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Zusammenfassung

In den modernen Wissenschaften gewinnt die effiziente numerische Behandlung
hochdimensionaler Aufgabenstellungen zunehmend an Bedeutung. Eine fundamen-
tale Erkenntnis der informationsbasierten Komplexitätstheorie1 ist es, dass die
Kompliziertheit eines Problems durch die Konvergenzrate allein nicht hinreichend
beschrieben werden kann. Beispielsweise haben Novak und Woźniakoswki [NW09]
eindrucksvoll gezeigt, dass Probleme existieren, deren algorithmische Lösung trotz
beliebig guter Konvergenzrate exponentiell viele Informationsoperationen benötigt.
In so einem Fall spricht man vom Fluch der Dimension bzw. dem Curse of Di-
mensionality. Bei der analytischen Untersuchung numerischer Probleme stellt sich
heraus, dass dieser Fluch oftmals durch die Ausnutzung zusätzlicher Struktureigen-
schaften überwunden werden kann. Die vorliegende Arbeit strebt an, verschiedene
solche Ansätze vorzustellen.

Ein numerisches Problem S wird beschrieben durch eine Folge linearer, kom-
pakter Operatoren Sd zwischen normierten Räumen Fd und Gd, wobei d ∈ N.
Im Allgemeinen besteht das Ziel darin, zu jedem Sd Näherungsverfahren An,d zu
finden, welche höchstens n ∈ N0 Informationsoperationen verwenden und dabei
den sogenannten worst-case Fehler

∆wor(An,d;Sd) = sup
‖f Fd‖≤1

‖Sd(f)− An,d(f) Gd‖

minimieren. Besonderes Interesse gilt Problemstellungen, die auf Tensorprodukt-
strukturen basieren, sowie einfach zu implementierenden, linearen Approximatio-
nen An,d. Die minimale Anzahl an Informationsfunktionalen, die benötigt werden,
um ein Problem S bis auf einen Fehler ε > 0 zu lösen, wird als Informationskom-
plexität2

n(ε, d;Sd) = min {n ∈ N0 ∃An,d : ∆wor(An,d;Sd) ≤ ε} , ε > 0, d ∈ N,

bezeichnet. Wächst diese Zahl exponentiell mit der Dimension d, so leidet S am
Fluch der Dimension. Ist n(ε, d;Sd) dagegen weder exponentiell in d noch in ε−1,
so nennen wir das Problem S weakly tractable. Insbesondere sprechen wir von

1engl.: information based complexity (IBC)
2engl.: information complexity
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Zusammenfassung

polynomial tractability, falls sich n(ε, d;Sd) durch ein Polynom in ε−1 und d nach
oben beschränken lässt:

n(ε, d;Sd) ≤ C ε−p dq für gewisse C, p > 0, q ≥ 0 und alle ε ∈ (0, 1], d ∈ N.

Gilt diese Ungleichung sogar mit q = 0, so heißt S strongly polynomially tractable.

Im Folgenden stellen wir die drei in dieser Arbeit untersuchten Ansätze Struk-
tureigenschaften auszunutzen vor und fassen die wichtigsten daraus abgeleiteten
Komplexitätsaussagen kurz zusammen.

Eine der simpelsten Klassen von Problemen S ist die Menge aller linearen,
kompakten Operatoren zwischen Tensorprodukthilberträmen. Speziell die Kom-
plexität von Tensorproduktproblemen Sd =

⊗d
k=1 S1 : Hd → Gd, erzeugt durch

S1 : H1 → G1, ist dabei gut verstanden. Sie hängt von der nicht-wachsend angeord-
neten Folge λ = (λm)m∈N der Quadrate der singulären Zahlen des zugrundeliegenden
Operators S1 ab. Insbesondere ist S = (Sd)d∈N nicht polynomially tractable, falls
λ1 ≥ 1 und λ2 > 0. Ist λ1 echt größer 1 und λ2 > 0 oder λ1 ≥ λ2 = 1, so gilt sogar
der Fluch der Dimension; vergleiche dazu Theorem 2.11.
Ein erster Ansatz, ein solches Problem zu modifizieren, besteht darin, das in-
nere Produkt des Grundraums Hd zu skalieren und Sd auf dem so entstehenden
Hilbertraum Fd zu betrachten:

〈·, ·〉Fd =
1

sd
〈·, ·〉Hd für ein sd > 0 und alle d ∈ N.

Das mit Faktoren der Folge s = (sd)d∈N skalierte Problem bezeichnen wir mit
S(s) = (Sd,sd : Fd → Gd)d∈N. Wir betrachten die worst-case Komplexität von S(s)

bezüglich des absoluten Fehlerkriteriums und beweisen folgenden

Satz 1. Mit den obigen Bezeichnungen und unter der Annahme λ2 > 0 sind die
folgenden Aussagen äquivalent:

(I) S(s) ist strongly polynomially tractable.

(II) S(s) ist polynomially tractable.

(III) Es existiert ein τ ∈ (0,∞), sodass λ ∈ `τ und supd∈N sd ‖λ `τ‖d <∞.

(IV) Es existiert ein % ∈ (0,∞), sodass λ ∈ `% und lim supd→∞ s
1/d
d < 1

λ1
.

Falls eine der Bedingungen zutrifft, ist der exponent of strong polynomial tractability
gegeben durch p∗ = inf{2τ τ erfüllt Bedingung (III)}.

Vergleiche dazu Theorem 3.2 in Abschnitt 3.2.1. Bemerkenswert an diesem
Resultat ist, dass analog zu unskalierten Problemen polynomial tractability bereits
strong polynomial tractability impliziert, ungeachtet der vielfältigen Möglichkeiten,
die Folge (sd)d∈N zu wählen.
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Die schwächere Eigenschaft weak tractability und der Fluch der Dimension lassen
sich charakterisieren, sofern wir ein gewisses asymptotisches Verhalten des initialen
Fehlers εinit

d =
√
sd · λd1 unterstellen; siehe Theorem 3.7 in Abschnitt 3.2.2.

Satz 2. Wir betrachten das skalierte Tensorproduktproblem S(s) = (Sd,sd)d∈N
bezüglich des absoluten Fehlerkriteriums und setzen λ2 > 0 voraus. Ferner

• sei ln
(
εinit
d

)
/∈ o(d) für d→∞. Dann gilt der Fluch der Dimension.

• gelte εinit
d ∈ Θ(dα) für d→∞ und ein α ≥ 0.

– Falls λ1 = λ2, so leidet S(s) unter dem Fluch der Dimension.

– Ist λ1 > λ2, so ist das Problem S(s) genau dann weakly tractable, wenn

λn ∈ o
(

ln−2(1+α) n
)

für n→∞ gilt.

• gelte εinit
d → 0 für d gegen unendlich. Dann kann der Fluch der Dimension

nicht auftreten. Außerdem ist S(s) genau dann weakly tractable, wenn

(i) λ1 = λ2 und λn ∈ o
(
ln−2 n

)
für n → ∞ und εinit

d ∈ o(1/d) für d → ∞,
oder wenn

(ii) λ1 > λ2 und λn ∈ o
(
ln−2 n

)
für n→∞ gilt.

Besonderes Interesse kommt hier dem Parameter α zu, welcher das polynomielle
Wachstum des initialen Fehlers kontrolliert. Er schlägt sich im Falle λ1 > λ2

unmittelbar in der Charakterisierung für weak tractability nieder. Außerdem ist
die Bedingung εinit

d ∈ o(1/d) für d→∞ im dritten Teil des Satzes überraschend.
Da der initiale Fehler unskalierter Probleme entweder durchweg exponentiell fallen
oder wachsen kann, oder in jeder Dimension den Wert eins annimmt, treten diese
Phänomene in der klassischen Theorie, d.h. im Fall sd = 1 für alle d ∈ N, nicht auf.

Ein weiterer Ansatz, den Fluch der Dimension zu brechen, bezieht sich auf Prob-
leme über Funktionenräumen. Hier nutzen wir a priori gegebenes Wissen über den
Einfluss einzelner Variablen auf die Funktionen im Grundraum, um diese effizient ap-
proximieren zu können. Dazu statten wir die Grundräume mit gewichteten Normen
aus. Insbesondere Probleme auf Funktionenräumen mit Hilbertraumstruktur und
Produktgewichten wurden in den letzten Jahren ausgiebig untersucht. Aufgaben-
stellungen, bei denen die Grund- und/oder Zielräume allgemeinere Banachräume
sind, wurden dagegen aus Sicht der informationsbasierten Komplexitätstheorie
weitaus seltener studiert.
In dieser Abhandlung betrachten wir unter anderem das Problem der gleichmäßigen
Approximation glatter Funktionen:

App =
(
Appd : F γ

d → L∞([0, 1]d)
)
d∈N mit Appd(f) = f für d ∈ N,

wobei wir F γ
d = {f : [0, 1]d → R f ∈ C∞([0, 1]d) mit ‖f F γ

d ‖ < ∞} als Grund-
raum ansetzen und mit der gewichteten Norm

‖f F γ
d ‖ = sup

α∈Nd0

1

γα

∥∥Dαf L∞([0, 1]d)
∥∥
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Zusammenfassung

ausstatten. Hierbei werden die Zahlen γα =
∏d

j=1(γd,j)
αj für jedes α ∈ Nd

0 mithilfe
der Folge Cγ ≥ γd,1 ≥ . . . ≥ γd,d > 0 definiert und als Produktgewichte bezeichnet.
Es stellt sich heraus, dass die Komplexität des Approximationsproblems von
gewissen Summierbarkeitseigenschaften dieser Folge abhängt, die ebenfalls für
gewichtete Hilbertraumprobleme eine entscheidende Rolle spielen. Wir definieren

p(γ) = inf

{
κ > 0 lim sup

d→∞

d∑
j=1

(γd,j)
κ <∞

}
sowie

q(γ) = inf

{
κ > 0 lim sup

d→∞

d∑
j=1

(γd,j)
κ/ ln(d+ 1) <∞

}

und beweisen den folgenden

Satz 3. Mit den obigen Bezeichnungen gilt bzgl. des absoluten Fehlerkriteriums:

• Ist das Problem App polynomially tractable, so folgt q(γ) ≤ 1. Weiterhin
impliziert strong polynomial tractability die Bedingung p(γ) ≤ 1.

• Gilt q(γ) < 1 oder sogar p(γ) < 1, so ist App polynomially beziehungsweise
sogar strongly polynomially tractable.

Genauer gesagt beweisen wir diese notwendigen und hinreichenden Kriterien
für eine ganze Klasse gewichteter Banachräume, welche gewisse Einbettungs-
bedingungen erfüllen; siehe dazu Proposition 4.6 und Proposition 4.7. Der Raum F γ

d

bildet dabei einen Spezialfall, welcher Ergebnisse von Novak und Woźniakowski
[NW09] verallgemeinert. Weiterhin zeigen wir, dass die hinreichenden Bedingungen
q(γ) < 1 bzw. p(γ) < 1 für polynomial bzw. strong polynomial tractability des L∞-
Approximationsproblems auf einem unverankerten Sobolevraum H

γ
d auch notwendig

sind; siehe dazu Theorem 4.18.
Weak tractability sowie der Fluch der Dimension lassen sich wie folgt charak-
terisieren.

Satz 4. Für App = (Appd)d∈N sind die folgenden Aussagen äquivalent:

(i) Das Problem ist weakly tractable.

(ii) Der Fluch der Dimension gilt nicht.

(iii) Für alle κ > 0 gilt lim
d→∞

1
d

∑d
j=1 (γd,j)

κ = 0.

(iv) Es existiert ein κ ∈ (0, 1), sodass lim
d→∞

1
d

∑d
j=1 (γd,j)

κ = 0.

Dies folgt unmittelbar aus unserem etwas allgemeineren Theorem 4.9. Be-
merkenswert sind hierbei die nicht-triviale Implikation (ii) ⇒ (i) sowie die Charak-
terisierung (iv), welche typischerweise bei Problemen auf Hilberträumen mit Pro-
duktgewichten anzutreffen ist.
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Unser dritter Ansatz basiert schließlich auf dem Ausnutzen gewisser Sym-
metrieeigenschaften der Problemelemente im Grundraum. Dazu betrachten wir
abermals Tensorproduktprobleme S = (Sd : Hd → Gd)d∈N zwischen Hilberträumen,
schränken diese aber auf geeignete Teilräume, welche ausschließlich aus (anti-)
symmetrischen Elementen bestehen, ein. Dieses Konzept lässt sich besonders an-
schaulich am Spezialfall von Problemen über Funktionenräumen erläutern.
Für d ∈ N und I ⊆ {1, . . . , d} bezeichne SI die Menge aller Permutationen π
der Koordinatenmenge {1, . . . , d}, welche die Elemente aus Ic = {1, . . . , d} \ I
unverändert lassen. Dann heißt eine reelle Funktion f ∈ Hd = H1 ⊗ . . .⊗H1 auf
[0, 1]d genau dann I-symmetrisch, wenn

f(x) = f(π(x)) für jedes x ∈ [0, 1]d und alle π ∈ SI

gilt. Erfüllt f hingegen die Gleichung f(x) = (−1)|π|f(π(x)), so sprechen wir von I-
Antisymmetrie. Die entsprechenden linearen Teilräume des Grundraums Hd, welche
genau jene Funktionen enthalten, bezeichnen wir mit SI(Hd) bzw. AI(Hd). Beson-
ders antisymmetrische Funktionen, d.h. solche, deren Funktionswert das Vorzeichen
wechselt, sobald zwei Koordinaten ihres Arguments vertauscht werden, haben sich
in der Vergangenheit als praktisch relevant erwiesen; siehe bspw. Abschnitt 5.4.2.
Die Einschränkung eines Tensorproduktproblems S = (Sd : Hd → Gd)d∈N auf die
Räume PId(Hd), d ∈ N, wird im Folgenden mit SI = (Sd,Id)d∈N bezeichnet. Hierbei
setzen wir die Art der Symmetrie P ∈ {S,A} sowie eine Folge (Id)d∈N von Teil-
mengen der Koordinaten als fixiert voraus.
Da sich die Operatoren Sd,Id für jedes d ∈ N als Verknüpfung von Sd mit einer
geeigneten Orthogonalprojektion auffassen lassen, besteht ein enger Zusammenhang
zwischen den singulären Zahlen von Sd und denen der Einschränkungen Sd,Id . Diese
Zahlen bestimmen maßgeblich den minimalen worst-case Fehler des Problems SI
und ermöglichen weiterhin die Konstruktion eines optimalen (linearen) Algorithmus,
welcher diesen realisiert; siehe dazu Theorem 5.4.
Ausgehend davon lassen sich Aussagen ableiten, welche die informationsbasierte
Komplexität von SI mithilfe der Quadrate der singulären Zahlen von S1 sowie der
Menge der unterstellten (Anti-)Symmetriebedingungen beschreiben. Der Einfach-
heit halber beschränken wir uns hier wieder auf das absolute Fehlerkriterium und
beginnen mit dem Fall symmetrischer Probleme; vergleiche Theorem 5.10.

Satz 5 (Polynomial tractability, P = S). Es sei S1 : H1 → G1 ein kompakter
linearer Operator zwischen Hilberträumen und λ = (λm)m∈N die nicht-wachsend
angeordnete Folge der Eigenwerte von W1 = S1

†S1. Es gelte λ2 > 0 und für
d > 1 sei ferner ∅ 6= Id ⊆ {1, . . . , d} gegeben. Wir betrachten die Einschränkung
SI = (Sd,Id)d∈N des Tensorproduktproblems S = (Sd : Hd → Gd)d∈N auf die Id-
symmetrischen Teilräume SId(Hd) ⊂ Hd, d ∈ N. Dann ist SI genau dann strongly
polynomially tractable, wenn λ ∈ `τ für ein τ ∈ (0,∞) und entweder

• λ1 < 1, oder
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Zusammenfassung

• 1 = λ1 > λ2 und (d−#Id) ∈ O(1) für d→∞

gilt. Im Falle λ1 ≤ 1 ist das Problem genau dann polynomially tractable, wenn
λ ∈ `τ für ein τ ∈ (0,∞) und entweder

• λ1 < 1, oder

• λ1 = 1 und (d−#Id) ∈ O(ln d) für d→∞

gilt.

Für den Fall λ1 > 1 ist keine hinreichende Bedingung für polynomial tractability
bekannt. Unsere Ergebnisse zeigen allerdings, dass die Bedingungen λ ∈ `τ und
(d−#Id) ∈ O(ln d) auch hier notwendig sind. Zusammenfassend ergibt sich, dass
beispielsweise für λ1 = λ2 = 1 ausreichend viele zusätzliche Symmetrieannahmen
den Fluch der Dimension brechen können, unter dem das ursprüngliche Problem S
leidet; siehe auch Theorem 2.11.
Die etwas kompliziertere Komplexitätsanalyse antisymmetrischer Probleme zeigt,
dass hier sogar noch wesentlich schwächere Voraussetzungen genügen, um poly-
nomial tractability schlussfolgern zu können und damit den Fluch zu vermeiden.
Dies lässt sich unter anderem mit der Struktur des initialen Fehlers dieser Probleme
begründen. Unsere Komplexitätsaussagen lassen sich, wie in Theorem 5.16 in
Abschnitt 5.3 dargestellt, folgendermaßen vereinfacht zusammenfassen:

Satz 6 (Polynomial tractability, P = A). Es sei S1 : H1 → G1 ein kompakter
linearer Operator zwischen Hilberträumen und λ = (λm)m∈N die nicht-wachsend
angeordnete Folge der Eigenwerte von W1 = S1

†S1. Es gelte λ2 > 0 und für
d > 1 sei ferner ∅ 6= Id ⊆ {1, . . . , d} gegeben. Wir betrachten die Einschränkung
SI = (Sd,Id)d∈N des Tensorproduktproblems S = (Sd : Hd → Gd)d∈N auf die Id-
antisymmetrischen Teilräume AId(Hd) ⊂ Hd, d ∈ N. Im Falle λ1 < 1 sind die
nachstehenden Aussagen äquivalent:

• SI ist strongly polynomially tractable.

• SI ist polynomially tractable.

• Es existiert eine Konstante τ ∈ (0,∞), sodass λ ∈ `τ .

Darüber hinaus gelten die selben Äquivalenzen, falls λ1 ≥ 1 ist und die Anzahl der
Antisymmetriebedingungen #Id linear mit der Dimension d wächst.

An diesem Resultat ist zu erkennen, dass antisymmetrische Tensorprodukt-
probleme eine deutlich geringere Komplexität aufweisen als ihre symmetrischen
Gegenstücke, welche wiederum wesentlich einfacher sind als volle Tensorprodukt-
probleme, sofern wir genügend (Anti-)Symmetrie fordern. Es existieren allerdings
natürliche Beispiele, die zeigen, dass selbst vollständig antisymmetrische Probleme
nicht notwendigerweise trivial oder polynomially tractable sein müssen; siehe dazu
Abschnitt 5.4.1.

viii



Die vorliegende Arbeit ist folgendermaßen gegliedert: Im ersten Kapitel erläutern
wir neben der verwendeten Notation die allgemeine Problemstellung sowie das
zugrundeliegende Kostenmodell. Zusätzlich werden hier die betrachteten Kom-
plexitätsklassen formal definiert.

Kapitel 2 widmet sich dann speziellen Klassen numerischer Probleme sowie
elementaren Hilfsmitteln, welche benötigt werden, um diese zu behandeln. Ins-
besondere stellen wir hier die Singulärwertzerlegung3 kompakter Operatoren zwi-
schen Hilberträumen detailliert vor. Sie bildet in vielen Fällen die Grundlage
der Konstruktion optimaler Algorithmen und ist daher für den Rest der Arbeit
von fundamentaler Bedeutung. Darüber hinaus werden Tensorproduktstrukturen
in Hilberträumen diskutiert und wohlbekannte Komplexitätsaussagen für darauf
basierende Problemklassen wiederholt. Schließlich gehen wir kurz auf Hilberträume
mit reproduzierendem Kern4 ein.

In den ersten beiden Abschnitten von Kapitel 3 leiten wir die in Satz 1 und
Satz 2 beschriebenen Charakterisierungen der verschiedenen Komplexitätsklassen
für skalierte Tensorproduktprobleme zwischen Hilberträumen her. Darüber hin-
aus folgern wir aus diesen Aussagen die entsprechenden Charakterisierungen für
das normalisierte Fehlerkriterium in Abschnitt 3.2.3. Es stellt sich heraus, dass
die Skalierungsfaktoren in diesem Fall irrelevant werden. Neben der Angabe des
optimalen Algorithmus sowie dessen worst-case Fehlers wird außerdem gezeigt,
dass diese neuen, bisher unveröffentlichten Ergebnisse die bekannte Theorie in
natürlicher Weise verallgemeinern. Abschließend illustrieren wir die gewonnenen
Ergebnisse an zwei einfachen Beispielen.

Das vierte Kapitel befasst sich mit Problemen über Funktionenräumen mit
gewichteten Normen. Hier stellen wir zunächst das Konzept gewichteter Nor-
men ausführlich vor und illustrieren dies dann am Beispiel des unverankerten
Sobolev Raums H

γ
d mit Produktgewichten. Für eben diesen Raum präsentieren

wir einen Algortihmus A∗n,d, der geeignete obere Fehlerschranken für das L∞-
Approximationsproblem einhält. Zusammen mit entsprechenden unteren Schranken,
welche für Teilräume einfacher Polynome bewiesen werden, folgern wir schließlich
die in Satz 3 und Satz 4 angesprochenen Komplexitätsaussagen für eine ganze
Skala produktgewichteter Banachräume mithilfe einfacher Einbettungen. Der letzte
Teilabschnitt dieses Kapitels, Abschnitt 4.4, zeigt dann verschiedene Möglichkeiten
auf, die entwickelten Methoden zu verallgemeinern, sodass entsprechende Resultate
auch für das Lp-Approximationsproblem, 1 ≤ p < ∞, auf geeigneten Räumen
gewonnen werden können. Weiterhin zeigen wir hier, dass der Algorithmus A∗n,d im
wesentlichen optimal auf Hγ

d opperiert. Grundlage dafür bildet ein Resultat von Kuo,
Wasilkowski und Woźniakowski [KWW08], welches das L∞-Approximationsproblem
auf kernreproduzierenden Hilberträumen mit dem L2-Approximationsproblem in
Verbindung setzt.
Einige der in diesem Kapitel präsentierten Aussagen wurden bereits (in teilweise

3engl.: singular value decomposition (SVD)
4engl.: reproducing kernel Hilbert spaces (RKHSs)
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Zusammenfassung

schwächerer Form) in der Arbeit [Wei12b] veröffentlicht. Auf Verallgemeinerungen
und neue Resultate weisen wir an den entsprechenden Stellen explizit hin.

Kapitel 5 behandelt schließlich Probleme mit (Anti-)Symmetriebedingungen.
Dazu definieren wir (Anti-)Symmetrie zunächst in Hilbert-Funktionenräumen.
Wir gehen speziell auf Tensorproduktstrukturen ein und folgern grundlegende
Eigenschaften der entsprechenden Projektoren und Teilräume. Diese Eigenschaften
dienen am Ende von Abschnitt 5.1 als Hilfsmittel für die Verallgemeinerung des
(Anti-)Symmetriebegriffs auf abstrakte Tensorprodukthilberträume. Anschließend
definieren wir (anti-)symmetrische numerische Probleme SI = (Sd,Id)d∈N durch
die Restriktion eines gegebenen Tensorproduktproblems S = (Sd)d∈N auf die
entsprechenden Unterräume (anti-)symmetrischer Elemente des Grundraums. Wir
zeigen die Kommutativität der Operatoren Sd mit gewissen Projektoren und
schließen so auf optimale Algorithmen und deren worst-case Fehler. In Abschnitt 5.3
analysieren wir ausgehend davon die Komplexität (anti-)symmetrischer numerischer
Problemstellungen. Wir differenzieren zwischen Symmetrie und Antisymmetrie
sowie zwischen dem absoluten und dem normalisierten Fehlerkriterium. Insbeson-
dere Satz 5 und Satz 6 werden hier bewiesen. Im letzten Teilabschnitt dieses
Kapitels diskutieren wir verschiedene Anwendungen. Zum einen illustrieren wir an
einfachen Beispielen, dass zusätzliches Wissen um (Anti-)Symmetriebedingungen
die Komplexität drastisch verringern kann. Zum anderen wenden wir uns praktisch
relevanteren Problemstellungen zu und demonstrieren mögliche Anwendungen
dieser neuen Theorie auf das Approximationsproblem für Wellenfunktionen, die
in Modellen der Quantenmechanik und der theoretischen Chemie von Bedeutung
sind.
Ein Großteil der Ergebnisse dieses Kapitels wurde in [Wei12a] veröffentlicht. Wir
verwenden in der vorliegenden Arbeit jedoch stellenweise andere Beweismethoden,
welche geringfügige Verallgemeinerungen ermöglichen.

Im Anhang der Abhandlung befinden sich das Literaturverzeichnis sowie ein
akademischer Lebenslauf und die ehrenwörtliche Erklärung des Autors. Innerhalb
eines jeden Kapitels werden Formelnummern durchgehend nummeriert. Außer-
dem verwenden wir hier eine fortlaufende Nummerierung für Lemmata (Lemma),
Bemerkungen (Remark), Beispiele (Example), Hilfsresultate (Proposition) und
Hauptsätze (Theorem); also beispielweise Proposition 3.1, gefolgt von Theorem 3.2
und Lemma 3.3. Die Symbole � und � zeigen darüber hinaus das Ende von
Bemerkungen und Beispielen bzw. von Beweisen an.
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Preface

In modern science the efficient numerical treatment of high-dimensional prob-
lems becomes more and more important. A fundamental insight of the theory of
information-based complexity (IBC for short) is that the computational hardness
of a problem can not be described properly only by the rate of convergence. An
impressive example that illustrates this fact was given recently by Novak and
Woźniakowski [NW09]. They studied a problem for which an exponential number
of information operations is needed in order to reduce the initial error, although
there exist algorithms which provide an arbitrary large rate of convergence. Prob-
lems that yield this exponential dependence are said to suffer from the curse of
dimensionality. While analyzing numerical problems it turns out that we can often
vanquish this curse by exploiting additional structural properties. The aim of this
thesis is to present several approaches of this type.

A numerical problem S is given by a sequence of compact linear operators Sd
acting between normed spaces Fd and Gd, where d ∈ N. In general we seek
for algorithms An,d that approximate Sd while using at most n ∈ N0 pieces of
information on the input elements f ∈ Fd. The quality of this approximation is
measured by the so-called worst case error

∆wor(An,d;Sd) = sup
‖f Fd‖≤1

‖Sd(f)− An,d(f) Gd‖

which we try to minimize. Problems based on tensor product structures, as well
as linear algorithms that are easy to implement, are of particular interest. The
minimal number of information operations needed to solve a given problem S to
within a threshold ε > 0 is called information complexity :

n(ε, d;Sd) = min {n ∈ N0 ∃An,d : ∆wor(An,d;Sd) ≤ ε} , ε > 0, d ∈ N.

If this quantity grows exponentially fast with the dimension d then S suffers from
the curse of dimensionality. In the case where n(ε, d;Sd) is neither exponential in d,
nor in ε−1, the problem S is said to be weakly tractable. A special case is described
by the notion of polynomial tractability for which the information complexity needs
to be bounded from above by a polynomial in d and ε−1, i.e.

n(ε, d;Sd) ≤ C ε−p dq for some C, p > 0, q ≥ 0 and all ε ∈ (0, 1], d ∈ N.
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If the latter inequality is valid even for q = 0 then S is called strongly polynomially
tractable.

Next we present the three approaches to exploit structural properties we study
in this thesis and we briefly summarize our main complexity results.

A rather simple class of problems S is given by the set of all compact linear
operators between tensor products of Hilbert spaces. Especially the complexity
of tensor product problems Sd =

⊗d
k=1 S1 : Hd → Gd, induced by some operator

S1 : H1 → G1, is well-understood. It depends on the non-increasingly ordered
sequence λ = (λm)m∈N of the squares of the singular values of the underlying
operator S1. In particular, it is well-known that S = (Sd)d∈N is not polynomially
tractable if we have λ1 ≥ 1 and λ2 > 0. Actually, we are faced with the curse
of dimensionality if λ1 is strictly larger than 1 and λ2 > 0, or if λ1 ≥ λ2 = 1;
cf. Theorem 2.11.
A first approach to modify such a problem is to scale the inner products of the
source spaces Hd, d ∈ N. We set

〈·, ·〉Fd =
1

sd
〈·, ·〉Hd for some sd > 0 and all d ∈ N

and investigate the complexity of the problem operators Sd interpreted as mappings
between the Hilbert spaces Fd and Gd, d ∈ N. The resulting problem, scaled by
factors from the sequence s = (sd)d∈N, then is denoted by S(s) = (Sd,sd : Fd → Gd)d∈N.
We study the worst case setting with respect to the absolute error criterion and
prove

Theorem 1. Using the introduced notation and assuming that λ2 > 0 the following
assertions are equivalent:

(I) S(s) is strongly polynomially tractable.

(II) S(s) is polynomially tractable.

(III) There exists τ ∈ (0,∞) such that λ ∈ `τ and supd∈N sd ‖λ `τ‖d <∞.

(IV) There exists % ∈ (0,∞) such that λ ∈ `% and lim supd→∞ s
1/d
d < 1

λ1
.

If one of these (and hence all) conditions applies then the exponent of strong
polynomial tractability is given by p∗ = inf{2τ τ fulfills condition (III)}.

We refer to Theorem 3.2 in Section 3.2.1. It is remarkable that similar to
unscaled problems polynomial tractability of the problem S(s) already implies
strong polynomial tractability, despite the fact that we can choose the sequence of
scaling factors (sd)d∈N completely arbitrary.
The less restrictive property weak tractability and the curse of dimensionality
can be characterized, provided that we additionally assume a certain asymptotic
behavior of the initial error εinit

d =
√
sd · λd1; see Theorem 3.7 in Section 3.2.2.
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Theorem 2. We study the scaled tensor product problem S(s) = (Sd,sd)d∈N in the
worst case setting w.r.t. the absolute error criterion and assume λ2 > 0. Moreover,

• let ln
(
εinit
d

)
/∈ o(d), as d→∞. Then we have the curse of dimensionality.

• let εinit
d ∈ Θ(dα), as d→∞, for some α ≥ 0.

– If λ1 = λ2 then S(s) suffers from the curse of dimensionality.

– In the case λ1 > λ2 the problem S(s) is weakly tractable if and only if

λn ∈ o
(

ln−2(1+α) n
)

, as n→∞.

• let εinit
d → 0, as d approaches infinity. Then we are never faced with the curse

of dimensionality. Furthermore, S(s) is weakly tractable if and only if

(i) λ1 = λ2 and λn ∈ o
(
ln−2 n

)
, as n → ∞, and εinit

d ∈ o(1/d), as d → ∞,
or

(ii) λ1 > λ2 and λn ∈ o
(
ln−2 n

)
, as n→∞.

Here the parameter α that controls the polynomial growth of the initial error
is of particular interest. In the case where λ1 > λ2 it directly enters the condition
for the characterization of weak tractability. Moreover, the condition εinit

d ∈ o(1/d),
as d→∞, in the third part of the theorem is quite surprising. Since for unscaled
problems the initial error only can grow or decline exponentially, or it equals one
in any dimension, these phenomena can not occur in the classical theory, i.e. in
the case where sd = 1 for all d ∈ N.

Another approach to overcome the curse of dimensionality is related to problems
defined between function spaces. Here we can make use of some a priori given
knowledge about the influence of certain (groups of) variables on the functions
in the source space, in order to approximate them efficiently. To this end, we
endow these spaces with weighted norms. During the last years especially problems
on function spaces that yield a Hilbert space structure, equipped with so-called
product weights, attracted a lot of attention. Problems where the source and/or
target spaces are allowed to be more general Banach spaces were studied less
frequently within the IBC community.
Among other things, in this thesis we consider the uniform approximation problem

App =
(
Appd : F γ

d → L∞([0, 1]d)
)
d∈N with Appd(f) = f for d ∈ N

defined on certain classes of smooth functions

F γ
d =

{
f : [0, 1]d → R f ∈ C∞([0, 1]d) with ‖f F γ

d ‖ <∞
}

which are endowed with the weighted norms

‖f F γ
d ‖ = sup

α∈Nd0

1

γα

∥∥Dαf L∞([0, 1]d)
∥∥ .
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Here for every α ∈ Nd
0, d ∈ N, the product weights γα =

∏d
j=1(γd,j)

αj are con-
structed out of a uniformly bounded sequence Cγ ≥ γd,1 ≥ . . . ≥ γd,d > 0 of
so-called generator weights. It turns out that the complexity of the approximation
problem depends on certain summability properties of these generators which also
play an important role when dealing with problems on product-weighted Hilbert
spaces. We define the quantities

p(γ) = inf

{
κ > 0 lim sup

d→∞

d∑
j=1

(γd,j)
κ <∞

}
, as well as

q(γ) = inf

{
κ > 0 lim sup

d→∞

d∑
j=1

(γd,j)
κ/ ln(d+ 1) <∞

}
,

and prove the following

Theorem 3. For the worst case setting w.r.t. the absolute error criterion we have:

• If the problem App is polynomially tractable then q(γ) ≤ 1. Moreover strong
polynomial tractability implies the condition p(γ) ≤ 1.

• If q(γ) < 1 or even p(γ) < 1 then App is polynomially tractable or even
strongly polynomially tractable, respectively.

In fact, we show these necessary and sufficient criteria for a whole scale of
weighted Banach spaces that fulfill certain embedding conditions; see Proposition 4.6
and Proposition 4.7 for details. The source space F γ

d as defined above appears as a
special case within this scale. On the other hand, it generalizes a space considered
by Novak und Woźniakowski [NW09]. In addition, we prove that the sufficient
conditions q(γ) < 1 and p(γ) < 1 are also necessary for (strong) polynomial
tractability of the L∞-approximation problem defined on a certain unanchored
Sobolev space H

γ
d ; cf. Theorem 4.18.

Weak tractability and the curse of dimensionality can be characterized as follows.

Theorem 4. For App = (Appd)d∈N the following assertions are equivalent:

(i) The problem is weakly tractable.

(ii) The curse of dimensionality is not present.

(iii) For all κ > 0 we have lim
d→∞

1
d

∑d
j=1 (γd,j)

κ = 0.

(iv) There exists κ ∈ (0, 1) such that lim
d→∞

1
d

∑d
j=1 (γd,j)

κ = 0.

This immediately follows from our Theorem 4.9 in which we discuss a more
general situation. Note that the implication (ii) ⇒ (i) is not trivial. Moreover,
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the condition (iv) is typical for problems defined on Hilbert spaces equipped with
product weights.

Finally, our third approach to vanquish the curse is based on exploiting certain
symmetry properties of the elements in the source space. For this purpose we
again consider tensor product problems S = (Sd : Hd → Gd)d∈N between Hilbert
spaces. But now we restrict them to suitable subspaces which solely consist of
(anti)symmetric elements. We illustrate this concept by considering the special case
of problems defined between function spaces.
For d ∈ N and I ⊆ {1, . . . , d} let SI denote the collection of all permutations π of
the coordinate set {1, . . . , d} that leave the complement Ic = {1, . . . , d} \ I of I
fixed. Then a real-valued function f ∈ Hd = H1 ⊗ . . . ⊗ H1 on [0, 1]d is called
I-symmetric if

f(x) = f(π(x)) for every x ∈ [0, 1]d and all π ∈ SI .

In contrast, f is called I-antisymmetric if the equality f(x) = (−1)|π|f(π(x))
holds true for every x and π. In what follows we denote the corresponding linear
subspaces of Hd that exclusively contain symmetric or antisymmetric functions
by SI(Hd) and AI(Hd), respectively. Particularly antisymmetric functions, i.e.
functions that change their sign when we exchange the variables xi and xj , i, j ∈ I,
turned out be of some practical interest; see, e.g., Section 5.4.2. For the restriction
of a given tensor product problem S = (Sd : Hd → Gd)d∈N to the subspaces PId(Hd),
d ∈ N, we write SI = (Sd,Id)d∈N. Here the kind of symmetry P ∈ {S,A}, as well
as a sequence (Id)d∈N of subsets of the coordinates, is assumed to be fixed.
Since for d ∈ N the operators Sd,Id can be interpreted as a composition of Sd with
suitable orthogonal projections, there exists a close relation of the singular values
of Sd with the corresponding singular values of the restricted operators Sd,Id . These
numbers essentially determine the minimal worst case error of the problem SI . This
knowledge furthermore allows the construction of an optimal (linear) algorithm
that realizes this error; cf. Theorem 5.4.
Consequently, we can conclude assertions that relate the information complexity
of SI to the squares of the singular values of S1 and to the number of (anti)symmetry
conditions we impose. For the sake of simplicity we restrict ourselves again to the
absolute error criterion and start by discussing the case of symmetric problems;
see Theorem 5.10.

Theorem 5 (Polynomial tractability, P = S). Let S1 : H1 → G1 denote a compact
linear operator between Hilbert spaces and let λ = (λm)m∈N be the sequence of
eigenvalues of W1 = S1

†S1 w.r.t. a non-increasing ordering. Assume λ2 > 0 and for
d > 1 let ∅ 6= Id ⊆ {1, . . . , d} be fixed. We consider the restriction SI = (Sd,Id)d∈N of
the tensor product problem S = (Sd : Hd → Gd)d∈N to the Id-symmetric subspaces
SId(Hd) ⊂ Hd, d ∈ N. Then SI is strongly polynomially tractable if and only if
λ ∈ `τ for some τ ∈ (0,∞) and

• λ1 < 1, or
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• 1 = λ1 > λ2 and (d−#Id) ∈ O(1), as d→∞.

Moreover, provided that λ1 ≤ 1 the problem is polynomially tractable if and only
if λ ∈ `τ for some τ ∈ (0,∞) and

• λ1 < 1, or

• λ1 = 1 and (d−#Id) ∈ O(ln d), as d→∞.

It remains the open problem to find sufficient conditions for polynomial tractabil-
ity in the case λ1 > 1. However, our results show that the conditions λ ∈ `τ and
(d−#Id) ∈ O(ln d) are necessary in this situation, too. In conclusion, we see that
imposing sufficiently many additional symmetry assumptions, we can avoid the
curse of dimensionality which we are faced with e.g. in the case λ1 = λ2 = 1; see
also Theorem 2.11.
The complexity analysis of antisymmetric problems is more demanding. On the
other hand, it turns out that here even weaker conditions are sufficient to conclude
polynomial tractability and thus to vanquish the curse. One of the reasons is the
structure of the initial error which is more complicated in this case. Similar to
Theorem 5.16 in Section 5.3 we can summarize the main results on the complexity
as follows:

Theorem 6 (Polynomial tractability, P = A). Let S1 : H1 → G1 denote a compact
linear operator between Hilbert spaces and let λ = (λm)m∈N be the sequence of
eigenvalues of W1 = S1

†S1 w.r.t. a non-increasing ordering. Assume λ2 > 0 and for
d > 1 let ∅ 6= Id ⊆ {1, . . . , d} be fixed. We consider the restriction SI = (Sd,Id)d∈N
of the tensor product problem S = (Sd : Hd → Gd)d∈N to the Id-antisymmetric
subspaces AId(Hd) ⊂ Hd, d ∈ N. Then for the case λ1 < 1 the following statements
are equivalent:

• SI is strongly polynomially tractable.

• SI is polynomially tractable.

• There exists a constant τ ∈ (0,∞) such that λ ∈ `τ .

Moreover, the same equivalences hold true if λ1 ≥ 1 and the number of antisym-
metric coordinates #Id grows linearly with the dimension d.

Clearly, these assertions show that antisymmetric tensor product problems are
significantly easier than their symmetric counterparts which on their part possess
a lower information complexity than entire tensor product problems, as long as
we impose enough (anti)symmetry conditions. On the other hand, there exist
quite natural examples which show that even fully antisymmetric problems are
not necessarily trivial or polynomially tractable, in general. For details we refer to
Section 5.4.1.
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Let us briefly explain the structure of the present thesis. In the first chapter
we settle some notational conventions and we define the abstract problem we are
faced with in IBC. Furthermore, here we introduce the used cost model and recall
the formal definitions of several complexity categories.

In Chapter 2 we discuss special classes of numerical problems, as well as
elementary tools that we need to handle them. In particular, here we give a detailed
introduction to the singular value decomposition (SVD) of compact operators
between Hilbert spaces. In many cases it builds the basis for the construction of
optimal algorithms. Hence it is of fundamental importance for the rest of our work.
In addition, we discuss tensor product structures in Hilbert spaces and recall some
well-known complexity assertions for problems related to this concept. Finally, we
briefly introduce so-called reproducing kernel Hilbert spaces (RKHSs) and collect
some of their properties.

In the first two sections of the third chapter we derive the characterizations
of the different types of tractability of scaled tensor product problems between
Hilbert spaces we presented in Theorem 1 and Theorem 2 above. Moreover, from
them we conclude a complete characterization for the normalized error criterion in
Section 3.2.3. It turns out that here the scaling factors become irrelevant. Apart
from formulas of the optimal algorithm and its worst case error, we additionally
show that these new assertions generalize the known theory in a quite natural way.
We conclude this chapter by the application of the obtained results to two simple
examples.

Chapter 4 then deals with problems on function spaces endowed with weighted
norms. Here we explain the concept of weighted spaces in full detail and illustrate
it using the example of some unanchored Sobolev H

γ
d space equipped with product

weights. For the uniform approximation problem on this space we present an algo-
rithm A∗n,d that satisfies suitable upper error bounds. Together with corresponding
lower bounds, which we prove for spaces of low-degree polynomials, the application
of simple embedding arguments then leads us to complexity assertions for a whole
scale of product-weighted Banach spaces. In particular, these assertions cover
the results for the space F γ

d stated in Theorem 3 and Theorem 4. Finally, the
last section within this chapter, Section 4.4, presents some generalizations of the
techniques developed before. Among other things, here we show how to handle
Lp-approximation problems, where 1 ≤ p <∞, defined on suitable spaces. More-
over, we show that the algorithm A∗n,d is essentially optimal for L∞-approximation
on H

γ
d . For the proof we make use of arguments due to Kuo, Wasilkowski and

Woźniakowski [KWW08] that relate the uniform approximation problem in the
worst case setting, defined on quite general reproducing kernel Hilbert spaces, to a
certain average case L2-approximation problem.
Some of the results presented in this chapter were already published in [Wei12b].
However, we were able to partially improve these assertions. We will explicitly
emphasize generalizations and new results at the appropriate points.

