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Locally definitizable operators: The local structure
of the spectrum

Carsten Trunk, Ilmenau, Germany

Abstract

We consider different types of spectral points of locally definitizable operators
which can be defined with the help of approximate eigensequences. Their
behavior allow a characterization in terms of the (local) spectral function.
Moreover, we review some perturbation results for locally definitizable oper-
ators.

1 Introduction

As indicated in their name, locally definitizable (or more precise, operators defini-
tizable over some domain in C) are considered to be a class of operators which
have locally the same spectral properties as definitizable operators in Krein spaces.
Recall that a definitizable operator is a selfadjoint operator A in a Krein space
(H, [., .]) with non-empty resolvent set and with a non-zero polynomial p such that
[p(A)x, x] is non-negative for all vectors x in the domain of p(A), cf. [77]. Starting
from this definition, a local version is not obvious. Therefore one proceeds in a dif-
ferent manner. The idea is to localize the ”key properties” of definitizable operator.
These ”key properties” of definitizable operator are the following.

1. The non-real spectrum consists of finitely many points only which are poles
of the resolvent.

2. Except for a finite set of exceptional points (critical points) the spectrum in
R consists out of spectral points of positive and of negative type.

3. The growth of the resolvent close to R can be estimated by some power of
|Imλ|−1.

Now a operator is called definitizable over some domain Ω (where Ω has to fulfill
some additional assumptions, see Definition 2.5 below) if σ(A)∩ (Ω \R) consists of
isolated points which are poles of the resolvent of A which do not accumulate to
Ω∩R such that 2. and 3. are fulfilled (with R replaced by ∆) for each closed subset
∆ of Ω ∩ R.

This note is organized as follows. We start in Section 2 with the definition of
spectral points of positive/negative type via approximative eigensequences. This
approach has the advantage that it does not make use of a local spectral function.
We also introduce various types of spectra and then we define locally definitizable
operators. Often one obtains locally definitizable operators as a result of a pertur-
bation of an operator with well-known spectral properties. Therefore we recall some
of the perturbation results for finite rank perturbations/compact perturbations in
Section 3 and for perturbations small in gap in Section 4.

Locally definitizable operators appear in many applications. For locally defini-
tizable operators in the context of (indefinite) Sturm-Liouville problems we refer
to [15, 20, 27, 64], for λ-dependent boundary value problems see [16, 19, 63] in the
context of PT -symmetric operators see [10, 11], in the study of partial differential
equations [17, 29], for a special form of the Krein-Naimark formula see [13, 23] and
in the study of problems of Klein-Gordon type see [56, 58].
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2 Sign properties of spectral points of selfadjoint
operators in Krein spaces

Let (H, [., .]) be a Krein space. We briefly recall that a complex linear space H with
a Hermitian nondegenerate sesquilinear form [., .] is called a Krein space if there
exists a so-called fundamental decomposition

H = H+ ⊕H− (2.1)

with subspaces H± being orthogonal to each other with respect to [., .] such that
(H±,±[., .]) are Hilbert spaces. To each decomposition (2.1) there corresponds a
Hilbert space inner product (., .) and a selfadjoint operator J (the fundamental
symmetry) with J2 = I, J = J−1 and [x, y] = (Jx, y) for x, y ∈ H. Recall that
in a Krein space (H, [., .]) a vector x ∈ H is called positive (negative ) if [x, x] > 0
([x, x] < 0, respectively).

In the following, all topological notions are understood with respect to some
Hilbert space norm ‖ . ‖ on H such that [., .] is ‖ . ‖-continuous. Any two such norms
are equivalent (see, e.g., [77]). If H− (H+) is finite dimensional, then (H, [., .]) is
called a Pontryagin space with finite rank of negativity (resp. positivity). For basic
properties of Krein spaces we refer to [67] and to the monographs [3, 35].

Let (H, [·, ·]) be a Krein space and let A be a bounded or unbounded selfadjoint
linear operator in the Krein space (H, [·, ·]), i.e., A coincides with its adjoint A+ with
respect to the indefinite inner product [·, ·]. If an operator is selfadjoint with respect
to some Krein space inner product, then its spectral properties differ essentially from
the spectral properties of selfadjoint operators in Hilbert spaces, e.g., the spectrum
σ(A) of A is in general not real and even σ(A) = C may occur.

The indefiniteness of the scalar product [., .] on H induces a natural classification
of isolated real eigenvalues of a selfadjoint operator A in a Krein space (H, [·, ·]): A
real isolated eigenvalue λ0 of A is called of positive (negative) type if all corresponding
eigenvectors are positive (negative, respectively). Observe that there is no Jordan
chain of length greater than one which corresponds to a eigenvalue of A of positive
type (or of negative type). This classification of real isolated eigenvalues is used
frequently, we mention here as some example from theoretical physics [32, 33, 36,
47, 85].

