

Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät Astrophysikalisches Institut und Universitäts-Sternwarte

Diplomarbeit

Spektroskopische Untersuchung von Ound B-Sternen

Anna Pannicke

20. März 2013

Eingereicht von: Anna Pannicke

1. Gutachter: Prof. Dr. Ralph Neuhäuser

2. Gutachter: PD Dr. Katharina Schreyer

Tag der Verleihung des Diploms: _____

Inhaltsverzeichnis

	Abbildungsverzeichnis	v ix
1	Einleitung	1
2	Grundlagen2.1Helligkeit und Leuchtkraft2.2Plancksches Gesetz und Temperatur2.3Spektral- und Leuchtkraftklassen2.4Spektrallinien2.5Bestimmungskriterien für O- und B-Sterne	2 2 4 7 8
3	Beobachtungsinstrumente 3.1 Das Teleskop 3.2 Der Spektrograph FIASCO	11 11 13
4	Datenreduktion 4.1 Auswertungssoftware 4.2 Durchführung der Datenreduktion	16 16 16
5	Datenauswertung5.1Erstellung einer Targetliste5.2Auswertung: Erste Ideen5.3Auswertung: umgesetzte Vorgehensweise5.3.1Residual Bulk Image - Restbild (RBI)5.3.2Bestimmung von Signal-to-Noise-Ratio (SNR)5.3.3Anstiege der Spektren5.3.4Spektrallinien5.3.5Auswertung der Linien am Beispiel von TYC 3937-903-1	 22 23 24 29 32 33 36 41
6	Ergebnisse6.1Anstiege der Spektren6.2Linientiefen und Äquivalentbreiten	53 53 54
7	Diskussion und Ausblick	63
Lit	teraturverzeichnis	keit und Leuchtkraft 2 ksches Gesetz und Temperatur 2 ral- und Leuchtkraftklassen 4 rallinien 7 nmungskriterien für O- und B-Sterne 8 ingsinstrumente 11 releskop 13 ktion 16 ertungssoftware 16 iführung der Datenreduktion 16 vertung 22 lung einer Targetliste 22 ertung: Erste Ideen 23 ertung: ungesetzte Vorgehensweise 24 Residual Bulk Image - Restoild (RBI) 29 Bestimmung von Signal-to-Noise-Ratio (SNR) 32 Anstiege der Spektren 33 Spektrallinien 53 eige der Spektren 53 und Ausblick 63 ichnis 65 iche Erklärung 69 ng 70
8	Eidesstattliche Erklärung	69
9	Danksagung	70

Anhang	Α	71
A.1	Auswertung der Sterne	71
	A.1.1 HD 181730	72
	A.1.2 HD 228256	77
	A.1.3 TYC 3937-903-1	79
	A.1.4 HD 228742	84
	A.1.5 HD 228773	89
	A.1.6 HD 228905	94
	A.1.7 HD 229069	95
	A.1.8 TYC 3951-2450-1	99
	A.1.9 BD $+51\ 2945\ \ldots\ \ldots\$.02
	A.1.10 TYC 3603-2122-1	05
	A.1.11 TYC 3967-1885-1	08
	A.1.12 BD $+53\ 2661\ \ldots\ \ldots\$	11
	A.1.13 TYC 3967-232-1	19
	A.1.14 BD $+59$ 192	24
	A.1.15 GSC 03712-00331	28
	A.1.16 BD+62 36	29
	A.1.17 BD+62 66	31
	A.1.18 TYC 3712-57-1	36
	A.1.19 Nicht ausgewertete Sterne	38
A.2	Gesamte Datentabelle	39
Anhong	P 1	61
	D Liste allen ausgewöhlten Tangeta für die Beehachtung	61
D.1 D つ	Sumthatische Speltrop	69
D.2 D.9	Taballan Sabastiang und sumthatischer Spaltran	60
D.3	rabenen sebasuans und synthetischer Spektren	09

Anhang C

Nigł	itlogs																							17	7
C.1	23.07.2012							•			•										•	• •		17	7
C.2	24.07.2012							•			•										•	• •		17	8
C.3	25.07.2012							•			•										•	• •		17	9
C.4	30.07.2012					•		•			•	 •							•		•			18	0
C.5	01.08.2012	•				•		•		•	•	 •				•			•		•			18	1
C.6	03.08.2012					•		•			•	 •							•		•			18	2
C.7	08.08.2012					•		•			•	 •							•		•			18	2
C.8	09.10.2012	•				•		•		•	•	 •				•			•		•			18	3
C.9	10.10.2012	•				•		•		•	•	 •				•			•		•			18	4
C.10	11.10.2012	•		•		•	•	•		•	•		•			•	•	•	•	•	•		· •	18	5
C.11	15.10.2012	•		•		•	•	•		•	•					•	•		•	•	•		•	18	6
C.12	16.10.2012	•		•		•	•	•		•	•					•	•		•	•	•		•	18	7
C.13	17.10.2012	•				•		•		•	•	 •				•			•		•			18	8
C.14	19.10.2012	•				•		•		•	•	 •				•			•		•			18	9
C.15	20.10.2012	•		•		•	•	•		•	•					•	•		•	•	•		•	19	0
C.16	21.10.2012																					• •		19	2

Abbildungsverzeichnis

2.1	Intensitätsverlauf von Hohlraumstrahlern unterschiedlicher Temperatur (Kart- tunen et al. (2003))	2
2.2	Vergleich eines Sternspektrums (Vega, Spektralklasse A0V) mit Kurven zwei- er Hohlraumstrahler von 9500 K und 15000 K. Der Fluss (hier als f_{λ} be- zeichnet) ist aufgetragen über die Wellenlänge (Unsöld & Baschek (2002)).	5
0.0	Zum kurzwelligen Bereich hin folgt das Sternspektrum aufgrund vieler Ab- sorptionslinien nicht mehr dem Verlauf eines schwarzen Strahlers	4
2.3	Ein Hertzsprung-Russell-Diagramm (HRD). Über den Spektralklassen bzw. den Farben sind die absolute Helligkeit in Magnituden (links) und die Leucht- kraft in Sonnenleuchtkräften (rechts) aufgetragen (Winnenburg (1991)).	5
2.4	Das Profil der natürlichen Linienbreite (durchgezogene) und einer doppler- verbreiterten Linie (gestrichelte Linie) (Karttunen et al. (2003)).	7
2.5	Definition der Äquivalentbreite: Links ist ein schematisches Spektrum mit einer Absorptionslinie und interpoliertem Kontinuum c_{λ} , rechts die Skizze	0
2.6	Relative Stärken auftretender Spektrallinien in Abhängigkeit von der Spek- tralklasse bzw. der Temperatur (Winnenburg (1991)).	8 9
3.1	Das Teleskop der Universitätssternwarte Jena in Großschwabhausen (GSH (2013)).	12
3.2	Nasmythmodus des Teleskops: Das Licht fällt auf den Hauptspiegel, wird dann auf den Cassegrainspiegel reflektiert (C) und gelangt danach auf einen Planspiegel, der das Licht nach unten zum Nasmyth-Fokus ablenkt. Ohne diesen Spiegel wäre es ein Cassegrain-Modus mit dem Brennpunkt hinter dem Hauptspiegel bei E_{C} (Winnenburg (1991))	19
3.3	Schematischer Aufbau des Spektrographen FIASCO. Das Signal gelangt über einen Kollimator zur parallelen Ausrichtung des Bündels auf das Gitter	14
3.4	und wird danach von dem Detektor registriert (Mugrauer & Avila (2009)) Kalibrationseinheit von FIASCO (Mugrauer & Avila (2009)). Calibration Lamps Housing beherbergt Lampen für Kalibrationsaufnahmen, motorized Flip Mirror ist ein Umlenkspiegel, um zwischen Stern und Kalibrations- lampen zu wechseln, Fiber Coupler justiert die Glasfaser und Fiber-Viewing	13
9 5	Camera wird zur Kontrolle der Sternposition verwendet.	14
3.5	grauer & Avila (2009)). Der Dunkelstrom ($dark \ current$) wird in Counts/min	
3.6	gemessen	15
	000 Counts verhält sich der Fluss linear zur Belichtungszeit (Mugrauer & Avila (2009)).	15

4.1	Vom FIASCO erstelltes Rohspektrum des Sterns HD 228773	17
4.2	Ein typisches Dark, die Belichtungszeit ist 600s	17
4.3	Weißlichtbild mit einer Belichtungszeit von 10s.	18
4.4	Arcspektrum, Belichtungszeit 10s	18
4.5	Zugeordnete Ne-Linien im Arcspektrum, die Angaben sind in Å (Mugrauer	10
16	(2008)	19
4.0	Endimensionales Spektrum von HD 228775	20 91
4.7	Fertig reduziertes Spektrum von HD 228773	21
5.1	Bestimmung des Anstiegs anhand Spektren heller Sterne. Das zu bestim- mende Target ist der Stern TYC 3937-903-1 und befindet sich in der Mitte	
	Oben ist HD 214923 (B8V) unten HD 149881 (B0 5III)	24
5.2	Aufsuchkarte von TYC 3937-903-1 Erstellt mit DSS2-red (Erklärung im	- 1
0.2	Text) der Bereich umfasst 30' x 30'	25
53	Vergleich der reduzierten Spektren von TVC 903. Oben ist das aus den	20
0.0	ersten vier Einzelspektren gemittelte, unten das Einzelspektrum Nr. 5 zu	
	finden	26
5.4	Resultierende Funktion für Vega.	28
5.5	Korrigiertes, normiertes und logarithmiertes Spektrum von TYC 903	28
5.6	Sebastians Spektrum von HD 32537 (unten), verglichen mit dem Template	
	des Sterns aus le Borgne (oben).	29
5.7	Ein RBI-Signal nach Abzug eines Darks ohne das RBI	30
5.8	RBI-Kurve	31
5.9	Überlagerung verschiedener Vorfaktoren des RBI bei TYC 903. Links sind die RBI-Faktoren angegeben. Das optimale Spektrum besitzt den RBI-Faktor	
	von 0.8	31
5.10	Endreduziertes und RBI-korrigiertes Spektrum von TYC 903	32
5.11	SNR-Messung an TYC 903. Im linken markierten Bereich beträgt das SNR 14.22, im rechten 22.19. Der Mittelwert ist 18.21. Gemessen wird bei 1 in	
	der Mitte des Spektrums.	32
5.12	Normierte und danach logarithmierte Planck-Kurven für Sterntemperaturen der Spektralklassen O3 bis F8.	33
513	Der Anstieg des Sterns HD 32537 (Sebastians Spektrum) verglichen mit den	
0.10	Planck-Anstiegen der Klassen A4 bis F8. Die Schätzung der Spektralklasse	
	ergibt F0 bis F2 (die im Katalog von Le Borgne et al. (2003b) angegebene	
	Spektralklasse ist F0V).	34
5.14	Der Stern Cl [*] Trumpler 37 MVA 1312 mit Planck-Kurven. Die Spektral-	
	klasse ist laut diesem Plot F5 bis F8	35
5.15	Der Stern Cl* Trumpler 37 MVA 1312, entrötet mit $A_n = 1.5^{mag}$. Die Spek-	
	tralklasse ist laut diesem Plot B7 bis B8	35
5.16	Das Target TYC 903. geplottet mit verschiedenen Planck-Kurven. Die Spek-	
	tralklasse liegt laut dem Anstieg von TYC 903 zwischen B0 und B3.	36
5.17	Die gefitteten Anstiege von Sebastians Sternen.	37
5.18	Linientiefen von H und He von Sebastians Spektren und synthetischen Spek-	
0.10	tren. Dunkelblaue Symbole: Sebastians Werte für H hellblaue synthetische	
	Werte für H: pinke: Sebastians Werte für He, rosa: synthetischen Werte für	
	He	38

5.19	Logarithmiertes Verhältnis von H zu He bei Sebastians und synthetischen Spektren; rot: Sebastians Werte, gelb: synthetische Werte	39
5.20	Äquivalentbreiten von H und He. Vergleich der Werte von Sebastians und synthetischen Spektren. Dunkelblaue Symbole: Sebastians Werte für H, hell- blaue: synthetische Werte für H, pinke: Sebastians Werte für He, rosa: syn-	
	the tischen Werte für He	40
5.21	Logarithmiertes Verhältnis der Äquivalentbreiten von H zu He bei Sebas- tians und synthetischen Spektren. Rot: Sebastians Werte, gelb: synthetische Werte	40
5.22	Identifizierte Linien von TYC 903 (v.l.n.r.): Pixelfehler=6230 Å, $DIB = 6284$ Å, $DIB = 6494$ Å, $H_{\alpha} = 6562.8$ Å, $He = 6678$ Å (hier bei 6675.1 Å), Pixelfehler=6853 Å, $O_2 = 6868$ Å. Das DIB wird durch diffuse interstellare Banden verursacht, die innerhalb des ISM erzeugt werden.	41
5.23	Vermessung der Linientiefe von H (links) und He (rechts). Gemessen wird am oberen Rand, in der Mitte und am unteren Rand des Kontinuums. Die resultierenden Tiefen ergeben sich aus dem arithmetischen Mittelwert der	49
5.24	Linientiefen von H (0.42 ± 0.076) - orange Linie, und He (0.07 ± 0.076) - grüne Linie, bei TYC 903. Blaue Symbole: Tiefen von H, rosa: Tiefen von He.	42
5.25	Das Verhältnis der Linientiefen von H zu He bei TYC 903 (blaue Linie mit Fehlerbalken). Der Wert liegt bei 0.75 ± 0.34 , die unteren Fehlerbalken sind nicht definiert und werden daher auf ≥ 0 gesetzt. Rote Symbole: Sebastians Werte, gelbe: synthetische.	44
5.26	Vermessung der Äquivalentbreiten von H und He bei TYC 903. Die er- mittelten Messwerte sind bei $H = 4.41 \pm 0.30$ Å (orange Linie) und bei $He = 0.37 \pm 0.13$ Å (grüne Linie). Blaue Symbole: EWs des H, rosa Symbo- le: EWs des He, jeweils bei Sebastians und synthetischen Spektren	45
5.27	Das Verhältnis der Äquivalentbreiten von H zu He bei TYC 903 (blaue Linie). Der Wert liegt bei 1.08 (+0.15, -0.23). Rote Symbole: Sebastians	4.0
5 28	Histogramm für die Bestimmung der Spektralklassen von TVC 003	$40 \\ 47$
5.20 5.29	Gefundene H- und He-Linien bei Cl* Trumpler 37 MVA 1312	48
5.30	Linientiefen von Cl [*] Trumpler 37 MVA 1312. Die Werte sind H= 0.35 ± 0.05 (orange) und He= 0.11 ± 0.05 (grün). Blaue Symbole: Tiefen des H, rosa:	
	Tiefen des He.	48
5.31	Verhältnis der Linientiefen von Cl [*] Trumpler 37 MVA 1312, $H/He = 0.49$ (+0.20, -0.38) (blaue Linie). Rote Symbole: Sebastians Werte, gelbe: synthetische.	49
5.32	Äquivalentbreiten von Cl* Trumpler 37 MVA 1312 mit Werten von $H = 4.26 \pm 0.29$ (orange Linie) und $He = 0.52 \pm 0.18$ (grüne Linie). Blaue Symbola: EWa von H. room Ha	FO
5.33	Verhältnis der Äquivalentbreiten von Cl [*] Trumpler 37 MVA 1312. Der Wert	90
	beträgt 0.91 (+0.15, -0.23).	51
5.34	Histogramm für die Bestimmung der Spektralklassen von Cl [*] Trumpler 37 MVA 1312.	52

A.1	30'x30' DSS2-red Finding Chart von HD 181730
A.2	30'x30' DSS2-red Finding Chart von HD 228256
A.3	30'x30' DSS2-red Finding Chart von TYC 3937-903-1
A.4	30'x 30' DSS2-red Finding Chart von HD 228742
A.5	30'x30' DSS2-red Finding Chart von HD 228773. $\dots \dots \dots$
A.6	30'x 30' DSS2-red Finding Chart von HD 228905
A.7	30'x 30' DSS2-red Finding Chart von HD 229069
A.8	30'x 30' DSS2-red Finding Chart von TYC 3951-2450-1 \ldots \ldots 99
A.9	30'x 30' DSS2-red Finding Chart von BD+51 2945 102
A.10	30'x 30' DSS2-red Finding Chart von TYC 3603-2122-1. \ldots \ldots \ldots \ldots 105
A.11	30'x30' DSS2-red Finding Chart von TYC 3967-1885-1
A.12	30'x30' DSS2-red Finding Chart von TYC 3967-232-1
A.13	30'x 30' DSS2-red Finding Chart von BD+59 192. \ldots \ldots \ldots \ldots 124
A.14	30'x 30' DSS2-red Finding Chart von GSC 03712-00331 128
A.15	30'x 30' DSS2-red Finding Chart von BD+62 36
A.16	30'x 30' DSS2-red Finding Chart von BD+62 66
A.17	30'x 30' DSS2-red Finding Chart von TYC 3712-57-1 \ldots \ldots . 136
B.1	Synthetisches Spektrum eines O 9V-Sterns (Gummersbach & Kaufer) 163
B.2	Synthetisches Spektrum eines B0V-Sterns (Gummersbach & Kaufer) 164
B.3	Synthetisches Spektrum eines B1V-Sterns (Gummersbach & Kaufer) 165
B.4	Synthetisches Spektrum eines B2V-Sterns (Gummersbach & Kaufer) 166
B.5	Synthetisches Spektrum eines B5V-Sterns (Gummersbach & Kaufer) 167
B.6	Synthetisches Spektrum eines A0V-Sterns (Gummersbach & Kaufer) 168

Tabellenverzeichnis

2.1	Bezeichnung der Leuchtkraftklassen (Weigert et al. (2010))	6
2.2	Leuchtkraftklassen aus Landolt-Börnstein (1982)	6
2.0	Zahlenangaben sind die jeweiligen Wellenlängen in Å	9
3.1	Koordinaten des Observatoriums in Großschwabhausen.	11
5.1	Liste der beobachteten Sterne mit Koordinaten (RA(2000) - Rektaszension, DEC(2000) - Deklination, beide bezogen auf das Jahr 2000)	23
0.2	beit in Frage kommen. Aufgrund der sehr kleiner Stichprobe werden alle LKKs von O-Sternen verwendet, bei den B-Sternen nur die Leuchtkraft-	
59	klassen IV und V	24
0.5	(2000) und die Spektralklasse aus Skiff (2009a)	25
5.4	Beobachtungsdaten für TYC 903. Mit <i>Air Mass</i> wird die Luftmasse, bei welcher der Stern beobachtet wird, bezeichnet. Luftmasse 1 entspricht Ze-	
	nitposition, in Richtung Horizont vergrößert sich ihr Wert.	26
5.5	Standardsterne für die Reduktion der beobachteten Targetspektren. Die zu-	
	satzlich hotweinigen Spektren aus Sternkatalogen werden dem Katalog A library of stellar spectra at $R \sim 2000$. Le Borgne et al. (2003b), entnommen.	
	Für einige Sterne müssen synthetische Vergleichsspektren generiert werden	
	(hier mit (s) vermerkt), da für sie keine geeigneten Katalogspektren existie-	
56	ren. Die genauen Einstellungen sind in Tabelle 5.6 zu finden	27
5.0	Kurucz (Munari et al. (2005)). Die Effektivtemperaturen werden dem Kata-	
	log von le Borgne (Le Borgne et al. (2003b)) entnommen, log g und [M/H]	
	sind aus Cayrel de Strobel et al. (1997), bei den restlichen Spalten werden die	
	voreingestellten Werte übernommen (da keine Kataloge mit diesen Angaben gefunden werden gind). Zeichenenklörunge T_{i} Effektiviteren enstur log g	
	- Logarithmus der Schwerebeschleunigung, $[M/H]$ - Metallizität des Sterns	
	relativ zur Sonne, v_{rot} - Rotationsgeschwidigkeit, mturb Mikroturbulenz	
	und [$\alpha/{\rm Fe}]$ - Verhältnisse anderer, nicht näher genannter Elemente	27
5.7	Temperaturangaben der dargestellten Planck-Kurven für die Spektralklas-	0.0
5.8	bis F8 der Leuchtkräftklasse V (Landolt-Bornstein (1982)).	33
0.0	stammt aus Le Borgne et al. (2003b)	34
5.9	Ergebnisse der Linientiefen von TYC 903.	42
5.10	Ergebnistabelle der Verhältnisse H/He von TYC 903	44

Tabellenverzeichnis

5.11	Ergebnistabelle der Äquivalentbreiten von TYC 903.	45
5.12	Ergebnistabelle des Verhältnisses der Äquivalent breiten von TYC 903. \ldots .	46
5.13	Ergebnistabelle für TYC 3937-903-1. * Der Intervallbereich umfasst nur die Klassen O5 bis B8, die anderen Bereiche der jeweiligen Methoden sind im Anhang A zu Beginn aufgelistet.	47
5.14	Ergebnistabelle der Linientiefen von Cl* Trumpler 37 MVA 1312	49
5.15	Ergebnistabelle der Verhältnisse der Linientiefen von Cl* Trumpler 37 MVA 1312	49
5.16	Ergebnistabelle der Äquivalentbreiten von Cl* Trumpler 37 MVA 1312	50
5.17	Ergebnistabelle der Verhältnisse der Äquivalentbreiten von Cl* Trumpler 37 MVA 1312.	51
5.18	Ergebnistabelle Cl* Trumpler 37 MVA 1312	52
6.1	Ausschnitt der Tabelle A.45. Vergleich der Anstiege der Targets mit Planck- Kurven. Die Dopplerkorrektur erfolgt mit den aufgelisteten Geschwindigkei- ten, negative Vorzeichen bedeuten eine Bewegung auf den Beobachter zu.	53
6.2	Ausschnitt der Tabelle A.37. Einzelmesswerte für die Tiefen der H_{α} -Linie. Tiefe 1: am oberen Rand des Kontinuums, Tiefe 2: in der Mitte, Tiefe 3: am unteren Rand; die Einheiten der Tiefen und des RMS sind in %, 1 \doteq 100 %. RMS - Root Mean Square (mittlere Standardabweichung).	54
6.3	Ausschnitt der Tabelle A.38. Einzelmesswerte für die Tiefen der He-Linie. Tiefe 1: am oberen Rand des Spektrums, Tiefe 2: in der Mitte, Tiefe 3: am unteren Rand. He n.a He nicht auffindbar, jedoch evtl. vorhanden; die Einheiten der Tiefen sind in %, $1 \approx 100$ %	55
6.4	Ausschnitt der Tabelle A.39. Gemittelte Tiefen (Tiefe) von H- und He- Linien. He n.a He nicht auffindbar, jedoch evtl. vorhanden (keine Zuord- nung aufgrund H_{α} -Emission möglich). Die Einheiten der Tiefen sind in %, $1 \doteq 100$ %. Das RMS aus Tab. A.37 wird hier und bei allen anderen Tiefen als Fehlerintervall verwendet.	55
6.5	Ausschnitt der Tabelle A.40. Logarithmen der Verhältnisse der Tiefen von H zu He. He n.a He nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich), $\Delta(logH/He)$ oben/unten bezeichnet die Fehlergrenzen des Wertes log H/He .	56
6.6	Ausschnitt der Tabelle A.41. Äquivalentbreiten der H_{α} -Linie (in Å). Die Spalten EW 1, 2, 3 bzw. Δ EW 1, 2, 3 sind die Messwerte bzw. die Fehler der jeweiligen Messung. Analog zu den Tiefen werden die Messungen am oberen Rand des Kontinuums, in der Mitte und am unteren Rand durchgeführt; E. sind Emissionslinien.	56
6.7	Ausschnitt der Tabelle A.42. Äquivalentbreiten der He-Linie (in Å). Die Spalten EW 1, 2, 3 bzw. Δ EW 1, 2, 3 sind die Messwerte bzw. die Fehler der jeweiligen Messung. Analog zu den Tiefen werden die Messungen am oberen Rand des Spektrums, in der Mitte und am unteren Rand durchgeführt; He n.a He-Linien nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung	
	aufgrund H_{α} -Emission möglich).	57

6.8	Ausschnitt der Tabelle A.43. Gemittelte Äquivalentbreiten ($\overline{\text{EW}}$) von H- und He-Linien (Symbol EW, in Å). Die Spalten EW bzw. Δ EW sind die Messwerte bzw. die Fehler der jeweiligen Messung. Die Fehler werden aus den EW-Fehlern der einzelnen Messungen ermittelt. He n.a He-Linien nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich).	57
6.9	Ausschnitt der Tabelle A.44. EW-Verhältnisse und ihre Logarithmen. He n.a He nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich), $\Delta(logH/He)$ oben/unten bezeichnet die Fehlergren- zen des Wertes log H/He .	58
6.10	Ausschnitt der Tabelle A.45. Ergebnistabelle Teil 1. Vergleich der Anstiege der Targets mit Planck-Kurven. Die Dopplerkorrektur erfolgt mit den auf- gelisteten Geschwindigkeiten, negative Vorzeichen bedeuten eine Bewegung auf den Beobachter zu.	58
6.11	Ausschnitt der Tabelle A.46. Ergebnistabelle Teil 2. Linientiefen von H und He und ihr Verhältnis H/He anhand Sebastians Spektren. Die Messungen der Tiefen werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die Linienverhältnisse werden zuerst ohne Fehlerbalken $(ohne)$ abgelesen und danach mit ihnen (mit) . Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen	59
6.12	Ausschnitt der Tabelle A.47. Ergebnistabelle Teil 3. Linientiefen von H und He und ihr Verhältnis H/He anhand synthetischer Spektren. Die Messungen der Tiefen werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die Linienverhältnisse werden zuerst ohne Fehlerbalken $(ohne)$ abgelesen und danach mit ihnen (mit) . Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sol- len nur die ungefähre Position des Wertes H/He verdeutlichen	59
6.13	Ausschnitt der Tabelle A.48. Ergebnistabelle Teil 4. Äquivalentbreiten (EW) von H und He und ihr Verhältnis H/He anhand Sebastians Spektren. Die Messungen der EWs werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die EW-Verhältnisse werden zuerst ohne Fehlerbalken ($ohne$) abgelesen und danach mit ihnen (mit). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen.	60
6.14	Ausschnitt der Tabelle A.49. Ergebnistabelle Teil 5. Äquivalentbreiten (EW) von H und He und ihr Verhältnis H/He anhand synthetischer Spektren. Die Messungen der EWs werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die EW-Verhältnisse werden zuerst ohne Fehlerbalken (<i>ohne</i>) abgelesen und danach mit ihnen (<i>mit</i>). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen.	60
6.15	Endresultate der Spektralklassifikation. Die fett gedruckten Angaben sind die größten Werte in den Histogrammen, die linken und rechten Werte gren- zen die erstgenannten ein. Die Grenze wird auf 60 % des höchsten Wertes gesetzt.	61

6.16 Endresultate der Spektralklassifikation, für Sterne, die an mehreren Nächten	
beobachtet wurden. Die fett gedruckten Angaben sind die größten Werte in	
den Histogrammen, die linken und rechten Werte grenzen die erstgenannten	60
ein. Die Grenze wird auf 60 % des hochsten Wertes gesetzt.	62
A.1 Intervallbereiche einzelner Messmethoden.	71
A.2 Ergebnistabelle von HD 181730 (09.10.2012)	73
A.3 Ergebnistabelle von HD 181730 (15.10.12)	75
A.4 Ergebnistabelle von HD 228256 (25.07.12). \ldots	78
A.5 Ergebnistabelle von TYC 3937-903-1 (24.07.12)	80
A.6 Ergebnistabelle von TYC 3937-903-1 $(15.10.12)$	82
A.7 Ergebnistabelle von HD 228742 (25.07.12). \ldots	85
A.8 Ergebnistabelle von HD228742 (21.10.12). \ldots	87
A.9 Ergebnistabelle von HD 228773 (01.08.12). \ldots	90
A.10 Ergebnistabelle von HD 228773 (21.10.12). \ldots	92
A.11 Ergebnistabelle von HD229069 $(03.08.12)$.	96
A.12 Ergebnistabelle von HD 229069 $(21.10.12)$	98
A.13 Ergebnistabelle von TYC $3951-2450-1$ (11.10.12)	101
A.14 Ergebnistabelle von $BD+51\ 2945\ (24.07.12)$	103
A.15 Ergebnistabelle von TYC $3603-2122-1$ (16.10.12)	106
A.16 Ergebnistabelle von TYC $3967-1885-1$ (11.10.12)	110
A.17 Ergebnistabelle von $BD+53.2661 (01.08.12) \dots \dots$	113
A.18 Ergebnistabelle von $BD+53\ 2001\ (17.10.12)$	114
A.19 Ergebnistabelle von $DD+53\ 2001\ (19.10.12)$	110
A.20 Eigebhistabelle von $DD+35\ 2001\ (20.10.12)$	110
A 22 Ergebnistabelle von TVC 3067 232 1 (11 10 12)	121 199
A 23 Ergebnistabelle von $BD\pm 50.102.000001000000000000000000000000000$	122
A 24 Ergebnistabelle von $BD+59$ 192 (16 10 12).	120
A 25 Ergebnistabelle von GSC 03712-00331 (17 10 12)	120
A 26 Ergebnistabelle von $BD+62$ 36 (17 10 12)	130
A.27 Ergebnistabelle von $BD+62.66$. Einzelspektrum 5 (20.10.12).	132
A.28 Ergebnistabelle von $BD+62$ 66. Einzelspektren 4 und 5 (20.10.12).	134
A.29 Ergebnistabelle von TYC 3712-57-1 (17.10.12).	137
A.30 Nicht ausgewertete Sterne. Die Spektren sind verrauscht.	138
A.31 Referenztabelle zu den beobachteten Targets. Zeichenerklärung: m_v - schein-	
bare Helligkeit im Visuellen, Ref. m_v - Referenzen zu den Helligkeiten, #	
Ref. Stern - Anzahl der Referenzen zu dem Stern. Helligkeiten und Spek-	
tralklassen aus folgenden Referenzen: 1): Høg et al. (2000), (2): Kharchenko	
(4): Kelly & Kilkenny (1986), (5): Skiff (2009a),	
(6): Hiltner (1956), (7): Kohoutek & Wehmeyer (1997), (8): Popper (1950), (9):	
Coyne & MacConnell (1983), (10): Vyssotsky (1941), (11): Hardorp et al. (1959),	
(12): Brodskaya (1960), (13): Voroshilov et al. (1985) (Verweise auf Kataloge wegen	
fehlender oder nichtauffindbarer Referenz)	140
A.32 Autnahmedaten der Targets. AM (Air Mass)- Luftmasse: Dicke der Atmo-	
sphare wahrend der Beobachtung ($1 \doteq \text{Zenitposition}$), die Belichtungszeit	1 / 1
liegt bei allen Spektren bei 600s.	141

A.33 (Fortsetzung von Tab. A.32) Aufnahmedaten der Targets. AM - Dicke der Atmosphäre während der Beobachtung (1 \doteq Zenitposition), die Belichtungszeit liegt bei allen Spektren bei 600s.	. 142
 A.34 Reduktion der Einzelspektren. Die Endspektren werden aus den genannten Einzelspektren gemittelt. SNR- Signal-to-Noise-Ratio (mittleres Rauschen), RBI-Wert - Vorfaktor für die Behebung der Krümmung. 	. 143
A.35 (<i>Fortsetzung von Tab. A.34</i>) Reduktion der Einzelspektren. Die Endspektren werden aus den genannten Einzelspektren gemittelt.SNR- Signal-to-Noise- Ratio (mittleres Rauschen), RBI-Wert - Vorfaktor für die Behebung der Krümmung	144
A 36 Bemerkungen speziell zu den Spektrallinien	145
A.37 Einzelmesswerte für die Tiefen der H_{α} -Linie. Tiefe 1: am oberen Rand des Spektrums, Tiefe 2: in der Mitte, Tiefe 3: am unteren Rand; die Einheiten der Tiefen und des RMS sind in %, 1 \doteq 100 %. RMS - Root Mean Square	
(mittlere Standardabweichung)	. 146
A.38 Einzelmesswerte für die Tiefen der He-Linie. Tiefe 1: am oberen Rand des Spektrums, Tiefe 2: in der Mitte, Tiefe 3: am unteren Rand. He n.a He nicht auffindbar, jedoch evtl. vorhanden: die Einheiten der Tiefen sind in %.	
$1 \doteq 100 \%$.	. 147
A.39 Gemittelte Tiefen (Tiefe) von H- und He-Linien. He n.a He nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich). Die Einheiten der Tiefen sind in %, 1 \doteq 100 %. Das RMS aus Tab. A.37 wird hier und bei allen anderen Tiefen als Fehlerintervall verwendet.	. 148
A.40 Logarithmen der Verhältnisse der Tiefen von H zu He. He n.a He nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich), $\Delta(logH/He)$ oben/unten bezeichnet die Fehlergrenzen des Wertes log H/He .	. 149
A.41 Äquivalentbreiten der H_{α} -Linie (in Å). Die Spalten EW 1, 2, 3 bzw. Δ EW 1, 2, 3 sind die Messwerte bzw. die Fehler der jeweiligen Messung. Analog zu den Tiefen werden die Messungen am oberen Rand des Spektrums, in der Mitte und am unteren Rand durchgeführt; E. sind Emissionslinien	150
A.42 Äquivalentbreiten der He-Linie (in Å). Die Spalten EW 1, 2, 3 bzw. Δ EW 1, 2, 3 sind die Messwerte bzw. die Fehler der jeweiligen Messung. Analog zu den Tiefen werden die Messungen am oberen Rand des Spektrums, in der Mitte und am unteren Rand durchgeführt; He n.a He-Linien nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich).	. 151
A.43 Gemittelte Äquivalentbreiten $(\overline{\rm EW})$ von H- und He-Linien (Symbol EW, in Å). Die Spalten EW bzw. Δ EW sind die Messwerte bzw. die Fehler der jeweiligen Messung. Die Fehler werden aus den EW-Fehlern der einzelnen Messungen ermittelt. He n.a He-Linien nicht auffindbar, jedoch evtl. vor- handen (keine Zuordnung aufgrund H_{α} -Emission möglich)	. 152
A.44 EW-Verhältnisse und ihre Logarithmen. He n.a He nicht auffindbar, je- doch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich), $\Delta(logH/He)$ oben/unten bezeichnet die Fehlergrenzen des Wertes log H/He	e.153

A.45	Ergebnistabelle Teil 1. Vergleich der Anstiege der Targets mit Planck-Kurven. Die Dopplerkorrektur erfolgt mit den aufgelisteten Geschwindigkeiten, ne- gative Vorzeichen bedeuten eine Bewegung auf den Beobachter zu.	154
A.46	Ergebnistabelle Teil 2. Linientiefen von H und He und ihr Verhältnis H/He anhand Sebastians Spektren. Die Messungen der Tiefen werden an Wasser- stoff (H) und Helium (He) einzeln aufgelistet. Die Linienverhältnisse werden zuerst ohne Fehlerbalken $(ohne)$ abgelesen und danach mit ihnen (mit) . Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berück- sichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen	155
A.47	Ergebnistabelle Teil 3. Linientiefen von H und He und ihr Verhältnis H/He anhand synthetischer Spektren. Die Messungen der Tiefen werden an Was- serstoff (H) und Helium (He) einzeln aufgelistet. Die Linienverhältnisse werden zuerst ohne Fehlerbalken $(ohne)$ abgelesen und danach mit ihnen (mit). Für die resultierende Auswertung werden nur Werte mit Fehlerbal- ken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen	156
A.48	Ergebnistabelle Teil 4. Äquivalentbreiten (EW) von H und He und ihr Verhältnis H/He anhand Sebastians Spektren. Die Messungen der EWs werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die EW- Verhältnisse werden zuerst ohne Fehlerbalken $(ohne)$ abgelesen und danach mit ihnen (mit) . Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen	157
A.49	Ergebnistabelle Teil 5. Äquivalentbreiten (EW) von H und He und ihr Verhältnis H/He anhand synthetischer Spektren. Die Messungen der EWs werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die EW- Verhältnisse werden zuerst ohne Fehlerbalken ($ohne$) abgelesen und danach mit ihnen (mit). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen	158
A.50	Endresultate der Spektralklassifikation. Die fett gedruckten Angaben sind die größten Werte in den Histogrammen, die linken und rechten Werte gren- zen die erstgenannten ein. Die Grenze wird auf 60 % des höchsten Wertes gesetzt.	159
A.51	Endresultate der Spektralklassifikation, für Sterne, die an mehreren Nächten beobachtet wurden. Die fett gedruckten Angaben sind die größten Werte in den Histogrammen, die linken und rechten Werte grenzen die erstgenannten ein. Die Grenze wird auf 60 % des höchsten Wertes gesetzt.	160
B.1	Liste aller ausgewählten Targets für die Sommerbeobachtung. RA2000 - Rek- taszension, DEC2000 - Deklination (bezogen auf das Jahr 2000), m_v [mag] - scheinbare Helligkeit im sichtbaren Spektralbereich.	161
B.2	(Fortsetzung von Tabelle B.1) Liste aller ausgewählten Targets für die Som- merbeobachtung. RA2000 - Rektaszension, DEC2000 - Deklination (bezogen auf das Jahr 2000), m_v [mag] - scheinbare Helligkeit im sichtbaren Spektral- bereich	169
		104

B.3 B.4	Liste aller ausgewählten Targets für die Herbstbeobachtung. RA2000 - Rektaszension, DEC2000 - Deklination (bezogen auf das Jahr 2000), m_v [mag] - scheinbare Helligkeit im sichtbaren Spektralbereich Linientiefen Sebastians Spektren. Untersucht werden die Spektralklassen O, B, A und F, der Leuchtkraftklassen IV und V, bei den O-Sternen alle LKKs. Zeichenerklärung: SpKl - Spektralklasse, LKK - Leuchtkraftklasse, RMS -	169
B.5	Root Mean Square, H oben/Mitte/unten - Messung der Linientiefe am obe- ren Rand des Spektrums, in der Mitte und am unteren Rand, bei He analog. H und He gemittelt sind gemittelte Linientiefen	170
	- Verhältnis der Linientiefen, $\Delta \log o./u$ obere und untere Fehlergrenzen des logarithmierten Verhältnisses (als Fehler dient das RMS).	171
B.6	Linientiefen synthetischer Spektren. Die Spektren besitzen kein Rauschen,	
	die Tiefen werden exakt gemessen. SpKI - Spektralklasse, H - Tiefe der H-	179
$\mathbf{B7}$	Äquivalentbreiten Sebastians Spektren Die Werte sind in Å SpKl - Spek-	112
D.1	tralklasse. Name - HIP-Nr. des Sterns. H o./M./u Messung der Äquiva-	
	lentbreite am oberen Rand des Kontinuums, in der Mitte und am unteren	
	Rand, bei He analog. MW H und MW He sind gemittelte Äquivalentbreiten,	
	Δ MW H bzw. Δ MW He - gemittelte Fehlerintervalle	173
B.8	Äquivalentbreiten Sebastians Spektren (B.7), gleiche Klassen werden gemit-	
	telt. Die Werte sind in A. SpKl - Spektralklasse, Name - HIP-Nr. des Sterns,	
	H o./M./u Messung der Aquivalentbreite am oberen Rand des Kontinu-	
	ums, in der Mitte und am unteren Rand, bei He analog. MW H und MW He	
	Sind gemittere Aquivalent breiten, Δ MW H bzw. Δ MW He - gemittere Feblerintervalle	174
B.9	Verhältnisse von Äquivalentbreiten Sebastians Spektren. Die Werte sind in	111
	Å. SpKl - Spektralklasse, H/He - Verhältnisse der Linien, Δ H/He - Feh-	
	lerintervall des Verhältnisses, log H/He - logarithmiertes Verhältnis, Δ log	
	H/He oben/unten - Fehlerintervall des log H/He	175
B.10	Äquivalentbreiten synthetischer Spektren. Die Werte sind in Å. SpKl - Spek-	
	tralklasse, H und He - EWs für H und He, Δ H bzw. Δ He -Fehlerintervalle	
	der EWs, Δ H/He - Fehlerintervall des Verhältnisses, log H/He - logarith-	1 8 0
	miertes Verhaltnis, $\Delta \log H/He$ oben/unten - Fehlerintervall des log H/He	176

1 Einleitung

... where no FIASCO has gone before

Sterne haben die Menschheit schon seit jeher fasziniert. Seit den ersten wissenschaftlichen Beobachtungen sind Jahrtausende vergangen, aber auch heute noch gibt es viele Sterne, über die wir nur wenig wissen.

Das Augenmerk dieser Arbeit richtet sich auf heiße Sterne, deren Spektralklasse nur grob bekannt ist (z.B. nur O oder B). Das Ziel ist es, einige dieser Sterne zu beobachten und die Spektralklasse näher zu bestimmen. Die Arbeit ist in ein größeres Projekt eingebunden, in welchem die Supernova-Rate der Sterne innerhalb von 5 Kiloparsec bestimmt werden soll. Hierfür muss die Sternverteilung der O- und B-Sterne bekannt sein.

Die Entstehungs- und Entwicklungswege von Sternen hängen maßgeblich von ihrer Masse ab. Ihre Temperatur, der Radius und die Leuchtkraft sind zudem abhängig von der chemischen Zusammensetzung und dem Alter des Sterns.

Die heißen O- und B-Sterne sind an der Gesamtanzahl der bisher gefundenen Sterne relativ selten vertreten. Mit ihren Massen zwischen 3.8 M_{Sonne} für die Spektralklasse B8V und 120 M_{Sonne} für O3V (Landolt-Börnstein (1982)) sind sie viel kurzlebiger als massearme Sterne, da letztere ihren Energievorrat viel sparsamer verbrauchen als heiße Sterne.

Die Beobachtungszeit fand vom Juli bis August und im Oktober 2012 statt, wobei 26 Objekte in der Universitätssternwarte in Großschwabhausen spektroskopiert wurden. Da während dieser Zeit parallel andere Projekte am Institut bearbeitet wurden, befand sich der eingestellte Wellenlängenbereich des Spektrographen zwischen 6127 Å und 7061 Å. Idealerweise werden heiße Sterne mit Spektren im kurzwelligen Licht charakterisiert, jedoch lassen sich auch in dem verwendeten Bereich Ergebnisse erzielen.

Die Arbeit ist in mehrere Abschnitte gegliedert. Kapitel 2 beschäftigt sich mit den Grundlagen von Sternen und ihren Spektren, Kapitel 3 stellt die verwendeten Beobachtungsinstrumente vor. Die Datenreduktion wird im folgenden Kapitel an einigen Beispielsternen erklärt. Kapitel 5 beinhaltet die Datenauswertung, deren Ergebnisse im Kapitel 6 dargestellt werden. Die Arbeit schließt mit einer Diskussion und einem Ausblick. Im Anhang finden sich detaillierte Auswertungsergebnisse aller Sterne und Tabellen der durchgeführten Messungen.

2.1 Helligkeit und Leuchtkraft

Helligkeiten

Bei Sternen gibt es zwei Helligkeitsbegriffe, die scheinbare und die absolute Helligkeit. Die scheinbare Helligkeit eines Sterns ist seine Helligkeit, wie sie am Ort der Beobachtung erscheint. Sie ist definiert als Energie pro Zeit- und Flächeneinheit, die vom Stern am Beobachtungsort eintrifft (Winnenburg (1991)). Ihr Wert hängt ab von der Größe des Sterns und von seiner Entfernung zum Beobachter. Die absolute Helligkeit ist definiert als die scheinbare Helligkeit, die ein Stern in einer Entfernung von 10 Parsec besitzt. Mit diesem Messwert lassen sich die Sternhelligkeiten objektiv angeben. Die Einheit der beiden Helligkeiten ist die Magnitude (mag).

Leuchtkraft

Die Leuchtkraft L_{eff} eines Sterns ist seine Gesamtstrahlungsleistung über alle Wellenlängen. Im Allgemeinen strahlt ein Stern kugelförmig in den Raum ab mit der Fläche $4\pi R^2$. Es ergibt sich

$$L_{eff} = 4\pi R^2 F, \tag{2.1}$$

mit R der Entfernung Stern-Beobachter und F dem Strahlungsfluss des Sterns. Der Fluss ist die abgestrahlte Intensität über einer Kugelfläche und definiert sich über

$$F = \int_{\vartheta} \int_{\varphi} \int_{\varphi} I \sin\vartheta \, d\vartheta \, d\varphi, \qquad (2.2)$$

mit I der Strahlungsintensität. Integriert wird über die gesamte Kugelfläche.

2.2 Plancksches Gesetz und Temperatur

Plancksches Gesetz

Der Verlauf des Spektrums wird zwischen 6100 Å und 7100 Å näherungsweise durch das Plancksche Gesetz beschreiben. Bezogen auf die Wellenlänge ergibt das:

$$B_{\lambda}(\lambda,T) = \frac{2hc^2}{\lambda^5} \cdot \left(e^{\frac{hc}{\lambda kT}} - 1\right)^{-1}$$
(2.3)

mit B_{λ} als der Intensität der Strahlung, λ der Wellenlänge, T der Temperatur, h dem Plancksche Wirkungsquantum, c der Lichtgeschwindigkeit und k der Boltzmannkonstante. Die Abb. 2.1 zeigt den Verlauf der Spektren mit Temperaturen zwischen 6000 K und 12000 K. Mit steigender Temperatur verschiebt sich das Strahlungsmaximum zu immer kürzeren

Abb. 2.1: Intensitätsverlauf von Hohlraumstrahlern unterschiedlicher Temperatur (Karttunen et al. (2003)).

Wellenlängen hin, an beiden Seiten fällt die Intensität ab. Die Wellenlängen der Maxima lassen sich über das Wiensche Verschiebungsgesetz

$$\lambda_{max} \cdot T = const = 2.88 \cdot 10^{-3} m \cdot K \tag{2.4}$$

berechnen.

Effektivtemperatur

Die Effektiv
temperatur T_{eff} eines Sterns wird über das Stefan-Boltzmann-Ges
etz definiert als

$$F = \sigma T_{eff}^4, \tag{2.5}$$

mit σ als der Stefan-Boltzmann-Konstante. Zur Erinnerung: F ist der über alle Wellenlängen integrierte Strahlungsstrom des Hohlraumstrahlers. Damit lässt sich die Energieabstrahlung von Sternen berechnen.

Die T_{eff} ist diejenige Temperatur, die ein Hohlraumstrahler haben müsste, der die gleiche Helligkeit wie der Stern aufweist (Winnenburg (1991)). Sie definiert eine mittlere Temperatur der Außenschichten der Sterne und wird als Maß für die emittierte Gesamtenergie verwendet.

Farbtemperatur

Bei den Sternen, die in dieser Arbeit untersucht werden, gibt es in Sternkatalogen keine Angaben über ihre Effektivtemperatur. Über die Spektren lässt sich lediglich ihre Farbtemperatur ermitteln. Nach Voigt (2012) ist das die Temperatur desjenigen schwarzen Körpers, der im beobachteten Spektralbereich den gleichen Verlauf der Intensität zeigt wie

der Stern. Der Absolutwert der Strahlungsintensitäten ist somit unbekannt. Allerdings ergibt sich beim Vergleich eines Sternspektrums mit Planck-Kurven für den hier relevanten Bereich (6000 Å - 7000 Å) eine (mit geringen Abweichungen) näherungsweise Übereinstimmung der Intensitäten.

Abb. 2.2: Vergleich eines Sternspektrums (Vega, Spektralklasse A0V) mit Kurven zweier Hohlraumstrahler von 9500 K und 15000 K. Der Fluss (hier als f_{λ} bezeichnet) ist aufgetragen über die Wellenlänge (Unsöld & Baschek (2002)). Zum kurzwelligen Bereich hin folgt das Sternspektrum aufgrund vieler Absorptionslinien nicht mehr dem Verlauf eines schwarzen Strahlers.

Theoretisch lässt sich also mit den Planck-Kurven die Temperatur bzw. die Spektralklasse des Sterns über ihren Anstieg bestimmen. Im Abschnitt 5.3.3 wird diese Methode an einigen Sternen mit bekannter Spektralklasse getestet.

2.3 Spektral- und Leuchtkraftklassen

Spektralklassen

Sterne werden je nach Photosphärentemperatur in verschiedene Spektralklassen eingeteilt. Es gibt sieben Hauptklassen, die Bezeichnungen sind O, B, A, F, G, K und M. Innerhalb jeder Klasse gibt es eine feinere Unterteilung in Dezimalschritten (z.B. B0, B1, ... B9). Die Spektralklassen O und B beherbergen die heißesten Sterne mit Effektivtemperaturen von 52500 K (O) bis zu 10500 K (B), in der Klasse M befinden sich kühle Sterne mit einer Temperatur von ca. 3400 K (diese Werte stammen aus Landolt-Börnstein (1982)).

In Abbildung 2.3 ist die absolute visuelle Helligkeit über der Effektivtemperatur in einem Hertzsprung-Russell-Diagramm aufgetragen. Von links oben nach rechts unten durch das Diagramm erstreckt sich die Hauptreihe, links unten befinden sich die Weißen Zwerge und auf der rechten Seite oben die Riesensterne. Die O- und B-Sterne liegen im linken oberen Bereich.

Abb. 2.3: Ein Hertzsprung-Russell-Diagramm (HRD). Über den Spektralklassen bzw. den Farben sind die absolute Helligkeit in Magnituden (links) und die Leuchtkraft in Sonnenleuchtkräften (rechts) aufgetragen (Winnenburg (1991)).

Leuchtkraftklassen (LKKs)

Eine weitere Einteilung der Sterne wird durch die Angabe der Leuchtkraftklasse vorgenommen. Diese Vorgehensweise wurde von W.W. Morgan und P.C. Keenan in den 1940ern entwickelt, siehe Morgan et al. (1943).

In Tab. 2.1 sind die Leuchtkraftklassen aufgelistet, der Sternradius nimmmt mit zunehmender Ziffer ab.

Tab. 2.1: Bezeichnung der Leuchtkraftklassen (Weigert et al. (2010)).

Leuchtkraftklasse	Bezeichnung
I a/b	Überriesen
II	Helle Riesen
III	Riesen
IV	Unterriesen
V	Hauptsequenz (Zwerge)
VI	Unterzwerge

Sterne auf der Hauptreihe gehören zu der LKK V, Riesensterne zu den LKKs I bis IV, sie befinden sich oberhalb der Hauptreihe. Bei Spektralklassen O und B befinden sich die LKKs I bis V recht nahe beieinander, bei den späteren Klassen divergieren die Werte (Tabelle 2.2).

