0) (2!1, 1) (2?1, 0) (1?2, 1) (2!1, 0) (1?2, 0)



28 ROY MENNICKE

In WB, we are able to quickly locate matching send and receive events. For example,
if v is a send event of WB labelled by (p!q, i), we just need to move to the smallest event
v′ ∈ V WB (with respect to �W ) with v �WB v′ and λWB (v′) = (q?p, i).

Let G = (M, I) be a global MSCA. We can construct a 2APA PG = (S, δ, ι, κ) that
accepts exactly the set of words WB where W is a B-bounded linearization of an MSC from
L(G). In order to construct PG , there is one issue which needs to be addressed. Let M be an
MSC and W be a B-bounded linearization of M . If v, v′ ∈ V M with ηM (v, v′) = proc, then
a local MSCA is capable of directly moving to v′. In general, this cannot be accomplished
by a 2APA running on WB since there may exist events v′′ ∈ V M with v ≺WB v′′ ≺WB v′.
To circumvent this limitation, the idea is to introduce transitions which allow the 2APA to
move forward on WB and skip non-relevant events until it reaches the event v′. Of course,
we have to analogously deal with proc−1, msg, and msg−1 transitions of local MSCAs.

More precisely, regarding the 2APA PG , we use states of the form (s, p, next) to remem-
ber that we are searching for the next event on process p in the next-direction. In contrast,
a state of the form (s, p!q, i, prev) means that we are looking for the nearest send event p!q
indexed by i in the prev-direction. The first component is always used to remember the
state from which we need to continue the simulation of the local MSCA M after finding
the correct event. If M = (S′, δ′, ι′, κ′), then the set of states of PG is the following:

S ={ι, t} ∪ S′ ∪ {(s, p, prev), (s, p, next) | s ∈ S′, p ∈ P}

∪ {(s, σ, i, prev), (s, σ, i, next) | s ∈ S′, σ ∈ Σ, 0 ≤ i < B}

The intuition for the states from I is as follows: From the initial state ι, the 2APA PG

nondeterministically changes into a global initial state (ι1, ι2, . . . , ι|P|) from I. That way, it
simulates |P| many copies of M where the p-th copy of M is started in the state ιp in the

minimal event of process p (with respect to �M
p ). More formally, for all γ ∈ Γ, we define

δ(ι, γ) =
∨

(ι1,...,ι|P|)∈I

(
id, (ι1, 1, next)

)
∧
(
id, (ι2, 2, next)

)
∧ . . . ∧

(
id, (ι|P|, |P|, next)

)
.

Assume that the automaton PG is in a state of the form (s, p,D) resp. (s, σ, i,D) at an event
v. If λM (v) /∈ Σp × {0, . . . , B − 1} resp. λM (v) 6= (σ, i), i.e., if v is not the event at which
the simulation of M needs to be continued, then we stay in the current state and move into
direction D. Otherwise, we simulate a transition τ ∈ Jδ′(s, λM (v))K of the local MSCA M
in the following manner: If (proc, s) ∈ τ , then we change into the state (s, p, next) and move
along the next-direction. If (proc−1, s) ∈ τ , then we act analogously in the prev-direction.
Now, let us assume that (msg, s) ∈ τ . If λM (v) is of the form (p!q, i), then we change into
(s, q?p, i, next) and move along the next-direction. In contrast, if v is a receive event, then
the local MSCA M is unable to execute the movement (msg, s). To simulate this behavior,
we change into the sink state t and stay at v. From state t, the 2APA PG is unable to
accept. If (msg−1, s) ∈ τ , then we proceed similarly. Formally, for all s ∈ S′, p ∈ P, σ ∈ Σ,



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 29

i ∈ {0, . . . , B − 1}, D ∈ W, and γ ∈ Γ, we have

δ
(
(s, p,D), γ

)
=

{(
D, (s, p,D)

)
if γ /∈ Σp × {0, . . . , B − 1}

(id, s) if γ ∈ Σp × {0, . . . , B − 1}

δ
(
(s, σ, i,D), γ

)
=

{(
D, (s, σ, i,D)