Finally, Chapter 5 is devoted to problems with (anti)symmetry conditions. We
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start with the definition of (anti)symmetry in Hilbert function spaces. In particular,
we focus our attention to tensor product structures and conclude fundamental
properties of the respective projections and subspaces. At the end of Section 5.1
we use these properties in order to generalize the notion of (anti)symmetry to
tensor products of abstract Hilbert spaces. Afterwards we define (anti)symmetric
numerical problems SI = (Sd,Id)d∈N by the restriction of a given tensor product
problem S = (Sd)d∈N to the subspaces of (anti)symmetric elements in the source
spaces. We prove the commutativity of the operators Sd with certain projections
and conclude formulas for optimal algorithms and their worst case errors. This in
hand, in Section 5.3 we then discuss the complexity of (anti)symmetric numerical
problems. We distinguish between symmetric and antisymmetric problems, as well
as between the absolute and the normalized error criterion. Here we particularly
derive the proofs of Theorem 5 and Theorem 6. The chapter is concluded by a
section which is devoted to several applications. On the one hand, we use simple
examples to show that the additional knowledge about (anti)symmetry conditions
can dramatically reduce the information complexity. On the other hand, we also
discuss more advanced problems that play a role in computational practice. To this
end, we illustrate the application of this new theory to the approximation problem
of so-called wavefunctions that arise in certain models of quantum mechanics and
theoretical chemistry.
A major part of the results proven in this chapter was published in [Wei12a].
However, at some points we use different proof techniques that allow slight gener-
alizations.

Within every chapter formulas are numbered consecutively. Moreover, we use a
sequential numbering for lemmata, remarks, examples, propositions, and theorems;
e.g. Proposition 3.1 is followed by Theorem 3.2 and Lemma 3.3. The symbols �
and � are used to indicate the end of remarks and examples, as well as of proofs,
respectively.
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CHAPTER 1

Preliminaries

Apart from introducing some notational conventions, the aim of this first chapter is
to define the general objects of interest in information based complexity (IBC). We
give an abstract formulation of the general problem in Section 1.2. Afterwards we
introduce some classes of algorithms and discuss the used cost model in Section 1.3.
Finally, in Section 1.4, we recall the notions of tractability, as well as the definition
of the curse of dimensionality.

1.1 Basic notation

As usual we denote by N the natural numbers and N0 = N∪{0} are all non-negative
integers. Moreover, R denotes the real line and Rd (d ∈ N) is the collection of all
points x = (x1, . . . , xd) in the d-dimensional Euclidean space. Given a real number
y > 0 the symbol byc means the largest n ∈ N0 such that n ≤ y and we define dye
to be the smallest number m ∈ N with y ≤ m. The value of the Riemann zeta
function at some z > 1 is denoted by ζ(z) =

∑∞
n=1 n

−z.

If k = (k1, . . . , kd) ∈ Nd
0 is a multi-index then |k| =

∑d
i=1 ki stands for its

length. Furthermore, we use the common notation xk = xk11 · . . . · x
kd
d . For α ∈ Nd

0

partial derivatives of d-variate functions are denoted by Dα, i.e.

Dαf =
∂|α|f

∂xα1
1 . . . ∂xαdd

.

Derivatives of univariate functions g are indicated as g′, g′′, . . . , g(n). For real
numbers a < b half-open intervals are symbolized by [a, b), and [a, b]d stands for the

Cartesian product×d
i=1[a, b] = [a, b]× . . .× [a, b]. If x ∈ Rd belongs to [a, b]d then

the value of the characteristic (or indicator) function χ[a,b]d(x) of this set equals 1.
Otherwise we define χ[a,b]d(x) = 0. Similarly the Kronecker delta function δi,j is
one if the two objects i and j coincide and δi,j = 0 when they differ from each
other.

In what follows we assume that the reader has a fundamental knowledge in
measure theory and probability theory as it can be found, e.g., in the textbooks of
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1 Preliminaries

Bauer [Bau01, Bau96]. We write λd for the Lebesgue measure in Rd and use the
symbols P and E for probabilities and expectations, respectively. We use #I to
denote the cardinality of a finite set I. As usual the sum over an empty index set I
is to be interpreted as zero whereas empty products equal 1 by definition.

Throughout the whole thesis we assume that the reader is familiar with the
basic concepts in functional analysis such as, e.g., complete normed spaces (Banach
spaces), weak derivatives or tensor products. For a comprehensive introduction
we refer to the textbooks of Triebel [Tri92] and Yosida [Yos80]. The norm in
some space F is denoted by ‖· F‖. We write Br(F ) = {f ∈ F ‖f F‖ ≤ r}
for centered, closed balls of radius r ≥ 0 in normed spaces F . Moreover, we
use ∂M for the boundary and int(M) for the interior of a set M . Consequently
B(F ) = B1(F ) = int(B1(F )) ∪ ∂B1(F ) denotes the unit ball in F . For the class of
all bounded linear operators between normed spaces F and G we write L(F,G).
The subset of all compact operators is denoted by K(F,G). We say a space F is
(continuously) embedded into another space G with norm C if the operator norm
of id : F → G, f 7→ id(f) = f , equals C ∈ [0,∞). In this case we write F ↪→ G
and ‖id L(F,G)‖ = C. We use the symbol 〈·, ·〉H for the inner product in the case
of a Hilbert spaces H. Moreover, we write M⊥ for the orthogonal complement of
some linear subspace M ⊂ H and we use ⊕ to denote the orthogonal sum with
respect to 〈·, ·〉H .

If (X, a, µ) is an arbitrary measure space and 0 < p ≤ ∞ then we use the
symbol Lp(X, a, µ) for the classical Lebesgue spaces. Hence, if p <∞ then we deal
with the set of (equivalence classes of) µ-measurable functions f : X→ R for which
the norm5

‖f Lp(X, a, µ)‖ =

(∫
X

|f(x)|p dµ(x)

)1/p

is finite. Moreover, L∞(X, a, µ) is the space (of classes) of µ-essentially bounded
functions on X, equipped with the norm

‖f L∞(X, a, µ)‖ = ess-sup
x∈X

|f(x)| .

As usual two functions are identified if they coincide µ-almost everywhere on X

and we do not distinguish between functions and their equivalence classes. The
following special cases are of particular interest for us.

For a Borel measurable subset X = Ω ⊂ Rd, the Borel sigma algebra a = Σ =
Σ(Ω) and µ = λd we use the shorthand Lp(Ω) = Lp(Ω,Σ, λ

d). If in this definition µ
does not equal the Lebesgue measure, but is absolute continuous w.r.t. λd, and if
% = dµ/dλd describes a probability density function that is strictly positive (λd-a.e.)
on Ω, then we write L%p(Ω). On the other hand, for a discrete measure space (Γ, b, ν)

5Actually, in the case 0 < p < 1 the given formula only provides a quasi-norm, i.e. then we need
an additional constant k > 1 for the triangle inequality. Since this does not play any role in
our applications we do not emphasize this difference in what follows.

2



1.2 General problem

on some set Γ with ν({i}) = 1 for each i ∈ Γ we write `p(Γ) = Lp(Γ, b, ν) and we
abbreviate the notation to `p if Γ = N. Keep in mind that in this case the norms
simplify to

‖λ `p‖ =


(
∞∑
m=1

|λm|p
)1/p

, if 0 < p <∞,

sup
m∈N
|λm| , if p =∞,

where λ = (λm)m∈N is any real-valued sequence such that the above norm is finite.
Finally, we make use of the Bachmann-Landau notation of asymptotic growth

rates. That is, for real-valued functions f and g defined on some subset of the real
line we write f(x) ∈ O(g(x)), as x→ a, if there exists a universal constant M > 0
such that the estimate

|f(x)| ≤M |g(x)|

holds for all x sufficiently close to the point a. If g is non-zero (at least in the
neighborhood of a) then this definition equivalently reads

lim sup
x→a

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞.
If we have f(x) ∈ O(g(x)) and simultaneously g(x) ∈ O(f(x)), as x→ a, then we
write f(x) ∈ Θ(g(x)), x→ a. Moreover, we say that f(x) ∈ o(g(x)), as x→ a, if
for any δ > 0 there exists a neighborhood U of a such that

|f(x)| ≤ δ |g(x)|

for all x ∈ U . Again this property can be reformulated for non-vanishing g. In this
case we have

lim
x→a

∣∣∣∣f(x)

g(x)

∣∣∣∣ = 0.

All these three notations will be used especially for sequences (fd)d∈N (interpreted
as special classes of functions), where we have a =∞.

1.2 General problem

In numerous applications from physics, chemistry, finance, economics, and computer
science we are faced with very high dimensional continuous problems which can
almost never be solved analytically. Therefore we search for algorithms which
approximate the unknown solutions numerically to within a threshold ε > 0.

In general, such a problem is given by a non-trivial solution operator

S : F̃ → G, (1.1)

3



1 Preliminaries

mapping a problem element f out of a subset F̃ of some normed space F onto
its solution S(f) in some (other) target space G. Often, but not always, F̃ is
assumed to be the unit ball B(F) in some Banach space F of multivariate functions
f : Ωd ⊂ Rd → R. For the domain of definition Ωd usually the unit cube [0, 1]d is
taken. Since the dependence on d will play a crucial role in this thesis we concentrate
on whole sequences S = (Sd)d∈N of solution operators, where every

Sd : F̃d → Gd, d ∈ N, (1.2)

is of the form (1.1).

Typically, F̃d is an infinite dimensional subset of the source space Fd and thus we
cannot input f ∈ F̃d directly into the computer. Instead we assume that the input
for our algorithms A consists of finitely many cleverly chosen pieces of information
which hopefully describe f as well as possible. In Section 1.3 we define different
kinds of information operations which lead us to different classes Ad of algorithms.
For now assume Ad : F̃d → Gd to be a fixed element in some class Ad.

The local error ∆loc(f ;Ad, Sd) of a given algorithm Ad ∈ Ad applied to a

problem element f ∈ F̃d is defined as the difference of the exact solution Sd(f) and
the approximate solution Ad(f), measured in the norm of the target space Gd, i.e.

∆loc(f ;Ad, Sd) = ‖Sd(f)− Ad(f) Gd‖ .

The latter definition in hand, there are several ways to quantify the quality of Ad.
In the worst case setting this is done in terms of the maximal local error of the

algorithm among all possible inputs f ∈ F̃d. Hence, by

∆wor
(
Ad;Sd : F̃d → Gd

)
= sup

f∈F̃d

∆loc(f ;Ad, Sd)

we define the worst case error of the algorithm Ad for the problem Sd : F̃d → Gd.
On the other hand, sometimes it is useful to measure the average performance of a
given algorithm on the input set F̃d. This corresponds to the so-called average case
setting. Here we need to assume in addition that F̃d is equipped with a probability
measure µd. The term

∆avg
(
Ad;Sd : F̃d → Gd

)
=

(∫
F̃d

∆loc(f ;Ad, Sd)
2 dµd(f)

)1/2

then denotes the average case error of Ad.
6 Since the worst case setting seems to

be much more important we will mainly deal with worst case errors in what follows.
However, for some problems there exist close relations to the average case setting.

6In fact, µd is defined on the Borel sets of F̃d and we need to claim ∆loc( · ;Ad, Sd) to be a
measurable function, but these are only formal issues. See, e.g., [NW08, p. 129] for further
details.
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1.2 General problem

One such example will be presented in Section 4.4.2. For the sake of completeness
we stress the point that there exist even more settings which are subject to current
research. To this end, we mention the probabilistic and the randomized setting and
refer to [NW08, Chapter 3.2] for an extensive discussion.

In numerical analysis one major assumption states that information is expensive.
Therefore we are interested in algorithms which solve a given problem within a
tolerance ε while using as few as possible pieces of information on the inputs. This
property can be captured by the concept of the nth minimal error

esett
(
n, d;Sd : F̃d → Gd

)
= inf

An,d∈And
∆sett

(
An,d;Sd : F̃d → Gd

)
for sett ∈ {wor, avg}, d ∈ N, and n ∈ N0, where the infimum is taken over all
algorithms in the class

An
d = {A ∈ Ad A uses at most n information operations on the input}.

Consequently, the initial error

εinit,sett
d = esett

(
0, d;Sd : F̃d → Gd

)
, d ∈ N,

describes the smallest error we can achieve without using any information on the
input in a given setting sett ∈ {wor, avg}. We will see in Section 2.2 that under
mild assumptions this initial error can be attained by the zero algorithm, i.e. by
A0,d ≡ 0 ∈ Gd.

If there is no danger of confusion we abbreviate the above notations and simply
write ∆sett(Ad;Sd) and esett(n, d;Sd), where sett is an element of {wor, avg}, or
even only ∆(Ad) and e(n, d), respectively. Moreover, in Chapter 4 and Chapter 5
it seems to be useful to stress especially the source spaces Fd the problem elements
come from rather than the operator Sd. There we slightly abuse notation and write
ewor(n, d;Fd) instead of ewor(n, d;Sd : B(Fd)→ Gd).

The main goal in the classical theory is to find sharp bounds on the nth minimal
error in terms of the amount of information operations. In fact, there is a huge
literature where the existence of constants cd, Cd > 0 and pd, Pd > 0 was proven
such that estimates of the type

1

cd
· n−pd ≤ e(n, d) ≤ Cd · n−Pd for all n ∈ N

hold for certain problems S in a given setting.7 Back then, the respective researchers
did not pay much attention to the involved constants cd and Cd. These numbers can
be arbitrary large and in some cases their dependence on d is completely unknown.

7Actually, in many cases these estimates hold modulo log n to some power which usually depends
linearly on d. For simplicity we omit these factors because they are not crucial for the following
argument.
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1 Preliminaries

Instead the attention was focused on the so-called rate (or order) of convergence,
i.e. on proofs which yield pd = Pd. Often this rate tends to zero as d approaches
infinity. Therefore these bounds are not meaningful at all for large d. Thus, usually
the parameter d was assumed to be a fixed (and reasonably small) constant in
this approach. Since we also want to work in huge dimensions a more careful error
analysis is needed.

1.3 Algorithms and cost model

For fixed n ∈ N and d ∈ N an algorithm An,d ∈ An
d is modeled as a mapping

ϕn : Rn → Gd and a function Nn : F̃d → Rn such that An,d = ϕn ◦Nn. For the sake
of completeness in the case n = 0 we simply assign a constant value c ∈ Gd to every
element f ∈ F̃, i.e. A0,d ≡ c, in order to model an algorithm that does not depend
on the input at all. If n > 0 then the information map Nn is given by

Nn(f) = (L1(f), L2(f), . . . , Ln(f)) , f ∈ F̃d, (1.3)

where Lj ∈ Λ. Here we distinguish certain classes of information operations Λ. In
one case we assume that we are allowed to compute arbitrary continuous linear
functionals on the inputs f . Then Λ = Λall coincides with F∗d, the dual space of Fd.

If we deal with problem operators Sd defined on function spaces F̃d then often
only function evaluations are permitted, i.e. Lj(f) = f(t(j)) for a certain fixed
t(j) ∈ Ωd in the domain of definition of f . In this case Λ = Λstd is called standard
information. If function evaluation is continuous for all t ∈ Ωd we have Λstd ⊂ Λall.
In particular this is the case when dealing with problems defined on reproducing
kernel Hilbert spaces; see Section 2.5. If Lj depends continuously on f but is not
necessarily linear then the respective class is denoted by Λcont. Note that in this
case also Nn is continuous and we obviously have Λall ⊂ Λcont.

Furthermore, we distinguish between adaptive and non-adaptive algorithms.
The latter case is described above in formula (1.3), where Lj does not depend on
the previously computed values L1(f), . . . , Lj−1(f). In contrast, we also discuss
algorithms of the form An,d = ϕn ◦Nn with

Nn(f) = (L1(f), L2(f ; y1), . . . , Ln(f ; y1, . . . , yn−1)) , f ∈ F̃d, (1.4)

where y1 = L1(f) and yj = Lj(f ; y1, . . . , yj−1) for j = 2, 3, . . . , n. If Nn is
adaptive we restrict ourselves to the case where Lj depends linearly on f , e.g.
Lj( · ; y1, . . . , yj−1) ∈ Λall. Note that in any case Nn is either continuous, or it is
constructed out of linear information operations (which may be combined adap-
tively). Moreover, in all cases of information maps, the mapping ϕn can be chosen
arbitrarily.

For upper error bounds small classes of algorithms are most important. The
smallest such class under consideration is the family of linear, non-adaptive algo-
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1.3 Algorithms and cost model

rithms of the form

An,d(f) =
n∑
j=1

Lj(f) · gj (1.5)

with some gj ∈ Gd and Lj ∈ Λall or even Lj ∈ Λstd. We denote this set of algorithms

by A
n,lin
d (Λ), where Λ = Λall, or Λ = Λstd, respectively. On the other hand, it is

reasonable to prove lower error bounds for preferably large classes of algorithms.
The most general families consist of algorithms An,d = ϕn ◦ Nn, where ϕn is
completely arbitrary and Nn either uses non-adaptive continuous or adaptive linear
information. We denote the respective classes by A

n,cont
d and A

n,adapt
d .

One of the most fundamental assumptions in IBC is that we can perform (exact)
basic arithmetic operations on elements of the target space Gd, as well as on real
numbers, with unit cost. Formally this means that we work with the real number
model in contrast to the bit number model which is used in some other fields of
computational science; see, e.g., [NW08, Section 4.1.3]. Moreover, we assume that
information operations on the input are given by certain black box computations
which are sometimes called oracle calls. Typically the computational costs for
information operations are much higher than for simple arithmetic operations since
the computation of a function value or a linear functional may require billions of
such operations. If we assume that every oracle call has a fixed cost C � 1 then the
total cost of computing the output of an algorithm is proportional to the number
of needed information operations.8 Therefore it is reasonable to study not only the
nth minimal error of a given problem but also the inverse quantity which we call
information complexity

nsett
abs

(
ε, d;Sd : F̃d → Gd

)
= min

{
n ∈ N0 ∃A ∈ An

d such that ∆sett(A) ≤ ε
}

= min
{
n ∈ N0 esett(n, d) ≤ ε

}
,

where d ∈ N, ε > 0 and sett ∈ {wor, avg}. That is, we look at the amount of oracle
calls needed to compute an ε-approximation in dimension d. Hence, due to our
assumptions this information complexity roughly equals the total complexity of a
given problem and therefore describes its computational hardness. For a detailed
discussion of algorithms and their costs, as well as on the relations of information
complexity and total complexity we refer the reader to Section 4.1 in [NW08].

Finally we want to mention that the above definition addresses the absolute
error criterion. In contrast we will also consider the normalized error criterion
where we search for the minimal number of information operations needed to
improve the initial error by some factor ε′ > 0. We denote the corresponding

8There also exist approaches in which the cost of an oracle call depends on the parameters
of the problem. These attempts stress the point that the computational effort for function
evaluations increases with the numbers of (active) variables. See, e.g., [KSWW10a] for details.
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1 Preliminaries

information complexity by

nsett
norm

(
ε′, d;Sd : F̃d → Gd

)
= nsett

abs

(
ε′ · εinit

d , d;Sd : F̃d → Gd

)
, sett ∈ {wor, avg}.

Obviously both the notions coincide if the problem under consideration is well-
scaled. That is, if εinit

d = 1. Otherwise the problem may be significantly harder with
respect to the normalized error criterion, e.g. if εinit

d is exponentially small in d.
Of course also the converse situation is conceivable. However, note that both the
information complexities are always non-increasing in the first argument and we
have

nsett
norm

(
1, d;Sd : F̃d → Gd

)
= nsett

abs

(
εinit
d , d;Sd : F̃d → Gd

)
= 0 (1.6)

for all d ∈ N due to the definition of the initial error.
Again we will use shorthands such as nabs(ε, d;Sd) or even n(ε, d) to simplify

notation.

1.4 Notions of tractability

As already indicated we strongly believe that it is not sufficient only to study
the rate of convergence, i.e. the dependence of n(ε, d) on ε, to properly describe
the computational hardness of a given problem. We also need to incorporate the
dependence on the parameter d. Keep in mind that the following definitions equally
refer to both, the absolute and the normalized, error criteria. Therefore we simply
write n(ε, d) instead of nabs(ε, d) or nnorm(ε, d) for the information complexity.

When dealing with multivariate problems we often observe the so-called curse
of dimensionality which goes back to Bellman in the late 1950s; cf. [Bel57]. Given
a concrete setting a problem is said to suffer from the curse of dimensionality if
the corresponding information complexity n(ε, d) increases exponentially with the
dimension d. That is, for at least one ε > 0 there exist positive constants C and γ
which are independent of the dimension such that we have

n(ε, d) ≥ C · (1 + γ)d

for infinitely many d ∈ N. More generally, if n(ε, d) depends exponentially on d
or ε−1 then we call the problem intractable9. Otherwise we have tractability which
goes back to Woźniakowski in the early 1990s; see [Woź94a, Woź94b]. At this time a
problem was called tractable if its complexity depends at most polynomially on ε−1

and d. Today this is only one case in a whole hierarchy of notions of tractability.
We describe these classes starting with the weakest notion.

9Formally that means that there exist universal constants γ,C > 0, as well as sequences (εk)k∈N
and (dk)k∈N with εk ∈ (0, 1] and dk ∈ N for all k ∈ N, such that ε−1k + dk →∞, as k →∞,

and n(εk, dk) ≥ C · (1 + γ)ε
−1
k +dk for every k ∈ N. Note that this definition includes the curse

as a special case, where εk ≡ ε0.
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If a problem is not intractable then we have weak tractability which can be
equivalently expressed by

lim
ε−1+d→∞

ln(n(ε, d))

ε−1 + d
= 0,

see [GW08, NW08]. Here the limit is taken with respect to all two-dimensional
sequences ((εk, dk))k∈N ⊂ (0, 1] × N such that εk < εinit

dk
and ε−1

k + dk → ∞, as k
approaches infinity. In particular, the latter restriction ensures that n(ε, d) ≥ 1.
Furthermore, we want to stress the point that weak tractability implies the absence
of the curse of dimensionality, but in general the converse is not true. Recently a
slightly stronger notion called uniform weak tractability has been suggested. We
will not follow this line of research and refer to [Sie13].

Since there are many ways to measure the lack of exponential dependence
the abstract notion of generalized (or T -) tractability was introduced; see [GW07,
GW09] and [NW08, Chapter 8]. Here the essence is to describe the behavior of
the information complexity in terms of a multiple of some power of a so-called
tractability function T depending on ε−1 and d. Without going into details we
mention that the following classes can be seen as special cases in this general
framework.

For the sake of completeness we also introduce the quite recently developed
notion of quasi-polynomial tractability. A problem is called quasi-polynomially
tractable if there are universal constants C, t > 0 such that

n(ε, d) ≤ C exp
(
t(1 + ln ε−1)(1 + ln d)

)
for every ε ∈ (0, 1] and d ∈ N. Note that for fixed ε or d this upper bound behaves
polynomially in the second argument what somehow justifies the name of this class
of problems. For details see [GW11] and [NW12].

Finally, the most important and until now most studied type of tractability
is called polynomial tractability. We say that a problem is polynomially tractable
if there exist absolute constants C, p > 0 and q ≥ 0 such that we can bound the
information complexity by

n(ε, d) ≤ C · ε−p · d q for all d ∈ N, ε ∈ (0, 1]. (1.7)

If this last inequality holds with q = 0, i.e. if we have no dependence on the
dimension at all, then the problem is called strongly polynomially tractable. In this
case the smallest possible constant p in (1.7) is denoted by p∗. It is called the
exponent of strong polynomial tractability.
If, in contrast, there do not exist constants C, p and q which fulfill (1.7) then the
problem is said to be polynomially intractable.

Observe that (1.6) shows that, as long as the absolute error criterion is concerned,
it is enough to consider ε ∈

(
0,min

{
εinit
d , 1

}]
instead of ε ∈ (0, 1] in all the above

definitions.
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CHAPTER 2

Properties and tools for special problem classes

This chapter deals with basic properties of certain classes of problems and algo-
rithms. We state simple consequences obtained from fundamental assumptions on
the operators under consideration. Furthermore, we present more or less classical
tools used in the framework of information-based complexity to acquire tractability
results in a quite general context.

In detail, we begin with a simple lower error bound in a very general setting
which will be used on several occasions later on. In Section 2.2 we then show that
for our purposes it is reasonable to concentrate mainly on compact problems and
linear, non-adaptive algorithms. Moreover, there we derive a formula for the initial
error of the problems we are interested in. Afterwards, in Section 2.3, we turn to the
important class of problems defined between Hilbert spaces. We recall well-known
tools such as the singular value decomposition, conclude optimal algorithms and
characterize several types of tractabilities of such problems. In Section 2.4 we
restrict ourselves further and assume an additional tensor product structure which
will play an important role throughout the rest of this thesis. Finally we conclude
this chapter with the discussion of so-called reproducing kernel Hilbert spaces.

The main references for the functional analytic background needed in this part,
as well as on the theory of s-numbers (or n-widths, respectively) are the monographs
of Pinkus [Pin85] and Pietsch [Pie87, Pie07]. For a detailed discussion of applications
to tractability questions we refer again to Novak and Woźniakowski [NW08, NW10,
NW12] and to Mathé [Mat90].

2.1 Lower bounds on linear subspaces

For the purpose of this chapter it is enough to study the worst case setting. In
addition, we will only focus on the case where all the problem elements lie in some
centered ball of the respective source space. In this first section we present a quite
general method to obtain lower bounds on the nth minimal error with respect to a
wide class of algorithms. In contrast to the rest of this thesis (where we will restrict
ourselves basically to linear and compact problems) we present a result that holds
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for any homogeneous operator S between linear normed spaces F and G over the
field of real numbers. That is, we first only assume that S(α · f) = α · S(f) for
every f ∈ F and all α ∈ R.

We start by proving the following (modified) assertion of Borsuk and Ulam for
linear normed spaces:

Lemma 2.1 (Borsuk-Ulam). Let V be a linear normed space over R with 0 <
dimV = s <∞ and, moreover, let N : V → Rn be a continuous mapping for some
0 ≤ n < s. Then for all r ≥ 0 there exists an element f ∗ ∈ V with ‖f ∗ V ‖ = r,
such that N(f ∗) = N(−f ∗).
Proof. Obviously, the cases n = 0, i.e. N ≡ 0, and r = 0 are trivial. Hence, let
n ∈ N and r > 0. Since dimV = s we find an isomorphism T : V → Rs such that T
and T−1 are linear and bounded. Hence, for every r > 0 the set Ωr = T (int(Br(V )))
is an open, bounded and symmetric subset of Rs which contains zero. Moreover, the
function g = N ◦T−1 : ∂Ωr → Rn is continuous. From the theorem of Borsuk-Ulam
(cf. Deimling [Dei85, Corollary 4.2]) we conclude the existence of some x∗ ∈ ∂Ωr

with g(x∗) = g(−x∗). The claim now follows by taking f ∗ = T−1x∗. �

This result in hand, we can prove a generalization of [Wei12b, Lemma 1].

Proposition 2.2. Suppose S to be a homogeneous operator between linear normed
spaces F and G. Further assume that V ⊂ F is a linear subspace with dimension
s ∈ N and that there exists a constant a ≥ 0 such that

a · ‖f F‖ ≤ ‖S(f) G‖ for all f ∈ V. (2.1)

Then for every 0 ≤ n < s, any algorithm An ∈ An,cont ∪An,adapt, and all r ≥ 0

∆wor(An;S : Br(F)→ G) = sup
f∈Br(F)

‖S(f)− An(f) G‖ ≥ a · r. (2.2)

In particular, the nth minimal worst case error (among the unit ball B(F) of F)
satisfies ewor(n;S : B(F)→ G) ≥ a for all n < s.

Proof. It is well-known that for An = ϕn ◦Nn ∈ An,cont ∪An,adapt with n < s there
exists f ∗ ∈ V such that Nn(f ∗) = Nn(−f ∗) and ‖f ∗ F‖ = r.

Without loss of generality let us again assume n ∈ N and r > 0 to avoid
triviality. Then, for An ∈ An,cont, the existence of f ∗ is a simple conclusion of
Lemma 2.1 since in this case Nn is continuous by definition. On the other hand, if
An ∈ An,adapt then the proof can be obtained by arguments from linear algebra. We
follow the lines of the proof of Werschulz and Woźniakowski [WW09, Theorem 3.1]
and search for a nonzero g ∈ V such that Nn(g) = 0, i.e.

L1(g) =0,

L2(g; 0) =0,

... (2.3)

Ln(g; 0, . . . , 0) =0.
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2.2 Linearity and compactness

Since dimV = s every g ∈ V can be represented uniquely as a linear combination
g =

∑s
m=1 cmbm of at most s linearly independent basis functions bm of V . Due

to the imposed linearity of Lj( · ; 0, . . . , 0), j = 1, . . . , n, the system (2.3) can be
reformulated as a system of n homogeneous linear equations in the s > n unknowns
c = (cm)sm=1 ∈ Rs. Consequently, it possesses a non-trivial solution c∗ = (c∗m)sm=1

which implies the existence of some g∗ ∈ V \ {0} with Nn(g∗) = 0. Since with Lj
also Nn is linear, we can easily construct f ∗ out of g∗.

Anyway, every such f ∗ satisfies An(f ∗) = An(−f ∗). Using the norm properties
in the target space G and the homogeneity of S we obtain (2.2):

∆wor(An;S : Br(F)→ G) ≥ max {‖S(±f ∗)− An(±f ∗) G‖}
= max {‖S(f ∗)± An(f ∗) G‖}

≥ 1

2
(‖S(f ∗) + An(f ∗) G‖+ ‖S(f ∗)− An(f ∗) G‖)

≥ 1

2
‖2 · S(f ∗) G‖ ≥ a ‖f ∗ F‖ = a · r.

The remaining implication for the nth minimal error finally follows from the case
r = 1 by taking the infimum over all An ∈ An,cont ∪An,adapt. �

At this point we stress that the case r 6= 1 in (2.2) might be useful only if we
deal with non-homogeneous (and thus non-linear) algorithms An. Otherwise we
clearly have

∆wor(An;S : Br(F)→ G) = r ·∆wor(An;S : B(F)→ G)

for all r ≥ 0 provided that S : F → G is homogeneous. The importance of (2.2) for
r 6= 1 will be made clear in Section 4.3.2 when we deal with embeddings P ↪→ F.
There we conclude a lower bound for the worst case error of S on B(F) out of a
lower bound on Br(P) using r = ‖id L(P,F)‖−1.

2.2 Linearity and compactness

In what follows we will exclusively consider linear continuous problems S = (Sd)d∈N.
That is, we assume every solution operator Sd given by (1.2) to be the restriction
of a bounded linear mapping between some Banach spaces defined over the field of
real numbers.10 If we assume the set of problem elements F̃d to be some centered
ball Br(Fd), r > 0, in the source space then conversely every bounded mapping Sd
that acts linearly on this set11 can be uniquely extended to a continuous linear

10In fact, for most of the following results completeness is not needed. Many of them even remain
valid (at least up to constants) using only quasi-norms or p-norms, but for simplicity we
restrict ourselves to the case of Banach spaces. Finally, for the ease of notation, we only
consider spaces over R.

11That means, Sd(α ·f +β ·g) equals α ·Sd(f)+β ·Sd(g) for every convex combination α ·f +β ·g
of elements f, g ∈ F̃d.
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2 Properties and tools for special problem classes

operator S̃d on the whole space Fd, i.e. S̃d ∈ L(Fd,Gd). From this point of view Sd
and S̃d can be identified with each other and thus we use the symbol Sd for both
of them.

At the first glance the linearity assumption seems to be very restrictive. On
the other hand, both the most important problems, namely approximation and
integration, are indeed of this type. Moreover, the linear case is much better
understood than the non-linear such that an overwhelming percentage of work
on IBC was done in this setting. For the sake of completeness we also mention
so-called quasilinear problems and refer to [WW07] and [NW12, Chapter 28].

Since we are interested in algorithms which are easy (and cheap) to implement
we pay special attention to the family of linear and non-adaptive algorithms
A
n,lin
d (Λ); see (1.5). It is well-known that this choice is reasonable for many classes

of problems, since it can be shown that under mild assumptions optimal algorithms
are indeed linear and non-adaptive. General assertions of this type can be found
in Traub, Wasilkowski and Woźniakowski [TWW88], as well as in Novak and
Woźniakowski [NW08, Section 4.2]. We do not present these results here explicitly.
The reason is that for the problems we are interested in, our assertions already
imply the mentioned optimality statements.

Furthermore, we focus on information maps which are linear and continuous,
i.e. Λ ⊆ Λall. Observe that then An,d ∈ L(Fd,Gd) and rank(An,d) ≤ n. Moreover,

for F̃d = B(Fd) we obtain

∆wor(An,d;Sd) = ∆wor
(
An,d;Sd : F̃d → Gd

)
= ‖Sd − An,d L(Fd,Gd)‖ .

It seems natural to ask when problems of this type are solvable at all. We say
a problem S = (Sd)d∈N is solvable if for any fixed d ∈ N there exists a sequence of
algorithms An,d ∈ A

n,lin
d (Λall) such that their worst case errors ∆wor(An,d;Sd) tend

to zero as n approaches infinity. Hence, Sd needs to be an element of FR(Fd,Gd),
the closure of the finite rank operators in L(Fd,Gd), which is a subset of K(Fd,Gd).
Therefore solvable problems are necessarily compact such that we can restrict
ourselves in the following to Sd ∈ K(Fd,Gd). Due to the celebrated result of
Enflo [Enf73] it is known that the converse is not true in this generality. Indeed,
there are compact problems which are not solvable since there exist Banach
spaces Gd which do not satisfy the so-called approximation property. However,
the following (incomplete) list shows that in the cases we are interested in every
compact problem is solvable:

Proposition 2.3. Let S = (Sd)d∈N be given such that Sd ∈ K(Fd,Gd) for all d ∈ N.
Then S is solvable if for every d ∈ N one of the following conditions applies:

• The source space Fd is a Hilbert space, or

• The target space Gd is a Hilbert space, or

• The target space Gd is L∞(X, a, µ) for an arbitrary measure space (X, a, µ).
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2.2 Linearity and compactness

Proof. Let d ∈ N. Given all the above restrictions we note that if we consider
the class A

n,lin
d (Λall) then the numbers ewor(n, d;Sd), n ∈ N0, per definition equal

the linear n-widths (or approximation numbers) δn(Sd) as defined in [Pin85, Def-
inition 7.3]. Up to an index shift these numbers form an s-scale12 in the sense
of Pietsch [Pie07, Section 6.2]. Other important s-scales are the Gelfand num-
bers cn(Sd) and the Kolmogorov numbers dn(Sd). Without going into details we
mention that for any compact operator Sd ∈ K(Fd,Gd) both these numbers tend to
zero as n→∞; see Propositions 7.4 and 7.1 in [Pin85]. Hence, to prove solvability
it suffices to show that δn(Sd) ≤ max {cn(Sd), dn(Sd)} for all n ∈ N. Indeed, if Fd
is a Hilbert space then we have δn(Sd) = cn(Sd). Furthermore, δn(Sd) = dn(Sd) if
Gd is a Hilbert space; see, e.g., [Pin85, p. 33]. Finally Proposition 8.13 in [Pin85]
shows that the second last equality remains valid if the target space Gd enjoys the
so-called (metric) extension property. It is known that in particular L∞(X, a, µ)
has this property; see, e.g., König [Kön86, 1.c.2]. �

We want to stress that in Proposition 2.3 we do not need to assume the Hilbert
spaces to be separable.

Let us conclude this section with a proposition which shows that the zero
algorithm A0 ≡ 0 is the optimal choice among all approximations to a given
operator S ∈ L(F,G) that do not use any information on the input f ∈ F. Here F

and G can be arbitrary normed spaces.

Proposition 2.4. For S ∈ L(F,G) and A0 = 0 ∈ L(F,G) we have

ewor(0;S : B(F)→ G) = ∆wor(A0;S : B(F)→ G) = ‖S L(F,G)‖ .

Consequently, the zero algorithm is optimal for S within the class A0,cont ∪A0,adapt

and the initial worst case error εinit,wor of S is given by the its operator norm.

Proof. Obviously the second equality is true by the definition of ∆wor. Moreover,
the linear algorithm A0 ≡ 0 is included in every class of algorithms we defined in
Section 1.3. This particularly implies ewor(0;S) ≤ ∆wor(A0) = ‖S L(F,G)‖.

To show the converse inequality, recall that every algorithm A that does not
use any information on the input necessarily takes the form A(f) ≡ g for some
element g ∈ G. A calculation similar to that in the proof of Proposition 2.2 yields
that

‖S(f) G‖ ≤ max {‖S(f)− g G‖ , ‖S(−f)− g G‖}

holds for every f ∈ F. Taking the supremum over f ∈ B(F) now shows that
‖S L(F,G)‖ ≤ ∆wor(A) which implies the desired result since A was chosen
arbitrary. �

We note in passing that the last step in the latter proof crucially depends on
the fact that the unit ball F̃ = B(F) of the source space F is symmetric in the

sense that f ∈ F̃ implies −f ∈ F̃.

12Note that due to historical reasons there is some notational danger concerning s-numbers
versus n-widths. See, e.g., [Pie07, p. 336] for details.
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2.3 General Hilbert space problems

In this section we describe the singular value decomposition (SVD) which turns out
to be the main tool when dealing with problems where both the source and the
target spaces are Hilbert spaces. We prove well-known formulas for optimal linear
algorithms using continuous linear functionals and calculate their worst case errors.
Afterwards, we use the obtained assertions to give characterizations for (strong)
polynomial tractability for these problems.

2.3.1 Singular value decomposition

Given any compact operator T ∈ K(F,G) acting between two arbitrary real Hilbert
spaces F and G we define its adjoint operator T † : G→ F in the usual way by

〈Tf, g〉G =
〈
f, T †g

〉
F
, for all f ∈ F, g ∈ G. (2.4)

Of course, T † is always unique and well-defined. For details we refer the reader
to Yosida [Yos80, VII.2]. If F = G and T † = T , then we say that T is self-adjoint.
Due to Schauder’s Theorem we know that T † ∈ K(G,F) if and only if T ∈ K(F,G);
see, e.g. [Pin85, p. 31]. Hence, it is easily seen that also

W = T †T : F → F

defines a compact operator. Moreover, W is obviously self-adjoint and positive,
i.e. 〈Wf, f〉F ≥ 0 for every f ∈ F. It is a well-known fact that therefore all the
eigenvalues λm = λm(W ) of W are necessarily real and furthermore non-negative.
Following Pinkus [Pin85, p. 64] we denote the sum of the algebraic multiplicities
of the non-zero eigenvalues of W by v = v(W ). Note that the theory of Riesz-
Schauder provides that there are at most countably many non-zero eigenvalues.
They are uniformly bounded, each of them has a finite multiplicity and there
are no accumulation points but (possibly) zero. See, e.g., Theorem 2 in [Yos80,
X.5]. Observe further that in any case v ≤ dimF ∈ N ∪ {∞}. Let us denote
these eigenvalues in a non-increasing ordering subscripted by indices from the set
M = {m ∈ N m < v + 1},

λ1 ≥ λ2 ≥ . . . ≥ λm ≥ . . . > 0. (2.5)

Note that without loss of generality we will always assume the existence of at
least one non-trivial eigenvalue, i.e. we explicitly exclude the operator T ≡ 0
which ensures that M 6= ∅. We denote the corresponding (mutually orthonormal)
eigenvectors of W by φm, m ∈ M, and refer to {(λm, φm) m ∈ M} as the set of
non-trivial eigenpairs of W . Consequently, for i, j ∈M we have by (2.4)

〈Tφi, Tφj〉G =
〈
φi, T

†Tφj
〉
F

= 〈φi,Wφj〉F = 〈φi, λj φj〉F = δi,j · λj. (2.6)
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2.3 General Hilbert space problems

If we extend the possibly finite eigenvalue sequence (λm)vm=1 by taking λm = 0
for all m > v then, clearly, λ = (λm)m∈N forms a null sequence. Again following
Pinkus, we call the square root σ = σ(T ) of λ = λ(W ),

σm =
√
λm, m ∈ N,

sequence of the singular values of T . The importance of this bunch of definitions
comes from the following assertion.