Spektralklasse	$\mathbf{M}_{\mathbf{v},\mathbf{LKKI}}$	$\mathbf{M}_{\mathbf{v},\mathbf{LKKIII}}$	$M_{\mathbf{v},\mathbf{LKK}\mathbf{V}}$
O3	-6.8	-6.6	-6.0
B0	-6.4	-5.1	-4.0
B 9	-6.2	-0.6	+0.2
$\mathbf{A5}$	-6.6	+0.7	+1.9

Tab. 2.2: Vergleich der absoluten Helligkeiten im Visuellen von Sternen verschiedener Leuchtkraftklassen aus Landolt-Börnstein (1982).

Das heißt, die Werte von den O- und frühen B-Sternen haben geringe Unterschiede und es ist schwieriger als bei den späteren Spektralklassen nach den einzelnen LKKs zu unterscheiden.

Die Leuchtkraftklassen ließen sich über die vorkommenden Linien unterscheiden. Nach Danks & Dennefeld (1994) weisen Sterne der LKK V eine starke H_{α} -Linie auf. Sie erscheint bei der Spektralklasse O7, wird bei A0 maximal und verringert sich zu späteren Spektralklassen hin. In den Überriesen ist diese Linie sehr schwach von O6 bis B8, danach wird sie ab A stärker.

In dieser Arbeit wird nur mit der Leuchtkraftklasse V gearbeitet und aufgrund der Qualität der Spektren daher keine weitere Unterteilung vorgenommen. Bei einer höheren Auflösung ließen sie sich auch anhand der Linienbreite bestimmen, da Riesensterne eine weniger dichte Photosphäre aufweisen. Somit gibt es weniger Zusammenstöße zwischen den Teilchen und die Linien sind schmal. Zwergsterne dagegen haben dichtere Atmosphären und die vielen Zusammenstöße verbreitern die Linien (siehe Dopplereffekt unter 2.4).

2.4 Spektrallinien

Spektrallinien werden durch An- oder Abregung von Elektronen zwischen zwei Energieniveaus erzeugt, dabei werden Photonen absorbiert oder ausgesendet. Dies führt zur Entstehung von Absorptions- oder Emissionslinien im ansonsten kontinuierlichen Spektrum eines Sterns.

Natürliche Linienbreite

Theoretisch sind die Übergänge exakt definiert über $\Delta E = h\nu$ (E ist die Energie, h das Plancksche Wirkungsquantum und ν die Frequenz der Strahlung). Der Wellenzug der Strahlung ist unendlich ausgedehnt und das Linienprofil wäre demnach eine δ -Funktion. In Wirklichkeit ist die Lebensdauer der angeregten Niveaus endlich, daher sind auch die Wellenzüge endlich: die Linien besitzen daher eine gewisse Breite, die natürliche Linienbreite genannt wird. Ihre Form wird durch ein Lorentzprofil beschrieben.

Abb. 2.4: Das Profil der natürlichen Linienbreite (durchgezogene) und einer dopplerverbreiterten Linie (gestrichelte Linie) (Karttunen et al. (2003)).

Stöße zwischen den Teilchen verändern die Linienprofile. Die Lebensdauer der angeregten Niveaus verkürzt sich und es kommt zu Linienverschiebungen durch Interaktion der geladenen Teilchen untereinander (Stark-Effekt).

Aufgrund unterschiedlicher Geschwindigkeiten der Teilchen in einem Stern absorbieren sie die Strahlung unterschiedlicher Energien (Dopplereffekt). Die Verschiebungen der Teilchen sind statistisch verteilt und führen somit zu einer Verbreiterung der Linie. In Abbildung 2.4 stellt die gestrichelte Linie eine solche Dopplerverbreiterung dar. Das Profil verändert sich vom Lorentz- zu einem Voigtprofil.

Äquivalentbreite

Die Äquivalentbreite wird als Maß für die Linienstärke verwendet und ist zudem unabhängig von der verwendeten Messapparatur. Das Kontinuum des Spektrums wird normiert und die Fläche der Spektrallinie bestimmt. Die Äquivalentbreite ist die Breite eines Rechtecks mit dem gleichen Flächeninhalt wie derjenige der Linie und wird berechnet über

$$W_{\lambda} = \int_{0}^{\infty} \frac{c_{\lambda} - s_{\lambda}}{c_{\lambda}} \, d\lambda. \tag{2.6}$$

Es sind W_{λ} die Äquivalent breite (in Å), c_{λ} das Kontinuum und s_{λ} der be obachtete Spektralverlauf.

Abb. 2.5: Definition der Äquivalentbreite: Links ist ein schematisches Spektrum mit einer Absorptionslinie und interpoliertem Kontinuum c_{λ} , rechts die Skizze für die Berechnung der Äquivalentbreite (Weigert et al. (2010), verändert).

In der vorliegenden Arbeit werden die Äquivalentbreiten als EW abgekürzt (nach der englischen Übersetzung equivalent width).

Theoretisch reichte es für die Bestimmung der Linienstärken ihre Halbwertsbreiten zu messen. Allerdings werden diese von der verwendeten Messapparatur beeinflusst und liefern somit veränderte Profile.

2.5 Bestimmungskriterien für O- und B-Sterne

Nach der allgemeinen Klassifikation nach Unsöld (1955), besitzen O-Sterne oft Emissionslinien. Im roten Spektralbereich dominieren die Balmer-Serie des Wasserstoffs und He-Linien, außerdem einige Linien ionisierter Atome. Die B-Sterne haben überwiegend Absorptionslinien. Die Stärke der H_{α} -Linie bei 6562.8 Å (neutraler Wasserstoff) nimmt von B0 bis ungefähr A2 an Intensität zu und wird danach schwächer (vergleiche auch Giridhar (2010)). Außerdem gibt es bis zur Klasse B5 Linien von He, O und N.

Abbildung 2.6 gibt eine Übersicht über die relativen Stärken einiger wichtiger Linien in Abhängigkeit von der Spektralklasse bzw. der Temperatur. Die frühen Klassen weisen nur Wasserstoff- und Heliumlinien auf, in den späteren werden Linien von Metallen⁽¹⁾ intensiv. Die bei O-Sternen auftretende HeII-Linie wird in keinem der untersuchten Targespektren lokalisiert.

Nach Danks & Dennefeld (1994) wird die HeI-Linie bei 6678 Å in O7-Zwergen gefunden und hat ihr Maximum bei O9V. Danach sinkt ihre Intensität, bis sie in B8V-Sternen nicht mehr lokalisiert werden kann. Bei der LKK I findet sich diese Linie bereits bei O5, am

⁽¹⁾Als Metalle werden in der Astronomie alle Elemente außer Wasserstoff und Helium bezeichnet.

Abb. 2.6: Relative Stärken auftretender Spektrallinien in Abhängigkeit von der Spektralklasse bzw. der Temperatur (Winnenburg (1991)).

stärksten ist sie bei B0 und verringert ihre Intensität auf Null bis zur Spektralklasse A0⁽²⁾.

Heiße Sterne werden standardmäßig im Blauen charakterisiert, wo sie ihr Strahlungsmaximum haben. Die Äquivalentbreiten der Linien ändern sich mit der Temperatur. Werden mehrere Linien vermessen, kann ihr Quotient als Maß für das Linienverhalten genommen werden. Die wichtigsten Linien für O- und B-Sterne sind (Landolt-Börnstein (1982), Kap 4.1.1.2):

Tab. 2.3: Bestimmungskriterien für O- und B-Sterne (Landolt-Börnstein (1982)). Die Zahlenangaben sind die jeweiligen Wellenlängen in Å.

Spektralklasse	Bestimmungskriterien
O3O9.5	He I 4471/He II 4541
B0B1	Si III 4552 /Si IV 4089
B2B8 B8 A2	Si II 412830/He I 4121 He I 4471/Mg II 4481
D0112	He I 4026/Ca II 3934

In dieser Arbeit werden die Spektralklassen unter anderem anhand von Linien von H_{α} (6562.8 Å) und Helium (6678 Å) bestimmt. Es werden sowohl die Tiefen, als auch die Äquivalentbreiten vermessen und auch das Verhalten der Linienverhältnisse von H zu He untersucht.

Die Vorgehensweise der Verhältnisse der EWs wird bei Giridhar (2010) beschrieben. Für gewöhnliche Sterne ist das H/He-Verhältnis (oder das He/H) für eine Definition der Spektralklasse ausreichend und ergibt die besten Ergebnisse für späte B-Sterne (da hier H_{α}

⁽²⁾In dieser Arbeit werden keine LKKs bestimmt, da die HeI-Linie bei den meisten untersuchten Sternen ein schlechtes Signal-zu-Rausch-Verhältnis aufweist.

maximal). Allerdings gibt es Sterne sowohl mit starken aus auch mit schwachen Helium-Linien. Hier müssten zusätzliche Linien untersucht werden, wie SiIV(4089 Å)/SiIII(4552 Å) für sehr frühe B-Sterne und SiIII(4552 Å)/SiII(4128-32 Å) für Sterne bis B3; zusätzlich HeI(4471 Å)/Mg(4481 Å).

Das Auflösungsvermögen und der Spektralbereich der vorhandenen Spektren lässt lediglich eine Klassifikation anhand von H- und He-Linien zu.

Anmerkung zu Emissionslinien:

Viele heiße Sterne haben kurze Rotationsperioden und bilden daher ausgedehnte Gasscheiben bzw. -Hüllen um sie herum aus (Giridhar (2010)). Diese Hüllen verursachen H_{α} -Emissionslinien im Spektrum. Ebenso finden sich Fe II-Linien. Für weitere Kriterien der Be-Sterne siehe Lamers et al. (1998). Unter den untersuchten Targets⁽³⁾ befinden sich zwei Sterne mit H_{α} -Emissionslinien.

 $^{^{(3)}\}mathrm{Die}$ be obachteten Sterne werden auch Targets genannt.

3 Beobachtungsinstrumente

Die Sternwarte befindet sich etwa 10 km außerhalb von Jena in der Nähe des Ortes Großschwabhausen. Sie steht auf einem bewaldeten Hügel, sodass die Lichtverschmutzung gering ist.

Tab. 3.1: Koordinaten des Observatoriums in Großschwabhausen.

Koordinaten des Observatoriums:			
östliche Länge:	11°29'03"		
nördliche Breite:	50°55'44"		
Höhe über Normalnull:	$370~\mathrm{m}$		

Nach dem First-Light 1962 folgten einige Jahrzehnte aktiver Beobachtung, bis sie außer Betrieb gestellt wurde. Nach der Restaurierung 2006 wurde die Arbeit wieder aufgenommen.

3.1 Das Teleskop

Die Beobachtung der Targets erfolgte an der Universitätssternwarte Jena in Großschwabhausen zwischen Juli und Oktober 2012. In der Sternwarte befindet sich ein 90 cm-Spiegelteleskop an einer parallaktischen Gabelmontierung (Abb. 3.1).

Das Gerät kann in zwei Modi betrieben werden: im Schmidt- oder im Nasmyth-Modus. Im Ersteren wird vorne am Tubus eine sog. Schmidtplatte montiert. Ihr Durchmesser beträgt 60 cm und ist somit kleiner als der Spiegeldurchmesser (Blendenzahl f/D=3, mit f Brennweite des Spiegels und D Durchmesser). Die Brennweite im Schmidt-Modus beträgt 1800 mm. Dieser Modus besitzt ein großes Gesichtsfeld und wird für photometrische Aufnahmen verwendet.

Die Spektroskopie wird im Nasmyth-Modus betrieben.

Hierfür wird eine Glasfaser seitlich im Tubus angebracht. Sie führt zum Spektrographen im Stockwerk unter der Kuppel. Für die Beobachtung wird der gesamte Spiegeldurchmesser ausgenutzt (f/D=15, Brennweite 13400 mm). Am Haupttubus befinden sich zwei kleinere Fernrohre, ein Cassegrain-Spiegelteleskop, mit einem 250 mm-Spiegel und einer Brennweite von 2250 mm, und ein Refraktor mit einer Linse von 200 mm und der Brennweite von 3000 mm. An diesen beiden Geräten sind zwei Kameras für photometrische Aufnahmen angeschlossen. Sie werden als Positionsfinder für die spektroskopischen Objekte verwendet.

3 Beobachtungsinstrumente

Abb. 3.1: Das Teleskop der Universitätssternwarte Jena in Großschwabhausen (GSH (2013)).

Abb. 3.2: Nasmythmodus des Teleskops: Das Licht fällt auf den Hauptspiegel, wird dann auf den Cassegrainspiegel reflektiert (C) und gelangt danach auf einen Planspiegel, der das Licht nach unten zum Nasmyth-Fokus ablenkt. Ohne diesen Spiegel wäre es ein Cassegrain-Modus mit dem Brennpunkt hinter dem Hauptspiegel bei F_C (Winnenburg (1991)).

3.2 Der Spektrograph FIASCO

FIASCO (Fiber Amateur Spectrograph Casually Organized) wurde von der Gruppe CAOS entwickelt (Club of Amateurs in Optical Spectroscopy), die an der Europäischen Südsternwarte und am Max-Planck-Institut für extraterrestrische Physik in Garching ansässig ist. (Vergleiche hierzu Avila et al. (1999) und CAOS, Club of Amateurs in Optical Spectroscopy (2013).)

Abb. 3.3: Schematischer Aufbau des Spektrographen FIASCO. Das Signal gelangt über einen Kollimator zur parallelen Ausrichtung des Bündels auf das Gitter und wird danach von dem Detektor registriert (Mugrauer & Avila (2009)).

Das First-light des FIASCO fand im Mai 2008 statt. Nach der Beendigung meiner Beobachtungen im Oktober 2012 wurde FIASCO abmontiert und wird im laufenden Jahr durch einen höherauflösenden Echelle-Spektrographen ersetzt.

FIASCO ist ein Gitterspektrograph (Abb. 3.3). Das Gerät befindet sich in einem separaten Raum unterhalb der Kuppel und ist mittels einer Glasfaser mit dem Hauptteleskop verbunden (alle Daten sind aus Mugrauer & Avila (2009)). Ihr Durchmesser beträgt $70\mu m$ mit einer Länge von 15 m. Der Durchmeser der beobachteten Fläche am Himmel beträgt somit 2.7 Bogensekunden.

An dem Beugungsgitter (1300 Linien/mm) wird das Licht in ein Spektrum zerlegt und über ein Objektiv (f/D=4) auf den CCD-Detektor abgebildet. Nach der Belichtung wird er ausgelesen und das erhaltene Spektrum mit einer dafür geeigneten Software (z.B. MaxIM DL) dargestellt.

Für die Kalibration werden eine Neon-Emissionslampe (Wellenlängenkalibration, das sog. Arc) und eine Wolfram-Glühlampe mit einem kontinuierlichen Spektrum (für das Weißlichtbild) verwendet. Diese werden über einen beweglichen Spiegel in die Glasfaser geleitet.

3 Beobachtungsinstrumente

Abb. 3.4: Kalibrationseinheit von FIASCO (Mugrauer & Avila (2009)). Calibration Lamps Housing beherbergt Lampen für Kalibrationsaufnahmen, motorized Flip Mirror ist ein Umlenkspiegel, um zwischen Stern und Kalibrationslampen zu wechseln, Fiber Coupler justiert die Glasfaser und Fiber-Viewing Camera wird zur Kontrolle der Sternposition verwendet.

Die Anordnung wird in Abb. 3.4 als Calibration Lamps Housing bezeichnet.

Der CCD-Detektor ist vom Typ her ein SITe TK1024 und 1024x1024 Pixel groß. Die Länge eines einzelnen Pixels beträgt $24\mu m$ und die Kantenlänge des gesamten Chips ist 2.5 cm. Er wird mit einem Peltier-Element um ca. 40 K unter die Umgebungstemperatur gekühlt, um den Effekt des thermischen Rauschens (sog. Dunkelstrom) möglichst gering zu halten. In Abb. 3.5 ist der exponentielle Abfall des Dunkelstroms in Abhängigkeit von der Temperatur dargestellt, bei ca -20°C ist das Optimum erreicht (mit einer Zählrate von ca. 100 counts/min).

Der Detektor ist bis etwa 50.000 Counts linear, das untere Detektionslimit liegt bei etwa 11000 counts (elektronisches Rauschen) (Abb. 3.6).

Der spektrale Bereich ist variabel einstellbar. In dem Zeitraum der Beobachtungen für diese Arbeit befand er sich zwischen 6127 Å und 7061Å (deckte also 934 Å ab). Die Dispersion D beträgt $D = \frac{934\mathring{A}}{1024Pixel} = 0.9\frac{\mathring{A}}{Pixel}$ und die spektrale Auflösung ist $\Delta\lambda_{6127\mathring{A}} = 1.8\mathring{A}$ und verbessert sich auf $\Delta\lambda_{>6500\mathring{A}} \approx 1.2\mathring{A}$.

Abb. 3.5: Veränderung des Dunkelstroms in Abhängigkeit von der Temperatur T (Mugrauer & Avila (2009)). Der Dunkelstrom (*dark current*) wird in Counts/min gemessen.

Abb. 3.6: Linearität von FIASCO in Abhängigkeit von der Belichtungszeit. Bis ca. 50 000 Counts verhält sich der Fluss linear zur Belichtungszeit (Mugrauer & Avila (2009)).

4 Datenreduktion

4.1 Auswertungssoftware

SAOImage DS9

Das Programm SAOImage DS9, Version 6.2, wurde vom Smithsonian Astrophysical Observatory entwickelt und wird für die Visualisierung astronomischer Beobachtungsdaten verwendet (ds9). Damit werden Aufsuchkarten der einzelnen Targets erstellt und die Rohspektren aufgerufen.

IRAF

In dieser Arbeit werden die Spektren mit IRAF reduziert und ausgewertet. Die verwendete Version ist IRAF 2.15.1a. Das Programm ist unter IRAF zu finden. IRAF ist ein Programm zur Reduktion und Analyse von astronomischen Daten. Geschrieben wurde das Programm an den National Optical Astronomy Observatories (NOAO) in Tucson, Arizona.

Pipeline von Martin Seeliger

Für den überwiegenden Teil der Reduktion wird die Pipeline von Martin Seeliger angewendet (Seeliger (2012)). Die Pipeline wurde in Python entwickelt und arbeitet mit IRAF.

4.2 Durchführung der Datenreduktion

Das vom FIASCO produzierte Rohspektrum beinhaltet nicht nur Informationen über den Stern selbst, sondern ist noch mit einer Reihe weiterer Daten überlagert. Diese Effekte lassen sich auf die Geräteeigenschaften zurückführen. Um sie zu beseitigen, wird die Kalibrationseinheit des Spektrographen verwendet. Damit werden Dunkelstrom, Weißlichtbild und Wellenlängenkalibrationsbild aufgenommen. Die Einheit wurde bereits im vorhergehenden Abschnitt vorgestellt. Die einzelnen Reduktionsschritte werden am Stern HD 228773 (beobachtet am 21.10.2012) dargestellt.

Abb. 4.1 zeigt das Rohspektrum dieses Sterns.

Die Belichtungszeit beträgt 600s. Typischerweise werden in einer Beobachtungsnacht 5 Rohspektren eines Targets hintereinander aufgenommen. Zum Beobachtungsbeginn werden eine Reihe mit Dunkelstromaufnahme (Darks) erstellt.

4.2 Durchführung der Datenreduktion

Abb. 4.1: Vom FIASCO erstelltes Rohspektrum des Sterns HD 228773.

Darkaufnahme

Mit der Erstellung eines Darkbilds (kurz Dark) wird das thermische Rauschen des Detektors erfasst und von den Sternspektren subtrahiert. Das Rauschen ist für jedes Pixel individuell verschieden. Die Aufnahme erfolgt mit geschlossenem Deckel.

Abb. 4.2: Ein typisches Dark, die Belichtungszeit ist 600s.

Sie werden für sämtliche Aufnahmen der jew. Nacht angefertigt. Die Belichtungszeit der Darks muss mit der jeweiligen Belichtungszeit des Rohspektrums des Sterns bzw. der Kalibrationsspektren übereinstimmen. Für jede Belichtungszeit des Targets und der Kalibrationsaufnahmen werden ca. 3 Darks mit der jeweils gleichen Belichtungszeit erstellt. An einigen Stellen erscheinen scharfe Linien. Das sind sogenannte hot pixels, heiße Pixel mit einem besonders hohem Dunkelstrom, die nicht proportional auf die einfallenden Strahlung reagieren. Bei der anschließenden Auswertung der Targets werden sie meist entfernt.

4 Datenreduktion

Weißlichtbild

Nach jeder Serie der Targetspektren werden Weißlichtbilder (kurz Flats, vom *Flatfield*) aufgenommen (Abb. 4.3).

Abb. 4.3: Weißlichtbild mit einer Belichtungszeit von 10s.

Hierfür wird die Flatlampe des Spektrographen verwendet. Mit den Flats werden unterschiedliche Empfindlichkeiten der Pixel aufgezeichnet, also das Vermögen, die auftreffenden Photonen in Elektronen umzuwandeln.

Arcbild

Schließlich wird mit einer Ne-Arc-Lampe belichtet und ein Arcbild (Arc) erstellt (Abb. 4.4).

Abb. 4.4: Arcspektrum, Belichtungszeit 10s.

Die stärksten Emissionslinien des Neon-Spektrums sind bekannt und werden nach Mugrau-

er (2008) dem Spektrum zugeordnet (vgl. Abb. 4.5).

Abb. 4.5: Zugeordnete Ne-Linien im Arcspektrum, die Angaben sind in Å (Mugrauer (2008)).

Anstiege der Sternspektren

Im vorliegenden Fall ist es wichtig, einen möglichst von allen Störungen befreiten Anstieg des Spektrums zu erhalten. Es gibt mehrere Faktoren, die ihn beeinflussen.

1) Unterschiedliche Empfindlichkeit des Chips: Die Empfindlichkeit des CCD-Chips ist wellenlängenabhängig. Das wirkt sich natürlich auch auf die Form des Spektrums aus (Behebung durch Standardstern und Division durch das Flatfield, siehe weiter unten).

2) Interstellare Extinktion: Das Licht eines Sterns unterliegt auf dem Weg zum Beobachter unterschiedlichen Einflüssen. Der Raum zwischen den Sternen ist angefüllt mit Gas- und Staubmassen, dem Interstellaren Medium. Es besteht zu 99% aus Gas - vor allem Wasserstoff und Helium - und zu 1% aus Staub. Seine Dichte ist gering (einige Teilchen pro m^3) und im Allg. nicht überall genau bekannt (Weigert et al. (2010)). Die Sternstrahlung wird auf seinem Weg zum Beobachter an diesen Teilchen gestreut. Der Energieverlust äußert sich in den Spektren durch Verschiebung des Strahlungsmaximums zu längeren Wellenlängen hin, der Grad der Extinktion ist zudem noch wellenlängenabhängig. Die Stärke der Extinktion muss für jede Position und jede Entfernung für jedes Objekt individuell bestimmt werden - mit den Mitteln, die für diese Arbeit zur Verfügung stehen, kann er nicht beseitigt werden.

3) Extinktion in der Erdatmosphäre: Einen ähnlichen Effekt auf das Sternlicht hat auch die Erdatmosphäre. Dort wird es ebenfalls an den unterschiedlichsten Teilchen gestreut und ebenfalls gerötet, das kurzwellige Licht stärker als das langwellige. Je tiefer der Stern am

4 Datenreduktion

Himmel steht, desto größer ist die durchquerte Luftmasse und desto höher ist die Extinktion. Die optimale Beobachtungsrichtung ist im Zenit, dies ist allerdings in den meisten Fällen nicht möglich, da nicht alle Targets im Zenit kulminieren und es auch nicht immer möglich ist, bei optimaler Position zu beobachten.

Spektren von Standardsternen

Nach der Detektion jedes Targets wird ein heller Stern bei ähnlicher Luftmasse spektroskopiert (Standardstern). Es werden helle Sterne mit bekannten Spektralklassen verwendet (die Liste ist in Abb. 5.5 zu finden). Um auch den Einfluss der interstellaren Extinktion festzustellen, müsste dieser Standardstern sich in der gleichen Himmelsregion befinden wie das Target, dafür gibt es jedoch nicht genügend geeigneter Standardsterne.

Reduktion

Zuerst werden alle Darks gleicher Belichtungszeit zu je einem Masterdark gemittelt. Dann wird von allen Sternspektren, den Flats und den Arcs das Masterdark der jew. zugehörigen Belichtungszeit subtrahiert. Diese Spektren werden nach dem gleichen Schema zu einem Masterflat bzw. -arc zusammengefasst.

Als nächstes wird das Rohspektrum des Targets mit einer Aperturbreite von ± 3 Pixeln senkrecht zur Dispersionsrichtung ausgeschnitten und gemittelt. Dies erzeugt ein eindimensionales Spektrum (vorher war es über mehrere Pixelzeilen verteilt) (Abb. 4.6).

Abb. 4.6: Eindimensionales Spektrum von HD 228773.
Danach wird dieses Bild durch das Masterflat geteilt und zuletzt mit dem Marsterarc eine Wellenlängenkalibration durchgeführt, d.h. jeder Pixelposition wird damit eine bestimmte Wellenlänge zugeordnet. Am Ende werden die so erstellten Targetspektren zu einem Masterspektrum gemittelt (Abb. 4.7).

Abb. 4.7: Fertig reduziertes Spektrum von HD 228773.

Damit ist die Reduktion des Sternspektrums abgeschlossen.

5.1 Erstellung einer Targetliste

Die Targets für diese Arbeit werden mit Hilfe mehrerer Sternkataloge ausgewählt. Zunächst werden gewisse Suchparameter festgelegt:

1) Eine grobe Spektralklasse soll angegeben sein (O oder B).

2) Da die Beobachtung ausschließlich in der Sternwarte in Großschwabhausen stattfinden kann, werden geeignete Koordinaten der Sterne gewählt (für die Sommerbeobachtungen RA 10...24h, DEC> 20°, für die Herbstbeobachtungen RA 00...06h, DEC> 20°).

3) Der Spektrograph kann Sterne bis zu einer scheinbaren Helligkeit von
 $m_v = 12^{mag}$ detektieren.

Einen ersten Überblick verschafft der Katalog *Catalogue of Stellar Spectral Classifications* von Skiff (2012) (Skiff (2009a), das zugehörige Paper ist Skiff (2009b)). Für die vorgegebenen Parameter liefert er 3 O-Sterne und 298 B-Sterne für den Sommer bzw. 11 O-Sterne und 124 B-Sterne für den Herbst.

Diese Targets werden mit den Daten bei *SIMBAD* abgeglichen (Wenger et al. (2000) und CDS (2012)). Diese Datenbank zeigt alle gängigen Sternnamen für ein ausgewähltes Target, eine Referenzliste und Helligkeitsmessungen für mehrere Spektralbereiche (bei den beobachteten Objekten meistens im B- und/oder V-Band und im Infraroten). Für eine Reihe der oben ausgewählten Sterne finden sich hier genaue Angaben zu ihrer Spektralklasse, diese werden aussortiert.

Die übrig gebliebenen 154 Kandidaten für die Sommerbeobachtung und 88 für den Herbst werden schließlich mit den Katalogdaten aus dem All-sky Compiled Catalogue of 2.5 million stars (ascc) überprüft (Kharchenko & Roeser (2009) und Kharchenko & + (2009)). Diese Kataloge werden verwendet, da in ihnen Spektralklassifikation vieler Sterne vorgenommen wurde.

Nach der Überprüfung besteht die Endliste aus 57 Targets für die Sommer und 24 für die Herbstbeobachtungen. Sie beinhaltet 57 B-Sterne (Sommer) bzw. 3 O- und 21 B-Sterne (Herbst) (Abschnitt B.1 im Anhang). Bei allen diesen Sternen ist die Spektralklasse nicht näher bestimmt. Bei den in SIMBAD aufgeführten Referenzlisten für jedes dieser Objekte gibt es ebenfalls keine zusätzliche Information über die Spektralklasse. Die Referenzliste der beobachteten Targets ist in Tab. A.31 zu finden.

Von diesen 81 Objekten wurden 26 beobachtet, da die Anzahl der geeigneten Beobachtungsnächte wetterbedingt begrenzt war und ein Target ungefähr eine Stunde Beobachtungszeit benötigt.

Im Durchschnitt beträgt die scheinbare Helligkeit der Targets im sichtbaren Bereich 9.9^{mag} . Beobachtet wird vorzugsweise während der Kulmination zur Minimierung der atmosphärischen Extinktion.

Katalogname	$\mathbf{RA}(2000)$	DEC(2000)
HD 181730	$19\ 21\ 29.99$	$+02 \ 49 \ 03.4$
HD 227828	$20\ 07\ 57.77$	$+35 \ 43 \ 05.5$
HD 228256	$20\ 11\ 54.37$	+40 00 29.6
TYC 3937-903-1	$20\ 15\ 18.17$	$+54 \ 20 \ 31.5$
HD 228654	$20\ 15\ 54.40$	$+40 \ 52 \ 13.4$
HD 228742	$20\ 17\ 01.24$	$+41 \ 26 \ 45.4$
HD 228773	$20\ 17\ 34.95$	$+38 \ 33 \ 37.1$
HD 228905	$20\ 19\ 21.25$	$+38 \ 24 \ 41.0$
HD 229069	$20\ 21\ 22.89$	+37 51 36.5
HD 229077	$20\ 21\ 29.97$	+38 01 31.6
TYC 3951-2450-1	$20\ 42\ 03.03$	$+53 \ 18 \ 20.6$
$\mathrm{BD}{+50}~3180$	$20\ 43\ 50.22$	+50 58 22.3
$BD{+}51\ 2945$	$20\ 45\ 34.34$	$+51 \ 33 \ 00.1$
TYC 3596-1019-1	$21 \ 03 \ 06.16$	$+49\ 26\ 23.8$
TYC 3603-2122-1	$21 \ 34 \ 40.80$	$+52 \ 26 \ 47.2$
TYC 3967-1885-1	$21 \ 37 \ 04.62$	+52 56 47.3
TYC 3603-971-1	$21 \ 37 \ 45.80$	$+51 \ 13 \ 52.9$
$BD{+}53\ 2661$	$21 \ 38 \ 01.78$	$+53 \ 53 \ 38.4$
TYC 3967-232-1	$21 \ 38 \ 08.48$	$+53 \ 50 \ 17.3$
$\mathrm{BD}{+}59~192$	$01 \ 09 \ 57.75$	$+60 \ 28 \ 09.8$
GSC 03712-00331	$02 \ 44 \ 09.10$	$+59 \ 33 \ 41.0$
$\mathrm{BD}{+}63~11$	$00\ 13\ 31.25$	$+64 \ 32 \ 30.1$
$\mathrm{BD}{+}62~36$	$00\ 16\ 30.59$	$+63 \ 29 \ 21.2$
$\mathrm{BD}{+}59~44$	$00\ 23\ 16.34$	+59 59 55.6
BD+62~66	$00\ 23\ 20.31$	+62 52 51.4
TYC 3712-57-1	$02 \ 42 \ 37.90$	+59 55 39.0

Tab. 5.1: Liste der beobachteten Sterne mit Koordinaten (RA(2000) - Rektaszension, DEC(2000) - Deklination, beide bezogen auf das Jahr 2000).

5.2 Auswertung: Erste Ideen

Eine der ersten Ideen zu Beginn der Arbeit bestand darin, dass helle Sterne mit bekannten Spektralklassen aufgenommen werden und deren Anstiege und Linien als Referenz zu den Sternen in dieser Arbeit hinzugezogen werden könnten. Durch Vergleich der Anstiege dieser Spektren und deren Linien würde somit die in Frage kommende Spektralklasse der zu bestimmenden Targets eingegrenzt werden.

Ein Spektralkatalog solcher hellen Sterne wurde bereits im Rahmen einer Studienarbeit von Daniel Sebastian am Astrophysikalischen Institut Jena Anfang 2009 erstellt (Sebastian (2009)). Die Beobachtungen wurden in der Sternwarte in Großschwabhausen durchgeführt. Der Katalog beinhaltet etwa 100 helle Sterne mit scheinbaren Helligkeiten bis zu $+6^{mag}$ der Spektralklassen O bis M. Die Anzahl der hier in Frage kommenden Sterne ist in Tabelle 5.2 aufgelistet.

Die Bestimmung der Anstiege der beobachteten Targets mit diesen Sternen gestaltet sich

Tab. 5.2: Anzahl der Sterne aus Sebastians Studienarbeit, die für die vorliegende Arbeit in Frage kommen. Aufgrund der sehr kleiner Stichprobe werden alle LKKs von O-Sternen verwendet, bei den B-Sternen nur die Leuchtkraftklassen IV und V.

Spektralklasse	Gesamtanzahl	davon LKK IV-V
0	6	6
В	11	6
А	14	10
\mathbf{F}	11	7

als schwierig, da frühe Spektralklassen nur geringe Unterschiede in dem betrachteten Spektralbereich von 6000 Å bis 7000 Å aufweisen. In Abb. 5.1 ist ein solcher Vergleich dargestellt. Das mittlere Spektrum gehört zu einem der Targets aus dieser Arbeit, TYC 3937-903-1 (kurz TYC 903), oben befindet sich der B8V-Stern HD 214923, unten der B0.5III HD 149881.

Abb. 5.1: Bestimmung des Anstiegs anhand Spektren heller Sterne. Das zu bestimmende Target ist der Stern TYC 3937-903-1 und befindet sich in der Mitte. Oben ist HD 214923 (B8V), unten HD 149881 (B0.5III).

Als Ergebnis kann TYC 903 nur als B-Stern charakterisiert werden, eine bessere Einteilung ist damit nicht möglich. Die Anwendung auf andere Targets ergibt ähnlich ungenaue Werte. Außerdem zeigt die Abbildung die Ununterscheidbarkeit in den Leuchtkraftklassen der beiden hellen Sterne, da sich ihre Linienbreiten nicht signifikant ändern.

5.3 Auswertung: umgesetzte Vorgehensweise

Sebastians Sterne werden im Folgenden nicht zur Bestimmung der Anstiege verwendet, jedoch als Datengrundlage für die Linienvermessungen. In diesem Abschnitt wird die durchgeführte Auswertung am Beispieltarget TYC 903 dargestellt und an einigen Sternen mit

bekannten Spektralklassen überprüft. Zu Beginn der Beobachtung sind folgende Daten von TYC 903 bekannt:

Abb. 5.2: Aufsuchkarte von TYC 3937-903-1. Erstellt mit DSS2-red (Erklärung im Text), der Bereich umfasst 30' x 30'.

Solche Aufsuchkarten werden für jedes Target erstellt, hierfür werden die Sternkarten des *ESO Online Digitized Sky Survey* (Sternatlas (1993)) mit der Einstellung *DSS2-red* verwendet (mit ihr sind 98 % des Himmels im roten Spektralbereich abgebildet worden).

Tab. 5.3: Katalogdaten für TYC 903. Die scheinbare Helligkeit ist aus Høg et al. (2000) und die Spektralklasse aus Skiff (2009a).

Name	TYC 3937-903-1
RA2000	$20\ 15\ 18.17$
DEC2000	$+54 \ 20 \ 31.5$
$m_v [{ m mag}]$	9.9
Spektralklasse	В

Die Referenzen und vollständige Tabellen aller Sterne sind im Anhang A zu finden. Die Tabellen A.32 und A.33 fassen die Beobachtungsdaten aller Targets zusammen, wie beispielsweise das Aufnahmedatum, oder das während der Beobachtung herrschende Wetter. Für TYC 903 sind diese Daten in Tabelle 5.4 aufgelistet.

Die Berechnung der Luftmasse für ein bestimmtes Objekt wird näherungsweise über

$$AM(\varrho) = \frac{1}{\cos\varrho} \tag{5.1}$$

durchgeführt. AM ist die Luftmasse, der Winkel ρ ist die Objekthöhe, gemessen vom Zenit.

Um die Qualität der Targets besser einschätzen zu können, wird zuerst jedes Einzelspektrum für sich ausgewertet. Danach werden die besten Spektren eines Objektes zu einem resultierenden Spektrum gemittelt. Bei TYC 903 werden die Einzelspektren 1 bis 4 zu einem gemittelt, bei Nr. 5 ist das Rauschen größer als bei den ersten vier (Abb. 5.3).

Tab. 5.4: Beobachtungsdaten für TYC 903. Mit *Air Mass* wird die Luftmasse, bei welcher der Stern beobachtet wird, bezeichnet. Luftmasse 1 entspricht Zenitposition, in Richtung Horizont vergrößert sich ihr Wert.

Aufnahmedatum	24.07.12
Uhrzeit	23:10
Belichtungszeit [s]	600
Anzahl der Spektren	5
${f Standard stern}$	Vega
Wetter	klar
Air Mass	1.10

Abb. 5.3: Vergleich der reduzierten Spektren von TYC 903. Oben ist das aus den ersten vier Einzelspektren gemittelte, unten das Einzelspektrum Nr. 5 zu finden.

Standardstern

Nach erfolgter Reduktion des Spekrums von TYC 903 mit der Pipeline von Seeliger werden die Chipempfindlichkeit und die atmosphärische Extinktion mittels Standardstern aus dem Spektrum herausgerechnet.

Die Reduktion des Standardsterns erfolgt analog zu der des Targets. Bei TYC 903 fungiert Vega als Standardstern. Alle Standards werden so ausgesucht, dass von ihnen Spektren in Spektralkatalogen zu finden sind. In dieser Arbeit wird dafür hauptsächlich der Katalog *STELIB: A library of stellar spectra at R*~2000 verwendet (Le Borgne et al. (2003a) und Le Borgne et al. (2003b)). Er beinhaltet 255 Spektren heller Sterne. In Tabelle 5.5 sind die Standardsterne aller Targets aufgelistet. Da die meisten Beobachtungen bei kleinen Luftmassen stattfinden, werden die gleichen Standardsterne für mehrere Targets verwendet.

Tab. 5.5: Standardsterne für die Reduktion der beobachteten Targetspektren. Die zusätzlich notwendigen Spektren aus Sternkatalogen werden dem Katalog A *library* of stellar spectra at $R \sim 2000$, Le Borgne et al. (2003b), entnommen. Für einige Sterne müssen synthetische Vergleichsspektren generiert werden (hier mit (s) vermerkt), da für sie keine geeigneten Katalogspektren existieren. Die genauen Einstellungen sind in Tabelle 5.6 zu finden.

Name	RA2000	DEC2000	SpKl	$m_v [mag]$	Bemerkung
51Per	$04 \ 14 \ 53.86$	$+48 \ 24 \ 33.7$	G0Ib	4.2	
alf Cam	$04 \ 54 \ 03.01$	$+66 \ 20 \ 33.6$	O9.5Iae	4.3	
chi01 Ori	$05 \ 54 \ 23.08$	$+20 \ 16 \ 35.1$	G0V	4.4	
139 Tau	$05 \ 57 \ 59.66$	$+25 \ 57 \ 14.1$	B0.5-1Ib-II	4.8	
phi UMa	$09 \ 52 \ 06.36$	+54 03 51.4	A3IV	4.6	
bet Dra	$17 \ 30 \ 25.98$	+52 18 04.9	G2II/Iab	2.8	
V ksi Her	$17 \ 57 \ 45.83$	+29 14 52.5	G8-K0III	3.7	
Vega	$18 \ 36 \ 56.19$	$+38 \ 46 \ 58.8$	A0Vvar	0.0	(s)
LTT15729	$19 \ 36 \ 26.54$	$+50 \ 13 \ 13.7$	F4V	4.5	(s)
Sadr	$20 \ 22 \ 13.70$	$+40 \ 15 \ 24.1$	F8Ib	2.2	(s)
tet Cep	$20 \ 29 \ 34.83$	+62 59 38.9	A7III	4.2	(s)
Deneb	$20 \ 41 \ 25.91$	$+45 \ 16 \ 49.2$	A2Ia	1.3	

Für einige Standardsterne gibt es keine Katalogspektren, hir werden synthetisch generierte Spektren erzeugt (Tab. 5.6).

Tab. 5.6: Synthetisch generierte Spektren einiger Standardsterne mit Modellen von Kurucz (Munari et al. (2005)). Die Effektivtemperaturen werden dem Katalog von le Borgne (Le Borgne et al. (2003b)) entnommen, log g und [M/H] sind aus Cayrel de Strobel et al. (1997), bei den restlichen Spalten werden die voreingestellten Werte übernommen (da keine Kataloge mit diesen Angaben gefunden worden sind). Zeichenerklärung: T_{eff} - Effektivtemperatur, log g - Logarithmus der Schwerebeschleunigung, [M/H] - Metallizität des Sterns relativ zur Sonne, v_{rot} - Rotationsgeschwidigkeit, mturb. - Mikroturbulenz und [α /Fe] - Verhältnisse anderer, nicht näher genannter Elemente.

Name	T_{eff} [K]	log g	[M/H]	$\mathbf{v}_{\mathbf{rot}}$	mturb. $[km/s]$	$[\alpha/\text{Fe}] \; [\text{km/s}]$
Sadr	6000	1.0	0	0	2	0
LTT15729	6750	4.5	0	0	2	0
Vega	9500	4.0	-0.5	0	2	0
tet Cep	7750	4.0	0	0	2	0

Einige Werte für die synthetischen Standards können nur sehr grob eingestellt werden, bei mehreren Parametern gibt es nur einen Wert zur Auswahl. Daher wird auf ihre Behandlung hier nicht weiter eingegangen.

Für den Korrekturfit muss jede sternspezifische Information aus dem Spektrum entfernt werden, daher wird das aufgenommene Spektrum des Standards durch das aus dem Katalog dividiert. Katalogspektren decken im Allgemeinen einen großen Wellenlängenbereich

ab, mit der verwendeten Reihenfolge wird der resultierende Fit auf den gewünschten Wellenlängenbereich zugeschnitten. Danach muss der Fit daher invertiert werden, bevor es unter IRAF mit dem Befehl *sfit* bearbeitet wird. In Abbildung 5.4 ist die resultierende Funktion für Vega dargestellt.

Abb. 5.4: Resultierende Funktion für Vega.

Dieser Fit wird mit dem reduzierten Targetspektrum multipliziert. Danach wird das Spektrum auf einen Wert von 1 bei 6600 Å normiert und anschließend logarithmiert. Somit lassen sich Spektren verschiedener Sterne miteinander vergleichen.

Abb. 5.5: Korrigiertes, normiertes und logarithmiertes Spektrum von TYC 903.

In Abb. 5.5 ist ein weiteres Problem erkennbar: der erwartete Verlauf des Spektrums würde, vor allem auf der rechten Seite, nach unten gehen, so, wie es z.B. in Abb. 5.1 gezeigt ist. Stattdessen ist das Spektrum auf beiden Seiten nach oben gekrümmt. Dieser Effekt wird bei fast allen lichtschwachen Spektren festgestellt. In der Literatur wird er als RBI (Residual Bulk Image = Restbild) bezeichnet (z.B. bei Russell (2004)). Das Restbild ist das vorher aufgenommene Rohspektrum eines hellen Sterns oder einer Kalibrationslampe, welches in der danach folgenden Belichtung des Targest zutage tritt.

Eine Untersuchung ergab, dass lichtstarke Spektren $(m_v < 8)$ dieses Problem nicht besit-

zen. Dies wird am Beispiel eines hellen Sterns, HD 32537, veranschaulicht. HD 32537 ist ein F0V-Stern mit einer scheinbaren Helligkeit von 4.98^{mag} . Es ist eines von Sebastians Spektren aus seiner Studienarbeit. In Abb. 5.6 wird es seinem Template aus dem Katalog le Borgne gegenübergestellt.

Abb. 5.6: Sebastians Spektrum von HD 32537 (unten), verglichen mit dem Template des Sterns aus le Borgne (oben).

Da alle untersuchten Targets eine scheinbare Helligkeit von über $+9^{mag}$ besitzen, wird dieser Effekt charakterisiert und aus den Spektren entfernt.

5.3.1 Residual Bulk Image - Restbild (RBI)

Zu Beginn der Auswertung wurde angenommen, dass die durch das RBI verursachte Krümmung physikalische Ursachen haben könnte. Allerdings stellte sich heraus, dass Spektren nur dann diese Art der Krümmung aufweisen, wenn zuvor ein helles Objekt spektroskopiert wurde. Daher lag es nahe, die Ursache in der verwendeten Apparatur, speziell im Verhalten des Detektors zu suchen.

Es gibt zwei Möglichkeiten, einen CCD-Chip zu belichten: an seiner Ober- oder an der Unterseite. Auf der Oberseite befinden sich Halbleiterstrukturen, die das Licht teilweise absorbieren. Dieses Problem wird umgangen, indem die Rückseite des Chips beleuchtet wird. Hier wird die Siliziumschicht bis auf $10\mu m$ abgeschliffen und die Quanteneffizienz steigt somit von 60 % (Belichtung von Oberseite) auf 90 % (vergleiche hierzu Berry (2000)). Allerdings wird die spektrale Empfindlichkeit eines solchen Chips dadurch ungleichmäßig. Der Chip von FIASCO wird von der Unterseite belichtet und das Problem der ungleichmäßigen Empfindlichkeit wird durch Aufnahmen von Weißlichtbildern und Standardsternen gelöst.

Das RBI entsteht an der Silizium-Oxid-Schicht des Chips. Nach Rohspektren heller Objekte bleibt noch eine Anzahl Elektronen im Chip, die erst mit dem nachfolgenden Rohspektrum ausgelesen werden.

Im Oktober 2012 wurde eine Messreihe, bestehend aus belichteten Rohspektren und Darkaufnahmen, direkt hintereinander aufgenommen, durchgeführt. Für die belichteten Spektren wird die Lampe für Weißlichtaufnahmen der Sternwarte verwendet. Mit einer Belichtungszeit von 600 Sekunden bei den Darks wird die gleiche Situation hergestellt wie bei den Rohspektren der Targets. Die Ausprägung des RBI-Effektes kann also auf sie übertragen werden. Das Protokoll der Reihe befindet sich im Anhang unter C.9.

Wird ein Dark mit RBI durch ein Dark ohne das RBI geteilt, wird das Restbild im resultierenden Spektrum sichtbar. In Abb. 5.7 ist ein solches Restbild dargestellt.

Abb. 5.7: Ein RBI-Signal nach Abzug eines Darks ohne das RBI.

Im Vergleich zu einer gerade Linie ist eine leichte Krümmung nach oben erkennbar, genau wie bei TYC 903 in Abb. 5.5. Dieses RBI-Signal wird unter IRAF, mit einem Legendrepolynom der Ordnung 3, mit 10 Iterationsstufen gefittet (mit dem Befehl t wird das Fitinterface geöffnet und mit f gefittet). Somit entsteht ein Graph, der die Krümmung eines Spektrums durch das RBI darstellt (Abb. 5.8).

Der Verlauf dieser Kurve beschreibt die Stärke des RBIs. Die Krümmung dieser Kurve kann mittels Vorfaktoren (z.B. von 0 bis 4 in 0.1-Schritten) solange verändert werden, bis sie der Krümmung im jeweiligen Targetspektrum entspricht. Im Verlauf der Reduktion wird dann die ermittelte Kurve vom Targetspektrum abgezogen, es wird sozusagen "entkrümmt":

$$Red.Sp. = \frac{Spektrum_{ohneFlat} - X \cdot RBI}{Flat}.$$
(5.2)

Red.Sp. ist das reduzierte Spektrum des Targets, Spektrum_{ohneFlat} ist das reduzierte Spektrum, welches noch nicht durch das Flatspektrum geteilt worden ist und X ist der Vorfaktor der RBI-Kurve. Es werden Spektren_{ohneFlat} genommen, weil hier das RBI wie eine Konstante abgezogen werden kann (gleiche Dimension der Intensitäten).

]

Der Vergleich von Sebastians Sternspektren (z.B. in Abb. 5.6) lässt auch bei den untersuchten Targets einen ähnlichen Verlauf erwarten, das heißt, zeigt das Spektrum nach

Abb. 5.8: RBI-Kurve

Anwendung des RBI-Modells keinen gekrümmten Verlauf mehr an, wird es für die weitere Auswertung verwendet. Das optimale Spektrum wird mittels Anfitten einer linearen Funktion mit IRAF ermittelt (verwendet wird die Funktion Spline 1 der Ordnung 1). Das im Plot angezeigte RMS dient als Wert für die Abweichung von diesem linearen Fit (der optimale Korrekturfaktor ist beim minimalen RMS des Spektrums zum linearen Fit erreicht). Der Vergleich verschieden gekrümmter Spektren ist in Abb. 5.9 dargestellt.

Abb. 5.9: Überlagerung verschiedener Vorfaktoren des RBI bei TYC 903. Links sind die RBI-Faktoren angegeben. Das optimale Spektrum besitzt den RBI-Faktor von 0.8.

Anschließend wird das so reduzierte Spektrum bei 6600 Å auf 1 normiert und zuletzt logarithmiert (Abb. 5.10).

Abb. 5.10: Endreduziertes und RBI-korrigiertes Spektrum von TYC 903.

5.3.2 Bestimmung von Signal-to-Noise-Ratio (SNR)

Das SNR (auf deutsch Signal-zu-Rausch-Verhältnis) ist ein Indiz für die Güte eines Spektrums. Die mittlere Intensität des Spektrums wird geteilt durch das RMS (Root Mean Square). Je höher der Wert des SNR, also je kleiner das Rauschen, desto besser ist das Spektrum. Um das Rauschen in Intensitätsanteilen des Spektrums zu erhalten, wird das SNR in IRAF an normierten Spektren vermessen, die noch nicht durch das Flat geteilt worden sind. Die Normierung erfolgt im Plot mit der Funktion Spline 3 der Ordnung 20 (mit dem Befehl / im Fitinterface). Vor der Messung werden große Cosmics ⁽¹⁾ aus dem Spektrum entfernt. Die Messbereiche befinden sich abseits der tiefen Spektrallinien (Abb. 5.11). Die Tastenfunktion für das Bestimmen des SNR lautet bei IRAF m. Das SNR wird berechnet als

$$SNR = \frac{\text{mittlerer Wert des Spektrums}(\approx 1)}{RMS}$$
(5.3)

Das SNR wird an mehreren Stellen gemessen und anschließend arithmetisch gemittelt.