There is a corresponding notion for points from the approximate point spectrum
σap(A)1. Recall that for a selfadjoint operator A in a Krein space all real spectral
points of A belong to σap(A) (see e.g. Corollary VI.6.2 in [35]). It is convenient to
consider the point ∞ also either as a spectral point or as a point from the resolvent
set. Hence, in the following, we will use the notion of the extended spectrum σ̃(A)
of A which is defined by σ̃(A) := σ(A) if A is bounded and σ̃(A) := σ(A) ∪ {∞} if
A is unbounded. Moreover, we set R := R ∪ {∞} and C := C ∪ {∞}.

The following definition was given in [70] and [79] for bounded selfadjoint oper-
ators.

Definition 2.1. For a selfadjoint operator A in the Krein space (H, [., .]) a point
λ0 ∈ σ(A) is called a spectral point of positive (negative) type of A if λ0 ∈ σap(A)
and for every sequence (xn) in dom (A) with ‖xn‖ = 1 and ‖(A − λ0I)xn‖ → 0 as
n → ∞ we have

lim inf
n→∞

[xn, xn] > 0
(
resp. lim sup

n→∞
[xn, xn] < 0

)
.

1The approximate point spectrum of a closed operator A is denoted by σap(A) and consists of
all λ ∈ C such that there exists a sequence (xn) in domA with ‖xn‖ = 1, n = 1, 2, . . . ,

‖xn‖ = 1 and lim
n→∞

‖Axn − λxn‖ = 0.

The sequence (xn) is called an approximative eigensequence.
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The point ∞ is said to be of positive (negative) type of A if A is unbounded and
for every sequence (xn) in dom (A) with limn→∞ ‖xn‖ = 0 and ‖Axn‖ = 1 we have

lim inf
n→∞

[Axn, Axn] > 0
(
resp. lim sup

n→∞
[Axn, Axn] < 0

)
.

We denote the set of all points of σ̃(A) of positive (negative) type by σ++(A) (resp.
σ−−(A)).

The sets σ++(A) and σ−−(A) are contained in R. Indeed, for λ ∈ σ++(A)\{∞}
and (xn) as in the first part of Definition 2.1 we have −(Imλ)[xn, xn] = Im [(A −
λ)xn, xn] → 0 for n → ∞ which implies Imλ = 0. In the following proposition we
collect some properties. For a proof we refer to [7].

Proposition 2.2. Let λ0 be a point of σ++(A) (σ−−(A), respectively). Then there
exists an open neighborhood U in C of λ0 such that the following holds.

(i) We have
U \ R ⊂ ρ(A),

this is, the non-real spectrum of A cannot accumulate to σ++(A) ∪ σ−−(A).

(ii) U ∩ σ̃(A) ∩ R ⊂ σ++(A) (resp. U ∩ σ̃(A) ∩ R ⊂ σ−−(A)).

(iii) There exists a number M > 0 such that

‖(A− λ)−1‖ ≤ M

|Imλ|
for all λ ∈ U \ R.

It is shown in [79] for bounded selfadjoint operators A (and in [59] for unbounded
selfadjoint operators) that if an open connected subset I in R satisfies

I ∩ σ̃(A) ⊂ σ++(A) ∪ σ−−(A), (2.2)

then there exists a local spectral function E of A of so-called positive type, i.e. for
δ ⊂ I with δ ∩ σ̃(A) ⊂ σ±±(A) the spectral subspace (E(δ)H,±[., .]) is a Hilbert
space. With the help of this (local) spectral function we obtain the following char-
acterization.

Theorem 2.3. Let A be a selfadjoint operator in the Krein space (H, [., .]) and let
I be as in (2.2) with (local) spectral function E. A point λ ∈ I ∩ σ̃(A) belongs to
σ++(A) (σ−−(A)) if and only if there exists a connected set δ ⊂ I open in R, λ ∈ δ,
such that (E(δ)H, [., .]) (resp. (E(δ)H,−[., .])) is a Hilbert space.

Roughly speaking, the spectral properties of the operator A are locally along I
the same as of a selfadjoint operator in a Hilbert space.

Let, e.g., A be a [·, ·]-non-negative selfadjoint operator in a Krein space (H, [., .])
with a non-empty resolvent set. Then σ(A) ⊂ R holds and the spectral points of
A in (0,∞) and (−∞, 0) are of positive type and negative type, respectively, which
follows from Theorem 2.3 and the existence of a (unique) spectral function for non-
negative operators in Krein spaces, see [77].