Theorem 2.5 (Singular value decomposition). Let F and G be arbitrary Hilbert
spaces and T ∈ K(F,G). Then, with the above notations,

T =
v∑

m=1

〈 · , φm〉F Tφm. (2.7)

Proof. A detailed proof can be found in the monograph of König [Kön86, 1.b.3]. It
is mainly based on the so-called polar decomposition of linear continuous operators
and the theory of Riesz-Schauder. Actually, the proof deals with complex Hilbert
spaces but it literally transfers to the real case. Moreover, only the existence of an
orthonormal sequence (ψm)vm=1 in G is shown such that the pointwise equality

Tf =
v∑

m=1

σm 〈f, φm〉F ψm, f ∈ F,

holds true. However, setting f = φk for k ∈M together with the mutual orthonor-
mality of (φm)vm=1 immediately implies σkψk = Tφk for any k. The claimed identity
in K(F,G) finally follows from Bessel’s inequality. �

Remark 2.6. Note that again the Hilbert spaces F and G do not need to be
separable. Nevertheless the image of F under T is indeed separable, because it
is spanned by at most countable many elements Tφm ∈ G. Since the elements of
the set Φ = {φm ∈ F m ∈M} are mutually orthonormal we can extend Φ to an
orthonormal basis (ONB) E of F. Then (2.7) shows that kerT = Φ⊥. Remember
that we are only interested in the approximation of the image of T . Hence, we
can without loss of generality assume that E = Φ. In other words, even though F

may be non-separable in general we can restrict ourselves to the separable case
in what follows. We only need to replace F by Φ, the closure of the orthonormal
eigenelements of W = T †T under 〈·, ·〉F. �

2.3.2 Optimal algorithm

Observe that by (2.7) we obtained a representation of any operator T ∈ K(F,G)
as the limit of related finite rank operators. Therefore we are able to construct nth
optimal linear algorithms which only use information from Λall. This is stated in
the following corollary which can be found (slightly modified) as Corollary 4.12
in [NW08].
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2 Properties and tools for special problem classes

Corollary 2.7. For d ∈ N assume Fd and Gd to be arbitrary Hilbert spaces.
Further let S = (Sd)d∈N denote a compact problem acting between these spaces,
i.e. Sd ∈ K(Fd,Gd) for every d. Then for all d ∈ N and n ∈ N0 the algorithm
A∗n,d ∈ A

n,lin
d (Λall) given by

A∗n,d : Fd → Gd, f 7→ A∗n,d(f) =

min{n,v(Wd)}∑
m=1

〈f, φd,m〉Fd · Sdφd,m,

for Sd is optimal in the class A
n,cont
d ∪A

n,adapt
d and we have

ewor(n, d;Sd) = ∆wor(A∗n,d;Sd) = σd,n+1 =
√
λd,n+1. (2.8)

Here for every d ∈ N the singular values (σd,m)m∈N, as well as the eigenvectors

(φd,m)
v(Wd)
m=1 , are constructed out of Wd = Sd

†Sd as explained above.

Proof. Recall that ∆wor(A∗n,d;Sd) equals
∥∥Sd − A∗n,d L(Fd,Gd)

∥∥ for any fixed d ∈ N
and n ∈ N0. Without loss of generality we can assume n < v = v(Wd) since
otherwise A∗n,d = Sd due to (2.7). This would imply (2.8) because of σd,m = 0 for
all m > v.

Let M ∈ N with n+ 1 ≤M ≤ v and f ∈ B(Fd) be arbitrarily fixed. Then, due
to (2.6), the non-increasing ordering of (λm)vm=1 and Bessel’s inequality,∥∥∥∥∥

M∑
m=n+1

〈f, φd,m〉Fd Sdφd,m Gd

∥∥∥∥∥
2

=
M∑

m=n+1

〈f, φd,m〉2Fd λd,m ≤ λd,n+1

v∑
m=1

〈f, φd,m〉2Fd

≤ λd,n+1 ‖f Fd‖2 ≤ σ2
d,n+1.

In particular, the choice f = φd,n+1 shows that the latter estimates are sharp.
Anyway, we obtain

∥∥Sd − A∗n,d L(Fd,Gd)
∥∥ ≤ σd,n+1 which proves

ewor(n, d;Sd) ≤ ∆wor(A∗n,d;Sd) ≤ σd,n+1.

To show the converse, i.e. ewor(n, d;Sd) ≥ σd,n+1 for n ∈ N0 and d ∈ N, we
use Parseval’s identity on V = span {φd,m m ≤ n+ 1} ⊂ Fd together with the
linearity of Sd to obtain

‖Sdf Gd‖2 =
n+1∑
m=1

〈f, φd,m〉2Fd λd,m ≥ λd,n+1

n+1∑
m=1

〈f, φd,m〉2Fd = σ2
d,n+1 ‖f Fd‖2

for all f ∈ V . The claim now follows from the application of Proposition 2.2 with
a = σd,n+1. Moreover, Proposition 2.2 also shows that we cannot reduce the error

by taking algorithms An,d ∈ (An,cont
d ∪A

n,adapt
d ) \An,lin

d . �

Note that (2.8) together with Proposition 2.4 particularly implies that for d ∈ N
the initial worst case error of Sd is given by

εinit,wor
d = ‖Sd L(Fd,Gd)‖ = σd,1 =

√
λd,1.
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2.3 General Hilbert space problems

2.3.3 Polynomial tractability

As an immediate consequence of (2.8) we can calculate the information complexity
of Hilbert space problems in the worst case setting (with respect to the class
A
n,lin
d (Λall)) for every d ∈ N and ε > 0 by

nwor
abs (ε, d) = min {n ∈ N0 σd,n+1 ≤ ε} = #

{
n ∈ N λd,n > ε2

}
(2.9)

for the absolute and by

nwor
norm(ε, d) = #

{
n ∈ N λd,n/λd,1 > ε2

}
, (2.10)

for the normalized error criterion, respectively. This observation leads to the
following refinement of Theorem 5.1 in Novak and Woźniakowski [NW08] which
also can be found in [Wei11]. It gives necessary and sufficient conditions for
(strong) polynomial tractability in terms of summability properties of the sequences
(λd,m)m∈N.

Theorem 2.8. Assume S to be a problem as in Corollary 2.7 and consider the
absolute error criterion in the worst case setting.

• If S is polynomially tractable with the constants C, p > 0 and q ≥ 0 then for
all τ > p/2 we have

Cτ = sup
d∈N

1

dr

 ∞∑
i=f(d)

λτd,i

1/τ

<∞, (2.11)

where r = 2q/p and f : N → N with f(d) = d(1 + C) dqe. In this case
Cτ ≤ C2/p · ζ(2τ/p)1/τ .

• If (2.11) is satisfied for some parameters r ≥ 0, τ > 0 and a function

f : N → N such that f(d) =
⌈
C
(
min

{
εinit
d , 1

})−p
dq
⌉
, where C > 0 and

p, q ≥ 0, then the problem S is polynomially tractable. In detail, we have the
bound nwor

abs (ε, d) ≤ (C +Cτ
τ ) ε−max{p,2τ} dmax{q,rτ} for any ε ∈ (0, 1] and every

d ∈ N.

Proof. If the problem is polynomially tractable then there exist constants C, p > 0
and q ≥ 0 such that for all d ∈ N and ε ∈ (0, 1]

n(ε, d) = nwor
abs (ε, d) ≤ C · ε−p · dq.

Formula (2.9) and the non-increasing ordering of (λd,i)i∈N therefore imply

λd,bCε−pdqc+1 ≤ λd,n(ε,d)+1 ≤ ε2, ε ∈ (0, 1].

If we set i = bC ε−p dqc+ 1 and vary ε ∈ (0, 1] then i takes the values bC dqc+ 1,
bC dqc + 2, and so forth. On the other hand, we have i ≤ Cε−pdq + 1 which is
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2 Properties and tools for special problem classes

equivalent to ε2 ≤ (Cdq/(i − 1))2/p if i ≥ 2. For all i ≥ f(d) = d(1 + C) dqe we
indeed have i ≥ 2 and, consequently,

λd,i ≤ λd,n(ε,d)+1 ≤ ε2 ≤
(
Cdq

i− 1

)2/p

.

Choosing τ > p/2 > 0 we conclude

∞∑
i=f(d)

λτd,i ≤
∞∑

i=f(d)

(
Cdq

i− 1

)2τ/p

= (Cdq)2τ/p

∞∑
i=f(d)−1

1

i2τ/p
≤
(
C2/pd2q/p

)τ · ζ (2τ

p

)
.

for every d ∈ N. In other words, we have shown (2.11) with r = 2q/p, as well as
the estimate on Cτ .

Conversely, assume now that for some r ≥ 0 and τ > 0 estimate (2.11) holds
true with

f(d) =
⌈
C
(
min

{
εinit
d , 1

})−p
dq
⌉
, where C > 0 and p, q ≥ 0.

That is, we assume 0 < Cτ < ∞. For n ≥ f(d) the ordering of (λd,i)i∈N implies∑n
i=f(d) λ

τ
d,i ≥ λτd,n · (n− f(d) + 1). Hence, for every d ∈ N and n ≥ f(d)

λd,n · (n− f(d) + 1)1/τ ≤

 n∑
i=f(d)

λτd,i

1/τ

≤

 ∞∑
i=f(d)

λτd,i

1/τ

≤ Cτ d
r,

or, respectively, λd,n+1 ≤ Cτ d
r · ((n+ 1)− f(d) + 1)−1/τ , for all n ≥ f(d)− 1. Note

that for ε ∈ (0,min
{
εinit
d , 1

}
] we have Cτ d

r · ((n+ 1)− f(d) + 1)−1/τ ≤ ε2 if and
only if

n ≥ n∗ =

⌈(
Cτ d

r

ε2

)τ⌉
+ f(d)− 2.

In particular, it is λd,n+1 ≤ ε2 at least for n ≥ max {n∗, f(d)− 1}. In other words,
for every d ∈ N and all ε ∈ (0,min

{
εinit
d , 1

}
] it is

nwor
abs (ε, d) ≤ max {n∗, f(d)− 1} ≤ f(d)− 1 +

(
Cτ d

r

ε2

)τ
≤ C

(
min

{
εinit
d , 1

})−p
dq + Cτ

τ ε
−2τ drτ

≤ (C + Cτ
τ ) ε−max{p,2τ} dmax{q,rτ}.

Thus, the problem is polynomially tractable since nwor
abs (ε, d) = 0 for ε ≥ εinit

d . �

Let us add some comments on this result. Theorem 2.8 clearly provides a
characterization for (strong) polynomial tractability. In comparison to Theorem 5.1
in [NW08] our result yields the essential advantage that the given estimates
incorporate the initial error εinit

d . Hence if εinit
d is sufficiently small then we can
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conclude polynomial tractability while ignoring a larger set of eigenvalues in the
summation (2.11).

Observe that the first statement does not cover any assertion about the initial
error itself, since f(d) ≥ 2. Thus it might happen that we have (strong) polynomial
tractability w.r.t. the absolute error criterion, though the largest eigenvalue λd,1 =
(εinit
d )2 tends faster to infinity than any polynomial. To give an example, for d ∈ N

we consider the sequences (λd,m)m∈N defined by

λd,1 = e2d and λd,m =
1

m
for m ≥ 2.

Here, obviously, the initial error grows exponentially fast to infinity, but never-
theless the second point of Theorem 2.8 shows that S is strongly polynomially
tractable since (2.11) holds with r = p = q = 0, and C = τ = 2.

Next we present an analogue of Theorem 2.8 for the normalized error criterion.
Again a slightly modified statement can be found in [NW08, Theorem 5.2].

Theorem 2.9. Assume S to be a problem as in Corollary 2.7 and consider the
normalized error criterion in the worst case setting.

• If S is polynomially tractable with the constants C, p > 0 and q ≥ 0 then for
all τ > p/2 we have

Cτ = sup
d∈N

1

dr

 ∞∑
i=f(d)

(
λd,i
λd,1

)τ1/τ

<∞, (2.12)

where r = 2q/p and f : N → N with f(d) ≡ 1. In this case the bound
Cτ ≤ 21/τ (1 + C)2/p ζ(2τ/p)1/τ holds for any such τ .

• If (2.11) is satisfied for some parameters r ≥ 0, τ > 0 and a function f : N→ N
such that f(d) = dC dqe, where C > 0 and q ≥ 0, then the problem S is
polynomially tractable. If so, then nwor

norm(ε, d) ≤ (C + Cτ
τ ) ε−2τ dmax{q,rτ} for

any ε ∈ (0, 1] and every d ∈ N.

Proof. Due to the strong relation between the absolute and the normalized error
criterion, i.e. nwor

norm(ε, d) = nwor
abs (ε ·

√
λd,1, d) for ε ∈ (0, 1] and d ∈ N, we note

that Theorem 2.9 can be shown using essentially the same arguments an in the
proof for Theorem 2.8. Indeed, if we replace λd,i by λd,i/λd,1 for i ∈ N we obtain a
scaled problem T with initial error εinit

d = 1. Now the information complexity of T
(w.r.t. the absolute error criterion) equals the information complexity of S w.r.t.
normalized errors.13 Following the lines of the proof of Theorem 2.8 this shows the

13For details we refer to the proof of Theorem 2.12.
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second point of Theorem 2.9, where we set p = 0. Moreover, we conclude for any
τ > p/2 and d ∈ N

∞∑
i=d(1+C)dqe

(
λd,i
λd,1

)τ
≤
(
C2/pd2q/p

)τ
ζ

(
2τ

p

)
≤ (1 + C)2τ/p ζ

(
2τ

p

)
dq·2τ/p,

provided that S is polynomially tractable with the constants C, p > 0 and q ≥ 0.
Furthermore, for any d ∈ N we have

d(1+C)dqe−1∑
i=1

(
λd,i
λd,1

)τ
≤ d(1 + C)dqe − 1 ≤ (1 + C) dq ≤ (1 + C)2τ/p ζ

(
2τ

p

)
dq·2τ/p

since λd,i ≤ λd,1, 2τ/p > 1 and ζ(2τ/p) > 1. Consequently, setting r = 2q/p and
combining both the previous estimates leads to

1

dr

(
∞∑
i=1

(
λd,i
λd,1

)τ)1/τ

≤ 21/τ (1 + C)2/p ζ

(
2τ

p

)1/τ

for d ∈ N

which shows (2.12), as well as the claimed bound on Cτ . �

Obviously Theorem 2.9 again provides a characterization of (strong) polynomi-
ally tractability of a given compact Hilbert space problem S = (Sd)d∈N in terms of
summability properties of the eigenvalue sequence (λd,i)i∈N of Wd = Sd

†Sd.

2.4 Tensor product problems

In the former section we investigated tractability properties of compact Hilbert
space problems S = (Sd)d∈N without assuming any relation between subsequent
problem operators Sd. Next we want to consider problems S where every Sd is
generated out of one single (univariate) operator S1 via a d-fold tensor product
construction.

2.4.1 Definition and simple properties

We need to recall the concept of tensor product Hilbert spaces first. To this end,
we use the approach given in Chapter 2.6 of Kadison and Ringrose [KR83]. For a
comprehensive introduction to more general tensor products in functional analysis
we refer to the first chapter of Light and Cheney [LC85] and to Section 1.3 in
Hansen [Han10].

Without going too much into details, we note that given a finite number of
arbitrary Hilbert spaces H(k) with inner products 〈·, ·〉H(k) , k = 1, . . . , d, the tensor
product space

Hd =
d⊗

k=1

H(k) = H(1) ⊗ . . .⊗H(d)
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2.4 Tensor product problems

can be identified14 with the closure of the algebraic tensor product Hd,0, with
respect to a (reasonable cross) norm which is induced by a certain inner product
〈·, ·〉Hd,0 . Keep in mind that the algebraic tensor product is defined as the quotient
of the free vector space, i.e. the set of all finite linear combinations of formal objects
f =

⊗d
k=1 fk with fk ∈ H(k), which we call simple (or pure) tensors, by a suitable

linear subspace.15 Moreover, the mentioned inner product on the algebraic tensor
product Hd,0 is defined by〈

d⊗
k=1

fk,

d⊗
k=1

gk

〉
Hd,0

=
d∏

k=1

〈fk, gk〉H(k) for fk, gk ∈ H(k).

By means of continuous (multi-) linear extension this functional uniquely determines
the inner product 〈·, ·〉Hd on Hd. As usual we denote the corresponding norm
by ‖· Hd‖.

Due to the tensor product structure, many useful properties such as completeness
and separability of the underlying spacesH(k) are transferred directly toHd provided
that all the H(k) share them. In particular, it is well-known how to construct an
orthonormal basis of the tensor product space given an ONB

E(k) =
{
e

(k)
i ∈ H(k) i ∈ I(k)

}
in each H(k), k = 1, . . . , d. Here every I(k) denotes a (possibly non-countable)
abstract index set. Then the set of all d-fold simple tensors given by

Ed =

{
ed,j =

d⊗
k=1

e
(k)
jk

j = (j1, . . . , jd) ∈ Id =
d×

k=1

I(k)

}

builds the desired ONB in Hd; see [KR83, Theorem 2.6.4].
For the applications we have in mind we will focus our attention on the special

case where all the building blocks H(k), k = 1, . . . , d, of Hd coincide. In what follows
we therefore assume that H(k) ≡ H1 for some Hilbert space H1. The respective
ONB of H1 will be denoted by E1 = {ei ∈ H1 i ∈ I1}. Then the latter formula
for Ed simplifies to

Ed =

{
ed,j =

d⊗
k=1

ejk j = (j1, . . . , jd) ∈ Id = (I1)d

}
. (2.13)

We are ready to introduce the tensor product problem operators Sd, d ≥ 1,
we are interested in. Thus let S1 : F1 → G1 be a compact linear operator between
arbitrary Hilbert spaces F1 and G1. For d ≥ 2 we assume Fd = Hd to be the

14Note that this association is unique up to some isometric isomorphism.
15To abbreviate the notation we do not distinguish between simple tensors and their equivalence

classes in what follows.
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2 Properties and tools for special problem classes

d-fold tensor product space of H(k) = H1 = F1, k = 1, . . . , d, as explained above.
Analogously, we construct the space Gd =

⊗d
k=1 G1 out of d copies of G1. Now

Proposition 2.6.12 of [KR83] yields that there exists a uniquely defined linear
operator Sd =

⊗d
k=1 S1 : Fd → Gd such that

Sd

(
d⊗

k=1

fk

)
=

d⊗
k=1

S1fk, fk ∈ F1,

and we have ‖Sd L(Fd,Gd)‖ = ‖S1 L(F1,G1)‖d < ∞ for any fixed d ∈ N. In

detail, we define the bounded linear operator S̃d : Ed → Gd such that for all j ∈ Id
we have S̃d(ed,j) = S̃d(

⊗d
k=1 ejk) =

⊗d
k=1 S1(ejk) ∈ Gd. Then Sd is assumed to

be the uniquely defined linear, continuous extension of S̃d from Ed to Fd. Due
to the compactness of S1 it is easy to check that the problem operator Sd is not
only bounded but even compact. Moreover, a linear extension argument shows
that the adjoint operator Sd

† is given by the d-fold tensor product of S1
†, i.e.

Sd
† =

⊗d
k=1

(
S1
†), and hence

Wd = Sd
†Sd =

(
d⊗

k=1

(
S1
†))( d⊗

k=1

S1

)
=

d⊗
k=1

(
S1
†S1

)
=

d⊗
k=1

W1; (2.14)

cf. [KR83, p. 146].

2.4.2 Eigenpairs and the optimal algorithm

From Section 2.3 we know that for d ∈ N the optimal algorithm, as well as the
(information) complexity, crucially depends on the singular value decomposition
of Sd. Hence, we have to calculate the eigenpairs (λd,i, φd,i) of the tensor product
operator Wd obtained in (2.14). We follow the arguments presented in [NW08,
Section 5.2] and claim that these eigenpairs are given by (tensor) products of the
non-trivial eigenpairs (λm, φm), m ∈ M1 = {m ∈ N m < v(W1) + 1}, of the
univariate operator W1 = S1

†S1; see (2.5). This is the subject of the following
assertion.

Proposition 2.10. For d ∈ N the non-trivial eigenpairs of the operator Wd = Sd
†Sd

are given by
{(
λ̃d,m, φ̃d,m

)
m = (m1, . . . ,md) ∈Md = (M1)d

}
, where

λ̃d,m =
d∏

k=1

λmk and φ̃d,m =
d⊗

k=1

φmk . (2.15)

Proof. Obviously, all the φ̃d,m’s are mutually orthonormal in Fd, i.e.〈
φ̃d,i, φ̃d,j

〉
Fd

=
d∏

k=1

〈φik , φjk〉F1
=

d∏
k=1

δik,jk = δi,j , i, j ∈Md.
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2.4 Tensor product problems

Furthermore,

Wdφ̃d,m =

(
d⊗

k=1

W1

)(
d⊗

k=1

φmk

)
=

d⊗
k=1

(W1φmk)

=
d⊗

k=1

(λmk · φmk) =
d∏

k=1

λmk ·
d⊗

k=1

φmk = λ̃d,m · φ̃d,m

shows that φ̃d,m, m ∈Md, is indeed an eigenelement with respect to the strictly

positive eigenvalue λ̃d,m of Wd.
Assume for a moment there exists an eigenpair (µ, η) of Wd with µ 6= 0

which cannot be represented by (2.15). Then, due to the assertions in the former

section, η is orthogonal to every other eigenelement φ̃d,m, m ∈ Md. Remember
that Φ1 = {φm ∈ F1 m ∈ M1} can be extended to an orthonormal basis
E1 = {em m ∈ I1} of F1 (see Remark 2.6) which can be used to construct an ONB
Ed = {ed,j j ∈ Id = (I1)d} of Fd given by (2.13). Therefore η can be represented
as

η =
∑
j∈Id

〈η, ed,j〉Fd ed,j =
∑
j∈Md

〈
η, φ̃d,j

〉
Fd

φ̃d,j +
∑

j∈Id\Md

〈η, ed,j〉Fd ed,j

=
∑

j∈Id\Md

〈η, ed,j〉Fd ed,j ,

where each of these sums consists of at most countably many non-vanishing
summands and converges unconditionally. Now the boundedness of Sd implies

Sdη =
∑

j∈Id\Md

〈η, ed,j〉Fd Sded,j = 0,

since each of the tensor products Sded,j =
⊗d

k=1(S1ejk), j ∈ Id \Md, includes at
least one factor S1ejk with jk /∈ M1. These factors need to vanish because the
set {S1em = S1φm m ∈ M1} builds an ONB of the image of S1 in G1. Hence,
Wdη = Sd

†(Sdη) = 0 which contradicts our assumption. In other words, (2.15)
completely describes the eigenpairs of Wd as claimed. �

Again the latter proof justifies the restriction to separable spaces F1 (and hence
also Fd) in what follows, see Remark 2.6. Thus we can assume that the set of
univariate eigenelements Φ1 already builds an ONB in F1, i.e. that Φ1 = E1, and
consequently Φd = {φ̃d,m m ∈Md} builds an ONB in Fd.

To unify our notation we rearrange the obtained eigenpairs according to a
non-increasing ordering of the eigenvalues. To this end, note that #Md = (#M1)d,
i.e. we have v(Wd) = v(W1)d strictly positive eigenvalues in dimension d. Therefore
we define a sequence of bijections ψ = ψd : {i ∈ N i < v(W1)

d + 1} → Md such
that

λd,i = λ̃d,ψ(i) ≥ λ̃d,ψ(i+1) for all 1 ≤ i < v(W1)d + 1.
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2 Properties and tools for special problem classes

Consequently the corresponding eigenelements are denoted by φd,i = φ̃d,ψ(i). Similar
to the definitions in Section 2.3.1 we extend the (possibly finite) sequence of
eigenvalues by λd,i = 0 for i > v(W1)

d. Observe that the largest eigenvalue in
dimension d is given by

λd,1 = λd1

and thus the initial error is εinit
d = λ

d/2
1 .

Proposition 2.10 in hand, the optimal algorithm A∗n,d for linear tensor product
problems S = (Sd)d∈N is stated in Corollary 2.7. For d ∈ N and n ∈ N0 it reads

A∗n,d : Fd → Gd, f 7→ A∗n,d(f) =

min{n,v(Wd)}∑
i=1

〈f, φd,i〉Fd · Sdφd,i, (2.16)

and its worst case error can be expressed in terms of the sequence λ = (λm)m∈N.
More precisely, we have ewor(n, d;Sd) = ∆wor(A∗n,d;Sd) =

√
λd,n+1.

We are ready to characterize tractability of such problems in the next subsection.

2.4.3 Complexity

We begin by analyzing the information complexity with respect to the absolute
error criterion. Let S1 : F1 → G1 denote a compact linear operator between arbitrary
Hilbert spaces F1 and G1 and let S = (Sd)d∈N be the sequence of d-fold tensor
product problems defined in Section 2.4.1. As before the non-increasing sequence
of non-negative eigenvalues of the univariate operator W1 = S1

†S1 is denoted
by λ = (λm)m∈N. At this point we stress that it is reasonable to assume that
λ2 > 0. Otherwise for every d ∈ N there would be only at most one non-vanishing
d-dimensional eigenvalue of Wd = Sd

†Sd. Hence the problem Sd would be trivial
since then nwor

abs (ε, d) ≤ 1 for all ε > 0. Note that λ2 > 0 also implies λ1 > 0 such
that S1 and Sd are not the zero operator.

We proceed by presenting an assertion which is mainly based on Theorem 5.5
in Novak and Woźniakowski [NW08]. The sufficient condition for weak tractability
later was given by Papageorgiou and Petras [PP09]. Although the results of these
authors only refer to linear tensor product problems defined between Hilbert
function spaces they remain valid even in our more general setting.

Theorem 2.11. Consider the problem S = (Sd)d∈N as described before. We study
the absolute error criterion in the worst case setting.

• Let λ1 > 1. Then S suffers from the curse of dimensionality.

• Let λ1 = 1. Then

– S is polynomially intractable. In particular, if λ2 = 1 then S suffers
from the curse of dimensionality.
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2.4 Tensor product problems

– S is weakly tractable if and only if λ2 < 1 and λn ∈ o(ln−2 n), as
n→∞.16

• Let λ1 < 1. Then

– S never suffers from the curse.

– S is weakly tractable if and only if λn ∈ o(ln−2 n), as n→∞.

– S is polynomially tractable if and only if it is strongly polynomially
tractable. Moreover, this holds if and only if there exists some τ ∈ (0,∞)
such that λ ∈ `τ and the exponent of strong polynomial tractability is
given by

p∗ = inf

{
2τ

∞∑
m=1

λτm ≤ 1

}
.

For the sake of completeness we mention that Theorem 5.5 in [NW08] includes
some additional lower bounds on the information complexity in the case λ1 ≥ 1.
For polynomial (in)tractability the main idea of the proof is to apply Theorem 2.8
and to use the product structure of the involved sequences (λd,i)i∈N which are
essentially given by Proposition 2.10. We will not provide an explicit proof here.
Instead the interested reader is referred to Example 3.9 in Chapter 3 where we
conclude all assertions stated in Theorem 2.11 out of a generalized result for scaled
tensor product problems. To conclude these more general assertions we will exactly
follow the mentioned proof sketch.

Many authors in IBC use phrases like “(unweighted) tensor product problems are
intractable”. In this regard they refer to the following Theorem for the normalized
error criterion which is essentially based on Theorem 5.6 of [NW08], as well as
on [PP09]. From our point of view it is not more than a simple consequence of the
assertions for absolute errors.

Theorem 2.12. Consider the problem S = (Sd)d∈N as described above. We study
the normalized error criterion in the worst case setting.

• Let λ1 = λ2. Then S suffers from the curse of dimensionality.

• Let λ1 > λ2. Then

– S is weakly tractable if and only if λn ∈ o(ln−2 n), as n→∞.

– S is polynomially intractable.

Since the subsequent proof technique is typical in this field of research, we
include the proof of Theorem 2.12 in full detail.

16To avoid possible confusions, here and in what follows, lnα n means [ln(n)]α where α ∈ R.
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2 Properties and tools for special problem classes

Proof. Assume we had already proven Theorem 2.11. Given the problem S =
(Sd)d∈N, constructed out of S1 : F1 → G1, as well as the associated sequence
(λm)m∈N, we define a new operator T1 : F1 → G1 by f 7→ T1f = 1/

√
λ1 · S1f .

Clearly, T1 is a linear and compact mapping between Hilbert spaces and

〈T1f, g〉G1
=

1√
λ1

〈S1f, g〉G1
=

1√
λ1

〈
f, S1

†g
〉
F1

=

〈
f,

(
1√
λ1

S1
†
)
g

〉
F1

for f ∈ F1 and g ∈ G1. Hence, T1
† = 1/

√
λ1 · S1

† and the (extended) eigenvalue
sequence of V1 = W1(T ) = T1

†T1 = 1/λ1 · S1
†S1 = 1/λ1 · W1(S) is given by

µ = (µm)m∈N, where µm = λm/λ1 for m ∈ N. For details, see also the arguments
used in Section 3.1. Anyway, the mapping T1 in hand, we can construct the tensor
product problem T = (Td)d∈N by the usual procedure. Now (2.15) in Proposition 2.10
shows that the corresponding eigenvalues of Vd = Wd(T ) = Td

†Td are given by

µ̃d,m =
d∏

k=1

µmk =
1

λd1

d∏
k=1

µmk =
1

λd,1
λ̃d,m, m = (m1, . . . ,md) ∈Md,

such that µd,i = 1/λd,1 · λd,i for i ∈ N. This yields that the information complexity
of S w.r.t. the normalized error criterion coincides with the absolute information
complexity of the (scaled) problem T , i.e.

nnorm(ε′, d;Sd) = #{n ∈ N0 λd,n/λd,1 > (ε′)2} = #{n ∈ N0 µd,n > (ε′)2}
= nabs(ε

′, d;Td)

for all ε′ ∈ (0, 1] and each d ∈ N. Since µ1 = 1 ≥ µ2 > 0 we are allowed to apply
Theorem 2.11 for T . Finally the observations that µ2 = 1 if and only if λ1 = λ2, as
well as that µn ∈ o(ln−2 n) (as n→∞) if and only if λ = (λn)n∈N belongs to this
class, complete the proof. �

2.5 Reproducing kernel Hilbert spaces

When we deal with problems defined on Hilbert function spaces H a special
kind of Hilbert spaces is of particular interest. The reason is that in practice
often only function evaluations rather than information obtained by arbitrary
linear functionals are permitted. In order to compare the power of these classes of
information operations (Λstd vs. Λall) from a theoretical point of view, it seems to
be useful to investigate conditions which ensure that point evaluation functionals

Ly : H → R, f 7→ Ly(f) = f(y),

for all y in the domain of definition Ω of f ∈ H, belong to the class Λall. Clearly Ly is
always linear such that it is enough to ask whether it is also continuous (or bounded,
respectively) in f . It turns out that, as long as we restrict ourselves to Hilbert
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spaces, this property can be characterized by the existence of a so-called reproducing
kernel K. If so, then the space H is referred to as a reproducing kernel Hilbert
space (RKHS for short) and we write H = H(K). In the present section we collect
some basic properties of this concept which we will need later on in Section 4.1.2.
The presentation given here is based on the famous paper of Aronszajn [Aro50], as
well as the textbook of Wahba [Wah90].17 Standard examples for RKHSs such as
Korobov spaces and Sobolev spaces of dominating mixed smoothness can be found
in [NW08, Appendix A].

2.5.1 Definition and properties

A (real) Hilbert space H of functions f : Ω → R, equipped with inner product
〈·, ·〉H , is said to be a reproducing kernel Hilbert space if there exists a function

K : Ω× Ω→ R

such that

• for all fixed y ∈ Ω the function Ky = K(·, y) belongs to H, and

• for every f ∈ H and all y ∈ Ω it is

Ly(f) = f(y) = 〈f,Ky〉H = 〈f,K(·, y)〉H . (2.17)

The second point (2.17) is known as the reproducing property. Together with the
first point it obviously implies the boundedness of point evaluations on H = H(K).
The converse, i.e. the existence (and uniqueness) of the reproducing kernel K, is a
simple consequence of the Riesz representation theorem; see [Tri92, p. 90] or [Yos80,
III.6]. Unfortunately the proof of this theorem is non-constructive and therefore it
does not provide an explicit method to find the representer Ky = K(·, y) of Ly. In
fact, given a specific RKHS H(K) it seems to be a challenging problem to deduce
a closed form of its reproducing kernel K. However, as long as we restrict ourselves
to separable RKHSs, it is easy to prove that K is given by

K(x, y) =
∑
m∈I

em(x) em(y), x, y ∈ Ω, (2.18)

where {em : Ω → R m ∈ I} denotes an arbitrary orthonormal basis of H(K).
Furthermore we know that every reproducing kernel K is positive definite. That is,
for all n ∈ N and any sequence x = (xm)nm=1 ∈ Ωn the quadratic form

QK;x(ξ1, . . . , ξn) =
n∑

i,j=1

K(xi, xj) ξi ξj, ξ = (ξm)nm=1 ∈ Rn, (2.19)

17For the ease of notation (and in contrast to the mentioned references) we restrict ourselves to
spaces over R. Once more the theory can be transferred almost literally to C.

29
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is a non-negative function of ξ. In particular,

K(x, x) ≥ 0 and K(x, y) = K(y, x) for all x, y ∈ Ω.

Conversely, Moore showed that every positive definite function K in the above sense
uniquely determines a RKHS H admitting K as its reproducing kernel; see [Aro50].
Again it turned out to be a hard problem to conclude a suitable representation
of H (and its inner product) for a given function K.

Besides further fascinating properties, we want to focus our attention on
products of kernel functions. To this end, for d ∈ N let K(k), k = 1, . . . , d, denote a
finite number of reproducing kernels defined on the sets Ω(k) × Ω(k), respectively.
Then we may consider the tensor product

Kd =
d⊗

k=1

K(k) :

(
d×

k=1

Ω(k)

)
×

(
d×

k=1

Ω(k)

)
→ R, Kd(x,y) =

d∏
k=1

K(k)(xk, yk),

where we set x = (x1, . . . , xd) and y = (y1, . . . , yd) with xk, yk ∈ Ω(k). On the other
hand, each kernel K(k) induces a uniquely defined RKHS H(K(k)) which in turn
implies the existence of one (and only one) tensor product spaceHd =

⊗d
k=1 H(K(k))

using the arguments presented in Section 2.4. Now it can be checked that Hd itself
is a RKHS and its kernel is given by Kd, i.e.

Hd = H(Kd) =
d⊗

k=1

H(K(k)). (2.20)

The proof of this assertion can be obtained inductively by adding one factor in
every step. Then it remains to show that the resulting quadratic forms (2.19) are
non-negative again which can be done using a classical result due to Schur.

Note that the whole theory works for arbitrary point sets Ω which turned out
to be useful in the context of so-called support vector machines which are instances
of the more general class of kernel methods. However, in IBC special choices
such as Ω = Ω1 = [0, 1] (or Ω = R) are of particular interest. For multivariate
problems the standard choice is Ω = Ωd = Ωd

1 which perfectly fits to the tensor
product construction explained before. In this respect the univariate kernels K(k),
k = 1, . . . , d, are often taken as weighted instances K

γd,k
1 of some underlying

kernel K1. A prominent example is given by K
γd,k
1 (x, y) = 1 + γd,k min {x, y} which

leads to an anchored Sobolev space H̃
γ
d related to the Wiener sheet measure;

see, e.g., [KWW08, Section 8] or [Wei12b]. Another example of this type will be
discussed in detail within Section 4.1.2.

Finally we mention that the concept of RKHSs was generalized recently to
the class of so-called reproducing kernel Banach spaces (RKBSs). For a brief
introduction to this topic we refer to Zhang and Zhang [ZZ13].
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2.5.2 Examples: Integration and approximation problems

Let us conclude the presentation with some examples which show that the knowledge
about the existence of a reproducing kernel can be exploited to obtain complexity
assertions for the classical problems of integration and approximation.

Example 2.13 (Worst case error of QMC rules). For d ∈ N suppose H(Kd) to be
a RKHS of real-valued functions f defined on some Borel measurable subset Ωd

of Rd. Consider the solution operator of the integration problem

Int%dd : B(H(Kd))→ R, f 7→ Int%dd f =

∫
Ωd

f(x) %d(x) dλd(x),

where %d denotes a probability density function on Ωd. Let us additionally assume
that the function

hd =

∫
Ωd

Kd(·,x) %d(x) dλd(x)

is well-defined and belongs to H(Kd). Then it is easy to see that hd is the representer
of the linear functional Int%dd , i.e. that Int%dd f = 〈f, hd〉H(Kd) <∞ for all f ∈ H(Kd).
Since allowing arbitrary linear functionals to approximate the value of the integral
would make the problem trivial we consider cubature rules of the form

An,df =
n∑
i=1

ai f
(
x(i)
)
, n ∈ N0,

defined by a priori chosen sample points x(i) ∈ Ωd and some weights ai ∈ R,
i = 1, . . . , n. Due to (2.17) also the linear operator An,d possesses a representer in
the space H(Kd). Consequently its worst case error can be computed exactly in
terms of the reproducing kernel and the parameters (ai)

n
i=1 and (x(i))ni=1:

∆wor(An,d; Int%dd : B(H(Kd))→ R)2

= sup
f∈B(H(Kd))

|(Int%dd − An,d) (f)|2 =

∥∥∥∥∥hd −
n∑
i=1

aiKd

(
·,x(i)

)
H(Kd)

∥∥∥∥∥
2

=

∫
Ω2
d

Kd(x,y) %d(x) %d(y) dλ2d(x,y)− 2
n∑
i=1

ai

∫
Ωd

Kd

(
x,x(i)

)
%d(x) dλd(x)

+
n∑

i,j=1

ai ajKd

(
x(i),x(j)

)
.

Choosing special weights ai (such as ai ≡ 1/n), as well as specific sample points x(i)

(e.g. from a so-called integration lattice), we end up with well-studied classes of
cubature rules which are known as quasi-Monte Carlo (QMC) methods and lattice
rules, respectively. The common feature of these integration schemes is that their
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complexity analysis is mainly based on the presented worst case error formula and
thus on the properties of the reproducing kernel Kd. Moreover, the latter expression
for ∆wor(An,d) plays an important role in discrepancy theory.

Various kinds of integration problems are studied in Novak and Woźniakowski
[NW10]. For the recent state of the art in discrepancy theory and QMC methods
we refer the reader to the monograph of Dick and Pillichshammer [DP10], as well
as to the survey article of Dick, Kuo and Sloan [DKS13] and the references therein.
An introduction to lattice rules can also be found in the textbook of Sloan and
Joe [SJ94]. �

Our second example shows the relation of reproducing kernels and the singular
values for certain approximation operators.

Example 2.14 (Weighted L2-approximation). For d ∈ N let H(Kd) be a separable
and infinite-dimensional RKHS which is compactly embedded into L%d2 (Ωd). Here
%d again denotes some probability density on Ωd ⊆ Rd. Then we may study the
approximation problem

App%dd : B(H(Kd))→ L%d2 (Ωd), f 7→ App%dd f = f, (2.21)

in the worst case setting. Since both source and target space are Hilbert spaces
we can use the theory developed in Section 2.3 to conclude complexity results
with respect to the class Λall. Therefore we need to analyze the eigenvalues of the
compact operator W %d

d = (App%dd )†App%dd . Using the reproducing property (2.17)
and the symmetry of Kd we conclude

(W %d
d f) (x) =

〈
(App%dd )†App%dd f,Kd(·,x)

〉
H(Kd)

= 〈App%dd f,App%dd Kd(·,x)〉L%d2 (Ωd)

=

∫
Ωd

f(y)Kd(x,y) %d(y) dλd(y)

for all f ∈ H(Kd) and any x ∈ Ωd. Hence, W %d
d takes the form of a weighted integral

operator against the kernelKd(·,y) and its non-trivial eigenpairs {(λd,%d,i, φd,%d,i) i ∈
Md} can be found by solving integral equations. Formula (2.18) yields that

Kd(x,x) =
∑
i∈Md

φd,%d,i(x)2 <∞

for every x ∈ Ωd because we know that {φd,%d,i i ∈Md} forms an ONB in H(Kd).
Since φd,%d,i ∈ L%d2 (Ωd) and ‖φd,%d,i L%d2 (Ωd)‖2 = λd,%d,i for all i ∈ Md, it easily
follows that

traceW %d
d =

∑
i∈Md

λd,%d,i =
∑
i∈Md

‖φd,%d,i L%d2 (Ωd)‖2 =

∫
Ωd

Kd(x,x) %d(x) dλd(x).

(2.22)
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2.5 Reproducing kernel Hilbert spaces

Note that this trace may be finite or infinite depending on the values of Kd on the
diagonal {(x,x) x ∈ Ωd}. It turns out that an infinite trace implies that there
is, in general, no (non-trivial) relation of the power of Λall and Λstd for the given
approximation problem. In contrast, it is known that for finite traces there exist
close relations of these classes of information operations. In particular, it is possible
to conclude bounds on the rate of convergence for Λstd out of corresponding bounds
for Λall. For details we refer to [NW12, Chapter 26].

Finally we note that the finite trace property of W %d
d immediately implies

λd,%d,i ∈ O(i−1), as i → ∞. Hence, if we deal with linear information then we
can conclude ewor(n, d; App%dd ) ∈ O(n−1/2), n→∞, directly out of an integrability
property of the kernel Kd. �

In the last example we present a useful relation of reproducing kernels and
average case approximation problems.

Example 2.15 (Average case approximation). For d ∈ N assume %d to be some
probability density function on Ωd = [0, 1]d and let Kd : Ωd × Ωd → R denote a
reproducing kernel such that the mapping x 7→ Kd(x,x) belongs to L%d1 (Ωd). That
is, suppose (2.22) to be finite. Furthermore, let Fd denote a separable Banach
space of real-valued functions on Ωd which is continuously embedded into L%d2 (Ωd)
and for which function evaluations are continuous. We equip Fd with a zero-mean
Gaussian measure µd such that its correlation operator Cµd : F∗d → Fd applied to
point evaluation functionals Lx can be expressed in terms of Kd:

Kd(x,y) = Lx(CµdLy) =

∫
Fd

f(x) f(y) dµd(f) for all x,y ∈ Ωd.

We stress the point that this is always possible for a suitable choice of Fd and
that our assumptions imply a continuous embedding of the RKHS H(Kd) (induced
by Kd) into Fd. Consequently also App%dd : H(Kd) → L%d2 (Ωd) is bounded, i.e.
continuous; see (2.21). For details and concrete examples the reader is referred to
[NW08, Appendix B], [NW10, Section 13.2], and [NW12, Section 24.1].

As in the previous example we want to look for good approximations An,df
to input functions f in the norm of L%d2 (Ωd). This time we measure the average
performance of the algorithm An,d with respect to µd, i.e. we try to minimize

∆avg (An,d; id%dd : Fd → L%d2 (Ωd)) =

(∫
Fd

‖f − An,df L%d2 (Ωd)‖2 dµd(f)

)1/2

.

Observe that νd = µd ◦ (id%dd )−1 defines a Gaussian measure on the subset id%dd (Fd)
of L%d2 (Ωd). Now it can be checked that the corresponding covariance operator
C%d
νd

: id%dd (Fd)→ L%d2 (Ωd) of the measure νd is given by

f 7→ (C%d
νd
f)(·) =

∫
Ωd

f(y)Kd(·,y) %d(y) dλd(y).
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This operator is self-adjoint, compact and has a finite trace due to the integrabil-
ity assumption on Kd. Consequently, there exists a countable set of non-trivial
eigenpairs (λd,%d,i, ηd,%d,i) where the eigenfunctions ηd,%d,i are mutually orthogo-
nal (and normalized) with respect to the L%d2 (Ωd)-norm; see also Hickernell and
Woźniakowski [HW00].