)
if γ 6= (σ, i)

(id, s) if γ = (σ, i)

δ(s, γ) = g(s, γ)

δ(t, γ) = ⊥

where, for all s ∈ S′ and γ = (pθq, i) ∈ Γ, g(s, γ) is the positive Boolean expression which is
obtained from δ′(s, pθq) by applying the following substitutions: for all s′ ∈ S′, we exchange

• (proc, s′) by
(
next, (s′, p, next)

)
,

• (proc−1, s′) by
(
prev, (s′, p, prev)

)
,

• (msg, s′) by (id, t) if θ =?,
• (msg, s′) by

(
next, (s′, q?p, i, next)

)
if θ =!,

• (msg−1, s′) by (id, t) if θ =!, and
• (msg, s′) by

(
prev, (s′, q!p, i, prev)

)
if θ =?.

It remains to define the ranking function κ of PG . For all s ∈ S′, we define κ(s) = κ′(s). If
s ∈ S \ S′, then we set κ(s) = m where m is the smallest odd natural number larger than
maxs∈S′ κ′(s).

Theorem 6.8. Let M be an MSC and W some B-bounded linearization of M . We have
M ∈ L(G) if and only if WB ∈ L(PG). The size of PG is polynomial in B and the size of G.

Proof sketch. If ρ is a successful run of PG on an MSC M , then ρ immediately splits into |P|
many subtrees ρq. By easy inspection of the transition function of PG it follows that there
exists a global initial state (ι1, . . . , ι|P|) ∈ I such that, for every q ∈ P, there is exactly one
subtree ρq = (Cq, Eq, rq, µq, νq) with µq(rq) = (ιq, q, next). Each of these subtrees ρq can be
pruned in such a way that one obtains an accepting run ρ′q of M starting in state ιq from

the minimal event of V M
q (with respect to �M

q ). Thus, M is accepted by G. Note that we

obtain ρ′q from ρq by essentially removing all configurations x with µq(x) /∈ S′; of course,
we need to update Eq accordingly.

The converse can be shown analogously. Basically, one only needs to pad and combine
the accepting runs of the local MSCA M on the different processes in order to obtain a
successful run of PG .

6.2. Checking the Emptiness of 2APAs. In order to solve the emptiness problem for
a 2APA P, we transform P into a Büchi automaton.

Definition 6.9. Formally, a Büchi automaton (or BA) over the alphabet Σ is a tuple
B = (S,∆, ι, F ) where S is a finite set of states, ι is the initial state, F ⊆ S is the set of
final states, and ∆ ⊆ S × Σ × S is the transition relation. The size of B is |S| + |∆|. Let
W = σ0σ1 . . . ∈ Σ∞ be a word of length n ∈ N ∪ {∞}. The mapping r : N → S is a run
of B on W if r(0) = ι and (r(i), σi, r(i+ 1)

)
∈ ∆ for all i < n. A word W is accepted by B

if there exists a run r such that r(0)r(1)r(2) . . . ∈ S∞ is Büchi accepting, i.e., if one of the
following conditions is fulfilled:



30 ROY MENNICKE

(1) n ∈ N and r(n) ∈ F
(2) inf

(
r(0)r(1)r(2) . . .

)
∩ F 6= ∅

By L(B), we denote the set of words which are accepted by B.

In contrast to common definitions of Büchi automata, item (1) allows B to accept finite
words as well. In the following, we also need to deal with two-way (alternating) Büchi
automata (2ABA and 2BA for short) which are defined analogously to 2APA and 2PA but
implement the Büchi acceptance condition instead of the parity acceptance condition.

Definition 6.10. More precisely, a two-way alternating Büchi automaton (2ABA for short)
is a tuple B = (S, δ, ι, F ) where S, δ, and ι are defined as for 2APA’s and F ⊆ S is the
set of final states. An (accepting) run of B is defined in a similar way as it is defined for
a 2APA with the following modification: A sequence of states (si)i≥1 ∈ S∞ is accepting if
and only if it is Büchi accepting. A two-way Büchi automaton (2BA) is defined analogously
to a 2PA.