Abb. 5.11: SNR-Messung an TYC 903. Im linken markierten Bereich beträgt das SNR 14.22, im rechten 22.19. Der Mittelwert ist 18.21. Gemessen wird bei 1 in der Mitte des Spektrums.

Die gemessenen SNRs aller untersuchten Targets bewegen sich zwischen $SNR \approx 8$ für verrauschte und $SNR \approx 40$ für rauscharme Spektren.

⁽¹⁾Als Cosmics werden Zerfallsprodukte der kosmischen Strahlung bezeichnet, die während einer Belichtung auf den Chip auftreffen und starke Linien im Spektrum verursachen.

5.3.3 Anstiege der Spektren

Die Anstiege der Targetspektren werden mit Planck-Kurven verschiedener Temperatur verglichen. Für jede Spektralklasse O, B, A und F wird, unter Verwendung der Temperaturangaben aus Landolt-Börnstein (1982), eine Planck-Kurve im Bereich zwischen 6000 Å und 7000 Å erstellt, bei 6600 Å auf 1 normiert und anschließend logarithmiert (Abb. 5.12).

Abb. 5.12: Normierte und danach logarithmierte Planck-Kurven für Sterntemperaturen der Spektralklassen O3 bis F8.

Die Planckkurven werden nur für die Leuchtkraftklasse V erstellt, da die Temperaturänderungen der einzelnen LKKs einer Spektralklasse nur gering sind (vergleiche z.B. die Temperaturen von B5V: 15400 K mit B5III: 15000 K und B5I: 13600 K - die Temperatur eines B6V-Sterns liegt bei 14000 K, alle Werte sind aus Landolt-Börnstein (1982)).

Die Temperaturen der verwendeten Spektralklassen sind in Tab. 5.7 aufgelistet.

Klasse	$\mathrm{T}_{\mathrm{eff}}$	Klasse	$\mathrm{T}_{\mathrm{eff}}$	Klasse	$\mathrm{T}_{\mathrm{eff}}$	Klasse	$\mathrm{T}_{\mathrm{eff}}$
O 3	52500	B0	30000	A0	9520	F0	7200
04	48000	B1	25400	A1	9230	F2	6890
O5	44500	$\mathbf{B2}$	22000	A2	8970	F5	6440
O6	41000	B3	18700	A3	8720	$\mathbf{F8}$	6200
07	38000	B5	15400	A5	8200		
08	35800	B6	14000	A7	7850		
O 9	33000	B7	13000	A8	7580		
		B8	11900				
		B9	10500				

Tab. 5.7: Temperaturangaben der dargestellten Planck-Kurven für die Spektralklassen O3 bis F8 der Leuchtkraftklasse V (Landolt-Börnstein (1982)).

Überprüfung am Anstieg von HD 32537

Die Bestimmung der Spektralklasse über die Planckkurven wird an einem bekannten Spektrum überprüft. Wie bereits zuvor, wird das Spektrum von HD 32537 verwendet. Zur Erleichterung wird durch das Spektrum ein linearer Fit gelegt (in IRAF, mit der Funktion Spline 1 der Ordnung 1). Der Gesamtplot befindet sich in Abb. 5.13.

Abb. 5.13: Der Anstieg des Sterns HD 32537 (Sebastians Spektrum), verglichen mit den Planck-Anstiegen der Klassen A4 bis F8. Die Schätzung der Spektralklasse ergibt F0 bis F2 (die im Katalog von Le Borgne et al. (2003b) angegebene Spektralklasse ist F0V).

Cl* Trumpler 37 MVA 1312

Als eine Art "Gegenbeispiel" wird der Anstieg des Sterns Cl * Trumpler 37 MVA 1312 überprüft $^{(2)}$. Die Daten dieses Sterns sind in Tab. 5.8 zusammengefasst.

Tab. 5.8: Daten des Sterns Cl^{*} Trumpler 37 MVA 1312, die Angabe der Spektralklasse stammt aus Le Borgne et al. (2003b).

RA2000	21:35:56.56
DEC2000	57:20:52.3
$m_v[{ m mag}]$	10.3
Spektralklasse	B4
Aufnahmedatum	03.06.2010
Anzahl Spektren	12
Belichtungszeit [s]	600

Der Plot mit den Plancksteigungen ist in Abb. 5.14 dargestellt.

⁽²⁾Dieser Stern wird von Ronny Errmann in seiner Dissertation am Astrophysikalischen Institut Jena untersucht, die Daten werden für diese Arbeit freudlicherweise zur Verfügung gestellt.

Abb. 5.14: Der Stern Cl^{*} Trumpler 37 MVA 1312 mit Planck-Kurven. Die Spektralklasse ist laut diesem Plot F5 bis F8.

Seinem Anstieg nach ist er den Spektralklassen F5 bis F8 zugeordnet. Die Ursache liegt in der Wolke aus interstellarer Materie, in die der Stern eingebettet ist. Die interstellarer Extinktion A_v beträgt für ihn 1.5^{mag} . Wird das Spektrum mit diesem Wert entrötet, vergrößert sich die Steigung zu früheren Spektralklassen hin, wie in Abb. 5.15 gezeigt.

Abb. 5.15: Der Stern Cl^{*} Trumpler 37 MVA 1312, entrötet mit $A_v = 1.5^{mag}$. Die Spektralklasse ist laut diesem Plot B7 bis B8.

Obwohl wird er immer noch als später eingeschätzt als es in Tab. 5.8 angegeben ist, deutet das Resultat doch auf einen B-Stern hin. Die Fehleinschätzung kann zum Teil an der suboptimalen Qualität des Spektrums (SNR = 25) vermutet werden und auch an den evtl. ungenauen Angaben des A_v . Bei den Targets dieser Arbeit ist das A_v gänzlich unbekannt, daher sind die Angaben über ihre Anstiege nicht sehr zuverlässig.

Anstieg von TYC 903

Der Anstieg des untersuchten Targets TYC 903 wird mit den Anstiegen der jew. Planck-Kurven verglichen, das Ergebnis zeigt die Abb. 5.16.

Abb. 5.16: Das Target TYC 903, geplottet mit verschiedenen Planck-Kurven. Die Spektralklasse liegt laut dem Anstieg von TYC 903 zwischen B0 und B3.

Im Anhang A befinden sich alle anderen Plots der ausgewerteten Spektren sowie die Wertetabellen.

Ermittlung von Steigungen der Spektren von Sebastian

Eine Alternative zu den berechneten Planck-Kurven ist die Nutzung der Anstiege von Sebastians Spektren. Damit eröffnet sich eine Möglichkeit, nicht nur die Farbtemperatur der zu untersuchenden Targets, sondern auch ihre Effektivtemperatur bestimmen zu können.

Wie aus Abb. 5.17 ersichtlich, lässt sich keine Gesetzmäßigkeit bei den Anstiegen erkennen. Als Ursache dafür kommen die individuelle Rötung durch das ISM, die Wetterbedingungen während der Beobachtung oder andere, noch unbekannte, Gründe in Frage. Es ist also davon auszugehen, dass die Anstiege der untersuchten Targets in einem ähnlichen Bereich streuen.

5.3.4 Spektrallinien

Als ein weiteres Klassifikationsmerkmal werden die Spektrallinien der Targets vermessen. Die Untersuchung erfolgt anhand der H_{α} -Linie des neutralen Wasserstoffs H bei 6562.79 Å und der He-Linie bei 6678,15 Å.

Zum Einen werden Linientiefen von H und He ausgemessen (da sie sich ebenfalls zu späteren Spektralklassen hin verändern) und zum Anderen ihre Äquivalentbreiten. Als Datengrundlage werden die Sternspektren von Sebastian verwendet und zusätzlich dazu synthetische Spektren (siehe im Anhang B Abschnitt B.2). Diese wurden an der Landessternwarte Heidelberg-Königstuhl entwickelt, unter Verwendung von Sternmodellen von Kurucz und Bell (Gummersbach & Kaufer, Sternmodelle unter Kurucz (1993), Kurucz (1979) u.a.).

Abb. 5.17: Die gefitteten Anstiege von Sebastians Sternen.

Die synthetischen Spektren haben die Spektralklassen O9, B0, B1, B2, B5 und A0, jeweils in der Leuchtkraftklasse V. Aus Gründen der nicht optimalen Genauigkeit der vorliegenden Targetspektren wird hier nicht auf weitere Modellspektren eingegangen. Dies ist ein Punkt für eine weitere Bearbeitung der Spektren und eventueller Aufnahme höher aufgelöster Spektren der untersuchten Targets.

Erstellung der Linientabellen

Von Sebastians Sternen werden aus der Spektralklasse O alle Sterne für die Linienvermessung benutzt, bei den späteren Klassen finden nur LKKs IV und V Verwendung. Falls es mehrere Sterne einer Unterklasse gibt, werden die Messungen an jedem von ihnen durchgeführt und die Werte anschließend gemittelt (siehe Tabellen B.4 bis B.10 im Anhang B). Bei den synthetischen Sternspektren werden alle Sterne verwendet. Jede Linie wir drei Mal vermessen (vgl. Abschnitt 5.3.5).

5.3.4.1 Linientiefen

Sebastians Spektren

Die Vermessungen der Linien von H_{α} und He anhand Sebastians Sternen erfolgen an normierten Spektren, die Werte geben die Tiefe in Prozent an (1 entspricht 100 %). Die Fehlerbalken werden durch das RMS des Spektrums als Abweichung vom gemittelten Wert von 1 definiert. Wie in Giridhar (2010) für die Äquivalentbreiten werden auch hier die Verhältnisse der beiden Linien gebildet. Zur besseren graphischen Darstellung werden diese H/He-Werte logarithmiert. Ein grober Trend zu größeren Werten hin ist mit später

werdenden Spektralklasse erkennbar.

Die Berechnung der Fehlerbalken für den logarithmierten Graph wird durch partielle Ableitungen gebildet, $\Delta \left(\frac{H}{He}\right) = \frac{1}{He} \cdot \Delta H + \frac{H}{He^2} \cdot \Delta He$, mit H und He den Werten der Messungen und Δ (Element) als das RMS des Spektrums. Anschließend werden sie gemäß ihren Rechenregeln logarithmiert.

Synthetische Spektren

Der Vorteil der verwendeten synthetischen Spektren liegt in ihrer Präzision und den definierten Spektrallinien und derer Laborwellenlänge. Ein großer Nachteil ist natürlich die geringe Anzahl der hier zur Verfügung stehenden Spektren für die Auswertung. Analog zu Sebastians Sternen werden hier auch die Tiefen von H und He vermessen. Die Spektren weisen alle scharf begrenzte Linien auf und besitzen daher sehr kleine Fehlerbalken (innerhalb der Größe der Datenpunkte). Die Logarithmen der Verhältnisse von H zu He lassen einen zu Sebastians Werten vergleichbaren Anstieg mit wachsender Spektralklasse erkennen.

Resultierende Plots für Linientiefen

Aus den gemessenen Werten werden die folgenden beiden Plots erstellt (Abb. 5.18 und Abb. 5.19).

Abb. 5.18: Linientiefen von H und He von Sebastians Spektren und synthetischen Spektren. Dunkelblaue Symbole: Sebastians Werte für H, hellblaue: synthetische Werte für H; pinke: Sebastians Werte für He, rosa: synthetischen Werte für He.

Abb. 5.19: Logarithmiertes Verhältnis von H zu He bei Sebastians und synthetischen Spektren; rot: Sebastians Werte, gelb: synthetische Werte.

Sie werden für die Auswertung der Linientiefen der beobachteten Targets verwendet.

5.3.4.2 Äquivalentbreiten

Die Definition der Äquivalentbreiten wurde bereits im Abschnitt 2.4 vorgestellt. Hier werden, genauso wie die Linietiefen, die Äquivalentbreiten der H- und He-Linien an Sebastians sowie an synthetischen Spektren vermessen.

Sebastians Spektren

Die Äquivalentbreiten von Sebastians Spektren zeigen einen Anstieg der H-Linie bis zur frühen A-Klasse mit einem abfallenden Ast auf der rechten Seite, das Verhalten bei den synthetischen Spektren ist analog (siehe Abb. 5.20). Dies zeigt eine grobe Übereinstimmung mit Abb. 2.6. Das logarithmierte Verhältnis von H zu He wird in Abb. 5.21 dargestellt.

Synthetische Spektren

Die natürliche Linienbreite der Spektren ist gering, da sie aus theoretischen Angaben entwickelt wurden.

Resultierende Plots für Äquivalentbreiten

Abb. 5.20: Äquivalentbreiten von H und He. Vergleich der Werte von Sebastians und synthetischen Spektren. Dunkelblaue Symbole: Sebastians Werte für H, hellblaue: synthetische Werte für H, pinke: Sebastians Werte für He, rosa: synthetischen Werte für He.

Abb. 5.21: Logarithmiertes Verhältnis der Äquivalentbreiten von H zu He bei Sebastians und synthetischen Spektren. Rot: Sebastians Werte, gelb: synthetische Werte.

Diese beiden Plots werden für die Auswertung der Äquivalentbreiten der beobachteten Targets verwendet.

5.3.5 Auswertung der Linien am Beispiel von TYC 3937-903-1

Die Linienauswertung wird am bereits verwendeten Beispieltarget TYC 3937-903-1 exemplarisch durchgeführt.

Für die Linienvermessung werden auch bei den Targets normierte Endspektren verwendet, die Normierung erfolgt mit der Funktion Spline 3 der Ordnung 20. Das RMS wird ebenfalls an diesen Spektren abgelesen. Für die Linienidentifikation wird eine Dopplerkorrektur anhand der H_{α} -Linie durchgeführt, da sie die stärkste Linie in allen Targetspektren ist. Gemessen wird an der tiefsten Stelle der Linie. Die Linien bei den korrigierten Spektren befinden sich allerdings nicht immer exakt bei den theoretisch vorgegebenen Positionen, da auch die H_{α} -Linie das RMS des Spektrums besitzt. Über die Doppler-Formel

$$v_{rad} = \frac{\lambda - \lambda_0}{\lambda_0} \cdot c \tag{5.4}$$

wird aus den gemessenen Liniendifferenzen die Verschiebung des Spektrums berechnet. Im Einzelnen sind v_{rad} die Radialgeschwindigkeit ⁽³⁾, λ die gemessene Wellenlänge der H_{α} -Linie, λ_0 deren Laborwellenlänge, und c die Lichtgeschwindigkeit.

Die Korrektur wird bei IRAF mit dem Befehl dopcor ausgeführt.

Bei TYC 903 befindet sich die H_{α} -Linie bei $\lambda(H_{\alpha}) = 6561.63$ Å. Mit der Laborwellenlänge von $\lambda_0 = 6562.79$ Å ergibt sich $v_{rad} = -52.93$ km/s.

Abb. 5.22: Identifizierte Linien von TYC 903 (v.l.n.r.): Pixelfehler=6230 Å, DIB = 6284 Å, DIB = 6494 Å, $H_{\alpha} = 6562.8$ Å, He = 6678 Å (hier bei 6675.1 Å), Pixelfehler=6853 Å, $O_2 = 6868$ Å. Das DIB wird durch diffuse interstellare Banden verursacht, die innerhalb des ISM erzeugt werden.

⁽³⁾Die Geschwindigkeit v_{rad} ist hier nicht die tatsächliche Radialgeschwindigkeit des Sterns, sondern ist noch mit der Erdbahn- und Erdrotationsgeschwindigkeit überlagert. Da v_{rad} nur zur Korrektur des Spektrums verwendet wird und nicht zur bestimmung der Radialgeschwindigkeit des Sterns relativ zur Sonne, werden hier keine Korrekturen vorgenommen.

Die meisten Targets weisen DIBs auf, diffuse interstellare Banden. Diese Linien werden beim Durchgang der Sternstrahlung durch das ISM gebildet. Eine gewisse Abhängigkeit ihrer Tiefe mit der Rötung des Spektrums wurde festgestellt, jedoch aufgrund des Mangels an empirischen Daten nicht weiter untersucht.

Die gekennzeichneten Linien werden mit Hilfe der synthetischen Spektren aus Gummersbach & Kaufer und der Zuhilfenahme von Kramida et al. (2012) identifiziert.

Linientiefen

Die Vermessung der Tiefen wird drei Mal pro Linie durchgeführt am oberen Rand, in der Mitte und am unteren Rand des Kontinuums, wie in Abb. 5.23 dargestellt.

Abb. 5.23: Vermessung der Linientiefe von H (links) und He (rechts). Gemessen wird am oberen Rand, in der Mitte und am unteren Rand des Kontinuums. Die resultierenden Tiefen ergeben sich aus dem arithmetischen Mittelwert der jeweiligen Messungen.

Diese Werte werden mit den Messergebnissen der Linientiefen von synthetischen und Sebastians Spektren verglichen (Abb. 5.24).

Die abgelesenen Bereiche der in Frage kommenden Spektralklassen ergeben sich zu:

Tab.	5.9:	Ergebnisse	der	Linientiefen	von	TYC	903.
------	------	------------	----------------------	--------------	-----	-----	------

Sebastians Spektren		
H: O9 bis B8, bzw. A4 bis A9 He: O5, O7 bis O8, B1, B3 bis B8		
synthetische Spektren		
H: B1 bis A0 He: B6 bis A0		

Abb. 5.24: Linientiefen von H (0.42 ± 0.076) - orange Linie, und He (0.07 ± 0.076) - grüne Linie, bei TYC 903. Blaue Symbole: Tiefen von H, rosa: Tiefen von He.

Das Verhältnis von H zu He wird bei allen Sternen mit auffindbaren He-Linien vermessen. TYC 903 besitzt, wie einige andere Targets auch, eine breite und aufgefächerte He-Linie. Hier wird über die gesamte Breite gemessen, da keine Aussagen über den "wirklichen" Linienverlauf gemacht werden können (siehe Abb. 5.25).

Bei einigen Targets sind die unteren Fehlerbalken so tief, dass der Logarithmus davon nicht definiert ist. Sie werden daher auf $\gtrsim 0$ gesetzt.

Die Werte werden zuerst ohne ihre Fehlerbalken (mit dem Hinweis "ohne") und anschließend mit der Einbeziehung der Fehlerbalken abgelesen ("mit"). Abgelesene Werte ohne Fehlerbalken dienen nur der groben Orientierung und werden bei der Darstellung der Resultate nicht berücksichtigt.

Abb. 5.25: Das Verhältnis der Linientiefen von H zu He bei TYC 903 (blaue Linie mit Fehlerbalken). Der Wert liegt bei 0.75 \pm 0.34, die unteren Fehlerbalken sind nicht definiert und werden daher auf \gtrsim 0 gesetzt. Rote Symbole: Sebastians Werte, gelbe: synthetische.

Tab. 5.10: Ergebnistabelle der Verhältnisse H/He von TYC 903.

Sebastians Spektren
ohne: B6 mit: alles
synthetische Spektren
ohne: B8 mit: bis B9

Äquivalentbreiten

Die Äquivalentbreiten werden auf die gleiche Weise vermessen. Bei IRAF werden diese Werte mit dem Befehl e ermittelt. Das Programm gibt die entsprechende Breite und ihre Messunsicherheit aus. In Abb. 5.26 sind die Äquivalentbreiten an Sebastians und synthetischen Spektren geplottet, in Abb. 5.27 ist das Ergebnis des Verhältnisses der beiden Linien zueinander dargestellt.

Abb. 5.26: Vermessung der Äquivalentbreiten von H und He bei TYC 903. Die ermittelten Messwerte sind bei $H = 4.41 \pm 0.30$ Å (orange Linie) und bei $He = 0.37 \pm 0.13$ Å (grüne Linie). Blaue Symbole: EWs des H, rosa Symbole: EWs des He, jeweils bei Sebastians und synthetischen Spektren.

Tab. 5.11: Ergebnistabelle der Äquivalentbreiten von TYC 903.

Sebastians Spektren
H: B3 bis B5, F3 bis F6 He: O5, B3 bis A5
synthetische Spektren
H: B1 He: bis B5

Abb. 5.27: Das Verhältnis der Äquivalentbreiten von H zu He bei TYC 903 (blaue Linie). Der Wert liegt bei 1.08 (+0.15, -0.23). Rote Symbole: Sebastians Werte, gelbe: synthetische.

Tab. 5.12: Ergebnistabelle des Verhältnisses der Äquivalentbreiten von TYC 903.

Sebastians Spektren			
ohne: B3 mit: B3 bis B5, A1 bis A5			
synthetische Spektren			
ohne: B1 bis B2 mit: O9 bis B4			

Zusammenfassung aller Teilergebnisse von TYC 903:

Die Werte der Spektrallinien beziehen sich auf die gemessenen Positionen nach der Dopplerkorrektur (Tab. 5.13).

Die resultierende Spektralklasse wird anhand eines Histogramms festgelegt (Abb. 5.28). Es werden nur Werte mit Fehlerbalken verwendet, die Spektralklassen O3 und O4 werden nicht zur Auswertung miteinbezogen, da hier keine Werte von Sebastian vorliegen (analog werden die Werte synthetischer Spektren nur ab O9 berücksichtigt). Bei den Linienverhältnissen liegen die Bereiche für die Tiefen bei O5 bis B8 (Sebastian) bzw. O9 bis A0 (synthetische Spektren); die Verhältnisse der Äquivalentbreiten liegen zwischen O5 und A5 (Sebastian) und zwischen O9 bis A0 (synthetisch).

Tab. 5.13: Ergebnistabelle für TYC 3937-903-1.

* Der Intervallbereich umfasst nur die Klassen O5 bis B8, die anderen Bereiche der jeweiligen Methoden sind im Anhang A zu Beginn aufgelistet.

Methode	Wert	Resultat
log Planck-Kurven		B1-B3
Tiefe Sebastian		H: O9-B8, A4-A9; He: O5, O7-O8, B1, B3-B8
Tiefenverhältnis Sebastian		ohne: B6; mit: alles *
Tiefe synthetisch		H: B1-A0; He: B6-A0
Tiefenverhältnis synthetisch		ohne: B8; mit: O9-B9
EW Sebastian		H: B3-B5, F3-F6; He: O5, B3-A5
EW-Verhältnis Sebastian		ohne: B3; mit: B3-B5, A1-A5
EW synthetisch		H: B1; He: O9-B5
EW-Verhältnis synthetisch		ohne: B1-B2; mit: O9-B4
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Abb. 5.28: Histogramm für die Bestimmung der Spektralklassen von TYC 903.

Die Messwerte deuten auf einen B3-Stern hin. Die Tatsache, dass die Messungen bei diesem Stern für eine Methode über das verfügbare Intervall hinauszugehen scheinen, lässt eine frühere Spektralklasse ebenfalls wahrscheinlich erscheinen oder zumndest nicht ausschließen.

Daher wird als endgültiges Ergebnis B1 < B3 < B8 vorgeschlagen⁽⁴⁾.

⁽⁴⁾Eine statistische Analyse mit Standardabweichung erscheint aufgrund geringer Datenmengen und unterschiedlichen Intervallbereichen der Messmethoden als undurchführbar.

Überprüfung der Linienauswertung an Cl* Trumpler 37 MVA 1312

Die vorgestelle Methode der Linienauswertung wird schließlich noch am Stern Cl* Trumpler 37 MVA 1312 überprüft. Die gefundenen Linien zeigt Abb. 5.29 und die Linientiefen Abb. 5.30.

Abb. 5.29: Gefundene H- und He-Linien bei Cl* Trumpler 37 MVA 1312.

Abb. 5.30: Linientiefen von Cl* Trumpler 37 MVA 1312. Die Werte sind H=0.35 \pm 0.05 (orange) und He= 0.11 ± 0.05 (grün). Blaue Symbole: Tiefen des H, rosa: Tiefen des He.

Sebastians Spektren
H: B0 bis B6 He: O5 bis O8, B1 bis B5
synthetische Spektren
H: B0 bis B4 He: B5

Tab. 5.14: Ergebnistabelle der Linientiefen von Cl* Trumpler 37 MVA 1312.

Das Verhältnis der Linientiefen ist in Abb. 5.31 dargestellt.

Abb. 5.31: Verhältnis der Linientiefen von Cl* Trumpler 37 MVA 1312, H/He= 0.49 (+0.20, -0.38) (blaue Linie). Rote Symbole: Sebastians Werte, gelbe: synthetische.

Tab. 5.15: Ergebnistabelle der Verhältnisse der Linientiefen von Cl* Trumpler 37 MVA 1312.

Sebastians Spektren
ohne: B3 bis B4 mit: alles
synthetische Spektren
ohne: B6 mit: B3 bis B7

Die Vermessung der Äquivalentbreiten wird in Abb. 5.32 dargestellt, ihr Verhältnis ist in Abb. 5.33 zu finden.

Abb. 5.32: Äquivalentbreiten von Cl* Trumpler 37 MVA 1312 mit Werten von $H = 4.26 \pm 0.29$ (orange Linie) und $He = 0.52 \pm 0.18$ (grüne Linie). Blaue Symbole: EWs von H, rosa: EWs von He.

Tab. 5.16: Ergebnistabelle der Äquivalentbreiten von Cl* Trumpler 37 MVA 1312.

Sebastians Spektren
H: um B3 He: O5 bis B5, A1 bis A5
synthetische Spektren
H: B1 He: O9 bis B5

Abb. 5.33: Verhältnis der Äquivalentbreiten von Cl* Trumpler 37 MVA 1312. Der Wert beträgt 0.91 (+0.15, -0.23).

Tab. 5.17: Ergebnistabelle der Verhältnisse der Äquivalentbreiten von Cl* Trumpler 37 MVA 1312.

Sebastians Spektren
ohne: B3 mit: O9 bis B4
synthetische Spektren
ohne: B0 mit: O9 bis B2

Zusammenfassung aller Messergebnisse von Cl* Trumpler 37 MVA 1312:

Methode	Wert	Resultat
log Planck-Kurven		F5-F8
log Planck-Kurven, entrötet mit $A_v = 1.5^{mag}$		B7-B8
Tiefe Sebastian		H: B0-B6; He: O5-O8, B1-B5
Tiefenverhältnis Sebastian		ohne: B3-B4; mit: alles
Tiefe synthetisch		H: B0-B4; He: B5
Tiefenverhältnis synthetisch		ohne: B6; mit: B3-B7
EW Sebastian		H: B3; He: O5-B5, A1-A5
EW-Verhältnis Sebastian		ohne: B3; mit: O9-B4
EW synthetisch		H: B1; He: O9-B5
EW-Verhältnis synthetisch		ohne: B0; mit: O9-B2
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. 5.18: Ergebnistabelle Cl* Trumpler 37 MVA 1312.

Die resultierende Spektralklasse wird anhand eines Histogramms festgelegt, für die Planckkurven werden die entröteten Werte verwendet.

Abb. 5.34: Histogramm für die Bestimmung der Spektralklassen von Cl* Trumpler 37 MVA 1312.

Die resultierende Spektralklasse ist B
0 $<{\bf B2}<{\bf B3}<{\rm B5}.$ Die Katalogklasse ist B4. Das Ergebnis stimmt ungefähr mit dem Katalog
ergebnis überein.

6 Ergebnisse

Die Auswertung der übrigen Sternspektren erfolgt sternweise nach der im Kapitel 5 dargestellten Methode. Die Gesamtauflistung der einzelnen Targets ist im Anhang A zu finden. Die nicht ausgewerteten Sterne sind in der Tabelle A.30 dargestellt, ihre Spektren sind verrauscht und/oder wellig.

6.1 Anstiege der Spektren

Die Anstiege der ausgewerteten Sternspektren variieren von Stern zu Stern in einem sehr großen Bereich. Tabelle 6.1 ist ein Ausschnitt der Ergebnistabelle (vgl. Anhang A Tab. A.45).

Katalogname	Datum	Fit Planck-Kurven	Dopplerkorrektur mit [km/s]
HD 228256	25/07/12	F2-F5	nicht ermittelbar
TYC 3937-903-1	24/07/12	B1-B3	-17.37
TYC 3937-903-1	15/10/12	B2-B4	-25.46
HD 228654	23/07/12	nichts	nichts
HD 228742	25/07/12	G8-K5	-77.89
HD 228742	20/10/12	G8-K5	nichts
HD 228742	21/10/12	G8-K5	-65.37
HD 228773	01/08/12	O5-O6	-23.59
HD 228773	21/10/12	B6-B7	-25.51

Tab. 6.1: Ausschnitt der Tabelle A.45. Vergleich der Anstiege der Targets mit Planck-Kurven. Die Dopplerkorrektur erfolgt mit den aufgelisteten Geschwindigkeiten, negative Vorzeichen bedeuten eine Bewegung auf den Beobachter zu.

Wird bei den beobachteten Sternen von der Spektralklasse B ausgegangen, müssen sie bei ihrer mittleren scheinbaren Helligkeit von ca. $+10^{mag}$ und der erwarteten absoluten Helligkeit von -4.0 bei B0 bis +0.2 bei B9 (Landolt-Börnstein (1982)) eine große mittlere Entfernung aufweisen. Sie wird über das Entfernungsmodul berechnet, das die scheinbare Helligkeit mit der absoluten verknüpft,

$$m - M = 5 \cdot lg \operatorname{r}[pc] - 5, \tag{6.1}$$

(m scheinbare und M absolute Helligkeit, r Entfernung in Parsec) und beläuft sich bei B0 auf 6300 pc und bei B9 auf 900 pc. Das heißt, bei allen Sternen ist davon auszugehen, dass die Anstiege ihrer Spektren signifikant durch das ISM gerötet wurden. Die Stärke dieser Extinktion ist im Einzelnen unbekannt; in der Sonnenumgebung beträgt sie im visuellen Spektralbereich ca. 1^{mag} pro Kiloparsec (kpc) und wächst im Allgemeinen proportional zur

6 Ergebnisse

Entfernung, $A_v \approx 1^{mag} \cdot r/1 kpc$ (vgl. Weigert et al. (2010)). Dabei ist A_v die Extinktion und r die Entfernung des Sterns. Auch ohne die Annahme zusätzlicher Wolken entlang der Sichtlinie zum Stern kann also eine Extinktion von bis zu 6^{mag} erwartet werden. Die Methode, die Anstiege der Sternspektren mit den Anstiegen von Planckschen Kurven zu bestimmen, ist somit nicht sehr aussagekräftig. Als Hinweis auf die Extinktion besitzen viele Sterne ausgeprägte DIBs - diffuse interstellare Banden. Diese Linien werden durch Molekülabsorption im ISM verursacht.

Erschwerend kommt hinzu, dass diese Sterne nahe am Detektionslimit des Spektrographen liegen und die Signalstärken gering sind (nur einige 100 Counts über dem Rauschen). Nicht zuletzt müssen sie in absolut klaren Nächten beobachtet werden, damit die Anstiege durch Wolken nicht verfälscht werden (dafür reichen bereits leichte Zirren, vgl. hierzu z.B. die Spektren von HD 228905 vom 08.08.2012 im Anhang A A.1.6).

6.2 Linientiefen und Äquivalentbreiten

Der Vermessung der Linientiefen und Äquivalentbreiten der Targets liegen zwei Datensätze zugrunde, zum Einen die Spektren heller Sterne von Sebastian (Sebastian (2009)) und zum Anderen synthetisch erzeugte Spektren (Gummersbach & Kaufer). Die geringe Anzahl dieser Spektren (21 bei Sebastian und 6 bei den synthetischen) lässt keine Interpolationen im Linienverhalten zu, die Messungen erfolgen direkt an den von Sebastian bzw. synthetischen Spektren angezeigten Positionen. Im Abschnitt B.3 sind die Sterne von Sebastian aufgelistet, die für die Linienbestimmung verwendet werden. Sternwerte gleicher Spektralklassen werden zu einem Wert zusammengefasst, um einen gemittelten Wert zu erhalten.

Linientiefen

Die Einzelmessewerte für die Tiefen der H_{α} - und der He-Linie sind in den Tabellen 6.2, 6.3, 6.4 und 6.5 ausschnittsweise aufgelistet. Die drei Einzelwerte pro Linie werden arithmetisch gemittelt. Die Fehlerbalken ergeben sich aus dem abgelesenen RMS.

Tab. 6.2: Ausschnitt der Tabelle A.37. Einzelmesswerte für die Tiefen der H_{α} -Linie. Tiefe 1: am oberen Rand des Kontinuums, Tiefe 2: in der Mitte, Tiefe 3: am unteren Rand; die Einheiten der Tiefen und des RMS sind in %, 1 \doteq 100 %. RMS - Root Mean Square (mittlere Standardabweichung).

Katalogname	Datum	RMS	H_{α} -Tiefe 1	H_{α} -Tiefe 2	H_{α} -Tiefe 3
HD 228256	25/07/12	0.04	Emission	Emission	Emission
TYC 3937-903-1	24/07/12	0.08	0.4735	0.4135	0.3825
TYC 3937-903-1	15/10/12	0.04	0.4724	0.4034	0.3721
HD 228654	23/07/12	nichts	nichts	nichts	nichts
HD 228742	25/07/12	0.03	0.3347	0.2767	0.2567
HD 228742	20/10/12	nichts	nichts	nichts	nichts
HD 228742	21/10/12	0.02	0.3079	0.2886	0.2765
HD 228773	01/08/12	0.09	0.5694	0.3973	0.3208
HD 228773	21/10/12	0.03	0.3408	0.3088	0.2765

${f Katalogname}$	Datum	He-Tiefe 1	He-Tiefe 2	He-Tiefe 3
HD 228256	25/07/12	He n.a.	He n.a.	He n.a.
TYC 3937-903-1	24/07/12	0.1242	0.0792	0.0207
TYC 3937-903-1	15/10/12	0.0799	0.0519	0.0319
HD 228654	23/07/12	nichts	nichts	nichts
HD 228742	25/07/12	0.125	0.097	0.0651
HD 228742	20/10/12	nichts	nichts	nichts
HD 228742	21/10/12	0.1227	0.1097	0.0937
HD 228773	01/08/12	0.1729	0.0759	0.027
HD 228773	21/10/12	0.1209	0.0969	0.0859

Tab. 6.3: Ausschnitt der Tabelle A.38. Einzelmesswerte für die Tiefen der He-Linie. Tiefe 1: am oberen Rand des Spektrums, Tiefe 2: in der Mitte, Tiefe 3: am unteren Rand. He n.a.- He nicht auffindbar, jedoch evtl. vorhanden; die Einheiten der Tiefen sind in %, 1 ≜100 %.

Tab. 6.4: Ausschnitt der Tabelle A.39. Gemittelte Tiefen (Tiefe) von H- und He-Linien. He n.a.- He nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich). Die Einheiten der Tiefen sind in %, 1 \approx 100 %. Das RMS aus Tab. A.37 wird hier und bei allen anderen Tiefen als Fehlerintervall verwendet.

${f Katalogname}$	Datum	$\overline{\mathbf{Tiefe}} \ H_{\alpha}$	$\overline{\text{Tiefe}}$ He	H/He	$\Delta H/He$
HD 228256	25/07/12	Emission	He n.a.	He n.a.	He n.a.
TYC 3937-903-1	24/07/12	0.4232	0.0747	5.6649	7.1378
TYC 3937-903-1	15/10/12	0.4160	0.0546	7.6231	6.3211
HD 228654	23/07/12	nichts	nichts	nichts	nichts
HD 228742	25/07/12	0.2894	0.0957	3.0237	1.2613
HD 228742	20/10/12	nichts	nichts	nichts	nichts
HD 228742	21/10/12	0.2910	0.1087	2.6771	0.6766
HD 228773	01/08/12	0.4292	0.0919	4.6682	5.5490
HD 228773	21/10/12	0.3087	0.1012	3.0494	1.2000

Die Verhältnisse H/He der Linientiefen werden logarithmiert (da die Werte über einen großen Bereich streuen).

Bei der Wellenlänge der Helium-Linie (6678 Å) werden grundsätzlich alle gefundenen Linien bei allen Methoden bis ins SNR gemessen, daher finden sich bei manchen als spät eingestuften Sternen noch He-Linien. Allerdings streuen dort die Werte um Null herum und besitzen kaum noch Aussagekraft. Diese Messungen erfolgen aus dem Grund, weil die Einstufung der Spektralklasse mit den übrigen Methoden keinen gesicherten Wert für eine Spektralklasse geben kann und sich somit eine tatsächliche He-Linie im SNR verbergen kann.

6 Ergebnisse

Tab. 6.5: Ausschnitt der Tabelle A.40. Logarithmen der Verhältnisse der Tiefen von H zu He. He n.a.- He nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich), $\Delta(logH/He)$ oben/unten bezeichnet die Fehlergrenzen des Wertes log H/He.

Datum	logH/He	$\Delta(log H/He)$ oben	$\Delta(log H/He)$ unter
25/07/12	He n.a.	He n.a.	He n.a.
24/07/12	0.7532	0.3541	gegen 0
15/10/12	0.8821	0.2623	0.7675
23/07/12	nichts	nichts	nichts
25/07/12	0.4805	0.1514	0.2344
20/10/12	nichts	nichts	nichts
21/10/12	0.4277	0.0979	0.1265
01/08/12	0.6692	0.3402	gegen 0
21/10/12	0.4842	0.1441	0.2172
	Datum 25/07/12 24/07/12 15/10/12 23/07/12 25/07/12 20/10/12 21/10/12 01/08/12 21/10/12	Datum $logH/He$ $25/07/12$ He n.a. $24/07/12$ 0.7532 $15/10/12$ 0.8821 $23/07/12$ nichts $25/07/12$ 0.4805 $20/10/12$ nichts $21/10/12$ 0.4277 $01/08/12$ 0.6692 $21/10/12$ 0.4842	Datum $logH/He$ $\Delta(logH/He)$ oben 25/07/12 He n.a. He n.a. 24/07/12 0.7532 0.3541 15/10/12 0.8821 0.2623 23/07/12 nichts nichts 25/07/12 0.4805 0.1514 20/10/12 nichts nichts 21/10/12 0.4277 0.0979 01/08/12 0.6692 0.3402 21/10/12 0.4842 0.1441

Äquivalentbreiten

Die Äquivalentbreiten werden ebenso an drei Höhen der jeweiligen Linie vermessen, am oberen Rand, in der Mitte und am unteren Rand des Kontinuums. Auch bei dieser Methode werden die erhaltenen gemittelten Werte mit den Äquivalentbreiten der beiden Datensätze verglichen (Tab. 6.6, 6.7, 6.8 und 6.9). Die angegebenen Fehler werden ebenso gemittelt und fungieren als Fehlerbalken.

Tab. 6.6: Ausschnitt der Tabelle A.41. Äquivalentbreiten der H_{α} -Linie (in Å). Die Spalten EW 1, 2, 3 bzw. Δ EW 1, 2, 3 sind die Messwerte bzw. die Fehler der jeweiligen Messung. Analog zu den Tiefen werden die Messungen am oberen Rand des Kontinuums, in der Mitte und am unteren Rand durchgeführt; E. sind Emissionslinien.

Katalogname	Datum	EW 1	$\Delta EW 1$	EW 2	$\Delta EW 2$	EW 3	Δ EW 3
HD 228256	25/07/12	Е.	E.	Е.	E.	Е.	E.
TYC 3937-903-1	24/07/12	6.08	0.35	3.77	0.28	3.39	0.27
TYC 3937-903-1	15/10/12	4.45	0.29	2.50	0.25	1.72	0.26
HD 228654	23/07/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 228742	25/07/12	4.00	0.34	2.54	0.28	1.79	0.23
HD 228742	20/10/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 228742	21/10/12	2.89	0.30	2.48	0.26	2.20	0.25
HD 228773	01/08/12	4.38	0.25	3.17	0.24	2.43	0.22
HD 228773	21/10/12	3.70	0.27	2.97	0.24	2.25	0.22
Tab. 6.7: Ausschnitt der Tabelle A.42. Äquivalentbreiten der He-Linie (in Å). Die Spalten EW 1, 2, 3 bzw. Δ EW 1, 2, 3 sind die Messwerte bzw. die Fehler der jeweiligen Messung. Analog zu den Tiefen werden die Messungen am oberen Rand des Spektrums, in der Mitte und am unteren Rand durchgeführt; He n.a.- He-Linien nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich).

Katalogname	Datum	EW 1	$\Delta \ \mathbf{EW} \ 1$	EW 2	$\Delta \text{ EW } 2$	EW 3	$\Delta EW 3$
HD 228256	25/07/12	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.
TYC 3937-903-1	24/07/12	0.84	0.18	0.16	0.10	0.11	0.11
TYC 3937-903-1	15/10/12	0.35	0.18	0.16	0.16	0.10	0.14
HD 228654	23/07/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 228742	25/07/12	0.76	0.22	0.32	0.13	0.21	0.13
HD 228742	20/10/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 228742	21/10/12	0.61	0.19	0.52	0.18	0.38	0.14
HD 228773	01/08/12	0.52	0.11	0.20	0.10	0.04	0.07
HD 228773	21/10/12	0.29	0.11	0.21	0.11	0.11	0.11

Tab. 6.8: Ausschnitt der Tabelle A.43. Gemittelte Äquivalentbreiten ($\overline{\text{EW}}$) von H- und He-Linien (Symbol EW, in Å). Die Spalten EW bzw. Δ EW sind die Messwerte bzw. die Fehler der jeweiligen Messung. Die Fehler werden aus den EW-Fehlern der einzelnen Messungen ermittelt. He n.a. - He-Linien nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich).

Katalogname	Datum	$\overline{\mathbf{EW}} H_{\alpha}$	ΔH_{α}	$\overline{\mathrm{EW}}$ He	Δ He
HD 228256	25/07/12	E.	E.	E.	E.
TYC 3937-903-1	24/07/12	4.41	0.30	0.37	0.13
TYC 3937-903-1	15/10/12	2.89	0.27	0.21	0.16
HD 228654	23/07/12	nichts	nichts	nichts	nichts
HD 228742	25/07/12	2.78	0.28	0.43	0.16
HD 228742	20/10/12	nichts	nichts	nichts	nichts
HD 228742	21/10/12	2.52	0.27	0.50	0.17
HD 228773	01/08/12	3.33	0.24	0.25	0.09
HD 228773	21/10/12	2.97	0.24	0.20	0.11

Vor allem in Spektren mit einem geringen SNR finden sich schmale H_{α} -Linien (vgl. beispielsweise TYC 3712-57-1 im Abschnitt A.1.18). Dies kann einerseits natürlich ein Hinweis auf einen Riesenstern sein, andererseits besitzen diese Spektren eine schlechte Qualität. Die Vermutung liegt nahe, dass die Vermessung der EWs solcher Spektren ein verfälschtes Ergebnis liefert.

6 Ergebnisse

Tab. 6.9: Ausschnitt der Tabelle A.44. EW-Verhältnisse und ihre Logarithmen. He n.a.- He nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich), $\Delta(logH/He)$ oben/unten bezeichnet die Fehlergrenzen des Wertes log H/He.

Katalogname	Datum	H/He	Δ H/He	log H/He	$\Delta(logH/He)$ oben	$\Delta(logH/He)$ unten
HD 228256	25/07/12	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.
TYC 3937-903-1	24/07/12	11.90	4.97	1.08	0.15	0.23
TYC 3937-903-1	15/10/12	14.00	12.15	1.15	0.27	0.88
HD 228654	23/07/12	nichts	nichts	nichts	nichts	nichts
HD 228742	25/07/12	6.48	3.08	0.81	0.17	0.28
HD 228742	20/10/12	nichts	nichts	nichts	nichts	nichts
HD 228742	21/10/12	5.01	2.23	0.70	0.16	0.26
HD 228773	01/08/12	13.22	5.90	1.12	0.16	0.26
HD 228773	21/10/12	14.88	9.40	1.17	0.21	0.43

Resultate

Diese Messwerte für die Targets werden für die weitere Bestimmung der Spektralklassen verwendet. Die Ausschnitte der Resultate sind in Tabellen 6.10, 6.11, 6.12, 6.13, 6.14 und 6.15, dargestellt.

Tab. 6.10: Ausschnitt der Tabelle A.45. Ergebnistabelle Teil 1. Vergleich der Anstiege der Targets mit Planck-Kurven. Die Dopplerkorrektur erfolgt mit den aufgelisteten Geschwindigkeiten, negative Vorzeichen bedeuten eine Bewegung auf den Beobachter zu.

Katalogname	Datum	Fit Planck-Kurven	Dopplerkorrektur mit [km/s]
HD 228256	25/07/12	F2-F5	nicht ermittelbar
TYC 3937-903-1	24/07/12	B1-B3	-17.37
TYC 3937-903-1	15/10/12	B2-B4	-25.46
HD 228654	23/07/12	nichts	nichts
HD 228742	25/07/12	G8-K5	-77.89
HD 228742	20/10/12	G8-K5	nichts
HD 228742	21/10/12	G8-K5	-65.37
HD 228773	01/08/12	O5-O6	-23.59
HD 228773	21/10/12	B6-B7	-25.51

Tab. 6.11: Ausschnitt der Tabelle A.46. Ergebnistabelle Teil 2. Linientiefen von H und He und ihr Verhältnis H/He anhand Sebastians Spektren. Die Messungen der Tiefen werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die Linienverhältnisse werden zuerst ohne Fehlerbalken (ohne) abgelesen und danach mit ihnen (mit). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen.

Katalogname	Datum	Tiefen (Sebastian)	Tiefenverhältnis (Sebastian)
HD 228256	25/07/12	nicht möglich	nicht möglich
TYC 3937-903-1	24/07/12	H: O9-B8, A4-A9; He: O5, O7-O8, B1, B3-B8	ohne: B6; mit: alles
TYC 3937-903-1	15/10/12	H: O9-B8, A4, A7-A9; He: O5, O7-O8, B3-B8	ohne: B6; mit: alles
HD 228654	23/07/12	nichts	nichts
HD 228742	25/07/12	H: O9-B1, He: O5, O7-B5	ohne: O8, B3; mit: O5-O8, B1-A0
HD 228742	20/10/12	nichts	nichts
HD 228742	21/10/12	H: B1; He: O5, O7-O8, B1-B5	ohne: O8, B2-B3, mit: bis O8, B1-A0
HD 228773	01/08/12	H: B1-B8, A4-A9; He: O5, O7-O8, B1-B8	ohne: B4-B6; mit: alles
HD 228773	21/10/12	H: B0-B1; He: O5, O7-O8, B1-B6	ohne: O8, B3-B4; mit: O5-O8, B1-A0

Tab. 6.12: Ausschnitt der Tabelle A.47. Ergebnistabelle Teil 3. Linientiefen von H und He und ihr Verhältnis H/He anhand synthetischer Spektren. Die Messungen der Tiefen werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die Linienverhältnisse werden zuerst ohne Fehlerbalken (*ohne*) abgelesen und danach mit ihnen (*mit*). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen.

Katalogname	Datum	Tiefen (synthetisch)	Tiefenverhältnis (synthetisch)
HD 228256	25/07/12	nicht möglich	nicht möglich
TYC 3937-903-1	24/07/12	H: B1-A0; He: B6-A0	ohne: B8; mit: O9-B9
TYC 3937-903-1	15/10/12	H: B2-B6; He: B8-A0	ohne: B7; mit: B4-B9
HD 228654	23/07/12	nichts	nichts
HD 228742	25/07/12	H: O9-B0; He: B7-B9	ohne: B5-B6; mit: B4-B7
HD 228742	20/10/12	nichts	nichts
HD 228742	21/10/12	H:B0-B2; He: B6-B9	ohne: B5; mit: B5-B6
HD 228773	01/08/12	H: B0-A0; He: B5-A0	ohne: B6; mit: bis B9
HD 228773	21/10/12	H: O9-B1; He: B6-B9	ohne: B6; mit: B5-B7

6 Ergebnisse

Tab. 6.13: Ausschnitt der Tabelle A.48. Ergebnistabelle Teil 4. Äquivalentbreiten (EW) von H und He und ihr Verhältnis H/He anhand Sebastians Spektren. Die Messungen der EWs werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die EW-Verhältnisse werden zuerst ohne Fehlerbalken (*ohne*) abgelesen und danach mit ihnen (*mit*). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen.

Katalogname	Datum	EW (Sebastian)	EW-Verhältnis (Sebastian)
 HD 228256	25/07/12	nicht möglich	nicht möglich
TYC 3937-903-1 TYC 3937-903-1	24/07/12 15/10/12	H: B3-B5, F3-F6; He: O5, B3-A5 H: O9-B2; He: B5-A5	ohne: B3; mit: B3-B5, A1-A5 ohne: B4-B6, A1-A5; mit: alles
HD 228654 HD 228742	$\frac{23}{07}$	nichts H: 09-B2: He: 05-06, B2-A5	nichts ohne: B2-B3: mit: O5, O9-B3
HD 228742	20/10/12 21/10/12	nichts	nichts
HD 228742 HD 228773	$\frac{21}{10}$ $\frac{12}{12}$ $\frac{01}{08}$ $\frac{12}{12}$	H: O8-B2; He: O5-A5 H: O9-B2; He: nichts	ohne: B3-B5; mit: B3-A5
HD 228773 	21/10/12	H: O9-B3, He: B4-A5	ohne: B3-B4, A0-A5; mit: O9, B3-A5

Tab. 6.14: Ausschnitt der Tabelle A.49. Ergebnistabelle Teil 5. Äquivalentbreiten (EW) von H und He und ihr Verhältnis H/He anhand synthetischer Spektren. Die Messungen der EWs werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die EW-Verhältnisse werden zuerst ohne Fehlerbalken (ohne) abgelesen und danach mit ihnen (mit). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen.