Once more it turns out that the optimal algorithm A∗n,d in this setting is given
by the orthogonal projection of the input function onto the subspace spanned by
the eigenfunctions ηd,%d,i which correspond to the n largest eigenvalues λd,%d,i. In
contrast to the worst case setting the nth minimal average case error is

eavg(n, d; id%dd : Fd → L%d2 (Ωd)) =

(
∞∑

i=n+1

λd,%d,i

)1/2

, n ∈ N0, d ∈ N,

if we assume a non-increasing ordering of the sequence (λd,%d,i)
∞
i=1.

18 Based on
the latter error formula it is possible to obtain characterizations of several types
of tractability similar to the assertions given in Section 2.4.3; see, e.g., [NW08,
Chapter 6].

We complete the discussion with the observation that the sets of (non-trivial)
eigenpairs (λd,%d,i, ηd,%d,i) of the operators C%d

νd
as defined above and W %d

d from
Example 2.14 coincide, since C%d

νd
only takes values in H(Kd). To be precise, we

note that Kd(x,y) = Kd(y,x) equals (App%dd Kd(·,x))(y) for each fixed x and
λd-almost every y ∈ Ωd. Hence the chain of equations

(C%d
νd
f)(x) =

∫
Ωd

f(y) (App%dd Kd(·,x))(y) %d(y) dλd(y) = 〈f,App%dd Kd(·,x)〉L%d2 (Ωd)

=
〈
(App%dd )†f,Kd(·,x)

〉
H(Kd)

=
(
(App%dd )†f

)
(x)

holds true for every f ∈ id%dd (Fd) ⊂ L%d2 (Ωd) and λd-almost all x ∈ Ωd.
19 Clearly

(App%dd )† maps into H(Kd) per definition. Thus, for every eigenfunction η ∈ id%dd (F)
of C%d

νd
, i.e.

λ η = C%d
νd
η = (App%dd )†η, λd-a.e. on Ωd, (2.23)

we can find a representer η ∈ H(Kd) with η = η in the sense of L%d2 (Ωd), such
that the equalities in (2.23) hold pointwise on the whole set Ωd and therefore also
in the norm of H(Kd). Now it is easy to check that (λ, η) indeed is an eigenpair
of W %d

d = (App%dd )†App%dd , normalized w.r.t. the L%d2 (Ωd)-norm. Conversely every
eigenpair (λ, η) of the operator W %d

d obviously fulfills λ η = C%d
νd
η interpreted

in L%d2 (Ωd).
In conclusion we see that the knowledge of these eigenpairs implies complexity

assertions for both approximation problems in the respective (quite different)
settings. �

18For the ease of notation we moreover assumed here that all the eigenvalues are strictly positive.
19Observe that C%dνd f ∈ L%d2 (Ωd), i.e. it is uniquely defined on Ωd up to a set of measure zero.
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CHAPTER 3

Problems on Hilbert spaces with scaled norms

The present chapter deals with a generalization of tensor product problems S =
(Sd)d∈N between Hilbert spaces in the sense of Section 2.4. We introduce additional
scaling factors sd to the norm of the source spaces Fd and analyze their influence
on the squared singular values λd,sd,i of the new problem operators Sd,sd . Using the
techniques from Section 2.4.2 we conclude optimal algorithms for these modified
problems at the end of Section 3.1. Afterwards, in Section 3.2, we investigate
tractability properties of this class of problems w.r.t. the worst case setting. Finally
we present some applications of the obtained results in Section 3.3.

3.1 Definitions, eigenpairs and the optimal algorithm

Let H1 and G1 be arbitrary Hilbert spaces with inner products 〈·, ·〉H1
and 〈·, ·〉G1

,
respectively. Further assume S1 ∈ K(H1,G1) to be a compact linear operator
between these spaces. Following the constructions given in Section 2.4.1 for any
d ∈ N there exist uniquely defined d-fold tensor product spaces of H1 and G1. Let
us denote these spaces by Hd = H1⊗ . . .⊗H1 and Gd = G1⊗ . . .⊗ G1, respectively.
Finally we define S = (Sd)d∈N to be the sequence of multivariate tensor product
operators constructed out of S1.

In contrast to Section 2.4 we now adapt the source spaces of our multivariate
problem by introducing an additional positive sequence of scaling factors s =
(sd)d∈N. That is, for every d ∈ N we define Fd to be Hilbert space Hd equipped
with the inner product

〈·, ·〉Fd =
1

sd
〈·, ·〉Hd , where sd > 0. (3.1)

Obviously Fd algebraically coincides with Hd whereas the norms (induced by the
respective inner products) are equivalent. Accordingly, the operators Sd are still
well-defined for any d ∈ N when we replace Hd by Fd. On the other hand the
approximability properties of S crucially depend on the used norms since we need
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3 Problems on Hilbert spaces with scaled norms

to consider the whole unit ball F̃d = B(Fd) when dealing with the worst case
setting. So let us denote the modified problem by S(s) = (Sd,sd : Fd → Gd)d∈N.

From Section 2.3 we know that for the nth optimal algorithms for S(s) we
need to study the eigenpairs of Wd,sd = Sd,sd

†Sd,sd . Although Sd,sd equals Sd (as a
mapping) we can not claim that Wd,sd = Wd since Sd,sd

† does not necessarily coincide
with Sd

†. Nevertheless, there exists a strong relation. The following proposition
extends Proposition 2.10 to the case of scaled problems in the mentioned sense.
Keep in mind that the eigenpairs of the univariate (unscaled) operator W1 = S1

†S1

are given by {(λm, em) m ∈ M1}, where M1 = {m ∈ N m < v(W1) + 1} and
0 < λm+1 ≤ λm for all m < v(W1).

Proposition 3.1. For d ∈ N the non-trivial eigenpairs of the operator Wd,sd =

Sd,sd
†Sd,sd are given by

{(
λ̃d,sd,m, φ̃d,sd,m

)
m ∈Md = (M1)d

}
, where

λ̃d,sd,m = sd λ̃d,m = sd

d∏
k=1

λmk and φ̃d,sd,m =
√
sd φ̃d,m =

√
sd

d⊗
k=1

φmk . (3.2)

Proof. Since Sd,sdf = Sdf for every f ∈ Fd (or Hd, respectively) we have

〈Sd,sdf, g〉Gd = 〈Sdf, g〉Gd =
〈
f, Sd

†g
〉
Hd

= sd ·
〈
f, Sd

†g
〉
Fd

=
〈
f,
(
sd · Sd†

)
g
〉
Fd

for all f ∈ Fd and g ∈ Gd. Thus, (2.4) and the uniqueness of the adjoint operator20

yield that Sd,sd
† = sd ·Sd† holds pointwise and, consequently, Wd,sd equals sd ·Wd as

a mapping. Hence, from Proposition 2.10 and the linearity of Wd we conclude that
(3.2) indeed are eigenpairs of Wd,sd . Due to the factor

√
sd and the relation (3.1)

the eigenelements φ̃d,sd,m are properly normalized in Fd.
It remains to show that there cannot exist eigenpairs other than (3.2). This

can be seen using arguments similar to them in the second part of the proof of
Proposition 2.10. To this end, note that due to (3.1) the inner product in Fd equals
zero if and only if the elements under consideration are orthogonal in Hd. �

Proposition 3.1 in hand, the rest of this section is straightforward. Namely,
we can use the bijections ψ = ψd from Section 2.4.2 to define the non-increasing
sequences (λd,sd,i)i∈N by

λd,sd,i =

{
λ̃d,sd,ψ(i), 1 ≤ i < v(W1)d + 1,

0, otherwise,

for every d ∈ N. The corresponding reordered eigenelements are denoted by φd,sd,i,
i < v(W1)d + 1. Moreover, we again use Corollary 2.7 to see that for any d ∈ N the
nth optimal algorithm for Sd,sd , n ∈ N0, is given by

A∗n,d,sd : Fd → Gd, f 7→ A∗n,d,sd(f) =

min{n,v(W1)d}∑
i=1

〈f, φd,sd,i〉Fd · Sd,sdφd,sd,i.

20Note that, clearly, Sd,sd is compact if and only if Sd is compact.
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3.2 Complexity

It realizes the nth minimal worst case error in dimension d which equals

ewor(n, d;Sd,sd) = ∆wor(A∗n,d,sd ;Sd,sd) =
√
λd,sd,n+1. (3.3)

In particular, the case n = 0, i.e. the initial error

εinit
d =

√
λd,sd,1 =

√
sd · λd1,

will play an important role in what follows.

3.2 Complexity

Similar to Section 2.4 we proceed with the analysis of the information complexity of
scaled tensor product problems S(s) = (Sd,sd)d∈N in the worst case setting. We first
take a look at necessary and sufficient conditions for (strong) polynomial tractability
with respect to absolute errors. Afterwards, in Section 3.2.2, we complete these
assertions and investigate respective conditions for weak tractability and the curse of
dimensionality. Finally we will see in Section 3.2.3 that the obtained improvements
due to scaling are completely ruled out when we turn to the normalized error
criterion.

As usual λ = (λm)m∈N denotes the (extended) sequence of squared singular
values of the underlying operator S1 : H1 → G1. To avoid triviality we assume
that λ2 > 0 throughout the rest of this section. The reason for this assumption is
explicitly stated in Section 2.4.3.

3.2.1 Polynomial tractability

The next statement is originally based on Theorem 3.1 of Woźniakowski [Woź94b]
which provided the underlying idea for [NW08, Theorem 5.5]. We extend the results
stated there to the case of scaled problems.

Theorem 3.2. Let S(s) = (Sd,sd)d∈N denote a scaled tensor product problem in
the sense of Section 3.1. Assume λ2 > 0 and consider the worst case setting w.r.t.
the absolute error criterion. Then the following assertions are equivalent:

(I) S(s) is strongly polynomially tractable.

(II) S(s) is polynomially tractable.

(III) There exists τ ∈ (0,∞) such that λ ∈ `τ and supd∈N sd ‖λ `τ‖d <∞.

(IV) There exists % ∈ (0,∞) such that λ ∈ `% and lim supd→∞ s
1/d
d < 1

λ1
.

If one of these (and hence all) conditions applies then the exponent of strong
polynomial tractability is given by

p∗ = inf{2τ τ fulfills condition (III)}.
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3 Problems on Hilbert spaces with scaled norms

Proof. Step 1. Since (I) clearly implies (II) we start by proving “(II) ⇒ (III)”.
Therefore let S(s) be polynomially tractable with the constants C, p > 0 and q ≥ 0.
Then Theorem 2.8 yields that for all % > p/2,

0 < C% = sup
d∈N

1

d2q/p

 ∞∑
i=d(1+C) dqe

(λd,sd,i)
%

1/%

<∞.

Because of λd,sd,i = sd λd,i for any d, i ∈ N due to (3.2), this particularly implies

that s1

(∑∞
m=d1+Ce λ

%
m

)1/%

≤ C% is finite and hence λ = (λm)m∈N ∈ `%. Moreover,

we have

∞∑
i=1

(λd,i)
% = ‖λ `%‖% d , as well as

d(1+C) dqe−1∑
i=1

(λd,i)
% ≤ λ% d1 (1 + C) dq,

and therefore

‖λ `%‖% d − λ% d1 (1 + C) dq ≤
(
C% d

2q/p

sd

)%
for all d ∈ N. (3.4)

Now let τ > % and assume that (III) is violated for this τ . Then supd∈N sd ‖λ `τ‖d
is infinite since λ ∈ `% and `% ↪→ `τ with ‖λ `τ‖ < ‖λ `%‖. That means, for any
C0 ∈ (0,∞) there necessarily exists a sequence (dk)k∈N ⊂ N such that for every
k ∈ N

C0 ≤ sdk ‖λ `τ‖dk = sdk ‖λ `%‖dk /(t%,τ )dk ,

where we set t%,τ = ‖λ `%‖ / ‖λ `τ‖ > 1. Hence, at least for all k larger than a

certain k0 ∈ N, we conclude that C0 ≤ sdk ‖λ `%‖dk /d2q/p
k . In particular, we can

choose C0 > C% such that 0 < C1 = C%/C0 < 1. Therefore (3.4) implies

‖λ `%‖% dk − λ% dk1 (1 + C) dqk ≤ C%
1 ‖λ `%‖% dk , k ≥ k0,

which leads to(
1 +

(
λ2

λ1

)%)dk
≤

(
∞∑
m=1

(
λm
λ1

)%)dk

=
‖λ `%‖% dk

λ% dk1

≤ C2 d
q
k

for all k ≥ k0 and some C2 = (1 +C)/(1−C%
1 ) > 0. Since λ2 > 0 and % > 0 this is

a contradiction and thus we have condition (III) for every τ > p/2. Note that this
also shows that

inf{2τ τ fulfills condition (III)} ≤ p∗.
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3.2 Complexity

Step 2. Next we show that (I) follows from (III). Let τ > 0 be given such
that (III) holds true and set p = q = r = 0, as well as C = 1. Then, with

f(d) =
⌈
C
(
min

{
sd λ

d
1, 1
})−p/2

dq
⌉

= 1, we have

Cτ = sup
d∈N

1

dr

 ∞∑
i=f(d)

(λd,sd,i)
τ

1/τ

= sup
d∈N

sd ‖λ `τ‖d <∞.

Once more we apply Theorem 2.8 to obtain

nwor
abs (ε, d;Sd,sd) ≤ (1 + Cτ

τ ) ε−2τ for all ε(0, 1] and every d ∈ N.

Thus S(s) is strongly polynomially tractable and

p∗ ≤ inf {2τ τ fulfills condition (III)} .

Step 3. The implication “(III) ⇒ (IV)” can be seen as follows. Assume (III)
to be valid for some 0 < τ < ∞ and set % = τ . Then, clearly, λ ∈ `%. If we now
assume (IV) to be violated then for any δ > 0 there needs to exist a sequence
(dk)k∈N ⊂ N such that for all k

s
1/dk
dk
≥ 1/(λ1 + δ).

Hence, sdk ‖λ `τ‖dk ≥ (‖λ `τ‖ /(λ1 + δ))dk tends to infinity (as k → ∞) if we
take δ small enough so that λ1 + δ < ‖λ `τ‖. Since τ ∈ (0,∞) and

λ1 < (λτ1 + λτ2)1/τ ≤ ‖λ `τ‖ <∞

there needs to be some ατ ∈ (0,∞) such that ‖λ `τ‖ = λ1 + ατ . Choosing e.g.
δ = ατ/2 gives the needed contradiction.

Step 4. Finally we have to show that conversely (IV) also implies (III). Therefore
assume that we have (IV) for some % ∈ (0,∞). Then there exist constants d0 ∈ N
and δ > 0 such that

s
1/d
d ≤ 1/(λ1 + δ) for all d ≥ d0.

Furthermore note that the function N(τ) = ‖λ `τ‖ is strictly decreasing and
continuous on the interval [%,∞] and that N(%) > λ1 = N(∞) because of the
ordering of λ = (λm)m∈N. Hence there necessarily exists some τ ∈ [%,∞) such that
N(τ) ≤ λ1 + δ/2, say. Thus, λ ∈ `τ and for every d ≥ d0 we obtain

sd ‖λ `τ‖d ≤
(
λ1 + δ/2

λ1 + δ

)d
≤ 1.

Since the term on the left is also finite for any d = 1, . . . , d0 this completes the
proof. �
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3 Problems on Hilbert spaces with scaled norms

Observe that Theorem 3.2 is not very surprising. Indeed, the second assertion
in condition (IV) is equivalent to the fact that the dth root of the initial error εinit

d

is asymptotically strictly less than 1. Hence if S1 : H1 → G1 (and thus also the
sequence λ) is given then we need to select scaling factors sd such that εinit

d → 0,
d → ∞, in order to obtain polynomial tractability. More advanced illustrations
will be given in Section 3.3.

3.2.2 Weak tractability and the curse

To formulate necessary and sufficient conditions for weak tractability w.r.t. the
worst case setting and the absolute error criterion we need some additional notation.
Therefore let S(s) = (Sd,sd)d∈N denote a scaled tensor product problem between
Hilbert spaces as explained in Section 3.1 and assume λ2 > 0. Then for fixed d ∈ N
and 0 < ε < εinit

d = s
1/2
d λ

d/2
1 formula (3.3) implies

n(ε, d) = min
{
n ∈ N0 λd,sd,n+1 ≤ ε2

}
= #

{
j ∈ Nd sd · λj1 · . . . · λjd > ε2

}
= #

{
j ∈ Nd λj1

λ1

· . . . · λjd
λ1

>

(
ε

εinit
d

)2
}
. (3.5)

By counting the number of indices equal to one we conclude that

n(ε, d) = 1 +
d∑

k=1

(
d

k

)
·#

{
j = (j1, . . . , jk) ∈ (N \ {1})k

k∏
l=1

λjl
λ1

>

(
ε

εinit
d

)2
}
.

Now we distinguish two cases. First assume that λ1 = λ2. Then, obviously, each
the sets in the latter equality contains at least one element. Otherwise, in the
case λ1 > λ2, some of these k-dimensional sets might be empty if k is larger than
some kd(ε). The reason is that λ1 > λ2 ≥ λm for m ≥ 2 implies that every factor in∏k

l=1 λjl/λ1 is strictly smaller than 1. In detail,
(
ε/εinit

d

)2 ≥ (λ2/λ1)k is equivalent
to

k > kd(ε) =

⌈
1

ln(λ1/λ2)
· ln
(
εinit
d /ε

)2
⌉
− 1.

Hence, denoting ad(ε) = min {d, kd(ε)} we have

n(ε, d) = 1 +

ad(ε)∑
k=1

(
d

k

)
·#

{
j ∈ (N \ {1})k

k∏
l=1

λjl
λ1

>

(
ε

εinit
d

)2
}

(3.6)

for d ∈ N and 0 < ε < εinit
d . If λ1 = λ2 then the same equality remains true when

we formally set kd(ε) =∞, i.e. ad(ε) = d. Moreover, for d ∈ N we have ad(ε) = 0 if

and only if ε ≥ (λ2/λ1)1/2 εinit
d . If so, then we obtain n(ε, d) = 1 as long as ε < εinit

d

and n(ε, d) = 0 otherwise.
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3.2 Complexity

Finally the following statement relates the decay properties of the univariate
sequence of the squared singular values λ with the growth behavior of the infor-
mation complexity n(ε, d) = nwor

abs (ε, d;Sd,sd). It generalizes an assertion given in
Novak and Woźniakowski [NW08, p. 178].

Lemma 3.3. Let S(s) and λ = (λm)m∈N be given as before. Then, for all β ≥ 1,

λn ∈ o
(
ln−2β n

)
, as n→∞, if and only if lnn(tβ, 1) ∈ o (1/t) , as t→ 0.

Proof. Assume β ≥ 1 to be fixed and let t ∈ (0, (s1λ2)
1/(2β)). Then (3.5) yields

that for d = 1

n = n(tβ, 1) = min
{
n ∈ N0 s1 · λn+1 ≤ t2β

}
≥ 2.

Thus we have s1 · λn(tβ ,1)+1 ≤ t2β < s1 · λn(tβ ,1) and ln2β n ≥ 1/4β · ln2β(n + 1).
Combining both these estimates we conclude

s1

4β
·

λn(tβ ,1)+1

ln−2β(n(tβ, 1) + 1)
≤
(

lnn(tβ, 1)

t−1

)2β

< s1 ·
λn(tβ ,1)

ln−2β n(tβ, 1)
.

Since the one-dimensional information complexity n(ε, 1) is an increasing function
in 1/ε taking the limit for t→ 0 proves the claim. �

Now we are well-prepared to present necessary conditions for weak tractability
based on the representation of the information complexity given in (3.6).

Proposition 3.4. Weak tractability of S(s) implies

lim
ε−1+d→∞

ln
∑ad(ε)

k=0

(
d
k

)
ε−1 + d

= 0 and lim
ε−1+d→∞

lnn
(
εinit

1 · ε/εinit
d , 1

)
ε−1 + d

= 0. (3.7)

If so, then λn ∈ o(ln−2 n), as n→∞. Furthermore, we have

ln
(
εinit
d

)
∈ o(d), as d→∞, (3.8)

since otherwise S(s) suffers from the curse of dimensionality. If, in addition, λ1 = λ2

then we need to claim limd→∞ ε
init
d = 0 to avoid the curse. Moreover, in this case

weak tractability even yields

εinit
d ∈ o(1/d), as d→∞. (3.9)

Proof. Step 1. We start by proving the necessity of the first limit condition in (3.7)
and study its consequences. To this end, recall that due to the definition of ad(ε)
we know that all the sets in (3.6) contain at least one element. Consequently, for
general λ1 ≥ λ2 we have

n(ε, d) ≥ 1 +

ad(ε)∑
k=1

(
d

k

)
=

ad(ε)∑
k=0

(
d

k

)
for d ∈ N and 0 < ε < εinit

d . (3.10)
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3 Problems on Hilbert spaces with scaled norms

Now assume the existence of some subsequence (dl)l∈N ⊂ N such that the initial er-
ror εinit

dl
grows at least exponentially in dl for l tending to infinity. That is, we assume

the condition (3.8) to be violated. Moreover, consider ε = ε0 ∈ (0, inf{εinit
dl

l ∈ N})
to be fixed. Then for any l ∈ N and some α ∈ (0, 1/2) the term adl(ε0) is bounded
from below by bα dlc. Accordingly, (3.10) implies n(ε0, dl) ≥

(
dl
bαdlc

)
for all l ∈ N.

Using similar calculations as in [NW08, p. 178] we see that this lower bound
grows exponentially in dl. This proves the curse of dimensionality for the scaled
problem S(s) and thus it contradicts weak tractability.

If we assume in addition that λ1 = λ2 then, as already noticed, ad(ε) equals d

because of kd(ε) =∞. Thus we obtain
∑ad(ε)

k=0

(
d
k

)
= 2d in this case. Therefore the

existence of a sequence (dl)l∈N such that εinit
dl

is larger than some C > 0 for all l ∈ N
would again imply the curse of dimensionality since then we could fix ε = ε0 = C/2,
say. Moreover ad(ε) = d shows that the first part of (3.7) equivalently reads

lim
ε−1+d→∞

d

ε−1 + d
= 0. (3.11)

Observe that in any case the term d/(ε−1 + d) is equivalent to the minimum of 1
and ε d (up to some absolute constants). Hence, (3.11) holds true if and only if

lim
ε−1+d→∞

ε d = 0

which in turn is equivalent to εinit
d ∈ o(1/d) for d→∞. To see this last equivalence,

remember that due to Section 1.4 the domain of the sequences ((εk, dk))k∈N for the
limit ε−1 + d→∞ is restricted per definition to those for which εk < εinit

dk
.

Step 2. We turn to the proof of the second point in (3.7). Again we distinguish
the cases λ1 = λ2 and λ1 > λ2. For the latter case keep in mind that ad(ε) ≥ 1 if
and only if ε < εinit

d (λ2/λ1)1/2. If so, then (3.6) shows that

n(ε, d) ≥ 1 +

(
d

1

)
·#

{
j ≥ 2

λj
λ1

>

(
ε

εinit
d

)2
}

= 1 + d ·#
{
j ≥ 2 s1λj >

(
εinit

1 · ε/εinit
d

)2
}
≥ n(εinit

1 · ε/εinit
d , 1).

On the other hand, if ε ∈
[
εinit
d (λ2/λ1)1/2, εinit

d

)
then n(εinit

1 · ε/εinit
d , 1) is no larger

than n(εinit
1 (λ2/λ1)1/2, 1) which is an absolute, positive constant. Thus, as claimed

in (3.7), we conclude

0 ≤ lnn(εinit
1 · ε/εinit

d , 1)

ε−1 + d
≤ max

{
lnn(ε, d)

ε−1 + d
,
lnn(εinit

1 (λ2/λ1)1/2, 1)

ε−1 + d

}
→ 0 (3.12)

for ε−1 + d tending to infinity in the above sense. In the case λ1 = λ2 we have
ad(ε) = d which is trivially bounded from below by 1 for any ε ∈ (0, εinit

d ). The
assertion now follows using the same arguments as in the first part of the previous
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3.2 Complexity

case. To complete the proof it finally remains to show that λn ∈ o(ln−2 n), as
n→∞. Let us consider the case d = dk ≡ 1 in (3.12). Then we obtain

0 ≤ lnn(ε, 1)

ε−1
≤ 2 · lnn(εinit

1 · ε/εinit
1 , 1)

ε−1 + 1
→ 0, as ε−1 →∞.

In other words, weak tractability yields lnn(ε, 1) ∈ o(ε−1) which is equivalent to
the claimed assertion due to Lemma 3.3. �

Let us add some comments on the latter necessary conditions.

Remark 3.5. First of all note that from (3.7) we concluded (3.8) which is equivalent

to the fact that lim supd→∞ s
1/d
d ≤ 1/λ1. Aside from that (3.7) also implies another

condition which we will need later on; namely

lim
ε−1+d→∞

lnn
(
εinit

1 ·
(
ε/εinit

d

)1/2
, 1
)

ε−1 + d
= 0.

Conclusively we stress that the second point of (3.7) already indicates a certain
trade-off between the decay of the sequence (λn)n∈N and the growth of the initial
error εinit

d . Indeed, if (λn)n∈N decreases almost logarithmically then n(t, 1) increases
subexponentially as t tends to zero. Consequently (3.7) can be fulfilled only if εinit

d

is polynomially bounded in d. On the other hand, if the (squares of the) singular
values tend to zero like the inverse of some polynomial, say, then n(t, 1) grows
polynomially in 1/t and hence it is enough to assume that the initial error is
subexponentially bounded in d to fulfill (3.7). �

We complement the necessary conditions in Proposition 3.4 by the follow-
ing sufficient conditions for weak tractability of scaled tensor product problems
S(s) = (Sd,sd)d∈N. For the proof we essentially follow the arguments of Papageor-
giou and Petras [PP09] for the unscaled case which are based on estimates from
Woźniakowski [Woź94b].

Proposition 3.6. Let S(s) and ad(ε) be defined as before and assume that λ2 > 0.
If the condition (3.7) from Proposition 3.4 holds true and if we have

lim
ε−1+d→∞

ad(ε) · lnn
(
εinit

1 ·
(
ε/εinit

d

)1/2
, 1
)

ε−1 + d
= 0 (3.13)

then S(s) is weakly tractable.

Proof. Given d ∈ N and ε ∈ (0, (λ2/λ1)1/2 εinit
d ) consider the representation (3.6)

and keep in mind that for larger ε the information complexity n(ε, d) is trivially
bounded by 1 because then ad(ε) = 0. For every k ∈ {1, . . . , ad(ε)} we have

#

{
j ∈ (N \ {1})k

k∏
l=1

λjl
λ1

>

(
ε

εinit
d

)2
}
≤ #

j ∈ Nad(ε)

ad(ε)∏
l=1

λjl
λ1

>

(
ε

εinit
d

)2


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3 Problems on Hilbert spaces with scaled norms

since λm/λ1 ≤ 1 for all m ∈ N. Hence we concentrate on all the multi-indices
j = (j1, . . . , jad(ε)) that fulfill

ad(ε)∏
l=1

λjl
λ1

>

(
ε

εinit
d

)2

. (3.14)

Clearly the largest possible index j
(1)
max which can appear in those j ∈ Nad(ε) is

bounded because the sequence (λn)n∈N tends to zero as n→∞. Indeed, using the
arguments given in [PP09] we conclude that

j(1)
max ≤ min

{
n ∈ N0 s1λn+1 ≤

(
εinit

1

ε

εinit
d

)2
}

= n

(
εinit

1

ε

εinit
d

, 1

)
.

More generally, in [PP09] it was noticed that, using the same reasoning, we can

bound the ith largest index j
(i)
max in (3.14) by

j(i)
max ≤ n

(
εinit

1 ·
(
ε/εinit

d

)1/i
, 1
)
.

We use this estimate for i = 1 and 2 to conclude the upper bound

ad(ε) · n
(
εinit

1 · ε/εinit
d , 1

)
· n
(
εinit

1 ·
(
ε/εinit

d

)1/2
, 1
)ad(ε)−1

for #
{
j ∈ Nad(ε) j fulfills (3.14)

}
. Note that due to ε < εinit

d both the univariate
complexities in the latter bound need to be at least 1. Therefore we can extend the

estimate by adding an additional factor n
(
εinit

1 ·
(
ε/εinit

d

)1/2
, 1
)

and replacing ad(ε)

by d. In summary we have

n(ε, d) ≤ d · n
(
εinit

1 · ε/εinit
d , 1

)
· n
(
εinit

1 ·
(
ε/εinit

d

)1/2
, 1
)ad(ε)

·
ad(ε)∑
k=0

(
d

k

)
(3.15)

for each d ∈ N and all ε ∈ (0, (λ2/λ1)1/2 εinit
d ). Because of n(ε, d) = 1 if ε belongs

to [(λ2/λ1)1/2 εinit
d , εinit

d ), the estimate (3.15) remains valid for every ε ∈ (0, εinit
d ).

Proceeding as in [PP09] we take the logarithm and divide by ε−1 + d to conclude

lnn(ε, d)

ε−1 + d
≤ ln(d)

ε−1 + d
+

ln
[
n
(
εinit

1 · ε/εinit
d , 1

)]
ε−1 + d

+
ad(ε) · ln

[
n
(
εinit

1 ·
(
ε/εinit

d

)1/2
, 1
)]

ε−1 + d
+

∑ad(ε)
k=0

(
d
k

)
ε−1 + d

.

For weak tractability it suffices to show that each of these fractions tends to zero
as ε−1 + d approaches infinity. Obviously, for the first one this is true without any
further conditions. For the second and fourth fraction the assertion follows from (3.7).
Finally the third fraction tends to zero due to the additional condition (3.13) we
imposed for this proposition. �
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To illustrate the obtained results the following theorem considers several cases
for the behavior of the initial error εinit

d .

Theorem 3.7. Let S(s) = (Sd,sd)d∈N denote a scaled tensor product problem in
the sense of Section 3.1. Assume that λ2 > 0 and consider the worst case setting
w.r.t. the absolute error criterion.

• Let ln
(
εinit
d

)
/∈ o(d), as d→∞.

Then S(s) suffers from the curse of dimensionality.

• Let εinit
d ∈ Θ(dα), as d→∞, for some α ≥ 0.

– If λ1 = λ2 then S(s) suffers from the curse of dimensionality.

– In the case λ1 > λ2 the problem S(s) is weakly tractable if and only if

λn ∈ o
(

ln−2(1+α) n
)
, as n→∞. (3.16)

• Let εinit
d → 0, as d approaches infinity.

Then we never have the curse of dimensionality. Moreover, S(s) is weakly
tractable if and only if

(i) λ1 = λ2 and λn ∈ o
(
ln−2 n

)
, as n → ∞, and εinit

d ∈ o(1/d), as d → ∞,
or

(ii) λ1 > λ2 and λn ∈ o
(
ln−2 n

)
, as n→∞.

Proof. Step 1. In this first step we handle the assertions concerning the curse of
dimensionality. From the proof of Proposition 3.4 we know that S(s) suffers from
the curse if either ln(εinit

d ) /∈ o(d), or if λ1 = λ2 and limd→∞ ε
init
d 6= 0. Of course the

latter condition is fulfilled particularly if the initial error grows polynomially with
the dimension d, i.e. if εinit

d ∈ Θ(dα) for some α ≥ 0. Furthermore the fact that we
cannot have the curse of dimensionality as long as εinit

d tends to zero is clear from
the definition.

Step 2. Next we show that weak tractability implies (3.16). Therefore we note
that εinit

d ∈ Θ(dα) implies the existence of some c > 0 such that we have εinit
d ≥ c dα

for all d ∈ N. Moreover we see that there is some d0 ∈ N such that 1/c < d1+α for
every d larger than d0. Setting ε = 1/d now yields

ε

εinit
d

≤ 1

c
· 1

d1+α
< 1 for all d ≥ d0

and ε−1 +d = 2d→∞, as d→∞. Hence, the sequence ((1/d, d))d≥d0 is admissible
for the second limit condition of (3.7) in Proposition 3.4. On the other hand, we
have

lnn(εinit
1 · ε/εinit

d , 1)

ε−1 + d
≥ c′

2
· lnn((c′/d)1+α , 1)

(c′/d)−1
≥ 0
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3 Problems on Hilbert spaces with scaled norms

where we set c′ = (ε1/c)
1/(1+α). Thus weak tractability implies lnn(t1+α, 1) ∈ o (1/t)

for t→ 0. Now the assertion follows from Lemma 3.3.
Step 3. For the case of polynomial initial errors it remains to prove the converse

implication, namely that (3.16) is also sufficient for weak tractability provided that
λ1 > λ2. To this end, we first show that for all d ∈ N, every ε ∈ (0, εinit

d ) and for
some C > 0,

εinit
d /ε ≤ C · (ε−1 + d)1+α. (3.17)

To see this, we notice that εinit
d ∈ Θ(dα) implies the existence of some C > 0

such that εinit
d ≤ C dα for all d ∈ N. If α = 0 then (3.17) is obvious. For the case

α > 0 we apply Young’s inequality21 and obtain εinit
d /ε ≤ C(d1+α + (ε−1)1+α).

Now the inequality (3.17) follows from the relation ‖· `1+α‖ ≤ ‖· `1‖, α ≥ 0, for
(two-dimensional) sequence spaces.

We want to conclude weak tractability from Proposition 3.6. Hence we have to
check the limit conditions stated in (3.7) and (3.13). In what follows we abbreviate
the notation and set

t = t(ε, d) = ε−1 + d.

Given (3.17), as well as the definition of ad(ε) in front of formula (3.6), it is easy
to see that

ad(ε) ∈ O(ln(t)), as t→∞.

In particular, we have ad(ε) < bbtc /2c, if t is sufficiently large. Moreover note that
d < t implies

(
d
k

)
≤
(btc
k

)
for all k ∈ {0, 1, . . . , ad(ε)} such that

( btc
ad(ε)

)
is an upper

bound for each of those binomial coefficients
(
d
k

)
. Consequently,

ln

ad(ε)∑
k=0

(
d

k

)
≤ ln

(
(ad + 1) ·

(
btc
ad(ε)

))
≤ ln

(
2 ad(ε) (e btc)ad(ε)

)
≤ ln 2 + ln(ad(ε)) + ad(ε) · (1 + ln(t))

∈ O(ln2(t)) ⊆ o(t),

for t → ∞. In other words, the first part of condition (3.7) is fulfilled. Also the
second limit condition in (3.7) can be shown easily using (3.17). Indeed, due
to the assumption in (3.16) (or its equivalent reformulation due to Lemma 3.3,
respectively) we conclude that

lnn(εinit
1 · ε/εinit

d , 1)

ε−1 + d
≤ lnn(εinit

1 C (ε−1 + d)−(1+α), 1)

ε−1 + d
=

1

C ′
· lnn((C ′/t)1+α, 1)

(C ′/t)−1

21Recall that Young’s inequality states that a, b ≥ 0 and p, q > 1 with 1
p + 1

q = 1 yields that

ab ≤ 1
p a

p + 1
q b

q. We use this assertion for a = dα, b = ε−1 and p = 1 + 1/α, q = 1 + α.
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tends to zero as ε−1 + d (and therefore also t/C ′) approaches infinity. Finally,

ad(ε) · lnn
(
εinit

1 ·
(
ε/εinit

d

)1/2
, 1
)
≤ ad(ε) · lnn

((
C ′′

ε−1 + d

)(1+α)/2

, 1

)
∈ O(ln t) · O(t1/2) ⊆ o(t)

for t = ε−1 +d tending to infinity. Hence we have shown (3.13). Now the application
of Proposition 3.6 completes the proof for the case of polynomial initial errors.

Step 4. In this last step we consider the case of initial errors which tend to zero
for d tending to infinity. We already know from Proposition 3.4 that λn ∈ o(ln−2 n),
n → ∞, (or equivalently lnn(t, 1) ∈ o(1/t), as t → 0) is necessary for weak
tractability, independent of the relation of the two largest (squares of the) singular
values λ1 and λ2 to each other. Moreover Proposition 3.4 states that εinit

d ∈ o(1/d),
d→∞, is a necessary condition when we assume λ1 = λ2, in addition. It remains to
show that these conditions are also sufficient for weak tractability in the particular
situations.

If λ1 > λ2 then we can exactly follow the lines of Step 3 with α = 0 in order
to conclude the assertion. Hence we are left with the case λ1 = λ2. Similar to the
previous step we want to apply Proposition 3.6 and thus we need to check the
conditions in (3.7) and (3.13). Setting

u = u(ε, d) =
d

ε−1 + d
(3.18)

we note that (due to (3.11) in the proof of Proposition 3.4) u tends to zero if
ε−1 +d→∞. This follows from εinit

d ∈ o(1/d), as d→∞, and, on the other hand, it

implies the first condition in (3.7) because
∑ad(ε)

k=0

(
d
k

)
equals 2d. Since, in particular,

εinit
d ≤ C for some C > 0, we have C ′ = C/εinit

1 > 0 and thus we obtain

lnn(εinit
1 · ε/εinit

d , 1)

ε−1 + d
≤ lnn(εinit

1 /C · ε, 1)

ε−1 + d
≤ C ′ · lnn((C ′ · (ε−1 + d))−1, 1)

C ′ · (ε−1 + d)
→ 0,

as ε−1 + d→∞ due to lnn(t, 1) ∈ o(1/t), t→ 0. In other words, we have shown
the second condition in (3.7). To see that also (3.13) holds true we once more use
εinit
d ∈ o(1/d) ⊆ O(1/d) as well as Young’s inequality to conclude(

εinit
d

ε

)1/2

≤ C1 ·
1

d
· d1/2 ·

(
1

ε

)1/2

≤ C1

2
· ε
−1 + d

d

with some C1 > 0. Hence, using (3.18) we have εinit
1 ·(ε/εinit

d )1/2 ≥ C2 u and therefore

d · lnn(εinit
1 · (ε/εinit

d )1/2, 1)

ε−1 + d
≤ 1

C2

· (C2 u) · lnn(C2 u, 1)→ 0 if ε−1 + d→∞,

because then C2 u = C2 u(ε, d) tends to zero. Since ad(ε) = d this yields (3.13) and
we are allowed to conclude weak tractability from Proposition 3.6. �
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Before we turn to normalized errors we want to stress the point that Theorem 3.7
contains at least two surprising results. At first, we can have weak tractability
even if the initial error of S(s) grows with increasing dimension. Hence, although
the performance of the zero algorithm gets steadily worse for d→∞ we are not
necessarily faced with the curse of dimensionality. In contrast, remember that we
need decreasing initial errors in order to conclude polynomial tractability. Secondly,
it seems to be quite surprising that also in the case λ1 = λ2 we can break the curse
by imposing only moderate additional conditions on the scaling sequence s. Indeed,
it is enough to guarantee that εinit

d =
√
sdλd1 ∈ o(1/d) for d→∞.

3.2.3 Normalized errors

We complete our studies of the complexity of scaled problems S(s) = (Sd,sd)d∈N by
investigating tractability properties with respect to the normalized error criterion.
This can be done by analyzing the information complexity of a related problem
w.r.t. absolute errors.

Let λ = (λn)n∈N and s = (sd)d∈N be fixed and define a tensor product problem
T = (Td : Hd → Gd)d∈N out of the building blocks T1 = (1/

√
λ1 S1) : H1 → G1 as

described in the proof of Theorem 2.12. Then the extended sequence of squared
singular values of Td, based on the univariate sequence µ = (µm)m∈N = (λm/λ1)m∈N,
reads

(µd,1,i)i∈N = (µd,i)i∈N =

(
λd,i
λd,1

)
i∈N

=

(
λd,sd,i
sd λd,1

)
i∈N

=

(
λd,sd,i
(εinit
d )2

)
i∈N

.

Here the second subscript in µd,1,i indicates that T can be seen as a trivially scaled

tensor product problem. Furthermore, εinit
d =

√
sd λd1 denotes the initial error

of Sd,sd . Thus, from (3.5) applied to T and S(s) we conclude

nwor
abs (ε, d;Td) = min

{
n ∈ N0 µd,1,n+1 ≤ ε2

}
(3.19)

= min
{
n ∈ N0 λd,sd,n+1 ≤ (ε · εinit

d )2
}

= nwor
abs (ε · εinit

d , d;Sd,sd).

By definition this also equals nwor
norm(ε, d;Sd,sd), i.e. the information complexity

of Sd,sd w.r.t. to the normalized error criterion. This relation in hand, we can use
our results from the previous subsections to prove the following assertion.

Theorem 3.8. Let S(s) = (Sd,sd)d∈N denote a scaled tensor product problem in
the sense of Section 3.1. Assume λ2 > 0 and consider the worst case setting w.r.t.
the normalized error criterion.

• Let λ1 = λ2. Then S(s) suffers from the curse of dimensionality.

• Let λ1 > λ2. Then S(s) is not polynomially tractable. Moreover, in this
case S(s) is weakly tractable if and only if λn ∈ o(ln−2 n), as n→∞.
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Proof. Note that for all d ∈ N the initial error of Td is 1 since µ1, as well as the
scaling parameters, equal 1. Thus, obviously, condition (IV) in Theorem 3.2 is
violated and therefore T is polynomially intractable w.r.t. to the absolute error
criterion. Moreover, the second point of Theorem 3.7 with α = 0 shows that T
suffers from the curse of dimensionality if µ1 = µ2. Otherwise, i.e. if µ1 > µ2, the
problem T is weakly tractable if and only if µn ∈ o(ln−2 n), as n → ∞. Since
we set µm = λm/λ1, m ∈ N, all these conditions on µ = (µm)m∈N are fulfilled if
and only if the corresponding assertions holds true for the sequence λ = (λm)m∈N.
Equation (3.19) finally shows that every complexity assertion for T w.r.t. absolute
errors is equivalent to the corresponding statement for S(s) and the normalized
error criterion. This simple observation completes the proof. �

In conclusion the scaling sequence s = (sd)d∈N does not have any influence on
the complexity of S(s), as long as we consider normalized errors. So the advantages
of scaling are completely ruled out in this setting.