Remark 6.11. Note that using the ideas from [14], a 2APA P can be transformed into
a 2ABA B in polynomial space such that the size of B is polynomial in the size of P and
L(P) = L(B).

In [4], Dax and Klaedtke showed the following:

Theorem 6.12 ([4]). From a 2APA P, one can construct a BA B whose size is exponential
in the size of P such that L(P) = L(B).

Note that Dax and Klaedtke actually stated that one can construct a BA of size 2O((nk)2)

where n is the size of P and 2k is the maximal rank of a state from P. Since we can assume
that the maximal rank of a state of P is linear in the number of states of P, it follows
that the size of B is exponential in the size of P. Furthermore, in [4], only infinite words
are considered. Nevertheless, it can be easily seen that the result also applies to automata
recognizing infinite and finite words at the same time.

In the following, we recall parts of the proof of Theorem 6.12 and adapt it to our
setting in order to be able to prove Prop. 6.13. Let B = (S, δ, ι, F ) be an 2ABA over the
alphabet Σ and let Γ be an abbreviation of the function space S → 2W×S . If W is a word
and ρ = (C,E, r, µ, ν) is an accepting run of P on W , then the authors of [4] argue that
we can assume without loss of generality that all nodes x and y of ρ with µ(x) = µ(y)
and ν(x) = ν(y) exhibit isomorphic subtrees. Hence, ρ can be thought of as a directed
acyclic graph (DAG) which can be represented as a (possibly infinite) word of functions
f = f1f2 . . . ∈ Γ∞ where fj(q) = trρ(x) (cf. Def. 2.21), µ(x) = q, and ν(x) is the j-th
position of W with respect to nextW . From B, an intermediate 2BA B′ = (S, δ′, ι, S \ F )
over the alphabet Σ× Γ is constructed where, for all s ∈ S, σ ∈ Σ, and f ∈ Γ, we have

δ′
(
s, (σ, f)

)
=

{∨
(D,s′)∈f(s)(D, s′) if f(s) ∈ Jδ(s, σ)K

(next, s) otherwise.

Note that the automaton B′ is of exponential size since the size of the alphabet Γ is ex-
ponential in the size of B. However, the set of states of B′ equals the set of states of B.
It is shown that B′ rejects exactly those words (σ0, f0)(σ1, f1) . . . ∈ (Σ × Γ)∞ where the
function word (fi)i≥0 represents an accepting run of B on (σi)i≥0. In the course of the proof
of Theorem 6.12, using [24, Theorem 4.3], a Büchi automaton B′′ whose size is exponential



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 31

in B with L(B′′) = (Σ×Γ)∞ \L(B′) is constructed. It is shown that the projection of L(B′′)
to the alphabet Σ equals L(B).

We also recall the essential parts of the proof of Theorem 4.3 of [24], apply a minor
correction and adapt it to our setting. Let B = (S, δ, ι, F ) be a 2BA. By bwl(B), we denote
the set S2×{0, 1}. Intuitively, a triple (s, t, b) ∈ bwl(B) expresses that at the current position
there is a backward loop starting in state s and ending in state t. We have b = 1 if and only
if this loop visits a final state. A word (σ1σ2 . . . ,m0m1 . . . , n0n1 . . .) ∈ (Σ× bwl(B)× 2S)∞

of length h ∈ N∪ {∞} is B-legal if and only if there exists a sequence ℓ0ℓ1 . . . ∈ bwl(B)∞ of
length h such that the following conditions are fulfilled:

• (s, t, 0) ∈ ℓi if and only if either {(id, t)} ∈ Jδ(s, σi)K or i ≥ 1 and there are states s′, t′ ∈ S
and b ∈ {0, 1} such that (s′, t′, b) ∈ mi−1, {(s′, prev)} ∈ Jδ(s, σi)K, and {(t, next)} ∈
Jδ(t′, σi−1)K