Katalogname	Datum	EW (synthetisch)	EW-Verhältnis (synthetisch)
HD 228256	25/07/12	nicht möglich	nicht möglich
TYC 3937-903-1	24/07/12	H: B1; He: O9-B5	ohne: B1-B2; mit: O9-B4
TYC 3937-903-1	15/10/12	H: O9-B0; He: alles	ohne: B3; mit: alles
HD 228654	23/07/12	nichts	nichts
HD 228742	25/07/12	H: O9-B0; He: O9-B9	ohne: O9; mit: O9-B1
HD 228742	20/10/12	nichts	nichts
HD 228742	21/10/12	H: O9-B0; He: O9-A0	ohne: O9; mit: O9-B0
HD 228773	01/08/12	H: B0; He: Wert zu hoch-nichts	ohne: B3; mit: O9-B5
HD 228773	21/10/12	H: O9-B0; He: alles	ohne: B3; mit: O9-B4

Katalogname	Datum	Endresultat Spektralklasse
HD 181730	09/10/12	nicht möglich
HD 181730	15/10/12	B0 < B5 bis $B6 < B8$
HD 227828	23/07/12	nichts
HD 227828	30/07/12	
HD 227828	19/10/11	
HD 228256	25/07/12	nicht möglich
TYC 3937-903-1	24/07/12	B1 < B3 < B8
TYC 3937-903-1	15/10/12	O9 < B4 bis $B8 < B9$
HD 228654	23/07/12	nichts
HD 228742	25/07/12	O9 bis $\mathbf{B0} < \mathrm{B7}$
HD 228742	20/10/12	nichts
HD 228742	21/10/12	$\mathrm{O9} < \mathbf{B1} < \mathrm{B6}$
HD 228773	01/08/12	O9 < B1 bis $B8 < A0$
HD 228773	21/10/12	$\mathrm{O9} < \mathbf{B6} < \mathrm{B9}$
HD 228905	08/08/12	nichts
HD 228905	11/10/12	
HD 229069	03/08/12	O8 < B4 bis $B5$
HD 229069	21/10/12	$\mathrm{O8} < \mathbf{B0} < \mathrm{B4}$
HD 229077	03/08/12	nichts
HD 229077	08/08/12	nichts
TYC 3951-2450-1	08/08/12	nichts
TYC 3951-2450-1	11/10/12	$\mathrm{O9} < \mathbf{B1} < \mathrm{A0}$
$\mathrm{BD}{+50}~3180$	08/08/12	nichts
$BD{+}51\ 2945$	24/07/12	$O9 < \mathbf{B4}$ bis $\mathbf{B5} < B7$
TYC 3596-1019-1	24/07/12	
TYC 3596-1019-1	30/07/12	
TYC 3596-1019-1	20/10/12	
TYC 3603-2122-1	25/07/12	nichts
TYC 3603-2122-1	16/10/12	$\mathrm{O9} < \mathbf{B3} < \mathrm{A0}$
TYC 3967-1885-1	08/08/12	nichts
TYC 3967-1885-1	11/10/12	B2 ?
TYC 3603-971-1	01/08/12	
TYC 3603-971-1	16/10/12	
$BD{+}53\ 2661$	01/08/12	nicht möglich
${ m BD}{+}53\ 2661$	17/10/12	nicht möglich
${ m BD}{+}53\ 2661$	19/10/12	$\mathrm{B5} < \mathbf{B8} < \mathrm{A0}$
$BD{+}53\ 2661$	20/10/12	$B1 < \mathbf{B3}$ bis $\mathbf{B4} < B5$
TYC 3967-232-1	01/08/12	$\mathrm{O9} < \mathbf{B2}$ bis $\mathbf{B5} < \mathrm{B9}$
TYC 3967-232-1	11/10/12	$\mathrm{O8} < \mathbf{B5} < \mathrm{B8}$
$\mathrm{BD}{+}59\ 192$	09/10/12	$\mathrm{O6,O9} < \mathbf{B2} < \mathrm{B4}$
$\mathrm{BD}{+59}\ 192$	16/10/12	B0 < B4 bis $B5 < A0$
GSC 03712-00331	17/10/12	nichts
$\mathrm{BD}{+63}$ 11	20/10/12	nichts
BD+62 36	09/10/12	
BD+62 36	17/10/12	nichts
$\mathrm{BD}{+}59~44$	17/10/12	
$\mathrm{BD}{+}62~66~\mathrm{Nr.5}$	20/10/12	O9 < B0 bis $B1 < B5$
BD+62 66 Nr. 4+5	20/10/12	$\mathrm{O9} < \mathbf{B0} < \mathrm{B5}$
TYC 3712-57-1	17/10/12	O9 < B0 bis $B5 < B6$

Tab. 6.15: Endresultate der Spektralklassifikation. Die fett gedruckten Angaben sind die größten Werte in den Histogrammen, die linken und rechten Werte grenzen die erstgenannten ein. Die Grenze wird auf 60 % des höchsten Wertes gesetzt.

6 Ergebnisse

Tab. 6.16: Endresultate der Spektralklassifikation, für Sterne, die an mehreren Nächten beobachtet wurden. Die fett gedruckten Angaben sind die größten Werte in den Histogrammen, die linken und rechten Werte grenzen die erstgenannten ein. Die Grenze wird auf 60 % des höchsten Wertes gesetzt.

Katalogname	Endresultat Spektralklasse aus mehreren Nächten
HD 181730	$O9 < \mathbf{B5}$ bis $\mathbf{B6} < B8$
TYC 3937-903-1	O9 < B3 bis $B4 < B7$
HD 228742	O9 < B0 bis $B1 < B7$
HD 228773	$\mathrm{O9} < \mathbf{B6} < \mathrm{B9}$
HD 229069	$\mathrm{O7} < \mathbf{B1} < \mathrm{B6}$
$BD{+}53\ 2661$	O5, B3 < B5 bis B8 < A0
TYC 3967-232-1	$B1 < \mathbf{B5} < B8$
$\mathrm{BD}{+}59~192$	$\mathrm{O5},\mathrm{O6},\mathrm{O9}<\mathbf{B2}<\mathrm{B8}$
$\mathrm{BD}{+}62~66$	$O9 < \mathbf{B0} < B5$

Ermittelte Spektralklassen

Die Angaben über die Spektralbereiche der verschiedenen Messmethoden werden für jedes Target in ein Histogramm eingetragen und der höchste Wert als der wahrscheinlichste genommen. Die unterschiedliche Form der jeweiligen Histogramme lässt auf keine bekannte Verteilung wie Gauß o.ä. schließen. Auch dadurch, dass die jeweiligen Wahrscheinlichkeiten für das Auftreten der einzelnen Werte nicht bekannt sind, können keine Algorithmen für eine Bestimmung der Fehlerintervalle angewendet werden. Daher werden die Maximalwerte als die wahrscheinlichste Spektralklasse angenommen mit Fehlerintervallen, deren Werte mindestens 60 % des Maximalwertes erreichen.

Die Tabellen sind unter Tab. 6.15 und Tab. 6.16 zu finden. Tab. 6.16 beinhaltet die summierten Angaben über die Spektralklassen von Targets, die in mehreren Nächten beobachtet und deren Spektren ausgewertet worden sind. Die Angaben über die Spektralklassen können damit auch nicht weiter als in Tab. 6.15 eingegrenzt werden.

Von den 26 beobachteten Sternen können insgesamt 14 klassifiziert werden. Der Großteil der Sterne wird den Klassen B4 und B5 zugeordnet. Ein Target weist die Klasse O9 auf (HD 228742).

Bei zwei Sternen werden Emissionslinien von H_{α} detektiert (HD 228256 und BD+53 2661, vgl. hierzu auch Hiltner (1956) für HD 228256 und Coyne & MacConnell (1983) für BD+53 2661).

7 Diskussion und Ausblick

Die vorliegende Arbeit beschäftigt sich mit Spektralklassifikation von O- und B-Sternen. Es wurden 26 Sterne mit dem Spektrographen FIASCO in der Universitätssternwarte in Großschwabhausen spektroskopiert und anschließend analysiert. Als Resultat konnten davon 14 Sterne Spektralbereichen zugeordnet werden. Zuvor wurden die Spektren durch das Entfernen des Restbildes optimiert.

Allerdings zeigt die vorgestellte Arbeitsweise Ungenauigkeiten in den Messmethoden, die zum großen Teil auf unzureichende Datengrundlage zurückgeführt werden können. Die scheinbaren Helligkeiten der Targets liegen nahe des Detektionslimits des Spektrographen, daher weisen viele Spektren ein geringes Signal-zu-Rausch-Verhältnis auf. Die gemessenen Steigungen können nicht ohne Weiteres mit Planck-Kurven verglichen werden, da zum Einen diese Kurven nach der Effektivtemperatur geplottet werden. Die Anstiege der Targets lassen aber höchstens nur die Farbtemperatur ermitteln. Zum Anderen sind sie aufgrund von Sternentfernungen in Bereichen von Kiloparsec durch die interstellare Materie verändert. Hier würde es sich anbieten, bekannte Sterne in ähnlicher Entfernung und Richtung für die Bestimmung von A_v zu untersuchen.

Die Ermittlung von Spektralklassen an der H_{α} -Linie ist ebenso nicht optimal, da diese sich leicht durch Anwesenheit einer Gaswolke um den Stern und ähnliche dynamische Effekte verändern kann. Leider gibt es im gewählten Spektralbereich keine anderen tiefen Linien, die zur Auswertung hinzugezogen werden können. Die Heliumlinie lässt sich bis in die mittlere B-Klasse verfolgen - viele Spektren sind jedoch so verrauscht, dass diese Linie innerhalb des Rauschens gemessen wird und somit sehr fehlerbehaftet ist.

Für eine genauere Klassifikation wären Spektren im blauen Wellenlängenbereich mit einem großen SNR nützlicher.

Als Alternative zur Spektroskopie ließen sich die Spektralklassen auch photometrisch ermitteln. Dies erfordert genaue Beobachtungen unter einem vollständig klaren Himmel. In Jena war dies im Zeitrahmen dieser Diplomarbeit nicht möglich. Die in Sternkatalogen für manche Targets angegebenen Helligkeiten sind für eine detaillierte Spektralanalyse nicht ausreichend (diese Idee wurde probiert, dann jedoch wieder verworfen).

Es war nicht möglich, Aussagen über die Leuchtkraftklassen der Targets zu machen, da die Temperaturunterschiede der jeweiligen LKKs bei O- und B-Sternen gering sind (im Bereich einiger Hundert Grad). Auch hierbei können besser aufgelöste Spektren, beispielsweise mit dem geplanten neuen Spektrographen der Universitätssternwarte Jena erstellt, eine Antwort liefern.

7 Diskussion und Ausblick

Im Allgemeinen wurden nur zwei Linien gefunden und ausgewertet. Andere Linien konnten nicht mit Sicherheit identifiziert werden.

Eine etwaige Multiplizität der Sterne konnte ebenfalls nicht berücksichtigt werden (alle Sterne wurden als Einzelobjekte behandelt).

Für die Linienauswertung Sebastians und synthetischer Spektren wären mehr helle bzw. synthetisch generierte Sternspektren vonnöten, damit die Linienveränderungen extrapoliert werden können. Die Ermittlung der resultierenden Spektralklasse konnte daher nicht statistisch durchgeführt werden (zu wenige Datenpunkte und vor allem unterschiedliche Messbereiche der einzelnen Metoden).

Abschließend lässt sich die gewählte Herangehensweise trotzdem als sinnvoll betrachten, da trotz vieler Schwierigkeiten und Probleme eine Zuordnung der Sterne möglich gewesen ist.

Literaturverzeichnis

2013

: Universitäts-Sternwarte Jena, Instrumente. Version: 2013. http://www.astro. uni-jena.de/Observations/gsh/gsh_tele.htm, Abruf: 08.02.2013

Avila et al. 1999

AVILA, G. ; GUIRAO SANCHEZ, C. ; RODRIGUEZ, J.: Amateur Spectral Observations. (1999), August

Brodskaya 1960

BRODSKAYA, E. S.: Spectra, photographic magnitudes and colour indices of 3206 stars in Cassiopeiae. In: *Izvestiya Ordena Trudovogo Krasnogo Znameni Krymskoj Astrofizicheskoj Observatorii* 24 (1960), S. 160

CAOS, Club of Amateurs in Optical Spectroscopy 2013

CAOS, Club of Amateurs in Optical Spectroscopy. Version: 2013. www.eso.org/projects/ caos/, Abruf: 08.02.2013

Cayrel de Strobel et al. 1997

CAYREL DE STROBEL, G. ; SOUBIRAN, C. ; FRIEL, E. D. ; RALITE, N. ; FRANCOIS, P.: A catalogue of [Fe/H] determinations: 1996 edition. In: 124 (1997), August, S. 299–305. http://dx.doi.org/10.1051/aas:1997194. – DOI 10.1051/aas:1997194

CDS 2012

CDS: SIMBAD database, operated at CDS, Strasbourg, France. Version: 2012. http: //simbad.harvard.edu/simbad/, Abruf: 27.02.2013

Coyne & MacConnell 1983

COYNE, G. V.; MACCONNELL, D. J.: A survey for H-alpha emission objects in the Milky Way. VII. Final zones. In: *Vatican Observatory Publications* 2 (1983), S. 73–92

Danks & Dennefeld 1994

DANKS, A. C. ; DENNEFELD, M.: An atlas of southern MK standards from 5800 to 10200 A. In: *Publications of the ASP* 106 (1994), April, S. 382–396. http://dx.doi.org/10. 1086/133390. – DOI 10.1086/133390

ds9

SAOImage DS9 http://hea-www.cfa.harvard.edu/RD/ds9/site/Home.html, Abruf: 09.03.2013

Giridhar 2010

GIRIDHAR, S.: Spectral Classification: Old and Contemporary. In: GOSWAMI, A. (Hrsg.); REDDY, B. E. (Hrsg.): *Principles and Perspectives in Cosmochemistry*, 2010, S. 165

Gummersbach & Kaufer

GUMMERSBACH, C. ; KAUFER, A.: Synthetic Spectra of B Main-Sequence Stars from 3000 - 10000 Å

Hardorp et al. 1959

HARDORP, J.; ROHLFS, K.; SLETTEBAK, A.; STOCK, J.: Luminous stars in the Northern

Milky Way. Part I. In: Hamburger Sternw. Warner & Swasey Obs. (1959), S. 0

Hiltner 1956

HILTNER, W. A.: Photometric, Polarization, and Spectrographic Observations of O and B Stars. In: *Astrophys. J. Suppl.* 2 (1956), Oktober, S. 389. http://dx.doi.org/10.1086/190029. – DOI 10.1086/190029

Høg et al. 2000

HØG, E. ; FABRICIUS, C. ; MAKAROV, V. V. ; URBAN, S. ; CORBIN, T. ; WYCOFF, G. ; BASTIAN, U. ; SCHWEKENDIEK, P. ; WICENEC, A.: The Tycho-2 catalogue of the 2.5 million brightest stars. In: *Astron. Astrophys.* 355 (2000), März, S. L27–L30

IRAF

IRAF http://iraf.noao.edu/, Abruf: 09.03.2013

Karttunen et al. 2003

KARTTUNEN, H.; P., Kröger; OJA, H.; POUTANEN, M.; DONNER, K.: Fundamental Astronomy. Springer-Verlag Berlin, Heidelberg, München, 2003

Kelly & Kilkenny 1986

KELLY, B. D.; KILKENNY, D.: Early-type stars detected on UK Schmidt objective-prism plates. III. UKST Area 881. In: South African Astronomical Observatory Circular 10 (1986), S. 27–44

Kharchenko & + 2009

KHARCHENKO, N. V.; +: All-sky Compiled Catalogue of 2.5 million stars. Version: 2009. http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=I%2F280B, Abruf: 05.03.2013

Kharchenko & Roeser 2009

KHARCHENKO, N. V. ; ROESER, S.: All-sky Compiled Catalogue of 2.5 million stars (Kharchenko+ 2009). In: *VizieR Online Data Catalog* 1280 (2009), September, S. 0

Kohoutek & Wehmeyer 1997

KOHOUTEK, L.; WEHMEYER, R.: Catalogue of stars in the Northern Milky Way having Halpha in emission. In: Astronomische Abhandlungen der Hamburger Sternwarte 11 (1997)

Kramida et al. 2012

KRAMIDA, A.; RALCHENKO, Y; READER, J; NIST ASD TEAM: *NIST Atomic Spectra Database (ver. 5.0), [Online].* Version: 2012. http://physics.nist.gov/asd, Abruf: 02.03.2013

Kurucz 1979

KURUCZ, R. L.: Model atmospheres for G, F, A, B, and O stars. In: *Astrophys. J. Suppl.* 40 (1979), Mai, S. 1–340. http://dx.doi.org/10.1086/190589. – DOI 10.1086/190589

Kurucz 1993

KURUCZ, R. L.: Model Atmospheres (Kurucz, 1979). In: *VizieR Online Data Catalog* 6039 (1993), Oktober, S. 0

Lamers et al. 1998

LAMERS, H. J. G. L. M. ; ZICKGRAF, F.-J. ; DE WINTER, D. ; HOUZIAUX, L. ; ZOREC, J.: An improved classification of B[e]-type stars. In: *Astron. Astrophys.* 340 (1998), Dezember, S. 117–128

Landolt-Börnstein 1982

LANDOLT-BÖRNSTEIN: Zahlenwerde und Funktionen aus Naturwissenschaften und Technik, Band 2, Astronomie und Astrophysik, Teilband b, Sterne und Sternhaufen. SpringerVerlag Berlin, Heidelberg, New York, 1982

Le Borgne et al. 2003a

LE BORGNE, J.-F. ; BRUZUAL, G. ; PELLÓ, R. ; LANÇON, A. ; ROCCA-VOLMERANGE, B. ; SANAHUJA, B. ; SCHAERER, D. ; SOUBIRAN, C. ; VÍLCHEZ-GÓMEZ, R.: STELIB: A library of stellar spectra at R ~ 2000. In: *Astron. Astrophys.* 402 (2003), Mai, S. 433–442. http://dx.doi.org/10.1051/0004-6361:20030243. – DOI 10.1051/0004-6361:20030243

Le Borgne et al. 2003b

LE BORGNE, J.-F. ; BRUZUAL, G. ; PELLO, R. ; LANCON, A. ; ROCCA-VOLMERANGE, B. ; SANAHUJA, B. ; SCHAERER, D. ; SOUBIRAN, C. ; VILCHEZ-GOMEZ, R.: *STELIB: A library of stellar spectra at R²000 (Le Borgne+, 2003)*. Version: 2003. http://adsabs. harvard.edu/abs/2003yCat..34020433L, Abruf: 01.03.2013

Morgan et al. 1943

MORGAN, W. W.; KEENAN, P. C.; KELLMAN, C.: An Atlas of Stellar Spectra University of Chicago Press, 1943

Mugrauer 2008

MUGRAUER, M.: GSH Newsletter September 2008. (2008), September

Mugrauer & Avila 2009

MUGRAUER, M.; AVILA, G.: FIASCO: A new spectrograph at the University Observatory Jena. In: Astronomische Nachrichten 330 (2009), Mai, S. 430–438. http://dx.doi.org/10.1002/asna.200811192. – DOI 10.1002/asna.200811192

Munari et al. 2005

MUNARI, U.; SORDO, R.; CASTELLI, F.; ZWITTER, T.: An extensive library of 2500 10 500 Å synthetic spectra. In: *Astron. Astrophys.* 442 (2005), November, S. 1127–1134. http://dx.doi.org/10.1051/0004-6361:20042490. – DOI 10.1051/0004-6361:20042490

Popper 1950

POPPER, D. M.: Studies of Faint B-Type Stars. In: *Astrophys. J.* 111 (1950), Mai, S. 495. http://dx.doi.org/10.1086/145292. – DOI 10.1086/145292

Russell 2004

RUSSELL, C. T.: The Cassini-Huygens Mission, Orbiter Remote Sensing Investigations. Springer (Kluwer Academic Publishers), 2004

Sebastian 2009

SEBASTIAN, D.: Studienarbeit: Erstellung eines Spektralkataloges mit FIASCO am Astrophysikalischen Institut Jena. (2009)

Seeliger 2012

SEELIGER, M.: FIASCO Datenreduktion, Grundlagen und Pipeline. In: AIU Jena (2012)

Skiff 2009a

SKIFF, B. A.: Catalogue of Stellar Spectral Classifications. Version: 2009. http://vizier.u-strasbg.fr/viz-bin/VizieR-3, Abruf: 01.03.2013

Skiff 2009b

SKIFF, B. A.: Catalogue of Stellar Spectral Classifications (Skiff, 2010). In: *VizieR Online Data Catalog* 1 (2009), Februar, S. 2023

Sternatlas 1993

ESO Online Digitized Sky Survey, Space Telescope Science Institute. 1993

Unsöld 1955

Literaturverzeichnis

UNSÖLD, A.: *Physik der Sternatmosphären*. Springer-Verlag Berlin, Göttingen, Heidelberg, 1955

Unsöld & Baschek 2002

UNSÖLD, A. ; BASCHEK, B.: *Der neue Kosmos*. Springer-Verlag Berlin, Heidelberg, New York, 2002

Voigt 2012

VOIGT, H. H.: Abriss der Astronomie. Wiley-VCH, 2012

Voroshilov et al. 1985

VOROSHILOV, V. I.; GUSEVA, N. G.; KALANDADZE, N. B.; KOLESNIK, L. N.; KUZNET-SOV, V. I.; METREVELI, M. D.; SHAPOVALOV, A. N.: Catalog of BV magnitudes and spectral classes of 6000 stars. 1985

Vyssotsky 1941

VYSSOTSKY, A. N.: Intercomparison of Various Spectral Classifications of Faint Stars. In: Astrophys. J. 93 (1941), Mai, S. 425. http://dx.doi.org/10.1086/144283. – DOI 10.1086/144283

Weigert et al. 2010

WEIGERT, A. ; WENDKER, H.J. ; WISOTZKI, L.: Astronomie und Astrophysik, Ein Grundkurs. Viley-VCH Verlag, 2010

Wenger et al. 2000

WENGER, M. ; OCHSENBEIN, F. ; EGRET, D. ; DUBOIS, P. ; BONNAREL, F. ; BORDE, S. ; GENOVA, F. ; JASNIEWICZ, G. ; LALOË, S. ; LESTEVEN, S. ; MONIER, R.: The SIMBAD astronomical database. The CDS reference database for astronomical objects. In: 143 (2000), April, S. 9–22. http://dx.doi.org/10.1051/aas:2000332. – DOI 10.1051/aas:2000332

Winnenburg 1991

WINNENBURG, W.: *Einführung in die Astronomie*. Bibliographisches Institut & F.A. Brockhaus AG, Mannheim, 1991

8 Eidesstattliche Erklärung

Ich erkläre, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Jena, den 20. März 2013

Anna Pannicke

Seitens der Verfasserin bestehen keine Einwände, die vorliegende Diplomarbeit für die öffentliche Nutzung in der Thüringer Universitäts- und Landesbibliothek zur Verfügung zu stellen.

Jena, den 20. März 2013

Anna Pannicke

9 Danksagung

Ich danke allen, die zur Entstehung dieser Arbeit beigetragen haben.

Herrn Prof. Dr. Ralph Neuhäuser danke ich für die Bereitstellung des Arbeitsthemas, seiner geduldigen Betreuung und der Beantwortung meiner Fragen.

Ohne die "Berater" Martin Seeliger und János Schmidt wäre ich nicht weit gekommen. Während der vielen Erklärungen und Diskussionen habe ich viel gelernt. Die Verwendung der Auswertungspipeline von Martin Seeliger hat mir zusätzliche mühsame Arbeitsstunden erspart. Für Photometriegespräche danke ich Tobias O. B. Schmidt.

Das Beobachtungsteam in Großschwabhausen, bestehend aus Martin Seeliger, Markus Mugrauer, Claudia Marka, Ronny Errmann, Stefanie Rätz, János Schmidt, Hartmut Gilbert, Tobias Schmidt und Baha Dincel bestritt mit mir viele schlaflose Nächte am Teleskop. Vielen Dank!

Zusätzliche interessante Diskussionen über mein Arbeitsthema hinaus führte ich mit Markus Hohle, Valeri Hambaryan, Markus Mugrauer, Ronny Errmann, Tobias Schmidt und Stefanie Rätz.

Nicht zuletzt hat sich der Systemadministrator Jürgen Weiprecht um alle auftretenden Computerprobleme gekümmert.

Meinen netten Zimmerkollegen Ludwig, Ronny, Claudia und Christian G. danke ich für die Gespräche außerhalb der Spektroskopie von heißen Sternen. Sie haben mir vor allem in der Endphase der Arbeit gezeigt, dass die Welt nicht nur aus heißen und weit entfernten Sternen besteht.

Durch meinen Mann Robert fühlte ich mich jederzeit unterstützt. Dafür bin ich dankbar.

Schließlich ist noch die produktive und freundliche Atmosphäre im gesamten Institut hervorzuheben.

Anhang A

A.1 Auswertung der Sterne

Die Sterne sind nach ihren Rektaszensionen geordnet. Falls der Stern in mehreren Nächten beobachtet worden ist, werden die Ergebnisse untereinander dargestellt.

Hinweis zu den Spektren: über der Wellenlänge ist die Intensität des Spektrums aufgetragen. Die Linienangaben beziehen sich auf dopplerkorrigierte Spektren, eventuelle Abweichungen davon werden in Klammern hinter der Linienbezeichnung angegeben.

Die Intervallbereiche der jeweiligen Methoden sind im Einzelnen:

log Planck-Kurven	alle Spektraklassen möglich
Tiefe Sebastian	O5-F6
Tiefenverhältnis Sebastian	O5-B8
Tiefe synthetisch	O9-A0
Tiefenverhältnis synthetisch	O9-A0
EW Sebastian	O5-F6
EW-Verhältnis Sebastian	O5-A5
EW synthetisch	O9-A0
EW-Verhältnis synthetisch	O9-A0

Tab. A.1: Intervallbereiche einzelner Messmethoden.

Die Datentabellen für die Linienvermessungen befinden sich im Abschnitt A.2.

Die Ermittlung der resultierenden Spektralklassen erfolgt anhand von Histogrammen, wo die Einzelergebnisse aller Methoden über die Spektralklassensequenz aufgetragen ist. Die Bestimmung erfolgt nach dem Muster Unter- und Obergrenzen entsprechen 60 % des Maximalwertes, der Maximalwert bzw. die Werte sind fett dargestellt. Anhang A

A.1.1 HD 181730

Abb. A.1: 30'x30' DSS2-red Finding Chart von HD 181730.

Endspektrum von HD 181730 (09.10.12) aus Einzelspektren 2 und 3. RBI - Wert = 0.0, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, $O_2 = 6868$ Å.

Anstieg von HD 181730 (09.10.12). Ergebnis: F2 bis F5.

Methode	Wert	Resultat
log Planck-Kurven		F2-F5
Tiefe Sebastian		H: O9, B2-B8, A4-A9, F2-F6; He: kein
Tiefenverhältnis Sebastian		kein He
Tiefe synthetisch		He: B4-A0
Tiefenverhältnis synthetisch		kein He
EW Sebastian		H: O9-B2
EW-Verhältnis Sebastian		kein He
EW synthetisch		H: O9-B1
EW-Verhältnis synthetisch		kein He
Linie [Å]	6562.8	H_{lpha}

Tab. A.2: Ergebnistabelle von HD 181730 (09.10.2012).

Histogramm für die Bestimmung der Spektralklassen von HD 181730 vom 09.10.2012.

Der Stern kann keiner Spektralklasse eindeutig zugeordnet werden.

15.10.2012:

Endspektrum von HD 181730 (15.10.12) aus Einzelspektren 1, 2, 3 und 4. RBI - Wert = 0.0, Linien (v.l.n.r.): DIB = 6203 Å, DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, He = 6678 Å, $O_2 = 6868$ Å.

Anstieg von HD 181730 (15.10.12). Ergebnis: A3 bis A4.

Methode	Wert	Resultat
log Planck-Kurven		A3-A4
Tiefe Sebastian		H: O9-B8, A4, A6; He: O5, O7-B6
Tiefenverhältnis Sebastian		ohne: O8, B3-B5; mit: alles
Tiefe synthetisch		H: B0-B6; He: B6-B8
Tiefenverhältnis synthetisch		ohne: B5-B6; mit: B4-B7
EW Sebastian		H: B3-B5, F2-F6; He: B5-A5
EW-Verhältnis Sebastian		ohne: B7; mit: B3-A5
EW synthetisch		H: B1; He: alles
EW-Verhältnis synthetisch		ohne: B5; mit: B0-A0
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.3: Ergebnistabelle von HD 181730 (15.10.12).

Anhang A

Histogramm für die Bestimmung der Spektralklassen von HD 181730 vom 15.10.2012. Dieser Stern wurde kurzfristig im Laufe der Beobachtungen in die Targetliste aufgenommen. Erst später stellte sich heraus, dass die Spektralklasse dieses Targets bei **??** zu B8Ib/II bestimmt worden ist. Dieses Ergebnis stimmt bis auf zwei Unterklassen mit meinem überein.

Resultierendes Histogramm über zwei Beobachtungsnächte für die Bestimmung der Spektralklassen von HD 181730. Die resultierende Spektralklasse ist O9 < **B5 bis B6** < B8.

A.1.2 HD 228256

Abb. A.2: 30'x30' DSS2-red Finding Chart von HD 228256.

Endspektrum von HD 228256 (25.07.12) aus Einzelspektren 2, 3 und 5. RBI-Wert = 0.6, Linien (v.l.n.r.): DIB = 6284 Å, möglicherweise FeII = 6416.9 Å (hier bei 6418 Å), $H_{\alpha} = 6561.6$ Å in Emission (nicht doppler-korrigierter Wert), $O_2 = 6868$ Å.

Steigung von HD 228256 (25.07.12). Ergebnis: F2 bis F5.

Es ist nicht möglich, diesen Stern wie alle anderen zu analysieren. Da die H_{α} -Linie in Emission ist, wird keine Dopplerkorrektur durchgeführt. Die gefundenen Linien in der Umgebung von der vermuteten He-Linie (bei ca. 6678 Å) konnten nicht eindeutig identifiziert werden. Der Stern scheint in eine Gashülle eingebettet zu sein, die starke H_{α} -Emissionslinie und die mögliche FeII-Linie weisen darauf hin (Lamers et al. (1998)); die Fe-Linie ist allerdings in Absorption. Zukünftige Untersuchungen werden sicherlich weitere Details erkennen lassen.

Methode	Wert	Resultat
log Planck-Kurven		F2-F5
Tiefe Sebastian		nicht möglich
Tiefenverhältnis Sebastian		nicht möglich
Tiefe synthetisch		nicht möglich
Tiefenverhältnis synthetisch		nicht möglich
EW Sebastian		nicht möglich
EW-Verhältnis Sebastian		nicht möglich
EW synthetisch		nicht möglich
EW-Verhältnis synthetisch		nicht möglich
Linie [Å]	6561.6	H_{α}

Tab. A.4: Ergebnistabelle von HD 228256 (25.07.12).

Die resultierende Spektralklasse deutet auf einen B-Stern hin, der Anstieg ist wahrscheinlich aufgrund der interstellaren Materie verringert.

A.1.3 TYC 3937-903-1

Abb. A.3: 30'x30' DSS2-red Finding Chart von TYC 3937-903-1.

Endspektrum von TYC 3937-903-1 (24.07.12) aus Einzelspektren 1, 2, 3 und 4. RBI - Wert = 0.8, Linien (v.l.n.r.): totes Pixel bei 6230 Å, DIB = 6284 Å, DIB = 6494 Å, HeII = 6527 Å (?) (hier bei 6525.4 Å), $H_{\alpha} = 6562.8$ Å, He = 6678 Å (hier bei 6675 Å), $O_2 = 6868$ Å.

Anstieg von TYC 3937-903-1 (24.07.12). Ergebnis: B1 bis B3.

Methode	Wert	Resultat
log Planck-Kurven		B1-B3
Tiefe Sebastian		H: O9-B8, A4-A9; He: O5, O7-O8, B1, B3-B8
Tiefenverhältnis Sebastian		ohne: B6; mit: alles
Tiefe synthetisch		H: B1-A0; He: B6-A0
Tiefenverhältnis synthetisch		ohne: B8; mit: O9-B9
EW Sebastian		H: B3-B5, F3-F6; He: O5, B3-A5
EW-Verhältnis Sebastian		ohne: B3; mit: B3-B5, A1-A5
EW synthetisch		H: B1; He: O9-B5
EW-Verhältnis synthetisch		ohne: B1-B2; mit: O9-B4
Linie [Å]	6525	HeII
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6675	Не

Tab. A.5: Ergebnistabelle von TYC 3937-903-1 (24.07.12).

Histogramm für die Bestimmung der Spektralklassen von TYC 3937-903-1 vom 24.07.2012. Die resultierende Spektralklasse ist B1 < B3 < B8.

Endspektrum von TYC 3937-903-1 (15.10.12) aus Einzelspektren 2 und 3.
 RBI-Wert=0.8,Linien (v.l.n.r.): DIB=6284 Å,
 $H_{\alpha}=6562.8$ Å, He=6678 Å,
 $O_2=6868$ Å.

Anstieg von TYC 3937-903-1 (15.10.12). Ergebnis: B2 bis B4.

Methode	Wert	Resultat
log Planck-Kurven		B2-B4
Tiefe Sebastian		H: O9-B8, A4, A7-A9; He: O5, O7-O8, B3-B8
Tiefenverhältnis Sebastian		ohne: B6; mit: alles
Tiefe synthetisch		H: B2-B6; He: B8-A0
Tiefenverhältnis synthetisch		ohne: B7; mit: B4-B9
EW Sebastian		H: O9-B2; He: B5-A5
EW-Verhältnis Sebastian		ohne: B4-B6, A1-A5; mit: alles
EW synthetisch		H: O9-B0; He: alles
EW-Verhältnis synthetisch		ohne: B3; mit: alles
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.6: Ergebnistabelle von TYC 3937-903-1 (15.10.12).

Histogramm für die Bestimmung der Spektralklassen von TYC 3937-903-1 vom 15.10.2012. Die resultierende Spektralklasse ist O9 < B4-B8 < B9.

sultierendes Histogramm über zwei Beobachtungsnächte für die Bestimmung der Spektralklassen von TYC 3937-903-1. Die resultierende Spektralklasse ist O9 < **B3 bis B4** < B7.

Anhang A

A.1.4 HD 228742

Abb. A.4: 30'x30' DSS2-red Finding Chart von HD 228742.

Endspektrum von HD 228742 (25.07.12) aus Einzelspektren 1, 3 und 5. RBI - Wert = 1.0, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, He = 6678 Å (hier 6679.8 Å), $O_2 = 6868$ Å. Die restlichen tiefen Linien sind nicht bestimmbar (Cosmics oder tote Pixel).

Anstieg von HD 228742 (25.07.12). Ergebnis: G8 bis K5. Da das Spektrum recht schief, ist, wird keine feinere Einteilung vorgenommen.

Die Linien lassen eine frühe Spektralklasse vermuten (H_{α} und He vorhanden). Die tiefen DIB-Linien (z.B. bei 6283 Å) weisen auf eine starke Rötung durch das ISM hin.

Methode	Wert	Resultat
log Planck-Kurven		G8-K5
Tiefe Sebastian		H: O9-B1, He: O5, O7-B5
Tiefenverhältnis Sebastian		ohne: O8, B3; mit: O5-O8, B1-A0
Tiefe synthetisch		H: O9-B0, He: B7-B9
Tiefenverhältnis synthetisch		ohne: B5-B6; mit: B4-B7
EW Sebastian		H: O9-B2; He: O5-O6, B2-A5
EW-Verhältnis Sebastian		ohne: B2-B3; mit: O5, O9-B3
EW synthetisch		H: O9-B0; He: O9-B9
EW-Verhältnis synthetisch		ohne: O9; mit: O9-B1
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6679.8	Не

Tab. A.7: Ergebnistabelle von HD 228742 (25.07.12).

Anhang A

Histogramm für die Bestimmung der Spektralklassen von HD 228742 vom 25.07.12. Die resultierende Spektralklasse ist $\mathbf{O9}$ - $\mathbf{B0}$ < B7.

Endspektrum von HD 228742 (20.10.12), ein Einzelspektrum. Zu stark verrauscht und nicht bestimmbar. **21.10.2012:**

Endspektrum von HD 228742 (21.10.12) aus Einzelspektren 1, 2, 3, 4 und 5. RBI - Wert = 0.0, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, DIB = 6613.6 Å, He = 6678 Å, $O_2 = 6868$ Å.

Anstieg von HD 228742 (21.10.12). Ergebnis: G8 bis K5.

Die Linien lassen eine frühe Spektralklasse vermuten (H_{α} und He vorhanden). Die tiefen DIB-Linien (z.B. bei 6283 Å und 6613.6 Å) weisen auf eine starke Rötung durch das ISM hin.

Methode	Wert	Resultat
log Planck-Kurven		G8-K5
Tiefe Sebastian		H: B1; He: O5, O7-O8, B1-B5
Tiefenverhältnis Sebastian		ohne: O8, B2-B3, mit: O5-O8, B1-A0
Tiefe synthetisch		H: B0-B2; He: B6-B9
Tiefenverhältnis synthetisch		ohne: B5; mit: B5-B6
EW Sebastian		H: O8-B2; He: O5-A5
EW-Verhältnis Sebastian		ohne: O9-B2; mit: O5-O6, O9-B2
EW synthetisch		H: O9-B0; He: O9-A0
EW-Verhältnis synthetisch		ohne: O9; mit: O9-B0
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.8: Ergebnistabelle von HD228742 (21.10.12).

Anhang A

Histogramm für die Bestimmung der Spektralklassen von HD 228742 vom 21.10.12. Die resultierende Spektralklasse ist O9 < B1 < B6.

Resultierendes Histogramm über zwei Beobachtungsnächte für die Bestimmung der Spektralklassen von HD 228742. Die resultierende Spektralklasse ist O9 < **B0 bis B1** < B7.

A.1.5 HD 228773

Abb. A.5: 30'x30' DSS2-red Finding Chart von HD 228773.

Endspektrum von HD 228773 (01.08.12) aus Einzelspektren 1 und 3. RBI - Wert = 1.1, Linien (v.l.n.r.): $H_{\alpha} = 6562.8$ Å, DIB = 6613.6 Å, He = 6678 Å (hier bei 6680.6 Å), $O_2 = 6868$ Å.

Anstieg von HD 228773 (01.08.12). Ergebnis: O5 bis O6.

Methode	Wert	Resultat
log Planck-Kurven		O5-O6
Tiefe Sebastian		H: B1-B8, A4-A9; He: O5, O7-O8, B1-B8
Tiefenverhältnis Sebastian		ohne: B4-B6; mit: alles
Tiefe synthetisch		H: B0-A0; He: B5-A0
Tiefenverhältnis synthetisch		ohne: B6; mit: O9-B9
${f EW}$ Sebastian		H: O9-B2; He: nichts
EW-Verhältnis Sebastian		ohne: B3-B5; mit: B3-A5
EW synthetisch		H: B0; He: Wert zu hoch-nichts
EW-Verhältnis synthetisch		ohne: B3; mit: O9-B5
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6680.6	Не

Tab. A.9: Ergebnistabelle von HD 228773 (01.08.12).

Histogramm für die Bestimmung der Spektralklassen von HD 228773 vom 01.08.12. Die resultierende Spektralklasse ist O9 < B1 bis B8 < A0.

Endspektrum von HD 228773 (21.10.12) aus Einzelspektren 1, 3, 4 und 5. RBI - Wert = 1.0, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, He = 6678 Å, möglicherweise CII = 6787.2 Å, $O_2 = 6868$ Å.

Anstieg von HD 228773 (21.10.12). Ergebnis: B6 bis B7.

Methode	Wert	Resultat
log Planck-Kurven		B6-B7
Tiefe Sebastian		H: B0-B1; He: O5, O7-O8, B1-B6
Tiefenverhältnis Sebastian		ohne: O8, B3-B4; mit: O5-O8, B1-A0
Tiefe synthetisch		H: O9-B1; He: B6-B9
Tiefenverhältnis synthetisch		ohne: B6; mit: B5-B7
EW Sebastian		H: O9-B3, He: B4-A5
EW-Verhältnis Sebastian		ohne: B3-B4, A0-A5; mit: O9, B3-A5
EW synthetisch		H: O9-B0; He: O9-A0
EW-Verhältnis synthetisch		ohne: B3; mit: O9-B4
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.10: Ergebnistabelle von HD 228773 (21.10.12).

Histogramm für die Bestimmung der Spektralklassen von HD 228773 vom 21.10.12. Die resultierende Spektralklasse ist O9 < B6 < B9.

Resultierendes Histogramm über zwei Beobachtungsnächte für die Bestimmung der Spektralklassen von HD228773. Die resultierende Spektralklasse ist O9 < B6 < B9.

A.1.6 HD 228905

Abb. A.6: 30'x30' DSS2-red Finding Chart von HD 228905.

Endspektrum von HD 228905 (08.08.12) aus Einzelspektren 1, 2, 3, 4 und 5. Das Spektrum ist verrauscht, keine Linien zu erkennen. Die Ursache sind leichte Cirruswolken während der Beobachtung.

A.1.7 HD 229069

Abb. A.7: 30'x30' DSS2-red Finding Chart von HD 229069.

Endspektrum von HD 229069 (03.08.12) aus Einzelspektren 1, 2 und 3. RBI - Wert = 0.9, Linien (v.l.n.r.): DIB = 6284 Å, DIB = 6494 Å, $H_{\alpha} = 6562.8$ Å, He = 6678 Å, $O_2 = 6868$ Å.

Anstieg von HD 229069 (03.08.12). Ergebnis: A8 bis F0.

Methode	Wert	Resultat
log Planck-Kurven		A8-F0
Tiefe Sebastian		H: B0-B5, A4, A7; He: O5, O7-O8, B1-B5
Tiefenverhältnis Sebastian		ohne: O5-O8, B2; mit: alles
Tiefe synthetisch		H: B0-B5; He: B4-B7
Tiefenverhältnis synthetisch		ohne: B5; mit: B3-B7
EW Sebastian		H: um O8; He: O8, B1
EW-Verhältnis Sebastian		ohne: O7; mit: O7-O8
EW synthetisch		H: um O9; He: nichts
EW-Verhältnis synthetisch		ohne: nichts; mit: nichts
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.11: Ergebnistabelle von HD229069 (03.08.12).

Histogramm für die Bestimmung der Spektralklassen von HD 229069 vom 03.08.12.

Die resultierende Spektralklasse ist O8 < B4 bis B5.

Endspektrum von HD 229069 (21.10.12) aus Einzelspektren 1, 2, 3, 4 und 5. RBI - Wert = 0.8, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, DIB = 6613.6 Å, He = 6678 Å, $O_2 = 6868$ Å.

Anstieg von HD 229069 (21.10.12). Ergebnis: G8 bis K5.

Histogramm für die Bestimmung der Spektralklassen von HD 2289069 vom 21.10.12. Die resultierende Spektralklasse ist O8 < B0 < B4.

Methode	Wert	Resultat
log Planck-Kurven		G8-K5
Tiefe Sebastian		H: B0-B1; He: O5, O6-O8, B1-B5
Tiefenverhältnis Sebastian		ohne: O5-O8; mit: O5-B4
Tiefe synthetisch		H: O9-B0; He: B6-B8
Tiefenverhältnis synthetisch		ohne: B5; mit: B4-B6
EW Sebastian		H: O8-B2; He: alles
EW-Verhältnis Sebastian		ohne: O5, B1; mit: O5-B2
EW synthetisch		H: O9-B0; He: O9-A0
EW-Verhältnis synthetisch		ohne: nichts, mit: nichts
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.12: Ergebnistabelle von HD 229069 (21.10.12).

Resultierendes Histogramm über zwei Beobachtungsnächte für die Bestimmung der Spektralklassen von HD 229069. Die resultierende Spektralklasse ist O7 < $\mathbf{B1}$ < B6.

A.1.8 TYC 3951-2450-1

Abb. A.8: 30'x30' DSS2-red Finding Chart von TYC 3951-2450-1

Endspektrum von TYC 3951-2450-1 (08.08.12) aus Einzelspektren 1, 2, 3, 4 und 5. Das Spektrum ist verrauscht, keine Details erkennbar.

Endspektrum von TYC-3951-2450-1 (11.10.12) aus Einzelspektren 1, 2, 3, 4 und 5. RBI-Wert = 0.0, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, DIB = 6613.6 Å, He = 6678 Å, $O_2 = 6868$ Å.

Anstieg von TYC 3951-2450-1 (11.10.12). Ergebnis: A1 bis A2.

Methode	Wert	Resultat
log Planck-Kurven		A1-A2
Tiefe Sebastian		H: B0-B1, B3; He: O5, O8, B8
Tiefenverhältnis Sebastian		ohne: B6; mit: alles
Tiefe synthetisch		H: B0-B2; He: A0
Tiefenverhältnis synthetisch		ohne: B7-B8; mit: bis B9
EW Sebastian		H: B3-B5; He: B5-A5
EW-Verhältnis Sebastian		ohne: B5-B6, A0-A5; mit: alles
EW synthetisch		H: B1-B2; He: alles
EW-Verhältnis synthetisch		ohne: B5; mit: O9-B9
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.13: Ergebnistabelle von TYC 3951-2450-1 (11.10.12).

Histogramm für die Bestimmung der Spektralklassen von TYC 3951-2450-1 vom 11.10.12. Die resultierende Spektralklasse ist O9 < B1 < A0.

A.1.9 BD+51 2945

Abb. A.9: 30'x30' DSS2-red Finding Chart von BD+51 2945.

Endspektrum von BD+51 2945 (24.07.12) aus Einzelspektren 2, 3 und 5. RBI - Wert = 1.0, Linien (v.l.n.r.): DIB = 6284 Å, DIB = 6494 Å, $H_{\alpha} = 6562.8$ Å, He = 6678 Å, $O_2 = 6868$ Å.

Anstieg von BD+51 2945 (24.07.12). Ergebnis: B9 bis A0.

Methode	Wert	Resultat
log Planck-Kurven		B9-A0
Tiefe Sebastian		H: B2-B9, A4-F3, F6; He: O5, O7-B5
Tiefenverhältnis Sebastian		ohne: O8, B3; mit: alles
Tiefe synthetisch		H: B3-A0; He: O9, B4-B7
Tiefenverhältnis synthetisch		ohne: B5; mit: B3-B7
EW Sebastian		H: O9-B2; He: O5-O6, B3-B7
EW-Verhältnis Sebastian		ohne: O9, B2; mit: O5, O9-B2
EW synthetisch		H: B0; He: O9-B6
EW-Verhältnis synthetisch		ohne: O9; mit: O9-B0
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.14: Ergebnistabelle von BD+51 2945 (24.07.12).

Histogramm für die Bestimmung der Spektralklassen von BD+51 2945 vom 24.07.12. Die resultierende Spektralklasse ist O9 < B4 bis B5 < B7.

A.1.10 TYC 3603-2122-1

Abb. A.10: 30'x30' DSS2-red Finding Chart von TYC 3603-2122-1.

Endspektrum von TYC 3603-2122-1 (16.10.12) aus Einzelspektren 1, 2, 3, 4 und 5. RBI-Wert = 0.7, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, He = 6678 Å (hier bei 6676 Å), $O_2 = 6868$ Å.

Um die Position der He-Linie befinden sich zwei Linien, die in Frage kommen können: bei 6676 Å und bei 6680 Å. Hier wird die erste He-Linie ausgewertet, da das Linienprofil ähnlich zu den He-Linien anderer Sterne ist.

Für die weitere Auswertung wird zudem ab 6680 Å der verzerrte Teil des Spektrums herausgeschnitten.

Anstieg von TYC 3603-2122-1 (16.10.12). Ergebnis: B9 bis A0.

	XX 7 /	
Methode	Wert	Resultat
log Planck-Kurven		B9-A0
Tiefe Sebastian		H: O9-B6, A4, A7; He: O5, O7-O8, B3-B8
Tiefenverhältnis Sebastian		ohne: B6; mit: alles
Tiefe synthetisch		H: B0-B5; He: B8-A0
Tiefenverhältnis synthetisch		ohne: B7; mit: alles
EW Sebastian		H: B2-B3; He: B2-A5
EW-Verhältnis Sebastian		ohne: B6; mit: alles
EW synthetisch		H: O9-B0; He: B2-A0
EW-Verhältnis synthetisch		ohne: B5; mit: O9-B8
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6676	Не

Tab. A.15: Ergebnistabelle von TYC 3603-2122-1 (16.10.12).

A.1 Auswertung der Sterne

Histogramm für die Bestimmung der Spektralklassen von TYC 3603-2122-1 vom 16.10.12. Die resultierende Spektralklasse ist O9 < B3 < A0.

A.1.11 TYC 3967-1885-1

Abb. A.11: 30'x30' DSS2-red Finding Chart von TYC 3967-1885-1.

Endspektrum von TYC 3967-1885-1 (08.08.12) aus Einzelspektren 1, 2, 3, 4 und 5. Das Spektrum ist verrauscht, eine Auswertung ist nicht möglich. Während der Beobachtung kam Hochnebel auf.

Endspektrum von TYC 3967-1885-1 (11.10.12) aus Einzelspektren 1, 2, 3 und 4. RBI - Wert = 0.5, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, DIB = 6613.6 Å, $O_2 = 6868$ Å.

Anstieg von TYC 3967-1885-1 (11.10.12). Ergebnis: B9 bis A0.

Methode	Wert	Resultat
log Planck-Kurven		B9-A0
Tiefe Sebastian		H: O9, B2-B8, A4-A9, F6; kein He
Tiefenverhältnis Sebastian		kein He
Tiefe synthetisch		H: B2-A0; kein He
Tiefenverhältnis synthetisch		kein He
EW Sebastian		H: O9-B2; kein He
EW-Verhältnis Sebastian		kein He
EW synthetisch		H: B0; kein He
EW-Verhältnis synthetisch		kein He
Linie [Å]	6562.8	H_{lpha}

Tab. A.16: Ergebnistabelle von TYC 3967-1885-1 (11.10.12).

Histogramm für die Bestimmung der Spektralklassen von TYC 3967-1885-1 vom 11.10.12. Die resultierende Spektralklasse ist **B2** ?.

A.1.12 BD+53 2661

Die Emissionslinie deutet auf Sternaktivität hin.

Die H_{α} -Emissionslinie von BD+53 2661 vom 01.08. (gepunktet), 17.10. (gestrichelt) und 19.10. (gepunktet und gestrichelt). Zu erkennen sind ein Einbruch der Linie in der Mitte und geringe Veränderungen der Linienseiten, allerdings reicht dieser Datensatz nicht für eine Bestimmung der Ursache für diese Emissionsline aus.

30'x30' DSS2-red Finding Chart von BD+53 2661.

Endspektrum von BD+53 2661 (01.08.12) aus Einzelspektren 1, 3, 4 und 5. RBI - Wert = 0.8, Linien (v.l.n.r.): $H_{\alpha} = 6562.8$ Å in Emission, $O_2 = 6868$ Å.

Andere Linien können nicht identifiziert werden, aufgrund der Breite der H_{α} -Linie kann die Dopplerkorrektur nicht genau genug durchgeführt werden. Die Form der H_{α} -Linie ist ein Hinweis auf mögl
che Sternflecken oder eine Scheibe bzw. eine ausgedehnte Gashülle um den Stern.