Not surprising, spectral points of positive and negative type are in general not
stable under finite rank and compact perturbations. However, if the non-negative
selfadjoint operator A from above is perturbed by a finite rank operator F such
that the resulting operator B = A+F is selfadjoint in (H, [., .]), then the Hermitian
form [B·, ·] is still non-negative on the complement of a suitable finite dimensional
subspace. Therefore, if (xn) is an approximative eigensequence corresponding to λ ∈
σ(B)∩(0,∞) (λ ∈ σ(B)∩(−∞, 0)) and all xn belong to a suitable linear manifold of
finite codimension, then all accumulation points of the sequence ([xn, xn]) are again
positive (resp. negative). In [7] the latter property of approximative eigensequence
serves as a definition of so-called spectral points of type π+ and type π−, respectively,
for an arbitrary selfadjoint operator A in a Krein space which we recall here.
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Definition 2.4. [7] For a selfadjoint operator A in a Krein space (H, [., .]) a point
λ0 ∈ σap(A) is called a spectral point of type π+ (type π−) of A if there exists a
linear manifold H0 ⊂ H with codimH0 < ∞ such that for every sequence (xn) in
H0 ∩ domA with

‖xn‖ = 1, n = 1, 2, . . . , and lim
n→∞

‖(A− λ0)xn‖ = 0 (2.3)

we have
lim inf
n→∞

[xn, xn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0). (2.4)

The point ∞ is said to be a point of type π+ (type π−) if A is unbounded and
if there exists a linear manifold H0 ⊂ H with codimH0 < ∞ such that for every
sequence (xn) in H0 ∩ domA with

‖Axn‖ = 1, n = 1, 2, . . . , and lim
n→∞

‖xn‖ = 0

we have
lim inf
n→∞

[Axn, Axn] > 0 (resp. lim sup
n→∞

[Axn, Axn] < 0).

We denote the set of all points of type π+ (type π−) of A by σπ+(A) (resp. σπ−(A)).

If in Definition 2.4 for all sequences (xn) in H∩domA with (2.3), property (2.4)
follows (i.e. H0 = H), then λ0 is a spectral point of positive (resp. negative). An
analogous statement holds for the point ∞. Hence,

σ++(A) ⊂ σπ+(A) and σ−−(A) ⊂ σπ−(A).

The point ∞ plays a special role in the follwing sense (see [7]): ∞ ∈ σπ+(A)
implies ∞ ∈ σ++(A) and ∞ ∈ σπ−(A) implies ∞ ∈ σ−−(A).

In [7] Proposition 2.2 and Theorem 2.3 are generalized to spectral points of
type π+/π−. It is proved that a real spectral point λ0 of type π+ of a selfadjoint
operator A in a Krein space, which is not an interior point of the spectrum, has
a deleted neighbourhood2 consisting only of spectral points of positive type or of
points from ρ(A) and the growth of the resolvent (A − λ)−1 can be estimated by
some power of |Imλ|−1 for non-real λ in a neighborhood of λ0. Such a behavior is
also known for locally (in a neighborhood of λ0) definitizable operators (see, e.g.,
[59]). Locally definitizable operators appeared first in a paper by H. Langer in 1967
(see [73]) without having a name at that time. Later, in a series of papers, P. Jonas
studied these operators and introduced the notion of locally definitizable operators,
cf. [52, 53, 55, 59, 60]. This class of operators will be of particular interest in the
following, hence we recall here the definition of locally definitizable operators or,
more precisely, operators definitizable over some subset of C.

Definition 2.5. Let Ω be a domain in C which is symmetric with respect to R such
that Ω ∩ R 6= ∅ and the intersections with the open upper and lower half-plane are
simply connected. Let A be a selfadjoint operator in the Krein space (H, [., .]) such
that σ(A)∩ (Ω \R) consists of isolated points which are poles of the resolvent of A,
and no point of Ω∩R is an accumulation point of the non-real spectrum of A. The
operator A is called definitizable over Ω if the following holds.