• (s, t, 1) ∈ ℓi if and only if either {(id, t)} ∈ Jδ(s, σi)K and t ∈ F or i ≥ 1 and there
are states s′, t′ ∈ S and b ∈ {0, 1} such that (s′, t′, b) ∈ mi−1, {(s

′, prev)} ∈ Jδ(s, σi)K,
{(t, next)} ∈ Jδ(t′, σi−1)K, and in addition either b = 1 or {s′, t′, t} ∩ F 6= ∅

• (s, t, 0) ∈ mi if and only if there are s0, s1, . . . , sk ∈ S and b0, b1, . . . , bk−1 ∈ {0, 1} with
k > 0 such that s0 = s, sk = t, and (sj , sj+1, bj) ∈ ℓi for all 0 ≥ j > k

• (s, t, 1) ∈ mi if and only if there are s0, s1, . . . , sk ∈ S and b0, b1, . . . , bk−1 ∈ {0, 1} with k >
0 such that s0 = s, sk = t, (sj, sj+1, bj) ∈ ℓi for all 0 ≥ j > k, and {b0, b1, . . . , bk1}∩{1} 6= ∅

• s ∈ ni if and only if there exists a state s′ ∈ S and b ∈ {0, 1} such that (s, s′, b) ∈ mi and
one of the following conditions holds:
− (s′, s′, 1) ∈ mi

− s′ ∈ F and B cannot make a transition at position i in state s′

− i ≥ 1 and there exists a state s′′ ∈ S such that {(s′′, prev)} ∈ Jδ(s′, σi)K and s′′ ∈ ni−1

Note that the ℓi’s are only used to simplify the definition of the mi’s. The introduction
of the ni’s is a minor correction of the proof of Theorem 4.3. Intuitively, we have s ∈ ni

if there exists a position j ≤ i and a state s′ ∈ S such that there exists a backward run
starting in s allowing B to visit the j-th position of the input word in state s′ such that
the following holds: either s′ ∈ F and B cannot make a transition at position j in state s′

or, at position j in state s′, the automaton B can enter infinitely often a loop containing a
final state. Note that without the information contained in the ni’s, we would not capture
accepting runs of B which do not visit all positions of the input word but, at some position
i, go backward and then accept without returning to i again.

From the 2BA B = (S, δ, ι, F ), we can construct a BA B1 recognizing the set of all B-legal

words. Let B1 = (S1,∆1, ι1, F1) be the BA where S1 = 2S
2

× bwl(B) × 2S , ι1 = (∅, ∅, ∅),
F1 = S1 and, for all (p′,m′, n′), (p,m, n) ∈ S1 and (σ,m, n) ∈ Σ × bwl(B) × S, we have(
(p′,m′, n′), (σ,m, n), (p,m, n)

)
∈ ∆1 if and only if there exists ℓ ⊆ bwl(B) such that the

following conditions hold:

• m = m, n = n,
• (s, t) ∈ p if and only if {(next, t)} ∈ Jδ(s, σ)K
• (s, t, 0) ∈ ℓ if and only if {(id, t)} ∈ Jδ(s, σ)K or there are states s′, t′ ∈ S and b ∈ {0, 1}
such that (s′, t′, b) ∈ m′, {(prev, s′)} ∈ Jδ(s, σ)K, and (t′, t) ∈ p′

• (s, t, 1) ∈ ℓ if and only if {(id, t)} ∈ Jδ(s, σ)K and t ∈ F or there are states s′, t′ ∈ S and
b ∈ {0, 1} such that (s′, t′, b) ∈ m′, {(prev, s′)} ∈ Jδ(s, σ)K, (t′, t) ∈ p′, and in addition
either b = 1 or {s′, t′, t} ∩ F 6= ∅



32 ROY MENNICKE

• (s, t, 0) ∈ m if and only if there are s0, s1, . . . , sk ∈ S and b0, b1, . . . , bk−1 ∈ {0, 1} with
k > 0 such that s0 = s, sk = t, and (sj , sj+1, bj) ∈ ℓ for all 0 ≥ j > k

