
CHANGE DETECTION IN
STREAMING DATA

DISSERTATION

ZUR ERLANGUNG DES AKADEMISCHEN GRADES
DOKTOR-INGENIEUR (DR.-ING.)

VORGELEGT DER

FAKULTÄT FÜR INFORMATIK UND AUTOMATISIERUNG

DER TECHNISCHEN UNIVERSITÄT ILMENAU

VON

M.SC. DANG HOAN TRAN

VORGELEGT AM 30. MAI 2013
TAG DER WISSENSCHAFTLICHEN AUSSPRACHE: AM 08.

OKTOBER 2013

GUTACHTER

1. PROF. DR.-ING. HABIL. KAI-UWE SATTLER

2. DR. MOHAMED MEDHAT GABER

3. PROF. DR. PETER FISCHER

URN:NBN:DE:GBV:ILM1-2013000513

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224753286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CHANGE DETECTION IN
STREAMING DATA

A DISSERTATION SUBMITTED

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOKTOR-INGENIEUR (DR.-ING.)

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

ILMENAU UNIVERSITY OF TECHNOLOGY

FROM

M.SC. DANG HOAN TRAN

READING COMMITTEE

1. PROF. DR.-ING. HABIL. KAI-UWE SATTLER

2. DR. MOHAMED MEDHAT GABER

3. PROF. DR. PETER FISCHER

URN:NBN:DE:GBV:ILM1-2013000513

i

Abstract
Change detection is the process of identifying differences in the state of an object or
phenomenon by observing it at different times or different locations in space. In the
streaming context, it is the process of segmenting a data stream into different seg-
ments by identifying the points where the stream dynamics changes. Decentralized
change detection can be used in many interesting, and important applications such
environmental observing systems, medicare monitoring systems. Although there is
great deal of work on distributed detection and data fusion, most of work focuses
on the one-time change detection solutions. One-time change detection method re-
quires to proceed data once in response to the change occurring. The trade-off of
a continuous distributed detection of changes include detection accuracy, space-
efficiency, detection delay, and communication-efficiency.

To achieve these goals, the wildfire warning system is used as a motivating sce-
nario. From the challenges and requirements of the wildfire warning system, the
change detection algorithms for streaming data are proposed a part of the solution
to the wildfire warning system. By selecting various models of local change de-
tection, different schemes for distributed change detections, and the data exchange
protocols, different designs can be achieved.

Based on this approach, the contributions of this dissertation are as follows.
A general two-window framework for detecting changes in a single data stream is
presented. A general synopsis-based change detection framework is proposed. The-
oretical and empirical analysis shows that the detection performance of synopsis-
based detector is similar to that of non-synopsis change detector if a distance func-
tion quantifying the changes is preserved under the process of constructing synop-
sis. A clustering-based change detection and clustering maintenance method over
sliding window is presented. Clustering-based detector can automatically detect the
changes in the multivariate streaming data. A framework for decentralized change
detection in wireless sensor networks is proposed. A distributed framework for
clustering streaming data is proposed by extending the two-phased stream cluster-
ing approach which is widely used to cluster a single data stream.

iii

Zusammenfassung
Unter Änderungserkennung wird der Prozess der Erkennung von Unterschieden im
Zustand eines Objekts oder Phänomens verstanden, wenn dieses zu verschiedenen
Zeitpunkten oder an verschiedenen Orten beobachtet wird. Im Kontext der Daten-
stromverarbeitung stellt dieser Prozess die Segmentierung eines Datenstroms an-
hand der identifizierten Punkte, an denen sich die Stromdynamiken ändern, dar.
Die Fähigkeit, Änderungen in den Stromdaten zu erkennen, darauf zu reagieren
und sich daran anzupassen, spielt in vielen Anwendungsbereichen, wie z.B.
dem Aktivitätsüberwachung, dem Datenstrom-Mining und Maschinenlernen sowie
dem Datenmanagement hinsichtlich Datenmenge und Datenqualität, eine wichtige
Rolle. Dezentralisierte Änderungserkennung kann in vielen interessanten und
wichtigen Anwendungsbereichen, wie z.B. in Umgebungsüberwachungssystemen
oder medizinischen Überwachungssystemen, eingesetzt werden. Obgleich es eine
Vielzahl von Arbeiten im Bereich der verteilten Änderungserkennung und Daten-
fusion gibt, liegt der Fokus dieser Arbeiten meist lediglich auf der Erkennung von
einmaligen Änderungen. Die einmalige Änderungserkennungsmethode erfordert
die einmalige Verarbeitung der Daten als Antwort auf die auftretende Änderung.
Der Kompromiss einer kontinuierlichen, verteilten Erkennung von Änderun-
gen umfasst die Erkennungsgenauigkeit, die Speichereffizienz sowie die Berech-
nungseffizienz. Um dieses Ziel zu erreichen, wird das Flächenbrandwarnsystem
als motivierendes Szenario genutzt. Basierend auf den Herausforderungen und An-
forderungen dieses Warnsystems wird ein Algorithmus zur Erkennung von Än-
derungen in Stromdaten als Teil einer Gesamtlösung für das Flächenbrandwarnsys-
tem vorgestellt. Durch die Auswahl verschiedener Modelle zur lokalen und verteil-
ten Änderungserkennung sowie verschiedener Datenaustauschprotokolle können
verschiedene Systemdesigns entwickelt werden. Basierend auf diesem Ansatz leis-
tet diese Dissertation nachfolgend aufgeführte Beiträge. Es wird ein allgemeines
2-Fenster Framework zur Erkennung von Änderungen in einem einzelnen Daten-
strom vorgestellt. Weiterhin wird ein allgemeines synopsenbasiertes Framework
zur Änderungserkennung beschrieben. Mittels theoretischer und empirischer Anal-
ysen wird gezeigt, dass die Erkennungs-Performance des synopsenbasierten Än-
derungsdetektors ähnlich der eines nicht-synopsenbasierten ist, solange eine Dis-
tanzfunktion, welche die Änderungen quantifiziert, während der Erstellung der
Synopse eingehalten wird. Es wird Cluster-basierte Änderungserkennung und
Cluster-Pflege über gleitenden Fenstern vorgestellt. Weiterhin wird ein Framework
zur verteilten Änderungserkennung in drahtlosen Sensornetzwerken beschrieben.
Basierend auf dem 2-Phasen Stromdaten-Cluster-Ansatz, welcher weitestgehend
zur Clusterung eines einzelnen Datenstroms eingesetzt wird, wird ein verteiltes
Framework zur Clusterung von Stromdaten vorgestellt.

For Minh Duc, Quoc Bao

vii

Acknowledgments
I am fortunate to have opportunity in living and studying in Germany, a nation is
the origin of the modern higher education with the famous Humboldt model which
promotes and advocates the free spirit of research university. In particular, I am
fortunate to have Professor. Dr.-Ing.habil. Kai-Uwe Sattler as my supervisor, or
Doktorvater in German. I like this word because it has more meanings than super-
visor, and advisor. I am profoundly grateful to him for offering me this difficult
but interesting research topic and for his insightful advices, patience, and kindness
over the years.

I thank Dr Mohamed Gaber at the Data Science Research Group of School of
Computing University of Portsmouth for reading and giving insightful suggestions
that have improved this dissertation.

I thank Professor. Dr. Peter Fischer at the Web Science group of Institut für
Informatik, Albert-Ludwigs-Universität Freiburg for spending time on reading my
thesis and giving me many detailed and insightful comments that make thesis more
clearly.

I would like to thank all the members of Ph.D. committee: Professor. Dr. Martin
Dietzfelbinger, Professor. Dr.-Ing.habil. Armin Zimmermann, and Professor. Dr.
sc.techn. Beat Brüderlin.

I thank all my coauthors Professor Kai-Uwe Sattler, and Yang Jin. I thank Dr.
rer. nat. Rita Schindler, Dr.-Ing. Christine Krause, Dr.-Ing. Daniel Klan, Stephan
Baumann, Francis Gropengiesser, Felix Beier, and Liz Ribe Baumann, who support
me very much during the time working in the group. I thank Mr. Peter Henkel, and
Mr. Sauerbrey Martin for their technical support. I thank Ms. Hoang Hanh at School
of Languages and Comparative Cultural Studies of the University of Queensland,
for proofreading this dissertation. I thank all the officemates who support me when
working in the same office: Anja Poelck, Felix Beier, Yang Jin, Heiko Betz, and
Omran Saleh. I thank Ms.Katja Wolf, Ms.Marion Koch, Ms. Cordula Giewald, and
Ms. Silvia Benz for their office supports. This thesis would have been impossible
without you.

I gratefully acknowledge the financial supports of the Vietnam Ministry of Ed-
ucation and Training, TU Ilmenau, and the DAAD.

Finally, I am deeply indebted to my parent, my wife, and sisters for their love
and support.

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Thesis Statement . 3

1.1.1 Motivating Scenario . 5
1.1.2 Challenges and Solutions 7

1.2 Contributions of the Dissertation 12
1.3 Related Work . 14

1.3.1 Change Detection in A Single Data Stream 14
1.3.2 Reactive Monitoring . 15
1.3.3 Distributed Detection of Changes in Streaming Data . . . 15

1.4 Summary . 16

2 Background 17
2.1 Introduction . 17
2.2 Change Detection in Streaming Data 18

2.2.1 Change Detection: Definitions and Notation 18
2.2.2 Change Detection Methods in Streaming Data 22
2.2.3 Design Methodology . 27

2.3 Distributed Change Detection in Streaming Data 27
2.3.1 Distributed Detection: One-time versus. Continuous . . . 28
2.3.2 Locality in Distributed Computing 29

2.4 Efficiency Metrics . 31
2.4.1 Efficiency Metrics from Detection Theory 31
2.4.2 Efficiency Metrics from Information Retrieval 33
2.4.3 ROC and PR Curves . 34

2.5 Summary . 35

II Change Detection in A Single Data Stream 37

3 Window-based Change Detection in Streaming Data 39
3.1 Introduction . 39
3.2 Window-based Change Detection 40

3.2.1 Sliding Window Model 41
3.2.2 Change Detection using Sliding Windows Model 42

3.3 Change Detection Criteria . 45
3.4 Dissimilarity Metrics . 48

x Contents

3.4.1 Geometric Dissimilarity Metrics 48
3.4.2 Statistical Dissimilarity Metrics 49
3.4.3 Comparison of Geometric and Statistical Distances 51

3.5 Detection Threshold . 52
3.6 Evaluation of Change Detection 53

3.6.1 Effectiveness of Window Width 54
3.6.2 Effectiveness of Detection Threshold 57
3.6.3 Effectiveness of Dissimilarity Metrics 59

3.7 Summary . 63

4 Synopsis-based Detection of Changes in A Single Data Stream 65
4.1 Introduction . 65
4.2 Synopsis based Change Detection 66
4.3 DFT-based Change Detection . 71

4.3.1 Incremental Computation of DFT coefficients 73
4.3.2 Algorithm Description 75

4.4 Evaluation . 76
4.4.1 Evaluation on Accuracy of Detection 77
4.4.2 Evaluation on Performance 78

4.5 Summary . 81

5 Change Detection in Streaming Data by Clustering 83
5.1 Introduction . 83
5.2 Formal Model . 84
5.3 Automated Change Detection by Clustering 86

5.3.1 Automated Change Detection 86
5.3.2 Maintenance of Clustering using Reactive Approach . . . 88

5.4 Related Work . 90
5.4.1 Automated Change Detection 91
5.4.2 Change Detection in Multivariate Streaming Data 91

5.5 Evaluation . 92
5.5.1 Effectiveness of Window Width 93
5.5.2 Effectiveness of Cluster Number 94
5.5.3 Effectiveness of Sliding Step 96
5.5.4 Evaluation on Clusterings using Reactive Approach 97

5.6 Summary . 98

III Distributed Detection of Changes in Streaming Data 99

6 Distributed Detection of Changes in Streaming Data 101

Contents xi

6.1 Introduction . 101
6.2 Problem Formulation . 103

6.2.1 The Coordinator . 104
6.2.2 The Remote Site . 105
6.2.3 Decision Structure . 105

6.3 Distributed Change Detection . 106
6.3.1 Distributed Change Detection by Gossiping 107
6.3.2 Distributed Detection by False Discovery Rate 112
6.3.3 Distributed Detection of Change by Clustering 114

6.4 Evaluation . 119
6.4.1 Simulation . 119
6.4.2 Analysis . 120

6.5 Related Work . 123
6.6 Summary . 124

7 Distributed Clustering of Streaming Data 125
7.1 Introduction . 125
7.2 Problem Formulation . 129
7.3 Algorithm Description . 129

7.3.1 The Remote Process . 130
7.3.2 The Coordinator Process 131
7.3.3 Algorithm Analysis . 131

7.4 Empirical Results . 134
7.4.1 Evaluation on Global Clustering 135
7.4.2 Evaluation on Communication Efficiency 137
7.4.3 Effect of Block Width and Number of Micro-clusters . . . 137

7.5 Related Work . 140
7.6 Summary . 141

8 Conclusion 143
8.1 Key Contributions . 143
8.2 Future Directions . 146

Bibliography 151

List of Figures

1.1 A wireless sensor network for wildfire warning system presented
in [Li 2006] . 5

1.2 A system architecture for environmental observing systems pre-
sented in [Fountain 2012] . 6

1.3 Relationships among the chapters 8
1.4 Three dimensions of the distributed detection of changes in stream-

ing data . 12

2.1 A general diagram for detecting changes in data stream 21
2.2 One-time distributed change detection models 30
2.3 Continuous distributed change detection models 30

3.1 A window before and after sliding b steps 41
3.2 Chebychev dissimilarity measure between two adjacent windows . 49
3.3 Histogram of change for the adjacent windows model using Mann-

Whitney U Test . 50
3.4 Histogram of change for the two adjacent windows model using

Kolmogorov-Smirnov dissimilarity measure 51
3.5 Effect of window width on detection performance of change detec-

tor in terms of detection theory metrics 55
3.6 Effect of window width on performance of change detector in terms

of information retrieval theory metrics 56
3.7 Effect of window width on detection performance of change detec-

tor in terms of running time and memory consumption 56
3.8 Effect of threshold on performance of change detector 58
3.9 Effect of Threshold on Performance of Change Detector 59
3.10 Histogram of the absolute temperature differences of two consecu-

tive data points . 60
3.11 Histogram of the Euclidean distances between the reference win-

dow and the current window . 60
3.12 Histogram of the Manhattan distances between the reference win-

dow and the current window . 61
3.13 Comparison in ROC space of Change Detector 62
3.14 Comparison in PR space of Change Detector 62

4.1 Block diagram for detecting changes in data stream using synopsis
structures . 68

xiv List of Figures

4.2 Comparison of the Euclidean distance-based detector and DFT-
based detector in PR space . 79

4.3 Comparison of the Euclidean distance-based detector and DFT-
based detector in ROC space . 79

4.4 Running time of both direct and incremental DFT-based detectors
on the entire data stream . 80

5.1 Change detection by clustering 86
5.2 Effectiveness of window width on the performance of clustering-

based method for detecting changes in terms of running time . . . 93
5.3 Effect of the window width on the number of change points de-

tected by detectors . 94
5.4 Effectiveness of window width on the performance of clustering-

based change detection method in terms of memory consumption . 95
5.5 Effectiveness of the cluster number on running time of the

clustering-based change detection method 95
5.6 Effectiveness of number of clusters on the change points detected

by the clustering-based change detector 96
5.7 Effectiveness of sliding step on the performance of clustering-

based change detection method in terms of running time and memory 97

6.1 Data structure of a decision made by local change detector 106
6.2 Location estimation with different number of sensor nodes 108
6.3 A continuous distributed framework for clustering streaming data

and detecting changes in streaming data 115
6.4 Location estimation error . 121
6.5 Location estimation error in 25% nodes failure scenario 122
6.6 Number of massages transmitted 122
6.7 Number of massages transmitted 25% nodes failure scenario . . . 123

7.1 A distributed two-staged framework for clustering streaming data . 127
7.2 A comparison of two clusterings that were created by distributed

stream clustering algorithm and the centralized one on Power Sup-
ply data set . 136

7.3 Time to transmit block of streaming data vs. time to transmit local-
micro clustering . 136

7.4 Effect of block width . 139
7.5 Effect of number of micro-clusters 139

List of Tables

2.1 The confusion matrix of the change detector 32
2.2 An example of confusion matrix of the Euclidean distance-based

change detector . 33

3.1 Time and memory required to compute dissimilarity measures . . 52
3.2 Table of confusion matrixes of the Euclidean distance-based

change detector . 54

4.1 The Euclidean distance-based detector and DFT-based detector
with distance-based threshold 50 and absolute threshold 30 has the
same confusion matrix . 78

4.2 Running time and memory consumption of the Euclidean distance-
based detector, direct DFT-based detector, and incremental DFT-
based detector on the entire data stream sensor 2 81

5.1 Effect of cluster number on the number of detected change points
and the number of clusterings . 98

6.1 The result matrix of M local change detectors 113

Part I

Introduction and Background

CHAPTER 1

Introduction

Change we need! Change we can believe in! (Barack Obama)

Contents

1.1 Thesis Statement . 3

1.1.1 Motivating Scenario . 5

1.1.2 Challenges and Solutions 7

1.2 Contributions of the Dissertation 12

1.3 Related Work . 14

1.3.1 Change Detection in A Single Data Stream 14

1.3.2 Reactive Monitoring . 15

1.3.3 Distributed Detection of Changes in Streaming Data 15

1.4 Summary . 16

1.1 Thesis Statement
Today’s world is changing very fast. The changes occur in every aspects of life.
Therefore, the ability to detect, adapt, and react to the change play an important
role in all aspects of life. The physical world is often represented in some model
or some information system. The changes in the physical world are reflected in
terms of the changes in data or model built from data. Therefore, the nature of data
is changing. The advance of technology results in the data deluge. The data vol-
ume is increasing with an estimated rate of 50% per year [Manyika 2011]. Data
flood makes traditional methods including traditional distributed framework and
parallel models inappropriate for processing, analyzing, storing, and understand-
ing these massive data sets. Data deluge needs a new generation of computing tools
that Jim Gray calls the 4th paradigm in scientific computing [Hey 2009]. Recently,
there have been some emerging computing paradigms that meet the requirements
of Big Data as follows. Parallel batch processing model only deals with the station-
ary massive data [Dean 2008]. However, evolving data continuously arrives with

4 Chapter 1. Introduction

high speed. In fact, online data stream processing is the main approach to deal-
ing with the problem of three characteristics of Big Data including big volume,
big velocity, and big variety. Streaming data processing is a model of Big Data
processing. Streaming data is temporal data in nature. In addition to the temporal
nature, streaming data may include spatial characteristics. For example, geographic
information systems can produce spatial-temporal data stream. Streaming data pro-
cessing and mining have been deploying in real-world systems such as InforSphere
Streams (IBM)1, Rapidminer Streams Plugin 2, StreamBase 3, MOA 4, AnduIN 5.
In order to deal with the high-speed data streams, a hybrid model that combines the
advantages of both parallel batch processing model and streaming data processing
model is proposed. Some projects for such hybrid model include S4 6, Storm 7, and
Grok 8 .

One of these challenges facing data stream processing and mining is the chang-
ing nature of streaming data. Therefore, the ability to identify trends, patterns, and
changes in the underlying processes generating data contributes to the success of
processing and mining massive high-speed data streams.

A model of continuous distributed monitoring has been recently proposed to
deal with streaming data coming from multiple sources. A model of continuous
distributed monitoring consists of many observers and each observer monitoring
a single data stream. The goal of continuous distributed monitoring is to perform
some task that need to aggregate the incoming data from the observers. The con-
tinuous distributed monitoring is applied to monitor networks such as sensor net-
works, social networks, networks of ISP [Cormode 2013]. Along with this line of
research, this dissertation deals with the problem of detection of changes in stream-
ing data.

Change detection is the process of identifying differences in the state of an
object or phenomenon by observing it at different times or different locations in
space. In the streaming context, change detection is the process of segmenting
a data stream into different segments by identifying the points where the stream
dynamics changes [Ross 2009]. A change detection method consists of the fol-
lowing tasks: change detection and localization of change. Change detection de-
tects whether a change occurs, and response to the presence of the change. Besides
change detection, localization of changes determines the location of change. The
problem of locating the change has been studied in the statistics in the problems of

1http://www-01.ibm.com/software/data/infosphere/streams/
2http://www-ai.cs.uni-dortmund.de/auto?self=$eit184kc
3http://www.streambase.com/
4http://moa.cs.waikato.ac.nz/
5http://www.tu-ilmenau.de/dbis/research/anduin/
6http://incubator.apache.org/s4/
7https://github.com/nathanmarz/storm/wiki/Tutorial
8https://www.numenta.com/grok_info.html

http://www-01.ibm.com/software/data/infosphere/streams/
http://www-ai.cs.uni-dortmund.de/auto?self=$eit184kc
http://www.streambase.com/
http://moa.cs.waikato.ac.nz/
http://www.tu-ilmenau.de/dbis/research/anduin/
http://incubator.apache.org/s4/
https://github.com/nathanmarz/storm/wiki/Tutorial
https://www.numenta.com/grok_info.html

1.1. Thesis Statement 5

Figure 1.1: A wireless sensor network for wildfire warning system presented in
[Li 2006]

change point detection. In this dissertation, we both determine whether a change
occurs and content of a change, that means showing a change point, or a set of
change points.

1.1.1 Motivating Scenario

The wildfire warning system is selected to study the problem of distributed detec-
tion of changes in streaming data as shown in Figure 1.1. The goal of this scenario
is to describe the underlying integration model in which our change detection al-
gorithms are components. The main tasks of a wildfire warning system include
detecting a small fire, and determining its position in order to intervene and limit
the spreading of the fire as fast as possible. Detecting the event of fire is based
on the detecting of abnormal changes in sensor readings including temperature,
humidity, and light intensity. Determining location of event is based on the GPS
technology or the localization algorithm in wireless sensor networks [Li 2006].

The changes of environment such as the wildfire in Figure 1.1 can occur in
some region where only a portion of the sensors are capable of detecting changes.
As such, these changes of observations occur locally. The rest of the sensor network
should know the information of occurred changes to make their decisions timely
and accurately. Sensors detect changes in their ambient environments, such as the
abnormal raise of the temperature in some area of a forest, then disseminate infor-
mation of the detected changes to the rest of sensor network serving as alarms. The
system architecture for wildfire warning system depicted in Figure 1.1 includes the
following components. First, sensor nodes for sampling environmental measures
such temperature, humidity, barometric pressure, and light intensity. Sensor node
is a sensing and computing devices with restricted resources such as small mem-

6 Chapter 1. Introduction

Figure 1.2: A system architecture for environmental observing systems presented
in [Fountain 2012]

ory, limited sensing ranges, low computing power, and limited energy. Each node
in the network is able to detect the changes of the environment within its vicinity.
Sensors in wireless sensor networks are intelligent ones. An intelligent sensor can
execute a program itself. There are two kinds of sensor nodes: sensor node and
routing node. In fact, depending the distance with the location of event, a node can
be a sensor node or routing node. Second, routing nodes transmits sensor readings
to the base stations or the coordinators. Third, web server collects sensor readings
from the base stations. Forth, database stores the sensor readings as history for later
analysis. Finally, client reports the fire event and the location of fire based on GPS
information to the fire-fighters to response to the fire if it occurs.

This architecture has the following drawbacks. First, the base station periodi-
cally collects the sensor readings reflecting the information about the environment.
Such pull-based queries for information incurs high cost in terms of resource and
accuracy of data and model. Second, the sensor readings are stored in a database,
in particular MySQL. This database may not meet the requirement for data storage
because of the continuous arrival of sensor readings.

Figure 1.2 shows a system architecture for environmental observing systems
[Fountain 2012]. This architecture is more general than the architecture of Fig-
ure 1.1. In particular, the architecture of Figure 1.2 includes a robust real-time
streaming data engine called DataTurbine. This streaming data engine is useful for
streaming data from sensors to the base stations to the data centers. Instead of using
traditional databases such as MySQL, SQL Server, data centers can be the stream

1.1. Thesis Statement 7

processing technologies that process data in real-time such as InfoSphere Streams,
TIBICO, or streaming data warehouse DataDepot [Golab 2009].

We consider a network of M sensors randomly deployed in a region of in-
terest. Let S = {S1, ..., SM} be time series data streams of observations arriving
continuously from M sensors in the above sensor network. If a change occurs in
the environment close to some node in the sensor network, the tasks of the sensor
network are to detect and to report the changes of the environment as quickly as
possible by using a small amount of memory, yet to assure some certain accuracy.
We note that in the wildfire warning system, only a portion of nodes sense, and de-
tect the events. To detect a fire event, only a portion of nodes detects the abnormal
changes of the measures such as temperature, or humidity.

1.1.2 Challenges and Solutions

Designing and developing a change detector in a wireless sensor network face the
following main challenges. First, the data streams produced by wireless sensor net-
works must be processed in real-time, which is a special case of change detection
in distributed data streams. Second, processing data streams on sensor nodes has to
consider resource limitations of sensor nodes, such as low power batteries, small
memory, and limited communication resources. Third, effective schemes should be
adopted to overcome local detection failures. Last by not least, different applica-
tions poses different requirements. For example, a wireless sensor network for fire
warning system requires to propagate the detected event to multiple locations in the
network timely. This requirement results in a multi-source multi-sink problem with
time constraints. The challenges facing change detection in streaming data include
the challenges of the change detection problem and those of data stream processing
model.

Change detection has been studied and applied in many fields for a long time.
Each research field has solved the problem of change detection by developing its
own conceptual framework based on each specific context of application and how
the concept "change" is understood [Dasu 2009]. The change detection algorithms
are therefore diverse. For example, in the statistical signal processing, it is often
stated as the problem of detecting signal in noise. In statistics, it has been con-
sidered in terms of the problem of hypothesis testing and the problem of change
point detection. In general, there is no unified and universal framework for change
detection that can be used for many disciplines.

Methods for detecting changes must be scalable with very large data sets, be
able to adapt to streaming context, to apply to small data sets as well, to deal with
multidimensional data, to capture spatial relationships and correlations. Further-
more, due to the restricted resources, when designing the change detection schemes
for streaming data stream, we must consider the systems resources such as memory,

8 Chapter 1. Introduction

Chapter 2

Background

Chapter 4
Synopsis-based Change Detection

in Streaming Data

Chapter 3
Window-based Change Detection

in Streaming Data

Chapter 5
Change Detection

in Streaming Data by Clustering

Local change detector at remote site

Support for

Chapter 7
Distributed Clustering of

Streaming Data

Distributed Detetion of Change in
Streaming Data

Chapter 6
Distributed Detection of Changes

in Streaming Data

Use

Support for

Figure 1.3: Relationships among the chapters

computing power, or energy consumption [Gama 2007].
Wireless sensor networks for monitoring outdoor environment requires reac-

tivity, reliability, robustness, and network lifetime. In fact, sensor data arrives as a
continuous and fast data stream. Thus, change detection in streaming sensor data
works under resource-limited constraints. The challenges facing sensor data stream
processing originate from the restrictions of sensor resources [Gama 2007].

Figure 1.3 shows the relationships among the chapters in this dissertation. This
dissertation contains 3 parts. Part I consists of Chapter 1 and Chapter 2. Chapter
2 introduces the problem of change detection and the the concepts of change and
change detection in streaming data.

Part II presents the change detection methods in a single data stream. This part
consists of the following chapters

• Chapter 3 presents a window-based change detection in streaming data.
Change detection in streaming data is challenging due to the time-evolving

1.1. Thesis Statement 9

and theoretically unlimited nature of the data stream. As data stream is un-
limited in theory and the memory of sensor is limited, we use two-window
model to quantify, and to detect changes in streaming data. Furthermore, as
the value of data decreases overtime, we are only interested in the recent
streaming data. A change detection method should maximize the probability
of detection while minimizing the false alarm rate. A local change detec-
tor can be used as an onboard change detector at each sensor. Local change
detection can reduce communication cost and prolong battery life. While tra-
ditional change detection methods can scan data sets many times, the change
detection methods in streaming data must be limited in the number of scans
in data sets due to the theoretically infinite nature of data streams and the
restriction of systems resources. One-pass change detection algorithms are
preferred. An advantage of local computation is energy-efficiency. Although
windows are used to extract data, in many cases, the window width is too
large to store and process in memory. We then propose to summarize data
in windows as compact synopses, quantify and detect the changes in these
compact summaries.

• Chapter 4 introduces a general framework for change detection in a single
data stream by using synopses that summarize data. By this way, the re-
sources such as time, memory needed for change detection in streaming data
may reduce. While change detection methods in Chapter 3 and 4 have been
focused on the univariate streaming data, many change detection methods in
real world applications should be considered in the correlation of multiple at-
tributes. Therefore, change detection in multivariate streaming data becomes
important.

• Chapter 5 proposes an automated change detection algorithm in multivariate
streaming data by clustering. Sensor networks need the automated change
detection methods in which detection threshold must adapt to these changes
of the environment. Automated systems should detect the changes with-
out the given detection threshold. A stream clustering algorithm should
be able to adapt to the changes in data distribution. Besides, we present
a method for building and maintaining clustering over sliding window. In
the reactive approach, the clustering is rebuilt when a change in the data
distribution is detected. Change detection in streaming data is closely re-
lated to the problem of clustering streaming data. Recently, some change
detection methods in streaming data by clustering have been proposed
[Aggarwal 2012, Gaber 2006, CHEN 2009]. Gaber and Yu have presented
STREAM-DETECT to capture the changes in data distribution and domain
based on the clustering method. Their approach includes two phases: online
clustering and off-line classification [Gaber 2006]. The goal of the first phase

10 Chapter 1. Introduction

is to detect changes based on determining the changes of clustering features
such as cluster mean, cluster standard deviation, mean size. Aggarwal and
Yu study change detection methods using micro-clustering [Aggarwal 2006].
Closely related to our work is the segment-based change detection method in
multivariate data stream proposed by Chen et al. [CHEN 2009].