Anstieg von BD+53 2661 (01.08.12). Der verzerrte Teil auf der rechten Seite des Spektrums wurde hier herausgeschnitten. Ergebnis: B8 bis B9.

Methode	Wert	Resultat
log Planck-Kurven		B8-B9
Tiefe Sebastian		nicht zuordnungsbar
Tiefenverhältnis Sebastian		nicht zuordnungsbar
Tiefe synthetisch		nicht zuordnungsbar
Tiefenverhältnis synthetisch		nicht zuordnungsbar
EW Sebastian		nicht zuordnungsbar
EW-Verhältnis Sebastian		nicht zuordnungsbar
EW synthetisch		nicht zuordnungsbar
EW-Verhältnis synthetisch		nicht zuordnungsbar
Linie [Å]	6562.8 (Emisssion)	H_{lpha}

Tab. A.17: Ergebnistabelle von BD+53 2661 (01.08.12)

Endspektrum von BD+53 2661 (17.10.12) aus dem Einzelspektrum 2. RBI - Wert = 0.0, Linien (v.l.n.r.): $H_{\alpha} = 6562.8$ Å in Emission, $O_2 = 6868$ Å. Das Spektrum ist recht verrauscht (SNR = 8.79), da während der Belichtung leichte Wolken aufgekommen sind.

Anstieg von BD+53 2661 (17.10.12). Ergebnis: A5 bis A7.

Methode	Wert	Resultat
log Planck-Kurven		A5-A7
Tiefe Sebastian		nicht zuordnungsbar
Tiefenverhältnis Sebastian		nicht zuordnungsbar
Tiefe synthetisch		nicht zuordnungsbar
Tiefenverhältnis synthetisch		nicht zuordnungsbar
EW Sebastian		nicht zuordnungsbar
EW-Verhältnis Sebastian		nicht zuordnungsbar
EW synthetisch		nicht zuordnungsbar
EW-Verhältnis synthetisch		nicht zuordnungsbar
Linie [Å]	6562.8 (Emission)	H_{α}

Tab. A.18: Ergebnistabelle von BD+53 2661 (17.10.12).

Endspektrum von BD+53 2661 (19.10.12) aus den Einzelspektren 1, 2, 3, 4 und 5. RBI-Wert = 0.9,Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, in Emission, He = 6678 Å (hier verzweigt), $O_2 = 6868$ Å.

Anstieg von BD+53 2661 (19.10.12). Ergebnis: F0 bis F2.

Methode	Wert	Resultat
log Planck-Kurven		F0-F2
Tiefe Sebastian		He: O5, O7-O8, B5-B8
Tiefenverhältnis Sebastian		nicht zuordnungsbar
Tiefe synthetisch		He: B8-A0
Tiefenverhältnis synthetisch		nicht zuordnungsbar
EW Sebastian		He: B5-A0
EW-Verhältnis Sebastian		nicht zuordnungsbar
EW synthetisch		He: B5-A0
EW-Verhältnis synthetisch		nicht zuordnungsbar
Linie [Å]	6562.8 (Emission)	H_{lpha}
Linie [Å]	6678 (verzweigt)	Не

Tab. A.19: Ergebnistabelle von BD+53 2661 (19.10.12).

Histogramm für die Bestimmung der Spektralklassen von BD+53 2661 vom 19.10.12. Die resultierende Spektralklasse ist B5 < ${\bf B8}$ < A0.

20.10.2012:

Für diese Beobachtung wurde wetterbedingt kein Standardstern aufgenommen. Ausgewertet wurde der Stern mit dem Standard tet Cep, welcher ca. 2 Stunden später für den Stern TYC 3596-1019-1 spektroskopiert wurde.

Endspektrum von BD+53 2661 (20.10.12) aus den Einzelspektren 1 und 2. RBI - Wert = 1.2,Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å in Emission, He = 6678 Å, $O_2 = 6868$ Å. Die Dopplerkorrektur wurde an der He-Linie durchgeführt.

Histogramm für die Bestimmung der Spektralklassen von BD+53 2661 vom 20.10.12.

Methode	Wert	Resultat
log Planck-Kurven		A8
Tiefe Sebastian		He: O5, O7-O8, B1-B4
Tiefenverhältnis Sebastian		nicht zuordnungsbar
Tiefe synthetisch		He: B6-B9
Tiefenverhältnis synthetisch		nicht zuordnungsbar
EW Sebastian		He: O5, B3-B5, A1-A5
EW-Verhältnis Sebastian		nicht zuordnungsbar
EW synthetisch		He: O9-B5
EW-Verhältnis synthetisch		nicht zuordnungsbar
Linie [Å]	6562.8 (Emission)	H_{lpha}
Linie [Å]	6678	He

Tab. A.20: Ergebnistabelle von BD+53 2661 (20.10.12).

Die resultierende Spektralklasse ist B1 < B3 bis B4 < B5.

Resultierendes Histogramm über zwei Beobachtungsnächte für die Bestimmung der Spektralklassen von BD+53 2661. Die resultierende Spektralklasse ist O5, B3 < B5 bis B8 < A0.

A.1.13 TYC 3967-232-1

Abb. A.12: 30'x30' DSS2-red Finding Chart von TYC 3967-232-1.

Endspektrum von TYC 3967-232-1 (01.08.12) aus den Einzelspektren 1 und 2. Der rechte Teil ist verrauscht und wird für nachfolgende Untersuchungen herausgeschnitten.

Ausgeschnittenes Endspektrum von TYC 3967-232-1 (01.08.12) aus den Einzelspektren 1 und 2. RBI-Wert=1.1,Linien (v.l.n.r.): DIB=6284 Å, $H_{\alpha}=6562.8$ Å, He=6678 Å.

Anstieg von TYC 3967-232-1 (01.08.12). Ergebnis: früher als O3?

Methode	Wert	Resultat
log Planck-Kurven		früher als O3?
Tiefe Sebastian		H: B8-B9, A3-F6; He: O5, O7-O8, B1-B5
Tiefenverhältnis Sebastian		ohne: B3-B5; mit: O5-O8, B1-B8
Tiefe synthetisch		H: B7-A0; He: B4-B9
Tiefenverhältnis synthetisch		ohne: B6; mit: B5-B7
EW Sebastian		H: O9-B2; He: O5, B2-A0
EW-Verhältnis Sebastian		ohne: B3; mit: O9, B2-B5, A1
EW synthetisch		H: B0; He: alles
EW-Verhältnis synthetisch		ohne: B0-B1; mit: O9-B3
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.21: Ergebnistabelle von TYC 3967-232-1 (01.08.12).

Histogramm für die Bestimmung der Spektralklassen von TYC 3967-232-1 vom 01.08.12. Die resultierende Spektralklasse ist O9 < **B2 bis B5** < B9.

Endspektrum von TYC 3967-232-1 (11.10.12) aus den Einzelspektren 1, 2, 3 und 4. RBI - Wert = 0.6,Linien (v.l.n.r.): DIB = 6284 Å, defektes Pixel= 6395 Å, $H_{\alpha} = 6562.8$ Å, He = 6678 Å, OII = 6721.4 Å, $O_2 = 6868$ Å.

Die Existenz von OII deutet auf einen sehr frühen B-Stern (bis $\approx B2$), vergleiche hierzu die synthetischen Spektren im Abschnitt B.2.

Anstieg von TYC 3967-232-1 (11.10.12). Ergebnis: A5 bis A7.

Methode	Wert	Resultat
log Planck-Kurven		A5-A7
Tiefe Sebastian		H: B2, B5-B8; He: O5, O8, B7-B8
Tiefenverhältnis Sebastian		ohne: B6; mit: alles
Tiefe synthetisch		H: B5-B6; He: B9-A0
Tiefenverhältnis synthetisch		ohne: B7; mit: bis B8
EW Sebastian		H: B3-B5, F2-F6; He: O8
EW-Verhältnis Sebastian		ohne: B5-B6; mit: alles
EW synthetisch		H: B1; He: nichts
EW-Verhältnis synthetisch		ohne: B5; mit: O9-B8
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.22: Ergebnistabelle von TYC 3967-232-1 (11.10.12).

Histogramm für die Bestimmung der Spektralklassen von TYC 3967-232-1 vom 11.10.12. Die resultierende Spektralklasse ist O8 < $\mathbf{B5}$ < B8.

Resultierendes Histogramm über zwei Beobachtungsnächte für die Bestimmung der Spektralklassen von TYC 3967-232-1. Die resultierende Spektralklasse ist B1 < B5 < B8.

A.1.14 BD+59 192

Abb. A.13: 30'x30' DSS2-red Finding Chart von BD+59 192.

Endspektrum von BD+59 192 (09.10.12) aus dem Einzelspektrum 3. RBI - Wert = 0.7, Linien (v.l.n.r.): $H_{\alpha} = 6562.8$ Å, He = 6678 Å, $O_2 = 6868$ Å.

Das Spektrum ist zwar sehr verrauscht (SNR = 11.6, keine optimalen Wetterbedingungen), es lassen sich jedoch die H_{α} -Linie und die He-Linie deutlich erkennen. Unabhängig von der ungültigen negativen Anstieg lässt das Target sich zu den frühen Spektralklassen zuordnen (vgl. auch die Referenz zu BD+59 192 als O-Stern unter ??).

Methode	Wert	Resultat
log Planck-Kurven		nicht möglich
Tiefe Sebastian		H: O9-A0, A2-F6; He: O6, O9, B2
Tiefenverhältnis Sebastian		ohne: O9; mit: O5-O8, B1, B8
Tiefe synthetisch		H: B2-A0; He: O9-B4
Tiefenverhältnis synthetisch		ohne: B3-B4; mit: O9-B5
EW Sebastian		H: O5-O8; He: O5-O6, O9, B2
EW-Verhältnis Sebastian		ohne: O5, O8; mit: O5-O8, B1-B2
EW synthetisch		H: nichts; He: O9-B8
EW-Verhältnis synthetisch		ohne: nichts; mit: nichts
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.23: Ergebnistabelle von BD+59 192 (09.10.12).

Histogramm für die Bestimmung der Spektralklassen von BD+59 192 vom 09.10.12. Die resultierende Spektralklasse ist O6, O9 < $\mathbf{B2}$ < B4.

Endspektrum von BD+59 192 (16.10.12) aus dem Einzelspektrum 1. RBI - Wert = 0.6, Linien (v.l.n.r.): DIB = 6284 Å, DIB = 6318 Å, DIB = 6494 Å, $H_{\alpha} = 6562.8$ Å, He = 6678 Å (hier bei 6677.9 Å), $O_2 = 6868$ Å.

Dieses Spektrum ist vom Signal-zu-Rausch-Verhältnis her besser als das vom 09.10 ($SNR \approx 16$), die Anstieg ist jedoch immer noch unbestimmbar. Es wurden mehrere DIBs identifiziert. Daher liegt es nahe, zu vermuten, dass die Spektren dieses Targets massiv gerötet sind. Die schmalen Linien kommen vermutlich durch die Qualität des Spektrums zustande und werden daher nicht zur Bestimmung von Leuchtkraftklassen verwendet.

Methode	Wert	Resultat
log Planck-Kurven		nicht möglich
Tiefe Sebastian		H: B8-A3, A5-A6, A8-F6; He: O5, O7-O8, B0-B5
Tiefenverhältnis Sebastian		ohne: B3-B4; mit: O5-O8, B1-B8
Tiefe synthetisch		H: A0; He: B4-B8
Tiefenverhältnis synthetisch		ohne: B6; mit: B4-B7
EW Sebastian		H: O5-O7; He: O5, B3-A5
EW-Verhältnis Sebastian		ohne: O9, B2; mit: O5, O8-B3
EW synthetisch		H: nichts; He: O9-A0
EW-Verhältnis synthetisch		ohne: nichts; mit: O9-B0
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6677.9	Не

Tab. A.24: Ergebnistabelle von BD+59 192 (16.10.12).

Histogramm für die Bestimmung der Spektralklassen von BD+59 192 vom 16.10.12. Die resultierende Spektralklasse ist B0 < B4-B5 < A0.

Resultierendes Histogramm über zwei Beobachtungsnächte für die Bestimmung der Spektralklassen von BD+59 192. Die resultierende Spektralklasse ist O5, O6, O9
 ${\bf B2}$
 ${\bf B8}.$

A.1.15 GSC 03712-00331

Abb. A.14: 30'x30' DSS2-red Finding Chart von GSC 03712-00331.

Endspektrum von GSC 03712-00331 (17.10.12) aus den Einzelspektren 1, 2, 3, 4 und 5. Das Spektrum ist verrauscht, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, $O_2 = 6868$ Å. Die Wetterbedingungen waren gut, allerdings liegt die scheinbare Helligkeit des Targets bei 11.7^{mag}
Methode	Wert	Resultat
log Planck-Kurven		nicht bestimmbar
Tiefe Sebastian		nicht bestimmbar
Tiefenverhältnis Sebastian		nicht bestimmbar
Tiefe synthetisch		nicht bestimmbar
Tiefenverhältnis synthetisch		nicht bestimmbar
EW Sebastian		nicht bestimmbar
EW-Verhältnis Sebastian		nicht bestimmbar
EW synthetisch		nicht bestimmbar
EW-Verhältnis synthetisch		nicht bestimmbar
Linie [Å]	6562.8	H_{lpha}

Tab. A.25: Ergebnistabelle von GSC 03712-00331 (17.10.12).

A.1.16 BD+62 36

Abb. A.15: 30'x30' DSS2-red Finding Chart von BD+62 36.

17.10.2012:

Endspektrum von BD+62 36 (17.10.12) aus den Einzelspektren 1, 2, 3, 4 und 5. Erkennbare Linien (v.l.n.r.): $H_{\alpha} = 6562.8$ Å, $O_2 = 6868$ Å.

Methode	Wert	Resultat
log Planck-Kurven		nicht bestimmbar
Tiefe Sebastian		nicht bestimmbar
Tiefenverhältnis Sebastian		nicht bestimmbar
Tiefe synthetisch		nicht bestimmbar
Tiefenverhältnis synthetisch		nicht bestimmbar
EW Sebastian		nicht bestimmbar
EW-Verhältnis Sebastian		nicht bestimmbar
EW synthetisch		nicht bestimmbar
EW-Verhältnis synthetisch		nicht bestimmbar
Linie [Å]	6562.8	H_{α}

Tab. A.26: Ergebnistabelle von BD+62 36 (17.10.12).

A.1 Auswertung der Sterne

A.1.17 BD+62 66

Abb. A.16: 30'x30' DSS2-red Finding Chart von BD+62 66.

Endspektrum von BD+62 66 (20.10.12) aus dem Einzelspektrum 5. RBI - Wert = 0.7, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, DIB = 6614 Å He = 6678 Å, $O_2 = 6868$ Å.

Anstieg von BD+62 66, Einzelspektrum 5 (20.10.12). Ergebnis: um O3.

Methode	Wert	Resultat
log Planck-Kurven		03
Tiefe Sebastian		H: O9-B8, A4, A7-A8; He: O5, O7-B5
Tiefenverhältnis Sebastian		ohne: O5-O8; mit: alles
Tiefe synthetisch		H: B0-B8; He: B4-B9
Tiefenverhältnis synthetisch		ohne: B5-B6; mit: O9-B7
${f EW}$ Sebastian		H: O9-B2; He: O6-B3
EW-Verhältnis Sebastian		ohne: O5, B1, mit: O5-B2
${f EW}$ synthetisch		H: B0; He: B1
EW-Verhältnis synthetisch		ohne: nichts; mit: nichts
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.27: Ergebnistabelle von BD+62 66, Einzelspektrum 5 (20.10.12).

A.1 Auswertung der Sterne

Histogramm für die Bestimmung der Spektralklassen von BD+62 66, Einzelspektrum 5 vom 20.10.12.

Die resultierende Spektralklasse ist O9 < B0 bis B1 < B5.

Einzelspektren 4+5:

Werden die Einzelspektren 4 und 5 gemeinsam ausgewertet, treten die Linien deutlicher zutage.

Endspektrum von BD+62 66 (20.10.12) aus den Einzelspektren 4 und 5. RBI - Wert = 0.6, Linien (v.l.n.r.): DIB = 6284 Å, $H_{\alpha} = 6562.8$ Å, DIB = 6614 Å He = 6678 Å, $O_2 = 6868$ Å.

Anstieg von BD+62 66, Einzelspektren 4 und 5 (20.10.12). Ergebnis: B0 bis B2.

Methode	Wert	Resultat
log Planck-Kurven		B0-B2
Tiefe Sebastian		H: O9-B6, A4, A7; He: O5, O7-B5
Tiefenverhältnis Sebastian		ohne: O8; mit: alles
Tiefe synthetisch		H: B0-B5; He: B5-B9
Tiefenverhältnis synthetisch		ohne: B5-B6; mit: B3-B7
EW Sebastian		H: O9-B2; He: O5-B2, A1-A5
EW-Verhältnis Sebastian		ohne: O9-B2; mit: O5, O9-B2
EW synthetisch		H: B0; He: B0-B5
EW-Verhältnis synthetisch		ohne: nichts; mit: O9
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.28: Ergebnistabelle von BD+62 66, Einzelspektren 4 und 5 (20.10.12).

A.1 Auswertung der Sterne

Histogramm für die Bestimmung der Spektralklassen von BD+62 66, Einzelspektren 4 und 5 vom 20.10.12.

Resultierendes Histogramm über zwei Endspektren für die Bestimmung der Spektralklassen von BD+62 66. Die resultierende Spektralklasse ist O9 < B0 < B5.

Die resultierende Spektralklasse ist O9 < B0 < B5.

A.1.18 TYC 3712-57-1

Abb. A.17: 30'x30' DSS2-red Finding Chart von TYC 3712-57-1

Endspektrum von TYC 3712-57-1 (17.10.12) aus den Einzelspektren 1, 2, 3, 4 und 5. RBI - Wert = 0.3, Linien (v.l.n.r.): DIB = 6284 Å, DIB = 6494 Å, $H_{\alpha} = 6562.8$ Å, He = 6678 Å, $O_2 = 6868$ Å.

Der Anstieg kann nicht ausgewertet werden.

Methode	Wert	Resultat
log Planck-Kurven		nicht möglich
Tiefe Sebastian		H: O9-B6, A4, A7; He: O7-O8, B0-B5
Tiefenverhältnis Sebastian		ohne: O5-O7, B1; mit: O5-B2, B8
Tiefe synthetisch		H: B0-B5, He: B4-B7
Tiefenverhältnis synthetisch		ohne: B5; mit: O9-B5
EW Sebastian		H: nichts; He: O5, B3-A5
EW-Verhältnis Sebastian		ohne: O5, B1; mit: O5-B2
EW synthetisch		H: nichts, He: alles
EW-Verhältnis synthetisch		ohne: nichts; mit: nichts
Linie [Å]	6562.8	H_{lpha}
Linie [Å]	6678	Не

Tab. A.29: Ergebnistabelle von TYC 3712-57-1 (17.10.12).

Histogramm für die Bestimmung der Spektralklassen von TYC 3712-57-1 vom 17.10.12. Die resultierende Spektralklasse ist O9 < **B0 bis B5** < B6.

A.1.19 Nicht ausgewertete Sterne

HD 227828	(23.07.12)
HD 227828	(30.07.12)
HD 227828	(19.10.12)
HD 228654	(23.07.12)
HD 229077	(03.08.12)
HD 229077	(08.08.12)
$\mathrm{BD}{+50}~3180$	(08.08.12)
TYC 3603-2122-1	(25.07.12)
TYC 3603-971-1	(01.08.12)
TYC 3603-971-1	(16.10.12)
$\mathrm{BD}{+}63~11$	(20.10.12)
BD+6236	(09.10.12)
$\mathrm{BD}{+}59~44$	(17.10.12)

Tab. A.30: Nicht ausgewertete Sterne. Die Spektren sind verrauscht.

A.2 Gesamte Datentabelle

Die Belichtungszeit bezieht sich auf Einzelspektren. Steht *nichts* in einer Zeile, sind die Spektren zu verrauscht um ausgewertet zu werden.

Auflistung der Tabellen:

Liste aller beobachteten Targets, mit Referenzen: Tabelle A.31.
Aufnahmedaten für alle Targets: Tabellen A.32 und A.33.
Reduktion der Einzelspektren: Tabellen A.34 und A.35.
Bemerkungen zu den Linien: Tabelle A.36.
Linientiefen von H und He: Tabellen A.37, A.38, A.39 und A.40.
Äquivalentbreiten von H und He: Tabellen A.41, A.42, A.43 und A.44.
Ergebnistabellen: Tabellen A.45, A.46, A.47, A.48, A.49, A.50 und A.51.

Katalogname	$m_v \; [{ m mag}]$	Ref. m_v	# Ref. Stern aus (3)	Spektralklasse
HD 181730	9.9	(1)	3	Spektralklasse O (4), $B8Ib/II$ (2)
HD 227828	9.3	(1)	2	B (5)
HD 228256	10	(2)	19	H_{α} -Emission (6), Bpe (6), Bne (7), B (8)
TYC 3937-903-1	9.9	(1)	0	B (5)
HD 228654	9.6	(2)	7	B (5)
HD 228742	9.9	(1)	57	B (5)
HD 228773	10	(1)	1	B (5)
HD 228905	10.1	(1)	J	B (2)
HD 229069	9.9	(1)	6	B (5)
HD 229077	9.9	(1)	5	B (2)
TYC 3951-2450-1	10.1	(1)	0	B (5)
$BD{+}50\ 3180$	9.9	(1)	ω	B3:e (7), B (5)
$BD{+}51\ 2945$	9.8	(1)	3	B (5)
TYC 3596-1019-1	9.5	(1)	0	B (5)
TYC 3603-2122-1	9.9	(1)	0	B (5)
TYC 3967-1885-1	9.9	(1)	0	B (5)
TYC 3603-971-1	9.7	(1)	0	B (5)
$BD{+}53\ 2661$	9.7	(2)	-1	H_{α} -Emission (9), B (5)
TYC 3967-232-1	9.8	(1)	0	B (5)
$BD+59\ 192$	10.02	(1)	4	B5 (10), OB- (11), O (12)
GSC 03712-00331	11.7	(2)	6	O (13)
BD+63 11	10.2	(1)	σ	B (5)
BD+62 36	9.8	(1)	1	B (5)
BD+59 44	9.9	(1)	1	B (5)
BD+62 66	10.5	(1)	1	B (5)
TYC 3712-57-1	10.48	(1)	2	B (13)

Liste aller beobachteten Targets, mit Referenzen

Tab. A.31: Referenztabelle zu den beobachteten Targets. Zeichenerklärung: m_v - scheinbare Helligkeit im Visuellen, Ref. m_v - Referenzen zu dem Stern. Helligkeiten und Spektralklassen aus folgenden Referenz). Hardorp et al. (1959), (12): Brodskaya (1960), (13): Voroshilov et al. (1985) (Verweise auf Kataloge wegen fehlender oder nichtauffindbarer Hiltner (1956), (7): Kohoutek & Wehmeyer (1997), (8): Popper (1950), (9): Coyne & MacConnell (1983), (10): Vyssotsky (1941), (11): Referenzen: 1): Høg et al. (2000), (2): Kharchenko & + (2009), (3): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (4): Kelly & Kilkenny (1986), (5): Skiff (2009a), (6): CDS (2012), (6): C

Anhang A

Katalogname	Datum	Uhrzeit	# Einzelspektren	Standardstern	Wetter	AM
HD 181730	09/10/12	21:20	3	51 Per	klar	1.72
HD 181730	15/10/12	20:29	5	$51 \ \mathrm{Per}$	klar	1.621.81
HD 227828	23/07/12	22:30	5	Vksi Her	klar bis vereinzelte Zirren	1.12
HD 227828	30/07/12	23:47	5	LTT15729	teilweise bewölkt	1.10
HD 227828	19/10/12	20:04	Q	Sadr	wenige Zirren	1.10
HD 228256	25/07/12	23:55	2	Sadr	etwas diesig	1.04
TYC 3937-903-1	24/07/12	23:10	5	Vega	klar	1.10
TYC 3937-903-1	15/10/12	21:44	3	tet Cep	klar	1.05
HD 228654	23/07/12	00:05	5	Deneb	klar	1.04
HD 228742	25/07/12	01:05	വ	Sadr	klar	1.01
HD 228742	20/10/12	00:47	1	kein	Zirren	2.30
HD 228742	21/10/12	19:22	5	Sadr	klar	1.01
HD 228773	01/08/12	23:12	5	Sadr	klar	1.10
HD 228773	21/10/12	20:28	5	Sadr	klar	1.05
HD 228905	08/08/12	02:10	5	Deneb	in Targetrichtung klar	1.00
HD 228905	11/10/12	21:15	5	Deneb	klar	1.05
HD 229069	03/08/12	01:29	5	Sadr	kleine Wolken	1.00
HD 229069	21/10/12	21:28	5	tet Cep	klar	1.101.17
HD 229077	03/08/12	02:25	2	kein	Wolken	1.10
HD 229077	08/08/12	22:30	2	bet Dra	fast vollständig klar	1.10
TYC 3951-2450-1	08/08/12	03:10	2	LTT15729	klar	1.00
TYC 3951-2450-1	11/10/12	20:10	5	Deneb	klar	1.00
$\mathrm{BD+50}\ 3180$	08/08/12	23:40	5	bet Dra	beim Target klar	1.00
$\mathrm{BD}{+51}$ 2945	24/07/12	01:17	ប	Deneb	klar	1.00

Aufnahmedaten für alle Targets

A.2 Gesamte Datentabelle

Tab. A.33: (Forts: $(1 \doteq Z)$	BD+62 36 BD+59 44 BD+62 66 TYC 3712-57-1	BD+59 192 BD+59 192 GSC 03712-00331 BD+63 11 BD+62 36	BD+53 2661 BD+53 2661 BD+53 2661 TYC 3967-232-1 TYC 3967-232-1	TYC 3967-1885-1 TYC 3967-1885-1 TYC 3603-971-1 TYC 3603-971-1 BD+53 2661	Katalogname TYC 3596-1019-1 TYC 3596-1019-1 TYC 3596-1019-1 TYC 3603-2122-1 TYC 3603-2122-1
<i>etzung von</i> Jenitpositi	$\begin{array}{c} 17/10/12\\ 17/10/12\\ 20/10/12\\ 17/10/12\\ 17/10/12\end{array}$	$\begin{array}{c} 09/10/12\\ 16/10/12\\ 17/10/12\\ 20/10/12\\ 09/10/12 \end{array}$	$\begin{array}{c} 17/10/12\\ 19/10/12\\ 20/10/12\\ 01/08/12\\ 11/10/12\end{array}$	$\begin{array}{c} 08/08/12\\ 11/10/12\\ 01/08/12\\ 16/10/12\\ 01/08/12\\ \end{array}$	Datum 24/07/12 30/07/12 20/10/12 25/07/12 16/10/12
9. <i>Tab. A.3</i> on), die B	01:43 03:54 03:19 05:10	01:20 02:50 02:51 02:16 02:16 00:15	00:10 22:52 00:09 02:40 23:34	01:04 01:20 00:15 00:00 01:30	Uhrzeit 00:14 01:31 01:09 02:25 01:52
2) Aufnahmedaten de elichtungszeit liegt be	පා පා පා පා	ਯ ਯ ਯ ਨ ਯ	උ ෆ ෆ ෆ ෙ	73 4 73 80 73	# Einzelspektren 5 5 5 5 5 5 5
r Targets. AM - : i allen Spektren l	alf Cam phi Uma chi01 Ori chi01 Ori	51 Per 139 Tau alf Cam alf Cam 51 Per	tet Cep tet Cep kein tet Cep tet Cep	Deneb tet Cep LTT15729 tet Cep Deneb	Standardstern Sadr Deneb tet Cep Deneb tet Cep
Dicke der Atmosphäre während der B. bei 600s.	klar klar klar klar, bei chi01Ori teilweise kleine Wolken	klar, nach 20 min bewölkt klar, bei Nr.5 Kuppel im Weg klar klar klar	klar, teilweise Wolken klar Zirren klar klar	teilweise Dunst/Hochnebel klar klar klar klar	Wetter klar bewölkt, Deneb Schrott klar klar klar
eobachtung	$1.06 \\ 1.211.32 \\ 1.251.35 \\ 1.15 \\$	1.01 1.07 1.03 1.151.25 1.02	1.131.28 1.17 1.30 1.00 1.10	1.00 1.31.4 1.10 1.131.33 1.00	AM 1.05 1.00 1.74 1.00 1.401.56

Katalogname	Datum	Endspektrum aus	\mathbf{SNR}	RBI-Wert	Bemerkungen
HD 181730	09/10/12	2+3	17.61	0	1 etwas verrauscht
HD 181730	15/10/12	$1\!+\!2\!+\!3\!+\!4$	25.55	0	5 etwas verrauscht
HD 227828	23/07/12	nichts	nichts	nichts	alle Spektren verrauscht
HD 227828	30/07/12	$1\!+\!2\!+\!3$		1.2	1,2,3 verrauscht, 4 und 5 zusätzlich krumm
HD 227828	19/10/11	$1\!+\!2\!+\!3\!+\!4\!+\!5$		0.8	1, 2, 3, 4, 5 verrauscht
HD 228256	25/07/12	2+3+5	27.79	0.6	4 etwas wellig links
TYC 3937-903-1	24/07/12	$1\!+\!2\!+\!3\!+\!4$	18.21	0.8	5 verrauscht
TYC 3937-903-1	15/10/12	2+3	26.11	0.8	1 verrauscht
HD 228654	23/07/12	nichts	nichts	nichts	verrauscht und bucklig
HD 228742	25/07/12	1 + 3 + 5	30.37	1	2 verrauscht, 4 bucklig
HD 228742	20/10/12	nichts	nichts	nichts	alle Spektren verrauscht
HD 228742	21/10/12	$1\!+\!2\!+\!3\!+\!4\!+\!5$	40.92	0	
HD 228773	01/08/12	1+3	17.69	1.1	2,4,5 verrauscht
HD 228773	21/10/12	$1\!+\!3\!+\!4\!+\!5$	36.29	1	2 bucklig
HD 228905	08/08/12	nichts	nichts	nichts	alle Spektren verrauscht
HD 228905	11/10/12	$1\!+\!2\!+\!3\!+\!4\!+\!5$			3, 4 und 5 verrauscht
HD 229069	03/08/12	$1\!+\!2\!+\!3$	21.75	0.9	4, 5 verrauscht
HD 229069	21/10/12	$1\!+\!2\!+\!3\!+\!4\!+\!5$	34.08	0.8	
HD 229077	03/08/12	nichts	nichts	nichts	verrauscht
HD 229077	08/08/12	nichts	nichts	nichts	alle Spektren verrauscht
TYC 3951-2450-1	08/08/12	nichts	nichts	nichts	alle Spektren verrauscht
TYC 3951-2450-1	11/10/12	$1\!+\!2\!+\!3\!+\!4\!+\!5$	34.62	0	
$\mathrm{BD}{+50}\;3180$	08/08/12	nichts	nichts	nichts	nichts
$\mathrm{BD}{+51}\ 2945$	24/07/12	2+3+5	25.82	1	1,4 Bereiche krumm
TYC 3596-1019-1	24/07/12	4+5			1,2,3 Bereiche krumm
Tab. A.34: Redul	ction der E	Jinzelspektren. Die En	dspekti	ten werden au	is den genannten Einzelspektren gemittelt. SNR- Signal-to-
Ratio	(mittleres	Rauschen), RBI-Wert	- Vorfa	aktor für die]	Behebung der Krümmung.

Reduktion der Einzelspektren

A.2 Gesamte Datentabelle $\overset{\phi}{\overset{\circ}{\overset{\circ}{\overset{\circ}{_{S}}}}}_{\overset{\circ}{\overset{\circ}{_{Z}}}}$

Datum E	ndspek	ttrum aus SN	٨R	RBI-Wert	Bemerkungen
30/07/12 $1+2+3+4+520/10/12$ $1+2+3+4+5$	ਹੋ ਹੋ				alle Einzelspektren wellig 3.4.5 Bereiche krumm
25/07/12 nichts	1	nic	$_{\rm obts}$	nichts	alle wellig und verrauscht
16/10/12 $1+2+3+4+5$	-5	25.	.51	0.7	1,2,3,4,5 zum Teil verrauscht
08/08/12 nichts		nic	$_{\rm hts}$	nichts	alle Spektren verrauscht
11/10/12 $1+2+3+4$		21.	.77	0.5	1,2,3,4 etwas verrauscht
01/08/12 1+2					3,4,5 verrauscht
16/10/12 3				0	1, 2, 4, 5, 6, 7, 8 Buckel
01/08/12 $1+3+4+5$		17.	.13	0.8	bei allen Buckel, 2 verrauscht
17/10/12 2		8.7	79	0	1,4,5,6 Buckel, 3 verrauscht
19/10/12 $1+2+3+4+5$	-5	40.	60.	0.9	
20/10/12 1+2		36.	.01	1.2	
01/08/12 $1+2$		15.	.31	1.1	3,4,5 verrauscht
11/10/12 $1+2+3+4$		26.	.77	0.6	
09/10/12 3		11.	.64	0.7	1,2,4,5 verrauscht
16/10/12 1 1	1	5	.91	0.6	alle Spektren verrauscht, 1 am wenigsten
17/10/12 nichts 1	I	iic	$_{\rm obts}$	nichts	alle Spektren verrauscht
20/10/12 nichts n	n	.9	$_{\rm obts}$	nichts	1,2,3,4 bucklig, 5 verrauscht
09/10/12 nichts r	I	ii.	$_{\rm chts}$	\mathbf{nichts}	alle Spektren verrauscht
17/10/12 nichts r	I	iic	chts	nichts	alle Spektren verrauscht
17/10/12 michts n	u	10.	chts	nichts	nichts
20/10/12 5 1]	4	69.	0.7	1,2,3 verrauscht
20/10/12 $4+5$		15.	.53	0.6	1,2,3 verrauscht
17/10/12 $1+2+3+4+5$	-0 -0	15.	.98	0.3	alle Spektren verrauscht und wellig
	V Dadultion		10,0	Dingolanolet	an Die Endenelstuen menden ene den so

Tab. A.35: (*Fortsetzung von Tab. A.34*) Reduktion der Einzelspektren. Die Endspektren werden aus den genannten Einzelspektren gemittelt.SNR- Signal-to-Noise-Ratio (mittleres Rauschen), RBI-Wert - Vorfaktor für die Behebung der Krümmung.

A.2 Gesamte Datentabelle

Katalogname	Datum	Bemerkungen zu den Linien
HD 181730	09/10/12	nur H_{α} , kein He
HD 181730	15/10/12	
HD 227828	23/07/12	
HD 227828	30/07/12	
HD 227828	19/10/11	
HD 228256	25/07/12	H_{α} in Emission, He nicht auffindbar
TYC 3937-903-1	24/07/12	He 6678 bei 6674, verschoben und sehr breit
TYC 3937-903-1	15/10/12	
HD 228654	23/07/12	
HD 228742	25/07/12	He ausgefranst
HD 228742	20/10/12	
HD 228742	21/10/12	
HD 228773	01/08/12	He ausgefranst
HD 228773	$\frac{21}{10}$	He ausgefranst
HD 228905	08/08/12	
HD 228905	$\frac{11}{10}$	
HD 229069	$\frac{11}{10}$	He ausgefranst
HD 229069	$\frac{33}{10}$	He-Linie unten doppelt?
HD 229077	$\frac{21}{10}$	no milo anton aspport.
HD 229077	08/08/12	
TYC 3951-2450-1	08/08/12	
TYC 3951-2450-1	$\frac{11}{10}$	He wahrscheinlich im BNS
BD+50.3180	$\frac{11}{10}$	
BD+51 2945	$\frac{00}{00}\frac{12}{12}$	
TYC 3596-1019-1	24/07/12	
TYC 3596-1019-1	$\frac{21}{07}$	
TYC 3596-1019-1	$\frac{20}{10}$	
TYC 3603-2122-1	$\frac{25}{07}$	
TYC 3603-2122-1	16/10/12	
TYC 3967-1885-1	$\frac{10}{10}$	kein He
TYC 3967-1885-1	$\frac{11}{10}$	
TYC 3603-971-1	01/08/12	
TYC 3603-971-1	16/10/12	He-Linie nicht zuordnungsbar
$BD+53\ 2661$	01/08/12	He-Linie nicht zuordnungsbar
$BD+53\ 2661$	17/10/12	H_{α} in Emission. He sehr breit und ungenau
$BD+53\ 2661$	19/10/12	H_{α} in Emission. He sehr deutlich
BD+53 2661	$\frac{10}{10}$	He aus zwei Linien
TYC 3967-232-1	01/08/12	He bei 6677A
TYC 3967-232-1	$\frac{11}{10}$	Linien verrauscht
$BD+59\ 192$	$\frac{11}{10}$	
$BD+59\ 192$	16/10/12	
GSC 03712-00331	17/10/12	
BD+63.11	$\frac{11}{10}$	
BD+62.36	09/10/12	
BD+62.36	17/10/12	
BD+59 44	17/10/12	
BD+62.66 Nr 5	20/10/12	
BD+62 66 Nr 4+5	20/10/12	
TYC 3712-57-1	17/10/12	Linien sehr schmal (oder nur verrauscht)
110 0112 01 1	11/10/12	Linen som sommer (oder hur verrausen)

Bemerkungen zu den Linien

Tab. A.36: Bemerkungen speziell zu den Spektrallinien.

Katalogname	Datum	RMS	H_{α} -Tiefe 1	H_{α} -Tiefe 2	H_{α} -Tiefe 3
HD 181730	09/10/12	0.07	0.5209	0.4779	0.4291
HD 181730	15/10/12	0.05	0.4332	0.3852	0.3732
HD 227828	23/07/12	nichts	nichts	nichts	nichts
HD 227828	30/07/12				
HD 227828	19/10/11				
HD 228256	25/07/12	0.04	Emission	Emission	Emission
TYC 3937-903-1	24/07/12	0.08	0.4735	0.4135	0.3825
TYC 3937-903-1	15/10/12	0.04	0.4724	0.4034	0.3721
HD 228654	23/07/12	nichts	nichts	nichts	nichts
HD 228742	25/07/12	0.03	0.3347	0.2767	0.2567
HD 228742	20/10/12	nichts	nichts	nichts	nichts
HD 228742	21/10/12	0.02	0.3079	0.2886	0.2765
HD 228773	01/08/12	0.09	0.5694	0.3973	0.3208
HD 228773	21/10/12	0.03	0.3408	0.3088	0.2765
HD 228905	08/08/12	nichts	nichts	nichts	nichts
HD 228905	11/10/12				
HD 229069	03/08/12	0.06	0.4143	0.3503	0.3157
HD 229069	21/10/12	0.03	0.3101	0.2851	0.2634
HD 229077	03/08/12	nichts	nichts	nichts	nichts
HD 229077	08/08/12	nichts	nichts	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts	nichts	nichts
TYC 3951-2450-1	11/10/12	0.03	0.3836	0.3366	0.3005
$\mathrm{BD}{+50}~3180$	08/08/12	nichts	nichts	nichts	nichts
${ m BD}{+}51\ 2945$	24/07/12	0.07	0.5465	0.4725	0.411
TYC 3596-1019-1	24/07/12				
TYC 3596-1019-1	30/07/12				
TYC 3596-1019-1	20/10/12				
TYC 3603-2122-1	25/07/12	nichts	nichts	nichts	nichts
TYC 3603-2122-1	16/10/12	0.06	0.4184	0.3754	0.32
TYC 3967-1885-1	08/08/12	nichts	nichts	nichts	nichts
TYC 3967-1885-1	11/10/12	0.06	0.5235	0.4475	0.3785
TYC 3603-971-1	01/08/12				
TYC 3603-971-1	16/10/12				
${ m BD}{+}53\ 2661$	01/08/12	0.06	Emission	Emission	Emission
$BD+53\ 2661$	17/10/12	0.13	Emission	Emission	Emission
$BD+53\ 2661$	19/10/12	0.04	Emission	Emission	Emission
$BD+53\ 2661$	20/10/12	0.04	Emission	Emission	Emission
TYC 3967-232-1	01/08/12	0.06	0.6122	0.5262	0.4499
TYC 3967-232-1	11/10/12	0.05	0.5184	0.4344	0.381
BD+59 192	09/10/12	0.11	0.6288	0.5078	0.3582
$BD+59\ 192$	16/10/12	0.06	0.6516	0.5568	0.4667
GSC 03712-00331	17/10/12	nichts	nichts	nichts	nichts
$BD+63\ 11$	20/10/12	nichts	nichts	nichts	nichts
BD+62 36	09/10/12	nichts	nichts	nichts	nichts
BD+62 36	17/10/12	nichts	nichts	nichts	nichts
BD+59 44	17/10/12	nichts	nichts	nichts	nichts
BD+62 66 Nr. 5	20/10/12	0.07	0.4687	0.4047	0.3371
BD+62 66 Nr. 4+5	20/10/12	0.05	0.4141	0.3674	0.3366
ТҮС 3712-57-1	17/10/12	0.07	0.4349	0.3629	0.301

Linientiefen von H und He

Tab. A.37: Einzelmesswerte für die Tiefen der H_{α} -Linie. Tiefe 1: am oberen Rand des Spektrums, Tiefe 2: in der Mitte, Tiefe 3: am unteren Rand; die Einheiten der Tiefen und des RMS sind in %, 1 \doteq 100 %. RMS - Root Mean Square (mittlere Standardabweichung).

Katalogname	Datum	He-Tiefe 1	He-Tiefe 2	He-Tiefe 3
HD 181730	09/10/12			
HD 181730	15/10/12	0.1546	0.1356	0.1139
HD 227828	23/07/12	nichts	nichts	nichts
HD 227828	30/07/12			
HD 227828	19/10/11			
HD 228256	25/07/12	He n.a.	He n.a.	He n.a.
TYC 3937-903-1	24/07/12	0.1242	0.0792	0.0207
TYC 3937-903-1	15/10/12	0.0799	0.0519	0.0319
HD 228654	23/07/12	nichts	nichts	nichts
HD 228742	25/07/12	0.125	0.097	0.0651
HD 228742	20/10/12	nichts	nichts	nichts
HD 228742	21/10/12	0.1227	0.1097	0.0937
HD 228773	01/08/12	0.1729	0.0759	0.027
HD 228773	21/10/12	0.1209	0.0969	0.0859
HD 228905	08/08/12	nichts	nichts	nichts
HD 228905	11/10/12			
HD 229069	03/08/12	0.2355	0.1525	0.12
HD 229069	21/10/12	0.1543	0.1335	0.1169
HD 229077	03/08/12	nichts	nichts	nichts
HD 229077	08/08/12	nichts	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts	nichts
TYC 3951-2450-1	11/10/12	0.0576	0.0376	0.0139
$\mathrm{BD}{+50}~3180$	08/08/12	nichts	nichts	nichts
$BD{+}51\ 2945$	24/07/12	0.2204	0.1864	0.1444
TYC 3596-1019-1	24/07/12			
TYC 3596-1019-1	30/07/12			
TYC 3596-1019-1	20/10/12			
TYC 3603-2122-1	25/07/12	nichts	nichts	nichts
TYC 3603-2122-1	16/10/12	0.0642	0.0362	0.009
TYC 3967-1885-1	08/08/12	nichts	nichts	nichts
TYC 3967-1885-1	11/10/12	kein He	kein He	kein He
TYC 3603-971-1	01/08/12			
TYC 3603-971-1	16/10/12			
${ m BD}{+}53\ 2661$	01/08/12	He n.a.	He n.a.	He n.a.
${ m BD}{+}53\ 2661$	17/10/12	He n.a.	He n.a.	He n.a.
${ m BD}{+}53\ 2661$	19/10/12	0.0688	0.0518	0.0066
$BD{+}53\ 2661$	20/10/12	0.1503	0.1233	0.0934
TYC 3967-232-1	01/08/12	0.2337	0.1417	0.0608
TYC 3967-232-1	11/10/12	0.0997	0.0724	0.0266
$\mathrm{BD}{+59}\ 192$	09/10/12	0.4675	0.3485	0.2118
$\mathrm{BD}{+59}\ 192$	16/10/12	0.2334	0.1756	0.0993
GSC 03712-00331	17/10/12	nichts	nichts	nichts
$BD+63\ 11$	20/10/12	nichts	nichts	nichts
BD+62 36	09/10/12	nichts	nichts	nichts
BD+62 36	17/10/12	nichts	nichts	nichts
BD+59 44	17/10/12	nichts	nichts	nichts
BD+62 66 Nr. 5 $$	20/10/12	0.1953	0.1483	0.0998
BD+62 66 Nr. 4+5	20/10/12	0.1802	0.133	0.0987
TYC 3712-57-1	17/10/12	0.1949	0.1849	0.1619

Tab. A.38: Einzelmesswerte für die Tiefen der He-Linie. Tiefe 1: am oberen Rand des Spektrums, Tiefe 2: in der Mitte, Tiefe 3: am unteren Rand. He n.a.- He nicht auffindbar, jedoch evtl. vorhanden; die Einheiten der Tiefen sind in %, 1 ≙100 %.

Katalogname	Datum	$\overline{\mathbf{Tiefe}} \ H_{\alpha}$	Tiefe He	H/He	$\Delta H/He$
HD 181730	09/10/12	0.4760	0.0000	kein He	kein He
HD 181730	15/10/12	0.3972	0.1347	2.9488	1.4658
HD 227828	23/07/12	nichts	nichts	nichts	nichts
HD 227828	30/07/12				
HD 227828	19/10/11				
HD 228256	25/07/12	Emission	He n.a.	He n.a.	He n.a.
TYC 3937-903-1	24/07/12	0.4232	0.0747	5.6649	7.1378
TYC 3937-903-1	15/10/12	0.4160	0.0546	7.6231	6.3211
HD 228654	23/07/12	nichts	nichts	nichts	nichts
HD 228742	25/07/12	0.2894	0.0957	3.0237	1.2613
HD 228742	20/10/12	nichts	nichts	nichts	nichts
HD 228742	21/10/12	0.2910	0.1087	2.6771	0.6766
HD 228773	01/08/12	0.4292	0.0919	4.6682	5.5490
HD 228773	21/10/12	0.3087	0.1012	3.0494	1.2000
HD 228905	08/08/12	nichts	nichts	nichts	nichts
HD 228905	11/10/12				
HD 229069	03/08/12	0.3601	0.1693	2.1266	1.1078
HD 229069	21/10/12	0.2862	0.1349	2.1216	0.6942
HD 229077	03/08/12	nichts	nichts	nichts	nichts
HD 229077	08/08/12	nichts	nichts	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts	nichts	nichts
TYC 3951-2450-1	11/10/12	0.3402	0.0364	9.3556	8.5427
$\mathrm{BD}{+50}$ 3180	08/08/12	nichts	nichts	nichts	nichts
$BD{+}51\ 2945$	24/07/12	0.4767	0.1837	2.5943	1.3694
TYC 3596-1019-1	24/07/12				
TYC 3596-1019-1	30/07/12				
TYC 3596-1019-1	20/10/12	_			
TYC 3603-2122-1	25/07/12	nichts	nichts	nichts	nichts
TYC 3603-2122-1	16/10/12	0.3713	0.0365	10.1810	18.3965
TYC 3967-1885-1	08/08/12	nichts	nichts	nichts	nichts
TYC 3967-1885-1	11/10/12	0.4498	kein He	kein He	kein He
TYC 3603-971-1	01/08/12				
TYC 3603-971-1	16/10/12				
$BD+53\ 2661$	01/08/12	Emission	He n.a.	He n.a.	He n.a.
$BD+53\ 2661$	17/10/12	Emission	He n.a.	He n.a.	He n.a.
$BD+53\ 2661$	19/10/12	Emission	0.0424	kein H	kein H
BD+53 2661	20/10/12	Emission	0.1223	kein H	kein H
TYC 3967-232-1	01/08/12	0.5294	0.1454	3.6412	1.9152
TYC 3967-232-1	11/10/12	0.4446	0.0662	6.7126	5.8223
BD+59 192 DD+59 199	09/10/12	0.4983	0.3426	1.4544	0.7880
BD+59 192	16/10/12	0.5584	0.1694	3.2955	1.5211
GSU 03712-00331	17/10/12	nichts	nichts	nichts	nichts
BD+63.11	20/10/12	nichts	nichts	nichts	nicht-
DD+02.30 DD+62.26	$\frac{09}{10}\frac{10}{12}$	nicnts	nichts	nichts	nicht-
DD+02.30 DD+50.44	$\frac{17}{10}$	nichts	nichts	nichta	nichts
DD+3944	17/10/12	nicnts	nicnts	nicnts	nicnts
BD+62.66 Nr.5 BD+62.66 Nr.4+5	20/10/12	0.4035	0.1478	2.7300	1.7000
DD+02 00 Nr. 4+5 TVC 2719 57 1	$\frac{20}{10}\frac{10}{12}$	0.3121	0.13/3	2.1140	1.5527
1103/12-5/-1	17/10/12	0.3003	0.1800	2.0284	1.1(40

Tab. A.39: Gemittelte Tiefen (Tiefe) von H- und He-Linien. He n.a.- He nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich). Die Einheiten der Tiefen sind in %, 1 \doteq 100 %. Das RMS aus Tab. A.37 wird hier und bei allen anderen Tiefen als Fehlerintervall verwendet.