3.3 Examples

In this last part of Chapter 3 we briefly discuss two applications of the com-
plexity results obtained in the previous section. We start by proving that our
assertions reproduce the known facts for unscaled tensor product problems studied
in Theorem 2.11 and Theorem 2.12.

Example 3.9 (Unscaled problems). Let S(s) = (Sd,sd)d∈N denote a tensor product
problem between Hilbert spaces in the sense of Section 3.1 where all the scaling
factors sd equal 1. As usual we assume λ2 > 0 and consider the worst case setting.
Then for every d ∈ N the operators Sd,sd coincide with Sd as defined in Section 2.4.1.
Since we already saw that for the normalized error criterion the conditions stated in
Theorem 3.8 exactly match the assertions of Theorem 2.12, it remains to consider
the absolute error criterion. Here εinit

d is given by λ
d/2
1 . Hence there are three

scenarios for the behavior of the initial error depending on the largest squared
singular value λ1 of the underlying operator S1.

From Theorem 3.2 we know that strong polynomial tractability and polynomial
tractability are equivalent; see (I) and (II), respectively. Moreover, condition (IV)
shows that this holds if and only if λ1 < 1 and λ = (λm)m∈N ∈ `τ for some
τ ∈ (0,∞). In this case the exponent of strong polynomial tractability is given by

p∗ = inf

{
2τ sup

d∈N
‖λ `τ‖d <∞

}
= inf

2τ

(
∞∑
m=1

(λm)τ

)1/τ

≤ 1

 .

In turn, λ1 ≥ 1 yields polynomial intractability. More precisely, if λ1 > 1 then
the initial error grows exponentially in d and S = S(s) suffers from the curse of
dimensionality due to the first point of Theorem 3.7. Setting α = 0 the second point
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of the latter theorem describes the case of constant initial errors which corresponds
to the case λ1 = 1 in the unscaled situation. In detail, if λ2 = λ1 = 1 then we are
faced with the curse again. In contrast, if λ2 < 1 then we have weak tractability if
and only if

λn ∈ o(ln−2 n), as n→∞. (3.20)

Finally the initial error tends to zero exponentially fast if λ1 < 1. The last point of
Theorem 3.7 thus shows that in this case the curse of dimensionality is not possible
and that (3.20) is necessary and sufficient for weak tractability.

Altogether these results exactly match the conditions stated in Theorem 2.11.
Hence, scaled tensor product problems indeed yield a generalization. �

So let us turn to a more advanced application. To this end, recall the definition
of Sd,sd : Fd → Gd in Section 3.1. There we constructed the source spaces Fd by
scaling the norm in the tensor product space Hd = H1 ⊗ . . .⊗H1. Alternatively
we can think of Fd as the successively taken tensor product of some building
blocks H(k), k = 1, . . . , d, in the sense of Section 2.4.1, where we define H(k) to be
the univariate space H1 scaled by some factor s(k) > 0. That is, let

〈·, ·〉H(k) =
1

s(k)
〈·, ·〉H1

.

Then the scaling factor sd in dimension d is given by
∏d

k=1 s
(k) > 0. The following

example illustrates how the behavior of the generator sequence (s(k))k∈N effects the
complexity of S(s).

Example 3.10. Because scaling has no influence on assertions for normalized
errors we restrict ourselves to the absolute error criterion in what follows. For
simplicity we further assume that λ1 > λ2 > 0 and that the generator sequence is
non-increasing, i.e.

s(1) ≥ s(2) ≥ . . . ≥ s(k) ≥ . . . > 0, k ∈ N.

Then Theorem 3.2 states that S(s) is strongly polynomially tractable if and only if
the geometric mean of the first d elements s(k) is asymptotically strictly smaller
than 1/λ1, provided that λ ∈ `τ for some τ > 0. This holds iff at most finitely many
of these generators are bounded from below by 1/λ1. Moreover, from Remark 3.5
we know that we need

lim sup
d→∞

s
1/d
d = lim sup

d→∞

(
d∏

k=1

s(k)

)1/d

≤ 1

λ1

in order to obtain weak tractability. Therefore let the generators be given by

s(k) =
1

λ1

· (1 + δk), k ∈ N,
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3.3 Examples

with a non-increasing null sequence (δk)k∈N and note that then some elementary
calculations yield

exp

(
c

2
·

d∑
k=1

δk

)
≤ εinit

d ≤ exp

(
1

2
·

d∑
k=1

δk

)
, d ∈ N,

where c = ln(1 + δ1)/δ1 ≤ 1. Furthermore this observation shows that εinit
d ∈ Θ(dα),

as d→∞, for some α ≥ 0 implies that

L = lim
d→∞

1

ln d

d∑
k=1

δk ∈ 2α ·
[
1,

1

c

]
.

Conversely, from the existence of L it follows that for any δ > 0 there is some
d0 = d0(δ) such that

εinit
d ∈ [dα1 , dα2 ] for all d ≥ d0,

where α1 = c · L/2 − δ and α2 = L/2 + δ. Hence, if L is sufficiently small then
the initial error εinit

d behaves like a polynomial of small degree and thus a quite
slow decay of the sequence (λn)n∈N is enough to conclude weak tractability using
Theorem 3.7. �
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CHAPTER 4

Problems on function spaces with weighted norms

In [NW09] it is shown that the approximation problem defined on C∞([0, 1]d) is
intractable. In fact, Novak and Woźniakowski considered the linear space Fd of all
real-valued infinitely differentiable functions f defined on the unit cube [0, 1]d in d
dimensions for which the norm

‖f Fd‖ = sup
α∈Nd0

∥∥Dαf L∞([0, 1]d)
∥∥ (4.1)

of f ∈ Fd is finite. In this case the (uniform) approximation problem is given by
the sequence of solution operators S = (Sd)d∈N,

Sd = idd : F̃d → L∞([0, 1]d), f 7→ idd(f) = f, d ∈ N, (4.2)

defined on the unit ball F̃d = B(Fd) of Fd. The authors studied this problem in the
worst case setting using algorithms from the classes A

n,cont
d and A

n,adapt
d as defined

in Section 1.3.
The initial error of this problem is given by εinit

d = ewor(0, d; idd) = 1, the
norm of the embedding Fd ↪→ L∞, since A0,d ≡ 0 is a valid choice of an algorithm
which does not use any information of f ; see Proposition 2.4. This means that the
problem is well-scaled such that there is no difference in studying the absolute or
the normalized error criterion.

Now [NW09, Theorem 1] yields that the nth minimal worst case error of
L∞-approximation defined on Fd satisfies

ewor(n, d; idd) = 1 for all n = 0, 1, . . . , 2bd/2c − 1. (4.3)

Therefore, for all d ∈ N and every ε ∈ (0, 1), the information complexity is bounded
from below by

nwor(ε, d; idd) ≥ 2bd/2c.

Hence the problem suffers from the curse of dimensionality; in particular it is
intractable. One possibility to avoid this exponential dependence on d, i.e. to break
the curse, is to shrink the function space Fd by introducing weights.
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4 Problems on function spaces with weighted norms

In the present chapter we follow this idea. We show that turning to spaces
equipped with product weights can dramatically improve the tractability behavior
of certain problems such as uniform approximation. In Section 4.1 we formally
introduce the concept of weighted spaces by considering the examples of weighted
Banach spaces of smooth functions and of weighted reproducing kernel Hilbert
spaces. Uniform approximation in the latter class of spaces then is studied in
Section 4.2. Afterwards, in Section 4.3, we show how to use the obtained upper
error bounds for the L∞-approximation problem defined on scales of smooth
functions. Moreover we prove corresponding lower bounds on the information
complexity which enable us to give necessary and sufficient conditions for several
kinds of tractabilities in terms of the used weights. Most of the results stated in
this chapter are published in the article [Wei12b].

4.1 The concept of weighted spaces

The idea to introduce weights directly into the norm of the function space appeared
for the first time in a paper of Sloan and Woźniakowski in 1998; see [SW98].
They studied the integration problem defined over some Sobolev Hilbert space,
equipped with so-called product weights, to explain the overwhelming success of
QMC integration rules. Thenceforth weighted problems attracted a lot of attention.

For example it turned out that tractability of approximation of linear compact
operators between Hilbert spaces can be fully characterized in terms of the weights
and the singular values of the operators if we use information operations from the
class Λall. The proof of this kind of assertions is once again based on the singular
value decomposition; see Section 2.3. One such result is given in Section 4.4 below.

But first let us illustrate the concept of weighted spaces by modifying the
space Fd we introduced before.

4.1.1 Weighted Banach spaces of smooth functions

A closer look at the norm given in (4.1) yields that for f ∈ B(Fd) we have∥∥Dαf L∞([0, 1]d)
∥∥ ≤ 1 for all α ∈ Nd

0. (4.4)

Hence every derivative is equally important. In order to shrink the space, for
each α ∈ Nd

0 we replace the right-hand side of inequality (4.4) by a non-negative
weight γα. For α with |α| = 1 this means that we control the importance of every
single variable. So, the norm in the weighted space F γ

d is now given by

‖f F γ
d ‖ = sup

α∈N0

1

γα

∥∥Dαf L∞([0, 1]d)
∥∥ , (4.5)

where we demand Dαf to be equal to zero if γα = 0. It is clear from the construction
that we indeed shrink the space if all γα are chosen strictly less than one.
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4.1 The concept of weighted spaces

Since this approach is quite general we restrict ourselves to so-called product
weights (with uniformly bounded generators) in what follows. Thus we assume that
for every d ∈ N there exists an ordered and uniformly bounded sequence

Cγ ≥ γd,1 ≥ γd,2 ≥ . . . ≥ γd,d ≥ 0.

Then for d ∈ N the product weight sequence γ = (γα)α∈Nd0
is given by

γα =
d∏
j=1

(γd,j)
αj , α ∈ Nd

0. (4.6)

Note that the dependence of xj on f is now controlled by the so-called generator
weight γd,j. Since γd,j = 0 for some j ∈ {1, . . . , d} implies that f does not depend
on xj, . . . , xd we assume that γd,d > 0 in the rest of this chapter. Moreover observe
that the ordering of γd,j is without loss of generality. Later on we will see that
tractability of our problem will only depend on summability properties of the
generator weights.

Among other things, we show in Section 4.3.3 that for the L∞-approximation
problem defined on the Banach spaces F γ

d with the norm given above and generator
weights γd,j ≡ γ(j) ∈ Θ

(
j−β
)

we have

• intractability for β = 0,

• weak tractability but no polynomial tractability for 0 < β < 1,

• strong polynomial tractability if 1 < β.

Furthermore, we prove that for β = 1 the problem is not strongly polynomially
tractable.

4.1.2 Weighted Hilbert spaces and weighted RKHS

Let us briefly discuss the idea of weighted norms in the case of Hilbert (function)
spaces, before we turn to weighted RKHSs. Our approach is based on a general-
ization of the so-called ANOVA22 decomposition of d-variate functions f , where d
is an arbitrary large integer. For the ease of presentation we follow the lines of
[NW08, Section 5.3.1]. Thus, we focus our attention on Hilbert function spaces
constructed out of tensor products and equipped with some assumptions that
can be significantly relaxed. For further information on more general settings the
interested reader is referred to [KSWW10b] and the references therein.

Given a d-fold tensor product space Hd = H1 ⊗ . . .⊗H1, d ∈ N, as well as an
orthonormal basis {ei i ∈ N} of the underlying univariate Hilbert space23 H1 that

22analysis of variance.
23We assume H1 to be separable and infinite-dimensional to keep the notation as short as possible.
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4 Problems on function spaces with weighted norms

contains the constant function e1 ≡ 1, it is easy to see that every f ∈ Hd can be
represented as

f =
∑

u⊆{1,...,d}

fu.

In this decomposition the (formally d-variate) functions fu solely depend on the
variables xj with index j ∈ u. The main advantage of this kind of representation
is that for fixed f the collection of all fu, u ⊆ {1, . . . , d}, can be taken mutually
orthogonal w.r.t. the inner product 〈·, ·〉Hd in Hd. Therefore the norm of f ∈ Hd

can be expressed by

‖f Hd‖2 =
∑

u⊆{1,...,d}

‖fu Hd‖2 =
∑

u⊆{1,...,d}

∥∥fu,1 H|u|
∥∥2
,

where fu,1 equals fu interpreted as an element of the |u|-fold tensor product
space H|u| of the closed subspace

H ′1 =
{
h ∈ H1 〈h, e1〉H1

= 0
}
⊂ H1

with itself. That is, in the unweighted situation the contribution of each fu to the
norm of f ∈ Hd is the same.

Now suppose that we have some additional, a priori knowledge about the
importance of some (groups of) variables in dimension d. This can be modeled
by assigning positive24 weights γd,u to each of the 2d subsets u of {1, . . . , d}. We
denote the collection of these weights by γ(d) = {γd,u u ⊆ {1, . . . , d}}. Then it can
be verified that

〈f, g〉γ(d) =
∑

u⊆{1,...,d}

1

γd,u
〈fu, gu〉Hd =

∑
u⊆{1,...,d}

1

γd,u
〈fu,1, gu,1〉H|u| (4.7)

defines an inner product on the tensor product space Hd which implies an equivalent
norm depending on γ(d). The Hilbert space Hd endowed with this new inner product

will be denoted by H
γ(d)
d . At this point we need to stress the fact that for general

weights γ(d) these spaces are no longer tensor product spaces, although their
construction is based on Hd = H1 ⊗ . . .⊗H1 and H|u|, respectively. To overcome
this problem we restrict ourselves to the case of product weights in the following.
Thus we assume

γd,u =
∏
k∈u

γd,k (4.8)

for some positive γd,k, k = 1, . . . , d, and every u ⊆ {1, . . . , d}. Then it can be
checked that indeed H

γ(d)
d is again a tensor product space. For the study of other

24Also zero weights are possible but for reasons of simplification we do not discuss this more
complicated situation in the present brief introduction to weighted Hilbert spaces.
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4.1 The concept of weighted spaces

types of weights such as finite-order, finite-diameter, order-dependent or the recently
developed POD25 weights we refer to Novak and Woźniakowski [NW08, Section
5.3.2] and to Kuo, Schwab and Sloan [KSS11].

In the last decade it turned out that weighted norms provide a powerful
tool to vanquish the curse of dimensionality that we are often faced with. Since
the H

γ(d)
d ’s are still Hilbert spaces the complexity analysis of weighted problems

Sγ(d) = (S
γ(d)
d : B(H

γ(d)
d ) → Gd)d∈N again is based on the singular value decompo-

sition presented in Section 2.3.1; at least in the cases where the target spaces Gd
are also Hilbert spaces. Fortunately, the introduced weights enter the spectrum

of the operator W
γ(d)
d =

(
S
γ(d)
d

)†
S
γ(d)
d in a straightforward way. Therefore in many

cases tractability properties of S can be fully characterized in terms of the singular
values and the introduced weights.

For our purposes weighted Hilbert spaces that possess a reproducing kernel are
of particular interest. Typical examples of such weighted RKHSs are the following
unanchored Sobolev spaces endowed with product weights which will play an im-
portant role in our further argumentation; see also Sloan and Woźniakowski [SW02].
Instead of applying the presented approach which is based on decompositions we
use the common procedure and define them directly.

Example 4.1 (Unanchored Sobolev spaces H
γ
d). As usual we start with the

definition for d = 1 and γ > 0. Then the space H
γ
1 is nothing but the Sobolev space

of all absolutely continuous real-valued functions f defined on the unit interval [0, 1]
whose first derivative26 f ′ belongs to the space L2([0, 1]). The difference to the
classical Sobolev space is the inner product which here depends on the parameter γ:

〈f, g〉Hγ
1

= 〈f, g〉L2([0,1]) + γ−1 〈f ′, g′〉L2([0,1]) (4.9)

=

∫ 1

0

f(x) g(x) dλ1(x) + γ−1

∫ 1

0

f ′(x) g′(x) dλ1(x), f, g ∈ H
γ
1 .

For the sake of completeness we define the space H0
1 as the limit of Hγ

1 for γ → 0.
Consequently the derivatives of f ∈ H0

1 need to vanish λ1-almost everywhere
on [0, 1] which implies that the space H0

1 only consists of constant functions. This
coincides with the common convention 0/0 = 0.

Note that the univariate space H
γ
1 algebraically coincides with its anchored

analogue H̃
γ
1 where the term 〈f, g〉L2([0,1]) in (4.9) is replaced by f(a) · g(a) for some

anchor point a ∈ [0, 1]. For details we refer to [SW02] and [Wei12b]. Finally we
mention that for positive parameters γ all these definitions imply equivalent norms
on the classical Sobolev space W 1

2 ([0, 1]).
Once more the d-variate spaces H

γ
d for d > 1 are defined by a tensor product

construction similar to Section 2.4.1. We set H
γ
d =

⊗d
k=1 H

γd,k
1 , where now γ

25product and order-dependent.
26in the weak or distributional sense
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4 Problems on function spaces with weighted norms

denotes a (subset of a) product weight sequence (γα)α∈{0,1}d induced by some
generator weights γd,k, k = 1, . . . , d; see (4.6). Remember that at the beginning of
this chapter we assumed γd,d > 0 for all d ∈ N. That is, we avoid to take the trivial
spaces H0

1 as factors in the definition of Hγ
d .

How does the inner product of Hγ
d looks like? Following the lines of Section 2.4.1

it is uniquely determined by the coordinate-wise inner products of the factors of
simple tensors f =

⊗d
k=1 fk and g =

⊗d
k=1 gk, where fk, gk ∈ H

γd,k
1 for k = 1, . . . , d.

Consequently,

〈f, g〉Hγ
d

=
d∏

k=1

〈fk, gk〉Hγd,k
1

=
d∏

k=1

(
〈fk, gk〉L2([0,1]) +

1

γd,k
〈f ′k, g′k〉L2([0,1])

)
=

∑
u⊆{1,...,d}

∏
k∈u

1

γd,k
·
∏
k∈u

〈f ′k, g′k〉L2([0,1]) ·
∏

j∈{1,...,d}\u

〈fj, gj〉L2([0,1])

=
∑

u⊆{1,...,d}

∏
k∈u

1

γd,k
·
∫

[0,1]d

∏
k∈u

f ′k(xk) g
′
k(xk)

∏
j∈{1,...,d}\u

fj(xj) gj(xj) dλd(x)

=
∑

u⊆{1,...,d}

1

γd,u
·
∫

[0,1]d

∂|u|f

∂xu
(x)

∂|u|g

∂xu
(x) dλd(x),

where we used (4.8) and the shorthand notation ∂|u|/(∂xu) for
∏

k∈u ∂/(∂xk). Note
that this representation resembles (4.7) from the general approach to weighted
Hilbert spaces introduced at the beginning of this subsection. For our purposes it
is more convenient to rewrite the subsets u ⊆ {1, . . . , d} in terms of multi-indices
α = (α1, . . . , αd) ∈ {0, 1}d. In detail, we set αk = 1 if and only if k ∈ u and αk = 0
otherwise. Then we can express the norm of any f ∈ H

γ
d by

‖f H
γ
d‖

2 =
∑

α∈{0,1}d

1

γα
·
∫

[0,1]d
|Dαf(x)|2 dλd(x) (4.10)

since then γu = γα. The inner products of the multivariate anchored spaces, H̃γ
d ,

can be found by a similar reasoning; see [Wei12b, p. 67] for the final result.
It is known (cf. Micchelli and Wahba [MW81]) that the univariate spaces H

γ
1

are reproducing kernel Hilbert spaces for any γ > 0. Consequently, this property
is transferred to the multivariate tensor product space. To stress this fact we
write H(Kγ

d ) for H
γ
d in what follows. Equation (5) in [WW09] now states that the

reproducing kernel Kγ
d : [0, 1]d × [0, 1]d → R in dimension d ≥ 1 is given by27

Kγ
d (x,y)

=
d∏

k=1

√
γd,k

sinh
(√

γd,k
) cosh

(√
γd,k (1−max {xk, yk})

)
cosh

(√
γd,k min {xk, yk}

)
,

27Here sinh and cosh denote the hyperbolic sine and cosine functions, respectively.
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4.2 Uniform approximation in reproducing kernel Hilbert spaces

x,y ∈ [0, 1]d. For d = 1 this kernel formula follows from Thomas-Agnan [Tho96,
Corollary 2] whereas the higher-dimensional generalization for product weights γ
results from the tensor product structure; see (2.20) in Section 2.5. In particular
we note that Kγ

d is continuous (and thus also bounded) along its diagonal{
(x,y) ∈ [0, 1]2d x = y

}
.

Moreover, from [WW09, Lemma 4.1] we know that for γ > 0 the set

E1(γ) = {e1,γ,i : [0, 1]→ R i ∈ N}

with e1,γ,1 ≡ 1 and

e1,γ,i(x) = cos(π(i− 1)x) ·

√
2γ

γ + π2(i− 1)2
, x ∈ [0, 1], i ≥ 2,

builds an orthonormal basis in the univariate space H(Kγ
1 ). Applying the arguments

from Section 2.4.1 this leads to an ONB Ed(γ) of H(Kγ
d ) =

⊗d
k=1 H(K

γd,k
1 ) that

consists of tensor product functions

ẽd,γ,m =
d⊗

k=1

e1,γd,k,mk , m = (m1, . . . ,md) ∈ Nd. (4.11)

For a direct proof of this result we refer to [NW08, Appendix A.2.1]28 and to [WW09,
Lemma 4.2]. Actually, these proofs show a little bit more; namely that the func-
tions ẽd,γ,m together with

λ̃d,γ,m =
d∏

k=1

λ1,γd,k,mk =
d∏

k=1

γd,k
γd,k + π2(mk − 1)2

, m ∈ Nd, (4.12)

describe the full set of eigenpairs {(λ̃d,γ,m, ẽd,γ,m) |m ∈ Nd} of the operator W γ
d =

(Sγd )† Sγd where Sγd : Hγ
d ↪→ L2([0, 1]d) denotes the solution operator of the L2-

approximation problem on H
γ
d = H(Kγ

d ). �

4.2 Uniform approximation in reproducing kernel
Hilbert spaces

The main result of this section is based on a paper of Kuo, Wasilkowski and
Woźniakowski [KWW08]. In contrast to the presentation given in [Wei12b] we
decided to apply this result to the case of the unanchored Sobolev Space introduced
in Section 4.1.2 instead of the anchored analogue studied in [KWW08]. This opens

28Note the missing factor 1/2 in [NW08, p. 351, line 5].
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4 Problems on function spaces with weighted norms

up the opportunity to explain the underlying ideas without literally repeating
the proof given in [KWW08] while obtaining a result which is (according to our
knowledge) not published elsewhere so far.

We start with an upper error bound which remains valid for any reproducing
kernel Hilbert space H(Kd) of real-valued functions f on [0, 1]d with

ess-sup
x∈[0,1]d

Kd(x,x) <∞. (4.13)

This condition guarantees that H(Kd) is continuously embedded into L∞([0, 1]d)
since the reproducing property (2.17), together with the Hahn-Banach theorem
(cf. [Yos80, IV.6 Cor.2]), yields that

∥∥idd L(H(Kd),L∞([0, 1]d))
∥∥ is given by

sup
f∈B(H(Kd))

∥∥f L∞([0, 1]d)
∥∥ = ess-sup

x∈[0,1]d
sup

f∈B(H(Kd))

|f(x)|

= ess-sup
x∈[0,1]d

sup
f∈B(H(Kd))

∣∣∣〈f,Kd(·,x)〉H(Kd)

∣∣∣
= ess-sup

x∈[0,1]d
Kd(x,x)1/2.

Now the mentioned upper bound reads as follows:

Proposition 4.2. For d ∈ N consider a RKHS H(Kd), where Kd fulfills (4.13),
i.e. H(Kd) ↪→ L∞([0, 1]d). Furthermore, suppose Ξ = {ξj : [0, 1]d → R j ∈ N}
to be some orthonormal basis of H(Kd) and let n ∈ N0. Then the algorithm
AΞ
n,d ∈ A

n,lin
d (Λall), given by

f 7→ AΞ
n,df =

n∑
j=1

〈f, ξj〉H(Kd) ξj(·),

for uniform approximation on H(Kd) fulfills

∆wor(AΞ
n,d; idd : B(H(Kd))→ L∞([0, 1]d)) ≤

∥∥∥∥∥
∞∑

j=n+1

ξj(·)2 L∞([0, 1]d)

∥∥∥∥∥
1/2

. (4.14)

Proof. Since Ξ builds an ONB we may represent any f ∈ H(Kd) by its basis
expansion, f =

∑∞
j=1 〈f, ξj〉H(Kd) ξj. Therefore Parseval’s identity implies

∣∣f(x)− AΞ
n,df(x)

∣∣ =
∣∣(f − AΞ

n,df)(x)
∣∣ =

∣∣∣∣∣
∞∑

j=n+1

〈f, ξj〉H(Kd) ξj(x)

∣∣∣∣∣
=

∣∣∣∣∣∣
〈
f,

∞∑
j=n+1

ξj(x) ξj

〉
H(Kd)

∣∣∣∣∣∣
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4.2 Uniform approximation in reproducing kernel Hilbert spaces

which can be estimated from above using the inequality of Cauchy and Schwarz.
Thus we obtain∣∣f(x)− AΞ

n,df(x)
∣∣ ≤ ‖f H(Kd)‖ ·

∥∥∥∥∥
∞∑

j=n+1

ξj(x) ξj H(Kd)

∥∥∥∥∥ (4.15)

= ‖f H(Kd)‖ ·

(
∞∑

j=n+1

ξj(x)2

)1/2

for every f ∈ H(Kd) and all fixed x ∈ [0, 1]d. Taking the (essential) supremum
with respect to x in the d-dimensional unit cube and the supremum over all
f ∈ B(H(Kd)) gives the desired result. �

We note in passing that we can easily prove more than we stated in the latter
assertion. In what follows we only need the given upper error bound such that we
restrict ourselves to some brief comments on further results in the next remark.

Remark 4.3. For fixed x ∈ [0, 1]d we see that the function f ∗ = C ·
∑∞

j=n+1 ξj(x) ξj
with C > 0 gives equality in (4.15). Of course, we can choose the constant C such
that ‖f ∗ H(Kd)‖ = 1 provided that x is not a common root of ξj for all j > n.
Hence, the upper bound in (4.14) is sharp.

Moreover, [KWW08, Theorem 2] shows that the nth minimal worst case error
for L∞-approximation on H(Kd) is given by

ewor(n, d; idd : B(H(Kd))→ L∞([0, 1]d)) = inf
Ξ={ξj j∈N}

∥∥∥∥∥
∞∑

j=n+1

ξj(·)2 L∞([0, 1]d)

∥∥∥∥∥
1/2

,

where the infimum is taken w.r.t. all orthonormal bases Ξ ⊂ H(Kd). Thus, any
clever choice of the basis Ξ in Proposition 4.2 leads to algorithms AΞ

n,d with almost
optimal worst case errors. �

Next we apply Proposition 4.2 to the weighted unanchored Sobolev spaces H
γ
d

introduced in Section 4.1.2 using the basis Ξ = Ed(γ) given in (4.11). Since the
ordering of the basis functions ξ ∈ Ξ is essential for our application we rearrange
them non-increasingly with respect to their L∞-norm:∥∥ξj L∞([0, 1]d)

∥∥ ≥ ∥∥ξj+1 L∞([0, 1]d)
∥∥ for all j ∈ N. (4.16)

We obtain an estimate which resembles the corresponding result for the anchored
case studied in [Wei12b, Proposition 2].

Corollary 4.4. For n ∈ N0 and d ∈ N there exists an algorithm A∗n,d ∈ A
n,lin
d (Λall)

for uniform approximation on H
γ
d such that for every τ ∈ (1/2, 1)

∆wor(A∗n,d; idd : B(Hγ
d)→ L∞([0, 1]d)) < aτ exp

(
bτ

d∑
k=1

(γd,k)
τ

)
· n−(1−τ)/(2τ),

where the constants aτ , bτ > 0 are independent of γ, n, and d.
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Proof. To keep the notation as short as possible we abbreviate the L∞-norm in d
dimensions,

∥∥· L∞([0, 1]d)
∥∥, by ‖·‖d within this proof.

Following our plan we fix n ∈ N0, as well as d ∈ N, and take A∗n,d = AΞ
n,d defined

in Proposition 4.2 with Ξ = Ed(γ) as above. From (4.11) we conclude for d = 1
and any γ > 0 that

∥∥e2
1,γ,1

∥∥
1

= 1 and
∥∥e2

1,γ,i

∥∥
1

=
2γ

γ + π2(i− 1)2
<

2 γ

π2
· (i− 1)−2, i ≥ 2.

Moreover, for every simple tensor f =
⊗d

k=1 fk ∈ H(Kγ
d ) we clearly have

‖f‖d =
d∏

k=1

‖fk‖1 and f(x)2 =
d∏

k=1

fk(xk)
2, x ∈ [0, 1]d.

Consequently, for any j ∈ N and all τ ∈ (1/2,∞) the ordering of Ξ given in (4.16)
implies

j ·
∥∥ξ2

j

∥∥τ
d
≤

∞∑
m=1

∥∥ξ2
m

∥∥τ
d

=
∑
m∈Nd

∥∥ẽ2
d,γ,m

∥∥τ
d

=
d∏

k=1

∞∑
i=1

∥∥∥e2
1,γd,k,i

∥∥∥τ
1

=
d∏

k=1

(
1 +

∞∑
i=2

∥∥∥e2
1,γd,k,i

∥∥∥τ
1

)
<

d∏
k=1

(
1 +

(
2 γd,k
π2

)τ ∞∑
i=2

(i− 1)−2τ

)

=
d∏

k=1

(
1 + cτγ

τ
d,k

)
,

where we set cτ = (2/π2)τ ζ(2τ). Hence, if τ ∈ (1/2, 1) then

∥∥∥∥∥
∞∑

j=n+1

ξ2
j

∥∥∥∥∥
d

≤
∞∑

j=n+1

∥∥ξ2
j

∥∥
d
<

∞∑
j=n+1

j−1/τ ·

(
d∏

k=1

(
1 + cτγ

τ
d,k

))1/τ

<∞.

Since the first factor is no larger than
∫∞
n
x−1/τ dλ1(x) = τ/(1− τ) · n−(1−τ)/τ and

the second factor can be bounded by exp
(
cτ/τ ·

∑d
k=1(γd,k)

τ
)

we conclude

∥∥∥∥∥
∞∑

j=n+1

ξj(·)2 L∞([0, 1]d)

∥∥∥∥∥
1/2

< aτ exp

(
bτ

d∑
k=1

(γd,k)
τ

)
· n−(1−τ)/(2τ)

with aτ =
√
τ/(1− τ) and bτ = cτ/(2τ) = (2/π2)τ ζ(2τ)/(2τ). Now the claim

follows from (4.14) in Proposition 4.2. �
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4.3 Uniform approximation in Banach spaces of
smooth functions

Our derivation of necessary and sufficient conditions for various kinds of tractability
for the L∞-approximation problem defined on the weighted spaces F γ

d introduced
in Section 4.1.1 is based on simple embedding arguments. To this end, we consider
a whole scale of Banach spaces F

γ
d (where F γ

d is a special case of). Then we first
study lower bounds on the nth minimal error on a space P

γ
d ↪→ F

γ
d which consists

of d-variate polynomials of low degree. Afterwards, in Section 4.3.2, we use the
results for H

γ
d ←↩ F

γ
d from Section 4.2 to conclude corresponding upper bounds.

Finally we discuss a couple of concrete examples in Section 4.3.3.

4.3.1 Lower bounds for spaces of low-degree polynomials

Following the lines of [Wei12b, Section 4] we use Proposition 2.2 to obtain a lower
bound for the L∞-approximation error for the space

P
γ
d = span

{
pi : [0, 1]d → R, pi(x) = xi =

d∏
j=1

(xj)
ij i = (i1, . . . , id) ∈ {0, 1}d

}

of all real-valued d-variate polynomials of degree at most one in each coordinate
direction, defined on the unit cube [0, 1]d. We equip this linear space with the
weighted norm

‖f P
γ
d‖ = max

α∈{0,1}d

1

γα

∥∥Dαf L∞([0, 1]d)
∥∥ , f ∈ P

γ
d, (4.17)

similar to (4.5), where γ is a product weight sequence as described in (4.6), and
study the worst case setting.

Theorem 4.5. For d ∈ N and n ∈ N0 assume An,d ∈ A
n,cont
d ∪ A

n,adapt
d to be an

arbitrary algorithm for the uniform approximation problem defined on P
γ
d. Then

we have

∆wor(An,d; idd : Br(P
γ
d)→ L∞([0, 1]d)) ≥ r for all r ≥ 0

provided that n < 2s, where s = s(γ, d) ∈ {0, 1, . . . , d} is some integer such that

s >
1

2 + Cγ
·

(
d∑
j=1

γd,j − 2

)
. (4.18)

Proof. The proof of this lower error bound consists of several steps. First we fix
d ∈ N and construct a partition of the set of coordinates {1, . . . , d} into s+ 1 parts
which we will need later and with s = s(γ, d) satisfying (4.18). In a second step we
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4 Problems on function spaces with weighted norms

define a special linear subspace V ⊆ P
γ
d with dimV = 2s. Step 3 then shows that V

satisfies the assumptions of Proposition 2.2. The proof is completed in Step 4.
Step 1. For k ∈ {0, . . . , d} let us define inductively m0 = 0 and

mk = inf

t ∈ N mk−1 < t ≤ d, with 2 ≤
t∑

j=mk−1+1

γd,j


with the usual convention inf ∅ = ∞. Note that the infimum coincides with the
minimum in the finite case, since then mk ∈ N. Moreover we set

s = max {k ∈ {0, . . . , d} mk <∞} .

We denote Ik = {mk−1 + 1,mk−1 + 2, . . . ,mk} for k = 1, . . . , s. Thus, this gives a
uniquely defined disjoint partition of the set

{1, . . . , d} =

(
s⋃

k=1

Ik

)
∪ {ms + 1, . . . , d},

and mk denotes the last element of the block Ik. For all k = 1, . . . , s we conclude

2 ≤
∑
j∈Ik

γd,j < 2 + γd,mk ≤ 2 + Cγ,

where Cγ is the uniform upper bound for γd,j ; see Section 4.1.1. Finally, summation
of these inequalities gives

d∑
j=1

γd,j <
s∑

k=1

∑
j∈Ik

γd,j + 2 < (2 + Cγ)s+ 2,

and (4.18) follows immediately.
If s = 0 then we can stop at this point since the initial error is 1 as the norm

of the embedding P
γ
d ↪→ L∞ (cf. Proposition 2.4) and the remaining assertion is

trivial. Hence, from now on we can assume that s > 0 and thus ms ≥ 1.
Step 2. To apply Proposition 2.2 we have to construct a linear subspace V of

F = P
γ
d such that the condition (2.1) holds for the target space G = L∞([0, 1]d), the

embedding operator S = idd, and a = 1. Note that we restrict ourselves to the set

F̂ = {f ∈ F f depends only on x1, . . . , xms} ,

since we can interpret F̂ as the space Pγms by a simple isometric isomorphism.
We are ready to construct a suitable space V using the partition from Step 1.

We define V as the span of all functions gi : [0, 1]ms → R, i = (i1, . . . , is) ∈ {0, 1}s,
of the form

gi(x) =
s∏

k=1

(∑
j∈Ik

γd,j · xj

)ik

, x ∈ X = [0, 1]ms .
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4.3 Uniform approximation in Banach spaces of smooth functions

Clearly, V is a linear subspace of Pγms and with the interpretation above it is also
a linear subspace of F. Moreover it is easy to see that we have by construction

‖g F‖ =
∥∥g Pγms

∥∥ and ‖g L∞(X)‖ =
∥∥g L∞([0, 1]d)

∥∥ for g ∈ V.

Finally we note that dimV = #{0, 1}s = 2s. It remains to show that this subspace
is the right choice to prove the claim using Proposition 2.2.

Step 3. The proof of the needed condition (2.1),∥∥g Pγms

∥∥ ≤ ‖g L∞(X)‖ for all g ∈ V,

is a little bit technical. Due to the special structure of the functions g ∈ V , the
left-hand side reduces to max {γ−1

α ‖Dαg L∞(X)‖ α ∈M}, where the maximum
is taken over all multi-indices α in the set

M =

{
α ∈ {0, 1}ms

∑
j∈Ik

αj ≤ 1 for all k = 1, . . . , s

}
.

This is simply because for α /∈ M we have Dαg ≡ 0 and then the inequality is
trivial. To simplify the notation let us define

T : {0, 1}ms → Ns
0, α 7→ T (α) = σ = (σ1, . . . , σs),

where

σk =
∑
j∈Ik

αj for k = 1, . . . , s.

Note that T (M) = {0, 1}s. Moreover, for every g =
∑
i∈{0,1}s ci gi(·) ∈ V we define

a function

hg : Z =
s×

k=1

[
0,
∑
j∈Ik

γd,j

]
→ R, z 7→ hg(z) =

∑
i∈{0,1}s

ci

s∏
k=1

zikk =
∑

i∈{0,1}s
ci z

i.

Hence, hg(z) = g(x) under the transformation x 7→ z such that

zk =
∑
j∈Ik

γd,jxj for every k = 1, . . . , s and every x ∈ X.

The span, W , of all functions h : Z → R with this structure is a linear space, too.
Furthermore, easy calculus yields that

(Dα
x g) (x) =

(
ms∏
j=1

(γd,j)
αj

)(
DT (α)
z hg

)
(z) (4.19)
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for all g ∈ V , α ∈ M and x ∈ X. Here the x and z in Dα
x and D

T (α)
z indicate

differentiation with respect to x and z, respectively. Since the mapping x 7→ z
is surjective we obtain ‖Dαg L∞(X)‖ = γα

∥∥DT (α)hg L∞(Z)
∥∥ by the form of γ

given by (4.6). Thus,

max
α∈M

1

γα
‖Dαg L∞(X)‖ = max

σ∈{0,1}s
‖Dσhg L∞(Z)‖ .

Observe that (4.19) with α = 0 particularly yields that ‖g L∞(X)‖ = ‖hg L∞(Z)‖.
Therefore the claim reduces to

max
σ∈{0,1}s

‖Dσhg L∞(Z)‖ ≤ ‖hg L∞(Z)‖ for every g ∈ V.

We show this estimate for every h ∈ W , i.e.,

‖Dσh L∞(Z)‖ ≤ ‖h L∞(Z)‖ for all σ ∈ {0, 1}s. (4.20)

We start with the special case of one derivative. That is, we first consider σ = ek
for a certain k ∈ {1, . . . , s}. Since h is affine in each coordinate we can represent it
as

h(z) = a(z(k)) · zk + b(z(k))

with functions a and b which only depend on z(k) = (z1, . . . , zk−1, zk+1, . . . , zs).
Hence we have (Dekh)(z) = a(z(k)) and we need to show that

∣∣a(z(k))
∣∣ ≤ max

{∣∣b(z(k))∣∣ ,
∣∣∣∣∣a(z(k)) ·

∑
j∈Ik

γd,j + b(z(k))

∣∣∣∣∣
}
. (4.21)

This is obviously true for every z ∈ Z with a(z(k)) = 0. For a(z(k)) 6= 0 we can
divide by

∣∣a(z(k))
∣∣ to get

1 ≤ max

{
|t| ,

∣∣∣∣∣∑
j∈Ik

γd,j − t

∣∣∣∣∣
}

if we set t = −b(z(k))/a(z(k)). The last maximum is minimal if both of its entries
coincide. This is for t = 1

2

∑
j∈Ik γd,j. Consequently, we need to ensure that

2 ≤
∑
j∈Ik

γd,j

to conclude (4.21) for all admissible z ∈ Z. But this is true for every k ∈ {1, . . . , s}
by definition of the sets Ik in Step 1. Thus we have shown (4.20) for the special
case σ = ek for all k ∈ {1, . . . , s}.
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4.3 Uniform approximation in Banach spaces of smooth functions

The inequality (4.20) also holds true for every σ ∈ {0, 1}s by an easy inductive
argument on the cardinality of |σ|. Indeed, if |σ| ≥ 2 then σ = σ′+ek with |σ′| =
|σ| − 1. We now need to estimate

∥∥Dσ′+ekh L∞(Z)
∥∥. Since (Dekh)(z) = a(z(k))

has the same structure as the function h itself, we see that
∥∥Dσ′+ekh L∞(Z)

∥∥
equals

∥∥Dσ′a(z(k)) L∞(Z)
∥∥ and the proof of (4.20) then is completed by the

inductive step.
Step 4. Collecting the previous equalities and estimates we obtain

‖g P
γ
d‖ =

∥∥g Pγms

∥∥ = max
α∈{0,1}ms
T (α)∈{0,1}s

1

γα
‖Dαg L∞(X)‖ = max

σ∈{0,1}s
‖Dσhg L∞(Z)‖

≤ ‖hg L∞(Z)‖ = ‖g L∞(X)‖ =
∥∥g L∞([0, 1]d)

∥∥
for every g ∈ V , where V is a linear subspace of F = P

γ
d with dimV = 2s. Therefore

Proposition 2.2 with a = 1 yields that for n < dimV the worst case error

∆wor(An,d; idd : Br(P
γ
d)→ L∞([0, 1]d))

of any algorithm An,d from the class A
n,cont
d ∪A

n,adapt
d is lower bounded by r, the

radius of the centered ball Br(P
γ
d). �

4.3.2 Complexity results via embeddings

Keeping in mind the assertions shown in the previous sections, we are ready to
give conditions for tractability of the uniform approximation problem

App = (Appd)d∈N, Appd : B(Fγd)→ L∞([0, 1]d), Appd(f) = idd(f) = f.