Change detection methods presented in Part II can be used as a component of a dis-
tributed framework for detecting changes in Part III. Part III presents the distributed
frameworks for detecting and monitoring the changes in streaming data that comes
from multiple sources. In particular, chapter 6 and 7 is concerned with the problem
of continuous monitoring multiple data streams.

• Chapter 6 proposes a distributed framework for detecting changes in stream-
ing data that comes from multiple sources. Change detection from sensor
data is really decentralized change detection from multiple distributed data
streams due to the distributed nature of a sensor network. We present a dis-
tributed framework for detecting changes in streaming data by using local
change detection at the remote sites, and decision fusion at the coordinator.
The goal of our distributed framework for detecting changes in streaming
data is to reduce the communication overhead , yet to assure the detection
accuracy. Due to the limited bandwidth of the communication channel, and
limited power battery of sensor, each sensor sends its decision represented by
a compact data structure to the fusion center. All the local change detectors
use an identical local threshold.

There are two approaches to distributed detection of changes in streaming
data. In the first approach called data fusion, the sink node is responsible for
fusing the data sent by all the nodes in the network, change detection is then
performed on the fused data. Compared to data fusion, decision fusion avoids
the congestion of network traffic better by transmitting the local decisions re-
sulted from every change detector to the sink node at which local decisions
are fused to reach the global decision. We assume that each node in the sen-
sor network has reached its local decision ui which is the local decision of
the local change detector at node i. The local decision at node i is propagated
to the other nodes of the sensor network, based on the received information
from node i, these nodes also make local decision themselves. All the de-
cisions are transmitted to the sink node in order to get the global decision.
The goals and performance metrics for a distributed detection of changes
in streaming data include communication overhead, promptness, and detec-
tion accuracy. Since sensor networks operate over wireless networks with
limited bandwidth while transmission rates are very high and all the nodes
share a common bandwidth, communication efficiency is therefore a chal-
lenge. In fact, the communication efficiency is closely related to the energy

1.1. Thesis Statement 11

efficiency because communication over a sensor network consumes a con-
siderable amount of energy [Klan 2011]. In chapter 5, we describes how to
detect changes in streaming multivariate data, hence in Chapter 7, we present
a distributed clustering method for streaming data, and then extend it for the
distributed detection of changes in streaming multivariate data. In particu-
lar, remote sites will summarize streaming multivariate data by using online
phase, and send it to the coordinator, coordinator will detect the changes by
using the clustering-based change detection presented in Chapter 5.

• Chapter 7 introduces a novel distributed framework for clustering streaming
data by using local micro-clustering approach. The energy consumption is
one of the main design desiderata when devising query processing strategies
for sensor networks. Clustering of distributed streaming aims to support for
the following tasks: monitoring of changes using clustering; clustering sensor
nodes based on similarity of sensor readings; computing the sleeping time for
a sensor node when it goes to the sleeping state. A sensor can be in sleeping
state if it does not transmit data. As sensors near-by may have high corre-
lations in their observation measures, therefore, in Chapter 7 we propose a
distributed framework for clustering streaming sensor data. One of the main
goals is to prolong network lifetime. An approach to maximizing the net-
work lifetime is switching sensor nodes between active and sleeping states.
A sensor node goes to the sleeping node when the radio and the sensing are
turned off. As sensor nodes in wireless sensor networks are moving , wireless
sensor network application should manage a huge amount of GPS streaming
data. One of the solutions to this challenge is to reduce the communication
overhead by using the algorithms for clustering sensor nodes in senor net-
work such as [Handy 2002, Younis 2004]. Clustering sensor nodes in sensor
networks supports for power management and network routing. Another ap-
proach to clustering sensors in sensor networks based sensor data have been
recently presented [Sagen 2010]. Sagen et al. have applied distributed stream
clustering algorithm for computing sleeping time.

• Chapter 8 summarizes our main contributions and introduces the future work.

Figure 1.4 shows three dimensions of a solution to the problem of distributed
detection of changes in streaming data: the communication solution, local change
detection algorithm, and distributed detection and decision fusion. The salient fea-
ture of this framework is its flexibility. As we can select various solutions for each
dimension„ there are many solutions to the problem of distributed change detec-
tion. For local change detection, we can select or develop various local change
detection algorithms. In this thesis, we present the local change detectors such
as the Euclidean-distance-based detector, the Manhattan distance-based detector,

12 Chapter 1. Introduction

Local change detector
in streaming data
at the remote site

Decicision Fusion
at the coordinator

Network
architecture

Figure 1.4: Three dimensions of the distributed detection of changes in streaming
data

DFT-based change detector, and the change detector using clustering. For dis-
tributed change detection and decision fusion, we can also select or develop var-
ious algorithms for transmitting data, decisions, and making the decision on the
event. Such distributed change detection algorithms include data flooding protocol
[Juang 2002], gossiping-based fusion protocol [Yang 2011, Tran 2011b]. In this
thesis, we propose three novel distributed change detection algorithms. The first
algorithm is a distributed detection algorithm using gossiping scheme. The second
algorithm is a distributed detection algorithm using the false alarm discovery rate.
The advantage of this approach is that it does not require the probability of hit, and
probability of false alarm. Therefore, it fits well to the real world applications in
which these information are unknown. The third algorithm is a distributed change
detection algorithm using reactive approach. In particular, it uses the clustering
approach to identify whether a new data point or a block of new data points fit
to the existing global clustering. The advantages of this approach are that it is an
automated change detection method and it works for multivariate streaming data.

1.2 Contributions of the Dissertation

The contributions of this dissertation are built upon the wealth of research on both
change detection and data stream processing. In particular, this dissertation makes
the following contributions.

• A general framework for detecting changes in streaming data from a single
source by using two fixed-size windows is proposed.

1.2. Contributions of the Dissertation 13

• A general framework for detecting changes in streaming data from a single
source by using synopses constructed from two windows is proposed. It is
proved that if the distance is preserved under some synopsis transformation
then the detection performance of the change detectors using that synopsis
is preserved. A concrete example illustrating this theorem is the change de-
tector using Discrete Fourier Transform coefficients as synopses. The signif-
icance of incremental change detection is demonstrated by experiment with
DFT-based change detection.

• An automated change detection algorithm using clustering is presented. Be-
sides a reactive method for building maintaining clustering by using the
above change detection method is proposed. The reactive approach to build-
ing and maintaining clustering means that a new clustering is only rebuilt
when a change in incoming data is detected.

• A framework for detecting changes in streaming data coming from multi-
ple sources is introduced. An instance of this framework using gossip-based
scheme is simulated to illustrate the proposed framework. We presents a con-
tinuous distributed monitoring of changes and clustering from multivariate
streaming data. The salient feature of continuous distributed monitoring of
changes using the clustering approach is that it does not require the local de-
tection threshold and the global detection threshold. We present a distributed
framework using decision fusion for detecting changes without requiring the
detection accuracy of local decisions.

• A distributed framework for clustering data streams is proposed. A widely
used approach to clustering a single data stream is the two-phased approach
in which the online phase creates and maintains micro-clusters while the off-
line phase generates the macro-clustering from the micro-clusters. We use
this approach to propose a distributed framework for clustering streaming
data. Every remote-site process generates and maintains micro-clusters that
represent cluster information summary from its local data stream. Remote
sites send the local micro-clusterings to the coordinator, or the coordinator
invokes the remote methods in order to get the local micro-clusterings from
the remote sites. Having received all the local micro-clusterings from the
remote sites, the coordinator generates the global clustering by the macro-
clustering method. Our theoretical and empirical results show that the global
clustering generated by our distributed framework is similar to the cluster-
ing generated by the underlying centralized algorithm on the same data set.
By using the local micro-clustering approach, our framework achieves high
scalability, and communication-efficiency.

14 Chapter 1. Introduction

1.3 Related Work

Related work to this dissertation include change detection in a single data stream,
distributed detection of changes, and building and maintaining clustering.

1.3.1 Change Detection in A Single Data Stream

Our change detectors are closely related to the meta algorithm proposed by Kifer
et al. [Kifer 2004]. To detect change in a data stream, they compare the distri-
butional distance between two sliding windows with a given threshold. Their ap-
proach requires no prior assumptions on the nature of the data distribution. They
can compare two sliding windows of different sizes because the distance used by
their algorithm is the Kolmogorov- Smirnov statistical distance. However, this al-
gorithm is not well suited for sensor network applications because computing the
Kolmogorov-Smirnov has high computation complexity and some other important
limitations [Massey Jr 1951]. For example, the K-S distance applies only to con-
tinuous distributions. Perhaps, the most serious limitation of the K-S distribution is
that it typically must be determined by simulation. Therefore, we have used in our
work simple geometric and algebraic functions such as the Euclidean and Manhat-
tan distances. As data streams evolve overtime in nature, there is growing emphasis
on detecting changes not only in the underlying data distribution, but also in the
models generated by data stream process and data stream mining.

In order to find a suitable solution to the change detection problem in resource-
restricted settings of sensor networks, we have adopted the principle of work of
Kifer et al. In our change detectors, the two-window paradigm is exploited, but we
have improved this model by using the sliding window model first introduced by
Zhu et al. [Zhu 2002].

Specially, Zhu et al. divided a large sliding window into smaller windows called
basic windows. This division eases the evaluation of the change detectors. The dis-
tinction between their work and our work is that instead of computing the statistics
and finding the correlations among data streams, we apply this sliding window
framework to the problem of change detection. An important distinction among
our change detection methods presented in this dissertation and others is that we
can continuously evaluate the detection performance of change detection methods
on the entire data stream while other work only evaluate on a snapshot of data
stream. We use metrics from detection theory and information retrieval theory to
evaluate and compare the detection performance of change detectors.

We should distinguish among three following problems: change detection in the
underlying data distribution, change detection in model, and data stream mining
with concept drift. First, change detection in the underlying data distribution is to
find the difference among data sets over time based on some criteria such as the

1.3. Related Work 15

dissimilarity measure between two data sets, or from the difference between two
models constructed from two data sets to infer the difference between two data sets.
Second, change detection in model is finding the difference between two models
constructed from data sets overtime. Third, data stream mining with the presence
of concept drift refers to the mining process whose result called concept changes
overtime. As such, concept change refers to the change of the underlying concept
over time. Concept drift can be classified into abrupt concept drift and gradual
concept drift.

1.3.2 Reactive Monitoring

Building models from the continuous data streams aims to capture patterns and
time-evolving trends in these streams. There are three approaches to building and
monitoring models extracted from data streams [Bifet 2010a]. The first approach is
called the periodic approach in which the model is rebuilt time to time. The second
approach is the incremental approach in which the model is updated whenever the
data changes. The benefits of incremental approaches are accurate and optimal. The
third approach is called the reactive approach which monitors the change, and re-
build the model only when it no longer suits the data. Likewise, building and main-
taining of model from distributed streaming data includes three approaches: the pe-
riodic approach, incremental approach, and the reactive approach [Bhaduri 2008].
Bhaduri et al. have shown the advantages and disadvantages of each approach as
follows. The periodic approach may incur high cost in terms of resources and model
accuracy. In particular, this approach may not well be suited for streaming evolv-
ing data. The best approach to building and maintaining model is the incremen-
tal approach. However, this incremental approach depends every specific problem.
The reactive approach is widely used for many computation tasks because of its
simplicity and efficiency. Chapter 5 presents a reactive method for monitoring of
clustering in streaming data over sliding window. We then extends this method for
distributed environment in Section 6.3.3 of Chapter 6.

1.3.3 Distributed Detection of Changes in Streaming Data

Over the last decades, the problem of decentralized detection has received much
attention. There are two directions of research on decentralized detection. The first
approach focuses on aggregating measurements from multiple sensors to test a
single hypothesis. The second focuses on dealing with multiple dependent test-
ing/estimation tasks from multiple sensors [Rajagopal 2008]. Distributed change
detection usually involves a set of sensors that receive observations from the en-
vironment and then transmit those observations back to fusion center in order to
reach the final consensus of detection. Decentralized detection and data fusion are

16 Chapter 1. Introduction

therefore two closely related tasks that arise in the context of sensor networks
[Niu 2006b, Niu 2006a]. Two traditional approaches to the decentralized change
detection are data fusion, and decision fusion. In data fusion, each node detects
change and sends quantized version of its observation to a fusion center responsi-
ble for making decision on the detected changes, and further relaying information.
In contrast, in decision fusion, each node performs local change detection by using
some local change algorithm and updates its decision based on the received infor-
mation and broadcasts again its new decision. This process repeats until consensus
among the nodes are reached. Compared to data fusion, decision fusion can reduce
the communication cost because sensors need only to transmit the local decisions
represented by small data structures. Although there is great deal of work on dis-
tributed detection and data fusion, most of work focuses on the one-time change
detection solutions. One-time query is defined as a query that needs to proceed data
once in order to provide the answer [Cormode 2005]. Likewise, one-time change
detection method is a change detection that requires to proceed data once in re-
sponse to the change occurred. In real-world applications, we need the approaches
capable of continuously monitoring the changes of the events occurring in the en-
vironment. Recently, work on continuous detection and monitoring of changes has
been started receiving attention such as [Palpanas 2003, Das 2009, Pham 2012].
Das et al. [Das 2009] have presented a scalable distributed framework for detect-
ing changes in astronomy data streams using local, asynchronous eigen monitoring
algorithms. Closely related to our work is that of Palpanas et al. [Palpanas 2003],
which proposed a distributed framework for outlier detection in real-time data
streams. In their framework, each sensor estimates and maintains a model for its
underlying distribution by using kernel density estimators. However, they did not
show how to reach the global detection decision. The important distinction be-
tween our work and theirs is that instead of comparing the model extracted from
the window with the norm, we quantify and detect changes in a single data stream
by using two-window method. Depending on the position of the reference and cur-
rent windows, and the selection of various distances, we can develop many change
detection methods.

1.4 Summary
Change detection in streaming data is an exciting and challenging area of research,
and a promising source of research problems.Successful applications of sensor net-
works will mostly depend on the ability to detect changes of change detection al-
gorithms. This dissertation provides initial steps towards that target.

CHAPTER 2

Background

All things flow, everything runs, as the waters of a river, which seem
to be the same but in reality are never the same, as they are in a state
of continuous flows (The doctrine of Heraclitus)

Contents

2.1 Introduction . 17

2.2 Change Detection in Streaming Data 18

2.2.1 Change Detection: Definitions and Notation 18

2.2.2 Change Detection Methods in Streaming Data 22

2.2.3 Design Methodology . 27

2.3 Distributed Change Detection in Streaming Data 27

2.3.1 Distributed Detection: One-time versus. Continuous 28

2.3.2 Locality in Distributed Computing 29

2.4 Efficiency Metrics . 31

2.4.1 Efficiency Metrics from Detection Theory 31

2.4.2 Efficiency Metrics from Information Retrieval 33

2.4.3 ROC and PR Curves . 34

2.5 Summary . 35

2.1 Introduction
This chapter presents the background issues and notation relevant to the problem
of change detection in data streams. As in the real world applications, it is diffi-
cult to determine the data distributions before and after change, this dissertation
emphasizes the nonparametric change detection methods. The problems relevant
to the evolving characteristics of data streams include building a model from the
evolving data stream, representation of change, detecting changes in the data gen-
erating process, or the model generated from the data stream. We briefly review
these problems in the sections below.

18 Chapter 2. Background

2.2 Change Detection in Streaming Data
Streaming computational model is considered one of the widely-used models
for processing and analyzing massive data. Streaming data processing helps the
decision-making process in realtime. A data stream is defined as follows.

Definition 2.2.1. A data stream is an infinite sequence of elements

S = {(X1, T1) , .., (Xj, Tj) , ...} (2.2.1)

Each element is a pair (Xj, Tj) where Xj is a d-dimensional vector Xj =

(x1, x2, ..., xd) arriving at the time stamp Tj . Time-stamp is defined over discrete
domain with a total order. There are two types of time-stamps: explicit time-stamp
is generated when data arrive; implicit time-stamp is assigned by some data stream
processing system.

Streaming data includes the fundamental characteristics as follows. First, data
arrives continuously. Second, streaming data evolves overtime. Third, streaming
data is noisy, corrupted. Forth, timely interfering is important. From the character-
istics of streaming data and data stream model, data stream processing and mining
pose the following challenges. First, as streaming data arrives rapidly, the tech-
niques of streaming data process and analysis must keep up with the data rate to
prevent from the loss of important information as well as avoid data redundancy.
Second, as the speed of streaming data is very high, the data volume overcomes the
processing capacity of the existing systems. Third, the value of data decreases over
time, the recent streaming data is sufficient for many applications. Therefore, one
can only capture and process the data as soon as it is generated.

2.2.1 Change Detection: Definitions and Notation

This section presents concepts and classification of changes and change detection
methods. To develop a change detection method, we should understand what a
change is.

Definition 2.2.2. Change is defined as the difference in the state of an object or
phenomenon over time and/or space [Roddick 2000].

In the view of system, change is the process of transition from a state of a
system to another. In other words, a change can be defined as the difference be-
tween an earlier state and a later state. An important distinction between change
and difference is that a change refers to a transition in the state of an object or
a phenomenon overtime while the difference means the dissimilarity in the char-
acteristics of two objects. A change can reflect the short-term trend or long-term

2.2. Change Detection in Streaming Data 19

trend. For example, a stock analyst may be interested in the short-term change of
the stock price. Throughout this dissertation, we mainly focus on the short-term
change by using the window-based change detection methods. Change can be clas-
sified based on the magnitude of change, velocity of change, frequency of change.
A change can be categorized into gradual change or abrupt change. An example of
abrupt change is the change of temperature that is caused by a fire. Small change is
defined as a change whose change magnitude per time unit is small. Small changes
can be easily detected by sensors such as the light automatically turns on when the
door opens. For example, detection of small changes plays an vital role in many
applications such as flutter detection for analyzing the instability phenomenon for
aircraft, or forest cover change detection [Zouari 2008]. As can be seen in Chapter
3, 4, 5, gradual change can be detected by using overlapping windows model with
the small step of sliding. A change can be also classified into rare change or fre-
quent change. A rare change can be an outlier, or anomaly. Periodic changes such
as the seasonal changes in the climate model, or the changes in ECG signal. For
example Tao and Özu present method for detecting periodic changes in streaming
data [Tao 2009]. Chapter 4 will present a method for detecting changes by using
Discrete Fourier Transform coefficients constructed from raw streaming data. DFT-
based change detection method is well-suited for these periodic changes such the
changes in ECG signal, and sensor data stream.

Change detection is defined as the process of identifying differences in the state
of an object or phenomenon by observing it at different times [Singh 1989]. In
the above definition, a change is detected on the basis of differences of an object
at different times without considering the differences of an object in locations in
space. In many real world applications, changes can occur both in terms of both
time and space. For example, multiple spatial-temporal data streams representing
triple (latitude, longitude, time) are created in traffic information systems using
GPS [Geisler 2010]. Hence, a general definition of the change detection can be as
follows.

Definition 2.2.3. Change detection is the process of identifying differences in the
state of an object or phenomenon by observing it at different times and/or different
locations in space.

A distinction between concept drift detection and change detection is that con-
cept drift detection focuses on the labeled data while change detection can deal
with both labeled and unlabeled data. Change analysis both detects and explains
the change. Hido et al. [Hido 2008] proposed a method for change analysis by us-
ing supervised learning.

Definition 2.2.4. Change point detection is identifying time points at which prop-
erties of time series data change[Kawahara 2009]

20 Chapter 2. Background

Depending on specific application, change detection can be called in different
terms such as burst detection, outlier detection, or anomaly detection. Burst detec-
tion a special kind of change detection. Burst is a period on stream with aggregated
sum exceeding a threshold [Karnstedt 2009]. Outlier detection is a special kind
of change detection. Anomaly detection can be seen as a special type of change
detection in streaming data.

To find a solution to the problem of change detection, we should consider
the aspects of change of the system in which we want to detect. As shown in
[Roddick 2000], the following aspects of change, which must be considered, in-
clude subject of change, type of change, cause of change, effect of change, response
of change, temporal issues, and spatial issues. In particular, to design an algorithm
for detecting changes in sensor streaming data, the major questions we need to an-
swer include: What is the system in which the changes need to be detected? What
are the principles used to model the problem? What is data type? What are the
constraints of the problem? What is the physical subject of change? What is the
meaning of change to the user? how to respond and react to this change?

A change detection method can fall into one of two types: batch change de-
tection and sequential change detection. Given a sequence of N observations
x1, .., xN , where N is invariant. The task of a batch change detection method is
to decide whether a change occurs at some point in the sequence by using all N
available observations. When the arriving speed of data is too high, batch change
detection is suitable. In other words, change detection method using two adjacent
windows model will be used. However, the drawback of batch change detection
method is that its running time is very large when detecting changes in a large
amount of data. In contrast, the sequential change detection problem is based on
the observations so far. If no change is detected, the next observation is processed.
Whenever a change is detected, the change detector is reset.

Change detection methods can be classified into the following approaches:
threshold-based change detection method; state-based change detection method;
trend-based change detection method. In Chapter 3, and 4, we present threshold-
based change detection methods. A change detection algorithm should meet three
main requirements [Liu 2010]: accuracy, promptness, and online. The algorithm
should detect as many as possible actual change points and generate as few as pos-
sible false alarms. The algorithm should detect change point as early as possible.
The algorithm should be efficient sufficient for a real time environment. The change
detection methods using two overlapping windows proposed in Chapter 3, 4, 5 can
meet these requirements.

Change detection in data stream allows us to identify the time-evolving trends,
and time-evolving patterns. Research issues on mining changes in data streams
include modeling and representation of changes, change-adaptive mining method,
and interactive exploration of changes [Dong].

2.2. Change Detection in Streaming Data 21

Data Stream
Processing/Mining

Incoming
Data stream

Model

the changes of
 data generating process

the changes of
the generated model

Figure 2.1: A general diagram for detecting changes in data stream

Change detection plays an important role in the field of data stream analy-
sis. Since change in model may convey interesting time-dependent information
and knowledge, the change of the data stream can be used for understanding the
nature of several applications. Basically, interesting research problems on mining
changes in data streams can be classified into three categories: modeling and rep-
resentation of changes, mining methods, and interactive exploration of changes.
Change detection algorithm can be used as a sub-procedure in many other data
stream mining algorithms in order to deal with the changing data in data streams
[Huang 2003, Aggarwal 2007]. A definition of change detection for streaming data
is given as follows

Definition 2.2.5. Change detection is the process of segmenting a data stream into
different segments by identifying the points where the stream dynamics changes
[Ross 2009].

As data streams evolve overtime in nature, there is growing emphasis on de-
tecting changes not only in the underlying data distribution, but also in the mod-
els generated by data stream process and data stream mining. As can be seen in
Figure 2.1, a change can occur in the data stream, or the streaming model. There-
fore, there are two types of the problems of change detection: change detection
in the data generating process and change detection in the model generated by a
data stream processing, or mining. The fundamental issues of detecting changes
in data streams includes characterizing and quantifying of changes and detecting
changes. A change detection method in streaming data needs a trade-off among
space-efficiency, detection performance, and time-efficiency.

22 Chapter 2. Background

2.2.2 Change Detection Methods in Streaming Data

Over the last 50 years, change detection has been widely studied and applied in both
academic research and industry. For example, it has been studied for a long time
in the following fields: statistics, signal processing, and control theory. In recent
years many change detection methods have been proposed for streaming data. The
approaches to detecting changes in data stream can be classified as follows.

• Data stream model: A data stream can fall into one of the follow-
ing models: time series model, cash register model, and turnstile model
[Muthukrishnan 2005]. On the basis of the data stream model, there
are change detection algorithms developed for the corresponding data
stream model. Krishnamurthy et al presented a sketch-based change de-
tection method for the most general streaming model Turnstile model
[Krishnamurthy 2003]. As we select a wildfire warning system as a moti-
vated scenario for thesis, we will focus on the problem of change detection
in streaming data where data stream model is time series data stream. Be-
cause time series data stream is the most suitable for representing sensor
data stream.

• Data characteristics: Change detection methods can be classified on the ba-
sis of the data characteristics of streaming data such as data dimensional-
ity, data label, and data type. A data item coming from the data stream can
be univariate or multi-dimensional. It would be great if we could develop a
general algorithm able to detect changes in both univariate and multidimen-
sional data streams. Change detection algorithms in streaming multivariate
data have been presented [Dasu 2009, Kim 2009, Kuncheva 2011]. Chapter
3 and Chapter 4 are devoted to develop the methods for detecting changes in
univariate streaming data. Chapter 5 presents a clustering-based method for
detecting changes in multivariate streaming data. Data streams can be clas-
sified into categorial data stream and numerical data stream. We can develop
the change detection algorithm for categorial data stream or numerical data
stream. In real world applications, each data item in data stream may include
multiple attributes of both numerical and categorial data. In such situations,
these data streams can be projected by each attribute or group of attributes.
Change detection methods can be applied to the corresponding projected data
streams afterwards. Data streams are classified into labeled data stream and
unlabeled data streams. A labeled data stream is one whose individual ex-
ample is associated with a given class label, otherwise, it is unlabeled data
stream. A change detection algorithm that identifies changes in the labeled
data stream is supervised change detection [Kim 2009, Bondu 2011], while
one detecting changes in the unlabeled data stream is called unsupervised

2.2. Change Detection in Streaming Data 23

change detection algorithm [Cabanes 2012]. The advantage of the supervised
approach is that the detection accuracy is high. However, the ground truth
data must be generated. Thus a unsupervised change detection approach is
preferred to the supervised one in case the ground truth data is unavailable.
All the change detection methods presented in this dissertation are unsuper-
vised change methods.

• Completeness of statistical information: On the basis of the completeness
of statistical information, a change detection algorithm can fall into one of
three following categories. Parametric change detection schemes are based
on knowing the full prior information before and after change. For example,
in the distributional change detection methods, the data distributions before
and after change are known [Muthukrishnan 2005, Muthukrishnan 2007]. A
recently introduced method to detecting changes in order stock streams is a
parametric method in which the distribution of stream of stock orders confide
to the Poisson distribution [Liu 2010]. The advantage of parametric change
detection approaches is that they can produce a higher accurate result than
semi-parametric and nonparametric methods. However, in many real-time
applications, data may not confine to any standard distribution, thus para-
metric approaches are inapplicable. Semi-parametric methods are based on
the assumption that the distribution of observations belongs to some class
of distribution function, and parameters of the distribution function change
in disorder moments. Recently, Kuncheva [Kuncheva 2011] has proposed
a semi-parametric method using a semi-parametric log-likelihood for test-
ing a change. Nonparametric methods make no distribution assumptions on
the data. Nonparametric methods for detecting changes in the underlying
data distribution includes Wilcoxon, kernel method, Kullback-Leiber dis-
tance, and Kolmogorov-Smirnov test. Nonparametric methods can be classi-
fied into two categories: nonparametric methods using window [Kifer 2004];
nonparametric methods without using window [Ho 2007]. In this disserta-
tion, we have paid particular attention to the nonparametric change detection
methods using window because in many real-world applications, the distri-
butions of both null hypothesis and alternative hypothesis are unknown in
advance. Furthermore, we are only interested in recent data. A common ap-
proach to identifying the change is to comparing two samples in order to find
out the difference between them, which is called two-sample change detec-
tion, or window-based change detection. As data stream is infinite, a sliding
window is often used to detect changes. Window based change detection in-
curs the high delay [Liu 2010]. Window-based change detection scheme is
based on the dissimilarity measure between two distributions or synopses
extracted from the reference window and the current window.

24 Chapter 2. Background

• Speed of response: If a change detection method needs to react to the de-
tected changes as fast as possible, the quickest detection of change should be
proposed. Quickest change detection can help a system make a timely alarm.
Timely alarm warning is benefit for economical. In some cases, it may save
the human life such as in fire-fighting system. As can seen in Chapter 3,
change detection methods using two overlapping windows can quickly re-
act to the changes in streaming data while methods using adjacent windows
model may incur the high delay. As change can be abrupt change or grad-
ual change, there exists the abrupt change detection algorithm and gradual
change detection algorithm [Nikovski 2010, Maslov 2012].

• Decision making methodology: Based on the decision making methodology,
a change detection method can fall into one of the following categories: rank-
based method [Kifer 2004], density-based method [Song 2007], information-
theoretic method [Dasu 2005]. A change detection problem can be also clas-
sified into batch change detection and sequential change detection. Based on
detection delay that a change detector suffers from, a change detection meth-
ods can fall into one of two following types: real-time change detection, and
retrospective change detection. Based on the spatial or temporal characteris-
tics of data, change detection algorithm can fall into one of three kinds: spa-
tial change detection; temporal change detection; or spatio-temporal change
detection [Boriah 2008].

• Application: On the basis of applications that generate data streams, data
streams can be classified as into transactional data stream, sensor data stream,
network data stream, stock order data stream, astronomy data stream, video
data stream, etc. Based on the specific applications, there are the change
detection methods for the corresponding applications such as change de-
tection methods for sensor streaming data [Tran 2011a], change detection
methods for transactional streaming data [Ng 2008b, van Leeuwen 2008,
Chang 2003]. For example, van Leeuwen and Siebes [van Leeuwen 2008]
have presented a change detection method for transactional streaming data
based on the principle of Minimum Description Length.