• (s, t, 1) ∈ m if and only if there are s0, s1, . . . , sk ∈ S and b0, b1, . . . , bk−1 ∈ {0, 1} with
k > 0 such that s0 = s, sk = t, (sj, sj+1, bj) ∈ ℓ for all 0 ≥ j > k, and {b0, b1, . . . , bk−1} ∩
{1} 6= ∅

• s ∈ n if and only if there exists a state s′ ∈ S and b ∈ {0, 1} such that (s, s′, b) ∈ m and
one of the following holds:
− (s′, s′, 1) ∈ m
− s′ ∈ F and B cannot make a transition at the current position in state s′

− there exists a state s′′ ∈ S such that {(s′′, prev)} ∈ Jδ(s′, σ)K and s′′ ∈ n′

It remains to specify a BA B2 such that a B-legal word (σ0σ1 . . . ,m0m1 . . . , n0n1 . . .) ∈
(Σ× bwl(B)× 2S)∞ is accepted by B2 if and only if (σi)i≥0 is accepted by the 2BA B. Let
B2 = (S2,∆2, ι2, F2) where

• S2 = (S ∪ {⊥})× {0, 1},
• ι2 = (ι, b) with b = 1 if and only if ι ∈ F ,
• F2 = (S ∪ {⊥}) × {1}, and,
• we have

(
(s, b), (σ,m, n), (s′, b′)

)
∈ ∆2 if and only if one of the following conditions is

fulfilled:
− there exist s′′ ∈ S and b′′ ∈ {0, 1} such that (s, s′′, b′′) ∈ m, {(s′, next)} ∈ Jδ(s′′, σ)K,

and (b′ = 1 if and only if b′′ = 1 or s′ ∈ F )
− s ∈ n and s′ = ⊥
− s′ = t′ = ⊥

Intuitively, the states of B2 come with a flag. The flag is set to 1 if and only if the simulated
automaton B just visited a final state. It can be shown that the projection of L(B1)∩L(B2)
to the alphabet Σ equals the language of B.

Proposition 6.13. If P is a 2APA, then one can check the emptiness of L(P) in polynomial
space.

Proof sketch. By Remark 6.11, we can transform P in polynomial space into a 2ABA rec-
ognizing the same language. By Theorem 6.12, we can construct a BA B′ = (S,∆, ι, F )
whose size is exponential in the size of P such that L(B′) = L(P). Clearly, remembering a
state of B′ requires only polynomial space. By inspecting the construction of B′, one can
see that B′ can be obtained in space polynomial in the size of P. This means in particular:
given two states s, t ∈ S and σ ∈ Σ, one can check in polynomial space whether (s, σ, t) ∈ ∆
holds. Since L(B′) is non-empty if there exists a final state s ∈ F which is reachable from ι
(recall that our Büchi automata also accept finite words), the emptiness problem of P can
be solved in polynomial space.

6.3. The Decision Procedure. We are now able to prove our main theorem:

Proof of Theorem 6.1. The global formula ϕ is a positive Boolean combination of global
formulas ϕ1, . . . , ϕn where, for every i ∈ [n], ϕi is of the form Aαi or Eαi for some local
formula αi. It follows from Theorem 5.1 that we can construct in polynomial space a global
MSCAs Gi such that L(ϕi) = L(Gi) and the size of Gi is linear in the size of ϕi for every
i ∈ [n]. By Theorem 6.8, we can construct, for every i ∈ [n], a 2APA Pi such that, for
all MSCs M and B-bounded linearizations W of M , we have M ∈ L(ϕi) if and only if



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 33

WB ∈ L(Pi). By simple inspection of the construction of Sect. 6.1, one can see that Pi

can be obtained in polynomial space. The number of states of Pi is also polynomial. Using
standard automata constructions for alternating automata, we can combine the automata
P1, . . . ,Pn according to the construction of ϕ to obtain a 2APA Pϕ such that, for all MSCs
M and B-bounded linearizations W of M , we have WB ∈ L(Pϕ) if and only if M ∈ L(ϕ).
This can be accomplished in polynomial space and the number of states of Pϕ is also
polynomial in B and the size of ϕ. Clearly, ϕ is satisfiable by an existentially B-bounded
MSC if and only if L(P) is non-empty. Hence, by Prop. 6.13, the satisfiability problem
of ϕ can be decided in polynomial space. The hardness result follows from the PSPACE-
hardness of the satisfiability problem of LTL.