We suppose (Fγd)d∈N to be a sequence of Banach spaces of real-valued functions f
defined on the unit cube [0, 1]d. We further assume that this sequence depends on
product weights γ = (γα)α∈Nd0 and fulfills one of the following simple assumptions:

(A4.1) P
γ
d ↪→ F

γ
d with norm

C1,d ≤ c · dq1 for all d ∈ N
and some absolute constants c, q1 ≥ 0,

(A4.2) F
γ
d ↪→ H

γ
d with norm

C2,d ≤ a · exp

(
b ·

d∑
j=1

(γd,j)
t

)
for all d ∈ N (4.22)

and some absolute constants a > 0, b ≥ 0, as well as a parameter t ∈ (0, 1]
independent of d and γ.

Here the spaces P
γ
d and H

γ
d = H(Kγ

d ) are defined as in Section 4.3.1 and Sec-
tion 4.1.2, respectively.

To simplify the notation we use the commonly known definitions of the so-called
sum exponents29 for the product weight sequence γ = (γα)α∈Nd0 , d ∈ N, induced by

29Note that some authors use the name decay for 1/p(·).
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uniformly bounded generator weights 0 < γd,j ≤ Cγ , j = 1, . . . , d; see (4.6). We set

p(γ) = inf

{
κ ≥ 0 Pκ(γ) = lim sup

d→∞

d∑
j=1

(γd,j)
κ <∞

}
,

as well as

q(γ) = inf

{
κ ≥ 0 Qκ(γ) = lim sup

d→∞

∑d
j=1 (γd,j)

κ

ln(d+ 1)
<∞

}
,

with the usual convention that inf ∅ =∞.
The following necessary conditions for (strong) polynomial tractability slightly

generalize Theorem 2 of [Wei12b].

Proposition 4.6 (Necessary conditions). Assume that (A4.1) holds true with
some q1 ≥ 0. Consider L∞-approximation over (Fγd)d∈N in the worst case setting

with respect to the class of algorithms A
n,cont
d ∪ A

n,adapt
d and the absolute error

criterion. Then

nwor(ε, d; Appd) >
1

2
· 2∧
(

1

2 + Cγ

d∑
j=1

γd,j

)
(4.23)

for all d ∈ N and every ε ∈ (0, C−1
1,d). Hence,

• if the problem App is polynomially tractable then q(γ) ≤ 1,

• if q1 = 0 and the problem is strongly polynomially tractable then p(γ) ≤ 1.

Proof. Let d ∈ N. Due to (A4.1), every algorithm An,d ∈ A
n,cont
d ∪A

n,adapt
d for L∞-

approximation defined on F
γ
d also applies to the embedded space P

γ
d . Furthermore

the embedding constant C1,d implies that the ball Br(P
γ
d) of radius r = C−1

1,d in P
γ
d

is completely contained in the unit ball B(Fγd) of Fγd . Therefore,

∆wor(An,d; Appd : B(Fγd)→ L∞([0, 1]d))

≥ ∆wor
(
An,d

∣∣
P
γ
d

; idd : Br(P
γ
d)→ L∞([0, 1]d)

)
.

From Theorem 4.5 we have that the latter quantity is lower bounded by r = C−1
1,d

provided that n < 2s, where s = s(γ, d) ∈ {0, . . . , d} satisfies (4.18). Since this
lower bound holds for any such An,d it remains valid for the nth minimal error, i.e.

ewor(n, d; Appd) ≥ C−1
1,d for all n < 2s.

Hence we obtain nwor(ε, d; Appd) ≥ 2s for all d ∈ N and every ε ∈ (0, C−1
1,d) which

implies (4.23) using (4.18).
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Now suppose the problem App = (Appd)d∈N to be polynomially tractable. Then
there are constants C, p > 0 and q2 ≥ 0 such that

nwor(ε, d; Appd) ≤ C ε−p dq2 for all d ∈ N and ε ∈ (0, 1].

For any given d ∈ N we can take, say, ε = ε(d) = 1
2
·min

{
1, C−1

1,d

}
to conclude

2∧

(
1

2 + Cγ

d∑
j=1

γd,j

)
< C ′ max

{
1, Cp

1,d

}
dq2 (4.24)

for some C ′ > 0 independent of d. If we now assume that C1,d ∈ O(dq1) then the
right-hand side of the last inequality belongs to O(dpq1+q2), as d→∞. Provided
that max {q1, q2} > 0 this is equivalent to the boundedness of

∑d
j=1 γd,j/ ln(d+ 1)

such that we arrive at q(γ) ≤ 1, as claimed.
Finally, the case of strong polynomial tractability can be treated similarly by

setting q1 = q2 = 0 in the latter bounds. Then we obtain that
∑d

j=1 γd,j is uniformly
bounded in d which implies p(γ) ≤ 1. �

Of course, the conditions q(γ) ≤ 1 and p(γ) ≤ 1 are also necessary for polynomial
and strong polynomial tractability with respect to smaller classes of algorithms
such as, e.g., An,lin

d (Λall).
Observe that one of the improvements compared to [Wei12b, Theorem 2] is

the possibility to choose the uniform upper bound for the generator weights, Cγ,
different than 1. Moreover, now we have weaker conditions on the embedding
constant C1,d. For the application we have in mind we will see that there still
C1,d = 1. But we note in passing that the stated conclusions for (strong) polynomial
tractability are only special instances of the more general bound (4.24) obtained in
the latter proof which we will not investigate further.

We next assume (A4.2) and show that slightly stronger conditions on the
product weights γ than in Proposition 4.6 are sufficient for polynomial and strong
polynomial tractability, respectively. This is stated in the next assertion which can
be found as Theorem 3 in [Wei12b].

Proposition 4.7 (Sufficient conditions). Suppose that (A4.2) holds true with
some t ∈ (0, 1]. Consider L∞-approximation over (Fγd)d∈N in the worst case setting

with respect to the class of linear algorithms A
n,lin
d (Λall) and the absolute error

criterion. Then

• q(γ) < t implies polynomial tractability,

• p(γ) < t implies strong polynomial tractability.

Proof. Due to (A4.2), the restriction of the algorithm A∗n,d in Corollary 4.4 from
H
γ
d to F

γ
d is admissible for L∞-approximation over F

γ
d . Furthermore, due to the
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linearity of A∗n,d, we have∥∥f − A∗n,df L∞([0, 1]d)
∥∥ ≤ ∆wor(A∗n,d; idd : B(Hγ

d)→ L∞([0, 1]d)) · ‖f H
γ
d‖

≤ ∆wor(A∗n,d; idd : B(Hγ
d)→ L∞([0, 1]d)) · C2,d · ‖f F

γ
d‖

for all f ∈ F
γ
d . Therefore we can estimate the nth minimal error by

ewor(n, d; Appd) ≤ ∆wor
(
A∗n,d

∣∣
F
γ
d

; Appd : B(Fγd)→ L∞([0, 1]d)
)

≤ C2,d ·∆wor(A∗n,d; idd : B(Hγ
d)→ L∞([0, 1]d)

≤ a · aτ · exp

(
b

d∑
j=1

(γd,j)
t + bτ

d∑
j=1

(γd,j)
τ

)
· n−(1−τ)/(2τ),

where τ is an arbitrary number from (1/2, 1). Choosing n such that the right-hand
side is not greater than a given ε ∈ (0, 1], we obtain an estimate for the information
complexity with respect to the class of linear algorithms,

nwor(ε, d; Appd) ≤ c1 · ε−2τ/(1−τ) · exp

(
c2

d∑
j=1

(γd,j)
t + c3

d∑
j=1

(γd,j)
τ

)
, (4.25)

where the non-negative constants c1, c2 and c3 only depend on τ , a and b.
Suppose that q(γ) < t. Then Qκ(γ) is finite for every κ > q(γ). Taking κ = t

we obtain∑d
j=1 (γd,j)

t

ln(d+ 1)
· ln(d+ 1) ≤ (Qt(γ) + δ) · ln(d+ 1) = ln(d+ 1)Qt(γ)+δ

for every δ > 0 whenever d is larger than a certain dδ ∈ N. This means that the

factor exp
(
c2

∑d
j=1(γd,j)

t
)

in (4.25) is polynomially dependent on d. On the other

hand, we can choose τ ∈ (max {q(γ), 1/2} , 1) such that Qτ (γ) is finite and thus

the factor exp
(
c3

∑d
j=1(γd,j)

τ
)

in (4.25) is also polynomially dependent on d. So,

for this value of τ we can rewrite (4.25) as

nwor(ε, d; Appd) ∈ O
(
ε−2τ/(1−τ) · (d+ 1)c4

)
,

with c4, as well as the implied factor in the O-notation, independent of d and ε
which means that the problem is polynomially tractable, as claimed.

Suppose finally that p(γ) < t. Then the sums
∑d

j=1(γd,j)
t and

∑d
j=1(γd,j)

τ for
τ ∈ (max {p(γ), 1/2} , 1) are both uniformly bounded in d. Consequently (4.25)
yields strong polynomial tractability, and completes the proof. �

The conditions in Proposition 4.7 are obviously also sufficient if we consider
larger classes of algorithms such as, e.g., An,cont

d ∪A
n,adapt
d . Moreover note that the

given proof also provides explicit upper bounds for the exponents of tractability.
Let us briefly discuss the different roles of the assumptions (A4.1) and (A4.2)

in the following remark.
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4.3 Uniform approximation in Banach spaces of smooth functions

Remark 4.8. Assumption (A4.1) is used to find a lower bound on the information
complexity for the space F

γ
d as long the space P

γ
d is continuously embedded in F

γ
d

with an embedding constant which grows at most polynomially with the dimension d.
Such an embedding can be shown for several different classes of functions.

On the other hand, assumption (A4.2) is used to find an upper bound on the
information complexity for the space F

γ
d as long as it is continuously embedded in

the unanchored weighted Sobolev space H
γ
d = H(Kγ

d ) with an embedding constant
depending exponentially on the sum of some power of the generators γd,j of the
product weights γ. This considerably restricts the choice of F

γ
d . We need this

assumption in order to use the linear algorithm A∗n,d defined on the space H
γ
d and

the error bound given in Corollary 4.4.
Obviously, we can replace the space H

γ
d in (A4.2) by any other space which

contains at least P
γ
d and for which we know a linear algorithm using n linear

functionals whose worst case error is polynomial in n−1 with an explicit dependence
on the product weights γ. �

We now show that the assumptions (A4.1) and (A4.2) allow us to characterize
weak tractability and the curse of dimensionality.

Theorem 4.9 (Weak tractability and the curse of dimensionality). Suppose that
for a sequence of Banach spaces (Fγd)d∈N equipped with product weights γ the
assumptions (A4.1) and (A4.2) hold true with some parameter t ∈ (0, 1]. Consider
the L∞-approximation problem App in the worst case setting and with respect to
the absolute error criterion. Then the following statements are equivalent:

(i) The problem is weakly tractable with respect to the class A
n,lin
d (Λall).

(ii) The problem is weakly tractable with respect to the class A
n,cont
d ∪A

n,adapt
d .

(iii) There is no curse of dimensionality for the class A
n,lin
d (Λall).

(iv) There is no curse of dimensionality for the class A
n,cont
d ∪A

n,adapt
d .

(v) For all κ > 0 we have lim
d→∞

1
d

∑d
j=1 (γd,j)

κ = 0.

(vi) There exists κ ∈ (0, t) such that lim
d→∞

1
d

∑d
j=1 (γd,j)

κ = 0.

Proof. We start by showing that (vi) implies (i), i.e.,

lim
ε−1+d→∞

ln (nwor(ε, d; Appd))

ε−1 + d
= 0,

where the information complexity is taken with respect to the class A
n,lin
d (Λall) of

linear algorithms that use continuous linear functionals. By the arguments used
in the proof of Proposition 4.7 we obtain estimate (4.25) for all ε in (0, 1], as well
as for every d ∈ N, and all τ ∈ (1/2, 1), due to assumption (A4.2). Clearly, for
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4 Problems on function spaces with weighted norms

κ ∈ (0, t) as in the hypothesis and t ∈ (0, 1] as in the embedding condition, we find
τ ∈ (1/2, 1) such that κ < min {t, τ}. So, since γd,j ≤ Cγ, we can estimate

d∑
j=1

(γd,j)
s = Cs

γ ·
d∑
j=1

(
γd,j
Cγ

)s
≤ Cs−κ

γ ·
d∑
j=1

(γd,j)
κ ≤ C ·

d∑
j=1

(γd,j)
κ ,

where s either equals t or τ and C = max {1, Cγ}. Therefore the right-hand side of
(4.25) can be estimated from above and thus

ln (nwor(ε, d; Appd))

ε−1 + d
≤ ln(c1)

ε−1 + d
+

2τ

1− τ
· ln (ε−1)

ε−1 + d
+ C ·max {c2, c3} ·

∑d
j=1 (γd,j)

κ

ε−1 + d

tends to zero when ε−1 + d approaches infinity, as claimed.

Clearly, (i) ⇒ (ii) ⇒ (iv) and (i) ⇒ (iii) ⇒ (iv). Moreover the implication
from (v) to (vi) is obvious. Hence, it only remains to show that (iv) ⇒ (v).

From (A4.1) we have estimate (4.23). Then the absence of the curse of dimen-
sionality implies

lim
d→∞

1

d

d∑
j=1

γd,j = 0.

Now Jensen’s inequality yields that

1

d

d∑
j=1

γd,j ≥

(
1

d

d∑
j=1

(γd,j)
κ

)1/κ

for 0 < κ ≤ 1,

because f(y) = yκ is a concave function for y > 0. This shows

lim
d→∞

1

d

d∑
j=1

(γd,j)
κ = 0 for all 0 < κ ≤ 1.

Finally, for every κ ≥ 1 we can estimate γd,j ≥ C1−κ
γ (γd,j)

κ since γd,j ≤ Cγ for

j = 1, . . . , d. Therefore limd→∞ d
−1
∑d

j=1(γd,j)
κ = 0 also holds true for κ > 1, and

the proof is complete. �

4.3.3 Conclusions and applications

In this last part of the current section we give some examples to illustrate the
obtained complexity results. To this end, we only have to prove the corresponding
embeddings, i.e. we need to verify assumption (A4.1) and/or (A4.2) from the
beginning of Section 4.3.2.
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4.3 Uniform approximation in Banach spaces of smooth functions

Example 4.10 (Limiting cases P
γ
d and H

γ
d). To begin with, we check the case

where F
γ
d = P

γ
d for every d ∈ N. Then (A4.1) obviously holds with C1,d = 1, i.e.

c = 1 and q1 = 0. To prove (A4.2), note that the algebraical inclusion F
γ
d ⊂ H

γ
d is

trivial by the definition of Hγ
d = H(Kγ

d ) given in Section 4.1.2. For f ∈ F
γ
d = P

γ
d

we calculate

‖f H
γ
d‖

2 ≤
∑

α∈{0,1}d

1

γα

∫
[0,1]d

∥∥Dαf L∞([0, 1]d)
∥∥2

dλd(x) ≤ ‖f F
γ
d‖

2 ·
∑

α∈{0,1}d
γα

using (4.10), as well as (4.17). Hence the norm of the embedding F
γ
d ↪→ H

γ
d is

bounded by ∑
α∈{0,1}d

γα

1/2

=

(
d∏
j=1

(1 + γd,j)

)1/2

≤ exp

(
1

2

d∑
j=1

γd,j

)
.

So, with a = 1, b = 1/2, and t = 1 the assumption (A4.2) is also fulfilled and we
can apply the stated assertions from Section 4.3.2 for the spaces F

γ
d = P

γ
d, d ∈ N.

We now turn to the case F
γ
d = H

γ
d . Unfortunately, the estimate above indicates

that (A4.1) may not hold for F
γ
d = H

γ
d with C1,d ∈ O(dq1) without imposing

additional conditions on the product weights γ. Nevertheless, in this case assump-
tion (A4.2) is trivially true with C2,d = 1, i.e., a = 1, b = 0, and t = 1. Therefore
we can apply Proposition 4.7 for this space. Thus the problem is polynomially
tractable if q(γ) < 1 and we have strong polynomial tractability if p(γ) < 1. It can
be shown that these conditions are also necessary; see Section 4.4. �

Next we discuss a more advanced sequence of Banach function spaces.

Example 4.11 (C(1,...,1)). For every d ∈ N consider the space

F
γ
d =

{
f : [0, 1]d → R f ∈ C(1,...,1)([0, 1]d), where ‖f F

γ
d‖ <∞

}
of functions which are once continuously differentiable in every coordinate direction,
where

‖f F
γ
d‖ = max

α∈{0,1}d

1

γα

∥∥Dαf L∞([0, 1]d)
∥∥ .

Since P
γ
d is a linear subset of Fγd and, due to (4.17), the norm ‖· Pγd‖ is simply

the restriction of ‖· Fγd‖ we have P
γ
d ↪→ F

γ
d with an embedding factor C1,d = 1

and hence (A4.1) holds true. For the norm C2,d of the embedding F
γ
d ↪→ H

γ
d , the

same estimates hold exactly as in the previous example and, moreover, the set
inclusion is obvious. Therefore also assumption (A4.2) is fulfilled and we can apply
the propositions and theorems of Section 4.3.2 to the sequence (Fγd)d∈N. �

Our last example F
γ
d = F γ

d , for all d ∈ N, finally shows that even very high
smoothness does not improve the conditions for tractability.
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4 Problems on function spaces with weighted norms

Example 4.12 (C∞). For d ∈ N and product weights γ let

F
γ
d = F γ

d =
{
f : [0, 1]d → R f ∈ C∞([0, 1]d) with ‖f F γ

d ‖ <∞
}
,

where the norm is given by (4.5). Obviously, Pγd ⊂ C∞, because functions from P
γ
d

are at most linear in each coordinate. This moreover implies that Dαf ≡ 0 for all
α ∈ Nd

0 \ {0, 1}d. Therefore, once again we have

‖f P
γ
d‖ = max

α∈{0,1}d

1

γα

∥∥Dαf L∞([0, 1]d)
∥∥ = ‖f F

γ
d‖ for all f ∈ P

γ
d.

Together this yields P
γ
d ↪→ F

γ
d with an embedding constant C1,d = 1 for all d ∈ N.

In addition, also (A4.2) can be concluded as in the examples above. So, even
infinite smoothness leads to the the same conditions for tractability and the curse
of dimensionality as before. �

Note that in the latter example we do not need to claim a product structure
for the weights according to multi-indices α ∈ Nd

0 \ {0, 1}d. Furthermore, this
example is a generalization of the space Fd studied in [NW09]. For γα ≡ 1 we repro-
duce the intractability result stated there because then F γ

d equals Fd for each d ∈ N.

In conclusion we discuss the tractability behavior of uniform approximation
defined on one of the spaces F

γ
d above using a special class of product weights γ

which are independent of the dimension d. That is, for the generator weights we
claim that

γd,j ≡ γ(j) ∈ Θ(j−β) for some β ≥ 0, (4.26)

and all j and d ∈ N. The imposed polynomial behavior of γ(j) is a typical example
in the theory of product weights. Clearly, p(γ) is finite if and only if β > 0, and if
so then p(γ) = 1/β. For details see [NW08, Section 5.3.4].

If β = 0 then the L∞-approximation problem App = (Appd)d∈N is intractable
(more precisely it suffers from the curse of dimensionality) due to Theorem 4.9,
assertion (v), since then d−1

∑d
j=1 γd,j does not tend to zero. For β ∈ (0, 1),

easy calculus yields q(γ) > 1. So, using Proposition 4.6 we conclude polynomial
intractability in this case. On the other hand, for all δ and κ with 0 < δ < κ ≤ 1,
we have∑d

j=1 j
−κ

d
=

∑d
j=1 j

−κdκ−(1+δ)

dκ−δ
≤
∑d

j=1 j
−(1+δ)

dκ−δ
→ 0 for d→∞

and if κ > 1 then the most left fraction obviously tends to zero, too. Hence
condition (vi) of Theorem 4.9 holds and the problem is weakly tractable for all
β > 0.

For β = 1 we use inequality (4.23) from Proposition 4.6 and estimate

d∑
j=1

γd,j ≥ c · ln(d+ 1)
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for some positive c. Therefore, for every ε ∈ (0, 1) the information complex-
ity n(ε, d; Appd) is lower bounded polynomially in d ∈ N. This proves that strong
polynomial tractability does not hold for β = 1. Moreover, it is easy to show that in
this case the sufficient condition q(γ) < 1 for polynomial tractability is not fulfilled.
So, we do not know whether polynomial tractability holds or not.

Finally, consider β > 1 in (4.26). Then we easily see that p(γ) = 1
β
< 1 = t.

Thus Proposition 4.7 provides strong polynomial tractability in this situation.
In summary, we proved all the assertions we claimed at the end of Section 4.1.1.

4.4 Possible extensions and further results

Note that the main result of this chapter, the lower bound given in Theorem 4.5,
can be easily transferred from [0, 1]d to more general domains Ωd ⊂ Rd. Indeed, the
case Ωd = [c1, c2]d, where c1 < c2, can be immediately obtained using the presented
techniques. It turns out that in this case we have to modify estimate (4.18) by a
constant which depends only on the length of the interval [c1, c2]. Consequently,
the general tractability behavior does not change.

Another extension of the obtained results is possible if we consider Lp-norms
(1 ≤ p < ∞) instead of the L∞-norm. In Section 4.4.1 we briefly discuss these
norms for the unweighted case. Then the modifications for the weighted case are
obvious and thus we leave it for the interested reader. In passing we correct a small
mistake stated in [NW09].

Finally, in Section 4.4.2, we show that the algorithm studied in Corollary 4.4
is essentially optimal for the uniform approximation problem on the unanchored
weighted Sobolev space H(Kγ

d ) defined in Example 4.1.

4.4.1 Lp-approximation

As in [Wei12b, Section 7] we follow Novak and Woźniakowski [NW09] and define
the spaces

Fd,p =

{
f ∈ C∞([c1, c2]d) ‖f Fd,p‖ = sup

α∈Nd0

∥∥Dαf Lp([c1, c2]d)
∥∥ <∞}

for 1 ≤ p <∞ and d ∈ N, where we assume that l = c2 − c1 > 0. In what follows
we want to approximate f ∈ Fd,p in the norm of Lp. That is, we modify (4.2) and
consider the problem Sp = (Spd)d∈N given by

Spd = idpd : B(Fd,p)→ Lp([c1, c2]d), f 7→ idpd(f) = f.

Hence we try to minimize the nth minimal worst case error

ewor
p (n, d; idpd) = inf

An,d
sup

f∈B(Fd,p)

∥∥f − An,d(f) Lp([c1, c2]d)
∥∥

75



4 Problems on function spaces with weighted norms

which now depends on the additional integrability parameter p. Observe that,
without loss of generality, we can restrict ourselves to the case [c1, c2] = [0, l].

In order to conclude a lower bound analogue to (4.3) and Theorem 4.5, i.e.,
ewor
p (n, d; idpd) ≥ 1 for n < 2s, we once again use Proposition 2.2 with F = Fd,p and

G = Lp([0, l]
d).30 The authors of [NW09] suggest to use the subspace V

(k)
d ⊂ Fd,p

defined as

V
(k)
d = span

gi : [0, l]d → R, x 7→ gi(x) =
s∏
j=1

 jk∑
m=(j−1)k+1

xm

ij

i ∈ {0, 1}s
 ,

where s = bd/kc and k ∈ N such that kl ≥ 2(p + 1)1/p. Hence, if l < 2(p + 1)1/p

then we have to use blocks of variables with size k > 1, in order to guarantee (2.1).
That is, to fulfill the condition

‖g Fd,p‖ ≤
∥∥g Lp([0, l]

d)
∥∥ for all g ∈ V (k)

d . (4.27)

Therefore Novak and Woźniakowski defined k =
⌈
2(p+ 1)1/p/l

⌉
, but this is too

small as the following example shows.

Example 4.13. For d ≥ 4 take l = 1, i.e. [c1, c2]d = [0, 1]d, and p = 1. Then k = 4
should be a proper choice, but for g∗(x) = (x1 +x2 +x3 +x4)− 2 it can be checked
(using a computer algebra system) that

∥∥g∗ L1([0, 1]d)
∥∥ =

7

15
< 1 =

∥∥∥∥∂g∗∂x1

L1([0, 1]d)

∥∥∥∥ .
This obviously contradicts (4.27). �

For an exhaustive proof of an assertion which states that a slightly larger choice
of k ∈ N suffices to conclude the desired intractability result we need to show the
following technical lemma first. Its proof is based on some well-known arguments
from Banach space geometry.

Lemma 4.14. Let p ∈ [1,∞) and k ∈ N. Then

Ik,p =

∫
[−1/2,1/2]k

∣∣∣∣∣
k∑

m=1

zm

∣∣∣∣∣
p

dλk(z) ≥ Cp · kp/2 (4.28)

with some Cp ≥ 1/[(2
√

2)p(1 + p)] independent of k.

30Note that it is sufficient to restrict ourselves to the case r = 1 since now we do not need to
take care of embedding constants as in the proof of Proposition 4.6.
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Proof. For k = 1 we easily calculate I1,p = 1/[2p(1 + p)]. Hence, without loss of
generality we can assume k ≥ 2 in what follows.

To abbreviate the notation, let us define

f = fk : Rk → R, z = (z1, . . . , zk) 7→ f(z) =
k∑

m=1

zm (4.29)

for any fixed k ≥ 2. Moreover, for given vectors z,y ∈ Rk, let 〈z,y〉 denote the inner
product

∑k
m=1 zmym in Rk. In the special case y = ξ = 1/

√
k · (1, . . . ,1) ∈ Sk−1

it is 〈z, ξ〉 = t for a given t ∈ R if and only if f(z) = t
√
k. Furthermore note that

every y in the k-dimensional unit sphere Sk−1 ⊂ Rk uniquely defines a hyperplane
y⊥ =

{
z ∈ Rk 〈z,y〉 = 0

}
perpendicular to y which contains zero. Therefore, for

y = ξ and every t ∈ [0,∞), the set

Ht = ξ⊥ + t · ξ =
{
z ∈ Rk 〈z, ξ〉 = t

}
describes a parallel shifted hyperplane in Rk with distance t to the origin. Using
Fubini’s theorem, this leads to the following representation:

Ik,p =

∫
[−1/2,1/2]k

|f(z)|p dλk(z) = 2 ·
∫

[−1/2,1/2]k

〈z,ξ〉≥0

f(z)p dλk(z)

= 2 · kp/2 ·
∫ ∞

0

tp
(∫

[−1/2,1/2]k∩Ht
1 dλk(z)

)
dλ1(t).

Now we see that the inner integral describes the (k − 1)-dimensional volume

v(t) = λk−1
(
[−1/2, 1/2]k ∩ Ht

)
of the parallel section of the unit cube with the hyperplanes defined above. Because
of Ball’s famous theorem we know that v(0) ≤

√
2 holds independently of k; see,

e.g., Chapter 7 in the monograph of Koldobsky [Kol05]. Moreover taking H0 = ξ⊥

provides a central hyperplane section of the unit cube. From this observation we
conclude that ∫ ∞

0

v(t) dλ1(t) =
1

2
· λk([−1/2, 1/2]k) =

1

2

because of the symmetry of [−1/2, 1/2]k w.r.t. H0. In addition, by Brunn’s theorem
(cf. [Kol05, Theorem 2.3]), the function v is non-negative and non-increasing on
the interval [0,∞). Thus v is related to the distribution function of a certain
non-negative real-valued random variable X, up to some normalizing factor, i.e.
v(t) = v(0)·P({X ≥ t}). Using Hölder’s inequality31 we obtain E(X1+p) ≥ (EX)1+p

and, respectively,

Ik,p = kp/2 · 2
∫ ∞

0

tp v(t) dλ1(t) ≥ kp/2 · 2

v(0)p (1 + p)

(∫ ∞
0

v(t) dλ1(t)

)1+p

31See also [Kol05, Lemma 7.5].
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by integration by parts.
In summary we have shown (4.28) and hence the proof is complete. �

Now the mentioned intractability result reads as follows:

Proposition 4.15. Let 1 ≤ p <∞ and l > 0. Moreover, choose k ∈ N such that

k ≥ κp,l =
⌈
8(p+ 1)2/p/l2

⌉
. (4.30)

Then condition (4.27) holds for V
(k)
d ⊂ Fd,p. Hence the Lp-approximation problem

Sp = (idpd : Fd,p → Lp([0, l]
d))d∈N suffers from the curse of dimensionality since

ewor
p (n, d; idpd) ≥ 1 for all n < 2bd/kc

and every d ∈ N.

Proof. Due to the structure of the functions g from V
(k)
d , it suffices to show that∥∥Dαg Lp([0, l]

ks)
∥∥ ≤ ∥∥g Lp([0, l]

ks)
∥∥ for all g ∈ V (k)

d and every α ∈M(k)
d ,

where the set of multi-indices M(k)
d is defined by

M(k)
d =

α = (α1, . . . , αks) ∈ {0, 1}ks
∑
m∈Ij

αm ≤ 1 for all j = 1, . . . , s


and Ij = {(j − 1)k + 1, . . . , jk}. Observe that M(k)

d depends on d via s = bd/kc.
Similar to the proof of Theorem 4.5, we only need to consider the case α = et ∈
{0, 1}ks with t ∈ Ij. The rest then follows by induction.

Given t ∈ Ij for some j ∈ {1, . . . , s} we can represent every fixed g ∈ V
(k)
d ,

as well as its partial derivative Detg, by some functions a, b : [0, l]k(s−1) → R
(depending on g and j) such that

g(x) = a(x̃)
k∑

m=1

ym + b(x̃) and (Detg)(x) = a(x̃), x ∈ [0, l]ks.

Here we split the ks-dimensional vector x = (xI1 , . . . ,xIj−1
,y,xIj+1

, . . . ,xIs)

into x̃ = (xI1 , . . . ,xIj−1
,xIj+1

, . . . ,xIs) ∈ [0, l]k(s−1) and y = (y1, . . . , yk) ∈
[0, l]k, where xIj denotes the k-dimensional block of components xm in x with
coordinates m ∈ Ij. Using this representation we can rewrite the inequality∥∥Detg Lp([0, l]

ks)
∥∥ ≤ ∥∥g Lp([0, l]

ks)
∥∥ as∫

[0,l]k(s−1)

∫
[0,l]k
|a(x̃)|p dλk(y) dλk(s−1)(x̃)

≤
∫

[0,l]k(s−1)

∫
[0,l]k

∣∣∣∣∣a(x̃)
k∑

m=1

ym + b(x̃)

∣∣∣∣∣
p

dλk(y) dλk(s−1)(x̃)
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such that it is enough to prove a pointwise estimate of the inner integrals for
(λk(s−1)-almost every) fixed x̃ ∈ [0, l]k(s−1) with a = a(x̃) 6= 0. Easy calculus yields∫

[0,l]k

∣∣∣∣∣a
k∑

m=1

ym + b

∣∣∣∣∣
p

dλk(y) = lp+k ·
∫

[−1/2,1/2]k

∣∣∣∣∣a
k∑

m=1

zm + b′

∣∣∣∣∣
p

dλk(z)

for some constant b′ ∈ R that depends on b = b(x̃). Note that the right-hand side of
the latter equality is minimized for b′ = 0. Therefore we can estimate the left-hand
side from below by∫

[0,l]k

∣∣∣∣∣a
k∑

m=1

ym + b

∣∣∣∣∣
p

dλk(y) ≥ |a|p · lp+k ·
∫

[−1/2,1/2]k

∣∣∣∣∣
k∑

m=1

zm

∣∣∣∣∣
p

dλk(z)

=

∫
[0,l]k
|a|p dλk(y) · lp ·

∫
[−1/2,1/2]k

∣∣∣∣∣
k∑

m=1

zm

∣∣∣∣∣
p

dλk(z).

To complete the proof it remains to show that our choice of k ≥ κp,l, with κp,l
given in (4.30), implies that∫

[−1/2,1/2]k

∣∣∣∣∣
k∑

m=1

zm

∣∣∣∣∣
p

dλk(z) ≥ l−p (4.31)

but this easily follows from Lemma 4.14 above. �

Actually, using other proof methods we can slightly improve the lower bound
for Cp in Lemma 4.14 and thus also κp,l in formula (4.30) of Proposition 4.15. This
is the subject of our final remark within this subsection:

Remark 4.16. Let Y = (Y1, . . . , Yk) denote a random vector of k ∈ N independent
copies of some uniformly [−1/2, 1/2]-distributed random variable Y0. Then Ik,p can
be interpreted as the pth absolute moment E(|fk(Y )|p) of fk(Y ), where fk again is
given by (4.29). In the case of even p = 2N , N ∈ N, this can be calculated exactly
using the multinomial theorem. For k,N ∈ N we obtain

Ik,2N = E
(
|fk(Y )|2N

)
= 2−2N

∑
j=(j1,...,jk)∈Nk0
j1+...+jk=N

(
2N

2j1, . . . , 2jk

) k∏
m=1

1

2jm + 1
,

where we used the independence of the Ym’s and fact that

E(Y n
0 ) =

∫ 1/2

−1/2

yn dλ1(y) =

{
0, if n = 2j + 1,

(2j + 1)−1 · 2−2j, if n = 2j,

and j ∈ N0. In particular, we conclude

Ik,2 =
1

22 · 3
· k and Ik,4 =

1

48
· k
(
k − 2

5

)
≥ 1

24 · 5
· k2.
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4 Problems on function spaces with weighted norms

Since Ik,p =
∥∥fk Lp([−1/2, 1/2]k)

∥∥p we can use the monotonicity of the
Lebesgue spaces in order to estimate Cp for the remaining powers p. For k ∈ N
and 1 ≤ q ≤ p < ∞ we obtain Ik,p ≥ (Ik,q)

p/q ≥ (Cq)
p/q kp/2, i.e. Cp ≥ (Cq)

p/q,
provided that Ik,q ≥ Cq k

q/2. Consequently, we can take

k ≥

{
d12/l2e , if 2 ≤ p < 4,⌈
4
√

5/l2
⌉
, if 4 ≤ p

to fulfill (4.31) in the proof of Proposition 4.15. This clearly improves the bound
k ≥ κp,l in (4.30). �

Nevertheless, we want to stress the point that also with these improvements
the lower bounds on k are not sharp since we know from [NW09] that in the
limit case p = ∞ we can take k = d2/le. On the other hand, we note that
Hoeffding’s inequality implies the existence of some universal constants C ′p such

that Ik,p ≤ C ′p k
p/2 for all p ∈ [1,∞) and every k ∈ N. Thus the estimates on the

integrals Ik,p are of the right order in k such that we need other proof techniques
to obtain a better dependence of k on l = c2 − c1.

4.4.2 Uniform approximation in the weighted Sobolev space

To show that the linear algorithm A∗n,d studied in Corollary 4.4 is essentially optimal
for L∞-approximation on the unanchored Sobolev space H

γ
d = H(Kγ

d ) in the worst
case setting we study (weighted) L2-approximation on a related Banach space Fd
in the average case setting; see Example 2.15 for details. The relation of these two
problems is given by the assertion below which follows from [KWW08, Theorem 1].

Proposition 4.17. For d ∈ N let H(Kd) denote a RKHS induced by a kernel
Kd : [0, 1]d × [0, 1]d → R that satisfies (4.13).32 Moreover, define the set of non-
vanishing probability density functions % on the unit cube by

Dd =

{
% : [0, 1]d → [0,∞)

∫
[0,1]d

%(x) dλd(x) = 1 and % > 0 (λd-a.e.)

}
.

Then, for every n ∈ N0 and all d ∈ N,

ewor
(
n, d; idd : B(H(Kd))→ L∞([0, 1]d)

)
≥ sup

%∈Dd
eavg
(
n, d; id%d : Fd → L%2([0, 1]d)

)
.

Here the nth minimal errors are taken with respect to all algorithms from the class
A
n,lin
d (Λall).

32Note that (4.13) clearly implies that
∫
[0,1]d

Kd(x,x) %(x) dλd(x) is finite for every probability

density function % on [0, 1]d.
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4.4 Possible extensions and further results

In particular, it follows that the (nth minimal) worst case error for L∞-
approximation on the unit ball of the Sobolev space H

γ
d is lower bounded by the

average case error of unweighted L2-approximation on the corresponding Banach
space. That is, we set Kd = Kγ

d and % = χ[0,1]d ∈ Dd in the following.
In turn we have (strong) polynomial tractability for the uniform approximation

problem w.r.t. the worst case setting only if average case L2-approximation is
polynomially tractable, as long as we consider the absolute error criterion. Due to
[NW08, Theorem 6.1] we know that the latter holds true if and only if there exist
a positive constant c1, non-negative q1, q2 and τ ∈ (0, 1) such that

c2 = sup
d∈N

1

dq2

 ∞∑
i=dc1 dq1e

(λd,i)
τ

1/τ

<∞,

where (λd,i)
∞
i=1 denotes the sequence of eigenvalues of the correlation operator Cνd

with respect to a non-increasing ordering. Moreover we have strong polynomial
tractability if and only if this holds with q1 = q2 = 0.

Because of the observation at the end of Example 2.15 it suffices to consider
the eigenvalues of W γ

d = (Sγd )† Sγd : Hγ
d → H

γ
d , where Sγd describes the embedding

H
γ
d ↪→ L2([0, 1]d). Recall that these eigenvalues are given by{
λ̃d,γ,m =

d∏
k=1

λ1,γd,k,mk =
d∏

k=1

γd,k
γd,k + π2 (mk − 1)2

m = (m1, . . . ,md) ∈ Nd

}
;

see (4.12) at the end of Example 4.1. Thus we only need to reorder this set
appropriately using a rearrangement ψd : N→ Nd such that

λd,i = λ̃d,γ,ψd(i) ≥ λ̃d,γ,ψd(i+1) for all i ∈ N.

Given d ∈ N, τ ∈ (0, 1), as well as c1 > 0, and q1 ≥ 0 we estimate

∞∑
i=dc1 dq1e

(λd,i)
τ =

∑
m∈Nd

(
λ̃d,γ,m

)τ
−
dc1 dq1e−1∑

i=1

(λd,i)
τ

≥
d∏

k=1

∑
m∈N

(
λ1,γd,k,m

)τ − (λd,1)τ (dc1 d
q1e − 1)

≥
d∏

k=1

(
1 +

∞∑
m=2

(
γd,k

γd,k + π2(m− 1)2

)τ)
− c1 d

q1 ,

since λd,1 = λ̃d,γ,(1,...,1) =
∏d

k=1 λd,γd,k,1 = 1. Due to the boundedness of the
generator weights γd,k ≤ Cγ for every k ∈ {1, . . . , d}, we can further estimate the
sum by

∞∑
m=2

(
γd,k

γd,k + π2(m− 1)2

)τ
≥ γτd,k

∞∑
i=1

(C ′γ)
τ

i2τ
= γτd,k (C ′γ)

τ ζ(2τ),
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4 Problems on function spaces with weighted norms

where we set C ′γ = (Cγ + π2)−1. Because of ln(1 + y) ≥ y/(1 + y) for all y ≥ 0 we
conclude that for k = 1, . . . , d and some positive C depending on Cγ and τ

ln
(
1 + γτd,k (C ′γ)

τ ζ(2τ)
)
≥

(C ′γ)
τ ζ(2τ)

1 + γτd,k (C ′γ)
τ ζ(2τ)

· γτd,k ≥ C · γτd,k.

Consequently, this yields

∞∑
i=dc1 dq1e

(λd,i)
τ ≥

d∏
k=1

exp
(
C · γτd,k

)
− c1 d

q1 = exp

(
C

d∑
k=1

γτd,k

)
− c1 d

q1 .

Therefore, polynomial tractability implies q(γ) < 1 and strong polynomial
tractability is possible only if p(γ) < 1. Here p and q describe the sum exponents
of the product weight sequence γ = (γα)α∈Nd0 , d ∈ N, defined at the beginning of
Section 4.3.2.

Together with Proposition 4.7 this finally proves

Theorem 4.18. Consider the uniform approximation problem defined on the se-
quence of unanchored Sobolev spaces (Hγ

d)d∈N, where the product weight sequence γ
is constructed out of a uniformly bounded generator sequence Cγ ≥ γd,1 ≥ . . . ≥ γd,d,
d ∈ N. We study this problem in the worst case setting and with respect to the
absolute error criterion. Then we have

• polynomial tractability if and only if q(γ) < 1 and

• strong polynomial tractability if and only if p(γ) < 1.
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CHAPTER 5

Problems on Hilbert spaces with (anti)symmetry conditions

In this last chapter we describe an essentially new kind of a priori knowledge
which can help to overcome the curse of dimensionality. As in Section 2.4, we
study compact linear problems S = (Sd)d∈N defined between tensor products of
Hilbert spaces but now we restrict our attention to problem elements which fulfill
certain (anti)symmetry conditions. After investigating some basic properties of the
related subspaces of (anti)symmetric problem elements in Section 5.1 we construct
a linear algorithm that uses finitely many continuous linear functionals and show
an explicit formula for its worst case error in terms of the eigenvalues λ = (λm)m∈N
of the operator W1 = S1

†S1. Moreover, in Section 5.2 we show that this algorithm
is optimal w.r.t. a wide class of algorithms. Next we clarify the influence of different
(anti)symmetry conditions on the complexity, compared to the case for the classical
unrestricted problem studied in Section 2.4.3. In particular, we give necessary
and sufficient conditions for (strong) polynomial tractability of (anti)symmetric
problems in Section 5.3. Apart from the absolute error criterion we also deal
with normalized errors. Finally, in Section 5.4, we discuss several applications.
Section 5.4.2 particularly indicates how to apply our results to the approximation
problem for wavefunctions.

Most of the results stated in this chapter are already published in the articles
[Wei11] and [Wei12a]. At some points we improve the known results and/or proof
techniques slightly. In particular, the presented results also hold for problems
defined on finite-dimensional or on non-separable source spaces.

5.1 Basic definitions related to (anti)symmetry

The aim of this section is to introduce the notion of (anti)symmetry in Hilbert
spaces. In order to illustrate this concept we mainly deal with function spaces. For
this purpose in Section 5.1.1 we start by defining (anti)symmetry properties for
functions which will lead us to orthogonal projections, mapping the whole space
onto its subspace of (anti)symmetric functions. In Section 5.1.2 it will turn out
that these projections applied to a given basis of a tensor product Hilbert function
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5 Problems on Hilbert spaces with (anti)symmetry conditions

space lead us to handsome formulas for orthonormal bases of the subspaces. Finally
we generalize our approach and define (anti)symmetry conditions for arbitrary
tensor product Hilbert spaces based on the deduced results for function spaces.
Section 5.1.3 is devoted to this generalization.