• Stream processing methodology: Based on methodology for processing data
stream, a data stream can be classified into online data stream and off-line
data stream [Manku 2002]. In some work, an online data stream is called
a live stream while an off-line data stream is called archived data stream
[Dindar 2011]. Online data stream needs to be processed online because of its
high speed. Such online data streams include streams of stock ticker, streams
of network measurements, and streams of sensor data,etc. Off-line stream is
a sequence of updates to warehouses or backup devices. The queries over the

2.2. Change Detection in Streaming Data 25

off-line streams can be processed off-line. However, as it is insufficient time
to process off-line streams, techniques for summarizing data are necessary.
In off-line change detection method, the entire data set is available for the
analysis process to detect the change. The online method detects the change
incrementally based on the recently incoming data item. An important dis-
tinction between off-line method and online one is that the online method
is constrained by the detection and reaction time due to the requirement of
real-time applications while the off-line is free from the detection time, and
reaction time. Methods for detecting changes can be useful for streaming
data warehouses where both live streams of data and archived data streams
are available [Golab 2009, Huang 2009]. In this work, we focus on develop-
ing the methods for detecting changes in online data streams, in particular,
sensor data streams.

A change can occur in the data stream, or in the model generated by some
data stream processing and mining algorithm. Besides a streaming algorithm can
also evolve in order to adapt to the changes. The issues of the evolution in
the data streams can be classified into three following categories [Huang 2003,
Aggarwal 2007]: The first work on model-based change detection proposed by
[Ganti 1999, Ganti 2002] is FOCUS. The central idea behind FOCUS is that the
models can be divided into structural and measurement components. To detect de-
viation between two models, they compare specific parts of these corresponding
models. The models obtained by data mining algorithms includes frequent item
sets, decision trees, and clusters. The change in model may convey interesting in-
formation or knowledge of an event or phenomenon. Model change is defined in
terms of the difference between two set of parameters of two models and the quan-
titative characteristics of two models. As such, model change detection is finding
the difference between two set of parameters of two models and the quantitative
characteristics of these two models. We should distinguish between detection of
changes in data distribution by using models and detection of changes in model
built from streaming data. While model change detection aims to identify the dif-
ference between two models, change detection in the underlying data distribution
by using models is inferring the changes in two data sets from the difference be-
tween two models constructed from two data sets. The changes in the underlying
data distribution can induce the corresponding changes in the model produced from
the data generating process.

As models can be generated by statistics method or data mining methods,
change detection in models can be classified into data mining model and statistical
model. Two kinds of models we are interested in detecting changes are predictive
model and explanatory model. Predictive model is used to predict the changes in
the future. Detecting changes in the pattern can be beneficial for many applica-

26 Chapter 2. Background

tions. In explanatory model, a change that occurred is both detected and explained.
There are some approaches to change detection: one-model approach, two-model
approach, or multiple-model approach. This dissertation deals with the problem of
change detection using the two-model approach. We introduce a general framework
for detecting changes in model.

A model-based change detection algorithm consists of two phases as follows:
model construction and change detection. First, a model is built by using some
stream mining method such as decision tree, clustering, frequent pattern. Second,
a difference measure between two models is computed based the characteristics of
the model, this step is also called the quantification of model difference. There-
fore, one fundamental issue here is to quantify the changes between two mod-
els and to determine criteria for making decision whether and when a change
in the model occurs. Based on the data stream mining model, we may have the
corresponding problems of detecting changes in model as follows. Ikonomovska
et al. [Ikonomovska 2009] have presented an algorithm for learning regression
trees from streaming data in the presence of concept drifts. Their change detec-
tion method is based on sequential statistical tests that monitoring the changes of
the local error, at each node of tree, and inform the learning process of the local
changes.

Detecting changes of stream cluster model has been received increasing atten-
tion. Zhou et al. [Zhou 2008] have presented a method for tracking the evolution of
clusters over sliding windows by using temporal cluster features and the exponen-
tial histogram, which called exponential histogram of cluster features. Chen and
Liu [Chen] have presented a framework for detecting the changes in clustering
structures constructed from categorial data streams by using hierarchial entropy
trees to capture the entropy characteristics of clusters, and then detecting changes
in clustering structures based on these entropy characteristics.

Based on the data stream mining model, we may have the corresponding prob-
lems of detecting changes in model as follows [Dasu 2009]. Recently Ng and Dash
[Ng 2008a] have introduced an algorithm for mining frequent patterns from evolv-
ing data streams. Their algorithm is capable of updating the frequent patterns based
on the algorithms for detecting changes in the underlying data distributions. Two
windows are used for change detection: the reference window and the current win-
dow. At the initial stage, the reference is initialized with the first batch of transac-
tions from data stream. The current window moves on the data stream and captures
the next batch of transactions. Two frequent item sets are constructed from two
corresponding windows by using the Apriori algorithm. A statistical test is per-
formed on two absolute support values that are computed by the Apriori from the
reference window and current window. Based on the statistical test, the deviation
can be significant or insignificant. If the deviation is significant then a change in
the data stream is reported. Chang and Lee [Chang 2003] have presented a method

2.3. Distributed Change Detection in Streaming Data 27

for monitoring the recent change of frequent item sets from data stream by using
sliding window.

2.2.3 Design Methodology

There are two design methodologies for developing the change detection algo-
rithms in streaming data. The first methodology is to adapt the existing change
detection methods for streaming data. However, many traditional change detec-
tion methods cannot be extended for streaming data because of the high com-
putational complexity such as some kernel-based change detection methods, and
density-based change detection methods. The second methodology is to develop
new change detection methods for streaming data.

There are two common approaches to the problem of change detection
in streaming data distributions: distance-based change detectors and predictive
model-based change detectors. In the former, two windows are used to extract two
data segments from the data stream. The change is quantified by using some dis-
similarity measure. If the dissimilarity measure is greater than a given threshold
then a change is detected. Similar to distance-based change detectors, two win-
dows are used for detecting changes. Instead of comparing the dissimilarity mea-
sure between two windows with a given threshold, a change is detected by using
the prediction error of the model built from the current window and the predictive
model constructed from the reference window.

2.3 Distributed Change Detection in Streaming Data

Knowledge discovery from massive amount of streaming data can be achieved only
when we could develop the change detection frameworks that monitor streaming
data created by multiple sources such as sensor networks, WWW [Das 2009]. The
objectives of designing a distributed change detection scheme are maximizing the
lifetime of the network, maximizing the detection capability, and minimizing the
communication cost [Veeravalli 2012].

There are two approaches to the problem of change detection in streaming data
that is created from multiple sources. In the centralized approach: all remote sites
send raw data to the coordinator. The coordinator aggregates all the raw streaming
data that is received from the remote sites. Detection of changes is performed on
the aggregated streaming data. In most cases, communication consumes the largest
amount of energy. The lifetime of sensors therefore drastically reduces when they
communicate raw measurements to a centralized server for analysis. Centralized
approaches suffer from the following problems: communication constraint, power
consumption, robustness, and privacy. Distributed detection of changes in stream-

28 Chapter 2. Background

ing data addresses the challenges that come from the problem of change detection,
data stream processing, and the problem of distributed computing. The challenges
coming from the distributed computing environment are as follows

• Distributed change detection in streaming data is a problem of distributed
computing in nature. Therefore, a distributed framework for detecting
changes should meet the properties of distributed computing such scalabil-
ity, and fault tolerance. The scalability refers to the ability to extend the size
of the network without significantly reducing the performance of the frame-
work. As faults may occur due to the transmission error and the effects of
noisy channels between local sensors and fusion center, a distributed change
detection method should be able to tolerate these faults in order to assure the
function of the system.

• Distributed change detection using the local approach is directly relevant to
the problem of multiple hypotheses testing and data fusion because each lo-
cal change detector needs to perform a hypothesis test to determine whether
a change occurs. Therefore, besides considering the detection performance
of local change detection algorithms including probability of detection and
probability of false alarm at the node level, the detection performance of a
distributed change detection method at the fusion center must be taken into
account.

Distributed detection and data fusion have been widely studied for many decades.
However, only recently, distributed detection in streaming data has received atten-
tion.

2.3.1 Distributed Detection: One-time versus. Continuous
Distributed detection of changes can be classified into two types of models as fol-
lows.

• One-time distributed detection of changes: Figure 2.2 shows two models of
one-time distributed change detection. One-time change detection method
is a change detection that requires to proceed data once in response to the
change occurring. One-time distributed change detection have received a
great deal of attention for a long time [Varshney 1997, Veeravalli 2012]. One-
time distributed change detection includes two models: distributed detection
without decision fusion as illustrated in Figure 2.2(a); distributed detection
with decision fusion as shown in Figure 2.2(b).

• Continuous distributed detection of changes [Palpanas 2003, Das 2009]: Fig-
ure 2.3 depicts two models of continuous distributed detection of changes in

2.3. Distributed Change Detection in Streaming Data 29

streaming data: distributed change detection without fusion and distributed
change detection with fusion. In this context, data fusion from streams refers
to the identification of the interesting relationships among multiple data
sets. An important distinction between continuous distributed detection of
changes and one-time distributed detection of changes is that the inputs to
the one-time distributed change detection are batches of data while the in-
puts to the continuous distributed detection of changes are the data streams
in which data items continuously arrive.

Although there is great deal of work on distributed detection and data fusion,
most of work focuses on the one-time change detection solutions. In real-world
applications, we need the approaches capable of continuously monitoring the
changes of the events occurring in the environment. Recently, work on contin-
uous detection and monitoring of changes has been received attention such as
[Palpanas 2003, Das 2009, Tran 2011b, Tran 2011a]. Distributed detection model
without fusion is a truly distributed detection model in which the decision-making
process occurs at each sensor.

As a continuous query can be represented as a sequence of one-time queries
which are invoked when the changes in the data sources are detected [Botan 2012],
the result of a continuous change detection method can be also seen as an infinite
sequence of the results of one-time change detection procedures. In summary, the
result of a continuous distributed detection framework of changes can be consid-
ered the theoretically infinite sequence of the results of the one-time distributed
change detection methods.

2.3.2 Locality in Distributed Computing

As one of the properties of distributed computational systems is locality
[Naor 1993], a distributed algorithm for detecting changes in streaming data should
meet the locality. A local algorithm is defined as one whose resource consumption
is independent of the system size. The scalability of distributed stream mining al-
gorithms can be achieved by using the local change detection algorithms

Local algorithms can fall into one of two categories [Datta 2006]:Exact local
algorithms are defined as ones that produce the same results as a centralized algo-
rithm; Approximate local algorithms are algorithms that produce approximations
of the results that centralized algorithms would produce. Two attractive properties
of local algorithms are scalability and fault tolerance. A distributed framework for
mining streaming data should be robust to network partitions, and node failures.

The advantage of local approaches is the ability to preserve privacy
[Ganguly 2008]. A drawback of the local approach to the problem of distributed
change detection is the synchronization problem. For example, the local change

30 Chapter 2. Background

Phenomenon

x1 x2

u1 u2

(a) Distributed detec-
tion without decision
fusion

Phenomenon

x1 x2

u1 u2

Local decisionLocal decision

Global decision

(b) Distributed detection
with decision fusion

Phenomenon

x1 x2

u1 u2

Local decisionLocal decision

(c) Serial detection net-
work

Phenomenon

x1 x2

u1 u2

Local decisionLocal decision

Global decision

(d) Parallel fusion net-
work with feedback

Figure 2.2: One-time distributed change detection models

Phenomenon

u1 u2

Local decisionLocal decision

Data stream 1 Data stream 2

(a) Distributed continuous de-
tection without decision fusion

Phenomenon

u1 u2

Local decisionLocal decision

Global decision

Data stream 1 Data stream 2

(b) Distributed continuous de-
tection with decision fusion

Figure 2.3: Continuous distributed change detection models

2.4. Efficiency Metrics 31

approach can meet the principle of localized algorithms in wireless sensor net-
works in which data processing is performed at node-level as much as possible in
order to reduce the amount of information to be sent in the network. In Chapter
6 and 7, we will use the local approach to develop the distributed frameworks for
detecting changes of streaming data and clustering streaming data.

2.4 Efficiency Metrics

Detection performance is the key requirement of a change detection method. This
section presents some metrics used to evaluate the performance of a change detec-
tion algorithm. A change detection method is often evaluated in terms of detection
accuracy, temporal aspects such as detection time, reaction time, and memory con-
sumption. Criteria for evaluating the detection performance of a change detection
algorithm usually originate from detection theory and information retrieval.

2.4.1 Efficiency Metrics from Detection Theory

Change detection closely relates to the detection theory which formulates the cri-
teria and methods for evaluating the performance of a detector [Macmillan 2005].
Therefore, some metrics of detection theory can be used to assess the detection
performance of a change detector. Each observed event is represented by an in-
stance consisting of multiple attributes. An observed event can be in one of two
states: actual change, actual non-change. A change detector identifies the change
of an observed event by mapping the corresponding instance into one of two states:
detected change, or detected non-change.

A decision made by a change detector on the change of an event can fall into
the following states:

• Hit: If the state of the event is actual change and the detector identifies the
event as change. Hit is also called true positive.

• Miss: If the state of the event is actual change and the detector identifies the
event as non-change. Miss is also called true negative.

• False alarm: If the state of the event is actual unchange and the detector
identifies the event as change. False alarm is also called false positive.

• Correct rejection: If the state of the event is actual non-change and the de-
tector identifies the event as non-change. Correct rejection is also called false
negative.

32 Chapter 2. Background

Detected change Detected unchange Total
Actual change Hits Misses TAC

Actual unchange False alarms Correct rejections TAU
TDC TDU N

Table 2.1: The confusion matrix of the change detector

It is assumed that there are N observations of some event or phenomenon.
Every event includes two states "actual change" and "actual non-change".

Table 2.1 shows the result of a change detector detecting the changes of N
observations. Hits is the number of hit states. Misses is the number of miss states.
False alarms is the number of false alarm states. Correct rejections is the number
of correct rejection states.

Let TDC and TDU be the total detected change points and the total detected
unchange points respectively. Let TAC and TAU be the total actual change points
and the total actual unchange points respectively.

The probability of detection (hit rate, true positive rate, recall) is defined as the
number of actual change points correctly detected as the changed points to the total
actual change points. The hit rate of a change detector is estimated by

HR = Pr(”Y es”|Changed) =
Pr(”Y es” ∩ Changed)

Pr(Changed)
=

Hits

Hits+Misses
(2.4.1)

The hit rate is also called the power of a change detector.
The probability of false alarm (false positive rate) is defined as the number of

actual unchanged points that are incorrectly detected as the change points to the
number of unchange points. The false alarm rate of a change detector is computed
by

FR = Pr(”Y es”|Unchanged) =
Pr(”Y es” ∩ Unchanged)

Pr(Unchanged)
(2.4.2)

Naturally, the rate of misses and the rate of correct rejection are computed by
MH = 1−H , CR = 1− FA respectively.

One of the widely used metrics of a detector is sensitivity. Let H denote the
probability of a hit, and F the probability of a false alarm, then the change detec-
tor’s sensitivity measure is a function of H and F . The sensitivity of a detector is
given by

sensitivity = z(H)− z(F) (2.4.3)

where the z transformation converts a hit or false-alarm rate to a z score. A perfectly
sensitive change detector would have a hit rate of 1 and a false-alarm rate of 0.

2.4. Efficiency Metrics 33

Detected changes Detected unchange Total
Actual change 132 18 150

Actual unchange 194 51629 51823
326 51647 51973

Table 2.2: An example of confusion matrix of the Euclidean distance-based change
detector

Specificity measures the proportion of unchange points that are correctly iden-
tified as such. Specificity is defined as follows

specificity =
CR

FA+ CR
= 1− FARate (2.4.4)

where CR is the number of unchange points that are correctly detected by the
change detector and FA is the number of unchange points that are reported as
change points.

Detection delay is the duration of time, which is computed from the time at
which a change occurs to the time at which a change is detected. A change detec-
tor is considered as an optimal detector if the detection delay is minimized, and
with the given rate of false alarms, the rate of hits is maximized. The Neyman-
Pearson lemma [Neyman 1933] says that the decision rule should be constructed in
order to have the maximum probability of detection while not allowing the prob-
ability of false alarm to exceed a certain value α. In other words, the Neyman-
Pearson criterion is the solution to the following constrained optimization prob-
lem: max{Pr(Hits)}, such that Pr(FA) ≤ α where α is an user-specified upper
bound of the probability of false alarm. As such, there are two kinds of errors that
may occur in the detection result: false alarm, and missed detections.

From Table 2.2, we compute the hit rate and false alarm as follows. The hit rate
is 132

132+18
' 0.88. The false alarm rate is 194

194+51629
' 0.0037435.

2.4.2 Efficiency Metrics from Information Retrieval
Performance metrics in the field of information retrieval used to evaluate a change
detection algorithm includes Precision, Recall, and F-measure. Precision is defined
as the probability that a point detected as ’changed’ (or range) is truly a changed
point. Precision is given by

Precision =
Hits

DCP
=

Hits

Hits+ FA
(2.4.5)

Recall is the probability that a change detector identifies a truly changed point.
Recall is given by

Recall =
Hits

TCP
=

Hits

Hits+Misses
(2.4.6)

34 Chapter 2. Background

A measure that expresses the tradeoff between precision and recall is F−measure
given by

F −measure =
1

1
Precision

+ 1
Recall

(2.4.7)

Let Hits be the number of truly change points that is detected as change points by
a change detection algorithm. Let CoR be the number of non-change points that is
detected as non-change points by a change detection algorithm. The accuracy of a
change detection algorithm is given by

Accuracy =
Hits+ CoR

TCP + TNP
(2.4.8)

As we will shows in the experiments in Chapter 3, accuracy is insufficient for eval-
uating the performance of a change detection algorithm.

From Table 2.2, we compute Precision, Recall, F-measure, and Accuracy as
follows. Precision is 132

132+194
' 0.4049. Recall is 132

132+18
' 0.88. F-score is

1
1

0.4049
+ 1

0.88

' 0.2773

2.4.3 ROC and PR Curves
To compare the performance of different change detection algorithms, we must use
or propose criteria. In this thesis, we use ROC curve and PR curve for evaluat-
ing and comparing the detection accuracy of the change detectors. In this section,
we present the concepts of ROC curve and PR curve. ROC and PR curves are
commonly used for evaluating the machine learning and data mining algorithms
. In fact, the problem of change detection is the binary classification problem in
which the task of the binary classifier is to identify two classes: "changed" and
"unchanged". Therefore, we can apply the results of the binary classification prob-
lem to analyze the problem of change detection. [Davis 2006].

Definition 2.4.1. ROC graphs are two-dimensional graphs in which hit rate (TP
rate) is plotted on the Y axis and FP rate is plotted on the X axis. An ROC graph
depicts relative trade-offs between benefits (hits or true positives) and costs (false
alarms or false positives) [Davis 2006].

The area under the Receiver Operating Characteristic curve (AUC stands for
Area Under receiver operating Curve) is often used as criteria for comparing the
performance of the change detection algorithm with other approaches. The overall
performance of a change detector can be assessed by the receiver operating char-
acteristics (ROC) curve.

A perfect change detector would generate a line from (0,0) to (1,1), which is
called the "chance diagonal". A change detector can be considered a good change
detector if its ROC curve is above the chance diagonal line. The larger the AUC of

2.5. Summary 35

a change detector is, the better the better its detection accuracy is. The computa-
tion and drawing of ROC curve is presented in detail in [Fawcett 2004]. However, if
there is unbalanced in the class distribution, ROC curve may provides an overly op-
timistic view of an algorithm’s performance [Davis 2006]. An alternative approach
is using PR curve (Precision-Recall curve). Precision-Recall curve is usually used
in Information Retrieval.

Definition 2.4.2. PR graphs are two-dimensional graphs in which Precision is plot-
ted on the Y axis and Recall is plotted on the X axis [Davis 2006].

The goal we want to achieve in ROC space is the left-upper corner while the
goal in PR space is the right-upper corner. Davis and Goadrich shows that, an al-
gorithm that optimizes the area under the ROC curve is not guaranteed to optimize
the area under the PR curve. Thus, it should be better to evaluate and compare the
detection accuracy of the change detectors in both ROC space and PR space. In
Section 3.6.3, we will use both ROC curve and PR curve for evaluating and com-
paring the detection accuracy of the detectors using the Euclidean and Manhattan
distances.

2.5 Summary
This chapter has introduced the concepts that will be used throughout this thesis.
We have briefly reviewed the data stream processing and mining model, stream-
ing data and its characteristics as well as the challenges facing the techniques of
data stream processing and mining. The concepts of change, and change detection
have been then presented. A short survey on change detection methods for stream-
ing data has been given. The metrics for evaluating and comparing the detection
performance of the change detectors have been presented.

Part II

Change Detection in A Single Data
Stream

CHAPTER 3

Window-based Change Detection in
Streaming Data

All things must change to something new, to something strange
(Henry Wadsworth Longfellow "Keramos")

Contents

3.1 Introduction . 39

3.2 Window-based Change Detection 40

3.2.1 Sliding Window Model . 41

3.2.2 Change Detection using Sliding Windows Model 42

3.3 Change Detection Criteria . 45

3.4 Dissimilarity Metrics . 48

3.4.1 Geometric Dissimilarity Metrics 48

3.4.2 Statistical Dissimilarity Metrics 49

3.4.3 Comparison of Geometric and Statistical Distances 51

3.5 Detection Threshold . 52

3.6 Evaluation of Change Detection 53

3.6.1 Effectiveness of Window Width 54

3.6.2 Effectiveness of Detection Threshold 57

3.6.3 Effectiveness of Dissimilarity Metrics 59

3.7 Summary . 63

3.1 Introduction
As change detection methods should adapt to the changes in the environment,
change detection methods presented in this thesis detect the changes by quantifying

40 Chapter 3. Window-based Change Detection in Streaming Data

the difference between two windows. If a change detection method that uses sen-
sor reading for detecting changes cannot adapt to the changes in the environment
because it needs the absolute threshold of detection. This chapter addresses the
problem of change detection in streaming data that is created from a single source
by using two-window approach in conjunction with many different measures of
dissimilarity. In particular, the contributions of this chapter are as follows.

• We propose a general framework for detecting changes in streaming data by
using sliding windows model. Based on the location correlation of two win-
dows, we can develop the change point algorithms based on the two over-
lapping windows model, or the interval-based change detection algorithms
based on the two adjacent windows model.

• We study the change detectors with the different dissimilarity measures in-
cluding geometric and statistical dissimilarity measures in terms of detection
accuracy, performance measures including time and memory needed to run
a change detector.

• To our best of knowledge, an important distinction between our work in this
chapter and other work is that our work is the first work evaluate the detec-
tion performance of a change detection on the entire data stream with the
assumption that data stream is finite. Change detection methods presented
this chapter already exists in many work in the literature such as work of
Kifer et al. However, in Chapter 3, the first time, we evaluate the detection
performance of change detectors on the entire data streams while other work
only evaluate the detection accuracy a snap-shot of a data stream.

The tradeoff of a change detection method in a single data stream is computational
complexity and detection performance. The rest of this chapter is organized as
follows. Section 3.2 briefly introduces the data stream processing by using window
technique, and sliding window. We then describe the change detection methods
based on the location correlation of two windows: change detectors using adjacent
windows model, change detectors using overlapping windows model, and change
detectors using fixed-sliding windows model. In Section 3.3, we present a general
criteria for determining whether a change occurs. Section 3.5 discusses selection
of detection threshold. Section 3.6 evaluates the effect of window, dissimilarity
measures, and threshold selection on the detection accuracy of a change detector.
We summarize the chapter with major contributions in Section 3.7.

3.2 Window-based Change Detection
Since data stream is infinite in nature, a common approach is observing and pro-
cessing it in a window. Based on the window width, a window can fall into two

3.2. Window-based Change Detection 41

b expiring points

b new incoming poits

Width of windwo N

N-b

Figure 3.1: A window before and after sliding b steps

kinds: fixed-size window and variable-size window. Sliding window model is use-
ful when we need to make decisions based on the recent observations such as stock
data stream, sensor data streams. Since in most of streaming applications, we are
only interested in the recent data or recent model,the sliding window is the most
suitable choice. For example, in the sensor network applications, we are only in-
terested in the recently observed data. Sliding windows can be classified as follows
[Golab 2003]:

• Direction of movement of the endpoints: A fixed window has two fixed end-
points. A sliding window has two moving endpoints (either backward or for-
ward). A landmark window has one fixed endpoint and one moving endpoint.

• Physical vs. logical window: Physical, or time-based windows are defined in
terms of a time interval, while logical windows or count-based window are
defined in terms of the number of tuples. Tuple-based window can react to
primitive events as soon as possible. Stream engine StreamBase uses tuple-
based window while Oracle CEP uses time-based window.

• Update interval: A window is updated upon arrival of each new tuple while
batch processing leads to a ’jumping window’.

3.2.1 Sliding Window Model
Let window w[tc − N + 1, tc] be a sliding window, where tc is the current time.
The window starts at the time tc−N + 1 and ends at the current time tc. An item is
expired if its time stamp t is less than the time tc−N +1. An active item is defined
as an item whose time stamp t lies in the range [tc − N + 1, tc]. Data items are
inserted into the sliding window as they arrive, and the oldest (outdated, or stale)
items are removed from it. A sliding window consists of two properties: window
size and the slide step of the window. One of the goals of change detection is to
detect the change with minimum delay. If the window size is large, the detection
delay increases.

A data stream processing model can fall into one of two models: time-driven
model or tuple-driven model. For example, the Oracle CEP model follows a
time-driven model while processing model in StreamBase is tuple-driven model
[Jain 2008, Dindar 2012]. Therefore, there also exists two corresponding kinds of

42 Chapter 3. Window-based Change Detection in Streaming Data

windows: tuple-based window, and time-based window. Jain et al. [Jain 2008] pro-
pose a new model that can exploit the best of two kinds of model. In this disser-
tation, we mainly focus developing the change detection methods for tuple-driven
processing model.

3.2.2 Change Detection using Sliding Windows Model

Two-window model is widely used in many techniques for processing stream-
ing data. Liarou et al. have recently proposed a method for incremental query
processing using two overlapping windows [Liarou 2012, Liarou 2013]. Drais-
bach et al. have used two-window model to detect the duplication of a database
[Draisbach 2012]. Bifet and Gavalda present a change detection method using
adaptive window [Bifet 2007]. The window size automatically increases when no
change occurs, the window size decreases when a change occurs.

The key idea underlying the window-based change detection methods is to
compare two samples extracted from two windows: the reference window and the
current window. Let w1 and w2 denote two basic windows of size b. The problem
of change detection in data streams is to decide the null hypothesis H0 against
alternative hypothesisH1 as below{

H0 d(w1, w2) ≤ ω

H1 d(w1, w2) > ω
(3.2.1)

where d(w1, w2) is a distance function which measures the dissimilarity of two slid-
ing windows and ω is a distance-based threshold used to decide whether a change
occurs. A change occurs if the dissimilarity measure between two windows ex-
ceeds a given threshold. Window-based methods for detecting changes may reduce
the memory and time required to execute a change detector. Depending on the
choice of window width and sliding step, the position correlation of two sliding
windows can be fixed-sliding windows model, adjacent windows model, and dis-
joint windows model. Based on the selection of slide size, we can develop the
different change detection methods. If the step size is greater than one, the change
detector belongs to the batch incremental change detection. If the step size is one,
the change detector belongs to the instance incremental change detection. Depend-
ing on how to choose the reference window, the position correlation between the
reference window w1 and the current window w2, as well as how the windows w1

and w2 move, we can develop different algorithms for detecting changes.
The input to a two-window change detection algorithm consists of a data stream

S = {x1, x2, ...} and a given threshold ω. The output is a message reporting
whether a change occurs, and the change point. The algorithm first assigns the
first b points (data items) in the sliding window to the reference window w1. The

3.2. Window-based Change Detection 43

next b points are set to the basic window w2. A change has been considered to oc-
cur if the distance between two windows is greater than some threshold. When a
change is detected, the change detector makes an alarm. The basic windows w1 and
w2 continue capturing the new data items in the sliding windows. If a change does
not occur, the basic window w2 slides step by step until the change detected. An
alarm is promptly issued at the end of each slide. Selection of window size plays a
critical role in designing a window-based change detection scheme. The larger the
window size is, the more accurate the change detection method is. However, the
larger the window size is, the larger the detection delay is.

3.2.2.1 Adjacent Windows Model

If the sliding step is equal to the window width, two windows are adjacent. Two
adjacent windows model is useful for detecting changes between two consecu-
tive periods of time such as detection of changes of the temperature in Ilmenau
between two consecutive months. Methods using adjacent windows model can de-
tect cumulative changes in streaming data. Change detection methods using adja-
cent windows model can detect the changes between two consecutive time periods
such as two consecutive days, two consecutive months, and two consecutive years.
Kifer et al. [Kifer 2004] have presented a meta-algorithm for detecting changes in
streaming data using fixed-sliding windows model. Algorithm 1 describes how

Algorithm 1: Change detection algorithm using adjacent windows model
input : A data stream S, a distance-based threshold d∗

output: The messages reporting the changes occurred

Step1:
begin

t←− 0;
w1←− first b points from time t;
w2←− next b points in the data stream;

Step2:
while not at the end of the stream do

if d(w1, w2) > d∗ then
t←− current time;
Report change occurred at time t;
Clear all windows and GOTO Step 1;

else
slide w2 by 1 point;

the change detection approach using adjacent windows model works in detail. We

44 Chapter 3. Window-based Change Detection in Streaming Data

call this algorithm adjacent windows model-based change detection because the
reference window w1 and the current window w2 are adjacent after a change is
detected. The detection delay depends on the computational complexity of the dis-
tance function and the window width. Change detection methods using adjacent
windows model may suffer from the larger detection delay than the methods using
overlapping windows model.