7. The Model Checking Problem

A communicating finite-state machine (also known as message-passing automaton) is well
suited to model the behavior of a distributed system. It consists of a finite number of
finite automata communicating using order-preserving channels. To be more precise, we
recapitulate the definition from [1].

Definition 7.1. A communicating finite-state machine (or CFM for short) is a structure
C = (H, (Tp)p∈P, F ) where

• H is a finite set of message contents,
• for every p ∈ P, Tp = (Sp,→p, ιp) is a finite labelled transition system over the alphabet
Σp ×H (i.e., →p ⊆ Sp × Σp ×H × Sp) with initial state ιp ∈ Sp,

• F ⊆
∏

p∈P Sp is a set of global final states.

Let C be a CFM and M be an MSC. A run of C on M is a pair (ζ, χ) of mappings
ζ : V M →

⋃
p∈P Sp and χ : V M → H such that, for all v ∈ V M ,

• χ(v) = χ(v′) if there exists v′ ∈ V M with ηM (v, v′) = msg,
• (ζ(v′), λ(v), χ(v), ζ(v)) ∈ →PM (v) if there exists v′ ∈ V M with ηM (v′, v) = proc, and
(ιp, λ(v), χ(v), ζ(v)) ∈ →PM (v) otherwise.

Let cofinζ(p) = {s ∈ Sp | ∀v ∈ V M
p ∃v′ ∈ V M

p : v ≺M
p v′ ∧ ζ(v′) = s}. The run (ζ, χ) is

accepting if there is some (sp)p∈P ∈ F such that sp ∈ cofinζ(p) for all p ∈ P. The language
of C is the set L(C) of all MSCs M for which there exists an accepting run.

We now demonstrate that the bounded model checking problem for CFMs and CRPDL
is PSPACE-complete.

Theorem 7.2. The following problem is PSPACE-complete:

Input: B ∈ N (given in unary), CFM C, and a global CRPDL formula ϕ.
Question: Is there an existentially B-bounded MSC M ∈ L(C) with M |= ϕ?

Proof. In [1], it was shown that one can construct in polynomial space a Büchi automaton
BC from C which recognizes exactly the set of all B-bounded linearizations of the MSCs from
L(C). Its number of states is polynomial in the maximal number of local states a transition
system of C has and exponential in B. In the proof of Theorem 6.1, we already constructed
in polynomial space a Büchi automaton Bϕ of exponential size accepting the set of all B-
bounded linearizations of the MSCs satisfying ϕ. Hence, the model checking problem can
be decided in polynomial space. The PSPACE-hardness follows from the PSPACE-hardness
of the satisfiability problem.



34 ROY MENNICKE

Remark 7.3. The model checking problem for CRPDL and high-level message sequence
charts (HMSCs) asks, given an HMSC H and a global CRPDL formula ϕ, is there an
MSC M ∈ L(H) with M |= ϕ. Using techniques from [1] and the ideas from the proof of
Theorem 7.2, it can be shown that this problem is also PSPACE-complete.

8. Open Questions

It is an interesting open question whether the bounded model checking problem of CFMs
and CRPDL enriched with the intersection operator [11, 1] is still in PSPACE. It also needs
to be investigated whether PDL is a proper fragment of CRPDL and if CRPDL and global
MSCAs are expressively equivalent. Furthermore, we would like to know more about the
expressive power of CRPDL and global MSCAs in general, especially in comparison with
the existential fragment of monadic second-order logic (EMSO).

References

[1] B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for message-passing systems. Logical
Methods in Computer Science, 6(3), 2010.