Katalogname	Datum	logH/He	$\Delta(logH/He)$ oben	$\Delta(logH/He)$ unten
HD 181730	09/10/12	kein He	kein He	kein He
HD 181730	15/10/12	0.4696	0.1752	0.2985
HD 227828	23/07/12	nichts	nichts	nichts
HD 227828	30/07/12			
HD 227828	19/10/11			
HD 228256	25/07/12	He n.a.	He n.a.	He n.a.
TYC 3937-903-1	24/07/12	0.7532	0.3541	gegen 0
TYC 3937-903-1	15/10/12	0.8821	0.2623	0.7675
HD 228654	23/07/12	nichts	nichts	nichts
HD 228742	25/07/12	0.4805	0.1514	0.2344
HD 228742	20/10/12	nichts	nichts	nichts
HD 228742	21/10/12	0.4277	0.0979	0.1265
HD 228773	01/08/12	0.6692	0.3402	gegen 0
HD 228773	21/10/12	0.4842	0.1441	0.2172
HD 228905	08/08/12	nichts	nichts	nichts
HD 228905	11/10/12			
HD 229069	03/08/12	0.3277	0.1821	0.3196
HD 229069	21/10/12	0.3267	0.1229	0.1721
HD 229077	03/08/12	nichts	nichts	nichts
HD 229077	08/08/12	nichts	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts	nichts
TYC 3951-2450-1	11/10/12	0.9711	0.2817	1.0610
$BD{+}50\ 3180$	08/08/12	nichts	nichts	nichts
$BD{+}51\ 2945$	24/07/12	0.4140	0.1841	0.3259
TYC 3596-1019-1	24/07/12			
TYC 3596-1019-1	30/07/12			
TYC 3596-1019-1	20/10/12			
TYC 3603-2122-1	25/07/12	nichts	nichts	nichts
TYC 3603-2122-1	16/10/12	1.0078	0.4482	gegen 0
TYC 3967-1885-1	08/08/12	nichts	nichts	nichts
TYC 3967-1885-1	11/10/12	kein He	kein He	kein He
TYC 3603-971-1	01/08/12			
TYC 3603-971-1	16/10/12			
$BD{+}53\ 2661$	01/08/12	He n.a.	He n.a.	He n.a.
$BD{+}53\ 2661$	17/10/12	He n.a.	He n.a.	He n.a.
$BD{+}53\ 2661$	19/10/12	kein H	kein H	kein H
$BD{+}53\ 2661$	20/10/12	kein H	kein H	kein H
TYC 3967-232-1	01/08/12	0.5612	0.1835	0.3242
TYC 3967-232-1	11/10/12	0.8269	0.2712	0.8774
$\mathrm{BD}{+59}\ 192$	09/10/12	0.1627	0.1880	0.3390
$\mathrm{BD}{+59}\ 192$	16/10/12	0.5179	0.1648	0.2689
GSC 03712-00331	17/10/12	nichts	nichts	nichts
$\mathrm{BD}{+}63~11$	20/10/12	nichts	nichts	nichts
$_{\rm BD+62~36}$	09/10/12	nichts	nichts	nichts
$_{\rm BD+62~36}$	17/10/12	nichts	nichts	nichts
$\mathrm{BD}{+}59~44$	17/10/12	nichts	nichts	nichts
BD+62 66 Nr.5 $$	20/10/12	0.4362	0.2167	0.4523
BD+62 66 Nr.4+5	20/10/12	0.4337	0.1756	0.2996
TYC 3712-57-1	17/10/12	0.3072	0.1983	0.3755

Tab. A.40: Logarithmen der Verhältnisse der Tiefen von H zu He. He n.a.- He nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich), $\Delta(logH/He)$ oben/unten bezeichnet die Fehlergrenzen des Wertes log H/He.

Vatalam	Det	EX7 1		EW 9	A EW 9	EW 9	
Katalogname	Datum	EWI	ΔEW I	EW 2	$\Delta EW 2$	EW 3	Δ EW 3
HD 181730	09/10/12	5.16	0.33	3.33	0.28	2.11	0.19
HD 181730	15/10/12	6.10	0.36	4.12	0.29	3.15	0.28
HD 227828	23/07/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 227828	30/07/12						
HD 227828	19/10/11						
HD 228256	25/07/12	E.	E.	E.	E.	E.	E.
TYC 3937-903-1	24/07/12	6.08	0.35	3.77	0.28	3.39	0.27
TYC 3937-903-1	15/10/12	4.45	0.29	2.50	0.25	1.72	0.26
HD 228654	23/07/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 228742	25/07/12	4.00	0.34	2.54	0.28	1.79	0.23
HD 228742	20/10/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 228742	21/10/12	2.89	0.30	2.48	0.26	2.20	0.25
HD 228773	01/08/12	4.38	0.25	3.17	0.24	2.43	0.22
HD 228773	21/10/12	3.70	0.27	2.97	0.24	2.25	0.22
HD 228905	08/08/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 228905	11/10/12						
HD 229069	03/08/12	2.61	0.24	2.04	0.24	1.54	0.20
HD 229069	21/10/12	2.79	0.30	2.27	0.25	2.08	0.25
HD 229077	03/08/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 229077	08/08/12	nichts	nichts	nichts	nichts	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts	nichts	nichts	nichts	nichts
TYC 3951-2450-1	11/10/12	6.84	0.40	4.21	0.28	3.60	0.28
$BD+50\ 3180$	08/08/12	nichts	nichts	nichts	nichts	nichts	nichts
BD+51 2945	24/07/12	3.65	0.20	2.94	0.20	2.27	0.20
TYC 3596-1019-1	24/07/12						
TYC 3596-1019-1	30/07/12						
TYC 3596-1019-1	20/10/12						
TYC 3603-2122-1	25/07/12	nichts	nichts	nichts	nichts	nichts	nichts
TYC 3603-2122-1	16/10/12	4.85	0.26	3.54	0.25	2.81	0.25
TYC 3967-1885-1	08/08/12	nichts	nichts	nichts	nichts	nichts	nichts
TYC 3967-1885-1	11/10/12	3.48	0.18	2.97	0.19	2.28	0.19
TYC 3603-971-1	01/08/12						
TYC 3603-971-1	16/10/12	F	F	F	Б	P	
BD+53 2661	01/08/12	Е. Т	E.	E.	Е. Б	Е. Т	E.
BD+53 2661	17/10/12	E.	E.	E.	E.	E.	E.
BD+53 2661	19/10/12	E.	E.	E.	E.	E.	E.
BD+53 2661	20/10/12	Е.	E.	Е.	E.	E.	E.
TYC 3967-232-1	01/08/12	4.22	0.25	3.06	0.24	2.43	0.24
TYC 3967-232-1	11/10/12	7.16	0.37	4.08	0.32	2.41	0.24
BD+59 192	09/10/12	2.35	0.12	1.48	0.14	0.89	0.15
BD+59 192	16/10/12	1.70	0.15	1.25	0.13	1.09	0.15
GSC 03712-00331	17/10/12	nichts	nichts	nichts	nichts	nichts	nichts
BD+63 11	20/10/12	nichts	nichts	nichts	nichts	nichts	nichts
BD+62 36	09/10/12	nichts	nichts	nichts	nichts	nichts	nichts
BD+62 36	17/10/12	nichts	nichts	nichts	nichts	nichts	nichts
BD+59 44	17/10/12	nichts	nichts	nichts	nichts	nichts	nichts
BD+62 66 Nr.5	20/10/12	4.21	0.28	2.64	0.22	2.08	0.22
BD+62 66 Nr. 4+5	20/10/12	4.88	0.32	3.67	0.31	2.64	0.26
TYC 3712-57-1	17/10/12	1.05	0.12	0.90	0.12	0.78	0.13

Äquivalentbreiten von H und He

Tab. A.41: Äquivalentbreiten der H_{α} -Linie (in Å). Die Spalten EW 1, 2, 3 bzw. Δ EW 1, 2, 3 sind die Messwerte bzw. die Fehler der jeweiligen Messung. Analog zu den Tiefen werden die Messungen am oberen Rand des Spektrums, in der Mitte und am unteren Rand durchgeführt; E. sind Emissionslinien.

Katalogname	Datum	EW 1	$\Delta \ \mathbf{EW} \ 1$	EW 2	$\Delta \text{ EW } 2$	EW 3	$\Delta EW 3$
HD 181730	09/10/12	kein He	kein He	kein He	kein He	kein He	kein He
HD 181730	15/10/12	0.36	0.14	0.30	0.14	0.20	0.11
HD 227828	23/07/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 227828	30/07/12						
HD 227828	19/10/11						
HD 228256	25/07/12	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.
TYC 3937-903-1	24/07/12	0.84	0.18	0.16	0.10	0.11	0.11
TYC 3937-903-1	15/10/12	0.35	0.18	0.16	0.16	0.10	0.14
HD 228654	23/07/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 228742	25/07/12	0.76	0.22	0.32	0.13	0.21	0.13
HD 228742	20/10/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 228742	21/10/12	0.61	0.19	0.52	0.18	0.38	0.14
HD 228773	01/08/12	0.52	0.11	0.20	0.10	0.04	0.07
HD 228773	21/10/12	0.29	0.11	0.21	0.11	0.11	0.11
HD 228905	08/08/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 228905	11/10/12						
HD 229069	03/08/12	2.34	0.24	0.86	0.17	0.46	0.14
HD 229069	21/10/12	0.85	0.21	0.71	0.19	0.56	0.18
HD 229077	03/08/12	nichts	nichts	nichts	nichts	nichts	nichts
HD 229077	08/08/12	nichts	nichts	nichts	nichts	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts	nichts	nichts	nichts	nichts
TYC 3951-2450-1	11/10/12	0.22	0.15	0.07	0.10	0.03	0.10
$\mathrm{BD}{+50}~3180$	08/08/12	nichts	nichts	nichts	nichts	nichts	nichts
$BD{+}51\ 2945$	24/07/12	0.81	0.13	0.55	0.12	0.28	0.12
TYC 3596-1019-1	24/07/12						
TYC 3596-1019-1	30/07/12						
TYC 3596-1019-1	20/10/12						
TYC 3603-2122-1	25/07/12	nichts	nichts	nichts	nichts	nichts	nichts
TYC 3603-2122-1	16/10/12	0.22	0.16	0.08	0.12	0.01	0.04
TYC 3967-1885-1	08/08/12	nichts	nichts	nichts	nichts	nichts	nichts
TYC 3967-1885-1	11/10/12	kein He	kein He	kein He	kein He	kein He	kein He
TYC 3603-971-1	01/08/12						
TYC 3603-971-1	16/10/12						
$BD+53\ 2661$	01/08/12	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.
$BD+53\ 2661$	17/10/12	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.
$BD+53\ 2661$	19/10/12	0.11	0.08	0.08	0.08	0.02	0.09
BD+53 2661	20/10/12	0.85	0.22	0.32	0.15	0.19	0.13
TYC 3967-232-1	01/08/12	0.63	0.11	0.36	0.14	0.15	0.12
TYC 3967-232-1	11/10/12	0.22	0.14	0.13	0.13	0.05	0.08
$BD+59\ 192$	09/10/12	0.84	0.11	0.51	0.12	0.26	0.09
BD+59 192	16/10/12	0.44	0.14	0.25	0.10	0.12	0.10
GSC 03712-00331	17/10/12	nichts	nichts	nichts	nichts	nichts	nichts
BD+63 11	20/10/12	nichts	nichts	nichts	nichts	nichts	nichts
BD+62.36	09/10/12	nichts	nichts	nichts	nichts	nichts	nichts
BD+62.36 BD+50.44	17/10/12	nichts	nichts	nichts	nichts	nichts	nichts
BD+59.44	17/10/12	nicnts	nichts	nichts	nichts	nicnts	nichts
BD+62.66 Nr.5	20/10/12	1.47	0.21	0.76	0.15	0.43	0.15
$BD+02\ 00\ Nr.\ 4+5$	20/10/12	1.28	0.24	0.69	0.21	0.45	0.19
TYC 3712-57-1	17/10/12	0.29	0.12	0.27	0.09	0.29	0.11

Tab. A.42: Äquivalentbreiten der He-Linie (in Å). Die Spalten EW 1, 2, 3 bzw. Δ EW 1, 2, 3 sind die Messwerte bzw. die Fehler der jeweiligen Messung. Analog zu den Tiefen werden die Messungen am oberen Rand des Spektrums, in der Mitte und am unteren Rand durchgeführt; He n.a.- He-Linien nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich).

Katalam	Det		Δ ΤΤ	EW II.	Δ. ΙΤ-
natalogname	Datum	EW H_{α}	ΔH_{α}	Ew He	Δ He
HD 181730	09/10/12	3.53	0.27	kein He	kein He
HD 181730	15/10/12	4.46	0.31	0.29	0.13
HD 227828	23/07/12	nichts	nichts	nichts	nichts
HD 227828	30/07/12				
HD 227828	19/10/11	_	_	_	_
HD 228256	25/07/12	Е.	Е.	Е.	E.
TYC 3937-903-1	24/07/12	4.41	0.30	0.37	0.13
TYC 3937-903-1	15/10/12	2.89	0.27	0.21	0.16
HD 228654	23/07/12	nichts	nichts	nichts	nichts
HD 228742	25/07/12	2.78	0.28	0.43	0.16
HD 228742	20/10/12	nichts	nichts	nichts	nichts
HD 228742	21/10/12	2.32	0.27	0.50	0.17
HD 228773	01/08/12	3.33	0.24	0.25	0.09
HD 228773	21/10/12	2.97	0.24	0.20	0.11
HD 228905	$\frac{11}{10}$	nichts	nicnts	nicnts	nichts
HD 228905	11/10/12	9.00	0.92	1 00	0.19
HD 229009	$\frac{03}{08}$	2.00	0.23	1.22	0.18
ПD 229009 UD 220077	21/10/12 02/08/12	2.30 michta	0.27	0.71 michta	0.19
ПD 229077 НD 220077	$\frac{03}{08}$	nichts	nichta	nichts	nichts
TVC 2051 2450 1	$\frac{00}{08}$	nichts	nichte	nichts	nichts
TVC 2051 2450 1	$\frac{11}{10}$	1 99	nicitits 0.29	0 10	0.11
1 1 C 5951-2450-1 DD + 50 2180	11/10/12	4.00	0.52 nichta	0.10	0.11 nichta
BD+50,5160 BD+51,2045	$\frac{06}{06}$	2.05		0.55	0 12
TVC 3506 1010 1	24/07/12 24/07/12	2.95	0.20	0.55	0.12
TVC 3596 1019 1	$\frac{24}{07}\frac{12}{12}$				
TVC 3596-1019-1	$\frac{30}{10}\frac{12}{12}$				
TVC 3603-2122-1	25/07/12	nichts	nichts	nichts	nichts
TYC 3603-2122-1	$\frac{26}{01}$	3 74	0.25	0.11	0.11
TVC 3967-1885-1	$\frac{10}{10}\frac{10}{12}$	nichts	nichts	nichts	nichts
TYC 3967-1885-1	$\frac{11}{10}$	2.91	0.19	kein He	kein He
TYC 3603-971-1	$\frac{11}{10}$	2.01	0.15	Kelli He	Kein He
TYC 3603-971-1	16/10/12				
$BD+53\ 2661$	01/08/12	E	E	Hena	Hena
$BD+53\ 2661$	$\frac{17}{10}$	Е.	E.	He n.a.	He n.a.
$BD+53\ 2661$	$\frac{19}{10}$	Е.	E.	0.07	0.08
$BD+53\ 2661$	$\frac{20}{10}$	<u>Е</u> .	E.	0.45	0.17
TYC 3967-232-1	01/08/12	3.24	0.24	0.38	0.12
TYC 3967-232-1	11/10/12	4.55	0.31	0.13	0.12
$BD+59\ 192$	09/10/12	1.57	0.14	0.54	0.11
$BD+59\ 192$	16/10/12	1.35	0.14	0.27	0.11
GSC 03712-00331	17/10/12	nichts	nichts	nichts	nichts
$BD+63\ 11$	20/10/12	nichts	nichts	nichts	nichts
$BD+62\ 36$	09/10/12	nichts	nichts	nichts	nichts
$BD+62\ 36$	17/10/12	nichts	nichts	nichts	nichts
$BD{+}59\ 44$	17/10/12	nichts	nichts	nichts	nichts
BD $+62$ 66 Nr.5	20/10/12	2.98	0.24	0.89	0.17
BD+62 66 Nr. 4+5	20/10/12	3.73	0.30	0.81	0.21
TYC 3712-57-1	17/10/12	0.91	0.12	0.29	0.11

Tab. A.43: Gemittelte Äquivalentbreiten ($\overline{\rm EW}$) von H- und He-Linien (Symbol EW, in Å). Die Spalten EW bzw. Δ EW sind die Messwerte bzw. die Fehler der jeweiligen Messung. Die Fehler werden aus den EW-Fehlern der einzelnen Messungen ermittelt. He n.a. - He-Linien nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich).

Katalogname	Datum	H/He	Δ H/He	log~H/He	$\Delta(logH/He)$ oben	$\Delta(logH/He)$ unten
HD 181730	09/10/12	kein He	kein He	kein He	kein He	kein He
HD 181730	15/10/12	15.59	8.17	1.19	0.18	0.32
HD 227828	23/07/12	nichts	nichts	nichts	nichts	nichts
HD 227828	30/07/12					
HD 227828	19/10/11					
HD 228256	25/07/12	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.
TYC 3937-903-1	24/07/12	11.90	4.97	1.08	0.15	0.23
TYC 3937-903-1	15/10/12	14.00	12.15	1.15	0.27	0.88
HD 228654	23/07/12	nichts	nichts	nichts	nichts	nichts
HD 228742	25/07/12	6.48	3.08	0.81	0.17	0.28
HD 228742	20/10/12	nichts	nichts	nichts	nichts	nichts
HD 228742	21/10/12	5.01	2.23	0.70	0.16	0.26
HD 228773	01/08/12	13.22	5.90	1.12	0.16	0.26
HD 228773	21/10/12	14.88	9.40	1.17	0.21	0.43
HD 228905	08/08/12	nichts	nichts	nichts	nichts	nichts
HD 228905	11/10/12					
HD 229069	03/08/12	1.69	0.44	0.23	0.10	0.13
HD 229069	21/10/12	3.37	1.30	0.53	0.14	0.21
HD 229077	03/08/12	nichts	nichts	nichts	nichts	nichts
HD 229077	08/08/12	nichts	nichts	nichts	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts	nichts	nichts	nichts
TYC 3951-2450-1	11/10/12	46.79	54.19	1.67	0.33	gegen 0
$BD{+}50\ 3180$	08/08/12	nichts	nichts	nichts	nichts	nichts
$BD{+}51\ 2945$	24/07/12	5.39	1.58	0.73	0.11	0.15
TYC 3596-1019-1	24/07/12					
TYC 3596-1019-1	30/07/12					
TYC 3596-1019-1	20/10/12					
TYC 3603-2122-1	25/07/12	nichts	nichts	nichts	nichts	nichts
TYC 3603-2122-1	16/10/12	35.42	38.57	1.55	0.32	gegen 0
TYC 3967-1885-1	08/08/12	nichts	nichts	nichts	nichts	nichts
TYC 3967-1885-1	11/10/12	kein He	kein He	kein He	kein He	kein He
TYC 3603-971-1	01/08/12					
TYC 3603-971-1	16/10/12					
$BD{+}53\ 2661$	01/08/12	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.
$BD{+}53\ 2661$	17/10/12	He n.a.	He n.a.	He n.a.	He n.a.	He n.a.
$BD{+}53\ 2661$	19/10/12	kein H	kein H	kein H	kein H	kein H
$BD{+}53\ 2661$	20/10/12	kein H	kein H	kein H	kein H	kein H
TYC 3967-232-1	01/08/12	8.52	3.40	0.93	0.15	0.22
TYC 3967-232-1	11/10/12	34.66	33.34	1.54	0.29	1.42
$\mathrm{BD}{+59}$ 192	09/10/12	2.93	0.83	0.47	0.11	0.15
$\mathrm{BD}{+59}$ 192	16/10/12	4.98	2.58	0.70	0.18	0.32
GSC 03712-00331	17/10/12	nichts	nichts	nichts	nichts	nichts
$BD+63\ 11$	20/10/12	nichts	nichts	nichts	nichts	nichts
BD+62 36	09/10/12	nichts	nichts	nichts	nichts	nichts
BD+62 36	17/10/12	nichts	nichts	nichts	nichts	nichts
$BD{+}59\ 44$	17/10/12	nichts	nichts	nichts	nichts	nichts
$\mathrm{BD}{+}62~66~\mathrm{Nr.5}$	20/10/12	3.36	0.92	0.53	0.10	0.14
BD+62 66 Nr. $4+5$	20/10/12	4.62	1.59	0.66	0.13	0.18
TYC 3712-57-1	17/10/12	3.19	1.62	0.50	0.18	0.31

Tab. A.44: EW-Verhältnisse und ihre Logarithmen. He n.a.- He nicht auffindbar, jedoch evtl. vorhanden (keine Zuordnung aufgrund H_{α} -Emission möglich), $\Delta(logH/He)$ oben/unten bezeichnet die Fehlergrenzen des Wertes log H/He.

Katalogname	Datum	Fit Planck-Kurven	Dopplerkorrektur mit $[km/s]$
HD 181730	09/10/12	F2-F5	14.99
HD 181730	15/10/12	A3-A4	20.48
HD 227828	23/07/12	nichts	nichts
HD 227828	30/07/12		
HD 227828	19/10/11		
HD 228256	25/07/12	F2-F5	nicht ermittelbar
TYC 3937-903-1	24/07/12	B1-B3	-17.37
TYC 3937-903-1	15/10/12	B2-B4	-25.46
HD 228654	23/07/12	nichts	nichts
HD 228742	25/07/12	G8-K5	-77.89
HD 228742	20/10/12	G8-K5	nichts
HD 228742	21/10/12	G8-K5	-65.37
HD 228773	01/08/12	O5-O6	-23.59
HD 228773	21/10/12	B6-B7	-25.51
HD 228905	08/08/12	nichts	nichts
HD 228905	11/10/12		
HD 229069	03/08/12	A8-F0	-25.96
HD 229069	21/10/12	G8-K5	-35.79
HD 229077	03/08/12	nichts	nichts
HD 229077	08/08/12	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts
TYC 3951-2450-1	11/10/12	A1-A2	14.58
$\mathrm{BD}{+50}~3180$	08/08/12	nichts	nichts
${ m BD}{+}51\ 2945$	24/07/12	B9-A0	-24.55
TYC 3596-1019-1	24/07/12		
TYC 3596-1019-1	30/07/12		
TYC 3596-1019-1	20/10/12		
TYC 3603-2122-1	25/07/12	nichts	nichts
TYC 3603-2122-1	16/10/12	B9-A0	-25.19
TYC 3967-1885-1	08/08/12	nichts	nichts
TYC 3967-1885-1	11/10/12	B9-A0	-19.84
TYC 3603-971-1	01/08/12		
TYC 3603-971-1	16/10/12		
$BD+53\ 2661$	01/08/12	B8-B9	nicht ermittelbar
$BD{+}53\ 2661$	17/10/12	A5-A7	nicht ermittelbar
$BD{+}53\ 2661$	19/10/12	F0-F2	23.49 an He
$BD+53\ 2661$	20/10/12	A8	-75.07 an He
TYC 3967-232-1	01/08/12	früher als O3?	-20.02
TYC 3967-232-1	11/10/12	A5-A7	-16.64
$BD+59\ 192$	09/10/12	negative Steigung	-70.81
$\mathrm{BD}{+}59\ 192$	16/10/12	negative Steigung	-68.25
GSC 03712-00331	17/10/12	nichts	nichts
$BD+63\ 11$	20/10/12	nichts	nichts
$BD+62\ 36$	09/10/12	nichts	nichts
$BD+62\ 36$	17/10/12	nichts	nichts
$BD+59\ 44$	17/10/12	nichts	nichts
$BD+62 \ 66 \ Nr.5$	20/10/12	03	-77.665
BD+62 66 Nr. 4+5	20/10/12	B0-B2	-76.98
TYC 3712-57-1	17/10/12	nicht möglich	-71.4

Ergebnistabellen

Tab. A.45: Ergebnistabelle Teil 1. Vergleich der Anstiege der Targets mit Planck-Kurven.Die Dopplerkorrektur erfolgt mit den aufgelisteten Geschwindigkeiten, negative
Vorzeichen bedeuten eine Bewegung auf den Beobachter zu.

Katalogname	Datum	Tiefen (Sebastian)	Tiefenverhältnis (Sebastian)
HD 181730	09/10/12	H: O9, B2-B8, A4-A9, F2, F6; He: kein	kein He
HD 181730	15/10/12	H: O9-B8, A4, A6; He: O5, O7-B6	ohne: O8, B3-B5; mit: alles
HD 227828	23/07/12	nichts	nichts
HD 227828	30/07/12		
HD 227828	19/10/11		
HD 228256	25/07/12	nicht möglich	nicht möglich
TYC 3937-903-1	24/07/12	H: O9-B8, A4-A9; He: O5, O7-O8, B1, B3-B8	ohne: B6; mit: alles
TYC 3937-903-1	15/10/12	H: O9-B8, A4, A7-A9; He: O5, O7-O8, B3-B8	ohne: B6; mit: alles
HD 228654	23/07/12	nichts	nichts
HD 228742	25/07/12	H: O9-B1, He: O5, O7-B5	ohne: O8, B3; mit: O5-O8, B1-A0
HD 228742	20/10/12	nichts	nichts
HD 228742	21/10/12	H: B1; He: O5, O7-O8, B1-B5	ohne: O8, B2-B3, mit: bis O8, B1-A0
HD 228773	01/08/12	H: B1-B8, A4-A9: He: O5, O7-O8, B1-B8	ohne: B4-B6; mit: alles
HD 228773	21/10/12	H: B0-B1: He: O5, O7-O8, B1-B6	ohne: O8, B3-B4; mit: O5-O8, B1-A0
HD 228905	08/08/12	nichts	nichts
HD 228905	$\frac{11}{10}$		
HD 229069	03/08/12	H: B0-B5, A4, A7; He: O5, O7-O8, B1-B5	ohne: O5-O8, B2; mit; alles
HD 229069	21/10/12	H: B0-B1: He: O5_O6-O8_B1-B5	ohne: $05-08$; mit: $05-B4$
HD 229077	03/08/12	nichts	nichts
HD 229077	08/08/12	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts
TYC 3951-2450-1	11/10/12	H: B0-B1 B3: He: 05 08 B8	ohne: B6: mit: alles
BD±50 3180	08/08/12	nichte	nichts
BD+50,0100 BD+51,2045	$\frac{08}{07}$	H: B_2B_0 A_4 F_3 F_6 : $H_{e^+}O_5$ O_7 B_5	ohne: O8 B3: mit: alles
TVC 3506-1010-1	24/07/12	II. D2-D3, A4-P3, P0, IIe. 00, 07-D3	onne. 00, D3, nnt. anes
TVC 3596-1019-1	24/07/12		
TVC 3506 1010 1	30/07/12		
TVC 3603 2122 1	20/10/12	nichts	nichts
TVC 3603-2122-1	25/07/12	H: Ω_{2} B6 ΔI $\Delta 7$: He: $\Omega 5$ $\Omega 7$ - $\Omega 8$ B3-B8	ohne: B6: mit: alles
TVC 3067-1885-1	10/10/12	nichts	nichts
TVC 3067 1885 1	11/10/12	$H_{1} \cap O = P_{2} = P_{3} \wedge A \wedge A = F_{0} + F_{0} + F_{0}$	koin Ho
TVC 3603 071 1	11/10/12	II. 09, D2-D0, A4-A9, F0, Kelli He	Kenn me
TVC 2602 071 1	01/08/12		
BD 53 2661	10/10/12	nicht zuordnungshar	nicht guordnungshar
DD = 52,2661	01/08/12	nicht zuordnungsbar	nicht zuordnungsbar
DD+53 2001 DD+52 2661	17/10/12	$H_{cl} O_{2} O_{2} O_{3} O_{2} D_{2} D_{3} D_{3}$	nicht zuordnungsbar
DD+53 2001 DD+52 2661	19/10/12	He. $O5, O7-O8, D5-D8$	nicht zuordnungsbar
DD+55 2001 TVC 2067 222 1	20/10/12	H_{10}^{-} $H_{$	$P_{1} = P_{2} = P_{2$
TVC 2067 222-1	01/08/12	II. Do D5, A3-F0, He. O5, O7-O6, D1-D5 II. D2, D5 D9, He. O5, O8, D7 D9	ohne. B5-B5, Int. 05-06, B1-B6
1 1 0 3907-232-1 DD 1 50 109	11/10/12	Π : $D2$, $D3$ - $D6$; $\Pi 0$: $U3$, $U6$, $D7$ - $D6$ Π : $O0$ A0 A2 E6: $\Pi 0$: $O6$ O0 D2	onne: D0; mit: anes $0^{5} \Omega^{2} \Omega^{1} \Omega^{2}$
DD + 59 192 DD + 50 102	09/10/12	H: 09-A0, A2-F0; HE: 00, 09, B2	onne: O_{2} ; mit: O_{2} - O_{3} , D_{1} , D_{3}
DD+09 192 CSC 02712 00221	16/10/12	H: B8-A3, A5-A6, A8-F6; He: O5, O7-O8, B0-B5	onne: D5-D4; mit: O5-O8, D1-D8
GSU 03/12-00331	17/10/12	ments	nichts
BD+63 11	20/10/12	nichts	nichts
BD+62.36	09/10/12	nichts	nichts
BD+62.30	17/10/12	nicnts	nichts
BD+59 44	17/10/12	nichts	nicnts
BD+62 66 Nr.5	20/10/12	H: U9-B8, A4, A7-A8; He: U5, U7-B5	onne: 05-08; mit: alles
BD+62.66 Nr. $4+5$	20/10/12	H: U9-B0, A4, A7; He: U5, U7-B5	onne: U8; mit: alles
TYC 3712-57-1	17/10/12	н: 09-вь, А4, А7; не: 07-08, в0-в5	ohne: O5-O7, B1; mit: O5-B2, B8

Tab. A.46: Ergebnistabelle Teil 2. Linientiefen von H und He und ihr Verhältnis H/He anhand Sebastians Spektren. Die Messungen der Tiefen werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die Linienverhältnisse werden zuerst ohne Fehlerbalken (ohne) abgelesen und danach mit ihnen (mit). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen.

Katalogname	Datum	Tiefen (synthetisch)	Tiefenverhältnis (synthetisch)
HD 181730	09/10/12	H: B4-A0	kein He
HD 181730	15/10/12	H: B0-B6; He: B6-B8	ohne: B5-B6; mit: B4-B7
HD 227828	23/07/12	nichts	nichts
HD 227828	30/07/12		
HD 227828	19/10/11		
HD 228256	25/07/12	nicht möglich	nicht möglich
TYC 3937-903-1	24/07/12	H: B1-A0; He: B6-A0	ohne: B8; mit: O9-B9
TYC 3937-903-1	15/10/12	H: B2-B6; He: B8-A0	ohne: B7; mit: B4-B9
HD 228654	23/07/12	nichts	nichts
HD 228742	25/07/12	H: O9-B0; He: B7-B9	ohne: B5-B6; mit: B4-B7
HD 228742	20/10/12	nichts	nichts
HD 228742	21/10/12	H:B0-B2; He: B6-B9	ohne: B5; mit: B5-B6
HD 228773	01/08/12	H: B0-A0; He: B5-A0	ohne: B6; mit: bis B9
HD 228773	21/10/12	H: O9-B1; He: B6-B9	ohne: B6; mit: B5-B7
HD 228905	08/08/12	nichts	nichts
HD 228905	11/10/12		
HD 229069	03/08/12	H: B0-B5; He: B4-B7	ohne: B5; mit: B3-B7
HD 229069	21/10/12	H: O9-B0; He: B6-B8	ohne: B5; mit: B4-B6
HD 229077	03/08/12	nichts	nichts
HD 229077	08/08/12	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts
TYC 3951-2450-1	11/10/12	H: B0-B2; He: A0	ohne: B7-B8; mit: bis B9
$BD{+}50\ 3180$	08/08/12	nichts	nichts
${ m BD}{+}51\ 2945$	24/07/12	H: B3-A0; He: O9, B4-B7	ohne: B5; mit: B3-B7
TYC 3596-1019-1	24/07/12		
TYC 3596-1019-1	30/07/12		
TYC 3596-1019-1	20/10/12		
TYC 3603-2122-1	25/07/12	nichts	nichts
TYC 3603-2122-1	16/10/12	H: B0-B5; He: B8-A0	ohne: B7; mit: alles
TYC 3967-1885-1	08/08/12	nichts	nichts
TYC 3967-1885-1	11/10/12	H: B2-A0; kein He	kein He
TYC 3603-971-1	01/08/12		
TYC 3603-971-1	16/10/12		
$BD+53\ 2661$	01/08/12	nicht zuordnungsbar	nicht zuordnungsbar
$BD+53\ 2661$	17/10/12	nicht zuordnungsbar	nicht zuordnungsbar
$BD+53\ 2661$	19/10/12	He: B8-A0	nicht zuordnungsbar
BD+53 2661	20/10/12	He: B6-B9	nicht zuordnungsbar
TYC 3967-232-1	01/08/12	H: B7-A0; He: B4-B9	ohne: B6; mit: B5-B7
TYC 3967-232-1	11/10/12	H: B5-B6; He: B9-A0	ohne: B7; mit: bis B8
$BD+59\ 192$	09/10/12	H: B2-A0; He: O9-B4	ohne: B3-B4; mit: O9-B5
BD+59 192	16/10/12	H: A0; He: B4-B8	ohne: B6; mit: B4-B7
GSC 03712-00331	17/10/12	nichts	nichts
BD+63 11	20/10/12	nichts	nichts
BD+62.36	$\frac{09}{10}\frac{10}{12}$	nichts	nichts
BD+62.36	17/10/12 17/10/12	nichts	nicnts
BD+59 44	17/10/12	nichts	nicnts
BD+62.66 Nr.5 DD+62.66 Nr.4+5	20/10/12	H: BU-B8; He: B4-B9	onne: B5-B6; mit: U9-B7
$DD+02\ 00\ Nr.\ 4+5$	20/10/12	$\Pi: BU-BD; \Pi E: BD-BU$	onne: Bo-B0; mit: B3-B/
IYU 3712-57-1	17/10/12	п: во-вэ, не: в4-в7	onne: B5; mit: O9-B5

Tab. A.47: Ergebnistabelle Teil 3. Linientiefen von H und He und ihr Verhältnis H/He anhand synthetischer Spektren. Die Messungen der Tiefen werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die Linienverhältnisse werden zuerst ohne Fehlerbalken (ohne) abgelesen und danach mit ihnen (mit). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen.

Katalogname	Datum	EW (Sebastian)	EW-Verhältnis (Sebastian)
HD 181730	09/10/12	H: O9-B2	kein He
HD 181730	15/10/12	H: B3-B5, F2-F6; He: B5-A5	ohne: B7; mit: B3-A5
HD 227828	23/07/12	nichts	nichts
HD 227828	30/07/12		
HD 227828	19/10/11		
HD 228256	25/07/12	nicht möglich	nicht möglich
TYC 3937-903-1	24/07/12	H: B3-B5, F3-F6; He: O5, B3-A5	ohne: B3; mit: B3-B5, A1-A5
TYC 3937-903-1	15/10/12	H: O9-B2; He: B5-A5	ohne: B4-B6, A1-A5; mit: alles
HD 228654	23/07/12	nichts	nichts
HD 228742	25/07/12	H: O9-B2; He: O5-O6, B2-A5	ohne: B2-B3; mit: O5, O9-B3
HD 228742	20/10/12	nichts	nichts
HD 228742	21/10/12	H: O8-B2; He: O5-A5	ohne: O9-B2; mit: O5-O6, O9-B2
HD 228773	01/08/12	H: O9-B2; He: nichts	ohne: B3-B5; mit: B3-A5
HD 228773	21/10/12	H: O9-B3, He: B4-A5	ohne: B3-B4, A0-A5; mit: O9, B3-A5
HD 228905	08/08/12	nichts	nichts
HD 228905	11/10/12		
HD 229069	03/08/12	H: um O8; He: O8, B1	ohne: O7; mit: O7-O8
HD 229069	21/10/12	H: O8-B2; He: alles	ohne: O5, B1; mit: O5-B2
HD 229077	03/08/12	nichts	nichts
HD 229077	08/08/12	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts
TYC 3951-2450-1	11/10/12	H: B3-B5; He: B5-A5	ohne: B5-B6, A0-A5; mit: alles
$BD{+}50\ 3180$	08/08/12	nichts	nichts
$BD{+}51\ 2945$	24/07/12	H: O9-B2; He: O5-O6, B3-B7	ohne: O9, B2; mit: O5, O9-B2
TYC 3596-1019-1	24/07/12		
TYC 3596-1019-1	30/07/12		
TYC 3596-1019-1	20/10/12		
TYC 3603-2122-1	25/07/12	nichts	nichts
TYC 3603-2122-1	16/10/12	H: B2-B3; He: B2-A5	ohne: B6; mit: alles
TYC 3967-1885-1	08/08/12	nichts	nichts
TYC 3967-1885-1	11/10/12	H: O9-B2; kein He	kein He
TYC 3603-971-1	01/08/12		
TYC 3603-971-1	16/10/12		
$BD{+}53\ 2661$	01/08/12	nicht zuordnungsbar	nicht zuordnungsbar
$BD{+}53\ 2661$	17/10/12	nicht zuordnungsbar	nicht zuordnungsbar
$BD{+}53\ 2661$	19/10/12	He: B5-A0	nicht zuordnungsbar
$BD{+}53\ 2661$	20/10/12	He: O5, B3-B5, A1-A5	nicht zuordnungsbar
TYC 3967-232-1	01/08/12	H: O9-B2; He: O5, B2-A0	ohne: B3; mit: O9, B2-B5, A1
TYC 3967-232-1	11/10/12	H: B3-B5, F2-F6; He: O8	ohne: B5-B6; mit: alles
$\mathrm{BD}{+59}$ 192	09/10/12	H: O5-O8; He: O5-O6, O9, B2	ohne: O5, O8; mit: O5-O8, B1-B2
$\mathrm{BD}{+59}$ 192	16/10/12	H: O5-O7; He: O5, B3-A5	ohne: O9, B2; mit: O5, O8-B3
GSC 03712-00331	17/10/12	nichts	nichts
$BD+63\ 11$	20/10/12	nichts	nichts
BD+62 36	09/10/12	nichts	nichts
$BD+62\ 36$	17/10/12	nichts	nichts
BD+59 44	17/10/12	nichts	nichts
BD+62 66 Nr.5	20/10/12	H: O9-B2; He: O6-B3	ohne: O5, B1, mit: O5-B2
BD+62 66 Nr. 4+5	20/10/12	H: O9-B2; He: O5-B2, A1-A5	ohne: O9-B2; mit: O5, O9-B2
TYC 3712-57-1	17/10/12	H: nichts; He: O5, B3-A5	ohne: O5, B1; mit: O5-B2

Tab. A.48: Ergebnistabelle Teil 4. Äquivalentbreiten (EW) von H und He und ihr Verhältnis H/He anhand Sebastians Spektren. Die Messungen der EWs werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die EW-Verhältnisse werden zuerst ohne Fehlerbalken (ohne) abgelesen und danach mit ihnen (mit). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen.

Katalogname	Datum	EW (synthetisch)	EW-Verhältnis (synthetisch)
HD 181730	09/10/12	H: O9-B1	kein He
HD 181730	15/10/12	H: B1; He: alles	ohne: B5; mit: B0-A0
HD 227828	23/07/12	nichts	nichts
HD 227828	30/07/12		
HD 227828	19/10/11		
HD 228256	25/07/12	nicht möglich	nicht möglich
TYC 3937-903-1	24/07/12	H: B1; He: O9-B5	ohne: B1-B2; mit: O9-B4
TYC 3937-903-1	15/10/12	H: O9-B0; He: alles	ohne: B3; mit: alles
HD 228654	23/07/12	nichts	nichts
HD 228742	25/07/12	H: O9-B0; He: O9-B9	ohne: O9; mit: O9-B1
HD 228742	20/10/12	nichts	nichts
HD 228742	21/10/12	H: O9-B0; He: O9-A0	ohne: O9; mit: O9-B0
HD 228773	01/08/12	H: B0; He: Wert zu hoch-nichts	ohne: B3; mit: O9-B5
HD 228773	21/10/12	H: O9-B0; He: alles	ohne: B3; mit: O9-B4
HD 228905	08/08/12	nichts	nichts
HD 228905	11/10/12		
HD 229069	03/08/12	H: um O9; He: nichts	ohne: nichts; mit: nichts
HD 229069	21/10/12	H: O9-B0; He: alles	ohne: nichts, mit: nichts
HD 229077	03/08/12	nichts	nichts
HD 229077	08/08/12	nichts	nichts
TYC 3951-2450-1	08/08/12	nichts	nichts
TYC 3951-2450-1	11/10/12	H: B1-B2; He: alles	ohne: B5; mit: O9-B9
$\mathrm{BD}{+50}$ 3180	08/08/12	nichts	nichts
$BD{+}51\ 2945$	24/07/12	H: B0; He: O9-B6	ohne: O9; mit: O9-B0
TYC 3596-1019-1	24/07/12		
TYC 3596-1019-1	30/07/12		
TYC 3596-1019-1	20/10/12		
TYC 3603-2122-1	25/07/12	nichts	nichts
TYC 3603-2122-1	16/10/12	H: O9-B0; He: B2-A0	ohne: B5; mit: O9-B8
TYC 3967-1885-1	08/08/12	nichts	nichts
TYC 3967-1885-1	11/10/12	H: B0; kein He	kein He
TYC 3603-971-1	01/08/12		
TYC 3603-971-1	16/10/12		
$BD+53\ 2661$	01/08/12	nicht zuordnungsbar	nicht zuordnungsbar
$BD+53\ 2661$	17/10/12	nicht zuordnungsbar	nicht zuordnungsbar
$BD+53\ 2661$	19/10/12	He: B5-A0	nicht zuordnungsbar
BD+53 2661	20/10/12	He: O9-B5	nicht zuordnungsbar
TYC 3967-232-1	01/08/12	H: B0; He: alles	ohne: B0-B1; mit: O9-B3
TYC 3967-232-1	11/10/12	H: B1; He: nichts	ohne: B5; mit: O9-B8
BD+59 192	09/10/12	H: nichts; He: O9-B8	ohne: nichts; mit: nichts
BD+59 192	16/10/12	H: nichts; He: O9-A0	ohne: nichts; mit: O9-B0
GSC 03712-00331	17/10/12	nichts	nichts
BD+63 11	20/10/12	nichts	nichts
BD+62 36	09/10/12	nichts	nichts
BD+62 36	17/10/12	nichts	nichts
BD+59 44	17/10/12	nichts	nichts
BD+62 66 Nr.5	20/10/12	H: BU ; He: $B1$	onne: nichts; mit: nichts
BD+62 66 Nr. 4+5	20/10/12	H: B0; He: B0-B5	ohne: nichts; mit: O9
TYC 3712-57-1	17/10/12	H: nichts, He: alles	ohne: nichts; mit: nichts

Tab. A.49: Ergebnistabelle Teil 5. Äquivalentbreiten (EW) von H und He und ihr Verhältnis H/He anhand synthetischer Spektren. Die Messungen der EWs werden an Wasserstoff (H) und Helium (He) einzeln aufgelistet. Die EW-Verhältnisse werden zuerst ohne Fehlerbalken (ohne) abgelesen und danach mit ihnen (mit). Für die resultierende Auswertung werden nur Werte mit Fehlerbalken berücksichtigt, die Angaben ohne Fehlerbalken sollen nur die ungefähre Position des Wertes H/He verdeutlichen.

Katalognamo	Datum	Endresultat Spoktralklasso
		Englesuitat Spektraikiasse
HD 181730	$\frac{09}{10}\frac{12}{12}$	nicht möglich $\mathbf{P}_{\mathbf{r}} \in \mathbf{P}_{\mathbf{r}}^{\mathbf{r}}$
ПD 181730	15/10/12	BU < BS DIS BS < BS
HD 227828	23/07/12	nicnts
HD 227828	$\frac{30}{07}$	
HD 227828	19/10/11	- ish to a valish
HD 228250	25/07/12	nicht möglich $\mathbf{D}_{1} \neq \mathbf{D}_{2} \neq \mathbf{D}_{2}$
TYC 3937-903-1	$\frac{24}{07}$	BI < B3 < B8
TYC 3937-903-1	15/10/12	09 < B4 bis $B8 < B9$
HD 228034	23/07/12	nicnts $\mathbf{O}0\mathbf{h}\mathbf{i}$ $\mathbf{P}0$ $<$ $\mathbf{P}7$
HD 228742	25/07/12	U9 DIS $\mathbf{B0} < \mathbf{B}i$
HD 228742	20/10/12	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} \frac{1}$
HD 228742	21/10/12	O9 < B1 < B0
HD 228773	01/08/12	O9 < B1 bis $B8 < A0$
HD 228773	21/10/12	O9 < B0 < B9
HD 228905	$\frac{11}{10}$	nicnts
HD 228905	11/10/12	$O_{2} < \mathbf{D} \mathbf{A}$ his \mathbf{D}'
HD 229069	03/08/12	$O_8 < B_4$ bis B5
HD 229009	21/10/12 02/08/12	O8 < B0 < B4
HD 229077	03/08/12	nichts
HD 229077 TVC 2051 2450 1	$\frac{08}{08}$	nichts
TYC 3951-2450-1	08/08/12	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
110 3951-2450-1	11/10/12	O9 < B1 < A0
BD+50,5180 BD+51,2045	$\frac{08}{08} \frac{12}{12}$	$\frac{1}{100} < \mathbf{P4} \mathbf{his} \mathbf{P5} < \mathbf{P7}$
DD+31 2943 TVC 2506 1010 1	24/07/12 24/07/12	$O9 < \mathbf{D4}$ DIS $\mathbf{D3} < D7$
TYC 3590-1019-1	$\frac{24}{07}\frac{12}{12}$	
TYC 2506 1019-1	$\frac{30}{07}\frac{12}{10}$	
TVC 2602 2122 1	20/10/12 25/07/12	nichta
T I C 3003-2122-1 TVC 2602 2122 1	$\frac{25}{07}\frac{12}{12}$	$O_0 < \mathbf{P}_2 < \mathbf{A}_0$
TYC 2067 1825 1	10/10/12	$09 < \mathbf{B3} < A0$
TVC 2067 1885 1	$\frac{11}{10}$	
TVC 3603 071 1	$\frac{11}{10}$	B2 !
TIC 3003-971-1 TVC 2602 071 1	$\frac{01}{00}$	
D 52 2661	10/10/12 01/08/12	night mögligh
DD+53 2001 DD+52 2661	$\frac{01}{00}$	nicht möglich
BD+53/2001 BD+53/2661	17/10/12 10/10/12	B5 < B8 < A0
DD+53 2001 DD+52 2661	$\frac{19}{10}\frac{12}{10}$	$D_0 \leq D_0 \leq A_0$ $D_1 < D_2$ by $D_4 < D_5$
$DD+03\ 2001$ TVC 2067 222 1	20/10/12 01/08/12	$D1 \leq D3$ $D1S D4 \leq D3$ $O0 \leq D2$ big $D5 \leq D0$
TIC 3907-232-1 TVC 3067 232 1	$\frac{01}{00}$	$O_9 < B_2$ DIS $B_3 < B_9$
D 50 102	$\frac{11}{10}\frac{12}{12}$	$O_0 < D_0 < D_0 < P_1$
BD + 59 + 192 BD + 59 + 102	$\frac{10}{10}$	B0 < B4 his B5 < A0
CSC 02719 00221	10/10/12 17/10/12	$\mathbf{D}_0 < \mathbf{D}_4$ \mathbf{D}_1 $\mathbf{D}_2 < \mathbf{A}_0$
BD 162 11	$\frac{17}{10}$	nichts
BD+03 11 BD+62 36	20/10/12 00/10/12	nichts
BD+02 30 BD+62 36	$\frac{10}{12}$	nichts
DD + 02 = 50 DD + 50 = 44	17/10/12 17/10/12	nichts
BD+53 44 BD+62 66 Nr 5	$\frac{11}{10}$	$00 < \mathbf{B0}$ bis $\mathbf{P1} < \mathbf{P5}$
BD + 62 66 Nr 4.15	20/10/12 20/10/12	$O_0 < B_0 < B_5$
TYC 3712-57-1	$\frac{10}{12}$	O9 < B0 bis $B5 < B6$

Endresultate

Tab. A.50: Endresultate der Spektralklassifikation. Die fett gedruckten Angaben sind die größten Werte in den Histogrammen, die linken und rechten Werte grenzen die erstgenannten ein. Die Grenze wird auf 60 % des höchsten Wertes gesetzt.

Katalogname	Endresultat Spektralklasse aus mehreren Nächten
HD 181730	$O9 < \mathbf{B5}$ bis $\mathbf{B6} < B8$
TYC 3937-903-1	O9 < B3 bis $B4 < B7$
HD 228742	O9 < B0 bis $B1 < B7$
HD 228773	$\mathrm{O9} < \mathbf{B6} < \mathrm{B9}$
HD 229069	$\mathrm{O7} < \mathbf{B1} < \mathrm{B6}$
$BD{+}53\ 2661$	O5, B3 < B5 bis B8 < A0
TYC 3967-232-1	B1 < BS < B8
${ m BD}{+}59\ 192$	$\mathrm{O5},\mathrm{O6},\mathrm{O9}<\mathbf{B2}<\mathrm{B8}$
BD+62~66	$\mathrm{O9} < \mathbf{B0} < \mathrm{B5}$

Tab. A.51: Endresultate der Spektralklassifikation, für Sterne, die an mehreren Nächten beobachtet wurden. Die fett gedruckten Angaben sind die größten Werte in den Histogrammen, die linken und rechten Werte grenzen die erstgenannten ein. Die Grenze wird auf 60 % des höchsten Wertes gesetzt.

Anhang B

B.1 Liste aller ausgewählten Targets für die Beobachtung

Die Werte für Helligkeiten und Spektralklasse werden aus SIMBAD übernommen, die Referenzen stehen nur bei beobachteten Targets.