3.2.2.2 Overlapping Windows Model

If the sliding step is smaller than the window width, two windows are overlapping.
Change detection methods using overlapping windows model can detect changes
in streaming data incrementally. Sometimes, a full analysis of streaming data is
likely impossible in real-time. We need to compute partial results so that a small
amount of incremental computation with new data can be used to arrive at a quick
decision. That is relevant to incremental computation. Algorithm 2 describes how

Algorithm 2: Change detection algorithm using overlapping windows model
input : A data stream S, a distance-based threshold d∗

output: The messages reporting the changes occurred

Step1:
begin

t←− 0;
w1←− first b points from time t;
w2←− slide w1 by 1 point in the data stream;

Step2:
while not at the end of the stream do

if d(w1, w2) > d∗ then
t←− current time;
Report change occurred at time t;
Clear all windows and GOTO Step 1;

else
Slide w2 by 1 point;

a change detection method using overlapping windows model works in detail. This
algorithm is called overlapping windows model-based change detection because
the reference windoww1 and the current windoww2 are overlapping after a change
is detected. We note that if the window size is b then the overlapping part between
the reference window and the current window is b− 1. By arranging such position
correlation between two windows, Algorithm 2 can detect the change point. In

3.3. Change Detection Criteria 45

contrast, Algorithm 1 can only show the interval of change, that means the change
point is unknown exactly.

We note that the distinction between Algorithm 1 and Algorithm 2 is only the
init step. In Algorithm 1, two windows w1 and w2 are adjacent while in algorithm
2, two windows are overlapping by (b-1). In this case b is the window width. The
init step is invoked once a change is detected.

3.2.2.3 Fixed-Sliding Windows Model

In this section, we present the change detection scheme in which the reference
window is set to the given values while the current window moves on the data
stream.

Algorithm 3: Change detection algorithm using fixed-sliding windows model
input : A sensor data stream S, a distance-based threshold d∗

output: The messages reporting the changes occurred

Step1:
begin

t←− 0;
w1←− b constant points;
w2←− first b points from time t;

Step2:
while not at the end of the stream do

if d(w1, w2) > d∗ then
t←− current time;
Report change occurred at time t;
Clear all windows and GOTO Step 1;

else
Slide w2 by 1 point;

Algorithm 3 describes a change detection method in which the reference win-
dow is assigned to the given values, for instance, a given temperature threshold
(called raw threshold).

3.3 Change Detection Criteria
In this section, we study the change detection criteria or change detection rules.
One of the commonly-used approach to designing a change detection method for
streaming data is to use the statistical hypothesis testing in conjunction with the

46 Chapter 3. Window-based Change Detection in Streaming Data

data stream processing. Change detection can be considered the problem of hypoth-
esis testing, where the hypothesis is a logical expression change which indicates
whether a change occurs. {

H0 ¬change
H1 change

(3.3.1)

In statistics test, the change condition is given by change = (FS 6= FS′), where FS

and FS′ are two distributional functions that are corresponding to two data sets S
and S ′. Criteria for a good change detection method include: few false alarms, short
delay for detection. Statistical hypothesis testing is of importance in data mining. In
particular, many change detection methods are based on the statistical hypothesis
testing. In this section, we briefly introduce the background of statistical hypothesis
testing. Statistical hypothesis tests can be classified into the following categories:
test of randomness,tests of goodness of fit, one-sample and paired-samples test,
two-sample test, location test, scale test. We use two-sample to develop the change
detection methods.

An one-sided hypothesis test can fall into one of the two following tests.{
H0 m ≤ m0

H1 m > m0

(3.3.2)

or {
H0 m ≥ m0

H1 m < m0

(3.3.3)

where m is a test statistic and m0 is a test threshold. As such, one-sided hypothesis
tests can be used for detecting the increase or decrease in the distribution compared
with the given threshold. In some cases, we are only interested in the abruptly
increasing change or the abruptly decreasing change. For example, sensors can be
used to detect abrupt increase in pollutants in the air. The two-sided hypothesis is
defined as follows {

H0 m = m0

H1 m 6= m0

(3.3.4)

The two-sided hypothesis tests can be used for detecting both the increase and
decrease in the underlying data distribution.

Given two data sets X of size m and Y of size n with the corresponding dis-
tributions p and q. The statistical test T (X, Y) : X × X 7→{0, 1} distinguish
between the null hypothesis H0 and the alternative hypothesis H1. The null hy-
pothesis is equivalent to the non-change state while the alternative hypothesis is
equivalent to the change state.

The change can occur in the underlying data distribution or in the model con-
structed from the data. In order to detect changes of an object or a phenomenon,

3.3. Change Detection Criteria 47

we need to quantify the change. The problem of quantifying the change consists
of quantifying the change of data distribution and quantifying the change of the
model. In this section, we briefly review the dissimilarity measures used for quan-
tifying and detecting changes.

One common approach to quantifying a change is to use dissimilarity met-
rics. A dissimilarity measure shows how dissimilar is a new data item from the
data items seen sofar. To quantify the change in the statistical change detection ap-
proach,we need to select a distance between two distributions of two samples or
a two-sample statistical test. Depending on the dimension of data, we choose the
appropriate distance. In other words, the factors that affect the selection process of
a change detection method include application context and the nature of data.

Definition 3.3.1. Given the set (X), a metric on (X) is a distance function d :

X × X → R such that for x, y, z ∈ X it satisfies that

• d (x, y) > 0

• d (x, y) = d (y, x)

• d (x, y) = 0⇔ x = y

• d (x, z) ≤ d (x, y) + d (y, z)

Definition 3.3.2. A distance function between two windows of size b is a mapping
function d : W ×W → R such that for distinct i, j

1. d(wi, wj) = 0 if only if wi = wj

2. d(wi, wj) > 0

3. d(wi, wj) = d(wj, wi)

A distance measure must truly quantify an intuitive notion of change so that
change can be explained to non-technical users. The dissimilarity measure can be
geometric distance measures, statistical measures, or information theoretic mea-
sures. We note that a change detection method cannot detect all types of changes.
Therefore, depending on each type of change, one can select a suitable method.

Two aspects of the dissimilarity function should be considered: the detection
accuracy and computation complexity. It would be ideal if a dissimilarity function
could both quantify the changes accurately and the low computation complexity.

48 Chapter 3. Window-based Change Detection in Streaming Data

3.4 Dissimilarity Metrics

The success of many change detection algorithms depends on the selection of dis-
tance metric. Similarity and distance metrics are the central concepts in data min-
ing. There are two kinds of dissimilarity metrics: geometric distance and statistical
distance.

3.4.1 Geometric Dissimilarity Metrics

The most widely used distance is the Euclidean distance. The Euclidean distance
is preferred to other distances, because it is preserved under orthogonal transforms
such as Fourier transform. Additionally, the Manhattan distance is commonly used
in some applications. Let wi = (x0, x1, ..., xb−1) and wj = (y0, y1, ..., yb−1) be
two corresponding sets of coefficients on two basic windows moving in a sliding
window, the Euclidean distance between two windows is defined as

d(wi, wj) =

√√√√ b−1∑
k=0

(xk − yk)2 (3.4.1)

A commonly used distance measure is the Manhattan distance defined by

d(wi, wj) =
b−1∑
k=0

| xk − yk | (3.4.2)

Chebychev distance between two windows wi and wj is given by

dist (wi, wj) = max
k

(| xk − yk |) (3.4.3)

Figures 3.11 and 3.12 shows that the histogram of changes for the adjacent win-
dows model using Euclidean distance is almost similar to the histogram of change
for the adjacent windows model using Manhattan distance. In other words, the
detection ability of the Euclidean distance is similar to that of the Manhattan dis-
tance. However, the computation complexity of the Manhattan distance is smaller
than that of the Euclidean distance. The geometric measures of difference between
two samples is more convenient than the statistical measures of change because
of its simplicity and comprehensibility. In particular, recently Cohen and Kaplan
[Cohen 2012] have proposed the novel approaches to estimating the changes from
the samples for the Manhattan and Euclidean distances instead of computing these
distances on the original data.

3.4. Dissimilarity Metrics 49

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20

40

60

80

100

120

Distance id

C
he

by
ch

ev
 d

is
ta

nc
e

Figure 3.2: Chebychev dissimilarity measure between two adjacent windows

3.4.2 Statistical Dissimilarity Metrics
Due to the inherent uncertainty of data streams, the probabilistic and statistical
approach is a natural option for much work on change detection in data stream. The
major advantage of change detection methods using statistical hypothesis testing is
that these methods can detect the statistically significant changes. Two problems we
should considers include computational complexity and detection delay. In fact, the
detection delay is consequence of computational complexity. Basically, there are
two categories of distributional distance corresponding to single dimensional data
and multidimensional data. Test statistic can fall into one of two kinds: distance-
based test, and kernel-based test. Kernel is used as a measure of similarity between
x and y Each hypothesis is characterized by a test statistic and p-value. The null
hypothesis is rejected if the p-value is less than α. A two-sample hypothesis testing
can be used to test whether a change occurs.

• Single dimensional distribution measure: Wilcoxin distance, Kolmogorov-
Smirnov distance

• Multidimensional distribution measure: Kullback-Leiber distance. Song et
al. [Song 2007] propose a method called density test for testing change in
the multidimensional data.

A two-sample hypothesis testing can fall into two following types: parametric hy-
pothesis testing and nonparametric hypothesis testing. In a parametric hypothesis

50 Chapter 3. Window-based Change Detection in Streaming Data

0 1 2 3 4 5 6 7 8 9

x 10
4

−14

−12

−10

−8

−6

−4

−2

0

Distance id

M
an

n−
W

hi
tn

ey
 U

 T
es

t

Figure 3.3: Histogram of change for the adjacent windows model using Mann-
Whitney U Test

testing, data distributions before and after change are previously given. For exam-
ple,in some parametric hypothesis testings such as t-test, paired t-test, and analysis
of variance (ANOVA), data distribution is normal distribution. As we mainly fo-
cus on developing nonparametric change detection methods, we briefly introduce
some nonparametric hypothesis tests. Based on the type of change, dissimilarity
measures can be classified into the following types:

• Dissimilarity measures for detecting arbitrary change such Kolmogorov-
Smirnov test, Cramer-von-Mises test.

• Dissimilarity measures for detecting scale shift such as Mood test, Kotz test.

• Dissimilarity measures for detecting location shift such Mann-Whitney U
test, Normal Scores Test (median)

Wilcoxin Mann-Whitney test is a powerful nonparametric test. It is used to test
whether populations have identical distributions. The Wilcoxin Mann-Whitney test
does not assume that the difference between the samples is normally distributed.
Wilcoxon Mann-Whitney test is a two-sample test that detect the location shift
(median). It is used in the place of two-sample t-test when the data does not con-
fines to the normality. Kolmogorov-Smirnove Goodness-of-Fit test is a two-sided
test statistic that measures the goodness-of-fit between the empirical distribution

3.4. Dissimilarity Metrics 51

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance id

K
S

 d
is

ta
nc

e

Figure 3.4: Histogram of change for the two adjacent windows model using
Kolmogorov-Smirnov dissimilarity measure

and a given continuous probability distribution.Kolmogorov-Smirnov is a nonpara-
metric test. The two-sample Kolmogorov-Smirnov test is sensitive in both loca-
tion and shape of the data distributions of two samples. Therefore, the two-sample
Kolmogorov-Smirnov test is one of the most powerful nonparametric methods for
comparing two samples. LetG (x) be a theoretical cumulative distribution function.
Let Ĝ (x) denote the empirical cumulative distribution function of n observations.
Two-sided statistic is defined by

Dn = sup
x
| G (x)− Ĝ (x) | (3.4.4)

or

Dn = max
1≤i≤n

(
G (xi)−

i− 1

n
,
i

n
−G (xi)

)
(3.4.5)

Figure 3.4shows the distribution of Kolmogorov-Smirnov dissimilarity measure
between two adjacent windows.

Kullback-Leiber distance is used to measure the distance between two empiri-
cal distributions. The Kullback-Leiber distance between two probability mass func-
tion p (x) and q (x) is defined as

D (p, q) =
∑
x∈X

p (x) log

(
p (x)

q (x)

)
(3.4.6)

where X is the space of events.

3.4.3 Comparison of Geometric and Statistical Distances
As each distance function is capable of quantifying and detecting a type of change.
We can only compare two detectors of detecting the same type of change. Detect-

52 Chapter 3. Window-based Change Detection in Streaming Data

Dissimilarity measure Running time (ms) Memory (MB)
Kolmogorov-Smirnov divergence 2953 4
Mann-Whitney U test 22077 4
Kullback-Leiber divergence 16270 4
Chebychev distance 685 2
Euclidean distance 654 3
Manhattan distance 567 3

Table 3.1: Time and memory required to compute dissimilarity measures

ing for means, detecting gradual change, or detecting abrupt change. The Euclidean
distance can detect the large and abrupt changes while the Kolmogorov-Smirnov
distance can detect small changes. Therefore they should not be compared with
each other. The Manhattan and Euclidean distance are used for detecting the abrupt
changes. In Section 3.6.3, we will evaluate and compare the Euclidean and the
Manhattan distance-based detectors in terms of running time and memory con-
sumption. Table 3.1 shows the running time and memory needed to compute the
dissimilarity measures. In general, it takes more time to compute the statistical
dissimilarity measures than the geometric measures. For example, the most time-
consuming dissimilarity measure is Mann-Whitney U test (22077 ms). The least
consuming-time dissimilarity measure is the Manhattan distance (567 ms). Com-
putation of geometric dissimilarity measures consume less memory then that of
statistical dissimilarity measures.

It would be ideal if there exists the incremental approaches to computing these
distances, in particular for the geometric distances. To our best of knowledge, there
is no incremental approach to computing the Euclidean distance. However, in chap-
ter 4, we further reduces the time needed for computing the Euclidean distance
based on the incremental computation of DFT in the window (Discrete Fourier
Transform). As we can incrementally compute the DFT coefficients in the window
, the Euclidean distance is computed on smaller data rather than the entire win-
dow. The details of DFT-based detector using the incremental strategy can be seen
in Section 4.3. Specially, recently Cohen and Kaplan [Cohen 2012] have proposed
the novel approaches to estimating the changes from the samples for the Manhattan
and Euclidean distances instead of computing these distances on the original data.

3.5 Detection Threshold

A detection threshold is a value specified by a user or an automatic procedure in
order to distinguish the state ’Changed’ or ’Unchanged’ of an event. As the bal-
ance between sensitivity and robustness of the change detection algorithm is partly

3.6. Evaluation of Change Detection 53

determined by detection threshold, selection of detection threshold is a critical step
in order to develop powerful change detection algorithms. The goal of threshold
selection is to choose the threshold in such a way that both the probability of false
alarm and the probability of mis-detection are minimized.

There are two interrelated concepts of detection threshold in our work. The
first kind of threshold called raw threshold is used to determine the number of truly
changed points and the number of unchanged points. The second kind of thresh-
old called characteristic threshold is used in our proposed algorithms for detecting
changes in data streams. As synopsis-based change detection method usually uses
some transformation to summarize raw streaming data into the streaming charac-
teristics such as mean, variance, etc, there are synopsis-based detection threshold.

Assume that the value of raw threshold is ω, ω ∈ [α, β], it is easy to see that
the Euclidean distance-based threshold ΩE ∈

[√
| α− ω | w,

√
| β − ω | w

]
, the

Manhattan distance-based threshold ΩM ∈ [w | α− ω |, w | β − ω |].
The choice of the threshold depends on the specific context of each application.

Therefore, prior knowledge about the detection problem is needed for detection
threshold to becomes meaningful. For example, change detection of battery-power
level of sensors in sensor network, threshold is fixed and previously given. How-
ever, change detection in sensor network is used to detect the changes from the out-
side environment, threshold value must adapt to these changes of the environment.
Chapter 5 will present an automated change detection method without requiring
the given threshold of detection.

The choice of threshold is also another challenge of the change detection al-
gorithm. It is one of the most important factors that affects the accuracy of the
algorithm. Hence, the choice of threshold is sensitive. Change detection algorithms
should be capable of automatically tuning detection thresholds when the false alarm
rate is high. As change detection is a special case of the classification, selection
of detection threshold for detecting changes is closely related to the problem of
threshold selection in the classification problem. Recently Hernandez et al. have
presented the approaches to choosing detection threshold based on performance
metrics [Hernández-Orallo 2012]. In summary, the choice of detection threshold
for the change detection algorithms is an interesting and open issue.

3.6 Evaluation of Change Detection
The change detectors were implemented in Java. All the experiments were run on
a PC with a 2.60GHz 2x Pentium (R) Dual-Core CPU and 4GB memory, Windows
platform.

All the proposed change detectors were thoroughly studied with the sensor data
obtained from 54 sensors deployed in the Intel Berkeley Research lab between

54 Chapter 3. Window-based Change Detection in Streaming Data

Width TP FA Misses CR N
8 2111 1090 2708 62304 68213
16 1093 1126 262 55828 58309
32 544 656 30 54167 55397
64 268 354 26 53309 53957

128 132 194 18 51629 51973

Table 3.2: Table of confusion matrixes of the Euclidean distance-based change de-
tector

February 28th and April 5th 2004. There are a total of 2.3 million readings in this
data. Each record contains the following information: date and time at which data
were recorded, and the measures sensed by sensors, which includes temperature,
humidity,light, and the battery power expressed in volts, ranging from 2 to 3. For
convenience, without losing the generality we only experimented our change detec-
tor with the temperature from this data set by projecting the data set on temperature
attribute. Our change detectors were evaluated in many aspects. The first group of
experiments tested the effect of basic window sizes on the accuracy of change de-
tection. The second group of experiments analyzed the effect of threshold selection
on the accuracy. Finally, the third group of experiments compared the performance
of change detectors using different distance functions.

For ease of evaluation, in particular, for obtaining the ground truth change,
all the experiments in chapter were performed with overlapping windows model
with sliding step of 1. We then assessed the running time of change detectors with
different window sizes, and different data sets.

3.6.1 Effectiveness of Window Width

The goal of this group of experiments is to evaluate the effect of the window width
on the performance measures of a change detector including running time, memory
consumption, and detection accuracy. The Euclidean distance-based change detec-
tor was examined. The raw threshold was set to 30◦C. The distance-based threshold
was fixed to 150, which corresponds to the raw threshold 30◦C.

As the change detection methods are developed for tuple-based data stream
model, the window width is the number of tuples. The window width can be arbi-
trary value of integer. However, for ease of observation of the window width effect
on the change detector, the window width was selected in the set 8, 16, 32, 64, 128.

An increase in the window width results in the reduction in the number of ob-
servations and the number of actual change points (Table 3.2). Because each time
a change is detected the current window is reset and the observations in the current
window cannot be observed. However, if only based on these confusion matrixes,

3.6. Evaluation of Change Detection 55

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Window width (number of items)

R
at

io

Hit rate
False alarm rate
Specificity
Accuracy

Figure 3.5: Effect of window width on detection performance of change detector
in terms of detection theory metrics

it is impossible to conclude which window is better. The increase in the window
width led to the decrease in the false alarm. We note that the hit rate in detection
theory is Recall in information retrieval theory (also called the power of the change
detector). The hit rate reached the maximum value with the window width 32. The
detection accuracy and specificity (greater than 95%) were independent with the
window width. The false alarm rate almost reduced with the increasing the width
of the window. The precision of the change detector decreases with the increas-
ing width of the window (Precision). For example, if the window width was 8,
the precision of the corresponding detector was 65.95% while the precision of the
corresponding detector was 40.49% with the window width was 128. The increase
in the width of window resulted in the increase in the running time of the change
detector. In other words, the detection delay increases with the increasing window
width. As such, there is a tradeoff between the false alarm rate and the detection
delay in the selection of the window width.

Figures 3.5 and 3.6 show the effect of window width on the detection perfor-
mance of change detectors in terms of the performance metrics of detection theory,
and information retrieval theory. Figure 3.7 shows the effect of window width on
performance of change detector in terms of running time and memory consump-
tion.

56 Chapter 3. Window-based Change Detection in Streaming Data

0 20 40 60 80 100 120 140
0.4

0.5

0.6

0.7

0.8

0.9

1

Window width (number of items)

R
at

io

Precision
Recall
F−score

Figure 3.6: Effect of window width on performance of change detector in terms of
information retrieval theory metrics

8 16 32 64 128
0

234.3

468.6

702.9

937.2

1171.5

m
s

Window width (number of items)

0

0.975887

1.95177

2.92766

3.90355

4.87944
M

by
te

s

Running time
Memory

Figure 3.7: Effect of window width on detection performance of change detector
in terms of running time and memory consumption

3.6. Evaluation of Change Detection 57

3.6.2 Effectiveness of Detection Threshold

To assess the effect of threshold selection on the performance of the change detec-
tor, the observed relationships (as shown in Figures 3.8, 3.9) between threshold and
the performance metrics of change detector including performance metrics from
the theory of information theory and the detection theory.

The Euclidean distance-based change detector was selected in this group of
experiments. Without losing the generality, we selected the sensor data from sensor
1 in the Intel Berkeley Lab sensor data. The goal here was to detect the abnormal
changes of the temperature in the sensor data.

To compute the performance metrics of a change detector empirically, we ex-
amined two kinds of change detectors. The first kind of change detector which we
call absolute change detector using the absolute difference of two consecutive data
items. We assume that the change points and unchange points detected by the ab-
solute change detector are the actual change points and the actual unchange points.
Therefore, there are two concepts of threshold: raw threshold and distance-based
threshold.

The differences of sequence of a pair of consecutive data points were computed.
Figure 3.10 shows the histogram of the absolute differences of the sequences of
two consecutive points. The threshold determined by the absolute difference of
two consecutive data points is called raw threshold.

To compute the performance metrics of the change detector using the Eu-
clidean distance, the parameters were set as follows. The window size was set to
128. The raw threshold that is the difference between two consecutive points was
fixed to 30◦C. The selection of the Euclidean distance-based threshold is based
on the histogram of changes represented by the Euclidean distances as shown
in Figure 3.11. The Euclidean distance-based threshold was varied in the range
50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900.
For each distance-based threshold, a confusion matrix was generated. From these
confusion matrixes, the performance metrics of the detectors corresponding to the
distance-based thresholds were computed. Figure 3.8 shows the relationships of
distance-based threshold and the detection theory-based metrics including the hit
rate, the false alarm rate, the accuracy rate, and the specificity rate. The results of
this group of experiments show that, the smaller the distance-based threshold was,
the higher the hit rate is. If the threshold is too small, the false alarm rate is high.
In other words, the false alarms rate is inversely proportional to the threshold.
However, if threshold is too big, the number the probability of hits is small, or
in other words, the probability of missed changes is large. In summary, there is a
tradeoff between the false alarm rate and the rate of missed changes. In particular,
the false alarm rate increases when the detection threshold decreases. The missed
change rate increases when the detection threshold increases. For example, with

58 Chapter 3. Window-based Change Detection in Streaming Data

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Euclidean distance−based threshold

Hit rate
False alarm rate
Accuracy
Specificity

Figure 3.8: Effect of threshold on performance of change detector

threshold 100 the number of missed changes was 6 while the number of missed
changes was 18 with the threshold 150. As shown in Section 2.4, the specificity
reflects the ability to correctly reject the actual unchanged points, the detection
accuracy represents the ability of the change detector to correctly detect the actual
change points and rejecting the actual unchange points. The specificity of the
Euclidean distance-based detector was high with specificity greater than 90%.
The Euclidean distance-based detectors corresponding above thresholds were
reliable with the accuracy rate greater than 85%. It is difficult to choose an optimal
threshold if we are only based on individual performance metrics. Therefore, to
select an appropriate threshold, we must consider multiple performance metrics at
the same time instead of considering individual performance metrics.

Figure 3.9 depicts the relationships of distance-based threshold and the infor-
mation retrieval theory-based metrics including Precision, Recall, and F-score. Re-
call (also called power of a change detector) represents the ability to correctly de-
tect the actual change points. The higher Recall is, the more powerful the detector
is. Contrary to the intuitive belief, larger precision and recall do not really mean
better results for change detection algorithms [Liu 2010].

Selection of detection threshold depends on each specific application. For ex-
ample, in a wildfire warning system, the probability of misses should be limited as
small as possible, but in stock market related applications, both probability of false
alarms and probability of misses should be limited.

3.6. Evaluation of Change Detection 59

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Euclidean distance−based threshold

Precision
Recall
F−Score

Figure 3.9: Effect of Threshold on Performance of Change Detector

3.6.3 Effectiveness of Dissimilarity Metrics

The goal of this group of experiments is to assess the effect of the dissimilarity
metrics on the performance of a change detector. Given more than two change de-
tectors, we want to select the best change detector. As such, we need to compare
the change detectors in terms of detection accuracy, running time, or memory con-
sumption.

We compared the detection performance of the Manhattan detector and the Eu-
clidean detector. In this section, we compare two change detectors using overlap-
ping windows model: the Euclidean distance-based change detector and the Man-
hattan distance-based change detector.

ROC curve is a method for selecting classifiers based on their performances
[Fawcett 2004]. As a change detector can be a special binary classifier that clas-
sified the state of an observed event into one of two classes: change or unchange.
Therefore, ROC graph can be used to compare the change detectors in terms of
their performances.

We set the parameters for this group of experiments as follows. The window
width was fixed to 128, and the absolute threshold was set to 30. To determine the
ranges of the thresholds, we visualize the absolute threshold in Figure 3.10, the
Euclidean distance in Figure 3.11, and the Manhattan distance in 3.12.

To compare the Euclidean distance-based detector and the Manhattan distance-

60 Chapter 3. Window-based Change Detection in Streaming Data

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

20

40

60

80

100

120

distance id

A
bs

ol
ut

e
ch

an
ge

Figure 3.10: Histogram of the absolute temperature differences of two consecutive
data points

0 1000 2000 3000 4000 5000 6000
0

100

200

300

400

500

600

700

800

900

1000

Distance id

E
uc

lid
ea

n
di

st
an

ce

Figure 3.11: Histogram of the Euclidean distances between the reference window
and the current window

3.6. Evaluation of Change Detection 61

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Distance id

M
an

ha
tta

n
di

st
an

ce

Figure 3.12: Histogram of the Manhattan distances between the reference window
and the current window

based detector, two ROC curves of these two detectors were depicted in the
same ROC space with the same window of 128 and the absolute threshold of 30.
For the Euclidean distance-based detector, the distance-based threshold was var-
ied in the range 50,100,150,200,250,300,350,400,450,500,550,600,650,700,
750,800,850,900. Each change detector with a distance-based thresh-
old generated a pair of hit rate and false alarm rate (hit,fa) corre-
sponding to a single point in ROC space. For the Manhattan distance-
based detector, the distance-based threshold was changed in the range
500,1000,1500,2000,2500,3000,3500,4000,4500,5000,5500,6000,6500,7000,
7500,8000,8500,9000. The computation process of ROC curve of the Manhattan
detector was performed the same as that of the Euclidean detector.

The better the performance of a change detector is (higher hit rate, lower false
alarm rate), the more the ROC point corresponding to the change detector towards
to the northwest. Figure 3.13 shows that, the change detector using the Euclidean
distance is better than the change detector using Manhattan distance in ROC space.
The ROC curves demonstrate that the Euclidean detector outperforms the Manhat-
tan detector.

These results show that, it should be better to compare the detection accuracy
of change detection methods in many metric spaces as each space of performance
metric will provide us a different view of these change detection methods.

Figure 3.13 depicts the ROC curves of two change detectors: the Euclidean

62 Chapter 3. Window-based Change Detection in Streaming Data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

T
ru

e
ch

an
ge

 r
at

e

Euclidean distance−based detector
Manhattan distance−based detector

Figure 3.13: Comparison in ROC space of Change Detector

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Recall

P
re

ci
si

on

Euclidean distance−based detector
Manhattan distance−based detector

Figure 3.14: Comparison in PR space of Change Detector

3.7. Summary 63

distance-based detector and the Manhattan distance-based detector. Figure 3.14
shows the performances of the Euclidean distance-based change detector were the
same as the those of the Manhattan distance-based change detector. In summary, in
ROC space, the performance of the Euclidean distance based change detector was
better than the Manhattan distance-based change detector while in PR space, two
change detectors were almost the same. This difference is due to the unbalance of
the number of actual change points and the number of the actual unchange points.
For example, Table 3.2 showed the unbalance of the number of change points and
the number of the unchange points. Therefore, a large change in the number of
false alarms can only result in a small change in the false alarm rate. In PR space,
Precision let us know the comparison of the number of false alarms and the number
of actual change points. In other words, Precision and Recall are independent of the
number of missed change points.

The results of these experiments show that the evaluation of a change detector
should based on many metrics. Furthermore, comparison of two change detectors
should be performed in both spaces ROC space and PR space, and two detectors
should detect the same type of change.

3.7 Summary
In this chapter, we have introduced a collection of algorithms for detecting changes
in a single data stream. The sliding window model is used to detect local changes
in data stream. We have introduced a collection of algorithms for detecting changes
in streaming data by using different sliding windows model.

By changing the relative positions of the reference and sliding windows, we can
develop change detection algorithms for different purposes such as the problem of
change point detection using overlapping windows model, or interval-based change
detection using adjacent windows model.

In our experimental evaluation we have showed the effects of the factors such as
the window width, the distance measure, and the detection threshold on detection
the performance of change detectors.

We empirically analyzed the dissimilarity measure including geometric dis-
tances and statistical tests in terms of performance (memory and time required) and
the detection accuracy. We compared the change detectors using different dissimi-
larity measures by using ROC and Precision-Recall curves. To our best knowledge,
we have first evaluated the detection accuracy of a change detector at any time of a
data stream or on the entire data stream.

CHAPTER 4

Synopsis-based Detection of Changes
in A Single Data Stream

It is not the strongest of the species that survive, nor the most intelli-
gent, but the one most responsive to change.

(Author unknown, commonly misattributed to Charles Darwin)

Contents

4.1 Introduction . 65

4.2 Synopsis based Change Detection 66

4.3 DFT-based Change Detection . 71

4.3.1 Incremental Computation of DFT coefficients 73

4.3.2 Algorithm Description . 75

4.4 Evaluation . 76

4.4.1 Evaluation on Accuracy of Detection 77

4.4.2 Evaluation on Performance 78

4.5 Summary . 81

4.1 Introduction

As data streams arrive with high speed, detection of changes in raw streaming
data in real-time is challenging [Gaber 2006]. Besides, if the window is so large
that it may be impossible to store the window in memory. We need to summarize
this window by constructing a compact synopsis. In this chapter, we propose a
general framework for detecting changes in streaming data by using synopses that
are constructed from two windows: the reference window and the current window.