(i) For every closed subset ∆ of Ω ∩ R there exist an open neighborhood U of ∆
in C and numbers m ≥ 1, M > 0 such that

‖(A− λ)−1‖ ≤ M(|λ|+ 1)2m−2|Imλ|−m

for all λ ∈ U \ R.
2A deleted neighbourhood of a point λ0 is the set U \ {λ0}, where U is a neighbourhood of λ0.
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(ii) Every point λ ∈ Ω ∩R has an open connected neighborhood Iλ in R such that
each of the two components of Iλ \ {λ} is of positive or of negative type. That
is, if I1, I2 are the two connected (disjoint) components of Iλ \ {λ} = I1 ∪ I2
then I1 ∩ σ̃(A) ⊂ σ++(A) or I1 ∩ σ̃(A) ⊂ σ−−(A) and a similar statement
holds for I2; either I2 ∩ σ̃(A) ⊂ σ++(A) or I2 ∩ σ̃(A) ⊂ σ−−(A).

It follows from [59, Theorem 4.7]) that A is definitizable if and only if A is locally
definitizable over C. Definitizable operators are introduced and comprehensively
studied by H. Langer in [72, 77] and appear in many applications, such as indefinite
Sturm-Liouville problems, see e.g. [15, 21, 22, 25, 31, 34, 38, 39, 41, 66, 93], Krein-
Feller operators [46], λ-dependent boundary value problems, see e.g. [24, 30, 42, 62,
63, 82], operator polynomials [68, 69, 71, 72, 74, 75, 76, 87], second order systems
[50, 89, 90] and in the study of problems of Klein-Gordon type [83].

Using the notion of locally definitizable operators, the above mentioned result
from [7] reads as follows.

Theorem 2.6. [7] Let A be a selfadjoint operator in the Krein space (H, [., .]), and
let I be a closed connected subset of R such that

I ∩ σ̃(A) ⊂ σπ+(A) ∪ σπ−(A) (2.5)

holds and that each point of I is an accumulation point of ρ(A). Then there exists
a domain Ω in C symmetric with respect to R with Ω∩C+ and Ω∩C− being simply
connected such that I ⊂ Ω and A is definitizable over Ω.

It follows from [59, Section 3.4 and Remark 4.9] that in the situation of Defi-
nition 2.5 the operator A has a local spectral function E(δ) defined for all Borel
subsets δ of Ω∩R the endpoints of which belong to Ω∩R (that is, δ ⊂ Ω∩R) and
are, if the they belong to σ̃(A), spectral points of positive or negative type with
respect to A. For such a set δ we collect in the following theorem some properties
of E(δ), see [59, Section 3.4 and Remark 4.9].

Theorem 2.7. The spectral projection E(δ) is a bounded [., .]-selfadjoint projection
with the following properties.

(a) E(δ) commutes with every bounded operator which commutes with the resol-
vent of A.

(b) σ(A|E(δ)H) ⊂ σ(A) ∩ δ.

(c) σ(A|(I − E(δ))H) ⊂ σ(A) \ int (δ), where int (δ) is the interior of δ with
respect to the topology of R.

(d) If, in addition, δ is a neighborhood of ∞ (with respect to the topology of R),
then A|(I − E(δ))H is a bounded operator.

Contrary to the case of an interval satisfying (2.2), this local spectral function
is no longer of positive type. Instead, we have the following.

Theorem 2.8. [7] Let A be definitizable over Ω and let E be the spectral function of
A. A real point λ ∈ σ(A)∩Ω belongs to σπ+(A) (σπ−(A)) if and only if there exists
a bounded open interval δ ⊂ Ω, λ ∈ δ, such that E(δ) is defined and (E(δ)H, [., .])
is a Pontryagin space with finite rank of negativity (resp. positivity).

That is, the spectral properties of the operator A in a neighborhood of a point
of type π+ are the same as of a selfadjoint operator in a Pontryagin space.

Moreover, via the local spectral function, we obtain the following characteri-
zation of locally definitizable operators which also describe the relation between
definitizable and locally definitizable operators.
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Theorem 2.9. [59, Theorem 4.8] Let A be a selfadjoint operator in the Krein
space (H, [., .]) and let Ω be a domain as in Definition 2.5. The operator A is
definitizable over Ω if and only if for every domain Ω′ with the same properties
as Ω, Ω′ ⊂ Ω, there exists a bounded selfadjoint projection E in H such that with
respect to the decomposition

H = (I − E)H [u]EH (2.6)

the operator A can be written as a diagonal operator matrix

A =

(
AI−E 0
0 AE

)
, (2.7)

where one of the operators AI−E, AE is a bounded selfadjoint operator in the Krein
space ((I−E)H, [., .]) or (EH, [., .]), respectively, and the other one is either bounded
or densely defined. Moreover, AE is a definitizable operator in (EH, [., .]) and
σ̃(AI−E) ∩ Ω′ = ∅.