[2] D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–342, 1983.
[3] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching-time

temporal logic. In Logic of Programs, volume 131 of LNCS, pages 52–71. Springer, 1981.
[4] C. Dax and F. Klaedtke. Alternation elimination by complementation (extended abstract). In LPAR,

volume 5330 of LNCS, pages 214–229. Springer, 2008.
[5] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. J. Comput. Syst. Sci.,

18(2):194–211, 1979.
[6] P. Gastin and D. Kuske. Uniform satisfiability in PSPACE for local temporal logics over Mazurkiewicz

traces. Fundam. Inform., 80(1-3):169–197, 2007.
[7] P. Gastin and D. Kuske. Uniform satisfiability problem for local temporal logics over Mazurkiewicz

traces. Inf. Comput., 208(7):797–816, 2010.
[8] P. Gastin and D. Oddoux. LTL with past and two-way very-weak alternating automata. In MFCS,

volume 2747 of LNCS, pages 439–448. Springer, 2003.
[9] B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking algorithms for existentially

bounded communicating automata. Inf. Comput., 204(6):920–956, 2006.
[10] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs: Model-checking and

realizability. J. Comput. Syst. Sci., 72(4):617–647, 2006.
[11] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
[12] S. Katz and D. Peled. Interleaving set temporal logic. Theor. Comput. Sci., 75(3):263–287, 1990.
[13] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic specifications. In

ICALP, volume 1443 of LNCS, pages 1–16. Springer, 1998.
[14] V. King, O. Kupferman, and M. Y. Vardi. On the complexity of parity word automata. In F. Honsell

and M. Miculan, editors, FoSSaCS, volume 2030 of Lecture Notes in Computer Science, pages 276–286.
Springer, 2001.

[15] R. Küsters. Memoryless determinacy of parity games. In Automata, Logics, and Infinite Games, volume
2500 of LNCS, pages 95–106. Springer, 2001.

[16] P. Madhusudan and B. Meenakshi. Beyond message sequence graphs. In FSTTCS, volume 2245 of
LNCS, pages 256–267. Springer, 2001.

[17] B. Meenakshi and R. Ramanujam. Reasoning about layered message passing systems. Computer Lang.,

Systems & Structures, 30(3-4):171–206, 2004.
[18] R. Mennicke. Propositional dynamic logic with converse and repeat for message-passing systems. In

M. Koutny and I. Ulidowski, editors, CONCUR, volume 7454 of LNCS, pages 531–546. Springer, 2012.
[19] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theor. Comput. Sci., 54:267–276,

1987.



PDL WITH CONVERSE AND REPEAT FOR MESSAGE-PASSING SYSTEMS 35

[20] D. Peled. Specification and verification of message sequence charts. In FORTE, volume 183 of IFIP

Conference Proceedings, pages 139–154. Kluwer, 2000.
[21] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.
[22] V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In FOCS, pages 109–121. IEEE, 1976.
[23] R. S. Streett. Propositional dynamic logic of looping and converse. In STOC, pages 375–383. ACM,

1981.
[24] M. Y. Vardi. A temporal fixpoint calculus. In J. Ferrante and P. Mager, editors, POPL, pages 250–259.

ACM Press, 1988.
[25] M. Y. Vardi. Alternating automata and program verification. In Computer Science Today, volume 1000

of LNCS, pages 471–485. Springer, 1995.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	1. Introduction
	2. Preliminaries
	2.1. Message Sequence Charts
	2.2. Propositional Dynamic Logic with Converse and Repeat
	2.3. Message Sequence Chart Automata (MSCA)

	3. Closure under Complementation
	4. Translation of Local CRPDL Formulas
	4.1. Construction
	4.2. Concatenation States
	4.3. Correctness

	5. Translation of Global CRPDL Formulas
	6. The Satisfiability Problem
	6.1. From MSCAs to Word Automata
	6.2. Checking the Emptiness of 2APAs
	6.3. The Decision Procedure

	7. The Model Checking Problem
	8. Open Questions
	References