In chapter 3, we introduced a general framework for change detection in a sin-
gle data stream using the two-window approach. In fact, this framework focuses

66 Chapter 4. Synopsis-based Detection of Changes in A Single Data Stream

on change detection in raw streaming data. In many applications, we are more in-
terested in the features of streaming data than raw streaming data. For example,
in medicare monitoring systems, physiology data is often periodic. Therefore, it is
useful to analyse the physiology data in frequency domain. This chapter presents
a general framework for detecting changes in synopses extracted from streaming
data. It would be ideal if a synopsis-based change detector can simultaneously
achieve the following goals: space-efficiency, computation efficiency, and detec-
tion accuracy. However these goals require the tradeoff

The contributions of this chapter are as follows

• We propose a general framework for detecting changes in data stream using
synopsis.

• We analyze, design, and evaluate a specific algorithm for detecting changes
in data stream by using Discrete Fourier Transform coefficients as synop-
sis structures. DFT-based change detection can be found in cognitive radio
network [Kim 2008].

• We propose an incremental DFT-based change detector. In comparison with
the direct DFT-based detector, this incremental DFT-based detector improves
the detection performance in terms of running time and memory consump-
tion.

The rest of this chapter is organized as follows. Section 4.2 introduces the gen-
eral framework for synopsis-based change detection, and proves that the detection
accuracy of synopsis-based detection method is preserved if the distance between
two synopses is preserved under synopsis construction. Section 4.3 presents DFT-
based change detector, a specific instance of synopsis-based change detector, by
using Discrete Fourier Transform. We empirically evaluate the DFT-based detec-
tors in Section 4.4 in terms of detection accuracy, running time, and memory con-
sumption. We summarize the results of this chapter in Section 4.5.

4.2 Synopsis based Change Detection

Data stream summarization is one of the fundamental problems in data stream pro-
cessing. Since data stream is infinite in nature, a common approach to summarizing
a data stream is to observe and process it over a fixed size window. However, if the
window is so large that it may be impossible to store the window in memory. The
window need to be summarized by using compact synopsis construction. As the
goal of change detection is to detect the abnormal or interesting event or behavior,
the approximate answers to the queries relevant to the problem of change detection

4.2. Synopsis based Change Detection 67

is acceptable. Synopsis construction from streaming data has been long paid atten-
tion by research community of data stream processing due to the unique space and
time constraints on the computation process of data streams. Algorithms for min-
ing data streams can be based on constructing an accurate or approximate synopses
of the real-time data streams.

Synopsis or sketch is a small data structure maintaining an approximate data
structure rather than an exact representation [Babcock 2002]. Sketch is a com-
pressed representation of a data set. If x is a data set then a sketch of this data set
is given by a function f(x) [Nelson 2012]. There are some types of synopses such
as random samples, histograms, wavelets, and sketches. The issues related to syn-
opses include time efficiency, space, practicality, and incremental maintenance. As
streaming data changes overtime, synopses that summarize streaming data need to
be updated in order to reflect the changes of streaming data. Synopses can be used
in conjunction with a variety of techniques for processing and mining data streams.
Synopsis can be used to estimate a global aggregate over a sliding window. Con-
tinuous queries using synopses reduce considerable amount of memory yet may
provide almost the same result as query processing on the raw data [Klan 2011]. In
particular, the technique of synopsis construction can be incorporated with change
detection efficiently because it only needs some synopsis structure which informs
the temporal behavior of the stream without considering the individual data points
[Aggarwal 2007].

Many algorithms for detecting changes have been recently proposed for the
corresponding synopses. Sampling can be used as a utility to construct a synopsis
structure from a data stream [Li 2007]. Sebastiao et al. [Sebastião 2007]. propose
a change detection method that can identify sudden changes in the data stream
by using cluster histogram. Let H1 and H2 denote two cluster histograms that
are constructed from two corresponding windows: the reference window w1 and
the current window w2. In order to determine whether a change occurs, the fol-
lowing hypothesis test Dist(H1, H2) is greater than the given threshold t. Chen
et al. have used histograms to summarize data in window for change detection
[CHEN 2009]. Krishnamurthy et al. [Krishnamurthy 2003] propose an approach to
building compact summaries of the data using sketches. After that, detecting signif-
icant changes is performed on time many series forecast models built on sketches
by looking for flows with large forecast errors. The advantage of this approach is
that it is capable of detecting significant changes in massive data streams with a
large number of time series. Casolari et al. have recently presented a method for
detecting changes in streaming data that is created from Internet-based systems
[Casolari 2012]. Their change detector uses wavelet transform to eliminate pertur-
bations. Another approach to synopsis-based change detection is to use the data
mining results as synopses. Instead of detecting changes in raw streaming data, the
change detection schemes identify the changes in the most quintessential informa-

68 Chapter 4. Synopsis-based Detection of Changes in A Single Data Stream

Figure 4.1: Block diagram for detecting changes in data stream using synopsis
structures

tion structures constructed from massive data streams by streaming data mining
methods such clustering, frequent pattern mining, and so on. The first work on
model-based change detection proposed in [Ganti 1999, Ganti 2002] is FOCUS.
The framework FOCUS consists of two components: structural and measurement
component. To detect deviation between two models, they compare specific parts
of these corresponding models. The models can be obtained by data mining algo-
rithms such as frequent item sets, decision trees, and clusters. Valizadegan and Tan
present a clustering based change detection method that summarizes streaming data
by clustering [Valizadegan 2007]. Gaber and Yu [Gaber 2006] present a clustering-
based change detection method that clusters data stream online, and determine the
clustering features. Change is detected by using these clustering features. For ex-
ample, Chen et al. [Chen] describes another clustering based approach. This ap-
proach stores the cluster entropy characteristics of data stream in a summary struc-
ture, called HE tree (Hierarchical Entropy), and detects the change of Best K. This
method is memory efficient. Micro-clustering is used as a method for constructing
synopses from streaming data.

There are many model-based approaches to detecting changes such
as one-model approach, two-model approach, or multi-model approach
[Gustafsson 2001]. Severo et al [Severo 2006] propose a change detection method
using one-model approach in which the change is detected by using Kalman filter-
ing and CUMSUM. An example of change detection using multi-model approach is
proposed by Curry et al. [Curry 2007]. This dissertation focuses on the two-model
approach. In particular, this chapter presents a general two-window change detec-
tion method. Chapter 4 and 5 present the synopsis-based change detectors using
Discrete Fourier Transform and clustering. As Figure 4.1 shows, a synopsis-based
method for detecting a single data stream consists of the following modules

• Preprocessing: Preprocessing is an important step in adaptive systems. As
data comes from real world can be noisy and redundant, the tasks of prepro-
cessing can be removing noise and redundancy, and data normalization. A
commonly used approach to preprocessing is to use filters to remove noise.
A recent work on adaptive preprocessing for streaming data can be seen in
[Zliobaite and 2012].

4.2. Synopsis based Change Detection 69

• Synopsis construction. Given two basic windows of size b: w1, w2, two syn-
opsis structures are constructed by techniques of synopsis constructions such
as sampling, wavelets, sketches, histograms, and clustering etc.

• Change detection: The next step is to quantify the difference between two
synopses that are constructed from two windows. The dissimilarity metrics
used to quantify the diffeence between two synopses can be any dissimilarity
metric that is suitable for each application. Let W1 and W2 be two corre-
sponding synopses constructed from two windows w1, w2 respectively, the
change is detected by testing the following hypotheses{

H̃0 d(W1,W2) ≤ Ω

H̃1 d(W1,W2) > Ω
(4.2.1)

where Ω is the distance-based threshold.

Therefore, instead of computing the dissimilarity measure between two win-
dows of size N , we need only to compute the dissimilarity measure between two
synopses of size K, where K � N .

More importantly, we have proposed a general change detection framework
in which synopses can be incrementally computed. Algorithm 4 describes the
synopsis-based change detector using two adjacent windows model. Method
synopsisConstruction() constructs a synopsis from the corresponding window.
A distinction between a non-synopsis change detection and synopsis-based change
detection is that the dissimilarity measure in the former is directly computed on
the samples of two windows w1 and w2 while the dissimilarity measure in the later
is computed on the synopses. Therefore, computation of the dissimilarity measure
between two synopses can be considered as the heart of the synopsis-based change
detection approach.

The probability of false alarm and the probability of detection are computed by
PFA = Pr(H̃1|H̃0) and PD = Pr(H̃1|H̃1) respectively. By using synopsis struc-
tures for change detection, the dimension of the problem can significantly reduces.

Lemma 4.2.1. Let W1 and W2 be two synopses constructed from two correspond-
ing windows w1 and w2. If the distance between two windows w1 and w2 d(w1, w2)

is equal to the distance between two synopses d(W1,W2), then the detection per-
formance of the synopsis-based change detector is similar to that of the change
non-synopsis change detector. In other words, the detection performance of the
synopsis-based detector is preserved if the synopsis-based distance is equal to the
non-synopsis distance.

Proof. Let two windows w1 and w2 be the reference window and the current win-
dow running on the data stream S. Let W1 = f(w1) and W2 = f(w2) be two

70 Chapter 4. Synopsis-based Detection of Changes in A Single Data Stream

Algorithm 4: Change detection algorithm using synopsis structure (Two Ad-
jacent Windows)

input : A data stream S, a distance based threshold D∗

output: The messages reporting the changes occurred, and time at t which
changes occurred

Step1: begin
t←− 0;
w1←− first b points from time t;
W1←− synopsisConstruction(w1);
w2←− next b points in the data stream;
W2←− synopsisConstruction(w2);

Step2: while not the end of the stream do
if d(W1,W2) > D∗ then

t←− current time;
Report change occurred at time t;
Clear all windows and GOTO Step 1;

else
w2←− sliding(w2, 1);
W2←− synopsisConstruction(w2);

4.3. DFT-based Change Detection 71

synopses constructed from two corresponding windows by a sketching function f
The detection performance of non-synopsis change detector is determined by

Hraw = Pr(| d(w1, w2)| > ω | actualchange = true) (4.2.2)

and

FAraw = Pr(| d(w1, w2) |> ω | actualchange = false) (4.2.3)

The detection performance of synopsis-based change detector is determined by

Hsyn = Pr(| d(W1,W2)| > ω | actualchange = true) (4.2.4)

and

FAsyn = Pr(| d(W1,W2) |> ω | actualchange = false) (4.2.5)

As the distance is preserved under synopsis construction process d(w1, w2) =

d(W1,W2), the detection performance of synopsis-based change detector is similar
to that of the non-synopsis change detector: Hraw = Hsyn and FAraw = FAsyn.
In summary, the performance of synopsis-based change detector is similar to the
non-synopsis change detector if there exists a sketching function f that preserves
the distance measure between two synopses.

Some transforms in discrete signal processing can preserve the Euclidean dis-
tance in the transformed domain such Discrete Fourier Transform, Haar Wavelet
Transform [Chan 1999]. Section 4.3 presents the synopsis-based change detector
with DFT coefficients (Discrete Fourier Transform) as synopses using the Eu-
clidean distance. As the Euclidean distance is preserved under the Discrete Fourier
Transform, the DFT-based change detector using the Euclidean distance meets
Lemma 4.2.1.

4.3 DFT-based Change Detection
Discrete Fourier Transform is a well-known signal transformation transforming
signal from a given domain to another. It is used in many domain applications such
as digital signal processing (DSP), image processing, and so on.

In the fields of database and data mining, DFT is used as a method for extracting
the features from the data sets [Mörchen 2003]. DFT transform is used to compress
the decision trees for distributed data mining [Kargupta 2001]. It is also used for
the problem of similarity search in sequence databases. Besides, as DFT transform

72 Chapter 4. Synopsis-based Detection of Changes in A Single Data Stream

is specially efficient for periodic signals, it is useful for processing time series data
as well as time series streaming data such as ECG data, acoustic data . Beringer
and Hullermeier present an online method for clustering of parallel data streams
using DFT transform. Zhu and Shasha use DFT transform to find the correlations
among thousands of pairs of data streams [Zhu 2002].

As the Euclidean distance is preserved under the DFT transform according to
Parseval’s theorem [Oppenheim 1989], many data mining techniques using DFT
and the Euclidean distance can preserve privacy in the distributed environment.
As such, DFT-based change detector using the Euclidean distance can be seen as
a privacy-preserving mining technique. The DFT is an orthogonal transformation
that is used in many practical applications due to the existence of the fast compu-
tation algorithm FFT.

Definition 4.3.1. The time series data stream x(t) can be represented as a linear
combination of basis functions.

x(t) =
1√
N

N−1∑
ω=0

X(ω)e
2πiωt
N (4.3.1)

where

X(ω) =
1√
N

N−1∑
t=0

x(t)e−
2πiωt
N (4.3.2)

Discrete Fourier Transform has the following properties:

• Preservation of the Euclidean distance: The Euclidean distance is pre-
served under the Discrete Fourier Transform [Oppenheim 1989]. As shown
in Lemma 4.2.1, the detection accuracy of DFT-based detector using the Eu-
clidean distance is similar to the Euclidean distance-based detector. There-
fore, instead of computing the Euclidean distance on two windows of N
samples, the Euclidean distance between two windows w1 and w2 can be
computed from the DFT coefficients extracted from two corresponding win-
dows.

• Symmetry: Most time series data streams are real sequence, then X(i) =

X∗(N − i), for i = 1, ..., N − 1 where X∗ is the conjugate of the com-
plex number X . As such, instead of computing N DFT coefficients, DFT
algorithm only requires to compute N/2 + 1 DFT coefficients. For example,
if the width of sliding window size is N = 1024, then the number of DFT
coefficients is only 513.

Direct computation of DFT coefficients needs O(N2) units of time, but with Fast
Fourier Transform, the time required reduces to O(NlogN) based on the above

4.3. DFT-based Change Detection 73

properties. Furthermore, since the energy of the time series data stream only con-
centrates on the first few DFT coefficients, it is sufficient to capture K most im-
portant coefficients where K << N . Recently, some groups of researchers have
proposed faster Fourier transform algorithms for sparse data streams. For instance,
[Zou 2006] explains that, it is possible to use a few DFT coefficients (K = 40),
extracted from a very large window (N = 4million), in the compressive sensing
process. In particular, Hassanieh et al. [Hassanieh 2012b, Hassanieh 2012a] have
presented a fast Fourier transform algorithm for sparse data stream, which is one
of the 10 breakthrough technologies in 2012. As most real world data is sparse, the
sparse FFT is useful. It is shown that, data stream can be processed 10 to 100 times
faster than it was processed with the traditional FFT. Integration of high-speed
data stream and signal-processing operations into a single system is a mandatory
for many applications such as preventive maintenance of industrial equipment; de-
tection of water pipeline leakage; anomaly detection in electrocardiogram signals
in medical applications [Girod 2007, Girod 2008].

Girod et al have proposed a signal-oriented data stream management systems
combining both signal processing and data stream operators together. In this spirit,
we propose a change detection method for streaming data using Discrete Fourier
Transform. DFT-based change detection can be used as a component for the cog-
nitive radio system [Lai 2008]. DFT-based change detection is useful for periodic
change detection

4.3.1 Incremental Computation of DFT coefficients

Incremental computation is a fundamental problem in data stream processing and
mining. Due to the unlimited nature of streaming data, the incremental estimation
of synopsis for change detection is important. There has been recently some work
focusing on this direction [Tschumitschew 2010]. To further improve the speed of
change detector, Lemma 4.3.1 is exploited to reduce the time required for comput-
ing the DFT coefficients. Specifically, instead of computing the DFT coefficients
of the basic window w2, we use an incremental strategy to compute the DFT coeffi-
cients of the basic windoww2 because fast incremental processing of new incoming
data items arises from the nature of on-line processing of data streams.

Lemma 4.3.1. [Zhu 2002]Let Xold
k be the k-th DFT coefficient of the series in

the sliding window x0, x1, .., xN−1 and Xnew
k be that coefficient of the series

x1, x2, .., xN ,

Xnew
k = e

j2πk
N (Xold

k +
xN − x0√

N
) (4.3.3)

k = 1, .., K

74 Chapter 4. Synopsis-based Detection of Changes in A Single Data Stream

where K is the number of DFT coefficients that are used as synopses and K ≤ N .

The worst case is K = N . However,in the real world applications, this num-
ber K is often much smaller than N because only few coefficients are important.
Therefore, the larger window is really beneficial for computing DFT coefficients.
It can seen that except the initial step the time needed for computing the Euclidean
distance between

Proof. We have

Xold
m =

1√
M

w−1∑
i=0

xiW
mi (4.3.4)

where W = e−
2jπ
M

We compute Xnew
m ,

Xnew
m =

1√
M

w−1∑
i=0

xi+1W
mi (4.3.5)

Let k = i+ 1, we have Xnew
m = 1√

M

M∑
k=1

xkW
m(k−1)

As such,

Xnew
m = W−m(

1√
M

M−1∑
k=0

xkW
mk) +

1√
M
WmMxm −

1√
M
Wm0x0) (4.3.6)

So,
Xnew

m = e
j2πm
w (Xold

m + xM−x0√
M

)

Hassanieh et al. shows that the time needed for computing K non-zero DFT
coefficients by their randomized algorithm DFT of N points is O(K logN). The
computational complexity of K DFT coefficients using the fast Fourier transforms
is O(K logN). It can be easily seen that from Lemma 4.3.1, the time needed for
incrementally computing of K DFT coefficients is only O(K).

As such, the incremental method for computing K DFT coefficients runs faster
than the direct method for computing DFT coefficients logN times. Therefore, it
can seen that if the larger the window widthN is, the more efficient the incremental
method for computing K DFT coefficients than the direct computation of DFT
coefficients is.

Let Treact be the reacting time, which is the time needed for reacting to the
change. The reacting time is computed from the time at which the change occurs to
the time at which the detector makes an alarm. Reacting time includes the detection

4.3. DFT-based Change Detection 75

delay and the time needed for an making alarm of the occurred change. As such,
the reacting time mostly depends on the detection delay. In fact, detection delay
is due to the time for computing the distance function that quantifying the change
and the time for comparing this function with the detection threshold. However,
the time for comparing can be ignored. In other words, detection delay depends
on the time for computing the distance function. Let d be a distance function that
quantifying the change. Let Tdist be the time needed for computing the distance
function d of two windows. We note that in Algorithm 5, only the DFT coefficients
in the current window is incrementally computed while the DFT coefficients in the
reference window is directly computed. We consider three following cases:

1. For quantifying the difference between two windows of N points of stream-
ing data, the time for quantifying the change is Tdist(N).

2. For quantifying the difference between two synopses, and each synopsis con-
sists of K of DFT coefficients, the time for quantifying the difference in a
DFT-based change detector depends on the time for computing the DFT co-
efficients in each window. Tdist(K). If the DFT coefficients are directly com-
puted from both the reference window and the current window, the time for
quantifying the difference Tdist(K) can be approximated by

T direct
diff ≈ Tdist(K) +O(K logN) +O(K logN) (4.3.7)

3. For the case of incremental computation of DFT coefficients in the current
window, the time for quantifying the difference can be approximated by

T incre
diff ≈ Tdist(K) +O(K logN) +O(K) (4.3.8)

From the equations 4.3.7 and 4.3.8, it can be seen that the incremental DFT-based
detector runs faster than the direct DFT-based detector. However, we cannot pro-
vide any conclusion of the detection performance in terms of running time of the
detector on two windows of raw streaming data and the direct DFT-based detector
as well as that of detector on two windows of raw streaming data and the incremen-
tal DFT-based detector.

4.3.2 Algorithm Description
Algorithm 5 describes the incremental DFT-based detector. The inputs to this
method include a data stream S, and a given threshold D∗. One of the fundamen-
tal methods for synopses is to incrementally update synopsis with newly arriving
item. Procedure IncrementalDFT (W2, x, y), which implements Lemma 4.3.1,
computes the DFT coefficients in the window w2 incrementally on the basis of the

76 Chapter 4. Synopsis-based Detection of Changes in A Single Data Stream

old DFT coefficients in the window w1, the expired item x, and the newly arriving
item y. Due to the unlimited nature of streaming data and the restricted resources
such as memory, and computing power, data stream processing usually uses the
incremental approach in order to overcome these challenges. In order to quantify
the change based on synopses, we need to determine a dissimilarity function be-
tween two synopses. For example, with the Discrete Fourier Transformation, the
dimension of the problem reduces from N to K.

Algorithm 5: Change detection algorithm using synopsis structure (Two Ad-
jacent Windows)

input : A data stream S, a distance-based threshold D∗

output: The messages reporting the changes occurred, and time at t which
changes occurred

Step1: begin
t←− 0;
w1←− first b points from time t;
W1←− DFT (w1);
w2←− next b points in the data stream;
W2←− DFT (w2);

Step2: while not at the end of the stream do
if d(W1,W2) > D∗ then

t←− current time;
Report change occurred at time t;
Clear all windows and GOTO Step 1;

else
x←− fistItem(w2, 1);
w2←− sliding(w2, 1);
y ←− lastItem(w2);
W2←− IncrementalDFT (W2, x, y);

4.4 Evaluation
This section evaluates the DFT-based detectors in terms of detection accuracy,
and performance metrics including running time, and memory consumption. The
first group of experiments aim to demonstrate that the detection accuracy of the
synopsis-based detector is preserved if the the distance quantifying the difference
between two synopses is preserved. In other words, the accuracy of the synopsis-
based detector is similar to that of the non-synopsis detector if the distance between

4.4. Evaluation 77

two synopses is equal to the distance between two original data samples. We imple-
mented both the direct DFT-based detector and the incremental DFT-based detector
using the Euclidean distance for quantifying the difference. The second group of
experiments shows evaluates the performance of the DFT-based detectors in terms
of running time, and memory consumption. This group of experiments also makes
comparative evaluations of the DFT-based detectors with other detectors in terms
of running time, and memory consumption.

4.4.1 Evaluation on Accuracy of Detection

Lemma 4.2.1 proves that detection performance of synopsis-based detector is the
same as that of non-synopsis detector if the distance function is preserved un-
der the synopsis transform. Such a distance-preserved transform is the Discrete
Fourier Transform. This subsection empirically demonstrated Lemma 4.2.1 with
DFT-based change detector. The distance between two DFT-based synopses was
the Euclidean distance between two DFT-based synopses. The Euclidean distance-
based detector was selected as a non-synopsis detector. The DFT-based detector
was selected as synopsis-based detector. Two change detectors were run on the
same data set generated by sensor 2 in the Intel Berkeley sensor data set. The fast
DFT algorithms use conquer-and-divide strategy to improve the performance. As
a computation of DFT of N points is recursively divided into computation of 2
smaller N/2 points, the number of data points N should be of 2M . Without loss
of generality, the window size was set to 128 in both the Euclidean distance-based
detector and DFT-based detector in this group of experiments. This size of 2M can
be a drawback of DFT-based change detectors.

Similar to Section 3.6.2, it is assumed that the change points and unchange
points detected by the absolute change detector are the actual change points and
the actual unchange points. The raw threshold that is the difference between two
consecutive points was fixed to 30◦C.

The selection of the Euclidean distance-based threshold was based on the
histogram of changes represented by the Euclidean distances as shown in
Figure 3.11. The Euclidean distance-based threshold was varied in the range
50,100,150,200,250,300,350,400,450,500,550,600,650,700, 750,800,850,900. For
each distance-based threshold, a confusion matrix was generated. From
these confusion matrixes, the performance metrics of the detectors corre-
sponding to the distance-based thresholds were computed. As the Euclidean
distance is preserved under the Discrete Fourier Transform, the distance-
based threshold of the DFT-based detector was also changed in the range
50,100,150,200,250,300,350,400,450,500,550,600,650,700, 750,800,850,900. For
each distance-based threshold, a confusion matrix was generated. From these con-
fusion matrixes, the performance metrics of the detectors corresponding to the

78 Chapter 4. Synopsis-based Detection of Changes in A Single Data Stream

Detected changes Detected unchange Total
Actual change 127 0 127

Actual unchange 217 49325 49542
344 49325 49699

Table 4.1: The Euclidean distance-based detector and DFT-based detector with
distance-based threshold 50 and absolute threshold 30 has the same confusion ma-
trix

distance-based thresholds were computed.
The results of the experiments on the Euclidean-based detector and DFT-based

detector demonstrated that, the detection performance of the Euclidean distance-
based detector was similar to that of the DFT-based detector.

Table 4.1 illustrates that, the Euclidean distance-based detector and DFT-based
detector generated the same confusion matrix with the distance-based threshold
of 50 and the absolute threshold 30. From this confusion matrix, the performance
measures of both detectors computed from this confusion matrix were computed.
In particular, both detectors have the probability of detection (hit rate) 1.0, the false
alarm rate 0.00438, Precision 0.369, Recall 1.0, the detection accuracy 0.9956,
specificity 0.9956, and F-score 0.5393. Similarly, the performance measures of two
detectors were computed with the other value of distance-based threshold. Fig-
ure 4.2 showed that, two Precision-Recall curves of both detectors are the same.
In summary, our theoretical and empirical results show that, given a synopsis

transform that preserves the distance measure, the performance measures of non-
synopsis change detector and synopsis-based change detector are similar in terms
of detection accuracy metrics including the hit rate, the false alarm rate, Preci-
sion, Recall, as well as the corresponding derived metrics (F-score, accuracy, speci-
ficity).

4.4.2 Evaluation on Performance

In this group of experiments, we evaluate the performance of both direct and in-
cremental DFT-based detectors in terms of running time on the same entire data
stream sensor 2. We ran the all the experiments with the detectors using two adja-
cent windows.

Figure 4.4 shows that the running time of both the direct and incremental DFT
based detectors on the same entire data stream. As DFT-based detectors uses the
adjacent windows model to detect the changes in data stream. Therefore, every time
a change is detected, the detector is reset. Therefore, the smaller window width is,
the more often the detector resets. In other words, the smaller the window width
is, the larger the time needed for directly computing DFT coefficients in the refer-

4.4. Evaluation 79

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Recall

P
re

ci
si

on

DFT−based detector
Euclidean distance−based detector

Figure 4.2: Comparison of the Euclidean distance-based detector and DFT-based
detector in PR space

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

H
it

ra
te

DFT−based detector
the Euclidean distance−based detector

Figure 4.3: Comparison of the Euclidean distance-based detector and DFT-based
detector in ROC space

80 Chapter 4. Synopsis-based Detection of Changes in A Single Data Stream

8 16 32 64 128 256 512 1024
0

2

4

6

8

10

12

Window width

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Incremental computation of DFT
Direct computation of DFT

Figure 4.4: Running time of both direct and incremental DFT-based detectors on
the entire data stream

ence window consumes. As Section 4.3.1 Figure 4.4, the incremental DFT-based
detector ran faster than the direct DFT-based detector.

We also compared the performance of direct DFT-based detector and incremen-
tal DFT-based detector in terms of memory consumption and running time. The
window width was set to 128. The raw threshold was 30. The Euclidean distance-
based threshold was 150. The sliding step was 1, that means the reference win-
dow and the current window are overlapping by 127 positions. The experiment
results shows that, the incremental DFT-based change detector (552 ms) runs faster
than the direct DFT-based change detector (1863 ms). The incremental DFT-based
change detector requires 2.46 MB memory while the direct DF-based change detec-
tor needs 2.57 MB memory for detecting changes on the entire data stream sensor
2. As such, there is no much difference in terms of memory required by both the
incremental DFT-based change detector and the direct DFT-based change detector.
As we expect in Lemma 4.3.1, the computing power of incremental computation
of DFT in sliding window further improve than the direct computation of DFT.

We repeated the experiment with the Euclidean distance-based change detector
on the same data stream sensor 2 with the same parameter setting. The running
time of the Euclidean distance-based change detector was 1024 ms. The memory
consumption was 2.725 MB.

Table 4.4.2 summarizes this group of experiments. As such, among three de-
tectors, the incremental DFT-based change detector runs fastest, and requires least

4.5. Summary 81

Dissimilarity measure Time (ms) Memory (Mb)
Detector on raw data 1024 ms 2.725 MB
Direct DFT-based detector 1863 ms 2.57 MB
Incremental DFT-based detector 552 ms 2.46 MB

Table 4.2: Running time and memory consumption of the Euclidean distance-based
detector, direct DFT-based detector, and incremental DFT-based detector on the
entire data stream sensor 2

memory. As we can incrementally compute the DFT coefficients in the win-
dow and then we compute the Euclidean distance on smaller data rather than
the entire window, we obtained this result as expected in Lemma 4.3.1. We also
note that all the DFT-based change detectors that we implemented are based on
the traditional fast fourier transform algorithm. In particular, the performance of
DFT-based further improves if the it performs on the periodic data streams such
as ECG data, acoustic data. The recent advance in fast computation of DFT
[Zou 2006, Hassanieh 2012b, Hassanieh 2012a] can motivate us to develop the
faster DFT-based detectors. The reasonable foundation is that most real world data
is sparse, the sparse FFT is useful. Therefore, it is sufficient to consider only a few
coefficients.

We also evaluated Kolmogorov-Smirnov distance-based change detector pro-
posed by Kifer et al.[Kifer 2004] on raw streaming data set sensor 2. We set pa-
rameters for this experiment as follows. The window width was fixed to 128. The
absolute threshold was 30. The Kolmogorov-Smirnov distance varies in the range
[0,1]. The distance-based was 0.5. The sliding step was 1. The detection perfor-
mance of Kolmogorov-Smirnov distance-based change detector in terms of mem-
ory consumption, and running time are as follows. The time required for detecting
changes in the entire data stream sensor 2 is 7201ms. The memory consumption is
2.1MB. It can be seen that even compared with the direct DFT-based change de-
tector, the running time of the KS distance-based detector (7201ms) is much larger
than that of the direct DFT-based change detector (1863 ms). This result fits with
our observation discussed earlier.