Let A be definitizable over Ω. Points from Ω ∩ σ̃(A) \ (σ++(A) ∪ σ−−(A)) are
sometimes called critical points. Now Theorems 2.3 and 2.8 allow the following
classification of the spectral points of an operator A definitizable over Ω: Each
spectral point λ0 ∈ Ω ∩ R is

• either a point of σ++(A)∪σ−−(A). This is the set of spectral points of definite
type where the spectral properties of the operator are locally the same as of
a selfadjoint operator in a Hilbert space, see Theorem 2.3.

• Or a point of σπ+(A)∪σπ−(A) but no point of σ++(A)∪σ−−(A). These points
are a subset of the critical points and the spectral properties of the operator
are locally the same as of a selfadjoint operator in a Pontryagin space, see
Theorem 2.8.

• Or the point λ0 belongs to σ̃(A) \
(
σπ+(A) ∪ σπ−(A)

)
. The points are called

the essentially critical points (see, e.g. [62]) and they have the property that
for every open connected set δ ⊂ Ω, λ ∈ δ, such that E(δ) is defined the
space (E(δ)H, [., .]) is not a Pontryagin space. That is, in every fundamental
decomposition of the Krein subspace (E(δ)H, [., .]) the two components are
infinite dimensional.

Remark 2.10. A definitizable operator has only finitely many critical points, cf.
[77]. There exists operators definitizable over some subset Ω of C with infinitely
many critical or infinitely many essentially critical points. Critical points and es-
sential critical points of operators definitizable over Ω may only accumulate to the
boundary of Ω.

The following theorem illustrate the properties of sign type spectrum from a
different point of view. For a proof we refer to [90]. Here we denote by σess(A) the
essential spectrum3 of A.

Theorem 2.11. Let A be a self-adjoint operator in (H, [., .]).

3A closed, densely defined operator A in some Banach space is called Fredholm if the dimension
of the kernel of A and the codimension of the range of A are finite. The set

σess(A) := {λ ∈ C | A− λI is not Fredholm}

is called the essential spectrum of A.
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(i) If A satisfies
σ̃(A) = σ++(A) (resp. σ̃(A) = σ−−(A)),

then (H, [., .]) is a Hilbert space (anti-Hilbert space, respectively).

(ii) If A satisfies
σ̃(A) = σ++(A) ∪ σ−−(A),

then A is similar to a self-adjoint operator in a Hilbert space.

(iii) If A with ρ(A) 6= ∅ satisfies

σess(A) ⊂ R and σ̃(A) = σπ+(A) (resp. σ̃(A) = σπ−(A)),

then (H, [., .]) is a Pontryagin space with finite rank of negativity (resp. posi-
tivity). Moreover, the non-real spectrum of A consists of at most finitely many
points which belong to σp(A) \ σess(A).

(iv) If A with ρ(A) 6= ∅ satisfies

σess(A) ⊂ R and σ̃(A) = σπ+(A) ∪ σπ−(A), (2.8)

then the non-real spectrum of A consists of at most finitely many points which
belong to σp(A) \ σess(A). Moreover, the operator A is definitizable.

3 Compact and finite rank perturbations of defini-
tizable and locally definitizable operators

Roughly speaking, the property of an operator to be definitizable or to be locally
definitizable is stable under finite rank perturbations. However, this property is not
stable under compact perturbation unless the unperturbed operator has no essential
critical points. It is the purpose of the following section the make these statements
more precise.

We start with a result on finite rank perturbations from J. Behrndt [14].

Theorem 3.1. [14] Let A0 and A1 be selfadjoint operators in a Krein space
(H, [., .]) with ρ(A0) ∩ ρ(A1) 6= ∅ and assume that for some λ0 ∈ ρ(A0) ∩ ρ(A1)
the difference

(A0 − λ0)
−1 − (A1 − λ0)

−1 (3.1)

is a finite rank operator. Then A0 is definitizable over Ω if and only if A1 is
definitizable over Ω.

Moreover, if A0 is definitizable over Ω and δ ⊂ Ω ∩ R is an open interval with
endpoint µ ∈ Ω ∩ R and the spectral points of A0 in δ are only of positive type
(negative type), then there exists an open interval δ′, δ′ ⊂ δ, with endpoint µ such
that the spectral points of A1 in δ′ are only of positive type (resp. negative type).

Theorem 3.1 also holds for definitizable operators as the class of definitizable
operators over C coincides with the class of definitizable operators ([59, Theorem
4.7]). For definitizable operators this fact is already contained in [61].

Moreover, it is shown in [26] that the finiteness of the number of eigenvalues in
a spectral gap of a definitizable or locally definitizable operator is preserved under
finite rank perturbations.