5.1.1 Hilbert function spaces

Following Hamaekers [Ham09, Section 2.5] we use a general approach to (anti)sym-
metric functions which also can be found in [Wei12a]. Consider H to be a (possibly
non-separable) Hilbert space of real-valued multivariate functions f defined on
some domain Ω in Rd, where we assume d ≥ 2 to be fixed. Furthermore, take an
arbitrary non-empty subset of coordinates I ⊆ {1, . . . , d}. For every such subset
we define the set

SI =
{
π : {1, . . . , d} → {1, . . . , d} π bijective and π

∣∣
{1,...,d}\I = id

}
(5.1)

of all permutations on {1, . . . , d} that leave the complement of I fixed. To abbreviate
the notation we identify π ∈ SI with the corresponding permutation π′ on Rd,

π′ : Rd → Rd, x = (x1, . . . , xd) 7→ π′(x) = (xπ(1), . . . , xπ(d)).

For an appropriate definition of partial (anti)symmetry of functions f ∈ H we
need the following simple assumptions. Given any π ∈ SI we assume that

(A5.1) x ∈ Ω implies π(x) ∈ Ω,

(A5.2) f ∈ H implies f(π(·)) ∈ H and

(A5.3) there ex. cπ ≥ 0 (independent of f) such that ‖f(π(·)) H‖ ≤ cπ ‖f H‖.

A function f ∈ H is called partially symmetric w.r.t. I (or I-symmetric for short)
if any permutation π ∈ SI applied to the argument x does not affect the value of f .
Hence,

f(x) = f(π(x)) for all x ∈ Ω and every π ∈ SI . (5.2)

Moreover, we call a function f ∈ H partially antisymmetric w.r.t. I (or I-
antisymmetric, respectively) if f changes its sign by exchanging the variables xi
and xj with each other, where i, j ∈ I. That is, we have

f(x) = (−1)|π|f(π(x)) for all x ∈ Ω and every π ∈ SI , (5.3)

where |π| denotes the inversion number of the permutation π. The term (−1)|π|

therefore coincides with the sign, or parity of π and is equal to the determinant
of the associated permutation matrix. In the case #I = 1 we do not claim any
(anti)symmetry, since then the set SI = {id} is trivial. For I = {1, . . . , d} functions f
which satisfy (5.2) or (5.3), respectively, are called fully (anti)symmetric.
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5.1 Basic definitions related to (anti)symmetry

Note that, in particular, formula (5.3) yields that the value f(x) of I-antisym-
metric functions f equals zero if xi = xj with i 6= j and i, j ∈ I. For I-symmetric
functions such an implication does not hold. Therefore the (partial) antisymmetry
property is a somewhat more restrictive condition than the (partial) symmetry
property with respect to the same subset I. As we will see in Section 5.3 this will
also affect our complexity estimates.

Next we define the so-called symmetrizer SH
I and antisymmetrizer AH

I on H
with respect to the subset I by

SH
I : H → H, f 7→ SH

I (f) =
1

#SI

∑
π∈SI

f(π(·))

and

AH
I : H → H, f 7→ AH

I (f) =
1

#SI

∑
π∈SI

(−1)|π|f(π(·)).

If there is no danger of confusion we use the notation SI and AI instead of SH
I

and AH
I , respectively. The following lemma collects some basic properties. It

generalizes Lemma 10.1 in Zeiser [Zei10].

Lemma 5.1. For ∅ 6= I ⊆ {1, . . . , d} both the mappings PI ∈ {SI ,AI} define
bounded linear operators on the Hilbert space H with P 2

I = PI . Thus, SI and AI

provide projections of H onto the closed linear subspaces

SI(H) = {f ∈ H f satisfies (5.2)} and AI(H) = {f ∈ H f satisfies (5.3)}
(5.4)

of all partially (anti)symmetric functions w.r.t. I in H, respectively. If, in addition,

〈f(π(·)), g(π(·))〉H = 〈f, g〉H for all f, g ∈ H and every π ∈ SI (5.5)

then the operators are self-adjoint and hence the projections are orthogonal. Con-
sequently,

H = SI(H)⊕ (SI(H))⊥ = AI(H)⊕ (AI(H))⊥. (5.6)

Proof. Obviously PI ∈ {SI ,AI} is well-defined due to the assumptions (A5.1)
and (A5.2). The linearity directly follows from the definition and, using (A5.3), we
see that the operator norm of PI is bounded by max {cπ π ∈ SI}.

To show that the operators are idempotent, i.e. that P 2
I = PI , we first prove

that AI(f) satisfies (5.3) for every f ∈ H. Therefore, we use the representation

(AI(f))(π(·)) =
1

#SI

∑
σ∈SI

(−1)|σ|f(σ(π(·))) =
1

#SI

∑
λ∈SI

(−1)|λ|+|π|f(λ(·))

= (−1)|π|(AI(f))(·)
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5 Problems on Hilbert spaces with (anti)symmetry conditions

for every fixed π ∈ SI . Here we imposed λ = σ ◦ π ∈ SI and used that∣∣λ ◦ π−1
∣∣ = |λ|+

∣∣π−1
∣∣ = |λ|+ |π| .

Hence we have shown AI(H) ⊆ {f ∈ H f satisfies (5.3)}. In a second step, it is
easy to check that for every function g ∈ H which satisfies (5.3) it is AI(g) = g.
Thus, {f ∈ H f satisfies (5.3)} ⊆ AI(H) and AI is a projector onto AI(H). Since
the same arguments also apply for the symmetrizer SI this shows (5.4), as well as
P 2
I = PI for PI ∈ {SI ,AI}.

To prove the self-adjointness of PI we need to show that for f and g in H we
have 〈PIf, g〉H = 〈f, PIg〉H . To this end, note that (5.5) is equivalent to the fact
that

〈f(π(·)), g〉H = 〈f, g(σ(·))〉H , f, g ∈ H, π ∈ SI ,

where we set σ = π−1 and used (A5.2). Now the claimed assertion follows from the
bilinearity of the inner product 〈·, ·〉H . Moreover, orthogonality and the decomposi-
tions stated in (5.6) are simple consequences. �

We note in passing that (5.5) already implies (A5.3). Furthermore, the notion
of partially (anti)symmetric functions can be easily extended to more than one
subset I. Therefore, consider two non-empty subsets of coordinates I, J ⊂ {1, . . . , d}
with I ∩ J = ∅. Then we call a function f ∈ H multiple partially (anti)symmetric
w.r.t. I and J if f satisfies (5.2), or (5.3), respectively, for I and J . Since I and J
are disjoint we observe that π ◦ σ = σ ◦ π for all π ∈ SI and σ ∈ SJ . Hence the
linear projections PI ∈ {SI ,AI} and PJ ∈ {SJ ,AJ} commute on H. That is, we
have PI ◦ PJ = PJ ◦ PI . Further extensions to more than two disjoint subsets
of coordinates are possible. We will restrict ourselves to the case of at most two
coordinate subsets, because in particular wavefunctions can be modeled as functions
which are antisymmetric w.r.t. I and J = Ic, where Ic denotes the complement
of I in {1, . . . , d}; see, e.g., Section 5.4.2.

5.1.2 Tensor products of Hilbert function spaces

In the previous subsection the function space H was a somewhat abstract Hilbert
space of d-variate real-valued functions. Indeed, for the definition of (anti)symmetry
we do not need to claim any product structure. On the other hand, it is also
motivated by applications to consider tensor product function spaces; see, e.g.,
Section 3.6 in Yserentant [Yse10]. In detail, it is well-known that so-called spaces

of dominated mixed smoothness, e.g. W
(1,...,1)
2 (R3d), can be represented as certain

tensor products; see Section 1.4.2 in Hansen [Han10].
Anyway, let us take into account such a structure, i.e. let us assume that

H = Hd = H1 ⊗ . . .⊗H1 (d ≥ 2 times),
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where H1 is a suitable Hilbert space of functions f : D → R; see also the con-
structions given in Section 2.4.1. There it is stated that we can construct an
orthonormal basis Ed of Hd out of a given ONB E1 of H1; see (2.13). Since now we
deal with function spaces, the d-fold simple tensors in Ed are d-variate functions
ed,j : Dd → R. More precisely, they are given by

ed,j(x) =
d∏
l=1

ejl(xl), where x = (x1, . . . , xd) ∈ Dd and j ∈ Id = (I1)d,

provided that E1 = {em : D → R m ∈ I1} denotes the underlying ONB in H1. To
exploit this representation we start with a simple observation.

Let d ∈ N. Moreover assume j ∈ Id and x ∈ Dd, as well as a non-empty
subset I of {1, . . . , d}, to be arbitrarily fixed. If we define σ = π−1 ∈ SI then

ed,j(π(x)) =
d∏
l=1

ejl(xπ(l)) =
d∏
l=1

ejσ(l)(xl) = ed,σ(j)(x). (5.7)

For simplicity, once again we identified π(j) = π(j1, . . . , jd) with (jπ(1), . . . , jπ(d))
for j ∈ Id = (I1)d. Since x ∈ Dd was arbitrary and |π| = |π−1| = |σ| we obtain

SIed,j =
1

#SI

∑
σ∈SI

ed,σ(j) and AIed,j =
1

#SI

∑
σ∈SI

(−1)|σ|ed,σ(j) (5.8)

for all j ∈ Id. Besides this, (5.7) can be used to verify that (5.5) in Lemma 5.1
always holds true for (unweighted) tensor products of Hilbert function spaces.

Note that in general, i.e. for arbitrary j ∈ Id and σ ∈ SI , the tensor products
ed,σ(j) and ed,j do not coincide, because taking the tensor product is not commuta-
tive in general. Therefore SI is not simply the identity on the set of basis functions
Ed = {ed,j j ∈ Id}. On the other hand, we see that for different j ∈ Id many of
the functions SIed,j coincide. Of course the same holds true for AIed,j , at least up
to a factor of (−1).

We will see in the following that for PI ∈ {SI ,AI} a linearly independent subset
of all projections {PIed,j j ∈ Id} equipped with suitable normalizing constants can
be used as an ONB of the linear subspace PI(Hd) of I-(anti)symmetric functions
in Hd. For the application we have in mind, we need this result only in the case
where the underlying space H1 is separable. Without loss of generality, we can thus
assume that33

I1 = M1 = {m ∈ N m < dimH1 + 1}

and consequently Id = Md = (M1)d ⊆ Nd. Clearly, in the most interesting case the
set Id equals Nd.

33Note that also the case of abstract, countable index sets I1 can be reduced to this form by the
application of some simple isomorphism.
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5 Problems on Hilbert spaces with (anti)symmetry conditions

To state the claimed assertion, we need a further definition. For fixed d ≥ 2
and I ⊆ {1, . . . , d}, let us introduce a function

MI = MI,d : Nd → {0, . . . ,#I}#I

which counts how often different indices occur in a given multi-index j ∈ Nd among
the subset I of coordinates, ordered with respect to their rate. To give an example
let d = 7 and I = {1, . . . , 6}. Then MI,7 applied to j = (12, 4, 4, 12, 6, 4, 4) ∈ N7

gives the #I = 6 dimensional vector MI,7(j) = (3, 2, 1, 0, 0, 0), because j contains
the number “4” three times among the coordinates j1, . . . , j6, “12” two times, and
so on. Since in this example there are only three different numbers involved, the
fourth to sixth coordinates of MI,7(j) equal zero. Obviously, MI is invariant under
all permutations π ∈ SI of the argument. Thus,

MI(j) = MI(π(j)) for all j ∈ Nd and π ∈ SI .

In addition, since MI(j) again is a multi-index, we see that |MI(j)| = #I and
MI(j)! are well-defined for every j ∈ Nd. Prepared with this tool, we are ready to
prove the following

Lemma 5.2. Assume Ed = {ed,j j ∈ Md} to be a given orthonormal tensor
product basis in the space Hd and let ∅ 6= I = {i1, . . . , i#I} ⊆ {1, . . . , d}. Moreover,
for PI ∈ {SI ,AI} define the functions ξj : Dd → R by

ξj =

√
#SI

MI(j)!
· PI(ed,j) for j ∈Md.

Then the set Ξd = {ξk k ∈ ∇d} builds an orthonormal basis of the partially
(anti)symmetric subspace PI(Hd), where ∇d is given by

∇d =

{
{k ∈Md ki1 ≤ ki2 ≤ . . . ≤ ki#I}, if PI = SI ,

{k ∈Md ki1 < ki2 < . . . < ki#I}, if PI = AI .
(5.9)

Proof. To abbreviate the notation, we suppress the index Hd at the inner products
〈·, ·〉Hd in this proof.

Step 1. We start by proving orthonormality. Therefore let us recall (5.8) and
remember that now Id = Md. For PI = AI and j,k ∈ ∇d easy calculations yield

〈ξj , ξk〉 =
#SI√

MI(j)! ·MI(k)!
〈AI(ed,j),AI(ed,k)〉

=
1

#SI
√
MI(j)! ·MI(k)!

∑
π,σ∈SI

(−1)|π|+|σ|
〈
ed,π(j), ed,σ(k)

〉
.

Of course, up to the factor controlling the sign, the same is true for the case
PI = SI . Now assume that there exists l ∈ {1, . . . , d} such that jl 6= kl. Then the
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5.1 Basic definitions related to (anti)symmetry

ordering of j,k ∈ ∇d implies that π(j) 6= σ(k) for all σ, π ∈ SI , since π and σ
leave the coordinates l ∈ Ic fixed. Hence, we conclude that we have π(j) = σ(k)
only if j = k.

At this point we have to distinguish the antisymmetric and the symmetric
case. For PI = AI the only way to conclude π(j) = σ(k) is to claim j = k and
π = σ. Furthermore we see that in the antisymmetric case we have MI(j)! = 1
for all j ∈ ∇d, because then all coordinates jl, where l ∈ I, differ. Therefore, in
this case the last inner product coincides with δj,k · δπ,σ because of the mutual
orthonormality of the elements from Ed = {ed,j j ∈Md}. Hence we arrive at

〈ξj , ξk〉 =
1

#SI

∑
π∈SI

(−1)2|π|δj,k = δj,k for all j,k ∈ ∇d,

as claimed.
So, let us consider the case PI = SI and j = k ∈ ∇d, since we already saw that

otherwise 〈ξj , ξk〉 equals zero. Then for fixed σ ∈ SI there are MI(j)! different
permutations π ∈ SI such that π(j) = σ(j). This leads to

〈ξj , ξj〉 =
1

#SI ·MI(j)!

∑
σ∈SI

MI(j)! = 1

and completes the proof of orthonormality.
Step 2. It remains to show that the span of Ξd = {ξk k ∈ ∇d} is dense in PI(Hd)

for PI ∈ {SI ,AI}. Note that every multi-index j ∈ Md can be represented by a
uniquely defined multi-index k ∈ ∇d and exactly MI(k)! different permutations
π ∈ SI such that j = π(k). Assume that f ∈ AI(Hd), i.e. f ∈ Hd satisfies (5.3).
Then (5.7) together with (5.5) yields

〈f, ed,j〉 = (−1)|π| ·
〈
f, ed,π(j)

〉
for all j ∈Md and π ∈ SI . (5.10)

Now expanding f with respect to the basis functions in Ed ⊂ Hd gives

f =
∑
j∈Md

〈f, ed,j〉 ed,j =
∑
k∈∇d

∑
π∈SI

〈
f, ed,π(k)

〉
ed,π(k)

MI(k)!

=
∑
k∈∇d

1

MI(k)!

∑
π∈SI

(−1)|π| 〈f, ed,k〉 ed,π(k)

=
∑
k∈∇d

√
#SI

MI(k)!
· 〈f, ed,k〉 ·

√
#SI

MI(k)!
· AI(ed,k),

where we used (5.8) for the last equality. Furthermore, due to the self-adjointness
of AI , we have 〈f, ed,k〉 = 〈AIf, ed,k〉 = 〈f,AIed,k〉, such that finally f ∈ AI(Hd)
possesses the representation

f =
∑
k∈∇d

〈f, ξk〉 · ξk
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since ξk =
√

#SI/MI(k)! · AI(ed,k) per definition. This proves the assertion for
the case PI = AI . The remaining case PI = SI can be treated in the same way. �

Observe that in the antisymmetric case the definition of ξj for j ∈ ∇d simplifies,
since then MI(j)! = 1 for all j ∈ ∇d. Moreover we see that in this case ∇d is
trivial if d > #M1. Hence we should assume that dimH1 is infinite in order to work
with antisymmetric tensor products for arbitrarily many building blocks. We note
in passing that the square of the normalizing factor, #SI/MI(j)!, coincides with
the multinomial coefficient

(|MI(j)|
MI(j)

)
which is quite natural due to combinatorial

issues. Furthermore, in the special case I = {1, 2, . . . ,#I} we have

PI(Hd) = PI

(⊗
m∈I

H1

)
⊗

(⊗
m/∈I

H1

)
.

That is, we can consider the subspace of I-(anti)symmetric functions f ∈ Hd as
the tensor product of the set of all fully (anti)symmetric #I-variate functions with
the (d − #I)-fold tensor product of H1. If #I = 1, i.e. if we do not claim any
(anti)symmetry, then PI(Hd) = Hd and thus we have ∇d = Md, as well as Ξd = Ed.
Modifications in connection with multiple partially (anti)symmetric functions are
obvious.

5.1.3 Arbitrary tensor product Hilbert spaces

Up to now we exclusively dealt with Hilbert function spaces. However, the proofs
of Lemma 5.1 and Lemma 5.2 yield that there are only a few key arguments in
connection with (anti)symmetry such that we can cut out this restriction. We
briefly sketch the points which need to be changed.

Starting from the very beginning we have to adapt the definition of I-(anti)sym-
metry due to (5.2) and (5.3) in Section 5.1.1. Of course it is sufficient to define this
property at first only for basis elements. Therefore, if Ed = {ed,k k ∈ (I1)d = Id}
denotes a tensor product ONB of Hd and ∅ 6= I ⊆ {1, . . . , d} is given then we call
an element ed,k =

⊗d
l=1 ekl partially symmetric with respect to I (I-symmetric), if

ed,k = ed,π(k) for all π ∈ SI ,

where SI and π(k) = (kπ(1), . . . , kπ(d)) ∈ Id are defined as before. Analogously,
we define I-antisymmetry with an additional factor (−1)|π|. Finally, an arbitrary
element in Hd is called I-(anti)symmetric if in its basis expansion every element
with non-vanishing coefficient possesses this property.34

Next, the antisymmetrizer AI is given as the uniquely defined continuous
extension of the linear mapping

ÃI : Ed → Hd, ed,k 7→
1

#SI

∑
π∈SI

(−1)|π|ed,π(k) (5.11)

34Note that even in the non-separable case any such expansion only has countably many terms.
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from Ed to Hd. Again the symmetrizer SI is given in a similar way. Hence, in the
general setting we define the mappings using formula (5.8) which we derived for the
special case of function spaces. Note that the triangle inequality yields ‖PI‖ ≤ 1,
for PI ∈ {SI ,AI}.

Once more we denote the sets of all I-(anti)symmetric elements of Hd by PI(Hd),
where PI ∈ {SI ,AI}. Observe that this can be justified since the operators PI
again provide orthogonal projections onto closed linear subspaces. That is, a
generalization of Lemma 5.1 remains valid also in the more general case of tensor
products of arbitrary Hilbert space which we consider here. This can be shown
using (5.11) and its analogue for SI , as well as with the help of some simple
extension arguments. Moreover, also the proof of Lemma 5.2 can be adapted to the
generalized setting. Indeed, the only difference is the conclusion of formula (5.10) in
Step 2. Now, for arbitrary Hilbert spaces, this simply follows from our definitions.
Then the rest of the proof transfers literally.

Finally and without going into details, we stress the point that further gener-
alizations are possible. Here we can think of tensor products of arbitrary Hilbert
spaces with multiple partial (anti)symmetry conditions or of scaled tensor products
in the sense of Chapter 3. Since the corresponding calculations are straightforward
we leave them to the reader.

5.2 Optimal algorithms for (anti)symmetric
problems

Keeping the definitions and assertions from the previous Section 5.1 in mind, we are
ready to study algorithms for linear problems defined on (anti)symmetric subsets
of tensor product Hilbert spaces.

Let Sd : Hd → Gd denote a tensor product problem in the sense of Section 2.4.
It is constructed out of a compact linear operator S1 : H1 → G1 between arbitrary
Hilbert spaces H1 and G1 via a tensor product construction; see Section 2.4.1. Hence,
let Hd = H1 ⊗ . . .⊗H1 in what follows and refer to the problem of approximating
S = (Sd)d∈N as the entire d-variate problem. Note that we completely solved this
problem in Section 2.4. In detail, the nth optimal algorithm A∗n,d, given by (2.16),

was related to a certain subset {ed,j = φ̃d,j j ∈Md} of a tensor product ONB.
In contrast, now we are interested in the approximation of the restriction

Sd,Id = Sd
∣∣
PId (Hd)

: PId(Hd)→ Gd

of Sd to some (anti)symmetric subspace PId(Hd) as defined in Section 5.1.3, where
PId ∈ {SId ,AId} and ∅ 6= Id ⊆ {1, . . . , d} for d ∈ N. We refer to SI = (Sd,Id)d∈N as
the I-(anti)symmetric problem. Using the notation from Section 1.2 we thus have

Fd = PId(Hd) and, consequently, F̃d = B(PId(Hd)).
Due to (5.10) it is quite clear that A∗n,d cannot be optimal in this restricted

setting since it calculates redundant pieces of information. Hence we need to go
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5 Problems on Hilbert spaces with (anti)symmetry conditions

beyond this naive attempt to solve I-(anti)symmetric problems efficiently. On the
other hand, PId(Hd) equipped with the inner product of Hd, 〈·, ·〉Hd , again is a
Hilbert space. Therefore we basically know how to construct an optimal algorithm;
see Section 2.3.2. If #Id = 1 then our new algorithm should resemble A∗n,d, because
then we do not claim any (anti)symmetry and thus we deal with the entire tensor
product problem.

Before we state the main assertion of this section we present an auxiliary
result which shows that any optimal algorithm A∗ for Sd,Id needs to preserve the
(anti)symmetry properties of its domain of definition. The following proposition
generalizes Lemma 10.2 in Zeiser [Zei10] where this assertion was shown for the
approximation problem, that is for Sd,Id = id: PId(Hd)→ Gd.

Proposition 5.3. Let d > 1 and ∅ 6= I ⊆ {1, . . . , d} be arbitrarily fixed. Further-
more, for X ∈ {H,G} let PX

I denote the (anti)symmetrizer PI ∈ {SI ,AI} on Xd

with respect to I. Then we have

(Sd ◦ PH
I )(g) = (P G

I ◦ Sd)(g) for any g ∈ Hd. (5.12)

Moreover, for all A : PH
I (Hd)→ Gd and every f ∈ PH

I (Hd),

‖Sd,If − Af Gd‖2 =
∥∥Sd,If − P G

I (Af) Gd
∥∥2

+
∥∥Af − P G

I (Af) Gd
∥∥2
. (5.13)

Hence an optimal algorithm A∗ for Sd,I preserves (anti)symmetry, i.e.

A∗f ∈ P G
I (Gd) for all f ∈ PH

I (Hd).

Proof. The proof is organized as follows. First we show that the tensor product
operator Sd and the (anti)symmetrizer PI commute on Hd, i.e. it holds (5.12). In
a second step we conclude (5.13) out of this. The (anti)symmetry of A∗f for an
optimal algorithm A∗ then follows immediately.

Step 1. Assume Ed = {ed,j j ∈ Id} to be an arbitrary tensor product ONB
of Hd, as defined in (2.13). Then, for fixed j ∈ Id, formula (5.11) and the structure
of Sd = S1 ⊗ . . .⊗ S1 yields in the case PI = AI

Sd(A
H
I (ed,j)) = Sd

(
1

#SI

∑
π∈SI

(−1)|π|
d⊗
l=1

ejπ(l)

)

=
1

#SI

∑
π∈SI

(−1)|π|
d⊗
l=1

S1(ejπ(l)) = AG
I (Sd(ed,j)).

Obviously the same is true for PI = SI . Hence, (5.12) holds at least on the set of
basis elements Ed of Hd. Because of the representation g =

∑
j∈Id 〈g, ed,j〉Hd · ed,j of

g ∈ Hd, as well as the linearity and boundedness of the operators PH
I , P

G
I and Sd,

we can extend the relation (5.12) from Ed to the whole space Hd.
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Step 2. Now let f ∈ PH
I (Hd) and let Af denote an arbitrary approximation

to Sd,If . Then Sd,If = Sd(P
H
I f) = P G

I (Sdf), due to Step 1. Using the fact that P G
I

provides an orthogonal projection onto P G
I (Gd), see (5.6) in Lemma 5.1, we obtain

(5.13), i.e.

‖Sd,If − Af Gd‖2 =
∥∥P G

I (Sdf)− [P G
I (Af) + (idG − P G

I )(Af)] Gd
∥∥2

=
∥∥P G

I (Sdf − Af) Gd
∥∥2

+
∥∥(idG − P G

I )(Af) Gd
∥∥2

=
∥∥Sd,If − P G

I (Af) Gd
∥∥2

+
∥∥Af − P G

I (Af) Gd
∥∥2
,

as claimed. �

Apart from this qualitative assertion, we are interested in an explicit formula for
the optimal algorithm, as well as in sharp error bounds. To this end, let d ∈ N and
∅ 6= Id = {i1, . . . , i#I} ⊆ {1, . . . , d}, as well as P ∈ {S,A}. Furthermore, consider
the singular value decomposition of S1 : H1 → G1. That is, let {(λm, φm) m ∈
M1} denote the non-trivial eigenpairs of W1 = S1

†S1; see Section 2.3.1. Due to
Proposition 2.10 in Section 2.4.2 we know that for d > 1 the (tensor) product

eigenpairs {(λ̃d,m, φ̃d,m) m ∈Md} of Wd = Sd
†Sd are given by (2.15). Moreover,

Ed = Φd = {φ̃d,m m ∈ Md} builds an tensor product ONB in Hd. Hence, we

can apply Lemma 5.2 to ed,j = φ̃d,j , j ∈ Md, in order to obtain an orthonormal

basis Ξd = {ξ̃k k ∈ ∇d} of the partially (anti)symmetric subspaces PId(Hd). More
precisely, for k ∈ ∇d we define

ξ̃k =

√
#SI

MI(k)!
· PId

(
d⊗
l=1

φkl

)
∈ PI(Hd) and λ̃d,k =

d∏
l=1

λkl > 0, (5.14)

where ∇d is given by (5.9). Similar to the approach in Section 2.4.2, let

ψ = ψd : {i ∈ N i < #∇d + 1} → ∇d

denote a bijection which provides a non-increasing ordering of {λ̃d,k k ∈ ∇d} and

set λd,i = λ̃d,ψ(i), as well as ξd,i = ξ̃ψ(i) for i < #∇d + 1. Finally, if #∇d is finite
then we extend the sequence of λ’s by setting λd,i = 0 for i > #∇d.

Given this bunch of notations we are well-prepared to prove our main theorem
of this section. For every d ∈ N it provides a linear algorithm A′n,d which uses at
most n continuous linear functionals on the input to approximate the solution
operator Sd,Id of a given Id-(anti)symmetric tensor product problem between Hilbert
spaces. Since the worst case error of this algorithm coincides with the nth minimal
error of the problem, A′n,d is optimal in this setting; thus it cannot be improved by

any other algorithm from the class A
n,cont
d ∪An,adapt

d ; see Section 1.3. The assertion
reads as follows.
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5 Problems on Hilbert spaces with (anti)symmetry conditions

Theorem 5.4. Assume SI = (Sd,Id)d∈N to be the linear tensor product problem S
restricted to the Id-(anti)symmetric subspaces PId(Hd) of the d-fold tensor product
spaces Hd. Then for every d ∈ N the set

{(λd,i, ξd,i) 1 ≤ i < #∇d + 1} =
{(
λ̃d,k, ξ̃k

)
k ∈ ∇d

}
(5.15)

denotes the eigenpairs of Wd,Id = Sd,Id
†Sd,Id : PId(Hd)→ PId(Hd). Thus, for every

n ∈ N0 and all d ∈ N the linear algorithm A′n,d : PId(Hd)→ PId(Gd) given by

A′n,df =

min{n,#∇d}∑
i=1

〈f, ξd,i〉Hd · Sdξd,i, (5.16)

is nth optimal for Sd,Id w.r.t. the worst case setting. Furthermore we have

ewor(n, d;PId(Hd)) = ∆wor(A′n,d;PId(Hd)) =
√
λd,n+1. (5.17)

Proof. Since SI is a compact problem between Hilbert spaces it is enough to
prove that for d ∈ N the eigenpairs of Wd,Id = Sd,Id

†Sd,Id are given by (5.15). The
remaining assertions then follow from Corollary 2.7. Indeed, we only need to show
that Wd,Id ξ̃k = λ̃d,k · ξ̃k for every k ∈ ∇d because we already know that the set

Ξd = {ξ̃k k ∈ ∇d} builds an ONB in PId(Hd). Hence there cannot be more than
these eigenpairs.

To prove the claim, observe that from the first part of Proposition 5.3 it follows

Sd,Id = Sd ◦ PH
Id

= P G
Id
◦ Sd which implies that Sd,Id : PH

Id
(Hd)→ P G

Id
(Gd).

Moreover, due to the self-adjointness of the projectors (see Lemma 5.1), it is easily
seen that this yields

Sd,Id
† = PH

Id
◦ Sd† = Sd

† ◦ P G
Id

such that Sd,Id
† : P G

Id
(Gd)→ PH

Id
(Hd).

Consequently, we have

Wd,Id P
H
Id

=
(
PH
Id
Sd
†) (Sd PH

Id

)
PH
Id

= PH
Id

(
Sd
†P G

Id

)
Sd = PH

Id

(
Sd
†Sd
)

= PH
Id
Wd,

because of (PX
Id

)2 = PX
Id

, where X ∈ {H,G}. Since for every j ∈ Md the simple

tensor φ̃d,j is an eigenelement of Wd with respect to the eigenvalue λ̃d,j , we conclude

Wd,Id

(
PH
Id
φ̃d,j

)
= λ̃d,j ·

(
PH
Id
φ̃d,j

)
from the linearity of PH

Id
. In particular, this is true for every j = k ∈ ∇d ⊆ Md.

But now we note that ξ̃k equals PH
Id
φ̃d,k, at least up to some normalizing constant.

Hence, using linearity once again, we have proven the claimed assertion. �

We conclude this section by adding some final remarks on the above theorem.
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Remark 5.5. Obviously, our former result for the entire tensor product problem
S = (Sd : Hd → Gd)d∈N in Section 2.4.2 is also covered by Theorem 5.4. We simply
have to choose Id such that #Id = 1 for every d ∈ N and obtain A′n,d = A∗n,d. As in
this case, the worst case error can be attained by the element ξd,n+1 provided that
n < #∇d. Otherwise it trivially equals zero.

It should be clear to the reader how to generalize the results of this section to the
case of multiple partially (anti)symmetric problems where we claim (anti)symmetry
w.r.t. more than one subset of coordinates I. Recall that this definition is given at
the end of Section 5.1.1.

Finally we want to mention that we decided to give a different proof of Theo-
rem 5.4 than in [Wei11] and [Wei12a], respectively. The reason is that the usage
of the self-adjointness of the projections PId seems to be more elegant than again
repeating the arguments used for Corollary 2.7 in Section 2.3.2. Furthermore, now
we can handle also problems defined on non-separable or on finite-dimensional
source spaces Hd. Thus we slightly generalized our old results. �

5.3 Complexity of (anti)symmetric problems

Encouraged by the exact formula for the nth minimal worst case error in The-
orem 5.4 the intention of the present section is to investigate the information
complexity of (anti)symmetric tensor product problems. We restrict our attention
to the study of polynomial and strong polynomial tractability in what follows. The
aim is to find necessary and sufficient conditions for these properties in terms of the
univariate sequence λ = (λm)m∈N and the number of (anti)symmetry conditions
we impose. From the definition of ∇d in (5.9) it is quite clear that antisymmetric
problems are significantly easier than their symmetric counterparts. Therefore,
after proving some general assertions, we handle these cases separately in order to
conclude sharp conditions. Moreover, we distinguish between the absolute and the
normalized error criterion.

Let us fix the basic notation for this section. As before, assume SI = (Sd,Id)d∈N
to denote a tensor product problem S = (Sd : Hd → Gd)d∈N, restricted to some
sequence of (anti)symmetric subspaces PId(Hd), where P ∈ {S,A}, of the tensor
product Hilbert spaces Hd = H1⊗. . .⊗Hd, d ∈ N. Here for every d ∈ N the elements
are (anti)symmetric w.r.t. the non-empty subset Id ⊆ {1, . . . , d} of coordinates.
The cardinality of these subsets will be denoted by ad = #Id and we set bd = d−ad
for the number of coordinates without (anti)symmetry conditions. Finally, for

d ∈ N the non-increasingly ordered eigenvalues λd,i = λ̃d,ψ(i), i ∈ N, are given by
(5.14) and (5.15), respectively. They are constructed out of the squared singular
values λ = (λm)m∈N of the underlying solution operator S1 : H1 → G1.

As an immediate consequence of (5.17) we see that the initial error of approxi-
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mating Sd,Id on the unit ball F̃d = B(PId(Hd)) is given by

εinit
d = ewor(0, d;PI(Hd)) =

√
λd,1 =

{√
λd1, if P = S,√
λbd1 · λ1 · . . . · λad , if P = A.

Clearly, we need to assume that this initial error is strictly positive for any reason-
ably large d ∈ N because otherwise we have (strong) polynomial tractability by
default. In particular, if the number of antisymmetric coordinates ad grows with
the dimension then this condition implies that the whole sequence of univariate
eigenvalues λ need to be strictly positive. Moreover, similar to the entire tensor
product problems studied in Section 2.4.3, we always assume that λ2 > 0 in order
to avoid triviality. Consequently, we have #M1 ≥ 2.

Now we are ready to conclude a first general condition which is necessary for
(strong) polynomial tractability of both symmetric and antisymmetric problems as
long as we deal with the absolute error criterion. It is independent of the concrete
choice of the (anti)symmetry conditions we impose.

Lemma 5.6 (General necessary conditions, absolute errors). Let P ∈ {S,A} and
consider SI = (Sd,Id)d∈N as defined above, where Id is arbitrarily fixed for every
d ∈ N. Then the fact that SI is polynomially tractable with the constants C, p > 0
and q ≥ 0 implies that λ = (λm)m∈N ∈ `τ for all τ > p/2. Moreover, for any such τ
and all d ∈ N the following estimate holds:

1

(λd,1)τ

∑
k∈∇d

(
λ̃d,k

)τ
≤ (1 + C) dq + C2τ/p ζ

(
2τ

p

)(
d2q/p

λd,1

)τ
.

Proof. From Theorem 2.8 we know that for any τ > p/2 and r = 2q/p polynomial
tractability yields

sup
d∈N

1

dr

 ∞∑
i=f(d)

(λd,i)
τ

1/τ

<∞, (5.18)

where the function f : N → N is given by f(d) = d(1 + C) dqe. This particularly
implies that the sum in the brackets converges for every fixed d ∈ N. Therefore,
especially for d = 1 the tail series

∑∞
i=f(1)(λ1,i)

τ =
∑∞

m=d1+Ce(λm)τ needs to be

finite which is possible only if λ = (λm)m∈N ∈ `τ .
So, let us turn to the second assertion. Obviously (5.18) implies the existence

of some constant C1 > 0 such that

∞∑
i=f(d)

(λd,i)
τ ≤ C1d

rτ for all d ∈ N.
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Indeed, Theorem 2.8 yields that we can take C1 = C2τ/pζ(2τ/p). Due to the
ordering of (λd,i)i∈N the rest of the sum can also be bounded easily for any d ∈ N
by

f(d)−1∑
i=1

(λd,i)
τ ≤ (λd,1)τ · (f(d)− 1).

Since
∑
k∈∇d(λ̃d,k)

τ =
∑∞

i=1(λd,i)
τ , it remains to show that f(d)− 1 ≤ (1 + C)dq

for every d ∈ N which is also obvious due to the definition of f . �

5.3.1 Symmetric problems (absolute errors)

Apart from the general assertion λ ∈ `τ , we focus our attention on further necessary
conditions for (strong) polynomial tractability in the symmetric setting. The
following proposition yields a slight improvement compared to the corresponding
assertion stated in [Wei12a] which can be obtained without using essential new
ideas.

Proposition 5.7 (Necessary conditions, symmetric case). Let SI = (Sd,Id)d∈N be
the problem considered in Lemma 5.6 and set P = S. Moreover, assume λ1 ≥ 1.

• If SI is polynomially tractable then bd ∈ O(ln d), as d→∞.

• If SI is strongly polynomially tractable then bd ∈ O(1), as d → ∞, and
λ1 = 1 > λ2.

Proof. Assume λ1 ≥ 1 and let τ be given by Lemma 5.6. Then, independent of the
amount of symmetry conditions, we have λd,1 = λd1 ≥ 1 and there exist absolute
constants r ≥ 0 and C > 1 such that

1

(λ1)τd

∑
k∈∇d

(
λ̃d,k

)τ
≤ C dr, d ∈ N, (5.19)

due to Lemma 5.6. In the case of strong polynomial tractability we even have r = 0.
For d ≥ 2 we use the product structure of λ̃d,k, k ∈ ∇d, provided by (5.14). That
is, we split the sum w.r.t. the coordinates with and without symmetry conditions.
Hence, we conclude

∑
k=(h,j)∈∇d

λ̃τd,k =
∑

j∈(M1)bd

λ̃τbd,j
∑

h∈(M1)ad ,
h1≤...≤had

λ̃τad,h =

(
#M1∑
m=1

λτm

)bd ∑
h∈Mad

,
h1≤...≤had

λ̃τad,h (5.20)

for d = ad + bd ≥ 2 which leads to(
#M1∑
m=1

(
λm
λ1

)τ)bd ∑
h∈Mad

,
h1≤...≤had

ad∏
l=1

(
λhl
λ1

)τ
≤ C dr.
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In any case the second sum in the above inequality is bounded from below by 1.

Thus, using #M1 ≥ 2 we conclude that (1 + λτ2/λ
τ
1)bd ≤

(∑#M1

m=1 λ
τ
m/λ

τ
1

)bd
needs

to be polynomially bounded from above. Since we always assume λ2 > 0 this leads
to the claimed bounds on bd.

It remains to show the assertions on the two largest univariate eigenvalues
in the case of strong polynomial tractability. To this end, assume for a moment
that λ1 > 1. Then, because of λ2 > 0, there need to exist some K ∈ N0 such that
λ2 ≥ (1/λ1)K . Now it is easy to see that (independent of the number of symmetry

conditions) there are at least 1 + bd/(K + 1)c different k ∈ ∇d such that λ̃d,k ≥ 1.
Namely, for l = 0, . . . , bd/(K + 1)c we can take the first d− l coordinates of k ∈ ∇d

equal to one. To the remaining coordinates we assign the value two and obtain

λ̃d,k = λd−l1 λl2 ≥ λKl1 λl2 ≥ 1.

In other words, we have λd,1+bd/(K+1)c ≥ 1. On the other hand, strong polynomial
tractability implies

∑∞
i=d1+Ce λ

τ
d,i ≤ C1 for some absolute constants τ, C, C1 > 0

and all d ∈ N; see (5.18). Consequently, for every d ≥ d0 = (2 + C)(K + 1) we
obtain 1 + bd/(K + 1)c ≥ d1 + Ce and thus

C1 ≥
∞∑

i=d1+Ce

λτd,i ≥
1+bd/(K+1)c∑
i=d1+Ce

λτd,i

≥ λτd,1+bd/(K+1)c(2 + bd/(K + 1)c − d1 + Ce)

≥ d

K + 1
− (1 + C).

Obviously this is a contradiction and we conclude λ1 = 1. Finally, we need to show
that we necessarily have λ2 < 1. Assuming that λ1 = λ2 = 1 leads to K = 0 in the
discussion above and hence we obtain the same contradiction as before. Therefore
the proof is complete. �

Note in passing that independent of the number of symmetry conditions the
information complexity nwor

abs (ε, d;Sd,Id : B(SId(Hd))→ Gd) needs to grow at least
linearly in d if we assume λ1 ≥ 1 and λ2 > 0.

We continue the analysis of I-symmetric problems with respect to the absolute
error criterion by proving that the stated necessary conditions are also sufficient
for (strong) polynomial tractability. For this purpose we need a rather technical
preliminary lemma. For the convenience of the reader we include a full proof that
uses only elementary induction arguments.

Lemma 5.8. Let (µm)m∈N be a non-increasing sequence of non-negative real
numbers with µ1 > 0 and set µs,k =

∏s
l=1 µkl for k ∈ Ns and s ∈ N.
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5.3 Complexity of (anti)symmetric problems

Then, for all V ∈ N0 and every d ∈ N, it holds

∑
k∈Nd,

1≤k1≤...≤kd

µd,k ≤ (µ1)d dV

1 + V +
d∑

L=1

(µ1)−L
∑

j(L)∈NL,
V+2≤j(L)

1 ≤...≤j(L)
L

µL,j(L)

 . (5.21)

Proof. Step 1. By induction on s we first prove that for every fixed m ∈ N

∑
k∈Ns,

m≤k1≤...≤ks

µs,k = (µm)s +
s∑
l=1

(µm)s−l
∑

j(l)∈Nl,
m+1≤j(l)1 ≤...≤j

(l)
l

µl,j(l) for all s ∈ N. (5.22)

Easy calculations show that this holds at least for the initial step s = 1. Therefore,
assume the assertion (5.22) to be true for some s ∈ N. Then

∑
k∈Ns+1,

m≤k1≤...≤ks+1

µs+1,k =
∞∑

k1=m

µk1
∑
h∈Ns,

k1≤h1≤...≤hs

µs,h

= µm
∑
h∈Ns,

m≤h1≤...≤hs

µs,h +
∑

k∈Ns+1,
m+1≤k1≤...≤ks+1

µs+1,k.