Name	RA2000	DEC2000	$m_v \ [mag]$
HD 226275	$19 \ 52 \ 16.70$	$+38 \ 24 \ 04.9$	10.8
HD 227769	$20\ 07\ 23.43$	$+34 \ 35 \ 02.0$	10.6
HD 227828	$20\ 07\ 57.77$	$+35 \ 43 \ 05.5$	9.3
HD 228005	$20 \ 09 \ 37.67$	$+35 \ 59 \ 35.5$	10.5
HD 228256	$20\ 11\ 54.37$	+40 00 29.6	10.0
HD 228377	$20\ 13\ 20.59$	$+36 \ 34 \ 03.2$	10.4
TYC 3937-903-1	$20\ 15\ 18.17$	$+54 \ 20 \ 31.5$	9.9
HD 228654	$20\ 15\ 54.40$	$+40 \ 52 \ 13.4$	9.6
HD 228730	$20\ 16\ 48.95$	$+40 \ 47 \ 04.5$	10.6
HD 228742	$20\ 17\ 01.24$	$+41 \ 26 \ 45.4$	9.9
HD 228773	$20\ 17\ 34.95$	$+38 \ 33 \ 37.1$	10.0
HD 228905	$20\ 19\ 21.25$	$+38 \ 24 \ 41.0$	10.1
Cl* NGC 6913 KJ 7	$20\ 21\ 11.83$	$+38 \ 35 \ 14.4$	10.9
HD 229069	$20\ 21\ 22.89$	$+37 \ 51 \ 36.5$	9.9
HD 229077	$20\ 21\ 29.97$	+38 01 31.6	9.9
TYC 3937-1037-1	$20\ 23\ 14.32$	$+53 \ 57 \ 01.1$	10.9
TYC 3584-2325-1	$20\ 25\ 47.05$	$+50 \ 47 \ 05.0$	10.6
TYC 3950-1751-1	$20 \ 32 \ 16.78$	$+52 \ 39 \ 55.3$	10.8
TYC 3585-287-1	$20 \ 33 \ 49.41$	$+52 \ 27 \ 09.7$	10.7
TYC 3954-967-1	$20 \ 33 \ 50.06$	$+55 \ 05 \ 53.6$	10.4
TYC 3586-470-1	$20 \ 39 \ 35.75$	$+52 \ 29 \ 07.0$	10.6
TYC 3951-84-1	$20 \ 40 \ 21.07$	$+53 \ 44 \ 52.3$	10.3
TYC 3951-2450-1	20 42 03.03	$+53 \ 18 \ 20.6$	10.1
$BD{+}53\ 2476$	$20\ 42\ 59.09$	$+54 \ 28 \ 34.1$	10.4
$\mathrm{BD}{+50}~3180$	$20\ 43\ 50.22$	+50 58 22.3	9.9
$BD{+}50\ 3188$	$20\ 45\ 08.70$	$+50 \ 33 \ 00.3$	10.3
$BD{+}51\ 2945$	$20\ 45\ 34.34$	$+51 \ 33 \ 00.1$	9.8
TYC 3959-1386-1	$20\ 45\ 41.15$	$+56 \ 44 \ 49.3$	10.4

Tab. B.1: Liste aller ausgewählten Targets für die Sommerbeobachtung. RA2000 - Rektaszension, DEC2000 - Deklination (bezogen auf das Jahr 2000), m_v [mag] - scheinbare Helligkeit im sichtbaren Spektralbereich.

Name	RA2000	DEC2000	$m_v \; [mag]$
TYC 3955-724-1	20 48 40.60	$+54 \ 25 \ 07.9$	10.8
${ m BD}{+}47\ 3203$	$20\ 51\ 46.87$	$+48 \ 02 \ 13.7$	10.2
TYC 3952-740-1	$20\ 53\ 32.11$	$+53 \ 09 \ 01.0$	10.5
$BD{+}53\ 2513$	$20 \ 53 \ 59.58$	$+53 \ 42 \ 49.3$	10.1
TYC 3596-1019-1	$21 \ 03 \ 06.16$	$+49 \ 26 \ 23.8$	9.5
TYC 3961-1567-1	$21 \ 10 \ 51.24$	$+56 \ 24 \ 35.4$	10.4
TYC 3601-331-1	$21 \ 21 \ 49.97$	+51 10 53.0	10.8
TYC 3966-1131-1	$21 \ 27 \ 53.95$	$+53 \ 04 \ 33.4$	10.7
TYC 3602-1454-1	$21\ 28\ 04.17$	$+52 \ 05 \ 40.1$	10.3
TYC 3966-1329-1	$21 \ 29 \ 02.21$	$+53 \ 06 \ 30.1$	10.4
TYC 3603-2122-1	$21 \ 34 \ 40.80$	$+52 \ 26 \ 47.2$	9.9
TYC 3603-155-1	$21 \ 35 \ 21.19$	$+51 \ 23 \ 22.5$	10.2
TYC 3599-117-1	$21 \ 35 \ 39.09$	$+50 \ 36 \ 52.9$	10.5
$\mathrm{BD}{+50}~3376$	$21 \ 36 \ 08.10$	+51 10 03.4	10.0
TYC 3603-1000-1	$21 \ 36 \ 18.95$	+50 50 50.1	10.8
TYC 3967-1885-1	$21 \ 37 \ 04.62$	+52 56 47.3	9.9
TYC 3967-2262-1	$21 \ 37 \ 11.07$	$+53 \ 28 \ 36.7$	10.4
TYC 3967-2744-1	$21 \ 37 \ 35.01$	$+53 \ 39 \ 21.8$	10.3
TYC 3967-626-1	$21 \ 37 \ 37.27$	$+53 \ 54 \ 21.5$	10.2
TYC 3603-971-1	$21 \ 37 \ 45.80$	+51 13 52.9	9.7
$BD{+}53\ 2661$	$21 \ 38 \ 01.78$	$+53 \ 53 \ 38.4$	9.7
TYC 3967-232-1	$21 \ 38 \ 08.48$	$+53 \ 50 \ 17.3$	9.8
TYC 3967-1850-1	$21 \ 38 \ 33.11$	$+53 \ 55 \ 31.2$	10.8
TYC 3967-983-1	$21 \ 39 \ 32.06$	$+53 \ 04 \ 05.9$	10.7
TYC 3967-3474-1	$21 \ 41 \ 19.82$	$+53 \ 17 \ 01.0$	10.3
TYC 3603-2309-1	$21 \ 42 \ 34.36$	+52 18 00.6	10.5
TYC 3972-1657-1	$21 \ 47 \ 21.41$	$+54 \ 40 \ 57.5$	10.2
TYC 3972-2500-1	$21 \ 48 \ 48.09$	+54 56 26.9	10.1
TYC 3616-1341-1	$21 \ 49 \ 26.71$	$+51 \ 22 \ 58.7$	10.6

Tab. B.2: (*Fortsetzung von Tabelle B.1*) Liste aller ausgewählten Targets für die Sommerbeobachtung. RA2000 - Rektaszension, DEC2000 - Deklination (bezogen auf das Jahr 2000), m_v [mag] - scheinbare Helligkeit im sichtbaren Spektralbereich.

B.2 Synthetische Spektren

B.2 Synthetische Spektren

Abb. B.1: Synthetisches Spektrum eines O9V-Sterns (Gummersbach & Kaufer).

Abb. B.2: Synthetisches Spektrum eines B0V-Sterns (Gummersbach & Kaufer).

Abb. B.3: Synthetisches Spektrum eines B1V-Sterns (Gummersbach & Kaufer).

Anhang B

Abb. B.4: Synthetisches Spektrum eines B2V-Sterns (Gummersbach & Kaufer).

Abb. B.5: Synthetisches Spektrum eines B5V-Sterns (Gummersbach & Kaufer).

Abb. B.6: Synthetisches Spektrum eines A0V-Sterns (Gummersbach & Kaufer).

Name	RA2000	DEC2000	$m_v \ [mag]$	Spektralklasse
$\mathrm{BD}{+}59\ 192$	$01 \ 09 \ 57.75$	$+60 \ 28 \ 09.8$	10.02	0
EM* VES 761	$02 \ 43 \ 30.98$	+62 03 33.9	11.50	Ο
GSC 03712-00331	$02 \ 44 \ 09.10$	$+59 \ 33 \ 41.0$	11.20	0
$BD{+}63\ 2091$	$00 \ 00 \ 30.74$	$+64 \ 36 \ 35.1$	10.50	В
$BD{+}63\ 2100$	$00 \ 04 \ 11.85$	$+64 \ 17 \ 40.2$	10.70	В
$BD+63\ 11$	$00\ 13\ 31.25$	$+64 \ 32 \ 30.1$	10.20	В
BD+62 36	$00\ 16\ 30.59$	$+63 \ 29 \ 21.2$	9.80	В
$\mathrm{BD}{+}59~44$	$00\ 23\ 16.34$	+59 59 55.6	9.90	В
BD+62~66	$00\ 23\ 20.31$	+62 52 51.4	10.50	В
TYC 3653-1426-1	$00\ 23\ 36.44$	$+53 \ 22 \ 11.2$	10.33	В
HD 236495	$00 \ 40 \ 36.40$	$+58 \ 26 \ 19.5$	10.00	В
$\rm AG{+}55\ 107$	$00 \ 57 \ 45.21$	$+55 \ 25 \ 33.0$	10.64	В
TYC 4034-791-1	$01 \ 09 \ 20.30$	$+61 \ 55 \ 51.0$	11.62	В
$EM^* VES 704$	$01 \ 24 \ 01.04$	+58 50 36.1	11.16	В
TYC 3682-85-1	$01 \ 26 \ 31.00$	+59 59 37.0	11.70B	В
HD 236850	$01 \ 44 \ 35.96$	$+57 \ 42 \ 14.7$	10.10	В
TYC 4036-2705-1	$01 \ 53 \ 39.00$	$+61 \ 57 \ 57.0$	11.55	В
TYC 4036-919-1	$01 \ 56 \ 44.20$	$+61 \ 52 \ 30.0$	11.80B	В
TYC 4033-1556-1	$02 \ 02 \ 50.00$	$+60 \ 35 \ 29.0$	10.97	В
TYC 3697-2278-1	$02 \ 03 \ 19.80$	$+58 \ 45 \ 13.0$	11.19	В
GSC 03699-00274	$02 \ 27 \ 44.70$	+58 51 48.0	11.90	В
TYC 3699-1074-1	$02 \ 34 \ 25.20$	$+58 \ 32 \ 25.0$	11.82	В
TYC 3712-57-1	$02 \ 42 \ 37.90$	+59 55 39.0	10.48	В
TYC 2394-451-1	$05\ 15\ 07.65$	$+32 \ 25 \ 18.8$	11.64	В

B.3 Tabellen Sebastians und synthetischer Spektren

Tab. B.3: Liste aller ausgewählten Targets für die Herbstbeobachtung. RA2000 - Rektaszension, DEC2000 - Deklination (bezogen auf das Jahr 2000), m_v [mag] - scheinbare Helligkeit im sichtbaren Spektralbereich.

B.3 Tabellen Sebastians und synthetischer Spektren

Auflistung der Tabellen:

Linientiefen Sebastians Sterne: Tabellen B.4 und B.5.
Linientiefen synthetischer Sterne: Tabelle B.6.
Äquivalentbreiten Sebastians Sterne: Tabellen B.7, B.8 und B.9.
Äquivalentbreiten synthetischer Sterne: Tabelle B.10.

		Tab. B	F6	F4	F4	F3	F2	F0	F0	A9	Α7	Α7	A6	A6	A5	A4	A1	A1	A0	B8	B8	B5	B3	B2	B1	09	80	07.5	06	O_5	05	SpK1
H ob anale	bei d	.4: Linie	\mathbf{NI}	V	$_{\rm IV}$	III-IV	$_{\rm IV}$	V	\mathbf{IV}	$_{\rm IV}$	V	$_{\rm IV}$	\mathbf{IV}	V	III-IVv	V n	$_{\rm IV}$	V	V	$_{\rm IV}$	V	V	V	\mathbf{IV}	V	V	e	III e	I ab	e	e	LKK
en/Mitte/unter og. H und He ge	en O-Sternen a	ntiefen Sebasti	8796	96441	118268	110960	746	23783	104887	17846	97649	105199	115770	15547	6686	98055	112051	53910	91262	677	112029	2912	23767	1067	118243	111841	105186	18614	109556	11837	99580	Name (HIP)
n - Mess emittelt	lle LKF	ans Spe	0.036	0.029	0.032	0.033	0.033	0.027	0.012	0.028	0.031	0.031	0.024	0.036	0.025	0.023	0.021	0.047	0.026	0.025	0.021	0.019	0.018	0.023	0.048	0.018	0.028	0.022	0.028	0.025	0.030	RMS
sung der I sind gemi	ks. Zeichei	ktren. Un	0.5493	0.6552	0.6600	0.5968	0.5928	0.6341	0.5547	0.5169	0.4682	0.4526	0.5421	0.5474	0.5485	0.4630	0.6760	0.6694	0.6571	0.5173	0.4564	0.4223	0.3965	0.4541	0.3740	0.4011	0.2279	0.2371	0.1040	0.1805	0.2200	H oben
ttelte Lini	nerklärung	tersucht w	0.5263	0.6472	0.6510	0.5808	0.5738	0.6171	0.5377	0.4613	0.4532	0.4466	0.5443	0.5364	0.5225	0.4470	0.6650	0.6544	0.6551	0.5123	0.4484	0.4113	0.4038	0.4451	0.3440	0.3911	0.2169	0.2141	0.1430	0.1305	0.2100	H Mitte
am oberer entiefen.	;: SpKl - S	erden die	0.4824	0.5950	0.6078	0.5557	0.5370	0.5813	0.5213	0.4830	0.4082	0.3868	0.4919	0.4733	0.4961	0.4075	0.6324	0.6009	0.6006	0.4695	0.4225	0.3848	0.3675	0.3940	0.2744	0.3711	0.1906	0.2126	0.1420	0.1505	0.1900	H unten
ı Rand des Sp	pektralklasse,	Spektralklasse	0.51933	0.63247	0.63960	0.57777	0.56787	0.61083	0.53790	0.48707	0.44320	0.42867	0.52610	0.51903	0.52237	0.43917	0.65780	0.64157	0.63760	0.49970	0.44243	0.40613	0.38927	0.43107	0.33080	0.38777	0.21180	0.22127	0.12967	0.15383	0.20667	H gemittelt
ektrums, ii	LKK - Leu	n O, B, A																		0.0356	0.0234	0.1202	0.1359	0.2932	0.1995	0.2901	0.1038	0.1170	0.0943		0.0920	He oben
n der Mitte	ıchtkraftkla	und F, der																		0.0156	0.0024	0.0962	0.1169	0.2752	0.1645	0.2801	0.0768	0.1020	0.0683		0.0760	He Mitte
und am un	sse, RMS -	Leuchtkraf																		0.0084	-0.0052	0.0936	0.1016	0.2656	0.1613	0.2622	0.0798	0.0938	0.7330		0.0780	He unten
nteren Rand, bei He	Root Mean Square,	ftklassen IV und V,																		0.01987	0.00687	0.10333	0.11813	0.27800	0.17510	0.27747	0.08680	0.10427	0.29853	0.00000	0.08200	He gemittelt

Linientiefen Sebastians Sterne

									quare, log. H renzen
∆ log u.	$\begin{array}{c} 0.2907 \\ 0.1610 \\ 0.1614 \\ 0.2634 \\ 0.0512 \end{array}$	$\begin{array}{c} 0.2360 \\ 0.0635 \\ 0.0962 \\ 0.1139 \end{array}$	gegen 0						ot Mean S oei He ana rre Fehlerg
$\Delta \log o.$	$\begin{array}{c} 0.1726\\ 0.1172\\ 0.1174\\ 0.1628\\ 0.0458\end{array}$	$\begin{array}{c} 0.1521 \\ 0.0554 \\ 0.0787 \\ 0.0901 \end{array}$	0.4103						tMS - Roo en Rand, h e und unte
log (H/He)	0.3421 -0.3622 0.3268 0.3874 0.1454	0.2763 0.1905 0.5179 0.5944	1.4941						ralklasse, H 1 am unter 0./u ober
Δ H/He	$\begin{array}{c} 1.0726\\ 0.1345\\ 0.6588\\ 1.1097\\ 0.1555\end{array}$	0.7920 0.2110 0.6545 0.9065	49.0410						iKl - Spekt r Mitte unc fen, ∆ log (
H/He	2.1982 0.4343 2.1221 2.4401 1.3975	$\begin{array}{c} 1.8892 \\ 1.5506 \\ 3.2951 \\ 3.9303 \end{array}$	31.1965						ittelt. Sp ns, in der Linientie
He gem.	$\begin{array}{c} 0.0820\\ 0.2985\\ 0.1043\\ 0.0868\\ 0.2775\end{array}$	0.1751 0.2780 0.1181 0.1033	0.0151						rden gem Spektrur ältnis der S).
He u.	$\begin{array}{c} 0.0780\\ 0.7330\\ 0.0938\\ 0.0798\\ 0.0798\\ 0.2622 \end{array}$	$\begin{array}{c} 0.1613\\ 0.2656\\ 0.1016\\ 0.0936\end{array}$	0.0068						ssen we and des e - Verha las RM
He M.	$\begin{array}{c} 0.0760 \\ 0.0683 \\ 0.1020 \\ 0.0768 \\ 0.0768 \end{array}$	0.1645 0.2752 0.1169 0.0962	0.0090						che Kla beren R n, H/H _€ r dient e
He o.	$\begin{array}{c} 0.0920\\ 0.0943\\ 0.1170\\ 0.1038\\ 0.2901 \end{array}$	$\begin{array}{c} 0.1995\\ 0.2932\\ 0.1359\\ 0.1202 \end{array}$	0.0295						(4), glei fe am ol nientiefe ls Fehle
H gem.	0.1803 0.1297 0.2213 0.2118 0.3878	$\begin{array}{c} 0.3308\\ 0.4311\\ 0.3893\\ 0.3893\\ 0.4061 \end{array}$	0.4711 0.6376	0.6497	0.4392 0.5224 0.5226 0.4359	$0.4871 \\ 0.5744$	$\begin{array}{c} 0.5679 \\ 0.5778 \\ 0.6360 \end{array}$	0.5193	ektren (B Linientie littelte Lin tnisses (a
H u.	$\begin{array}{c} 0.1703\\ 0.1420\\ 0.1420\\ 0.2126\\ 0.1906\\ 0.3711\end{array}$	$\begin{array}{c} 0.2744 \\ 0.3940 \\ 0.3675 \\ 0.3848 \\ 0.3848 \end{array}$	0.4460	0.6167	0.4075 0.4961 0.4826 0.3975	0.4830 0.5513	$0.5370 \\ 0.5557 \\ 0.6014$	0.4824	ians Sp ung der ind gem ı Verhäl
Н М.	$\begin{array}{c} 0.1703\\ 0.1430\\ 0.1430\\ 0.2141\\ 0.2169\\ 0.3911\end{array}$	$\begin{array}{c} 0.3440 \\ 0.4451 \\ 0.4038 \\ 0.4113 \\ 0.4113 \end{array}$	0.4803	0.6597	0.4470 0.5225 0.5403 0.4499	0.4613 0.5774	$\begin{array}{c} 0.5738 \\ 0.5808 \\ 0.6491 \end{array}$	0.5263	- Messu e gem. s mierten
Н о.	$\begin{array}{c} 0.2003 \\ 0.1040 \\ 0.2371 \\ 0.2279 \\ 0.4011 \end{array}$	0.3740 0.4541 0.3965 0.4223	0.4869	0.6727	0.4630 0.5485 0.5447 0.4604	$0.5169 \\ 0.5944$	0.5928 0.5968 0.6576	0.5493	entiefen ./M./u. .und He logarith
\mathbf{RMS}	$\begin{array}{c} 0.03\\ 0.03\\ 0.02\\ 0.03\\ 0.03\end{array}$	$\begin{array}{c} 0.05 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$	0.02	0.03	$\begin{array}{c} 0.02\\ 0.03\\ 0.03\\ 0.03\end{array}$	$0.03 \\ 0.02$	$\begin{array}{c} 0.03 \\ 0.03 \\ 0.03 \end{array}$	0.04	H o. gem des
SpKl	03 04 05 06 07.5 09 09	B B B B B B B B B B B B B B B B B B B	B8 B9	A1 A2 A3	A4 A5 A7 A8	A9 F1 F1	F2 F3 F4	F6 F7 F8	Tab. B

B.3 Tabellen Sebastians und synthetischer Spektren

Linientiefen synthetischer Sterne

SpKl	н	He	\mathbf{H}/\mathbf{He}	$\log (H/He)$
O9V	0.270	0.23	1.17	0.070
B0V	0.325	0.28	1.16	0.065
B1V	0.355	0.31	1.15	0.059
B2V	0.370	0.32	1.16	0.063
B3V				
B4V				
B5V	0.43	0.19	2.26	0.355
B6V				
B7V				
B8V				
B9V				
A0V	0.50			

Tab. B.6: Linientiefen synthetischer Spektren. Die Spektren besitzen kein Rauschen, die Tiefen werden exakt gemessen. SpKl - Spektralklasse, H - Tiefe der H-Linie, He - Tiefe der He-Linie.

SpKl	Name	Н о.	Δ H o.	H M.	Δ H M.	H u.	ΔHu.	Mw H	∆ МW Н	He o.	Δ He o.	He M.	Δ He M.	He u.	∆ He u.	MW He	∆ MW He
05	99580	2.04	0.14	1.82	0.12	1.52	0.10	1.79	0.12	0.94	0.13	0.32	0.07	0.55	0.10	0.61	0.10
05	11837	1.86	0.12	1.34	0.09	1.06	0.09	1.42	0.10	0.67	0.11	0.33	0.07	0.18	0.06	0.39	0.08
06	109556	1.30	0.12	0.74	0.08	0.05	0.07	0.70	0.09	0.97	0.12	0.64	0.10	0.43	0.08	0.68	0.10
O7.5	18614	1.81	0.09	1.51	0.07	1.32	0.07	1.54	0.08	1.11	0.09	0.69	0.07	0.59	0.07	0.80	0.08
08	105186	2.17	0.11	1.84	0.10	1.62	0.10	1.88	0.10	1.26	0.13	0.80	0.11	0.58	0.09	0.88	0.11
00	111841	3.59	0.09	3.07	0.08	2.58	0.07	3.08	0.08	0.77	0.05	0.68	0.05	0.57	0.04	0.67	0.05
B1	118243	4.63	0.24	2.63	0.16	2.00	0.15	3.09	0.18	1.15	0.14	0.79	0.13	0.54	0.10	0.82	0.12
B2	1067	3.73	0.11	2.88	0.09	2.48	0.10	3.03	0.10	0.85	0.08	0.64	0.06	0.55	0.04	0.68	0.06
B3	23767	5.97	0.12	4.47	0.10	4.16	0.10	4.87	0.10	0.53	0.05	0.41	0.04	0.36	0.04	0.43	0.05
B5	2912	6.38	0.12	4.75	0.10	3.70	0.09	4.94	0.10	0.39	0.06	0.23	0.04	0.20	0.03	0.27	0.04
B8	112029	7.76	0.13	6.95	0.12	5.90	0.12	6.87	0.12	0.16	0.07	0.05	0.04	0.04	0.04	0.08	0.05
B8	677	7.23	0.16	5.62	0.13	4.83	0.13	5.89	0.14	0.17	0.07	0.09	0.05	0.06	0.05	0.10	0.05
A0	91262	12.47	0.19	9.57	0.15	8.12	0.16	10.0	0.17								
A1	53910	10.00	0.27	8.26	0.24	6.84	0.23	8.37	0.25	0.60	0.18	0.32	0.13	0.13	0.11	0.35	0.14
A1	112051	10.16	0.15	8.98	0.14	7.87	0.13	9.00	0.14								
A4	98055	10.50	0.18	8.95	0.15	7.28	0.14	8.91	0.16								
A5	6686	11.70	0.21	8.71	0.17	7.07	0.15	9.16	0.18	0.59	0.10	0.23	0.07	0.12	0.06	0.31	0.07
A6	15547	9.80	0.23	7.46	0.20	6.18	0.19	7.81	0.21								
A6	115770	10.85	0.18	9.06	0.16	7.78	0.15	9.23	0.16								
A7	105199	9.12	0.20	7.42	0.18	5.86	0.16	7.47	0.18								
A7	97649	9.59	0.21	7.07	0.18	5.29	0.14	7.32	0.18								
A9	17846	7.38	0.18	5.63	0.14	4.40	0.14	5.80	0.15								
F0	104887	8.74	0.24	6.00	0.18	4.68	0.16	6.47	0.19								
F0	23783	7.72	0.21	6.64	0.18	4.78	0.15	6.38	0.18								
F2	746	7.84	0.24	6.68	0.22	4.95	0.17	6.49	0.21								
F3	110960	5.78	0.22	4.63	0.20	3.44	0.15	4.62	0.19								
F4	118268	5.77	0.21	4.74	0.18	4.06	0.17	4.86	0.19								
F4	96441	6.45	0.19	5.17	0.16	4.20	0.14	5.28	0.16								
F6	8796	6.23	0.24	4.56	0.18	3.30	0.15	4.70	0.19								
Tab. I	3.7: Äqı	uivaleı	ntbreite	n Seba	stians Sp	ektren	. Die W	/erte sir	id in Å. S	pKl - 5	bektral	dasse, N	Vame - H	IP-Nr.	des Steri	ns, H o./	M./u
	Mei	ssung	der Äq:	uivalen	tbreite a	m obe	ren Rar	id des I	Kontinuun	ns, in e	ler Mitte	e und a	m untere	n Rand	l, bei He	e analog.	MW H
	unc	1 MW	He sinc	d gemit	ttelte Äg	uivaler	tbreite	Δ M	W H bzw.	Δ MV	V He - g	emittelt	e Fehleri	nterval	le.)	
)	•)						

Äquivalentbreiten Sebastians Sterne

Tab.	F6 F7	도 도 도 4 3	F1 F2	FO	A8	Α7	A6	Α5	A4	A2	A1	A0	B9	B8	В7	B_5	B4	D2	ק ה ק	BO	60	80	07.5	06	05	04 04	SpKl
B.8: Äc N; Fe	6.23	$5.78 \\ 6.11$	7.84	8.23	7 38	9.36	10.32	11.70	10.50		10.08	12.47		7.50		6.38	0.01	л 0, / 0 0 7	0 4.00	200	3.59	2.17	1.81	1.30	1.95		H o.
quivaler ame - H nteren F hlerinto	0.24	$0.22 \\ 0.20$	0.24	0.23	0.18	0.20	0.20	0.21	0.18		0.21	0.19		0.14		0.12	0.12	0.11	0.24	20.02	0.09	0.11	0.09	0.12	0.13		Δ H o.
ntbreite IP-Nr. Rand, b ervalle.	4.56	$4.63 \\ 4.96$	6.68	6.32	ת מכ	7.24	8.26	8.71	8.95		8.62	9.57		6.28		4.75	4.41	1 .00 1 0	2.00	000	3.07	1.84	1.51	0.74	1.58		H M.
n Sebas des Ste ei He a	0.18	$0.20 \\ 0.17$	0.22	0.18	0 14	0.18	0.18	0.17	0.15		0.19	0.15		0.12		0.10	0.10	0.09	0.10	ar 0	0.08	0.10	0.07	0.08	0.11		∆ H M.
stians \$ rns, H nalog.	3.30	$\begin{array}{c} 3.44\\ 4.13 \end{array}$	4.95	4.73	4 40	5.58	6.98	7.07	7.28		7.35	8.12		5.36		3.70	7.10	4.40 1 1 6	2.00	300	2.58	1.62	1.32	0.05	1.29		H u.
Spektren o./M./u MW H	0.15	$0.15 \\ 0.15$	0.17	0.15	0 14	0.15	0.17	0.15	0.14		0.18	0.16		0.12		0.09	0.10	0.10	0.10	0 1 1	0.07	0.10	0.07	0.07	0.10		∆ H u.
n (B.7), 1 Mess und MV	4.70	$4.62 \\ 5.07$	6.49	6.43	л 80	7.39	8.52	9.16	8.91		8.68	10.05		6.38		4.94	1.01	2.03 2.03	3.09	3 00	3.08	1.88	1.54	0.70	1.61		Mw H
gleiche F ung der <i>i</i> V He sinc	0.19	$\begin{array}{c} 0.19\\ 0.18\end{array}$	0.21	0.19	0 15	0.18	0.19	0.18	0.16		0.19	0.17		0.13		0.10	0.10	0.10	0.10	0 10	0.08	0.10	0.08	0.09	0.11		∆ MW H
Klassen Åquival H gemit								0.59			0.60			0.16		0.39	0.00	О.00 200	1.10	 	0.77	1.26	1.11	0.97	0.80		He o.
werden entbreite stelte Äq								0.10			0.18			0.07		0.06	0.00	0.08	0.14	0 1 4	0.05	0.13	0.09	0.12	0.12		Δ He o.
gemitte 9 am ob uivalen1								0.23			0.32			0.07		0.23	0.41	0.04	0.19	010	0.68	0.80	0.69	0.64	0.33		He M.
elt. Die V eren Rand tbreiten,								0.07			0.13			0.05		0.04	0.04	0.06	0.13	0 19	0.05	0.11	0.07	0.10	0.07		Δ He M.
Verte si 1 des K ∆ MW								0.12			0.13			0.05		0.20	0.00	0.00	0.0 ⊓.0 ¶. #	0 n	0.57	0.58	0.59	0.43	0.37		He u.
nd in Å ontinuur H bzw.								0.06			0.11			0.04		0.03	0.04	0.04	0.10	0 10	0.04	0.09	0.07	0.08	0.08		Δ He u.
. SpKl - ns, in der Δ MW 1								0.31			0.35			0.09		0.27	0.40	0.00	0.02	000	0.67	0.88	0.80	0.68	0.50		MW He
Spektralkl • Mitte und He - gemit								0.07			0.14			0.05		0.04	0.00	0.05	0.12	0 10	0.05	0.11	0.08	0.10	0.09		Δ MW He
asse, 1 am telte	I																										1

Anhang B

SpKl	H/He	Δ H/He	$\log (H/He)$	$\Delta \log {\rm H/He}$ oben	$\Delta \log H/He$ unten
Spektraltyp	Verhältnis H/He	mittl. Fehler H/He	$\log\mathrm{H/He}$	$\log H/He oben$	$\log H/He$ unten
O3					
O4					
O5	3.22	0.80	0.51	0.10	0.12
O6	1.03	0.28	0.01	0.11	0.14
O7.5	1.93	0.28	0.29	0.06	0.07
08	2.13	0.39	0.33	0.07	0.09
O9	4.58	0.44	0.66	0.04	0.04
B0					
B1	3.74	0.78	0.57	0.08	0.10
B2	4.46	0.55	0.65	0.05	0.06
B3	11.21	1.41	1.05	0.05	0.06
B4					
B5	18.06	3.01	1.26	0.07	0.08
B6					
B7					
B8	67.69	38.74	1.83	0.20	0.37
B9					
A0					
A1	24.62	10.32	1.39	0.15	0.24
A2					
A3					
A4					
A5	29.30	7.50	1.47	0.10	0.13
A6					
A7					
A8					
A9					
F0					
F1					
F2					
F3					
F4					
F5					
F6					
F7					
F8					

Tab. B.9: Verhältnisse von Äquivalentbreiten Sebastians Spektren. Die Werte sind in Å. SpKl - Spektralklasse, H/He - Verhältnisse der Linien, Δ H/He - Fehlerintervall des Verhältnisses, log H/He - logarithmiertes Verhältnis, Δ log H/He oben/unten - Fehlerintervall des log H/He.

_

SpKl	н	Δ H	He	Δ He	H/He	Δ H/He	$\log\mathrm{H/He}$	Δ log oben	Δ log unten
O9V	1.9850	0.0060	0.2964	0.0018	6.6970	0.0467	0.8259	0.0030	0.0030
B0V	3.2060	0.0075	0.3742	0.0018	8.5676	0.0460	0.9329	0.0023	0.0023
B1V	4.2770	0.0088	0.4142	0.0018	10.3259	0.0492	1.0139	0.0021	0.0021
B2V	5.3300	0.0089	0.4165	0.0018	12.7971	0.0596	1.1071	0.0020	0.0020
B3V									
B4V									
B5V	7.2440	0.0100	0.2263	0.0017	32.0106	0.2480	1.5053	0.0034	0.0034
B6V									
B7V									
B8V									
B9V									
A0V	14.5900	0.0130	0.0179	0.0017	815.5394	77.5918	2.9114	0.0395	0.0434

Äquivalentbreiten synthetischer Sterne

Tab. B.10: Äquivalentbreiten synthetischer Spektren. Die Werte sind in Å. SpKl - Spektralklasse, H und He - EWs für H und He, Δ H bzw. Δ He -Fehlerintervalle der EWs, Δ H/He - Fehlerintervall des Verhältnisses, log H/He - logarithmiertes Verhältnis, Δ log H/He oben/unten - Fehlerintervall des log H/He.

Anhang C Nightlogs

C.1 23.07.2012

Beobachter: Mugrauer, Pannicke, Gast

Wetter:

- bei Ankunft 21:20h vereinzelte Zirruswolken
- ab ca. 23:00 klar
- 01:00 klar
- 02:00 klar

Time»	Object» »	RA / DEC»	>	Instr.» Filt	ter» »	Exp-Time	l»	#/R	epeatings»	Bemerkungen/Annotations
21:30»	Darks» »	> >	»	FIASCO» -»	»	600s,10s		3,3		
22:30»	HD 227828	20 07 57/+35	43 05»	FIASCO» -»	»	600s.»	»	5»	>	AM=1.12, flat, arc
23:42	V ksi Her»	17 57 45/+29	14 52	FIASCO» -»	»	60s.»	»	3»	>	AM=1.1, flat, arc
00:05»	HD 228654»	20 15 54/+40	52 13»	FIASCO» -»	»	600s»	»	5 »	>	AM=1.04, flat, arc
01:00»	Deneb» »	20 41 26/+45	16 49»	FIASCO -»	»	10s»	»	3»	>	AM=1.014 flat, arc
01:15»	HR6395» »	17 10 30/+52	24 32	FIASCO» -»	»	600s»	»	3.	>	AM=1.12, flat, arc
01:50»	bet Dra»»	17 30 26/+52	18 05»	FIASCO» -»	»	60s »	»	3»	>	AM=1.15, flat, arc
02:05»	Sulafat»»	18 58 57/+32	41 22	FIASCO» -»	»	60s »	»	3>	>	AM=1.14, flat, arc, bet Dra ist hier auch Standard
02:13»	HR7396» »	19 27 34/+14	16 57»	FIASCO» -»	»	60s »	»	3.	>	AM=1.35, flat, arc
02:28»	V ksi Her»	17 57 45/+29	14 52»	FIASCO» -»	»	60s »	»	3»	>	AM=1.38, flat, arc
02:30»	Darks» »	» »	>	FIASCO» -»	>	60s»	»	3		

Date : 2012-07-23 Time : 21:27 Temperature Dome in (Wall) : 20.0°C Temperature Dome out : 18.2°C Dewpoint : 5.4°C Humidity Dome in : 52% Humidity Dome out : 43% Rel. Atmospheric Pressure : 1024.5 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : WSW

Date : 2012-07-23 Time : 23:13 Temperature Dome in (Wall) : 18.1 °C Temperature Dome out : 16.7 °C Dewpoint : 6.5 °C Humidity Dome in : 53% Humidity Dome out : 51% Rel. Atmospheric Pressure : 1024.7 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : ESE

Date : 2012-07-23 Time : 23:50 Temperature Dome in (Wall) : 17.8 °C Temperature Dome out : 15.8 °C Dewpoint : 6.2 °C Humidity Dome in : 54% Humidity Dome out : 53% Rel. Atmospheric Pressure : 1024.9 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : E

Date : 2012-07-24 Time : 00:56 Temperature Dome in (Wall) : 17.0 °C Temperature Dome out : 14.6 °C Dewpoint : 6.9 °C Humidity Dome in : 56% Humidity Dome out : 60% Rel. Atmospheric Pressure : 1024.0 hPa Tendency : - Wind speed : 0.0 km/h Wind direction : SE

Date : 2012-07-24 Time : 01:43 Temperature Dome in (Wall) : 17.1 °C Temperature Dome out : 14.3 °C Dewpoint : 7.1 °C Humidity Dome in : 56% Humidity Dome out : 62% Rel. Atmospheric Pressure : 1024.1 hPa Tendency : - Wind speed : 0.0 km/h Wind direction : ESE

Date : 2012-07-24 Time : 02:29 Temperature Dome in (Wall) : 16.8 $^{\circ}\mathrm{C}$ Temperature Dome out : 13.8 $^{\circ}\mathrm{C}$

Dewpoint : 7.3 °C Humidity Dome in : 57% Humidity Dome out : 65% Rel. Atmospheric Pressure : 1024.2 hPa Tendency : - Wind speed : 0.0 km/h Wind direction : NE

C.2 24.07.2012

Beobachter: Mugrauer, Pannicke Wetter:

- bei Ankunft 21:05h klar
- 23:00 klar
- 00:00 klar
- 02:30 klar
- 03:30 klar

Time»	Object» »	RA /	DEC»	>	Instr.»	Filter	»	Exp-Time»	#)	/ Repeatings»	Bemerkungen/Annotations
21:25»	Darks» »	»	»	»	FIASCO»	->	>	600s,60s, 10s	» 3,3	3, 3	
22:00»	Darks» »	>	>	»	FIASC0»	• >	2	300s» »	3		
22:20»	HD184108	19 3	2 02/+20	55 46»	FIASC0»	• >	>	60s, 300s»	1,	3» »	AM=1.2, flats, arcs unter 111 Her
22:40»	lllHer» »	18 4	7 01/+18	10 52»	FIASC0»	• >	>	60s» »	5 »	»	AM=1.22, flats, arcs
23:10»	TYC 3937-903-1»	20 1	5 18/+54	20 32»	FIASC0»	• >	>	600s» »	5 »	»	AM=1.1, flats und arcs bei Vega
00:05»	Vega» »	18 3	6 56/+38	46 59»	FIASC0»	• >	>	5s» »	3»	»	AM=1.03, flats, arcs
00.10	Darks» »	>	>	»	FIASC0»	• >	>	5s» »	3		
00.14	TYC 3596-1019-1	21 0	3 06/+49	26 24»	FIASC0»	• >	>	600s» »	5 »	»	AM=1.05, flats und arcs unter Sadr
01:10»	Sadr» »	20 2	2 14/+40	15 24»	FIASC0»	• >	>	lOs» »	5 »	»	AM=1.02, flats, arcs
01:17 >	BD+51 2945»	20 4	5 34/+51	33 00»	FIASC0»	• >	>	600s» »	5 »	»	AM=1.0, die ersten 2 Bilder evtl. identisch
»	» »	»	»	»	>	>	>	> >	>	»	flats und arcs unter Deneb
02:12»	Deneb» »	20 4	1 26/+45	16 49»	FIASC0»	• >	>	lOs» »	3.	»	1.0 flats, arcs
02:20»	HD193443»	20 1	8 52/+38	16 47»	FIASC0»	• >	>	60s» »	3 »	»	AM=1.04, flats, arcs
02:40»	LTT15729»	19 3	6 27/+50	13 14»	FIASC0»	• >	>	60s» »	3.	»	AM=1.1, flats, arcs
02:46»	HD193595»	20 1	9 31/+39	03 26»	FIASC0»	• >	>	600s» »	3 »	»	AM=1.1
03:30»	Sadr» »	20 2	2 14/+40	15 24»	FIASC0»	• >	>	lOs» »	3 »	»	AM=1.1, unter Sadr2 zu finden, 6 flats, 3 arcs
03:35»	HD186994	194	5 38/+44	57 50»	FIASC0»	• >	>	300s» »	4∞	»	AM=1.13, flats, arcs
03:55»	LTT15729»	19 3	6 27(+50	13 14»	FIASCO»	->	>	60s» »	6 »	>	AM=1.17, flats, arcs» » »

Date: 2012-07-24 Time: 21:30 Temperature Dome in (Wall): 22.4 °C Temperature Dome out: 22.0 °C Dewpoint: 10.8 °C Humidity Dome in: 58% Humidity Dome out: 49% Rel. Atmospheric Pressure: 1015.6 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: E

Date: 2012-07-24 Time: 22:53 Temperature Dome in (Wall): 21.4 °C Temperature Dome out: 20.5 °C Dewpoint: 12.2 °C Humidity Dome in: 60% Humidity Dome out: 59% Rel. Atmospheric Pressure: 1015.8 hPa Tendency: + Wind speed: 3.2 km/h Wind direction: E

Date: 2012-07-25 Time: 00:31 Temperature Dome in (Wall): 20.7 °C Temperature Dome out: 19.2 °C Dewpoint: 12.2 °C Humidity Dome in: 63% Humidity Dome out: 64% Rel. Atmospheric Pressure: 1016.0 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: ESE

Date: 2012-07-25 Time: 01:27 Temperature Dome in (Wall): 20.5 °C Temperature Dome out: 19.1 °C Dewpoint: 12.4 °C Humidity Dome in: 64% Humidity Dome out: 65% Rel. Atmospheric Pressure: 1016.0 hPa Tendency: + Wind speed: 1.6 km/h Wind direction: SE

Date: 2012-07-25 Time: 02:28 Temperature Dome in (Wall): 20.2 °C Temperature Dome out: 18.8 °C Dewpoint: 12.3 °C Humidity Dome in: 64% Humidity Dome out: 66% Rel. Atmospheric Pressure: 1015.0 hPa Tendency: - Wind speed: 0.0 km/h Wind direction: NE

Date: 2012-07-25 Time: 03:00 Temperature Dome in (Wall): 20.2 °C Temperature Dome out: 18.1 °C Dewpoint: 11.6 °C Humidity Dome in: 64% Humidity Dome out: 66% Rel. Atmospheric Pressure: 1016.2 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: NNW

Date: 2012-07-25 Time: 03:55 Temperature Dome in (Wall) : 20.0 °C Temperature Dome out: 17.7 °C Dewpoint: 11.9 °C Humidity Dome in: 64% Humidity Dome out: 69% Rel. Atmospheric Pressure: 1014.1 hPa Tendency: - Wind speed: 0.0 km/h Wind direction: NE

C.3 25.07.2012

Beobachter: Errmann, Pannicke

Wetter:

- bei Ankunft 21:00h heiter bis wolkig (schöne Cumuluswolkenformen)
- 22:45 fast komplett klar, in Beobachtungsrichtung klar
- 00:10 etwas diesig, Milchstr. nicht gut zu sehen
- 01:30 klar
- 02:30 klar

Time»	Object» »	RA / DI	EC»	»	Instr.»	Filter»	>	Exp - T	ime»		# /	Repe	eatings»	Bemerkungen/Annotations
21:10»	Darks» »	»	>	»	FIASCO»	->	»	600s,	300s,	10s	3, 3	3, 3		
22:35»	HD 186618	19 43 2	23/+47	14 41»	FIASCO	• >	»	300s,	600s>		3, 3	3 »	»	AM=1.02, Nrl von 300s evtl. mit Taschenlampenlicht
>	» »	>	>	»	>	>	»	>	>		>		»	arcs, flats
23:40»	LTT15729»	19 36 2	27/+50	13 14»	FIASCO»	• >	»	60s»	>		3 »		>	arcs und flats unter HD186618» $\ > \ > \ >$
23:55»	HD 228256»	20 11 5	54/+40	00 30»	FIASCO»	• >	»	600s»	»		5.		»	AM=1.04, flats, arcs
00:52»	Sadr» »	20 22 3	14/+40	15 24	FIASCO»	• >	»	10s»	>		3 >		»	AM=1.02, flats, arcs
01:05»	HD228742»	20 17 (01/+41	26 45»	FIASCO»	- >	»	600s»	»		5»		»	AM=1.01, flats, arcs
02:00»	Sadr » »	20 22 3	14/+40	15 24	FIASCO»	•)	»	10s»	»		3 »		»	AM=1.01,im Ordner Sadr2, flats, arcs
02:25»	TYC3603-2122-1»	21 34	41/+52	26 47»	FIASCO»	• >	»	600s»	»		5»		»	AM=1.00, flats, arcs
03:25»	Deneb» »	20 41 2	26/+45	16 49»	FIASCO»	• >	»	10s»	»		3		»	AM=1.01, flats, arcs
03:40»	HD210809	22 11 3	39/+52	25 48	FIASCO»	• >	»	300s»	»		5»		»	AM=1.0, flats, arcs
04:10»	Deneb» »	20 41 2	26/+45	16 49»	FIASCO»	• >	»	10s»	>		3		»	AM=1.1, im Ordner Deneb2,
>	» »	»	>	»	>	»	»	>	>		>		»	flats und arcs unter HD210809

Date: 2012-07-25 Time: 21:13 Temperature Dome in (Wall) : 25.3 °C Temperature Dome out: 24.9 °C Dewpoint: 12.1 °C Humidity Dome in: 58 Humidity Dome out: 45 Rel. Atmospheric Pressure: 1013.1 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: WSW

Date: 2012-07-25 Time: 22:44 Temperature Dome in (Wall): 24.4 °C Temperature Dome out: 23.3 °C Dewpoint: 12.9 °C Humidity Dome in: 59% Humidity Dome out: 52% Rel. Atmospheric Pressure: 1013.3 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: SSW

Date: 2012-07-25 Time: 23:57 Temperature Dome in (Wall) : 24.0 °C Temperature Dome out: 22.7 °C Dewpoint: 14.5 °C Humidity Dome in: 61% Humidity Dome out: 60% Rel. Atmospheric Pressure: 1013.4 hPa Tendency: + Wind speed: 1.6 km/h Wind direction: SSW

Date: 2012-07-26 Time: 01:44 Temperature Dome in (Wall): 22.8 °C Temperature Dome out: 20.9 °C Dewpoint: 14.5 °C Humidity Dome in: 66 Humidity Dome out: 67 Rel. Atmospheric Pressure: 1013.7 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: S

Date: 2012-07-26 Time: 02:30 Temperature Dome in (Wall) : 22.6 °C Temperature Dome out: 20.6 °C Dewpoint: 15.2 °C Humidity Dome in: 67% Humidity Dome out: 71% Rel. Atmospheric Pressure: 1013.7

Anhang C

Nightlogs

hPa Tendency: + Wind speed: 0.0 km/h Wind direction: SE

Date: 2012-07-26 Time: 03:31 Temperature Dome in (Wall) : 22.2 °C Temperature Dome out: 19.8 °C Dewpoint: 15.6 °C Humidity Dome in: 70% Humidity Dome out: 77% Rel. Atmospheric Pressure: 1014.9 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: SSE

Date: 2012-07-26 Time: 04:12 Temperature Dome in (Wall): 22.2 °C Temperature Dome out: 20.0 °C Dewpoint: 16.0 °C Humidity Dome in: 70% Humidity Dome out: 78% Rel. Atmospheric Pressure: 1013.8 hPa Tendency: - Wind speed: 1.6 km/h Wind direction: WSW

C.4 30.07.2012

Beobachter: Marka, Pannicke

Wetter:

- bei Ankunft 21:00h heiter mit mehreren Schichten kleinerer Wolken und Zirren
- 22:10h weitestgehend klar; kleinere durchziehende Wolken
- 00:40h bedeckt
- 1:30h teilweise klar, 2:20h Wolken
- 3:00h bedeckt, keine Besserung in Sicht

Time»	Object» »	RA / DEC» »	Instr.» Filter»	>	Exp-Time»	# / Repeatings»	Bemerkungen/Annotations
21:12»	Darks» »	» » »	FIASCO» »)	600s,10s»	3,5	
22:14	HD187035»	19:45:52 / 44:55:07»	FIASCO		600s» »	3) >	AM=1.1, teilweise bewölkt, +arcs und flats
23:13»	LTT15729»	19:36:27 / 50:13:14»	FIASCO» »		300s» »	5» »	AM=1.0, Standard; mir WOlken, +arcs und flats
23:47»	HD227828	20:07:58 / 35:43:06»	FIASCO» »		600s» »	5» »	AM=1.1, teilweise bewölkt, +arcs und flats,
>	» »	» » »	» » »		> >	> >	LTT von oben ist hier ebenfalls Standard
00:48»	Darks» »	» » »	FIASCO» »		300s» »	5	
01:31»	TYC3596-1019-1»	21:03:06 / 49:26:24»	FIASCO» »		600s» »	5» »	AM=1.0; Nr 1&2:Himmel klar; Nr.5 bewölkt
02:30	Deneb» »	20:41:26 / 45:16:49»	FIASCO» »		60s» »	5» »	AM=1.0; Standard; sehr kleine Lücken zwischen vielen Wolken
02:37»	Darks» »	» » »	FIASCO» »		60s» »	5	

Date: 2012-07-30 Time: 21:04 Temperature Dome in (Wall): 19.2 °C Temperature Dome out: 16.0 °C Dewpoint: 5.3 °C Humidity Dome in: 50% Humidity Dome out: 49% Rel. Atmospheric Pressure: 1017.5 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: SSE

Date: 2012-07-30 Time: 22:25 Temperature Dome in (Wall): 17.3 °C Temperature Dome out: 13.8 °C Dewpoint: 5.2 °C Humidity Dome in: 51% Humidity Dome out: 56% Rel. Atmospheric Pressure: 1018.9 hPa Tendency: + Wind speed: 1.6 km/h Wind direction: ESE

Date: 2012-07-30 Time: 23:24 Temperature Dome in (Wall): 16.7 °C Temperature Dome out: 13.8 °C Dewpoint: 4.7 °C Humidity Dome in: 50% Humidity Dome out: 54% Rel. Atmospheric Pressure: 1018.9 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: SE

Date: 2012-07-31 Time: 00:23 Temperature Dome in (Wall) : 15.9 °C Temperature Dome out: 13.3 °C Dewpoint: 4.4 °C Humidity Dome in: 51% Humidity Dome out: 55% Rel. Atmospheric Pressure: 1018.0 hPa Tendency: - Wind speed: 0.0 km/h Wind direction: ESE

Date: 2012-07-31 Time: 01:30 Temperature Dome in (Wall): 15.9 °C Temperature Dome out: 13.5 °C Dewpoint: 4.9 °C Humidity Dome in: 51% Humidity Dome out: 56% Rel. Atmospheric Pressure: 1019.0 hPa Wind speed: 0.0 km/h Wind direction: ESE

Date: 2012-07-31 Time: 02:34 Temperature Dome in (Wall): 15.4 °C Temperature Dome out: 13.0 °C Dewpoint: 4.7 °C Humidity Dome in: 51% Humidity Dome out: 57% Rel. Atmospheric Pressure: 1018.0 hPa Wind speed: 0.0 km/h Wind direction: WSW

C.5 01.08.2012

Beobachter: Rätz, Pannicke

Wetter:

- bei Ankunft 21:30 klar mit kleinen Wolken am Westhorizont
- 23:11 klar
- 00:15 klar, Mond hell, aber ausreichend entfernt vom Objekt
- 01:30 klar
- 03:40 erste Zirren ziehen durchs FoV

Time»	Object» »	RA / DEC»	>	Instr.» Filter	» »	Exp-Tim	e»	# / Rep	eatings»	Bemerkungen/Annotations
21:47»	Darks» »	» »	»	FIASCO» »	»	600s, 1	0s»	3, 5		
22:30»	V V2245 Cyg»	20 23 11/+40 5	2 30»	FIASCO» »	»	600s »	»	3>	»	AM=1.1, flat, arc
23:02»	Sadr» »	20 22 14/+40 1	5 24	FIASCO» »	>	10s»	»	3>	»	AM=1.1, flats, arcs von V V2245
23:12»	HD228773»	20 17 35/+38 3	3 37»	FIASCO» »	>	600s »	»	5.	»	AM=1.1, arcs, flats
00:04»	Sadr» »	20 22 14/+40 1	5 24	FIASCO» »	>	10s»	»	3>	»	AM=1.0, im Ordner Sadr2
00:15»	TYC 3603-971-1»	21 37 46/+51 13	3 53»	FIASCO» »	>	600s »	»	5»	»	AM=1.1, flats, arcs
01:20»	LTT15729»	19 36 27/+50 13	3 14	FIASCO» »	>	60s »	>	3>	»	AM=1.1, flats, arcs vom TYC
01:30»	BD+53 2661»	21 38 02/+53 5	3 38	FIASCO» »	>	600s »	»	5»	»	AM=1.0, flats, arcs
02:30»	Deneb» »	20 41 26/+45 1	5 49 »	FIASCO» »	>	10s>	»	3>	»	AM=1.1, flats und arcs unter BD+53 2661
02:40»	TYC 3967-232-1»	21 38 09/+53 5	9 17»	FIASCO» »	>	600s»	>	5»	»	AM=1.0, flats, arcs
03:35»	tet Cep»»	20 29 35/+62 5	9 39»	FIASCO» »	>	60s.»	»	3>	»	AM=1.1, flats und arcs unter TYC 3967
03:45»	Darks» »	» »	>	FIASCO» »	>	60s»	»	5		

Date: 2012-08-01 Time: 21:38 Temperature Dome in (Wall): 22.4 °C Temperature Dome out: 21.0 °C De-

wpoint: 8.9 °C Humidity Dome in: 52% Humidity Dome out: 46% Rel. Atmospheric Pressure: 1012.6 hPa Tendency: + Wind speed: 3.2 km/h Wind direction: ESE

Date: 2012-08-01 Time: 23:11 Temperature Dome in (Wall): 21.1 °C Temperature Dome out: 19.4 °C Dewpoint: 9.6 °C Humidity Dome in: 53% Humidity Dome out: 53% Rel. Atmospheric Pressure: 1012.8 hPa Tendency: + Wind speed: 3.2 km/h Wind direction: ESE

Date: 2012-08-02 Time: 00:17 Temperature Dome in (Wall): 20.6 °C Temperature Dome out: 18.8 °C Dewpoint: 11.1 °C Humidity Dome in: 57% Humidity Dome out: 61% Rel. Atmospheric Pressure: 1011.9 hPa Tendency: - Wind speed: 3.2 km/h Wind direction: ESE

Date: 2012-08-02 Time: 01:36 Temperature Dome in (Wall): 20.4 °C Temperature Dome out: 19.2 °C Dewpoint: 11.0 °C Humidity Dome in: 58% Humidity Dome out: 59% Rel. Atmospheric Pressure: 1011.8 hPa Tendency: - Wind speed: 6.4 km/h Wind direction: ESE

Date: 2012-08-02 Time: 02:56 Temperature Dome in (Wall): 20.3 °C Temperature Dome out: 19.3 °C Dewpoint: 10.8 °C Humidity Dome in: 59% Humidity Dome out: 58% Rel. Atmospheric Pressure: 1011.8 hPa Tendency: - Wind speed: 1.6 km/h Wind direction: SSW

Date: 2012-08-02 Time: 03:45 Temperature Dome in (Wall): 20.2 °C Temperature Dome out: 18.8 °C Dewpoint: 11.4 °C Humidity Dome in: 60% Humidity Dome out: 62% Rel. Atmospheric Pressure: 1010.8 hPa Tendency: - Wind speed: 3.2 km/h Wind direction: NE

Anhang C

Nightlogs

C.6 03.08.2012

Beobachter: J. Schmidt, Pannicke

Wetter:

- bei Ankunft 23:30 viele Zirren und bewölkt
- Hoffnung durch Satellitenfilm
- 0:15 lockere Bewölkung
- ab 1:30 klar
- 2:40 starke Bewölkung... die Beobachtung wird beendet

Time»	Object» »	RA / DEC» »	Instr.» Filter» »	Exp-Time»	# / Repeatings»	Bemerkungen/Annotations
23:45»	Darks» »	» » »	FIASCO» » »	600s» »	3	
00:32»	HD229239	20:24:07/+38:29:33»	FIASCO» » »	600s,10s,10s»	5,3,3» »	AM=1.0, Flats, Arcs, Zirren und Wolken!
01:19	Darks» »	» » »	FIASCO» » »	10s» »	3	
01:21»	Sadr» »	20:22:14/+40:15:24»	FIASCO» » »	10s» »	3» »	AM=1.0
01:29»	HD229069	20:21:23/+37:51:37»	FIASCO» » »	600s,10s,10s»	5,3,3» »	AM=1.0, Nr.3: Durchzug kl. Wolken; Flats, Arcs
02:25»	HD229077»	20 21 30/+38 01 32»	FIASCO» » »	600s» »	2» »	AM=1.1» Wolken!
02:25»	HD229077»	20 21 30/+38 01 32>	FIASCO» » »	600s» »	2» »	AM=1.1» Wolken!