If the difference in (3.1) is no longer a finite rank operator but a compact oper-
ator, it is well-known that, in general, the assertions of Theorem 3.1 will not hold,
see e.g. [61, Proposition 3]. The notion of points of type π+ and π− is particularly
convenient when compact perturbations are considered. Under a compact pertur-
bation a spectral point of type π+ remains a spectral point of type π+ or becomes
a point from the resolvent set:
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Theorem 3.2. [7] Let A0 and A1 be selfadjoint operators in the Krein space
(H, [., .]). Assume that ρ(A0) ∩ ρ(A1) 6= ∅ and that for some µ ∈ ρ(A0) ∩ ρ(A1)
the difference

(A0 − µ)−1 − (A1 − µ)−1 is compact. (3.2)

Then

(σπ+(A0) ∪ ρ(A0)) ∩ R = (σπ+(A1) ∪ ρ(A1)) ∩ R,
(σπ−(A0) ∪ ρ(A0)) ∩ R = (σπ−(A1) ∪ ρ(A1)) ∩ R.

Moreover, ∞ ∈ σ++(A0) (∞ ∈ σ−−(A0)) if and only if ∞ ∈ σ++(A1) (resp.
∞ ∈ σ−−(A1)).

Theorem 3.2 together with the results presented in the preceding Section 2 give
the following perturbation result for locally definitizable operators in Krein spaces
from [7] (which is presented here in a slightly different form).

Theorem 3.3. [7] Let A0, A1 be selfadjoint operators in the Krein space (H, [., .])
with σess(A0) ⊂ R. Let A0 be definitizable over a domain Ω ⊂ C with Ω ∩ R = I.
Assume that ρ(A1) ∩ Ω 6= ∅ and for some µ ∈ ρ(A0) ∩ ρ(A1) (3.2) holds. If

I ∩ σ̃(A0) ⊂ σπ+(A0) ∪ σπ−(A0),

then A1 is definitizable over Ω and

I ∩ σ̃(A1) ⊂ σπ+(A1) ∪ σπ−(A1).

Theorem 3.3 has a long list of well-known precursors: H. Langer proved in [73]
1967 the assertion of Theorem 3.3 in the case of a bounded selfadjoint fundamentally
reducible4 operator A0 such that the difference of the resolvents (3.2) belongs to
the so-called Matsaev-class. Recall that the Matsaev-class consists of all compact
operators with s-numbers (sj) satisfying

∑∞
j=1(2j−1)−1sj < ∞. P. Jonas extended

this result in [53, 54] to unbounded selfadjoint fundamentally reducible operators A0

such that (3.2) belongs again to the Matsaev-class. In the paper [79] of H. Langer,
A. Markus and V. Matsaev in 1997 these assumptions are relaxed: The assertions of
Theorem 3.3 are proved for the case of a bounded selfadjoint (no more fundamentally
reducible) operator such that (3.2) is compact (no more of Matsaev-class). We
mention that the proof of this result from [79] is based upon the existence of maximal
spectral subspaces (cf. [86]). Moreover, it is formulated in terms of the so-called
eigenvalues of finite index of negativity5 which are precisely the spectral points
of type π+ being not of positive type, cf. [7]. Finally, J. Behrndt and P. Jonas
succeeded to prove the assertions of Theorem 3.3 in 2005 (cf. [18]). We mention
that the proofs given in [18] and [7] use completely different methods. Both papers
were published in 2005 but [18] was submitted more than one year earlier as [7].

Note that Theorem 3.3 is not suitable for operators A0 being non-negative in a
neighborhood of ∞, or, more precisely, for operators A0 with ∞ being an essential
critical point. However, this case is intensively studied and we refer to [18, 40, 51,
53, 55, 57, 91, 92].

4Operators which are selfadjoint in a Krein space and at the same time selfadjoint with respect
to some Hilbert space inner product (., .) such that [., .] is ‖ . ‖-continuous are called fundamental
reducible.

5In [79] an eigenvalue of finite index of negativity of a bounded selfadjoint operator A is defined
in the following way: Assume λ0 ∈ σp(A) and assume that there exists an open interval (α, β) with
λ0 ∈ (α, β) and (α, β)\{λ0} ⊂ σ++(A)∪ρ(A). Using the local spectral function we find a restriction
of A to some spectral subset with resolvent set in (α, α′) and (β′, β), α < α′ < λ0 < β′ < β. The
interval (α′, β′) is a spectral set of the restriction in the sense of Dunford, hence we have a
spectral projection. If this spectral projection projects onto a Pontryagin space with finite rank
of negativity, then the point λ0 is called in [79] an eigenvalue of finite index of negativity.
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Theorem 3.3 also applies to definitizable operators in Krein spaces. Based on
the Theorems 3.2, 3.3 and Theorem 2.11 we obtain the following perturbation result
for definitizable operators, which follows already from the results in the frequently
cited paper [61] of P. Jonas and H. Langer from 1979.