4.5 Summary

Due to the need for detecting the changes of features constructed from data streams
as well as the resource constraints on data stream processing and mining, a gen-
eral synopsis-based change detection framework is proposed. Both theoretical and
empirical analysis demonstrates that, the detection performance of synopsis-based

82 Chapter 4. Synopsis-based Detection of Changes in A Single Data Stream

detector is similar to that of non-synopsis change detector if a distance function
that is used to quantify the changes is preserved under the synopsis construction
process. The DFT-based change detector was designed and evaluated as an exam-
ple of synopsis-based change detector. As the data stream must be processed under
the resource constraints with high speed, an incremental computation of DFT co-
efficients was exploited to further speed up the DFT-based change detector.

CHAPTER 5

Change Detection in Streaming Data
by Clustering

Life is its own journey, presupposes its own change and movement,
and one tries to arrest them at one’s eternal peril.

(Laurens van der Post)

Contents

5.1 Introduction . 83

5.2 Formal Model . 84

5.3 Automated Change Detection by Clustering 86

5.3.1 Automated Change Detection 86

5.3.2 Maintenance of Clustering using Reactive Approach 88

5.4 Related Work . 90

5.4.1 Automated Change Detection 91

5.4.2 Change Detection in Multivariate Streaming Data 91

5.5 Evaluation . 92

5.5.1 Effectiveness of Window Width 93

5.5.2 Effectiveness of Cluster Number 94

5.5.3 Effectiveness of Sliding Step 96

5.5.4 Evaluation on Clusterings using Reactive Approach 97

5.6 Summary . 98

5.1 Introduction
Clustering evolving data streams not only finds new emerging patterns in the data,
but it can also detect changes in the patterns, and data distribution. Detecting
changes in the clustering structure can be seen in many real world applications.

84 Chapter 5. Change Detection in Streaming Data by Clustering

For example, understanding how clustering model evolves can help us find out
the sources responsible for spreading diseases [Barbará 2001]. Clustering evolving
data streams can help to analyse the evolution of group behavior in social networks.
Analysis of the evolution of clustering structure can provide the foundation for
promptly making decisions. This chapter presents a method for detecting changes
in multivariate streaming data by using the geometric and clustering approach. We
then present method for building and maintaining of clustering by using the reac-
tive approach in which this clustering-based change detection method is used to
determine when to rebuild clustering.

The concept of change in this Chapter is understood as follows. Our change
detection method uses the model fitting approach in which a change occurs when a
new data item or block of data items do not fit the existing clustering.

5.2 Formal Model
The problem is formulated as follows. A data stream is an infinite sequence of
elements

S = {(X1, T1) , .., (Xj, Tj) , ...} (5.2.1)

Each element is a pair (Xj, Tj) where Xj is a d-dimensional vector Xj =

(x1, x2, ..., xd) arriving at the time stamp Tj . Change detection can reduce to the
problem of hypothesis testing below{

H0 ¬change
H1 change

(5.2.2)

where the hypothesis is a logical expression change which indicates whether a
change occurs.

Let W denote a sliding window. Let SC be the stream of clusterings that are
continuously created by the stream clustering algorithm over the window W . As
such, A : S,W → SC is a mapping that creates a stream of clusterings SC from
the stream of data points S by continuously applying the algorithm A on each
window of data items W as the window slides on the data stream S.

The first truly scalable algorithm for clustering data stream called BIRCH
[Zhang 1996] constructs a clustering structure in a single scan over the data with
limited memory. BIRCH can work with limited resources. BIRCH consists of the
following characteristics: incremental clustering, compact representation of clus-
ters, and the ability to process data in a single pass. With the above characteristics,
BIRCH is well suited for clustering large database as well as the evolving data
streams. The underlying concept behind BIRCH called the cluster feature vector is
defined as follows

5.2. Formal Model 85

Definition 5.2.1. Clustering Feature [Zhang 1996] Given d-dimensional data
points in a cluster:

{
~X
}

where i = 1, 2, .., N , the Clustering Feature (CF) vector
of the cluster is a triple: CF = (N, LS, SS) whereN is the number of data points

in the cluster, LS =
N−1∑
i=0

Xi is the linear sum of the data points in the cluster, and

SS =
N−1∑
i=0

X2
i is the squared sum of the N data points. The cluster created by merg-

ing two above disjoint clusters CF1 and, CF2 has the cluster feature is defined as
follows

CF = (N1 +N2, LS1 + LS2, SS1 + SS2) (5.2.3)

The advantages of this CF summary are:

• it does not require to store all the data points in the cluster.

• it provide sufficient information for computing all the measurements neces-
sary for making clustering decisions [Zhang 1996].

Aggarwal et al. [Aggarwal 2003] extends this concept cluster feature vector for
streaming context by adding the temporal components.

Definition 5.2.2. Micro-cluster [Aggarwal 2003]. A micro-cluster for a set of
d−dimensional points Xi1 , ..., XiN with time stamps Ti1 , ..., Tin is the (2d+ 3)-
tuple(
CF2x, CF1x, CF2t, CF1t, N

)
, wherein CF2x and CF1x each corresponds to a

vector of d entries. The definition of each of these entries is as follows

• For each dimension, the sum of the squares of the data values is maintained
in CF2x. Thus, CF2x contains d values. The p− th entry of CF2x is equal

to
N∑
j=1

(
Xp

ij

)2
.

• For each dimension, the sum of the data values is maintained inCF1x . Thus,

CF1x contains d values. The p− th entry of CF1x is equal to
N∑
j=1

(
Xp

ij

)
.

• The sum of the squares of the time stamps Ti1 , ..., Tin is maintained in CF2t.

• The sum of the time stamps Ti1 , ..., TiN is maintained in CF1t.

• The number of data points is maintained in N .

Definition 5.2.2 is the first definition of micro-cluster. In the later work, vari-
ants of micro-clusters are proposed to meet the specific requirements of the stream
clustering algorithms. For example, in DenStream [Cao 2006], micro-clusters fall

86 Chapter 5. Change Detection in Streaming Data by Clustering

x

r1

r2

r3d2 d3

d1
d3’

d2’

d1’
y

C1

C2

C3

x is a change point

y is not a change point

Figure 5.1: Change detection by clustering

into types such as core-micro-clusters, potential-c-micro-clusters, or outlier micro-
clusters, which are used for density-based clustering.

Recently, Agarwal et al. have introduced the concept mergable summaries that
are useful for many problems [Agarwal 2012]. As micro clusters can be merged
into new one based on the additive property, micro clusters are mergable summaries
that are useful for the problem of clustering streaming data as well as for the other
problems.

5.3 Automated Change Detection by Clustering

This section presents an automated change detection algorithm in streaming multi-
variate data by clustering.

5.3.1 Automated Change Detection

As described in Section 5.2, depending on how to establish the logical expres-
sion change, we can derive the different change detection methods. This section
presents an automated method for detecting changes in multivariate streaming data
by using clustering and geometric approach.

Let x denote a recently arriving data item. A data point can be considered a
change point if it is not a member of any cluster. In other words, data point x is a

5.3. Automated Change Detection by Clustering 87

change point if the following logical expression is true:

change =
K
∧
i=1

[d (x, center (Ci)) > radius (Ci)] (5.3.1)

where d (x, center (Ci)) is the distance between a newly incoming data point x
and the center of cluster Ci, and radius (Ci) is the radius of the cluster Ci, for
i ∈ 1, .., K.

Figure 5.1 illustrates how the clustering-based method for detecting changes
works. There is a clustering of three clusters C1, C2, C3 in the reference window.
As all the distances from data point x to three centers of clusters C1, C2, C3 are
greater than the radiuses of three corresponding clusters, data point x is a change
point while data point y is non-change point, because it is a member of cluster C1.
In terms of model fitting, data point x does not fit to the existing clustering while
data point y fits to the existing clustering.

Expression 5.3.1 shows how to check whether a data point is a change point.
However, this logical expression is only used for one incoming data point. We now
design a logical expression for checking whether the changes occur when sliding
step is a block of b data points x1, x2, .., xb. A block of data points is considered
change if at least one change point belongs to this block. Therefore, the logical
expression for checking whether a block of data points change in comparison with
the reference window is as follows.

change (x1, x2, .., xb) = change (x1) ∨ change (x2) .. ∨ change (xb) (5.3.2)

where change (xi) is determined by Expression 5.3.1.
All the data points are encoded as micro-clusters. A micro-cluster is a temporal

cluster feature vector that is extended from the cluster feature vector. The center
and the radius of each cluster can be easily computed from its micro-cluster. As
described in Section 5.3.1, as the shape of cluster should be sphere cluster, the
clustering algorithm used in the reference window isK−means, and the similarity
measure is the Euclidean distance. The clustering-based algorithm for detecting
change works as follows.

• Initialization: Read the first N data items from the incoming stream into the
reference window w1. The current window is the content of the reference
window that slides one step to capture new data item. Windows w1 and w2

are overlapping by N − 1 data points. The next step is building a clustering
the reference window w1.

• Continuous monitoring: Check whether a change occurs by testing criteria
for change as in Expression 5.3.1 or 5.3.2. If a change is detected, the detector
makes an alarm, at the current time tc, and the current window becomes

88 Chapter 5. Change Detection in Streaming Data by Clustering

the reference window, construct the new clustering for the new reference
window. The current window w2 always slides one step forward whether the
recently arriving data item changes or does not change.

Algorithm 6 describes an clustering-based change detection algorithm with the
arbitrary sliding step step, where 1 < step < N − 1 and N is the window width.
The input to the algorithm is a multivariate data stream S and the number of clus-
ters K. If a change occurs, detector reports the change point. Our clustering-based
change detector is based on the overlapping windows model. As the value of the
data decreases over time, instead of storing for later analysis, data is immediately
analyzed as it is produced. In particular, there are two windows: the reference win-
dow w1 and the current window w2. The current window is used to capture new
items.

We note that the boolean function change(C1, blk) determined by Expression
5.3.2 checking whether at least a change point exists in the block of data points blk.

In a naive approach, we would compute the distances of the data points in
the window with a newly arriving data item. Based these distances, we determine
whether the recently arriving data point is a change point. As such, if the window
of size N , we need to computes the distance function N times.

By using change condition specified in Expression 5.3.1 and 5.3.2, the num-
ber of comparisons reduces from N to K, where N is the size of sliding window,
K is the number of clusters, K � N . The clustering-based method for detecting
change is an automated method. Furthermore ,it can detect the changes in multivari-
ate streaming data. If the changes frequently occur, we need to run the clustering
algorithm K −means in order to create the clustering from the reference window
many times. This algorithm is efficient for the rarely occurring changes such as
anomaly changes.

If the purpose is only to report whether a change exists in the recently incoming
block of data, we can improve the performance of the clustering-based change de-
tection as follows. Whenever the first change occurs in the newly incoming block,
the algorithm makes an alarm that a change occurs without checking the rest of the
block.

5.3.2 Maintenance of Clustering using Reactive Approach

The goal of clustering maintenance is to maintain a streaming clustering structure
undergoing insertion and deletion of items when the sliding window moves on the
data stream. This section describes how to builds and to maintain the clusterings
emerging from data stream over a sliding window of fixed size using the reactive
approach.

5.3. Automated Change Detection by Clustering 89

Algorithm 6: Clustering-based algorithm for detecting changes by using
overlapping windows model

input : A data stream S, N is the window width, slide is sliding step, K is
the number of clusters

output: The messages reporting the changes occurred, and time t at which
changes occurred

1. Initialization:
begin

t←− 0;
w1←− first N points from time t; /* Each data point is
encoded as a micro-cluster */
C1 ←− Kmeans(w1, K);
w2←− slide(w1, step);
blk ←− newItemBlock(w2);

2. Continuous monitoring:
while not at the end of the stream do

if change(C1, blk) then
t←− current time;
Report change occurred at time t;
w1←− w2;
C1 ←− Kmeans(w1, K);

w2←− slide(w2, step);
blk ←− newItemBlock(w2);

90 Chapter 5. Change Detection in Streaming Data by Clustering

A difficult problem in clustering of streaming data is that the underlying dis-
tribution of data stream evolves overtime. These changes can induce more or less
changes in the clustering structure emerging from the data stream. Algorithm 7 de-
scribes how to build and maintain a clustering over sliding window by using the
reactive approach. The input to the algorithm is a multivariate data stream S. If a
change occurs, it rebuilds a new clustering. This clustering is returned as the result
of some clustering query, or is stored in the history of clustering in streaming data
warehouse.

Algorithm 7: Algorithm for building and maintenance of clustering over slid-
ing window using the reactive approach

input : A data stream S and number of clusters K, the sliding step step, the
window width N

output: Return clustering over sliding window at anytime

1. Initialization:
begin

t←− 0;
w1←− first N points from time t ; /* Each data point is
encoded as a micro-cluster */
C1 ←− K −means(w1, K);

2. Continuous maintenance of clustering:
while not at the end of the stream do

w2←− slide(w1, step);
x←− newItemBlock(w2);
if change then

t←− current time;
w1←− w2;
C1 ←− Kmeans(w1, K);

5.4 Related Work
The clustering-based change detection method proposed here is related to the work
on automatic change detection and change detection in multivariate streaming data,
and clustering-based change detection, and the reactive work on building and main-
taing of model (as introduced in Section 1.3.2. Related work on the clustering-
based methods for detecting changes were presented in Section 1.1.2. The fol-
lowing sections present related work on automatic change detection and change
detection in multivariate streaming data.

5.4. Related Work 91

5.4.1 Automated Change Detection

As automated systems require the capability of realtime processing, and adapt-
ing to the changing environments, automated change detection plays an important
role in many automated systems. One of the models of realtime processing is data
stream processing. For example, sensor networks need the automated change de-
tection methods in which detection threshold must be adaptive to these changes of
the environment. Automated change detection method also plays important role
in many mobile robotic applications [Neuman 2011]. For example, Neuman et
al. [Neuman 2011] have proposed an online change detection method for mobile
robots based on the segmentation approach. Recently Hirte et al. [Hirte 2012] have
developed Data3, a Kinect interface for human motion detection. In fact, Data3 is a
kind of system capable of detecting the changes in spatial-temporal streaming data.

Automated systems should be capable of automatically detecting the changes
without the given detection threshold. Some change detection methods can au-
tomatically tune the detection thresholds so that the rate of false alarms is not
greater than a given rate of false alarms. Gustafson and Palmquist deal with the
problem of automated tuning of change detectors with given false alarm rate
[Gustafsson 1997]. Their approach computes the detection threshold by estimat-
ing a parametric distribution. The advantage of this method is that they can predict
detection threshold with no or few false alarms from the used data. However, it is
parametric method.

The automatic selection of threshold is of special importance. Alippi et al.
[Alippi 2012] have presented an automated change detection method for stream-
ing data based on Hidden Markov Models. This HMM-based method is an auto-
mated change detection method by thresholding. Their algorithm consists of the
following steps: model the relationships among data streams a sequence of time
invariant linear dynamic system; model the evolution of the estimated parameters
of the model by Hidden Markov Model; evaluate the likelihood of new parame-
ters; detect change based on a given threshold. If the likelihood is less than a given
threshold, a change is detected.

5.4.2 Change Detection in Multivariate Streaming Data

Most methods for detecting changes in streaming multivariate data are based on
the multivariate tests. As the problem of testing statistical hypotheses in high di-
mensional data is particularly challenging and the change detection in streaming
data requires to respond to the changes in nearly real-time, change detection in
streaming multivariate data is challenging.

There are two approaches to dealing with the problem of change detection in
streaming multivariate data. The first approach is based on the transformation that

92 Chapter 5. Change Detection in Streaming Data by Clustering

converts a multivariate data stream into a univariate data stream. Change detec-
tion is then performed on the univariate data stream. Dasu et al. [Dasu 2009] have
used this approach to design a change detection method for streaming multivari-
ate data. In particular, a multivariate data stream is converted into a univariate data
stream. The change detection task is performed by using Kolmogorov-Smirnov
test. Similarly, Kim et al. [Kim 2009] have recently proposed the concept called
the detection stream. A detection stream is a univariate stream that is generated by
mapping a multivariate stream into stream of dissimilarity measures quantifying
the difference between two windows.

The second approach is developing new methods for detecting the changes in
multivariate streaming data. Kuncheva has recently presented a general method for
detecting changes in multivariate streaming data by using likelihood ratio-based
test [Kuncheva 2011]. Closely related to our work is the segment-based method for
detecting in multivariate data stream proposed by Chen et al. [CHEN 2009]. Gret-
ton et al. [Gretton 2012] present a kernel two-sample test that can check whether
two multivariate samples coming from the same distribution. Furthermore, a ker-
nel two-sample test with the linear computational complexity suitable for streaming
environment is proposed.

In contrast to the previous work, Section 5.3 introduces a new method for de-
tecting the changes in multivariate streaming data by using the geometric and clus-
tering approach.

5.5 Evaluation

The clustering-based change detector was written in Java. An algorithm for de-
tecting changes in streaming data should be evaluated in three aspects scalability,
accuracy, and monitoring capability. The detection accuracy of a change detection
method depends on the window width and the number of clusters. The experiments
on change detector using clustering were divided into two groups in terms of detec-
tion accuracy, running time, and memory consumption. The first group of experi-
ments evaluated the effectiveness of window width on the clustering-based change
detector. The next group of experiments studied the effectiveness of the number of
clusters on the performance of the clustering-based change detector. We analyzed
the effect of the window width, number of clusters on the number of change points
detected by the clustering-based detectors for change.

One of the challenges in assessing a change detection algorithm is the lack of
ground truth data. In particular, the evaluation of a method for detecting changes
in multivariate streaming data is more challenging. Therefore, the synthetic data
was used for evaluating the performance of the change detection algorithms. The
synthetic data set to evaluate the accuracy of our clustering-based change detec-

5.5. Evaluation 93

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

Window width in number of tuples

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

continuous change detector
restarting detector

Figure 5.2: Effectiveness of window width on the performance of clustering-based
method for detecting changes in terms of running time

tion algorithm is the streaming data set HyperP [Zhu 2010]. HyperP stream is a
synthetic data stream of gradually evolving (drifting) concepts. The Hyper Plane
stream consists of 100000 instances, and each instance consists of 10 attributes.
These instances may fall into one of 5 classes (clusters). To see the advantages of
the continuous detector of change over the restarting detector of change, we ran
both continuous detector and restarting detector. Restarting detection of changes
means that a detector will be reset if a change is detected while non-restarting de-
tector continuously detects the changes. Non-restarting detection of change is also
called continuous change detection.

We ran the detectors by clustering for two cases. First, to see the effect of the
window width on detection performance of the detectors, we fixed the number of
clusters while changing the window width. Second, to see the effect of the number
of clusters on the detection performance of the detectors, we fixed the window
width while the number of clusters changes.

5.5.1 Effectiveness of Window Width

To study the effectiveness of window width on the performance of clustering-based
change detector, the number of clusters was fixed to 5, and the window width was
varied in the range 200,400,600,800,1000,1200,1400,1600,1800,200.

Figure 5.2 shows that the restarting detector runs faster than the continuous

94 Chapter 5. Change Detection in Streaming Data by Clustering

200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of clusters

N
um

be
r

of
 c

ha
ng

e
po

in
ts

continuous detector
restarting detector

Figure 5.3: Effect of the window width on the number of change points detected by
detectors

detector because the restarting detector was reset every time a change is detected.
The speed of restarting detector comes at the price of its detection accuracy. As
Figure 5.3 shows, the number of detected change points reduced when the window
width increased. The continuous detector detected much more change points than
the restarting detector. Because the restarting detector was reset every time a change
was detected, many points in the reference window in the resetting phase were
ignored by detectors.

Figure 5.7 shows that, the change point detection algorithm by clustering re-
quired more than the interval-based change detection. As shown in Figure 5.4, the
amount of memory used by clustering-based change detection scales with the win-
dow width.

5.5.2 Effectiveness of Cluster Number

To assess the effectiveness of cluster number on this clustering-based change de-
tection, the window width was fixed to 1000 tuples, and the number of clusters was
varied in the range (2, 3, 4, 5, 6, 7, 8, 9, 10). The results of this experiment (Figure
5.5) shows that, the running time of a clustering-based change detector increases
with the increasing number of clusters. The time needed to determine whether a
newly incoming data point is a change point increases, as the number of compar-
isons between the distance from the newly incoming point to the centers of clusters

5.5. Evaluation 95

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.5

1

1.5

2

2.5

3

3.5

Window width (number of instances)

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

Figure 5.4: Effectiveness of window width on the performance of clustering-based
change detection method in terms of memory consumption

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

Number of clusters

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Continuous detector
Restarting detector

Figure 5.5: Effectiveness of the cluster number on running time of the clustering-
based change detection method

96 Chapter 5. Change Detection in Streaming Data by Clustering

2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Number of clusters

N
um

be
r

of
 c

ha
ng

e
po

in
ts

continuous detector
restarting detector

Figure 5.6: Effectiveness of number of clusters on the change points detected by
the clustering-based change detector

and the corresponding radiuses of clusters increases with the number of clusters.
Figure 5.6 shows that, the number of change points increases when the number of
clusters increases.

If the changes frequently occur, we need to run the clustering algorithm in order
to create the clustering from the reference window many times. Because the clus-
tering process consumes a lot of time. Therefore running time of a clustering-based
change detector increases with the increasing number of change points. As such,
the efficiency of the clustering-based change detection method heavily depends the
selection of the number of clusters.

This could be unsuitable for streaming environment with high data speed. The
performance of our algorithm would be much better if an incremental clustering
were used to generate the clustering in the reference window. It should be better to
use an unsupervised clustering algorithm with the number of clusters is unknown
in advance such as DBSCAN. As such, the clustering-based change detection al-
gorithm will adapt to the environmental changes.

5.5.3 Effectiveness of Sliding Step

This group of experiments study the effect of sliding steps on the performance of
clustering-based change detection method with the arbitrary step of sliding. We
fixed the window width to 500 tupless. The number of clusters was set to 5. We ran

5.5. Evaluation 97

50 100 150 200 250 300 350 400 450 500
0

7073.22

14146.4

21219.7

28292.9

35366.1
m

s

Sliding step in number of tuples

0

2.64583

5.29167

7.9375

10.5833

13.2292

M
by

te
s

Running time
Memory

Figure 5.7: Effectiveness of sliding step on the performance of clustering-based
change detection method in terms of running time and memory

the clustering-based change detector with the sliding step varying from 50, 100,
150, 200, 250, 300, 400, 450, 500 (tuples).

5.5.4 Evaluation on Clusterings using Reactive Approach

This group of experiments shows the effectiveness of building and maintenance of
clusterings using the reactive approach on the detection performance of clustering-
based change detection algorithm. The experiments were executed on the synthetic
data streams HyperP. The window size was fixed to 500, and the number of clusters
was varied from 4 to 7. Table 5.1 shows the results of interest include the number
of detected change points, the number of clusterings that are generated, and the
running time. The running time increases with the number of clusters because the
larger number of clusters is, the more number of comparisons must be done. The
number of clusterings depends on the number of clusters. In this group of experi-
ments, we compare the performance of two approaches to building and maintaining
clustering over sliding window: periodic approach and reactive approach. The re-
sults we want to determine include: running times of two methods, the number of
clusterings that are generated. Results of reactive method for building and main-
taining clustering over sliding window using the reactive approach are as follows:
number of clusterings that are generated is 1305;running time is 57330 ms ;used
memory is bytes is 10 MB. Table 5.1 shows that the number of clusterings gener-
ated by the reactive approach is equal to the number of change points plus one. In

98 Chapter 5. Change Detection in Streaming Data by Clustering

Cluster number Number of changes Number of clusterings Running time
4 897 898 35567 ms
5 1304 1305 54913 ms
6 1269 1270 59422 ms
7 1336 1337 65998 ms

Table 5.1: Effect of cluster number on the number of detected change points and
the number of clusterings

addition to the initial clustering, if a change occurs, a new clustering is generated.
In general, the number of change points increases with the number of clusters.

5.6 Summary
In this chapter, we have proposed a novel change detection method for streaming
multivariate data by using clustering. Our change detection method uses the model
fitting approach in which a change occurs when a new data item or block of data
items do not fit the existing clustering. The salient features of clustering-based
detector are that it can work well with the multivariate streaming data, and it is
an automated change detection method for streaming data. We have presented an
algorithm for building and maintaining clustering emerging from the evolving data
streams by using the reactive approach. The method for building and maintaining
clustering in this chapter can be extended for distributed environment.

Part III

Distributed Detection of Changes in
Streaming Data

CHAPTER 6

Distributed Detection of Changes in
Streaming Data

Sometimes it’s the smallest decisions that can change your life forever.
(Keri Russell)

Contents

6.1 Introduction . 101

6.2 Problem Formulation . 103

6.2.1 The Coordinator . 104

6.2.2 The Remote Site . 105

6.2.3 Decision Structure . 105

6.3 Distributed Change Detection 106

6.3.1 Distributed Change Detection by Gossiping 107

6.3.2 Distributed Detection by False Discovery Rate 112

6.3.3 Distributed Detection of Change by Clustering 114

6.4 Evaluation . 119

6.4.1 Simulation . 119

6.4.2 Analysis . 120

6.5 Related Work . 123

6.6 Summary . 124

6.1 Introduction
Distributed data processing is necessary because of the following reasons. Fist, it is
economical to process data that is distributed on many nodes. Second, it is highly
scalable to process distributed queries. Third, by distributed processing, process-
ing load is equally distributed to every node. This chapter focuses on the problem

102 Chapter 6. Distributed Detection of Changes in Streaming Data

of distributed change detection in streaming data. Some commonly used models
for distributed streaming computation include one-shot computation, gossip-based
computation, continuous computation [Cormode 2005].

The advent of technology has eased the development of small, low-power sen-
sors. Sensor networks have been deployed in many applications such as military,
environmental, health, and commercial applications [Akyildiz 2002]. The funda-
mental tasks of sensor network are to sense events, to detect the events, and to
transmit the detected information to the sink node. A well-known and important
problem is to detect changes in sensor data, which is considered one of the core
issues when designing a sensor network [VISION 2007]. Advances in the sensor
technology results in a massive amount of streaming sensor data. In wireless sen-
sor networks, data streams are often generated from sensors scattered in different
locations.

Change detection algorithms contribute to the success of emerging sensor net-
works. Designing and developing a change detector in a sensor network poses the
following challenges. Sensor data streams produced by sensor networks must to
be processed in real time. Change detection in sensor streaming data is a special
case of change detection from distributed data streams. To make matters worse,
in sensor network context, computing on data streams occurs in resource-limited
conditions such as low power batteries, small memory, and small processing power.

The scenario of wireless sensor network for wildfire warning systems presented
in Section 1.1.1 will be used to illustrate our distributed framework for detecting
changes in streaming data that is created from multiple sources.

To solve the problem of distributed change detection, the tradeoff among the
detection accuracy, the model size, and communication complexity must be consid-
ered [Palpanas 2003]. Three criteria for evaluating the performance of a distributed
computation framework include: communication-efficiency, space-efficiency, and
time-efficiency. The major contributions of this chapter are as follows

• We present a distributed framework for continuously detecting changes in
streaming data that is created from multiple sources. The proposed frame-
work consists of the remote-site processes and the coordinator-site process.
Each remote-site detects the changes in streaming data , and transmits the
local decision on detected changes to the coordinator. The coordinator-site
process receives the local decisions from the remote sites, and fuse these
local decisions in order to reach the global decision on detected changes.

• We consider a case study: change detection in streaming data that is cre-
ated by a wireless sensor network. We present a distributed change detection
framework by decision fusion based on gossiping 1.

1This chapter uses the gossiping based model for fusing decisions, which is the joint work

6.2. Problem Formulation 103

Our proposed framework is flexible since we can derive many different in-
stances of the framework by choosing different local change detection algorithms
at the node-level and different strategies for making decisions at the fusion center.
As different applications need to construct different modules of the framework, we
can not enumerate all the combinations of the framework.

A salient advantage of our framework over the previous work lies in the fu-
sion and decision making process at the fusion center. Distributed change detection
algorithm based on decision fusion has the following advantages:

• Improve detection performance at the coordinator by fusing local decisions
from local change detectors at different locations. Local decisions that are re-
ceived by the coordinator can be missed, incorrect due to the local change de-
tection algorithms, and the communication process. The distributed change
detection framework based on decision fusion can be fault tolerant by fusing
local decisions made by change detectors at the sensor nodes near the target
source (fire).

• Reduce the communication overhead, and thus increase the lifetime of the
sensor network.

• Separate decision fusion model with the information exchange and dissem-
ination process, where local nodes cares only how to improve the accuracy
of global detection with the decision fusion model; while the communication
cost is decided by information exchange protocols.

We formulate the problem of detecting changes in streaming sensor data in Section
6.2. Section 6.3.1 describes a distributed detection method for streaming sensor
data by using gossip scheme. Simulation and analysis are presented in Section 6.4.
We summarize this chapter in 6.6.

6.2 Problem Formulation

Our distributed framework for detecting changes in streaming data includes two
functions as follows:

• Local change detection: Due to the unlimited nature of data streams and the
restriction of computational resources and bandwidth, the sliding window-
based approach is the best choice for the change detection algorithm in the
data stream.

presented at MDM 2011 with the coauthors Jin Yang and Kai-Uwe Sattler

104 Chapter 6. Distributed Detection of Changes in Streaming Data

• Online decision fusion: We note that in the wildfire warning system, only a
portion of nodes sense, and detect the events. To detect a fire event, only a
portion of nodes detect the abnormal changes of the measures such as temper-
ature, or humidity. Therefore, there will be a group of sensor nodes sense and
detect the changes. This group includes a cluster head, and member nodes.
The cluster head is some node which is elected based on its energy level
[Heinzelman 2000]. The cluster head of this group of sensors communicates
with the rest of wireless sensor network in order to propagate the event. As-
sume that each node reaches the local detection decision by its local change
detector. All the local decisions made by the group of sensed nodes are trans-
mitted to the coordinator in order to get the global decision.