Now, by inserting the induction hypothesis for the first sum and renaming k
to j(s+1) in the remaining sum, we conclude that

∑
k∈Ns+1,

m≤k1≤...≤ks+1

µs+1,k equals

(µm)s+1 +
s∑
l=1

(µm)s+1−l
∑

j(l)∈Nl,
m+1≤j(l)1 ≤...≤j

(l)
l

µl,j(l) +
∑

j(s+1)∈Ns+1,

m+1≤j(s+1)
1 ≤...≤j(s+1)

s+1

µs+1,j(s+1) .

Hence (5.22) also holds for s+ 1 and the induction is complete.

Step 2. Here we prove (5.21) via another induction on V ∈ N0. Therefore, let
d ∈ N be arbitrarily fixed. The initial step, V = 0, corresponds to (5.22) for s = d
and m = 1. Thus assume (5.21) to be valid for some fixed V ∈ N0. Then, by using
(5.22) for s = L and m = V + 2, we see that the right-hand side of (5.21) equals

(µ1)d dV

1 + V +
d∑

L=1

(µ1)−L

(µV+2)L +
L∑
l=1

(µV+2)L−l
∑

j(l)∈Nl,
(V+2)+1≤j(l)1 ≤...≤j

(l)
l

µl,j(l)


 .
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Now we estimate 1 + V by d (1 + V ), take advantage of the non-increasing ordering
of (µm)m∈N, and extend the inner sum from L to d in order to obtain

∑
k∈Nd,

1≤k1≤...≤kd

µd,k ≤ (µ1)d dV+1

1 + (V + 1) +
d∑
l=1

(µ1)−l
∑

j(l)∈Nl,
(V+1)+2≤j(l)1 ≤...≤j

(l)
l

µl,j(l)

 .

Since this estimate corresponds to (5.21) for V + 1 the claim is proven. �

Now the sufficient conditions read as follows.

Proposition 5.9 (Sufficient conditions, symmetric case). Let P = S, assume SI
to be the problem considered in Lemma 5.6, and let λ = (λm)m∈N ∈ `τ0 for some
τ0 ∈ (0,∞).

• If λ1 < 1 then SI is strongly polynomially tractable.

• If λ1 = 1 > λ2 and bd ∈ O(1) then SI is strongly polynomially tractable.

• If λ1 = 1 and bd ∈ O(ln d), as d→∞, then SI is polynomially tractable.

Proof. Step 1. We start the proof by exploiting the property λ ∈ `τ0 ; namely we
use the ordering of (λm)m∈N to conclude that

mλτ0m ≤ λτ01 + . . .+ λτ0m <
∞∑
i=1

λτ0i = ‖λ `τ0‖
τ0 <∞ for any m ∈ N.

Hence, there exists some Cτ0 > 0 such that λm is bounded from above by Cτ0 ·m−r
for every r ≤ 1/τ0. Therefore there is some index such that for every larger m ∈ N
we have λm < 1. We denote the smallest of these indices by m0. Similar to the
calculations of Novak and Woźniakowski [NW08, p. 180] this leads to

∞∑
m=m0

λτm ≤ (p+ 1)λτm0
+ Cτ

τ0

∫ ∞
m0+p

x−τr dλ1(x) = (p+ 1)λτm0
+

Cτ
τ0

τr − 1

1

(m0 + p)τr−1

for every p ∈ N0 and all τ such that τr > 1. In particular, with r = 1/τ0 we obtain
for all τ > τ0 and any p ∈ N0 the estimate

∞∑
m=m0

(λm)τ ≤ (p+ 1) (λm0)
τ +

1/τ

1/τ0 − 1/τ

(
C

1/(1/τ0−1/τ)
τ0

m0 + p

)τ(1/τ0−1/τ)

.

Note that for a given δ > 0 there exists some constant τ1 ≥ τ0 such that for all
τ > τ1 it is 1/(1/τ0 − 1/τ) ∈ (τ0, τ0 + δ). Hence, if p ∈ N0 is sufficiently large then
we conclude that for all τ > τ1

∞∑
m=m0

(λm)τ ≤ (p+ 1) (λm0)
τ +

τ0 + δ

τ1

(
C1

m0 + p

)τ/(τ0+δ)

,
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5.3 Complexity of (anti)symmetric problems

where we set C1 = max
{

1, Cτ0+δ
τ0

}
< m0 + p. Finally, since λm0 < 1, both the

summands tend to zero as τ approaches infinity. In particular, there need to exist
some τ > τ1 ≥ τ0 such that

∞∑
m=m0

(λm)τ ≤ 1

2
.

Step 2. Now all the stated assertions can be seen using the second point of
Theorem 2.8. Indeed, for polynomial tractability it is sufficient to show that

∑
k∈∇d

(
λ̃d,k

)τ
=
∞∑
i=1

(λd,i)
τ ≤ C drτ for all d ∈ N (5.23)

and some C, τ > 0, as well as some r ≥ 0. If this even holds for r = 0 we obtain
strong polynomial tractability.

In the case λ1 < 1 we can estimate the sum on the left of (5.23) from above by
(
∑∞

m=1 λ
τ
m)d since clearly ∇d ⊆Md ⊆ Nd. Using Step 1 with m0 = 1 we conclude

that
∑
k∈∇d(λ̃d,k)

τ ≤ 2−d for some large τ > τ0. Hence the problem is strongly
polynomially tractable in this case.

For the proof of the remaining points we assume that λ1 = 1. In any case we
have ∑

k∈∇1

(
λ̃1,k

)τ
≤

∞∑
m=1

(λm)τ0 = ‖λ `τ0‖
τ0 <∞

for all τ ≥ τ0 because of λ ∈ `τ0 . Therefore we can assume d ≥ 2 in the following.
Recall that we can split the first sum in (5.23) w.r.t. the coordinates with and
without symmetry conditions. That is, for d = ad + bd ≥ 2 we use (5.20).

If λ2 < 1 and bd is universally bounded then the first factor in this splitting can
be bounded by a constant and the second factor can be estimated using Lemma 5.8
with V = 0, d replaced by ad and µ replaced by λτ .35 Consequently, for any τ ≥ τ0,

∑
h∈Mad

,
h1≤...≤had

(
λ̃ad,h

)τ
≤ 1 +

ad∑
L=1

∑
j(L)∈NL,

2≤j(L)
1 ≤...≤j(L)

L

(
λ̃L,j(L)

)τ
≤ 1 +

ad∑
L=1

(
∞∑
m=2

(λτm)

)L

. (5.24)

Now, with the help of Step 1 and the properties of geometric series, we see that
if τ is large enough then (5.24) can be estimated further by 1 +

∑∞
L=1 2−L = 2. In

summary also
∑
k∈∇d(λ̃d,k)τ is universally bounded in this case and therefore the

problem SI is strongly polynomially tractable.
To prove the last point we argue in the same manner. Here the assumption

bd ∈ O(ln d), as d → ∞, yields that the first factor in the splitting (5.20) is

35Observe that this choice particularly implies that µm = 0 for any m > #M1.
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5 Problems on Hilbert spaces with (anti)symmetry conditions

polynomially bounded in d. For the second factor we again apply Lemma 5.8, but
in this case we set V = m0 − 2, where m0 denotes the first index m ∈ N such that
λm < 1. Keep in mind that this index is at least two because of λ1 = 1. On the other
hand, it needs to be finite, since λ ∈ `τ0 . Therefore, due to the same arguments as
above, the second factor in the splitting (5.20) is polynomially bounded in d, too.
All in all, this proves (5.23) and thus SI is polynomially tractable in this case. �

We summarize the results obtained for I-symmetric tensor product problems
SI = (Sd,Id)d∈N in the following theorem.

Theorem 5.10 (Polynomial tractability of sym. problems, absolute errors). Let
S1 : H1 → G1 denote a compact linear operator between two Hilbert spaces and let
λ = (λm)m∈N be the sequence of eigenvalues of W1 = S1

†S1 w.r.t. a non-increasing
ordering. Moreover, for d > 1 let ∅ 6= Id ⊆ {1, . . . , d} and assume SI = (Sd,Id)d∈N
to be the linear tensor product problem S = (Sd)d∈N restricted to the Id-symmetric
subspaces SId(Hd) of the d-fold tensor product spaces Hd. Consider the worst case
setting with respect to the absolute error criterion and let λ2 > 0. Then SI is
strongly polynomially tractable if and only if λ ∈ `τ for some τ ∈ (0,∞) and

• λ1 < 1, or

• 1 = λ1 > λ2 and (d−#Id) ∈ O(1), as d→∞.

Moreover, provided that λ1 ≤ 1 the problem is polynomially tractable if and only
if λ ∈ `τ for some τ ∈ (0,∞) and

• λ1 < 1, or

• λ1 = 1 and (d−#Id) ∈ O(ln d), as d→∞.

Note that we do not have sufficient conditions for polynomial tractability in
the case when λ1 > 1. We only know that (d − #Id) ∈ O(ln d), as d → ∞, is
necessary in this situation. Anyway, we completely characterized strong polynomial
tractability of symmetric problems. In this respect we improved the results known
from [Wei12a]. Moreover, we have shown that the stated results also hold for
finite-dimensional and for non-separable source spaces H1.

Before we turn to the complexity of antisymmetric problems we briefly focus on
the normalized error criterion for the I-symmetric setting in the next subsection.

5.3.2 Symmetric problems (normalized errors)

Due to (2.10) and (5.14) the information complexity of I-symmetric problems
SI = (Sd,Id)d∈N in the worst case setting w.r.t. the normalized error criterion is
given by

nwor
norm(ε′, d;SId(Hd)) = #

{
k ∈ ∇d

λ̃d,k
λd,1

=
d∏
l=1

(
λkl
λ1

)
> (ε′)2

}
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for ε′ ∈ (0, 1) and d ∈ N, since we have (εinit
d )2 = λd,1 = λd1 for any kind of

symmetric problem. In contrast, for the absolute error criterion (2.9) yields that

nwor
abs (ε, d;SId(Hd)) = #

{
k ∈ ∇d λ̃d,k =

∏d
l=1 λkl > ε2

}
, where ε > 0 and d ∈ N.

Hence, using the ideas in the proof of Theorem 2.12 it suffices to study a scaled
tensor product problem Td : SId(Hd) → Gd w.r.t. the absolute error criterion in
order to obtain tractability results for SI in the normalized situation. To this end,
recall that the squared singular values of T1 equal µ = (µm)m∈N with µm = λm/λ1

such that we always have µ1 = 1. Furthermore, we obviously have µ ∈ `τ if and
only if λ ∈ `τ . This leads to the following theorem.

Theorem 5.11 (Polynomial tractability of symmetric problems, normalized errors).
Consider the situation of Theorem 5.10. We study the the worst case setting
with respect to the normalized error criterion. Then SI = (Sd,Id)d∈N is strongly
polynomially tractable if and only if

λ ∈ `τ for some τ ∈ (0,∞) and λ1 > λ2 and (d−#Id) ∈ O(1), as d→∞.

Moreover, the problem SI is polynomially tractable if and only if

λ ∈ `τ for some τ ∈ (0,∞) and (d−#Id) ∈ O(ln d), as d→∞.

5.3.3 Antisymmetric problems (absolute errors)

We start this subsection with sufficient conditions for (strong) polynomial tractabil-
ity which slightly improve the results stated in [Wei12a, Proposition 5].

Proposition 5.12 (Sufficient conditions, antisymmetric case). Let P = A, suppose
SI = (Sd,Id)d∈N to be the problem considered in Lemma 5.6, and let λ = (λm)m∈N ∈
`τ0 for some τ0 ∈ (0,∞).

• If λ1 < 1 then SI is strongly polynomially tractable, independent of the
number of antisymmetry conditions.

• If λ1 ≥ 1 and if there exist constants τ ≥ τ0, d0 ∈ N, as well as C ≥ 1,
and q ≥ 0 such that for the number of antisymmetric coordinates ad in
dimension d it holds that

ln (ad!)

d
+

ln (C dq)

d
≥ ln(‖λ `τ‖τ ) for all d ≥ d0 (5.25)

then the problem SI is polynomially tractable. If this even holds for q = 0
then we obtain strong polynomial tractability.

Proof. Like for the symmetric setting, the proof of these sufficient conditions
is based on the second point of Theorem 2.8. We show that under the given
assumptions for some τ ≥ τ0 the whole sum of the eigenvalues∑

k∈∇d

(
λ̃d,k

)τ
=
∞∑
i=1

(λd,i)
τ (5.26)
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is universally bounded, or polynomially bounded in d, respectively. Note that since
we deal with the case P = A now, the set ∇d is given by the second line in (5.9).
Moreover observe that for d = 1 there is no antisymmetry condition at all. That is,
we have ∇1 = M1 ⊆ N and the sums in (5.26) equal ‖λ `τ‖τ ≤ ‖λ `τ0‖

τ in this
case. Therefore, due to the hypothesis λ ∈ `τ0 , the term for d = 1 is finite.

Hence, let d ≥ 2 be arbitrarily fixed. Without loss of generality we may reorder
the set of coordinates such that Id = {i1, . . . , iad} = {1, . . . , ad}. That means, we
assume partial antisymmetry with respect to the first ad coordinates. For s ∈ N
with s ≥ d let us define cubes of multi-indices

Qd,s = {1, . . . , s}d.

Furthermore, let Uad,s = {j ∈ Qad,s j1 < j2 < . . . < jad} denote the ad-dimensional
projection of Qd,s which reflects the assumed antisymmetry conditions. With this
notation we obtain ∑

k∈∇d

(
λ̃d,k

)τ
= lim

s→∞

∑
k∈∇d∩Qd,s

(
λ̃d,k

)τ
,

where the set of multi-indices under consideration ∇d ∩Qd,s can be represented as
a subset of Uad,s ×Qbd,s. We will assume bd = d− ad > 0 in what follows to ensure

this splitting to be non-trivial. Because of the product structure of λ̃d,k, k ∈ ∇d,
this implies

∑
k=(j,i)∈∇d∩Qd,s

(
λ̃d,k

)τ
≤

 ∑
j∈Uad,s

ad∏
l=1

λτjl

 ∑
i∈Qbd,s

bd∏
l=1

λτil

 . (5.27)

Since the sequence λ = (λm)m∈N is an element of `τ0 ↪→ `τ we can easily estimate
the second factor for every s ≥ d from above by

∑
i∈Qbd,s

bd∏
l=1

λτil =

bd∏
l=1

s∑
m=1

λτm =

(
s∑

m=1

λτm

)bd

≤

(
∞∑
m=1

λτm

)1/τ ·bd·τ

= ‖λ `τ‖bd·τ .

(5.28)

To handle the first term we need an additional argument. Note that due to the
structure of Uad,s we have∑

j∈Qad,s

ad∏
l=1

λτjl =
∑

j∈Qad,s
∃k,m: jk=jm

ad∏
l=1

λτjl + ad!
∑

j∈Uad,s

ad∏
l=1

λτjl ≥ ad!
∑

j∈Uad,s

ad∏
l=1

λτjl .

Consequently, using the same arguments as in (5.28), this yields the upper bound
‖λ `τ‖ad·τ /(ad!) for the first factor in (5.27). Once again this bound does not
depend on s ≥ d. Hence, due to d = ad + bd, we conclude that∑

k∈∇d

(
λ̃d,k

)τ
= lim

s→∞

∑
k∈∇d∩Qd,s

(
λ̃d,k

)τ
≤ 1

ad!
‖λ `τ‖τd for every d ∈ N
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and any choice of AId . Of course, for every d < d0 this upper bound is triv-
ially less than an absolute constant. Thus, to prove the second assertion of this
Proposition 5.12 it is enough to show that

1

ad!
‖λ `τ‖τd ≤ C dq for all d ≥ d0,

as well as for some C ≥ 1 and some q ≥ 0. But this is equivalent to our hypothesis
stated in (5.25). Hence the condition (5.25) implies (strong) polynomial tractability
of SI , independently of the value of λ1.

Note that now it suffices to show that λ1 < 1 already yields (5.25) with q = 0
and C = 1 in order to complete the proof. To see this, observe that (due to Step 1
in the proof of Proposition 5.9) we know that there exists some τ > τ0 such that
‖λ `τ‖τ =

∑∞
m=1 λ

τ
m is strictly less than 1. Thus the right-hand side of (5.25) is

negative in this case, whereas the left-hand side is non-negative for every choice
of ad. �

Let us briefly comment the latter result. Clearly, for any q ≥ 0 the term
ln(C dq)/d in (5.25) tends to zero as d approaches infinity. Hence there is not
much difference in the stated sufficient condition for strong polynomial and for
polynomial tractability. Moreover, we need to mention that Theorem 2.8 allows us
to omit the largest f(d)− 1 eigenvalues λd,i, where f(d) may grow polynomially in
(εinit
d )−1 with d, but we did not use this fact in the above proof.

The next example investigates how fast ad needs to grow with the dimension d
in order to fulfill the condition (5.25).

Example 5.13. For any d ∈ N and some γ > 0 let

ad =

⌈
d

ln dγ

⌉
. (5.29)

Then Stirling’s formula provides that ad ln(ad/e) ≤ ln(ad!) < ln(ad)− ad + ad ln(ad)
if d (and hence also ad) is sufficiently large. Consequently,

ln(ad!)

d
≥ ad ln(ad/e)

d
≥ 1

γ
·

ln
(
d · 1

eγ ln d

)
ln d

=
1

γ

(
1− ln (eγ ln d)

ln d

)
↗ 1

γ
,

as d→∞. On the other hand, we have ad/d ≤ 1/(γ ln d) + 1/d and thus

ln(ad!)

d
<

ln(ad)− ad
d

+

(
1

γ ln d
+

1

d

)
ln(ad) =

2 ln(ad)− ad
d

+
1

γ
· ln(ad)

ln d
≤ 1

γ
.

So we see that γ in (5.29) needs to be strictly smaller than ln−1(‖λ `τ‖τ ) in order
to fulfill (5.25) with q = 0. In particular, it follows that assumptions like ad =

⌈
dβ
⌉

with β < 1 are not sufficient to conclude tractability using the second point of
Proposition 5.12. �
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Now we turn to necessary conditions. As in the symmetric setting Lemma 5.6
yields that λ ∈ `τ is needed for polynomial tractability. In addition, we will see that
we need a condition similar to (5.25), particularly if we deal with slowly decreasing
eigenvalues λ.

Proposition 5.14 (Necessary conditions, antisymmetric case). Let P = A and as-
sume SI = (Sd,Id)d∈N to denote the problem considered in Lemma 5.6. Furthermore,
let SI be polynomially tractable with the constants C, p > 0 and q ≥ 0. Then, for
d tending to infinity, the initial error εinit

d tends to zero faster than the inverse of
any polynomial. Moreover, λ = (λm)m∈N ∈ `τ for every τ > p/2 and there exists
some d∗ ∈ N, as well as C2 ≥ 1, such that

1

d

ad∑
m=1

ln

(
‖λ `τ‖τ

λτm

)
+

ln(C2 d
2qτ/p)

d
≥ ln (‖λ `τ‖τ ) for all d ≥ d∗. (5.30)

Thus we either have λ1 < 1, or limd→∞ ad =∞.

Proof. Step 1. For the whole proof assume τ > p/2 to be fixed. Then Lemma 5.6
shows that λ ∈ `τ . Like in (5.20) for the symmetric case, we can split the sum of
the eigenvalues such that for all d ∈ N

∑
k∈∇d

(
λ̃d,k

)τ
=

(
#M1∑
m=1

λτm

)bd ∑
j∈Mad

,
j1<...<jad

(
λ̃ad,j

)τ
≥ ‖λ `τ‖τbd · λτ1 · . . . · λτad .

Hence Lemma 5.6 together with the fact that λd,1 = λbd1 · λ1 · . . . · λad gives(
‖λ `τ‖τ

λτ1

)bd
≤ (1 + C) dq + C2τ/p ζ

(
2τ

p

)(
d2q/p

λd,1

)τ
. (5.31)

In what follows we will use this inequality to conclude all the stated assertions.
Step 2. Here we prove the limit property for the initial error εinit

d =
√
λd,1, i.e.

we need to show that for every fixed polynomial P > 0

λd,1 P(d) −→ 0, as d→∞. (5.32)

Since λd,1 ≤ λbd1 ·λ
ad
1 = λd1 we can restrict ourselves to the non-trivial case λ1 ≥ 1 in

the following. Assume that there exists a subsequence (dk)k∈N of natural numbers,
as well as some constant C0 > 0, such that λdk,1 P(dk) is bounded from below by C0

for every k ∈ N. Then for every d = dk the right-hand side of (5.31) is bounded
from above by some other polynomial P1(dk) > 0. On the other hand, due to the
general condition λ2 > 0, the term ‖λ `τ‖τ /λτ1 is strictly larger than one. Thus it
follows that there exists some C1 > 0 such that

bdk ≤ C1 ln(dk) for every k ∈ N.
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Therefore we obtain that adk = dk − bdk →∞, as k →∞. Moreover, the assumed
boundedness of λdk,1 P(dk) leads to

C0 P(dk)
−1 ≤ λdk,1 ≤ λ

C1 ln(dk)
1 · λ1 · . . . · λadk = d

C1 ln(λ1)
k · λ1 · . . . · λadk

since λ1 ≥ 1. In the first step of the proof of Proposition 5.9 we saw that λ ∈ `τ
yields the existence of some Cτ > 0 such that λm ≤ Cτm

−1/τ for every m ∈ N.
Indeed, this holds for Cτ = ‖λ `τ‖ > 1. Hence λτ1 · . . . · λτadk ≤ C

τadk
τ (adk !)

−1 which
gives (adk

e

)adk ≤ adk ! ≤ (Cτ
τ )adk P2(dk) for all k ∈ N

and some other polynomial P2 > 0. If k is sufficiently large then we conclude that

adk ≤ adk ln

(
adk
eCτ

τ

)
≤ ln(P2(dk)),

since adk → ∞ implies adk/(eC
τ
τ ) ≥ e for k ≥ k0. Therefore the number of

antisymmetric coordinates ad needs to be logarithmically bounded from above for
every d out of the sequence (dk)k≥k0 . Because also bdk was found to be logarithmically
bounded this is a contradiction to the fact dk = adk + bdk . Consequently, the
hypothesis λdk,1P(dk) ≥ C0 > 0 can not be true for any subsequence (dk)k. In other
words, it holds (5.32).

Step 3. Next we show (5.30). From the former step we know that there needs
to exist some d∗ ∈ N such that 1/λd,1 ≥ 1 for all d ≥ d∗. Hence, (5.31) together
with τ > p/2 implies(

‖λ `τ‖τ

λτ1

)bd
≤ C2

(
d2q/p

λd,1

)τ
=

C2 d
2qτ/p

λτbd1 · λτ1 · . . . · λτad
for d ≥ d∗,

where we set C2 = 1 + C + C2τ/pζ(2τ/p). Therefore we obtain

C2 d
2qτ/p

ad∏
k=1

‖λ `τ‖τ

λτk
≥ ‖λ `τ‖τd

for all d ≥ d∗, which is equivalent to the claimed estimate (5.30).
Step 4. It remains to show that λ1 ≥ 1 implies that limd→∞ ad is infinite. To

this end, note that every summand in (5.30) is strictly positive. If we assume for
a moment the existence of a subsequence (dk)k∈N such that adk is bounded for
every k ∈ N then the left-hand side of (5.30) is less than some positive constant
divided by dk. Hence it tends to zero if k approaches infinity. On the other hand,
the right-hand side of (5.30) is strictly larger than some positive constant, because
of λ1 ≥ 1 and λ2 > 0. This contradiction completes the proof. �
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5 Problems on Hilbert spaces with (anti)symmetry conditions

As mentioned before there are examples such that the sufficient condition (5.25)
from Proposition 5.12 is also necessary (up to some constant factor) in order to
conclude polynomial tractability in the antisymmetric setting. Now we are ready
to give such an example.

Example 5.15. Consider the situation of Lemma 5.6 for P = A and assume the
problem SI to be polynomially tractable. In addition, for a fixed τ ∈ (0,∞), let
λ = (λm)m∈N ∈ `τ be given such that λ1 ≥ 1 and assume the existence of some
m0 ∈ N such that

λm ≥
‖λ `τ‖
mα/τ

for all m > m0 and some α > 1. (5.33)

Then we claim that there exist constants d̄ ∈ N, C ≥ 1, and r ≥ 0 such that

α · ln (ad!)

d
+

ln (C dr)

d
≥ ln(‖λ `τ‖τ ) for all d ≥ d̄. (5.34)

Recall that due to Proposition 5.12, for the amount of antisymmetry ad, it was
sufficient to assume (5.34) with α = 1 in order to conclude (strong) polynomial
tractability; see (5.25). Moreover keep in mind that we know from Example 5.13
that ln(ad!)/d tends to 1/γ if we assume ad to be given by (5.29). Hence in the
present example we have strong polynomial tractability if γ < ln−1(‖λ `τ‖τ ),
whereas the problem is polynomially intractable if γ > α/ ln(‖λ `τ‖τ ).

Before we prove the assertion it might be useful to give a concrete example
where (5.33) holds true. Therefore set λm = 1/m2, τ = m0 = 1, and α = 3. Then
it is easy to check that ‖λ `τ‖ = ζ(2) = π2/6 and we obviously have λ1 = 1.

To see that (5.34) holds true we can use Proposition 5.14 and, in particular,
inequality (5.30). Since λ1 ≥ 1 we know that limd ad =∞, i.e. ad > m0 for every d
larger than some d1 ∈ N. Furthermore, note that (5.33) is equivalent to

ln

(
‖λ `τ‖τ

λτm

)
≤ α ln(m) for all m > m0.

Hence if d ≥ d1 then we can estimate the sum in (5.30) from above by

1

d

ad∑
m=1

ln

(
‖λ `τ‖τ

λτm

)
≤ m0

d
· ln
(
‖λ `τ‖τ

λτm0

)
+
α

d

ad∑
m=m0+1

ln(m) ≤ Cλ
d

+ α · ln(ad!)

d
.

Obviously, for d larger than some d2 ∈ N the term Cλ + ln(C2 d
2qτ/p) is less than

ln(C dr), where C ≥ 1 and r ≥ 0. Here r = 0 if and only if q = 0 in (5.14), i.e.
if the problem is strongly polynomially tractable. Consequently we can conclude
(5.34) from (5.30) by choosing d̄ = max {d1, d2, d

∗}. �

Although there remains a small gap between the necessary and the sufficient
conditions for the absolute error criterion, the most important cases of antisym-
metric tensor product problems are covered by our results. Let us summarize the
main facts.
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Theorem 5.16 (Tractability of antisymmetric problems, absolute errors). Let
S1 : H1 → G1 denote a compact linear operator between two Hilbert spaces and let
λ = (λm)m∈N be the sequence of eigenvalues of W1 = S1

†S1 w.r.t. a non-increasing
ordering. Moreover, for d > 1 let ∅ 6= Id ⊆ {1, . . . , d} and assume SI = (Sd,Id)d∈N to
be the linear tensor product problem S = (Sd)d∈N restricted to the Id-antisymmetric
subspaces AId(Hd) of the d-fold tensor product spaces Hd. Consider the worst case
setting with respect to the absolute error criterion and let λ2 > 0. Then for the
case λ1 < 1 the following statements are equivalent:

• SI is strongly polynomially tractable.

• SI is polynomially tractable.

• There exists a constant τ ∈ (0,∞) such that λ ∈ `τ .

Moreover, the same equivalences hold true if λ1 ≥ 1 and #Id grows linearly with
the dimension d.

At this point we mention that for the case of fully antisymmetric problems, i.e.
for #Id = ad = d, an explicit formula for the information complexity w.r.t. the
absolute error criterion is known. Furthermore, simple examples can be constructed
which show that we cannot expect the same nice tractability behavior if we deal
with normalized errors. For further details the interested reader is referred to
[Wei11, Proposition 8].

5.3.4 Antisymmetric problems (normalized errors)

Up to now every complexity assertion in this chapter was mainly based on Theo-
rem 2.8 which dealt with the general situation of arbitrary compact linear operators
between Hilbert spaces and with the absolute error criterion. While investigating
tractability properties of I-symmetric problems with respect to the normalized
error criterion, we were able to use assertions from the absolute error setting. Since
for I-antisymmetric problems the structure of the initial error is more complicated,
this approach will not work again. Therefore we recall Theorem 2.9 as a replacement
of Theorem 2.8 for the normalized setting. This in hand, we can give the following
necessary conditions for (strong) polynomial tractability.

Proposition 5.17 (Necessary conditions, antisymmetric case). Let SI = (Sd,Id)d∈N
denote an I-antisymmetric problem as defined at the beginning of Section 5.3 and
consider the worst case setting w.r.t. to normalized errors. Then the fact that SI
is polynomially tractable with the constants C, p > 0 and q ≥ 0 implies that
λ = (λm)m∈N ∈ `τ for all τ > p/2. Moreover, for d tending to infinity, εinit

d tends to
zero faster than the inverse of any polynomial and bd ∈ O(ln d), as d→∞. Thus
we have limd→∞ ad/d = 1. In addition, if SI is strongly polynomially tractable then
bd ∈ O(1), as d→∞.
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Proof. From Theorem 2.9 it follows that there is some C1 > 0 such that

1

(λd,1)τ

∑
k∈∇d

(
λ̃d,k

)τ
=
∞∑
i=1

(
λd,i
λd,1

)τ
≤ C1d

2τq/p for every d ∈ N (5.35)

and all τ > p/2. Once more the index set∇d is given as in (5.9). Indeed, Theorem 2.9
yields that it is sufficient to take C1 = 2 (1 + C)2τ/p ζ(2τ/p). As in the proof of
Lemma 5.6 it suffices to consider the case d = 1 in (5.35) to see that λ ∈ `τ is
necessary for polynomial tractability. Moreover, like with the arguments of Step 1
in the proof of Proposition 5.14, it follows that(

‖λ `τ‖τ

λτ1

)bd
≤ C1 d

2τq/p, d ∈ N, (5.36)

since λd,1 = λbd1 · λ1 · . . . · λad . Due to the general assertion λ2 > 0 we have
‖λ `τ‖τ > λτ1 and thus polynomial tractability of SI implies the bound bd ≤ C2 ln(d)
for some C2 ≥ 0, i.e. bd ∈ O(ln d), as d→∞. Therefore we obviously have

1 ≥ ad
d

= 1− bd
ln d
· ln d

d
≥ 1− C2 ·

ln d

d
−→ 1, d→∞.

The proof that strong polynomial tractability leads to bd ∈ O(1), as d→∞, can
be obtained using (5.36) with the same arguments as before and q = 0. Finally we
need to show the assertion concerning εinit

d . Here we refer to Step 2 in the proof of
Proposition 5.14. �

5.4 Applications

This last section of the present chapter is devoted to applications of the theory
developed previously. In Section 5.4.1 we follow the lines of the introduction of
[Wei12a] and illustrate the power of imposing additional (anti)symmetry conditions
to linear tensor product problems by using simple toy examples. Afterwards, in
Section 5.4.2, we focus our attention to more advanced problems which we are
faced with in practice. There we briefly introduce wavefunctions and show how our
results allow it to handle the approximation problem for such classes of functions.

5.4.1 Toy examples

The aim of the following simple examples is to show that exploiting an a priori
knowledge about (anti)symmetries of a given tensor product problem can help to
obtain tractability, but it does not make the problem trivial in general.

Let S = (Sd : Hd → Gd)d∈N denote a tensor product problem between Hilbert
spaces. Remember that due to Section 2.4 for complexity studies it suffices to specify
the singular values of the univariate operator S1. To simplify the presentation we
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slightly abuse the notation and denote the information complexity of the entire
problem S by nent(ε, d). We want to compare this quantity with the respective
information complexities of the restriction of S to the fully symmetric and the fully
antisymmetric subspaces of (Hd)d∈N. These numbers will be denoted by nsym(ε, d)
and nasy(ε, d), respectively.

Clearly, our results yield that in any case (as long as we deal with the worst
case setting and the absolute error criterion)

nasy(ε, d) ≤ nsym(ε, d) ≤ nent(ε, d) for every ε > 0 and all d ∈ N,

where for d = 1 the terms coincide, since then we do not claim any (anti)symmetry.
To see that additional (anti)symmetry conditions may reduce the information
complexity dramatically consider the following three examples.

Example 5.18. Let us have a look at the simple case of a linear operator S1 with
singular values σ such that λ1 = λ2 = 1 and λj = 0 for j ≥ 3. Then the information
complexity of the entire tensor product problem can be shown to be

nent(ε, d) = 2d for all d ∈ N and ε < 1.

Hence the problem suffers from the curse of dimensionality and is therefore in-
tractable.

On the other hand, our results show that in the fully symmetric setting we
have polynomial tractability, because

nsym(ε, d) = d+ 1 for all d ∈ N and ε < 1.

Moreover, it can be proved that in this case the complexity of the fully anti-
symmetric problem decreases with increasing dimension d and, finally, the problem
even gets trivial. In detail, we have

nasy(ε, d) = max {3− d, 0} for all d ∈ N and ε < 1

which yields strong polynomial tractability. �

Example 5.19. Next let us consider a more challenging problem, where λ1 =
λ2 = . . . = λm = 1 and λj = 0 for every j > m ≥ 2. For m = 2 this obviously
coincides with the example studied above, but letting m increase may tell us more
about the structure of (anti)symmetric tensor product problems. In this situation
it is easy to check that for every d ∈ N and all ε < 1

nent(ε, d) = md and nasy(ε, d) =

{(
m
d

)
, d ≤ m,

0, d > m.

Since
(
m
d

)
≥ 2d−1 for d ≤ bm/2c, this means that for large m the complexity in the

antisymmetric case increases exponentially fast with d up to a certain maximum.
Beyond this point it falls back to zero.
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5 Problems on Hilbert spaces with (anti)symmetry conditions

The information complexity in the symmetric setting is much harder to calculate
for this case. However, it can be seen that we have polynomial tractability, but
nsym(ε, d) needs to grow at least linearly with d such that the symmetric problem
cannot be strongly polynomially tractable, whereas this holds in the antisymmetric
setting. The entire problem again suffers from the curse of dimensionality. �

Example 5.20. For a last illustrating example consider the case λ1 = 1 and
λj+1 = j−β for some β ≥ 0 and all j ∈ N. That means, we have the two largest
singular values σ1 = σ2 of S1 equal to one. The remaining series decays like the
inverse of some polynomial. If β = 0 then the operator S1 is not compact, since the
sequence λ = (λm)m∈N does not tend to zero; hence all the information complexities
are infinite in this case.

For β > 0, any δ > 0, and some C > 0 we have

nent(ε, d) ≥ 2d, nsym(ε, d) ≥ d+ 1, and nasy(ε, d) ≤ Cε−(2/β+δ),

for all ε < 1, as well as every d ∈ N. Thus, again for the entire problem we observe
the curse, whereas the antisymmetric problem is strongly polynomially tractable.
Once more, the symmetric problem can be shown to be polynomially tractable.
Note that in this example the antisymmetric case is not trivial, because all λj
are strictly positive. If we replace j−β by log−1(j + 1) in this example we obtain
(polynomial) intractability even in the antisymmetric setting. �

5.4.2 Wavefunctions

During the few last decades there has been considerable interest in finding approx-
imations of so-called wavefunctions, e.g., solutions of the electronic Schrödinger
equation. Due to the Pauli principle of quantum physics only functions with certain
(anti)symmetry properties are of physical interest. For a more detailed view see,
e.g, Hamaekers [Ham09], Yserentant [Yse10], or Zeiser [Zei10]. Furthermore, for a
comprehensive introduction to the topic, as well as a historical survey, we refer the
reader to Hunziker and Sigal [HS00] and Reed and Simon [RS78].

In particular, the notion of multiple partial antisymmetry w.r.t. two sets of
coordinates is useful for describing wavefunctions Ψ. In computational chemistry
such functions occur as models which describe quantum states of certain physical
d-particle systems. Formally, these functions depend on d blocks of variables
yi = (x(i), s(i)), for i = 1, . . . , d, which represent the spacial coordinates x(i) =

(x
(i)
1 , x

(i)
2 , x

(i)
3 ) ∈ R3 and certain additional intrinsic parameters s(i) ∈ C of each

particle yi within the system. Hence, rearranging the arguments such that x =
(x(1), . . . ,x(d)) and s = (s(1), . . . , s(d)) yields that

Ψ: (R3)d × Cd → R, (x, s) 7→ Ψ(x, s).

In the case of systems of electrons one of the most important parameters is called
spin and it can take only two values, i.e., s(i) ∈ C = {−1

2
,+1

2
}. Due to the Pauli
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principle the only wavefunctions Ψ that are physically admissible are those which
are antisymmetric in the sense that for I ⊆ {1, . . . , d} and Ic = {1, . . . , d} \ I

Ψ(π(x),π(s)) = (−1)|π|Ψ(x, s) for all π ∈ SI ∪ SIc .

Thus Ψ changes its sign if we replace any particles yi and yj by each other which
possess the same spin, i.e. s(i) = s(j). So the set of particles, and therefore also
the set of spacial coordinates, naturally split into two groups I+ and I−. In detail,
for wavefunctions of d particles yi we can (without loss of generality) assume
that the first #I+ indices i belong to the group of positive spin, whereas the
rest of the particles possess negative spin, i.e. I+ = {1, . . . ,#I+} and I− = Ic+ =
{#I+ + 1, . . . , d}.

In physics it is well-known that some problems, e.g., the electronic Schrödinger
equation, which involve (general) wavefunctions can be reduced to a bunch of
similar problems, where each of them only acts on functions Ψs out of a certain
Hilbert space Fd = Fd(s). That is,

Ψs = Ψ(·, s) ∈ Fd ⊂ {f : (R3)d → R}

with a given fixed spin configuration s ∈ Cd. Of course every possible spin configu-
ration s corresponds to exactly one choice I+ ⊆ {1, . . . , d} of indices. Moreover,
it is known that Fd is a Hilbert space which possesses a tensor product structure.
Therefore we can model wavefunctions as elements of certain classes of smoothness,
e.g., Fd ⊂ Hd = H1 ⊗ . . .⊗H1 = W

(1,...,1)
2 ((R3)d), as Yserentant [Yse10] recently

did, and incorporate spin properties by using projections of the type A = AI+ ◦AI− ,
as defined in Section 5.1.1. In particular, Lemma 5.2 then yields that

Fd = A(Hd) = AI+(H#I+)⊗ AI−(H#I−)

and the system of all

ξk =
√

#SI+ ·#SI− · A(ek), k ∈ ∇d,

with

∇d =
{
k = (i, j) ∈ N#I+× N#I− i1 < i2 < . . . < i#I+ and j1 < . . . < j#I−

}
builds an orthonormal basis of Fd = A(Hd), where the set {em m ∈ Nd} is once
again assumed to be an orthonormal tensor product basis of Hd = H1 ⊗ . . .⊗H1

constructed with the help of {em m ∈ N}, an arbitrary orthonormal basis of H1.
Note that in the former sections the underlying Hilbert space H1 always consists

of univariate functions. In contrast, wavefunctions of one particle depend on at
least three (spacial) variables, but we want to stress the point that this is just a
formal issue. Anyway, our approach radically decreases the degrees of freedom and
improves the solvability of certain problems S = (Sd)d∈N like the approximation
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problem, i.e. Sd = id: Hd → Gd for every d ∈ N, considered in connection with the
electronic Schrödinger equation.

Theorem 5.4 provides an algorithm which is optimal for the Gd-approximation
of d-particle wavefunctions in Fd with respect to all linear algorithms that use at
most n continuous linear functionals. Therefore we only need to choose the right
ONB {em = φm m ∈ N} of H1 which coincides with the eigenfunctions of the
univariate operator W1 = S1

†S1. Moreover, the error can be calculated exactly in
terms of the eigenvalues λ = (λm)m∈N of W1.

Furthermore it is possible to prove a modification of Theorem 5.16 for problems
dealing with wavefunctions. In fact, for the mentioned approximation problem
polynomial tractability as well as strong polynomial tractability are equivalent to
the fact that the sequence λ of the squared singular values of the univariate problem
belong to some `τ -space if we consider the absolute error criterion. The reason
is that all the assertions in Section 5.3.3 can be easily extended to the multiple
partially antisymmetric case. In detail, if we denote the number of antisymmetric
coordinates x(i) within each antisymmetry group I

(m)
d ⊆ {1, . . . , d} by ad,m with

m = 1, . . . ,M then the constraint ad + bd = d extends to

ad,1 + . . .+ ad,M + bd = d.

Here bd again denotes the number of coordinates without any antisymmetry con-
dition. In conclusion, the sufficient condition (5.25) in Proposition 5.12 transfers
to

1

d

M∑
m=1

ln(ad,m!) ≥ ‖λ `τ‖τ , for all d ≥ d0,

which is always satisfied in the case of wavefunctions, since then M = 2 and the
cardinality ad,m of at least one of the groups of the same spin needs to grow linearly
with the dimension d.
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Dünnen Gittern. Ph.D. thesis, TU Berlin, 2010. urn:nbn:de:kobv:83-
opus-27910. [↑ 85, 92, and 112]

[ZZ13] H. Zhang and J. Zhang - Vector-valued reproducing kernel Banach
spaces with applications to multi-task learning. J. Complexity 29(2),
2013, pp. 195–215. [↑ 30]

119





Lebenslauf

Persönliche Daten

Name: Markus Weimar

Geburtsdatum: 28.02.1986

Geburtsort: Weimar

Nationalität: deutsch

Akademischer Werdegang

05/2004 Abitur am Staatlichen Gymnasium “Bergschule” Apolda

10/2004–09/2009 Studium der Mathematik an der Friedrich-Schiller-Universität
(FSU) Jena, partiell gefördert durch die Studienstiftung des
deutschen Volkes
Diplomarbeit: Das Haar’sche System in Funktionenräumen
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