Theorem 3.4. Let A0 and A1 be selfadjoint operators in the Krein space (H, [., .]).
Assume that ρ(A0) ∩ ρ(A1) 6= ∅ and that for some (and hence for all) µ ∈ ρ(A0) ∩
ρ(A1) the difference (3.2) is compact. If A0 is a definitizable operator with

σess(A0) ⊂ R and σ̃(A0) = σπ+(A0) ∪ σπ−(A0), (3.3)

then A1 is a definitizable operator and (3.3) holds for A0 replaced by A1.

Theorem 3.4 is in the following sense optimal (cf. [61, Proposition 3]): To every
bounded definitizable selfadjoint operator in a Krein space (H, [., .]) with an non-
empty set of essentially critical points there exists a compact selfadjoint operator
K in (H, [., .]) such that the operator A+K is not definitizable.

In [28] the investigation of spectral points of type π+ and type π− of selfadjoint
operators started in [7] is continued. A sharp lower bound for the codimension
of the linear manifold H0 occurring in Definition 2.4 is given in [28] and this
number is smaller or equal to the negativity (resp. positivity) index of the spectral
subspaces corresponding to small intervals containing λ0. Moreover, in [28], a special
finite dimensional perturbation is constructed which turns a real point of type π+

(type π−) into a point of positive (resp. negative) type.
The above notions and results are also valid for linear relations, see [6]. For the

notion of definitizable and locally definitizable linear relations we refer to [44] and
[59].

Finaly, we note that the concept of spectral points of positive/negative type
is also used as a standard tool in the analysis of selfadjoint operator functions.
For further details on the sign type properties of an associated linear operator (i.e.
the linearization) in a Krein space and the local spectral functions for selfadjoint
operator functions we refer to [1, 78, 80, 81].

4 Compact perturbations and perturbations small
in gap of linear relations

The perturbation results presented in this section hold for locally definitizable op-
erators. However, they even hold for arbitrary closed operators and linear relations
in Krein spaces and, hence, we present them for such a general class of operators.

The notions of spectral points of positive/negative type and of type π+/π−
extend naturally to non-selfadjoint operators and to closed linear relations. Recall
that closed linear relations in a Hilbert or Krein space H are closed linear subspaces
of the Cartesian product H×H. Linear operators are always identified with linear
relations via their graphs. For the definitions of the usual operations with relations
like the inverse, the spectrum etc. we refer to [2, 43], and to the monographs [37, 48].
Here the (extended) set of regular type r̃(A) of a closed linear relation A is defined
by r̃(A) := C \ σap(A) if 0 ∈ σap(A

−1) and r̃(A) := C \ σap(A) otherwise, where
σap(A) is the approximate point spectrum6 of A.

6We say that λ ∈ C belongs to the approximate point spectrum σap(A) of a closed linear relation
A if there exists a sequence

(( xn
x̃n

))
with

( xn
x̃n

)
∈ A, n = 1, 2, . . . , such that

‖xn‖ = 1 and lim
n→∞

‖x̃n − λxn‖ = 0.
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Definition 4.1. [6] Let A be a closed linear relation in a Krein space (H, [., .]). A
point λ0 ∈ σap(A) is said to be of type π+ (type π−) with respect to A, if there exists
a linear relation S ⊂ A with codimAS < ∞ such that for every sequence

(( xn
x̃n

))
with

( xn
x̃n

)
∈ S, n = 1, 2 . . . , ‖xn‖ = 1 and limn→∞ ‖x̃n − λ0xn‖ = 0 we have

lim inf
n→∞

[xn, xn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0).

A similar definition is given for the point ∞, see [6]. If for λ ∈ σπ+(A) (resp.
λ ∈ σπ−(A)) it is possible to choose in Definition 4.1 S = A, then we call λ a point
of positive type (resp. negative type) of A. As in Section 2 we denote the set of all
points of positive, of negative type, of type π+ and of type π− by σ++(A), σ−−(A),
σπ+(A) and σπ−(A), respectively.

As a first result we obtain (see [6] and, for selfadjoint operators, [7]) some sign-
type properties of eigenvalues from the set σπ+(A)\σ++(A).