 $\begin{array}{l} \mbox{Date : } 2012\mbox{-}08\mbox{-}08\mbox{-}08\mbox{-}18.1^\circ\mbox{C} \mbox{ Dewoint : } 13.0^\circ\mbox{C} \mbox{ Humidity Dome in : } 54\% \mbox{ Humidity Dome out : } 72\% \mbox{ Rel. Atmospheric Pressure : } 1016\mbox{-}2h\mbox{Pa} \mbox{Tendency : } + \\ \end{array}$

 $\begin{array}{l} \text{Date}: 2012\text{-}08\text{-}04 \text{ Time}: 01\text{:}11 \text{ Temperature Dome in (Wall)}: 20.9^\circ\text{C} \text{ Temperature Dome out}: 17.5^\circ\text{C} \text{ Dewpoint}: 12.2^\circ\text{C} \text{ Humidity Dome in}: 59\% \text{ Humidity Dome out}: 71\% \text{ Rel. Atmospheric Pressure}: 1016.3\text{hPa} \end{array}$

Date : 2012-08-04 Time : 02:26 Temperature Dome in (Wall) : 20.4 °C Temperature Dome out : 17.0 °C Dewpoint : 11.5 °C Humidity Dome in : 59% Humidity Dome out : 70% Rel. Atmospheric Pressure : 1015.3 hPa Tendency : -

C.7 08.08.2012

Beobachter: Rätz, Pannicke Wetter:

- bei Ankunft 21:30 locker bewölkt
- 22:30 fast vollständig klar
- 22:55 kurzzeitig bewölkt
- 23:40 beim Target klar, im NW dickere Wolken
- 00:00 bewölkt
- 00:28 Start 3.Aufnahme (BD-Stern) im Wolkenloch
- 01:10 teilweise Dunst/Hochnebel
- 02:10 vorwiegend klar, in Targetrichtung klar
- 03:10 klar
- 04:03 klar

Time»	Object» »	RA / DEC»	»	Instr.» Filter»	>	Exp-Time»	# / Repeatings»	Bemerkungen/Annotations
21:50> 22:30> 23:30> 23:40> 01:04> 01:59> 02:10> 03:10> 04:03> 04:20>	Darks HD2290775 betDra BD+5031805 TYC3967_1885_15 Deneb HD2289055 TYC3951_2450_15 LTT157295 Darks S	20 21 30/+38 01 17 30 26/+52 18 20 43 50/+50 58 21 37 05/+52 56 20 41 26/+45 16 20 19 21/+38 24 20 42 03/+53 18 19 36 27/+50 13	» 32» 05» 22» 47» 49» 41» 21» 21» 14» »	FIASCO FIASCO FIASCO FIASCO FIASCO FIASCO FIASCO FIASCO FIASCO FIASCO	> > > > > > > > > > > > >	10s,600s 600s,10s,10s 10s 600s,10s,10s 600s,10s,10s 10s 600s,10s,10s 600s,10s,10s 600s,10s,10s 60s 50s 50s 50s 50s 50s 50s 50s 5	3,3 5,3,3 × × 5,3,3 × × 5,3,3 × × 5,3,3 × × 5,3,3 × × 5,3,3 × × 5,3,3 × × 3 × × 3 × × 3 × × 3 × ×	AM=1.1, flats, arcs AM=1.1 AM=1.0, flats, arcs AM=1.0, arcs, flats AM=1.0 AM=1.0, flats, arcs AM=1.0, flats, arcs AM=1.3

Date: 2012-08-08 Time: 21:49 Temperature Dome in (Wall): 21.6 °C Temperature Dome out: 16.1 °C Dewpoint: 6.5 °C Humidity Dome in: 47% Humidity Dome out: 53% Rel. Atmospheric Pressure: 1021.7 hPa Tendency: - Wind speed: 0.0 km/h Wind direction: S

Date: 2012-08-08 Time: 23:19 Temperature Dome in (Wall): 19.0 °C Temperature Dome out: 15.1 °C Dewpoint: 7.4 °C Humidity Dome in: 48% Humidity Dome out: 60% Rel. Atmospheric Pressure: 1022.9 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: ESE

Date: 2012-08-09 Time: 00:27 Temperature Dome in (Wall): 18.3 °C Temperature Dome out: 14.2 °C Dewpoint: 8.2 °C Humidity Dome in: 51% Humidity Dome out: 67% Rel. Atmospheric Pressure: 1023.0 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: ESE

Date: 2012-08-09 Time: 02:12 Temperature Dome in (Wall): 17.2 °C Temperature Dome out: 13.5 °C Dewpoint: 8.8 °C Humidity Dome in: 56% Humidity Dome out: 73% Rel. Atmospheric Pressure: 1023.2 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: ESE

Date: 2012-08-09 Time: 03:46 Temperature Dome in (Wall): 16.8 °C Temperature Dome out: 13.3 °C Dewpoint: 8.8 °C Humidity Dome in: 58% Humidity Dome out: 74% Rel. Atmospheric Pressure: 1023.2 hPa Tendency: + Wind speed: 0.0 km/h Wind direction: SSE

C.8 09.10.2012

Beobachter: J. Schmidt, Pannicke, Mugrauer (bis 23:00) Wetter:

- bei Ankunft 19:00 klar
- 23:00 Durchzug von Wolken / Unterbrechung der Beobachtung
- 23:19 weiter gehts
- 23:21 Wolken...
- 23:30 weiter gehts
- 01:40 kurze dichte Bewölkung
- 02:05 dichtere Zirruswolke zieht vorbei
- 02:55 schlechte Bedingungen, Zirren, Wolken sind da
- > Satellitenfilm zeigt keine Besserung mehr in Sicht -> die Beobachtung wird beendet!

Time»	Object» »	RA / DEC»	»	Instr.» F	Filter» »	Exp-Time»	>	# / Repeating	gs» Bemerkungen/Annotations
20:35»	Darks» »	» »	»	FIASCO» »	» »	10s,60s,600s»	×	je 3	
21:20»	HD181730»	19 21 30/+02 49	04»	FIASCO» »	» »	600s,10s,10s»	>	5,3,3» »	AM=1.72, Flats, Arcs
22:05»	51Per» »	04 14 54/+48 24	34»	FIASCO» »	» »	60s» »	>	3	
22:16»	∏Ari» »	02 06 53/+15 17	42»	FIASCO» »	» »	600s» »	>	8» »	AM=1.87
22:36»	TTAri» »	02 06 53/+15 17	42»	CTKII» \	V» »	30s» »	»	120» »	AM=1.74
23:00»	Darks» »	> > >	»	CTKII» »	» »	30s» »	>	5	
00:15»	BD+6236»»	00 16 31/+63 29	21»	FIASCO» »	» »	600s,10s,10s»	>	5,3,3» »	AM=1.02, Flats, Arcs»
01:12»	51Per» »	04 14 54/+48 24	34»	FIASCO» »	» »	60s» »	>	3» »	AM=1.14
01:20	BD+59192»	01 09 58/+60 28	10»	FIASCO» »	» »	600s,10s,10s»	>	5,3,3» »	AM=1.01, Flats, Arcs
02:20»	TTAri» »	02 06 53/+15 17	42»	FIASCO» »	» »	600s» »	>	3» »	AM=1.23 schlechte Bedingungen
02:22»	TTAri» »	02 06 53/+15 17	42»	CTKII» V	V» »	30s» »	>	56» »	AM=1.23 schlechte Bedingungen

Date : 2012-10-09 Time : 19:58 Temperature Dome in (Wall) : 9.2°C Temperature Dome out : 5.8°C Dewpoint : -1.1°C Humidity Dome in : 57% Humidity Dome out : 61% Rel. Atmospheric Pressure : 1015.0hPa Tendency : +

Date : 2012-10-09 Time : 21:06 Temperature Dome in (Wall) : 8.2° C Temperature Dome out : 4.5° C Dewpoint : -0.9° C Humidity Dome in : 58% Humidity Dome out : 68% Rel. Atmospheric Pressure : 1015.2hPa

Date : 2012-10-09 Time : 23:35 Temperature Dome in (Wall) : 7.1°C Temperature Dome out : 4.7°C Dewpoint : 0.1°C Humidity Dome in : 61% Humidity Dome out : 72% Rel. Atmospheric Pressure : 1016.2hPa

Date : 2012-10-10 Time : 00:44 Temperature Dome in (Wall) : 6.9° C Temperature Dome out : 3.8° C Dewpoint : -0.0° C Humidity Dome in : 63% Humidity Dome out : 76% Rel. Atmospheric Pressure : 1016.4hPa

Date : 2012-10-10 Time : 01:16 Temperature Dome in (Wall) : 6.9° C Temperature Dome out : 3.9° C Dewpoint : 0.4° C Humidity Dome in : 64% Humidity Dome out : 78% Rel. Atmospheric Pressure : 1016.3hPa

Date : 2012-10-10 Time : 02:39 Temperature Dome in (Wall) : 6.5° C Temperature Dome out : 3.4° C Dewpoint : 0.5° C Humidity Dome in : 66% Humidity Dome out : 81% Rel. Atmospheric Pressure : 1016.4hPa

C.9 10.10.2012

Beobachter: Seeliger, Pannicke

Wetter:

- bei Ankunft 18:00 bedeckt
- 19:13 gaaaaanz leichter Nieselregen....
- 20:30 Aufklarung und Wetterbesserung
- 20:44 immernoch zirrige Wolken am Himmel
- 21:06 rechtzeitig zum Transit hat Gott erbarmen :) Die Wolken sind fast weg
- 22:50 Luftfeuchtigkeit steigt stetig an.... :/
- 23:45 Durchzug von Wolken; lt. Satelitenbild für die nächste halbe Stunde.
- 23:46 Luftfeuchte erreicht die 85%Marke; Schmidt-Teleskop-Deckel ist geschlossen
- 00:30 Wetterbesserung
- 01:54 es liegt was in der Luft.... dünne Zirren, Nebel, keine Ahnung, die Bedingungen werden schlechter
- 02:00 es ist wieder besser, Luftfeuchte aber weiterhin über dem FIASCO-Limit

Time»	Object»	»	RA / DI	EC»	»	Instr.»	Filter»	»	Exp-Ti	ne»	»	# / Re	peatings»	Bemerkungen/Annotations
18:19»	Dark»	»	»	»	»	FIASCO»	»	»	10s,60	s,100s»	»	je 3		
18:19»	Dark»	>	»	>	>	FIASCO	>	»	150s,3	00s,600s»	»	je 3		
19:31»	Flats»	>	»	>	>	FIASCO	»	»	10s»	>	»	3		
19:32»	Darks»	>	»	>	>	FIASCO	»	»	10s»	>	»	114		
20:07»	Flats»	>	»	>	»	FIASC0»	»	»	10s»	2	>	5		
20:10»	Darks»	>	»	>	>	FIASCO	»	»	60s»	>	»	30		
21:00»	Flats»	»	»	»	>	FIASCO	»	»	10s»	>	»	5		
21:02»	Darks»	>	»	>	»	FIASC0»	»	»	100s»	>	»	20		
21:10»	Hat-P-3	2»	02:04:	10/+46:4]	l:17»	CTK-II»	R	»	100s»	>	>	180»	»	90-120 Wolken
21:42»	Flats»	>	»	>	»	FIASC0»	»	»	10s»	>	»	5		
21:46»	Darks»	>	»	>	»	FIASCO»	»	>	150s»	>	>	15		
22:26»	Flats»	>	»	>	>	FIASCO	»	»	10s»	>	>	5		
22:33»	Darks»	>	»	>	»	FIASCO»	»	>	300s»	>	>	10		
23:41»	Flats»	>	»	>	>	FIASCO	»	»	10s»	>	>	5		
23:53»	Darks»	>	»	>	>	FIASC0»	>	>	600s»	>	»	8		
02:19»	Darks»	>	»	»	»	CTK-II»	»	»	100s»	>	»	4		

Date : 2012-10-10 Time : 18:06 Temperature Dome in (Wall) : 9.8°C Temperature Dome out : 8.7°C Dewpoint : 1.1°C Humidity Dome in : 66% Humidity Dome out : 59% Rel. Atmospheric Pressure : 1014.5hPa Tendency : +

Date : 2012-10-10 Time : 19:13 Temperature Dome in (Wall) : 9.8 °C Temperature Dome out : 7.9 °C Dewpoint : 1.9 °C Humidity Dome in : 66% Humidity Dome out : 66% Rel. Atmospheric Pressure : 1015.7 hPa Tendency : +

Date : 2012-10-10 Time : 20:27 Temperature Dome in (Wall) : 9.9 °C Temperature Dome out : 7.1 °C Dewpoint : 2.0 °C Humidity Dome in : 67% Humidity Dome out : 70% Rel. Atmospheric Pressure : 1015.8 hPa Tendency : +

Date : 2012-10-10 Time : 21:13 Temperature Dome in (Wall) : 9.3 °C Temperature Dome out : 6.2 °C Dewpoint : 1.5 °C Humidity Dome in : 66% Humidity Dome out : 72% Rel. Atmospheric Pressure : 1016.0 hPa Tendency : +

Date : 2012-10-10 Time : 22:52 Temperature Dome in (Wall) : 7.2 °C Temperature Dome out : 4.1 °C Dewpoint : 1.1 °C Humidity Dome in : 69% Humidity Dome out : 81% Rel. Atmospheric Pressure : 1016.3 hPa

Date : 2012-10-10 Time : 23:43 Temperature Dome in (Wall) : 6.9 °C Temperature Dome out : 4.3 °C Dewpoint : 1.8 °C Humidity Dome in : 71% Humidity Dome out : 84% Rel. Atmospheric Pressure : 1016.3 hPa Tendency : +

Date : 2012-10-10 Time : 23:54 Temperature Dome in (Wall) : 7.1 °C Temperature Dome out : 4.4 °C Dewpoint : 2.1 °C Humidity Dome in : 71% Humidity Dome out : 85% Rel. Atmospheric Pressure : 1017.3 hPa Tendency : +

Date : 2012-10-11 Time : 01:55 Temperature Dome in (Wall) : 6.4 °C Temperature Dome out : 4.3 °C Dewpoint : 2.2 °C Humidity Dome in : 73% Humidity Dome out : 86% Rel. Atmospheric Pressure : 1015.2 hPa Tendency : -

C.10 11.10.2012

Beobachter: Mugrauer, Pannicke

Wetter:

- bei Ankunft 18:40 klar
- 00:25 Kuppel geschlossen, zu hohe Luftfeuchte
- 01:02 Kuppel wird wieder geöffnet
- 02:10 Kuppel geschlossen, da zu hohe Luftfeuchte

Time»	Object» »	RA / DEC»	»	Instr.» Filte	r» »	Exp-Time»	>	# / Repeatings»	Bemerkungen/Annotations
19:01»	Darks» »	» »	»	FIASCO» »	»	600s,60s,10s»	»	je 3	
19:03»	Flats» »	» »	»	CTK-II» V»	>	10s,20s»»	»	34,10	
19:16»	Darks» »	» »	»	CTK-II» -»	>	10s,20s»»	2	10,10	
20:10	TYC 3951-2450-1	20 42 03/+53 18	21	FIASCO		600s, 10s, 10s		5, 3, 3	AM=1.00, flats, arcs
21:05»	Deneb» »	20 41 26/+45 16	49»	FIASCO» »	>	10s» »	»	3» »	AM=1.01, flats & arcs unter TYC
21:15»	HD228905	20 19 21/+38 24	41»	FIASCO» »	»	600s» »	>	5» »	AM=1.05, flats, arcs
22:22»	TT Ari» »	02 06 53/+15 17	42»	CTK-II» V»	»	30s» »	>	115» »	flats, arcs
22:18»	TT Ari» »	02 06 53/+15 17	42»	FIASCO» »	>	600s» »	>	6	
23:34»	TYC 3967-232-1»	21 38 09/+53 50	17»	FIASCO» »	>	600s» »	>	4» »	AM=1.1, flats, arcs
00:04»	Darks» »	» »	»	CTK-II» -»	»	30s» »	>	10	
00:20»	tet Cep»»	20 29 35/+62 59	39»	FIASCO» »	>	60s» »	>	3» »	AM=1.1, f & a unter TYC
00:27»	Darks	» »	»	FIASCO» »	»	600s,60s,10s»	>	3,3,3	
01:20»	TYC 3967-1885-1	21 37 05/+52 56	47»	FIASCO» »	»	600s	>	4, 3, 3»»	AM=1,3, flats, arcs
02:06»	tetCep» »	20 29 35/+62 59	39»	FIASCO» »	»	60s» »	>	3» »	AM=1.42, f & a unter TYC (tetCep2)

 $\begin{array}{l} \text{Date}: 2012\text{-}10\text{-}11 \text{ Time}: 18:52 \text{ Temperature Dome in (Wall)}: 10.3 \ ^\circ\text{C} \text{ Temperature Dome out}: 7.3 \ ^\circ\text{C} \text{ Dewpoint}: 0.1 \ ^\circ\text{C} \text{ Humidity Dome in}: 67\% \text{ Humidity Dome out}: 60\% \text{ Rel. Atmospheric Pressure}: 1011.6 \ \text{hPa} \end{array}$

Date : 2012-10-11 Time : 20:12 Temperature Dome in (Wall) : 8.3 °C Temperature Dome out : 6.4 °C Dewpoint : 1.7 °C Humidity Dome in : 68% Humidity Dome out : 72% Rel. Atmospheric Pressure : 1010.7 hPa

Date : 2012-10-11 Time : 21:31 Temperature Dome in (Wall) : 7.7 °C Temperature Dome out : 5.9 °C Dewpoint : 2.2 °C Humidity Dome in : 70% Humidity Dome out : 77% Rel. Atmospheric Pressure : 1011.8 hPa

Date : 2012-10-11 Time : 23:14 Temperature Dome in (Wall) : 7.0 °C Temperature Dome out : 4.6 °C Dewpoint : 2.0 °C Humidity Dome in : 72% Humidity Dome out : 83% Rel. Atmospheric Pressure : 1012.0 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : NNW

Date : 2012-10-11 Time : 23:52 Temperature Dome in (Wall) : 7.0 °C Temperature Dome out : 4.4 °C Dewpoint : 1.9 °C Humidity Dome in : 73% Humidity Dome out : 84% Rel. Atmospheric Pressure : 1011.0 hPa Tendency : - Wind speed : 0.0 km/h Wind direction : E

Date : 2012-10-12 Time : 00:20 Temperature Dome in (Wall) : 7.0 °C Temperature Dome out : 4.6 °C Dewpoint : 2.3 °C Humidity Dome in : 72% Humidity Dome out : 85% Rel. Atmospheric Pressure : 1012.0 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : N

Date : 2012-10-12 Time : 01:11 Temperature Dome in (Wall) : 7.8 °C Temperature Dome out : 4.3 °C Dewpoint : 1.3 °C Humidity Dome in : 72% Humidity Dome out : 81% Rel. Atmospheric Pressure : 1012.1 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : NNE

Date : 2012-10-12 Time : 02:10 Temperature Dome in (Wall) : 6.7 °C Temperature Dome out : 4.3 °C Dewpoint : 2.0 °C Humidity Dome in : 72% Humidity Dome out : 85% Rel. Atmospheric Pressure : 1011.0 hPa Tendency : - Wind speed : 0.0 km/h Wind direction : ESE

C.11 15.10.2012

Beobachter: Rätz, Pannicke Wetter:

- bei Ankunft 19:00 bedeckt
- 20:00 klar

19:17 Darks > > > 600s, 60s, 10s je 3 20:29 HD 181730 19 21 30/+02 49 03 FIASCO > 600s, 10s, 10s 5, 3, 3 AM(Beginn)=1.62, (Ende)=1.81; flats 21:25 51 Per 04 14 54/+48 24 34 FIASCO > 60s > 3 AM=1.855 21:44 TYC 3937-903-1 20 15 18/+54 20 32 FIASCO > 600s > 5, 3, 3 AM=1.05, flats, arcs 21:44 TYC 3937-903-1 20 15 18/+54 20 32 FIASCO > 600s > 5, 3, 3 AM=1.05, flats, arcs	e»	Object» »	RA / DEC»	>	Instr.» Filter»	»	Exp-Time»		# / Repeatings»	Bemerkungen/Annotations	
22:11> tet tep>> 20 29 33/ FIADLON >> 005> >> 3> 3> AM=1.01	17» 29» 25» 44» 11»	Darks» » HD 181730» 51 Per» » TYC 3937-903-1» tet Cep»»	19 21 30/+02 4 04 14 54/+48 2 20 15 18/+54 2 20 29 35/+65 5	9 03» 4 34» 0 32» 9 39»	FIASCO > FIASCO > FIASCO > FIASCO > FIASCO >	> > > > >	600s,60s,10s» 600s,10s,10s» 60s» » 600s» » 60s» »	> > > > >	je 3 5, 3, 3, 3, 3, 5, 3, 3, 5, 3, 3, 3, 5, 3, 3,	AM(Beginn)=1.62,(Ende)=1.81; flats AM=1.855 AM=1.05, flats, arcs AM=1.01	, arcs

Date : 2012-10-15 Time : 19:34 Temperature Dome in (Wall) : 10.1 °C Temperature Dome out : 7.4 °C Dewpoint : 3.1 °C Humidity Dome in : 71% Humidity Dome out : 74% Rel. Atmospheric Pressure : 1009.5 hPa

Date : 2012-10-15 Time : 21:00 Temperature Dome in (Wall) : 7.7 °C Temperature Dome out : 5.5 °C Dewpoint : 2.7 °C Humidity Dome in : 73% Humidity Dome out : 82% Rel. Atmospheric Pressure : 1010.8 hPa

Date : 2012-10-15 Time : 22:12 Temperature Dome in (Wall) : 7.0 °C Temperature Dome out : 4.7 °C Dewpoint : 2.9 °C Humidity Dome in : 75% Humidity Dome out : 88% Rel. Atmospheric Pressure : 1012.0 hPa

Date : 2012-10-15 Time : 22:44 Temperature Dome in (Wall) : 8.1 °C Temperature Dome out : 4.6 °C Dewpoint : 3.1 °C Humidity Dome in : 74% Humidity Dome out : 90% Rel. Atmospheric Pressure : 1011.0 hPa

C.12 16.10.2012

Beobachter: T.Schmidt, Pannicke

Wetter:

- bei Ankunft 22:15 bedeckt

- 00:00 klar

Time»	Object» »	RA / DE	C»	»	Instr.»	Filter»	>	Exp-Time	9»	>	# / Re	peatings»	Bemerkungen/Annotations
22:30»	Darks» »	>	»	»	FIASCO»	>	»	600s,60s	s,10s»	>	je 3		
00:00	TYC 3603-971-1»	21 37 4	6/+51 1	3 53	FIASCO	>	>	600s»	>	>	8	>	AM(Beginn)=1.13,(Ende)=1.33; flats, arcs
01:40»	tet Cep»»	20 29 3	5/+65 5	9 39»	FIASCO»	>	»	60s»	>	>	3»	»	AM=1,40
01:52»	TYC 3603-2122-1	»21 34 43	1/+52 2	6 47»	FIASCO»	>	»	600s»	>	>	5»	»	AM(Beginn)=1.40,(Ende)=1.56; flats, arcs
02:50»	BD+59 192»	01 09 50	8/+60 2	8 10»	FIASCO»	>	»	600s»	>	>	6 >	>	AM=1.07 (bei Nr5 Kuppel im Weg), flats, arcs
04:05»	139 Tau»»	05 57 6	0/+25 5	7 14	FIASCO»	>	»	60s»	>	>	3»	>	AM=1.14

Date : 2012-10-16 Time : 22:30 Temperature Dome in (Wall) : 10.1 °C Temperature Dome out : 9.2 °C Dewpoint : 3.0 °C Humidity Dome in : 68 Humidity Dome out : 65 Rel. Atmospheric Pressure : 1011.3 hPa

Date : 2012-10-17 Time : 00:10 Temperature Dome in (Wall) : 9.1 °C Temperature Dome out : 7.5 °C Dewpoint : 3.2 °C Humidity Dome in : 71% Humidity Dome out : 74% Rel. Atmospheric Pressure : 1011.6 hPa

Date : 2012-10-17 Time : 02:05 Temperature Dome in (Wall) : 7.9 °C Temperature Dome out : 5.3 °C Dewpoint : 2.8 °C Humidity Dome in : 74% Humidity Dome out : 84% Rel. Atmospheric Pressure : 1014.0 hPa

Date : 2012-10-17 Time : 02:24 Temperature Dome in (Wall) : 7.7 °C Temperature Dome out : 5.4 °C Dewpoint : 3.1 °C Humidity Dome in : 74% Humidity Dome out : 85% Rel. Atmospheric Pressure : 1015.0 hPa

Date : 2012-10-17 Time : 03:28 Temperature Dome in (Wall) : 7.5 °C Temperature Dome out : 5.3 °C Dewpoint : 3.0 °C Humidity Dome in : 75% Humidity Dome out : 85% Rel. Atmospheric Pressure : 1014.0 hPa

Date : 2012-10-17 Time : 04:43 Temperature Dome in (Wall) : 8.0 °C Temperature Dome out : 4.4 °C Dewpoint : 2.6 °C Humidity Dome in : 74% Humidity Dome out : 88% Rel. Atmospheric Pressure : 1013.1 hPa

C.13 17.10.2012

Beobachter: Gilbert, Pannicke Wetter:

- bei Ankunft 23:00 bedeckt
- 00:00 klar
- 00:25 Durzug von Wolken
- 03:10 klar
- 06:08 Durchzug von Wolken

mit Wolken);
ts, Arcs
ts, Arcs
ts, Arcs
ts, Arcs

Date: 2012-10-17 Time: 23:17 Temperature Dome in (Wall): 10.5 °C Temperature Dome out: 11.8 °C Dewpoint: 4.8 °C Humidity Dome in: 76% Humidity Dome out: 62% Rel. Atmospheric Pressure: 1013.0 hPa Wind speed: 0.0 km/h Wind direction: WNW

Date: 2012-10-18 Time: 00:44 Temperature Dome in (Wall): 11.0 °C Temperature Dome out: 12.2 °C Dewpoint: 4.9 °C Humidity Dome in: 75% Humidity Dome out: 61% Rel. Atmospheric Pressure: 1012.9 hPa Wind speed: 1.6 km/h Wind direction: WNW

Date: 2012-10-18 Time: 02:19 Temperature Dome in (Wall): 10.9 °C Temperature Dome out: 12.0 °C Dewpoint: 4.9 °C Humidity Dome in: 75% Humidity Dome out: 62% Rel. Atmospheric Pressure: 1012.9 hPa Wind speed: 3.2 km/h Wind direction: W

Date: 2012-10-18 Time: 03:55 Temperature Dome in (Wall): 11.1 °C Temperature Dome out: 12.0 °C Dewpoint: 4.5 °C Humidity Dome in: 74% Humidity Dome out: 60% Rel. Atmospheric Pressure: 1012.9 hPa Wind speed: 4.8 km/h Wind direction: WSW

Date: 2012-10-18 Time: 05:14 Temperature Dome in (Wall): 10.7 °C Temperature Dome out: 11.0 °C Dewpoint: 5.1 °C Humidity Dome in: 75% Humidity Dome out: 67% Rel. Atmospheric Pressure: 1012.0 hPa Wind speed: 1.6 km/h Wind direction: NE

Date: 2012-10-18 Time: 06:15 Temperature Dome in (Wall): 10.3 °C Temperature Dome out: 9.9 °C Dewpoint: 4.7 °C Humidity Dome in: 75% Humidity Dome out: 70% Rel. Atmospheric Pressure: 1013.3 hPa Wind speed: 0.0 km/h Wind direction: NNE

C.14 19.10.2012

Beobachter: Mugrauer, Dincel

Wetter:

- bei Ankunft 17:50 wenige Zirren
- 00:00 klar
- 03:00 klar
- 06:00 klar

Time»	Object» »	RA / DEC»	>	Instr.» Fi	lter» »	Exp-Tim	e»	>	# / Re	peatings»	Bemerkungen/Annotations	
18:10»	Darks» »	» »	»	FIASCO» »	»	10s,120	s,600s	» »	je 3			
18:16»	Darks» »	» »	>	CTK-II» »	»	10s,30s	>	»	je 10			
18:50»	Flats» »	» »	>	CTK-II» V»	>	20s »	>	»	20			
19:00»	Darks» »	» »	>	CTK-II» »	»	20s.»	>	»	10			
19:21»	TYC02694»	19 35 32 +31 1	.6 36»	FIASCO» »	»	600s »	2	»	3»	»	3x Flats, 3x Arcs	
19:47»	HR7426» »	19 31 46 +34 2	27 10»	FIASCO» »	»	120s»	>	>	3			
20:04	HD227828»	20 07 58 +35 4	13 06»	FIASCO» »	>	600s »	»	»	5»	>	3x Flats, 3x Arcs	
20:54»	Sadr» »	20 22 14 +40 1	5 24»	FIASCO» »	>	10s»	»	>	3			
21:00»	TYC00812	23 36 09 +61 4	17 07»	FIASCO» »	>	600s »	»	»	8	>	3x Arcs, 3x Flats, 3x Arcs»	
22:34»	HR8768» »	23 02 45 +44 ()3 31»	FIASCO» »	>	120s»	»	»	3			
22:52»	BD+53 2661»	21 38 02 +53 5	53-38»	FIASCO» »	>	600s»	»	»	5»	>	3x Flats, 3x Arcs	
23:40»	tet Cep»»	20 29 35 +62 5	59 39»	FIASCO» »	>	60s»	»	>	3 »	>		
23:44	Darks »	» »	>	FIASCO» »	>	60s»	»	>	3			
23:52»	∏ Ari» »	02 06 53 +15 1	.7 41»	CTK-II» V»	>	30s»	»	»	381»			
00:00»	∏ Ari» »	02 06 53 +15 1	.7 41»	FIASCO» »	>	600s.»	>	»	20»	>	3x Arcs, 3x Flats, 3x Arcs»	
03:36»	TYC01002	05 54 30 +32 (9 44	FIASCO» »	>	600s.»	>	»	3»	»	3x Flats, 3x Arcs» »	
04:02»	HR2010» »	05 49 32 +12 3	39 04»	FIASCO» »	>	120s»	>	»	3			
04:21»	TYC03294»	06 37 21 +05 5	58 18»	FIASCO» »	>	600s.»	»	>	3 »	>	3x Flats, 3x Arcs	
04:59»	TYC00519»	06 39 53 +06 (3 25»	FIASCO» »	>	600s.»	»	»	3»	>	3x Flats, 3x Arcs	
05:25»	HR2010 2	05 49 32 +12 3	39 04»	FIASCO» »	>	120s»	>	»	3		-	
05:41»	HD245950»	05 39 56 +27 2	28 56»	FIASCO» »	>	600s»	»	»	3»	»	3x Flats, 3x Arcs	

Date : 2012-10-19 Time : 18:07 Temperature Dome in (Wall) : 15.6 °C Temperature Dome out : 19.3 °C Dewpoint : 6.7 °C Humidity Dome in : 72% Humidity Dome out : 44% Rel. Atmospheric Pressure : 1013.9 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : ENE

Date : 2012-10-19 Time : 18:52 Temperature Dome in (Wall) : 15.1 °C Temperature Dome out : 17.2 °C Dewpoint : 6.1 °C Humidity Dome in : 73% Humidity Dome out : 48% Rel. Atmospheric Pressure : 1014.2 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : N

Date : 2012-10-19 Time : 19:58 Temperature Dome in (Wall) : 14.9 °C Temperature Dome out : 16.3 °C Dewpoint : 8.3 °C Humidity Dome in : 75% Humidity Dome out : 59% Rel. Atmospheric Pressure : 1015.4 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : SSE

Date : 2012-10-19 Time : 20:32 Temperature Dome in (Wall) : 14.8 °C Temperature Dome out : 15.6 °C Dewpoint : 8.8 °C Humidity Dome in : 76% Humidity Dome out : 64% Rel. Atmospheric Pressure : 1014.5 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : ESE

Date : 2012-10-19 Time : 22:34 Temperature Dome in (Wall) : 14.9 °C Temperature Dome out : 17.3 °C Dewpoint : 3.9 °C Humidity Dome in : 65% Humidity Dome out : 41% Rel. Atmospheric Pressure : 1014.2 hPa Tendency : - Wind speed : 0.0 km/h Wind direction : E

Date : 2012-10-19 Time : 23:10 Temperature Dome in (Wall) : 15.0 °C Temperature Dome out : 16.1 °C Dewpoint : 2.8 °C Humidity Dome in : 63% Humidity Dome out : 41% Rel. Atmospheric Pressure : 1014.4 hPa Tendency : - Wind speed : 0.0 km/h Wind direction : ESE

Anhang C

Nightlogs

Date : 2012-10-20 Time : 00:11 Temperature Dome in (Wall) : 14.5 °C Temperature Dome out : 14.5 °C Dewpoint : 2.7 °C Humidity Dome in : 61% Humidity Dome out : 45% Rel. Atmospheric Pressure : 1015.7 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : NE

Date : 2012-10-20 Time : 01:51 Temperature Dome in (Wall) : 14.0 °C Temperature Dome out : 13.4 °C Dewpoint : 3.7 °C Humidity Dome in : 63% Humidity Dome out : 52% Rel. Atmospheric Pressure : 1016.9 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : SE

Date : 2012-10-20 Time : 02:35 Temperature Dome in (Wall) : 14.1 °C Temperature Dome out : 13.9 °C Dewpoint : 3.6 °C Humidity Dome in : 62% Humidity Dome out : 50% Rel. Atmospheric Pressure : 1015.8 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : E

Date : 2012-10-20 Time : 03:31 Temperature Dome in (Wall) : 13.9 °C Temperature Dome out : 12.7 °C Dewpoint : 3.1 °C Humidity Dome in : 61% Humidity Dome out : 52% Rel. Atmospheric Pressure : 1017.0 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : SSE

Date : 2012-10-20 Time : 04:20 Temperature Dome in (Wall) : 13.9 °C Temperature Dome out : 13.7 °C Dewpoint : 6.5 °C Humidity Dome in : 65% Humidity Dome out : 62% Rel. Atmospheric Pressure : 1016.9 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : SW

 $\begin{array}{l} \text{Date : } 2012\text{-}10\text{-}20 \ \text{Time : } 04\text{:}50 \ \text{Temperature Dome in (Wall) : } 14.0 \ ^{\circ}\text{C} \ \text{Temperature Dome out : } 13.4 \ ^{\circ}\text{C} \ \text{Dewpoint : } 5.5 \ ^{\circ}\text{C} \ \text{Humidity Dome in : } 66\% \ \text{Humidity Dome out : } 59\% \ \text{Rel. Atmospheric Pressure : } 1016.9 \ \text{hPa Tendency : } + \ \text{Wind speed : } 0.0 \ \text{km/h} \ \text{Wind direction : E} \end{array}$

Date : 2012-10-20 Time : 05:20 Temperature Dome in (Wall) : 13.9 °C Temperature Dome out : 12.8 °C Dewpoint : 5.9 °C Humidity Dome in : 68% Humidity Dome out : 63% Rel. Atmospheric Pressure : 1015.9 hPa Tendency : - Wind speed : 0.0 km/h Wind direction : ESE

Date : 2012-10-20 Time : 05:59 Temperature Dome in (Wall) : 13.8 °C Temperature Dome out : 12.8 °C Dewpoint : 6.2 °C Humidity Dome in : 68% Humidity Dome out : 64% Rel. Atmospheric Pressure : 1017.0 hPa Tendency : + Wind speed : 0.0 km/h Wind direction : SE

C.15 20.10.2012

Beobachter: Seeliger, Dincel

Wetter:

- arrival 17:40 slight cirrus clouds
- $19{:}00$ still thin cirrus clouds on the sky, but getting better
- 19:25 moon with a very big 'vorhof'
- 21:00 improvement of the weather, its clear and warm :)
- 04:20 humidity rises steadily since hours, reched 84% right now
- 04:40 humidity at 85 % -> end of observations

$C.15 \ 20.10.2012$

Time»	Object» »	RA / DEC»	»	Instr.» Filte	r» »	Exp-Tim	e»	»	# / Rep	eatings»	Bemerkungen/Annotations
19:00»	Darks» »	> >>	»	FIASCO» »	»	10s,60s	,600s,12	20s»	je 3		
20:40»	TYC03664	19 33 18 / +30	23 47»	FIASCO» »	>	600s.»	>	>	3.	»	AM 1.15; +3x Flat and Arc
21:00»	HR7426	19 31 46 / +34	27 10»	FIASCO» »	»	120s»	>	>	3.	»	3x Flats, 3x Arcs
21:21»	TYC01765»	19 33 28 / +31	29 06»	FIASCO» »	>	600s.»	>	»	3.	»	3x Flats, 3x Arcs
21:58	TYC00216»	20 18 51 / +45	21 33»	FIASCO» »	»	600s.»	>	»	3.	»	3X Flats, 3X Arcs
22:36»	TYC01784	20 50 53 / +31	08 15»	FIASCO» »	»	600s.»	>	»	3.	»	3x Flats, 3x Arcs
23:18»	TYC00266»	21 30 00 / +50	52 43»	FIASCO» »	>	600s.»	>	»	3.	»	3x Flats, 3x Arcs
23:46»	HR8404» »	22 03 19 / +11	23 11»	FIASCO» »	>	120s»	>	»	3.	»	3x Flats, 3x Arcs
00:09»	BD532661»	21 38 01 / +53	53 38»	FIASCO» »	>	600s.»	>	»	2 »	»	
00:27»	HR8768	23 02 45 / +44	03 31»	FIASCO» »	»	120s»	>	»	3.	»	3x Flats, 3x Arcs
00:47»	HD228742»	20 17 01 / +41	26 45»	FIASCO» »	»	600s.»	>	»	1.	»	Low S/N
01:09»	TYC1019»»	21 03 06 / +49	26 24»	FIASCO» »	»	600s.»	»	»	5»	»	3x Flats, 3x Arcs
01:58»	tet Cep»»	20 29 34 / +62	59 34»	FIASCO» »	»	60s»	>	»	3.	»	
02:16»	BD6311 » »	00 13 31 / +64	32 30»	FIASCO» »	»	600s.»	>	»	5»	»	3x Flats, 3x Arcs
03:01»	alf Cam»»	04 54 03 / +66	20 34»	FIASCO» »	»	60s»	>	»	3		
03:19»	BD6266	00 23 20 / +62	52 51»	FIASCO» »	>	600S	>	»	5»	»	3x Flats, 3x Arcs»
04:07»	chiOl_Ori»	05 54 23 / +20	16 34»	FIASCO» »	>	60s»	>	»	3»	»	
04:22»	HD37424»»	05 39 44 / +27	46 51»	FIASCO» »	>	600s.»	»	»	2 »	»	3x Flats, 3x Arcs
04:37»	HR2010» »	05 49 33 / +12	39 04»	FIASCO» »	>	60s»	»	>	3»	»	3x Flats, 3x Arcs

Date : 2012-10-20 Time : 18:09 Temperature Dome in (Wall) : 16.3 °C Temperature Dome out : 17.6 °C Dewpoint : 6.8 °C Humidity Dome in : 70% Humidity Dome out : 49% Rel. Atmospheric Pressure : 1018.3 hPa Tendency : +

Date : 2012-10-20 Time : 19:01 Temperature Dome in (Wall) : 15.9 °C Temperature Dome out : 16.5 °C Dewpoint : 7.4 °C Humidity Dome in : 71% Humidity Dome out : 55% Rel. Atmospheric Pressure : 1018.5 hPa Tendency : +

Date : 2012-10-20 Time : 21:12 Temperature Dome in (Wall) : 15.9 °C Temperature Dome out : 15.8 °C Dewpoint : 8.8 °C Humidity Dome in : 72% Humidity Dome out : 63% Rel. Atmospheric Pressure : 1018.6 hPa Tendency : +

Date : 2012-10-20 Time : 21:53 Temperature Dome in (Wall) : 15.9 °C Temperature Dome out : 15.8 °C Dewpoint : 9.2 °C Humidity Dome in : 72% Humidity Dome out : 65% Rel. Atmospheric Pressure : 1018.6 hPa Tendency : +

Date : 2012-10-21 Time : 01:07 Temperature Dome in (Wall) : 15.3 °C Temperature Dome out : 14.3 °C Dewpoint : 9.7 °C Humidity Dome in : 74% Humidity Dome out : 74% Rel. Atmospheric Pressure : 1018.8 hPa Tendency : +

Date : 2012-10-21 Time : 01:59 Temperature Dome in (Wall) : 15.1 °C Temperature Dome out : 13.5 °C Dewpoint : 10.1 °C Humidity Dome in : 75% Humidity Dome out : 80% Rel. Atmospheric Pressure : 1019.0 hPa Tendency : +

Date : 2012-10-21 Time : 02:54 Temperature Dome in (Wall) : 15.0 °C Temperature Dome out : 13.6 °C Dewpoint : 10.4 °C Humidity Dome in : 75% Humidity Dome out : 81% Rel. Atmospheric Pressure : 1019.0 hPa Tendency : +

Date : 2012-10-21 Time : 04:21 Temperature Dome in (Wall) : 14.6 °C Temperature Dome out : 12.2 °C Dewpoint : 9.6 °C Humidity Dome in : 77% Humidity Dome out : 84% Rel. Atmospheric Pressure : 1018.1 hPa Tendency : -

Date : 2012-10-21 Time : 04:37 Temperature Dome in (Wall) : 14.6 °C Temperature Dome out : 12.0 °C Dewpoint : 9.6 °C Humidity Dome in : 77% Humidity Dome out : 85% Rel. Atmospheric Pressure : 1018.2 hPa Tendency : -

Anhang C

C.16 21.10.2012

Beobachter: Pannicke, Gilbert Wetter:

- bei Ankunft 18:30 klar
- 19:30 super Seeing
- 21h Seeing wieder schlechter
- 21:50 wolkenlos
- 22:27 Luftfeuchte übersteigt Grenzwert -> Kuppel zu
- 22:40 keine Besserung in Sicht -> Ende der Beobachtung

Time»	Object» »	RA / DEC»	>	Instr.» Fi	lter»	>	Exp-Time»		>	# / Re	epeatings»	Bemerkungen/Annotations
18:38»	Darks» »	» »	>	FIASCO» »	»		10s,60s,60	0s»	»	je 3		
19:22»	HD 228742»	20 17 01/+41 2	6 45»	FIASCO» »	>		600s» »			5, 3,	3»»	AM(Beginn)=1.01,(Ende)=1.02; 3 Arcs,3 Flats
20:18	Sadr» »	20 22 14/+40 1	5 24	FIASCO» »	>		30s» »		>	3»	>	AM=1.03
20:20»	Sadr» »	20 22 14/+40 1	5 24	FIASCO» »	>		10s» »		>	3»	>	AM=1.03
20:28	HD 228773	20 17 35/+38 3	3 37»	FIASCO» »	>		600s» »		>	5»	>	AM(Beginn)=1.04,(Ende)=1.09; 3 Arcs,3 Flats
21:28	HD 229069	20 21 23/+37 5	1 37»	FIASCO» »	>		600s» »		>	5»	»	AM(Beginn)=1.10,(Ende)=1.17; 3 Arcs,3 Flats
22:23»	tet Ceph»	20 29 35/+62 5	9 39»	FIASCO» »	>		60s» »			3»	>	AM=1.10
22:28»	Darks	» »	>	FIASCO» »	>		30s» »			3		

Date: 2012-10-21 Time: 18:33 Temperature Dome in (Wall): 16.3 °C Temperature Dome out: 14.6 °C Dewpoint: 9.0 °C Humidity Dome in: 73% Humidity Dome out: 69% Rel. Atmospheric Pressure: 1017.8 hPa Wind speed: 0.0 km/h Wind direction: SE

Date: 2012-10-21 Time: 20:13 Temperature Dome in (Wall): 15.0 °C Temperature Dome out: 13.0 °C Dewpoint: 9.4 °C Humidity Dome in: 76% Humidity Dome out: 79% Rel. Atmospheric Pressure: 1019.1 hPa Wind speed: 0.0 km/h Wind direction: ESE

Date: 2012-10-21 Time: 21:29 Temperature Dome in (Wall): 14.5 °C Temperature Dome out: 12.2 °C Dewpoint: 9.4 °C Humidity Dome in: 77% Humidity Dome out: 83% Rel. Atmospheric Pressure: 1020.2 hPa Wind speed: 0.0 km/h Wind direction: ESE

Date: 2012-10-21 Time: 22:27 Temperature Dome in (Wall): 14.0 °C Temperature Dome out: 10.9 °C Dewpoint: 8.6 °C Humidity Dome in: 77% Humidity Dome out: 86% Rel. Atmospheric Pressure: 1021.5 hPa Wind speed: 0.0 km/h Wind direction: E

Date: 2012-10-21 Time: 22:42 Temperature Dome in (Wall): 14.4 °C Temperature Dome out: 11.0 °C Dewpoint: 9.1 °C Humidity Dome in: 77% Humidity Dome out: 88% Rel. Atmospheric Pressure: 1021.5 hPa Wind speed: 0.0 km/h Wind direction: WNW