6.2.1 The Coordinator

This section presents the objective of the coordinator and describes the function of
the coordinator. The goal here is to make the global decision at the fusion center
based on the local decisions made by the local change detectors at the nodes. The
task of the coordinator is to decide whether a global change occurs based on the
local detection decisions received from the remote sites as soon as possible. As
global detection decision greatly depends on the frequency of updates from the
local change detectors, we must answer the question how much and how often
information should be propagated from sensor to the fusion center.

There are two approaches to the information exchange between the coordinator
site and remote sites. In the data fusion approach, sensor senses and transmits infor-
mation of its ambient environment to the fusion center. Fusion center is responsible
for making decision, and further relaying information. This approach incurs high
communication cost. In the decision fusion approach, the information exchange is
the exchange of soft or hard decisions. Each node makes decision based on its local
observations and broadcasts the decision to all the other nodes. Each node updates
its decision based on the received information and broadcasts again its new deci-
sion. This process repeats until consensus among the nodes is reached. Compared
with data fusion, decision fusion can reduce communication cost because sensors
only transmit the local decisions of small data structures.

The design of optimal decision rules for distributed change detection is one
of the central issues. In other words, the problem we should deal with is how to
determine the global test statistic at the coordinator. There are two approaches to
designing optimal decision rules for distributed change detection [Veeravalli 2012].
The first approach is based on the assumption that the detection performances of the
local change detectors are known to the fusion center[Varshney 1986]. Our frame-
work works under the assumption that the channel is ideal. In another words, the
decisions received at the fusion center are the same as the original decisions made

6.2. Problem Formulation 105

by local change detectors. We note that the coordinator has complete knowledge
of the hit rate and the false alarm rate of each sensor as described in Chapter 3
and Chapter 4. In particular, the change detector using the absolute difference of
two consecutive data items is called the ground-truth change detector. From the
ground-truth change detector, and the distance-based change detector, the rate of
hit and the rate of false alarm can be determined. However, it is difficult to com-
pute the hit rate and the false alarm rate in real-world. The second approach does
not require the detection performances of the local change detectors. The fusion
center uses the counting rule to reach the detection decision on the system level
[Ray 2011].

A problem that arises is how to determine the period of decision fusion. There
are two possible solutions to decision fusion at the coordinator. The first solution
called periodic fusion uses the width of sliding window as the periodic time for
fusing data. The second solution called change-based fusion fuses decisions only
when detecting the changes.

Let D = (Di, .., DN) denotes the global vector of local detection decisions.
Having received all the data, the coordinator make a final decision about the pres-
ence or absence of a global change. Each local change detector uses a decision
rule to make a decision Di, for i = 1, .., N . The coordinator determines the global
detection decision for the whole system based on the individual decisions.

6.2.2 The Remote Site

Local change detector at each remote site is an important component in our dis-
tributed framework for detecting changes in streaming data. Chapters 3 and 4 de-
scribe the methods for detecting changes in a single data stream in detail. Depend-
ing on the requirements of each application, we can select appropriate methods
such as the Euclidean distance-based detector, the Manhattan distance-based detec-
tor, DFT-based change detector, or clustering-based change detector as described
in Chapters 3, 4, and 5.

Without losing generality, we assume that there is a local change detector i at
the remote site i, for i = 1, .., N , where N is the number of sensor nodes. In the
parallel decision fusion, each remote site sends its local decision to the coordinator
directly.

6.2.3 Decision Structure

This subsection describes the decision data structures including local decision,
and global decision. As mentioned earlier, there are two kinds of decision fusion
schemes: decision fusion with the information on detection accuracy, and decision
without the information on detection accuracy. Distributed detection of changes

106 Chapter 6. Distributed Detection of Changes in Streaming Data

Local Decision

+decision: categorial = {0,1}

+rate of hits: float = [0,1]

+rate of false alarms: float = [0:1]

+rate of misses: float = [0,1]

+rate of correct rejections: float = [0,1]

+sensor location: <float,float>

+location of estimated event: <float,float>

Figure 6.1: Data structure of a decision made by local change detector

presented in Section 6.3.2 does not require the information of detection accuracy
of the local change detector. Therefore, local decision is a binary variable represent-
ing the decision on change. We will describe the decision structures for distributed
change detection with information on detection accuracy of the local change detec-
tors.

In addition to detecting changes, remote sites should encode the information of
detected changes in an appropriate format to transmit over the network reliably and
efficiently, and to make decisions. A change detector can make decisions on the
detected changes based on its own information, or based on its own information in
conjunction with the information from its neighbors.

As Figure 6.1 shows, a local detection decision consists of the following at-
tributes: decision is a binary variable that describes the state of observation de-
tected by a local change detector. If a change occurs then decision = 1, other-
wise decision = 0; rate of hit: Hi, false alarm rate: FAi, miss rate: MRi; cor-
rect rejection: CRi; sensor location:; < xi, yi >; Estimated location of event e:
< xe, ye >;estimated location of event. The information encoded a local decision
structure is used for the later fusion process at the coordinator as described in For-
mula 6.3.1.

Each remote site sends its local decision to the coordinator. Each local decision
made by a local change detector should be fused and forwarded back to the sink as
a global change detection decision. The coordinator computes the global decision
on the global change based on the local decisions received from remote sites by
using some decision rule as described in Section ??.

The data structure of the global detection decision include three components:
estimated position of event< X, Y >, global decision of detection, which includes
detection result, and detection accuracy determined by local decisions.

6.3 Distributed Change Detection

As discussed earlier, the salient feature of local change detection algorithm is that
it is flexible. Based on the selection of network architecture and decision making

6.3. Distributed Change Detection 107

scheme, we can develop various distributed change detection schemes. In this sec-
tion, we present three possible approaches to reaching the global decision at the
coordinator: decision fusion using gossip protocol, decision fusion scheme using
false discovery rate, and distributed detection using clustering.

6.3.1 Distributed Change Detection by Gossiping

This section describes a distributed framework for detecting of changes in stream-
ing data by gossiping-based fusion. A distributed change detection framework
should be fault-tolerant. Fault-tolerance is that a distributed system works well in
case of the failure of the node or the communication link. Developed by Xerox
corporation in 1987, gossip protocol used for domain name services is very sim-
ple but robust (requiring very few guarantees from the underlying communication
systems), yet it assures that the effect of updates is really reflected in the repli-
cas [Demers 1987]. In fact, a wireless sensor network can be seen as a distributed
database system, thus gossip protocol can be exploited for wireless sensor network
in some important tasks such as routing problem, and data fusion. Hence, the gos-
sip protocol will be used as a scheme for quickly spreading changing information
sensed by the sensor nodes in this work.

To detect event, two fundamental tasks must be performed: estimation of event
location, and decision fusion. The communication protocol we use is the multi-
source multi-sink information protocol. As a node can move from this location to
others, a new node can be added to the network, and a battery-depleted node can
be removed from the network, thus a change detection scheme in wireless sensor
network must adapt to the location changes. To estimate the location of events, we
can use the location information sensed by sensor networks by the location estima-
tion methods such GPS-based estimation of location, or the positioning algorithm
Trilateration. It is assumed that the location of an event lies in the sensing range of
the sensor network. In decision fusion, each sensor performs local change detection
using some local change algorithm and updates its decision based on the received
information and broadcasts again its new decision. This process repeats until con-
sensus among the nodes is reached. By aggregating the results from different sensor
nodes, the location of an event can be estimated more accurately.

Depending on the distance between the location of an event and sensor nodes, a
sensor may or may not detect the changes of the target. Let detectable be a boolean
variable that represents the ability to detect a change of the event. If a sensor cannot
detect the changes of the target due to some reasons, for example, the event lies out-
side of the sensing range of the sensor, detecable = false. If detectable = true,
the event lies in the sensing range of the sensor. The detection result of the change
of the event returns 1 with some detection accuracy (including the rate of hits,
the rate of false alarms, the rate of missed detection, and the rate of correct re-

108 Chapter 6. Distributed Detection of Changes in Streaming Data

Figure 6.2: Location estimation with different number of sensor nodes

jection), otherwise it returns 0 (no change occurs). Detection accuracy depends on
the change detection algorithm that is selected at the sensor node. Global detection
decisions are built from the local decisions made by the sensors.

To reach the global detection decision at the coordinator from the local deci-
sionsDi, we use a fusion framework of three components: decision fusion model at
sensor node; algorithm for clustering sensor nodes, and the multi-source multi sink
communication protocol. The models, algorithms, and protocols will be described
in detail in the next sections.

6.3.1.1 Decision Fusion Model

Decision fusion model runs on local sensor nodes to fuse local detection decisions
of change detectors from the different sensor nodes. The decision fusion model
runs as a plug-in on each sensor node, which can be implemented according to dif-
ferent requirements. This decision fusion model should be application specific. A
decision fusion scheme at each sensor node aggregates the decisions by different
sensor nodes, and estimates the location of the event. From the estimated location
of the event, the system can determine more accurately whether this event is a true
event or a false alarm. The quality of sensor observations depends on the distances
between the sensors and the event location. Depending on the requirements of esti-
mation accuracy and the available information from nearby sensor nodes, we may
implement the different models of location estimation on sensor nodes. There are
some estimation techniques such triangulation techniques, or estimation technique
considering the interference of obstacles that result in a region where the anomaly
event occurs [?]. To estimate the location of fire in the scenario of wildfire warning
system as shown in Figure 1.1, all the information from sensor nodes such as local
decisions made by sensor nodes, and the sensing ranges of sensor nodes must be
available for aggregation. We assume that the intersection of sensing ranges of the
sensor nodes is the location of fire. Figure 6.2 shows that, the more sensor nodes
are used to sense the event, the more accurate the estimated location of the event
is.

6.3. Distributed Change Detection 109

To deal with the malfunction of sensor nodes or the false alarms of the local
change detector at sensor nodes, each sensor node should aggregate its local deci-
sion made by its local change detector with a decision model. In order to overcome
the occasional local failure either in value or in change detection, the sensor nodes
should aggregate the local detection result with a decision model. Two any remote
sites can directly communicate with each other.

The decision aggregation model works as a plug-in according to different ap-
plications. In the scenario of fire detection and warning, we use a history detection
accuracy based weighted method to fuse all the detection results near the reported
event location. Each sensor node i uses a queue to maintain all of the local deci-
sions made by change detectors of sensors j near the the location of the event. We
use the optimal decision rule proposed by Varshney et al. [Varshney 1986] to create
the global decision rule at the coordinator. The optimal fusion is given by

Λ =
N∑
i=1

[
ui ln

pdi
pfai

+ (1− ui) ln
1− pdi
1− pfai

]
(6.3.1)

where ui is the local detection decision at the remote site i with the detection ac-
curacy represented by the probability of detection pdi and the probability of false
alarm pfai respectively. Decision fusion is a continuous process. The more mes-
sages a node receives from its neighbors, the more accurate the fusion result is.

The decision fusion process should be finished near the event location in order
to reduce communication cost, and it only makes sense to fuse the local change
detection results which are within the detection range of the location of event. In
other words, it is necessary to cluster of sensor nodes that are around the event.
To reduce the amount of information transferred in wireless sensor network, and to
distribute energy dissipation among the nodes, methods for clustering sensor nodes
will be used. The method for clustering sensor nodes should be triggered by the
first sensor node which detects the event. The problem of clustering sensor nodes
based on the similarity of sensor readings will be discussed in Chapter 7.

6.3.1.2 Information Dissemination

The local detection result of the warning should be disseminated among the net-
work. To reduce the redundant messages, the gossip protocols are used. Each pro-
cess running at sensor node consists of two threads: active thread and passive
thread.

Continuous queries can be classified into the following categories: push-based
query processing model, pull-based processing model, and push-pull processing
model [Madden 2002]. Push-based query processing model is a model in which
remote sites publish/advertise their information to the coordinator site for further
processing. Push-based query processing model is used query processing in sensor

110 Chapter 6. Distributed Detection of Changes in Streaming Data

network. Pull-based query processing model is a model in which the coordinator
disseminates the interests of the user to a set of remote sites. In this case, the inter-
est may be related to an attribute of the physical field (query) or an event of interest
to be observed (task). Based on the user interest, the remote sites respond with
the requested information. Push-pull query processing is a model in which both
push- and pull- based query approaches can be used in a network, in which both
the remote sites and the coordinator site are actively involved in query process-
ing. Madden and Franklin have combined both push-based and pull-based query
processing model in Fjords, an architecture for queries over streaming sensor data
[Madden 2002]. Therefore, we propose three types of information transmission by
using gossip scheme as below

• Push-gossip scheme: In the push-gossip scheme, information owner pro-
actively sends its new data to its selected neighbors, but do not exchange
information with the selected neighbors.

• Pull-gossip In pull-gossip scheme, the owner of new information waits pas-
sively until it receives the requests for data.

• Push-pull-gossip scheme: Each process at each node consists of two types
of threads: active thread and passive thread. An active thread is executed
once in each consecutive time unit at a randomly picked time. A passive
thread receives messages from its neighbors, and sends its own message to
its neighbors from whom it received information.

We use the push-gossip, pull-gossip, push-pull-gossip, and application-layer
broadcast as plug-ins in the framework to meet requirements of different applica-
tions. The different features of these gossip protocols are discussed more detailed
in [Yang 2011].

The framework proposed here uses algorithm 8 and algorithm 9 to fuse local
decisions and disseminate results over the sensor network. The network protocol
used in the gossip scheme is comprised of many parallel topologies, where each
node may play both the remote site role and the coordinator role. At some time, a
sensor node serves as a coordinator. The coordinator collect the neighbors’ states
including the estimated locations of the event and the local decisions. Based on
its own state and the neighbors’states, the coordinator makes its own decision, and
continues propagating its detection decision over the rest of network. The push-
based gossip protocol uses the active threads to collect the local detection deci-
sions. The pull-based gossip protocol uses the passive threads to collect the local
detection decisions. The push-pull-gossip protocol uses both the active threads and
the passive threads to collect the local detection decisions. The active threads pro-
actively select the coordinator’s neighbors and propagates its detection decision

6.3. Distributed Change Detection 111

over the network. In contrast, the passive threads passively continuously receives
the states of its neighbors and propagates the detection decision over network. In
chapter 3 and chapter 4, a local change detector was evaluated without the neigh-
bors’ state information. The procedures used in Algorithm 8 and algorithm 9

Algorithm 8: Decision fusion using gossip to exchange information: active
thread

input : The states of the node p and the states of the neighbors of p
output: The new state of node p

foreach consecutive iteration do
stateq ←− receiveState();
statep ←− localChangeDetector();
send statep to every node q;
decisionp ←− decisionFusion(decisionp, decisionq)

statep ←− updateState(decisionp)

Algorithm 9: Decision fusion using gossip to exchange information: passive
thread

input : The states of the node p and the states of the neighbors of p
output: The new state of node p

while true do
stateq ←− receiveState();
statep ←− localChangeDetector();
send statep to every node q;
decisionp ←− decisionFusion(decisionp, decisionq)

statep ←− updateState(decisionp)

include receiveState(), localChangeDector(), decisionFusion(), send(), and
updateState(). The procedure receiveState() implements the state-receiving pro-
cess of the coordinator. The procedure localChangeDector() codes some change
detection method introduced in Chapter 3 and 4. The procedure send() implements
the process sending the state of some node to other nodes. Finally, the proce-
dure updateState() is used to update the state of a sensor node. The procedure
decisionFusion(decp, decq) generates the decision for node p from its own deci-
sion and the decisions of its neighbors q.

112 Chapter 6. Distributed Detection of Changes in Streaming Data

6.3.2 Distributed Detection by False Discovery Rate

Our proposed framework can control the false discovery rate in order to achieve
the better performance of the fusion and decision making at the fusion center.

To reach a global detection consensus and assure the accuracy of the perfor-
mance of the global change detection, the previous approaches require that the
local decisions accompany their corresponding probability of detection sand prob-
ability of false alarm. In real world applications, determining the probability of de-
tection and false alarms is difficult. To overcome this drawback, Ray and Varshney
[Ray 2008] have recently presented a novel approach to the problem of distributed
detection in wireless sensor networks using dynamic sensor thresholds.This ap-
proach is concerned with the distributed detection with the assumption that the
received signal power decays as the distance between fusion center and target in-
creases.

Let u = (u1(t), ..., uM(t)) be the decision vector used to reach the consensus.
To find the final decision on global change, we count the local detection consen-
suses by using the well-known basic counting algorithm in the data stream in slid-
ing window of sizeM whereM is the number of sensors. Therefore, the problem of
continuously detecting changes in multiple distributed data streams becomes more
challenging. A data stream that is generated at the coordinator is an asynchronous
binary stream.

Continuous distributed monitoring of changes in streaming data is related to
asynchronous data streams. Now the problem of distributed change detection in the
parallel fusion architecture casts to the problem of testing simultaneously testing
M hypotheses. We suppose that M0 hypotheses are true, that means M0 sensors
detect changes locally. After receiving local decisions from the sensors, the fusion
center makes a final decision about the global change by using the fusion rule:

{
H0 Λ ≤ T

H1 Λ > T
(6.3.2)

where Λ =
M∑
i=1

ui and T is the global threshold. In this work, we use a fusion

rule proposed by Niu et al [Niu 2004]. This fusion rule uses the total number of
detections (encoded as 1) that come from local change detectors at sensors. The
false alarm rate is given by

PFA = P (
M∑
i=1

ui ≥ T | H0) (6.3.3)

6.3. Distributed Change Detection 113

DeclaredH0 DeclaredH1 Total
H0 True U V M0

H1 True T S M −M0

Total M-R R M

Table 6.1: The result matrix of M local change detectors

6.3.2.1 False Discovery Rate

Benjamini and Hochberg present a method for testing multiple hypotheses able to
control the false discovery rate. False discovery rate (FDR) is defined as the fraction
of false rejections among those hypotheses rejected. False Discovery Rate method
is a scalable approach to hypothesis testing [Benjamini 2005]. Each statistic test
consists of statistic test Zi and p-value Pi.

As such, the false discovery rate is given by

L =
V

V + S
(6.3.4)

The probability of false alarm is given by PFA = P (
M∑
i=1

ui ≥ T | H0). The ad-

vantage of this approach is that we are uninterested in how local change detector
works as well as the probability of hit and probability of false alarm at each sensor.

6.3.2.2 Estimation of Global Decision

As mentioned above, the first step in making global decision at the fusion center
is to count the number of local detections. Since the order in which local decisions
arrive at the fusion centers may be different from the order in which they were gen-
erated by local change detectors, the problem of continuously counting the number
of detections reduces to the problem of computing the sum of elements in an asyn-
chronous binary data stream in a sliding window. To solve this problem, we use
an algorithm proposed by Bush and Tirthapura [Busch 2007]. The goal of this al-
gorithm is to maintain a sketch which can return the sum of values of streaming
elements in the sliding window. Continuous distributed monitoring of changes in
streaming data is related to asynchronous data streams. Sensor nodes make their
local decisions. The coordinator fuses these local decisions in order to make the
global decision on the occurred event. The received order of local decisions at
the coordinator may differ from the time order in which local decisions are made.
Let u = u1, u2, .., ui, .. be an asynchronous data stream arriving at the coordina-
tor where ui ∈ 0, 1 Their algorithm works on the basis of a data structure called
splittable histogram. The space and time required by this algorithm is given by the
below theorem.

114 Chapter 6. Distributed Detection of Changes in Streaming Data

Theorem 6.3.1. [Busch 2007] The worst case space required by the data structure
for the sum isO(logW.logB.(logW + logB)/ε) bits whereB is an upper bound on
the value of the sum, W is an upper bound on the width of the sliding window M ,
and ε is the desired upper bound on the relative error. The worst case time taken
by the algorithm for processing a new element arriving is O(logW.logB), and the
time taken to answer a query for the sum is O(logB + (logW)/ε).

Let M be the number of sensors. At the fusion center, we use the well-known
approach called False Discovery Rate to improve the performance of the decision
fusion process.

6.3.2.3 Related Work

In fact, their problem is a change detection problem in which a change is a state
transition from the in-control state to the out-of-control state or vice versa. There
are many such transitions in the process control schemes. In other words, this
change detection method is a continuous or non-restarting change detection method
[Gandy 2013]. We note that restarting detection of changes means that a detector
will be reset if a change is detected while non-restarting detector continuously de-
tects the changes. Continuous change detection is also called non-restarting change
detection.

6.3.3 Distributed Detection of Change by Clustering

In Chapter 5, we presented a reactive method for building and maintaining of clus-
tering from multivariate streaming data based change detection. This section de-
scribes a continuous distributed algorithm for both detecting changes in multivari-
ate streaming data and monitoring of clustering built from multivariate stream-
ing data. In particular, we extend the clustering-based change detection method in
Chapter 5.

6.3.3.1 Formal Model

Figure 6.3 depicts a framework for both change detection and clustering of stream-
ing. Our algorithm includes two fundamental processes: remote-site process and
coordinator-site process. Each remote site cannot directly communicate with other
remote sites. Therefore it propagates the signal of change to all the remote sites
through the coordinator. We assume that our distributed clustering model is used
for the push-based queries in sensor network. Each remote-site process can per-
form two tasks: change detection and clustering. Likewise, the coordinator-site
process consists of two modules: global clustering and global change detector. Our
clustering-based change detection method presented in Chapter 5 can be considered

6.3. Distributed Change Detection 115

Coordinator-site
Process

Clustering
 query

Answer

Remotel-Site
Process 1

Remote-Site
Process n

Local
message

Local
message

Local data Stream Local data stream

Global Clustering
GC=CE(LC1,..,LCn)

Global Change Detector

change detector

Local clustering

change detector

Local clustering

Figure 6.3: A continuous distributed framework for clustering streaming data and
detecting changes in streaming data

a change detection method using model fitting approach in which a change occurs
when a new block of data items does not fit the existing models. As clustering-
based change detection method in Chapter 5 does not require the given threshold.
Therefore, the advantage of our distributed framework is that it does not require the
global threshold and local threshold.

6.3.3.2 Continuous Distributed Monitoring of Clustering

We present a reactive distributed monitoring of clustering constructed from data
stream by using sliding window because the global clustering is rebuilt once a
change is updated from some remote site. Reactive monitoring of model is called
change-based monitoring or trigger-based monitoring of model. Our framework is
a distributed continuous monitoring of clustering using trigger-based approach or
change-based approach.

The goal of clustering monitoring is to continually track the global clustering.
There are two types of local clustering and global clustering that need to be moni-
tored. Continuous distributed monitoring of clustering from streaming requires the
tradeoff among time-efficiency, space-efficiency, and communication-efficiency.
The goal here is to minimize the communication cost yet to assure the clustering
quality as well as the detection accuracy. Remote site updates its local clustering.
The coordinator Then rebuilds its global clustering. Clustering sensor data stream
is one of the model-driven data acquisition methods. The tradeoff of continuous
distributed clustering include communication cost, clustering quality.

As the goal is to minimize the communication overhead, the size of global
clustering and local clustering should be small. As size of the global clustering is

116 Chapter 6. Distributed Detection of Changes in Streaming Data

small, the communication cost for the exchange of global clustering between the
coordinator and remote site is quite small. Micro-clusters is a kind of mergable
synopsis.

It consists of two stages as below.

• Initialization: This stage builds the first global clustering at the coordinator
site.

• Maintenance of clustering and detection of changes: This stage maintain
global clustering, and distributed detection of changes in data streams that
are generated from remote sites.

There are two ways to implement distributed detection of changes in streaming
multivariate data

• by using local clustering-based change detection, or local clustering cluster-
ing over sliding window?

• by sending micro-clusters to the coordinator, and coordinator detects the
changes

6.3.3.3 The Remote Process

A remote-site process makes a request for the global clustering to the coordinator
site by transmitting a message to the coordinator site. The remote sites request the
global view represented by global clustering . The remote site should reduce the
workload of the coordinator processing. The remote sites should synchronize with
the coordinator in order to Client builds and maintains local clustering based on
its local data streams by using sliding window. Client transmits local clustering
to the coordinator. Client continuously receives newly incoming data items, and
updates its local clustering if a change occurs. If the client detects the changes of
the incoming data stream. It simultaneously rebuilds new local clustering and send
this new local clustering to the coordinator.

Algorithm 10 describes the local clustering process at the remote site.

6.3.3.4 The Coordinator Process

The coordinator receives the updates from remote site. The coordinator builds and
maintains the global clustering based on the local clusterings it receives from the
remote sites. The coordinator must update its global clustering based on local clus-
terings it receives from the remote sites. There are two kinds of requests from the
remote sites: the request for generating the global clustering, and the the request
for change detection. Methods for making clustering include initClustering(),

6.3. Distributed Change Detection 117

Algorithm 10: Local clustering process at the remote site for a push-
based query

input : The data stream Si generated at node Ri, parameters of sliding
window: sliding step slide, window width win_size

output: The list of messages reporting the change point compared with
the global clustering

1. make connection between the remote site and the coordinator;
2. initialization:
begin

t←− 0;
w1←− first b points from time t;
send w1 to the coordinator;
gC ←− receiveGlobalClustering();

3. Maintenance and Detection of Changes
begin

while not at the end of the stream do
w2←− slide(w1, slide);
blk ←− newItemBlock(w2);
if change(blk, gC) then

report the change at the remote site i to other remote sites and
the coordinator;
send blk to the coordinator;
gC ←− receiveGlobalClustering();
w1←− w2;

if a change in the incoming data stream at some remote site then
gC ←− receiveGlobalClustering();

118 Chapter 6. Distributed Detection of Changes in Streaming Data

reClustering(). There may be simultaneously many clustering requests from the
different remote sites to the coordinator site. The coordinator-site process is multi-
threaded.

There are two ways for checking the changes in streaming data as follows

• If a change occurs in the incoming data stream at some remote site, the re-
mote site sends block of items to the coordinator. The coordinator rebuilds
the global clustering and send global clustering to all the remote sites.

• When a new block arrives, the remote site checks if the changes occurs in the
new block of items by using the old global clustering. This remote site prop-
agates the signal of change to the coordinator site, and the other remote sites.
Having received the signal of change from some remote site, the coordina-
tor rebuilds the global clustering and sends to all the remote sites. Having
received the signal of change from the remote site i, the rest of remote sites
knows that the global clustering has been rebuilt, they receive the new global
clustering for the next loop.

As can be seen in Algorithm 12, the global clustering process is a multi-threading
process.

Algorithm 11: The coordinator process of the distributed detection frame-
work for detecting changes in streaming data by clustering

input : A continuous query for monitoring the changes in the environment
output: The global clustering GC

while true do
Accept the connection from the remote site Ri;
if clientRequest is globalClustering then

receive data from remote site and store data in buffer;
gC ← Kmeans(k, buffer);
send gC to all the remote sites;

if clientRequest is changeDetection then
receive block of data blk from client;
detectChange(blk, gC);
if change occurring then

rebuild global clustering gC;
send gC to all the remote site;

Since our distributed model for clustering is used for the push-based query,the
coordinator process is a passive one which continuously listens for the clustering

6.4. Evaluation 119

Algorithm 12: Global clustering process at the coordinator site for a push-based
query

input : A query for the global clustering
output: Continuously output the global clustering GC

while true do
if a global clustering request received then

Accept the connection from the remote site Ri;
dataSummaryi ← receiveDataSummary(coni);
Add dataSummaryi to the buffer;
gC ← Kmeans(k, buffer);
send gC to all the remote sites;

if there at least change signal received from remote sites then
gC ← Kmeans(k, buffer);
send gC to all the remote sites;

requests from the remote sites. The coordinator is capable of invoking the remote
clustering method on each data stream, which is the data input at the corresponding
remote site.

6.4 Evaluation

Due to the complexity of the model, the simulation approach was selected to evalu-
ate the performance of the decentralized change detection framework using gossip
protocol. In particular, the global estimation error of the event location using de-
cision fusion model was evaluated. Furthermore, the time required to disseminate
the decision from the information sources to the sinks as well as the communica-
tion cost in terms of transmitted messages were also taken into account. The dis-
tributed change detection scheme using gossiping was evaluated in two ways. For
the gossip-based detection, we selected the simulation approach due to the com-
plexity of the model. To illustrate the capability of deploying the framework, we
implemented a simple framework for distributed detection of changes for parallel
decision fusion in the client/server model in Java.

6.4.1 Simulation

For the integration of this thesis, we present the results of Jin et al. [Yang 2011,
Tran 2011b] to illustrate the communication efficiency and estimated accuracy of
the event location using gossip-based fusion scheme. We simulated a scenario of

120 Chapter 6. Distributed Detection of Changes in Streaming Data

wildfire systems in order to demonstrate the function of this distributed change
detection framework. The goal of this simulation is to observe how fast the change
can be detected and learned by other sensor nodes, how accurate the estimated
location of the event is, and what is the communication overhead for information
dissemination.

In general, we demonstrate that the framework is flexible in that one can choose
different communication protocols to achieve different design aims (such as low
communication cost, or good time performance, or fault tolerance), and also dif-
ferent decision fusion models on sensor nodes according to different applications.
They simulated the scenario of a wildfire warning system in OmNet++ 4.0 and its
INET framework that provides 802.11 MAC layer. By using this protocol stack li-
brary, we can compare the performance of different data communication protocols
at the application layer. As we simulated the scenario at the application layer, the
broadcast scheme was message broadcast instead of radio broadcast at the physical
layer.