Theorem 4.2. [6] Let A be a closed linear relation in a Krein space (H, [., .]).
If λ0 ∈ σπ+(A)\σ++(A) (λ0 ∈ σπ−(A)\σ−−(A)), then λ0 is an eigenvalue of
A with a corresponding non-positive (resp. non-negative) eigenvector. If ∞ ∈
σπ+(A)\σ++(A) (∞ ∈ σπ−(A)\σ−−(A)), then the multivalued part of A contains a
non-positive (resp. non-negative) vector.

In order to investigate the behavior of spectral points of type π+ and of type π−
under compact perturbations and perturbations small in norm we use the orthogonal
projections PA and PB inH⊕H onto two closed subspaces A and B ofH⊕H. Recall
that the quantity δ̂(A,B) := ‖PA−PB‖ is called the gap between A and B, cf. [65].
We shall say that A is a compact (finite rank) perturbation of B if PA − PB is a
compact (resp. finite dimensional) operator. The following description of compact
perturbations of closed linear relations is obtained in [5].

Theorem 4.3. Let A and B be closed linear relations. Then the following assertions
are equivalent:

(i) PA − PB is a compact operator,

(ii) for every ε > 0 there exists a closed linear relation F such that PB − PF is a
finite rank operator and

δ̂(A,F ) = ‖PA − PF ‖ < ε.

If, in addition, ρ(A) ∩ ρ(B) 6= ∅, then A is a compact perturbation of B if and
only if (A − λ)−1 − (B − λ)−1 is a compact operator for some (and hence for all)
λ ∈ ρ(A) ∩ ρ(B).

Moreover, it is shown in [5] that A is a finite rank perturbation of B if and only
if A and B are both finite dimensional extensions of their common part A ∩B.

In [6] the following perturbation result for arbitrary non-selfadjoint operators
(and relations) in Krein spaces is obtained. We mention that usually pertur-
bation problems are only considered for special subclasses of closed operators,
e.g., selfadjoint (see above), normal or dissipative operators in Krein spaces, see
[4, 8, 9, 12, 45, 84, 88].

Theorem 4.4. [6] Let A and B be closed linear relations in a Krein space (H, [., .])
and suppose that A is a compact perturbation of B. Then we have

σπ+(A) ∪ r̃(A) = σπ+(B) ∪ r̃(B) and σπ−(A) ∪ r̃(A) = σπ−(B) ∪ r̃(B).
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The main result in [6] is devoted to perturbations which are small in the gap
metric. Roughly speaking, it is shown that spectral points of type π+ and type π−
type are stable under perturbations small in the gap metric. A similar result holds
for spectral points of positive and negative type, see [6].

Theorem 4.5. [6] Let A be a closed linear relation in a Krein space (H, [., .]) and
let F ⊂ C be a compact set with F ⊂ σπ+(A) ∪ r̃(A) (F ⊂ σπ−(A) ∪ r̃(A)). Then
there exists a constant γ ∈ (0, 1) such that for all closed linear relations B with

δ̂(A,B) < γ we have

F ⊂ σπ+(B) ∪ r̃(B) (resp. F ⊂ σπ−(B) ∪ r̃(B)).

The above introduced notions of spectral points of positive and negative type
are very convenient in the study of fundamentally reducible closed linear relations
under perturbations small in gap, see [6]. A relation A is said to be fundamentally
reducible if there exists a fundamental decomposition of the Krein space of the form
(2.1) and A can be written as

A = A+

.
+ A−, direct sum, (4.1)

where A+ := A ∩ H2
+ and A− := A ∩ H2

− are closed linear relations in the Hilbert
spaces (H+, [., .]) and (H−,−[., .]), respectively. If λ belongs to C \ σap(A−) the
estimate

‖ỹ− − λy−‖ ≥ kλ,−‖y−‖ (4.2)

holds for some kλ,− > 0 and all
( y−

ỹ−

)
∈ A−.

The following result from [6] can be viewed as a natural generalization of a result
for bounded selfadjoint operators in [79, Theorem 4.1]. For simplicity we formulate
it here only for spectral points of positive type (for spectral points of negative type,
type π+ or type π− we refer to [6]).

Theorem 4.6. [6] Let A be a fundamentally reducible closed linear relation in H
as in (4.1) and let B be a closed linear relation in H. If for some λ ∈ C \ σap(A−),
kλ,− > 0 as in (4.2) and γ > 0

δ̂(A− λ,B − λ) < γ and γ2

(
1 +

1

k2λ,−

)
<

1

4

hold, then
λ ∈ σ++(B) ∪ r̃(B).

Acknowledgment

We thank Jussi Behrndt for his fruitful comments.

References
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[74] H. Langer, Über stark gedämpfte Scharen im Hilbertraum (German), J. Math. Mech.
17 (1968), 685-705.
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