We simulated a wireless sensor network of 500 sensor nodes that detect
changes. In the scenario of wildfire warning, the goal is to detect the abrupt changes
of the temperature that may indicate a wildfire. This sensor network is organized
as a matrix. The distance between nodes is 15 meters. The sensing range of each
node is 25 meters. As such, the nodes in the central area have 8 neighbors, nodes at
the edges or at the corners have 5 or 3 peer neighbors. We created two event loca-
tions and switched them on at 0.1 second after the simulation starts, to simulate the
event of fire. The locations of the two fire events are randomly initialized. Global
detection accuracy depends on local detection accuracy.

6.4.2 Analysis

To demonstrate the flexibility of this framework in different scenarios, we com-
pared four different protocols for exchanging messages that encode local decisions
of local change detectors at sensor nodes as shown in Figure 6.4 and ??.

Among the four data transmission protocols, PushPullGossip is the fastest to
reach the lowest estimation error, because it exchanges data using both push and
pull approaches; Broadcast follows PushPull with high communication cost in
terms of data message numbers as shown in Figure 6.6 , PushGossip and Pull-
Gossip spend twice as long as PushPullGossip for all sensor nodes to learn the
event location.

The distribution of failed nodes conforms to the binomial distribution, and the
failure occurs randomly in space.

The difference compared with the normal case where no nodes fail is that the
final estimation error is obvious, around 7 meters, showing that some nodes which
are around the event location and can directly detect the fire, fail. But in general,

6.4. Evaluation 121

Figure 6.4: Location estimation error

the framework still functions similar to the normal situation in terms of time per-
formance, meaning the events are detected and learned by all the nodes but with a
relatively bigger range of where the fires occur.

6.4.2.1 Error in Location Estimation

Figure 6.4 and 6.5 show the estimation error for the event location. Failures of the
nodes on the key path influence the time required for dissemination, and aggrega-
tion.

Figure 6.4 shows the change of average estimation error on all the nodes with
the increasing time of simulation. At the beginning of the simulation, only the
nodes nearby event directly detect the changes, while most of the other nodes be-
long to the state of N/A; with the information exchange protocol transmitting the
detected information among sensor nodes and with the triangulation location al-
gorithm executing on the improved data source, the event is learned by more and
more nodes, which reduces the estimated location error. After 5 seconds of deci-
sion fusion runs, 30% sensor nodes using PushPullGossip learned the event and
have knowledge on the event location with error smaller than 1 meter.

6.4.2.2 Communication Overhead

Figure 6.6 and Figure 6.7 show that the message number in the scenario where 25%
nodes failed. In comparing communication cost, Figure 6.6 and Figure 6.7 show
that PushGossip is the most efficient in both normal and random failure scenarios.

122 Chapter 6. Distributed Detection of Changes in Streaming Data

Figure 6.5: Location estimation error in 25% nodes failure scenario

Figure 6.6: Number of massages transmitted

6.5. Related Work 123

Figure 6.7: Number of massages transmitted 25% nodes failure scenario

In summary, the simulation results show that, the distributed data fusion frame-
work can effectively fuse local event detection results to generate a more accurate
event location. Besides, it demonstrates the ability to disseminate the information
from the information source to the sink in a multi-source multi-sink scenario.

6.5 Related Work

Since sensor networks are distributed in nature, the problem of detecting changes
in sensor data streams closely relates to the problem of decentralized detection.
Over the last decades, the problem of decentralized detection has received much
attention. There are two directions of research on decentralized detection. The first
approach focuses on aggregating measurements from multiple sensors to test a sin-
gle hypothesis. The second focuses on dealing with multiple dependent testing/es-
timation tasks from multiple sensors [Rajagopal 2008].

Distributed change detection usually involves a set of sensors that receive obser-
vations from the environment and then transmit those observations back to fusion
center in order to reach the final consensus of detection. Decentralized detection
and data fusion are therefore two closely related tasks that arise in the context of
sensor networks [Niu 2006b, Niu 2006a]. Two traditional approaches to the decen-
tralized change detection are data fusion and decision fusion. In data fusion, each
node detects change and sends quantized version of its observation to a fusion cen-
ter responsible for final detected decision making and further relaying information.

In contrast, in decision fusion, each node performs local change detection using
some local change algorithm and updates its decision based on the received infor-

124 Chapter 6. Distributed Detection of Changes in Streaming Data

mation and broadcasts again its new decision. This process repeats until consensus
among the nodes are reached. Compared to data fusion, decision fusion can re-
duce the communication cost because sensors need only to transmit the final local
decisions represented by small data structures.

6.6 Summary
In this chapter, we have presented a distributed framework for detecting changes
in streaming data that is created from multiple sources. In particular, we have pro-
posed a framework for decentralized change detection in wireless sensor networks.
This framework consists of two components: local change detector at the sensor
node level and a global decision fusion model for determining the event location
and the global detection decision at the fusion center.

For local change detection, we have exploited the sliding window model to
detect local changes in sensor data streams in order to reduce the memory footprint
of the change detector. The local change detectors are mentioned in chapter 3 and
chapter 4 in detail.

The locations of events (i.e. changes in the environment) are estimated using a
global decision model based on gossiping. By choosing different models of local
change detection, global decision fusion, and data exchange protocols, different
design goals can be achieved.

For the decentralized decision fusion framework, the decision fusion models
efficiently improve the accuracy of event location estimation. Specifically, push-
gossip can be implemented for power efficiency design aims, while push-pull-
gossip is a good choice in reducing decision dissemination time, which is the key
factor in emergency applications.

The distributed change detection scheme using gossip-based approach works
with the assumption that the knowledge of detection performance of every local
change detector is known to the fusion center, that means probability of detection
and probability of false alarm are known to the fusion center as mentioned chapter
3 and chapter 4.

CHAPTER 7

Distributed Clustering of Streaming
Data

If you want to truly understand something, try to change it.
(Kurt Lewin)

Contents

7.1 Introduction . 125

7.2 Problem Formulation . 129

7.3 Algorithm Description . 129

7.3.1 The Remote Process . 130

7.3.2 The Coordinator Process 131

7.3.3 Algorithm Analysis . 131

7.4 Empirical Results . 134

7.4.1 Evaluation on Global Clustering 135

7.4.2 Evaluation on Communication Efficiency 137

7.4.3 Effect of Block Width and Number of Micro-clusters 137

7.5 Related Work . 140

7.6 Summary . 141

7.1 Introduction
In chapter 6, we present a distributed framework for detecting changes in stream-
ing sensor data reflecting the environment. Besides as sensor nodes in wireless
sensor networks are moving , wireless sensor network application should manage
a huge amount of GPS streaming data. Therefore, the main challenge facing the
problem of continuous monitoring of streaming sensor data is the restricted energy
of sensor nodes [Klan 2011]. One of the solutions to this challenge is to reduce

126 Chapter 7. Distributed Clustering of Streaming Data

the communication overhead by using the algorithms for clustering sensor nodes
in senor network such as [Handy 2002, Younis 2004]. Clustering sensor nodes in
sensor networks supports for power management and network routing. Another
approach to clustering sensors in sensor networks based sensor data have been re-
cently presented [Sagen 2010].

In many monitoring applications, one needs to track the changes of not only
a single source but also the changes, or the trends of regions of sensor readings.
For instance, in a coal mine surveillance application, when a gas leakage event
occurs, the gas density readings measured at the sensor nodes near the source would
follow a gradual increasing trend [Yin 2008]. Likewise, in the wildfire warning
system, the readings measured at the sensor near the fire locations would follow a
gradual increasing trend. Therefore, distributed clustering of streaming sensor data
can support the distributed detection of changes in streaming sensor data.

Another example is a sensor network that continuously monitors the changes
in the environment such as a building. In a naive approach, every sensor continu-
ously sends its stream of observations (temperature, humidity, light) to the base sta-
tion for processing in order to give a global view of the building [Karnstedt 2007].
However, the challenges facing this approach include: (1) the limited communica-
tion bandwidth; (2) the overlapping of observations sensed by nearby sensors that
generates data redundancy.

Besides, clustering streaming data can be used to save energy in wireless sensor
network by setting sensors not transmitting data into sleeping state [Sagen 2010].
This approach needs a global clustering from streaming data produced by sen-
sor nodes. However, building and maintaining global clustering from multiple dis-
tributed data streams is challenging. In particular, building and maintaining global
clustering in wireless sensor networks are even more challenging. To solve this
challenge, we present a communication-efficient d exact method for clustering dis-
tributed streaming data as shown in Figure 7.1.

Mining distributed data streams has been increasingly received great atten-
tion [Sun 2006, Zaki 2002]. Data in nowadays data analysis applications is too
big to gather and analyze in a single location or data is generated by the dis-
tributed sources. Design and development of data stream mining algorithms in
high-performance and distributed environments thus should meet system scala-
bility yet assure the quality of mining results. This paper studies the problem of
clustering distributed streaming data.

Clustering is considered an unsupervised learning method which classifies the
objects into groups of similar objects [Jain 1999]. Clustering data stream continu-
ously produces and maintains the clustering structure from the data stream in which
the data items continuously arrive in the ordered sequence [Guha 2003]. There are
two types of problems of clustering data streams: (1) Clustering streaming data is to
classify the data points that come from a single or multiple data streams into groups

7.1. Introduction 127

CF1i

Macro Clustering

Micro Clustering Micro Clustering Micro Clustering

Local Micro Clustering

Global Clustering

Data Stream Data Stream Data Stream

CF2i CF3i CF4i CF1j CF2j CF3j CF1k CF2k CF3k CF4k

CF1 CF2 CF3 CF4

Figure 7.1: A distributed two-staged framework for clustering streaming data

of similar data points [Aggarwal 2003, Cao 2006, Kranen 2009]; (2) Clustering
multiple data streams is to classify the data streams into groups of data streams of
similar behavior or trend [Beringer 2006, Dai 2004]. The basic requirements for
clustering data streams [Barbará 2002] includes a compact representation of clus-
tering structures, fast, incremental processing of recently incoming data items, and
clear and fast identification of “outliers”. Clustering distributed streaming data is to
classify the data points that come from multiple data streams generated by the dis-
tributed sources. Clustering distributed streaming data can be used to solve many
real world applications. Such an example is a sensor network that continuously
monitors the changes in the environment such as a building. In a naive approach,
every sensor continuously sends its stream of observations (temperature, humidity,
light) to the base station for processing in order to give a global view of the build-
ing [Karnstedt 2007]. However, the challenges facing this approach include: (1)
the limited communication bandwidth; (2) the overlapping of observations sensed
by nearby sensors that generates data redundancy. Clustering distributed streaming
sensor data may be a solution to this problem. There are four approaches to the
problem of clustering distributed data streams: (1) Centralization: All the raw data
is transmitted to the coordinator site at which a clustering algorithm is applied to
the received data. This approach is impossible in the distributed context because
of the resource constraints. First, it is impractical to send all the data to the co-
ordinator for processing and mining due to the limited network bandwidth. The
communication constraint even becomes more critical when the energy consump-
tion is considered in the sensor network with nodes of the power-limited batter-
ies [Klan 2011]. Second, the transmission of all the raw data over a network can
cause privacy and security concerns while the objective we want is only to under-
stand and monitor the global view of the environment. (2) Data summary: First,
each remote site sends the data representatives constructed from data stream by
sampling method or synopsis construction method to the coordinator site. Second,

128 Chapter 7. Distributed Clustering of Streaming Data

the coordinator site combines all the received data representatives into the global
representative. Third, the clustering algorithm is performed on this global repre-
sentative [Da Silva 2010, Yin 2008, Zhang 2008]. Compared to the centralized ap-
proach, this approach considerably reduces the volume of data to be transmitted.
However, a major drawback of the summary-based clustering is that the clustering
quality is affected due to the loss of data during the sampling or synopsis construc-
tion process. (3) Local clustering: each remote site clusters its local data stream.
The local clustering is sent to the coordinator site [Cormode 2007]. The coordina-
tor site generates the global clustering by using some cluster ensembles method.
The important advantage of this approach is that it is fault tolerant. That means
the framework works well despite of the malfunction of some nodes in the net-
work.(4) P2P stream clustering: An important distinction and this approach with
the first three approaches is that each remote site can directly communicate with
each other to generate the global clustering. As each remote site must maintain
the same global clustering [Bandyopadhyay 2006], this approach may incur high
communication overhead.

The specific contributions of this chapter are as follows.

• We propose a distributed framework for clustering data streams. Every
remote-site process generates and maintains micro clusters that represent
cluster information summary, from its local data streams. Remote sites send
the local micro-clusterings to the coordinator, or the coordinator invokes
the remote methods in order to get the local micro-clusterings from the re-
mote sites. Having received all the local micro-clusterings from the remote
sites, the coordinator generates the global clustering by the macro-clustering
method.

• We achieve the global clustering as exact as the underlying centralized algo-
rithm. Since the local micro clusterings that are received at the coordinator
from the remote sites are the same as the local micro clusterings produced
by the micro-clustering method of the centralized clustering algorithm and
the macro-clustering algorithms are similar in both the distributed clustering
algorithm and the centralized clustering algorithm.

• Our framework achieves high scalability, and communication-efficiency by
using the local micro-clustering approach.

In comparison with the previous work, our framework has the following advan-
tages. First, as local clusterings are much smaller than the local raw data, trans-
mission of local clusterings significantly reduces the communication cost. Second,
the strongest point in our framework is that no approximation is required when
producing global clustering.

7.2. Problem Formulation 129

We formulate the problem in Section 7.2. Section 7.3 describes the algorithms
in the framework in detail. The experimental results, as well as evaluations of our
framework are presented in Section 7.4. Related work is given in Section 7.5. Fi-
nally, we conclude and propose the future work in Section 7.6.

7.2 Problem Formulation
We consider a network of one coordinator site andN remote sites. Let {S1, ..., SN}
be the incoming data streams to the remote clustering modules atN remote sites. A
data stream is an infinite sequence of elements Si = {(X1, T1) , .., (Xj, Tj) , ...}.
Each element is a pair (Xj, Tj) where Xj is a d-dimensional vector Xj =

(x1, x2, ..., xd) arriving at the timestamp Tj . We assume that St
i is a block of M

data items that arrives at the remote site i during each update epoch. We also assume
that all the data streams arrive at the remote sites with the same data speed, that
means at each update epoch t, every remote site receives the same M data items.
We assume that each site knows its own clustering structure but nothing about the
clustering structures at other sites. Let LCt

i =
{
CF 1

i , .., .., CF
j
i , .., CF

Ki
i

}
be a

local micro-clustering generated by a clustering algorithm at remote site i at the
update epoch t, where CF j

i is the j − th micro-cluster, Ki is the number of micro-
clusters, for i = 1, .., N .

One of the fundamental properties of distributed computational systems is lo-
cality [Naor 1993]. A distributed algorithm for clustering streaming data should
meet the locality. A local algorithm is defined as one whose resource consumption
is independent of the system size. Local algorithms can fall into one of two cat-
egories [Datta 2006]: (1) exact local algorithms are defined as ones that produce
the same results as a centralized algorithm; (2) approximate local algorithms are
algorithms that produce approximations of the results that a centralized algorithm
would produce. The objective here is to create and maintain the global clustering
which is similar to the clustering created by the centralized stream clustering algo-
rithm. In other words, our algorithm is an exact local algorithm.

A distributed streaming data clustering algorithm derived from a given underly-
ing algorithmA is calledDisA. The micro-clusteringMicA creates and maintains
micro-clusters at the remote sites. The macro-clustering algorithm MacA is used
to produce meaningful macro-clustering at the coordinator.

7.3 Algorithm Description
Our distributed framework for clustering streaming data includes two fundamental
processes: remote-site process and coordinator-site process. On the basis of type
of query, we design the appropriate communication protocols as follows. First, if

130 Chapter 7. Distributed Clustering of Streaming Data

the clustering query is push-based query, the remote sites send the local micro-
clusterings to the coordinator. As the coordinator process is a passive process, it
continuously listens for connection requests from the remote sites and receives
the local micro clusterings that are sent by the remote sites. Push-based query is
widely used for querying sensor network. Second, if the clustering query is pull-
based query, the coordinator invokes the remote methods on the local data streams
from the remote sites in order to get the local micro-clusterings. Such a pull-based
query is used in the well-known protocol HTTP. In order for the coordinator to
communicate with many remote sites concurrently, the global clustering process is
organized as a multi-threading process.

Our algorithm uses the same data structure Clustering for both local clustering
and global clustering. An object Clustering consists of many micro-clusters where
each cluster is a cluster representative. Micro-cluster extends the cluster feature
vector by adding the temporal components [Aggarwal 2003]. Cluster feature vector
and micro-cluster are presented in detail in Section 5.2 of Chapter 5.

7.3.1 The Remote Process
This subsection describes how a local micro-clustering algorithm at the remote site
works. As we assumed in Section 7.2, a remote site processes the incoming data
from its local stream in an update epoch t: St

i . For i = 1, .., N , the local clustering
process for the push-based type of query at the remote site i works as follows.

1. make the connection between the remote site i and the coordinator.

2. while not at the end of the data stream Si

(a) initialize the stream learner MicA(St
i).

(b) read block of data items at update epoch t

(c) create the local micro-clustering LCt
i by calling micro-clustering

learner MicA(St
i) on block St

i .

(d) transmit the local micro-clustering to the coordinator.

The clustering algorithm for push-based query, at each update epoch, every remote
site generates and transmits the local micro-clustering to the coordinator. For i =

1, .., N , the local clustering process for the pull-based type of query at the remote
site i works as follows.

1. make the connection between the remote site i and the coordinator.

2. while not at the end of the data stream Si

(a) initialize the stream learner MicA(St
i).

7.3. Algorithm Description 131

(b) read block of data items at update epoch e, let St
i denote the block of

data items.

In contrast to the clustering algorithm for push-based type of query, in a clustering
algorithm for pull-based query, the coordinator calls the local micro-clustering on
the block of data items at epoch t from the remote-site process.

7.3.2 The Coordinator Process
This subsection describes how the coordinator process works. For each update
epoch t, the coordinator works as follows.

1. for each remote site i, perform the following steps

(a) make the connection between the remote site i and the coordinator.

(b) receive the local micro-clustering LCt
i from the remote site (for the

push-based query), or remotely calls the local-micro clustering method
from the remote site i on the block St

i (for the pull-based query).

(c) add LCt
i to a buffer buf .

2. if all the local micro-clusterings are received, the coordinator creates the
global clustering GCt by calling MacA on the micro-clusters in the buffer.

3. process the global clustering GCt.

We note that step 3 is executed on the basis of each specific context. For example,
it may return the global clustering to the user as requested, or the global clustering
can be stored in the history of global clusterings for some computation purpose, or
it may be sent back to all the remote sites.

7.3.3 Algorithm Analysis
In this section we present some theoretical results including the global clustering
quality, communication complexity, and computational complexity.

7.3.3.1 Global Clustering Quality

We shows that the global clustering produced by DisA in an update epoch is simi-
lar to the clustering created by the underlying algorithmDisA on the same data set.
We first consider the case in which the clustering is generated by the centralized
clustering algorithm A. Let St

i be the streaming data block at the remote site i in
an update epoch t, for i = 1, .., N , where N is the number of remote sites. We con-
sider theA and DisA in an update epoch. We also assume that all the data streams

132 Chapter 7. Distributed Clustering of Streaming Data

arrive at the remote sites with the same data speed, that means at each update epoch
t, every remote site receives the same data items. As such, the streaming data that
the coordinator receive from all the remote sites in an update epoch is given by

St+4t =
N
∪
i=1
St
i where4t is the time for the coordinator to receive all the streaming

blocks from the remote sites. Algorithm A works in two stages as follows

• Micro clustering: the output of the micro-clustering method is given by

LCcentralized = MicA
(
St+4t

)
=

N
∪
i=1
LCt

i (7.3.1)

• Macro clustering: the output of the macro-clustering method is given by

GCt
centralized = MacA

(
N
∪
i=1
LCt

i

)
(7.3.2)

We now consider how our distributed stream clustering framework DisA
works. However, a distinction between the centralized algorithm A and the dis-
tributed algorithmDisA is that while the both micro-clustering method and macro-
clustering method of A are executed in the same process, the micro-clustering
method of DisA takes place at the remote sites, the macro-clustering method of
DisA occurs at the coordinator. The framework DisA works as follows

• At the remote site: Each remote site generates the local macro-clusteringLCi,
for i = 1, .., N . If the clustering query is pushed-based query, remote sites
send its local micro-clustering to the coordinator.

• At the coordinator: If the clustering query is pull-based query, the coordi-
nator invokes remote clustering methods in order to get all the local micro-
clusterings. The list of local clusterings received from remote sites

LCt+4t1
distributed =

N
∪
i=1
LCt

i (7.3.3)

where4t1 is the time needed to transmit all the local clusterings to the coor-
dinator

The global clustering GCt
distributed is created by the macro clustering method

Mac up to time t+4t1 +4t2 is given by

GCt
distributed = MacA (LCdistributed) = MacA

(
N
∪
i=1
LCt

i

)
(7.3.4)

where 4t2 is the time needed to produce global macro-clustering (global
clustering).

From the equations 7.3.1, 7.3.2 and 7.3.3, 7.3.4, we can conclude that the global
macro-clustering produced by the distributed framework DisA in an update epoch
t is similar to the macro-clustering produced by the centralized version of the two-
phased stream clustering algorithm A.

7.3. Algorithm Description 133

7.3.3.2 Communication Complexity

One of the fundamental issues of a distributed computing algorithm is to evaluate
the communication complexity. The communication complexity of a distributed
framework for clustering is the minimum communication cost so that it produces
the global clustering. Let bti be the total bits sent between remote site i and the
coordinator. The size of a local micro-clustering |LCi| is defined as the product
of the size of each micro-cluster |CF | by the number of clusters Ki in the local
clustering structure |LCi| = |CF |Ki. The number of bits used to transmit a local
micro-clustering produced by the remote site i to the coordinator site is log2 |LCt

i |).
As such, the communication cost of all local clusterings from the remote sites to
the coordinator is given by.

N∑
i=1

log2 |CF |Ki =
N∑
i=0

log2Ki +
(N + 1)N

2
log2 |CF | (7.3.5)

Let DisClustream be the distributed version of Clustream. If the DisClustream is
used, and the number of clusters at all the remote sites and the coordinator are the
same, the communication cost needed to answer a clustering query at an update
epoch t is given by

N log2K +
(N + 1)N

2
log2 |CF | (7.3.6)

where K is the number of micro-clusters in a local micro-clustering, and |CF | is
the size of a micro-cluster.

7.3.3.3 Computational Complexity

This section answers the question how much time is needed to compute the global
clustering. Let Tmic and Tmac denote the time needed to produce a micro-clustering
and a macro-clustering respectively. The time needed to generate the clustering by
an underlying two-phased stream clustering Tcentralized is given by

Tcentralized = NTmic + Tmac (7.3.7)

The time needed to generate the global clustering is computed from the time at
which all the local micro-clustering algorithms start until the time at which the
global macro-clustering is generated. Therefore, the time needed to compute the
global clustering Tdistributed is given by

Tdistributed = Tmic + T allLC
transmit + Tmac (7.3.8)

Let T LCi
transmit denote the time needed for transmitting the local clustering from

the remote site i to the coordinator. As our framework is multi-threaded, the to-
tal time needed to transmit all the local clusterings T allLC

transmit is less than or equal

134 Chapter 7. Distributed Clustering of Streaming Data

to the sum of time needed to transmit each local clustering T LCi
transmit, that means

T all LC
transmit ≤

N∑
i=1

T LCi
transmit. From the equation 7.3.8, we can reduce the time to pro-

duce the global clustering at the coordinator by the following ways: (1) speed up
the local clustering algorithm (reduce T LC

clust); (2) reduce the time to send the lo-
cal clustering T LC

send; (3) speed up the cluster ensemble algorithm at the coordinator
site. The first task depends on the selection of stream clustering algorithm at remote
sites. For the second task we reduce the size of local clusters transmitted. The third
task depends on the selection of the ensemble cluster approach. The time to send a
local clustering to the coordinator site depends on the network bandwidth, and the
size of local clustering. As shown in the experiment part, the local micro-cluster is
small. The speedup of our framework is given by

speedup =
Tcentralized
Tdistributed

(7.3.9)

where T centralized is the time needed to generate the clustering by the underlying
two-phased stream clustering algorithm and Tdistributed is the time needed to gener-
ate the global clustering by our framework.

From the equations 7.3.7, 7.3.8, and 7.3.9, we have

speedup =
NTmic + Tmac

Tmic + T allLC
transmit + Tmac

(7.3.10)

Based on the experiment in Subsection 7.4.3.2, the average values of Tmic, Tmac,
and T LCi

transmit were computed. From these parameters, the function speedup was
approximately given by speedup = 0.98N . In conclusion, the speed of our frame-
work scales up with the increasing number of remote sites.

7.4 Empirical Results
All the experiments were performed on a Intel Pentium (R) 2.00GHz computer
with 1.00GB memory, running Windows XP professional. We implemented an in-
stance of the proposed framework, which we call DisClustream (Distributed Clus-
tream). DisClustream was developed on the basis of the underlying stream clus-
tering algorithm Clustream [Bifet 2010b]. The streaming data sets (Sensor Stream,
Powersupply Stream, and Kddcup99) that were used in our experiments were from
the Stream Data Mining Repository [Zhu 2010]. Depending on the purpose of each
group of experiments, we selected some data sets of the above data sets.

We sought to answer two empirical questions about our framework: (1) How
accurate is our clustering framework for distributed data streams in comparison
with the central clustering approach on the same data set? (2) How scalable is our
framework? All the empirical evaluations were done in an update epoch.

7.4. Empirical Results 135

7.4.1 Evaluation on Global Clustering

This group of experiments evaluated aspects of the global clustering in terms of
clustering quality compared with the centralized clustering algorithm, time needed
to create the global clustering. The goal of these experiments is to compare the
clusterings produced by centralized and distributed stream clustering algorithms.
We expect that the global clustering produced by distributed stream clustering will
be almost the same as the clustering produced by centralized stream clustering
algorithm. For ease of comparison, we chose a data set in which the number of
attributes and the number of classes are small sufficient to visualize clusterings.
The appropriate data set is for this task is Powersupply used to predict which hour
the current supply belongs to. This data set includes 29928 records, each record
consists of 2 attributes. These records can fall into one of 24 classes. To obtain
clusterings, we ran the centralized version of ClusStream, and the distributed ver-
sion DisClustream. For the centralized CluStream, the entire data set can be seen
as the incoming data stream. For the distributed DisCluStream, we divided the data
set into two data sets of the same size. There were two remote sites, each remote
site produced a local micro clustering from one of two above data sets.

Figure 7.2 illustrates two clusterings produced by centralized (marked by
square) and distributed (marked by circle) stream clustering algorithms. Figure 7.2
illustrates two clusterings produced by centralized (marked by square) and dis-
tributed (marked by circle) stream clustering algorithms.

As we expect, the clustering produced by distributed clustering algorithm Dis-
Clustream was almost the same as the clustering produced by centralized one CluS-
tream (Figure 7.2). In conclusion, the global clustering produced by our distributed
clustering framework is almost similar to the clustering produced by centralized
one. The quality of an underlying local stream clustering affects the overall quality
of the global clustering.

We should distinguish between the time needed to produce the global cluster-
ing and the time needed to run the macro-clustering algorithm. The time needed
to generate the global clustering in the distributed framework is the duration from
the time at which all the local micro-clustering algorithms start until the time at
which the global macro-clustering is generated. The time needed to generate micro
clusters at the remote site is much greater than the time needed to run macro clus-
tering algorithm in order to generate the global clustering at the coordinator. This
is a direct consequence of the two-phased stream clustering approach in which the
online phase consumes more time than the off-line one [Aggarwal 2003]. Our the
experiment with KDDCup99 data set shows that time to produce micro clusters at
the remote site (14021 instances, and number of micro-clusters 100, time needed is
25701 ms) is much greater than the time needed to produce macro-clustering (391
ms) at the coordinator. Therefore, in order to speed up the algorithm, we should

136 Chapter 7. Distributed Clustering of Streaming Data

0 2 4 6 8 10 12 14
50

100

150

200

250

300
A

ttr
ib

ut
e

1

Cluster id

0 2 4 6 8 10 12 14
50

100

150

200

250

300

A
ttr

ib
ut

e
2

0 2 4 6 8 10 12 14
50

100

150

200

250

300
Centralized−Attribute 1
Centralized−Attribute 2
Distributed−Attribute 1
Distributed−Attribute 2

Figure 7.2: A comparison of two clusterings that were created by distributed stream
clustering algorithm and the centralized one on Power Supply data set

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

sensor id

T
im

e
(m

s)

raw data
local clustering

Figure 7.3: Time to transmit block of streaming data vs. time to transmit local-
micro clustering

7.4. Empirical Results 137

select, or develop the fast and high-quality micro-clustering approach.

7.4.2 Evaluation on Communication Efficiency

The goal of this subsection is to evaluate the time needed to transmit block of
streaming data with the time needed to transmit the local micro-clustering built
from the corresponding the block of streaming data. As shown in Section 7.3.3.2,
the communication overhead needed to transmit local micro clusterings would be
negligible compared to the raw data transmission involved. In other word, the time
needed to transmit local micro-clustering would be much smaller than the time
needed to transmit the raw streaming data.

We execute this groups of experiments with DisClustream on the Intel data set.
We divided this data set into many data sets based on the sensor id. Without loss of
generality, the sensor data set from sensor 1 to 10 was used as data streams at the
remote sites. The number of micro-clusters was set to default number (100 kernels,
in Clustream). For simplicity, we set up 10 experiments with 10 sensor data sets
from 1 to 10 separately, that means each experiment include one coordinator and
one remote site. Figure 7.3 shows that, the time needed to transmit raw stream-
ing data depends on the size of streaming data block. The time needed to trans-
mit micro-clusters is almost invariant as the number of micro-clusters were set to
the same number 100 in all experiments. Our experiments shows that the micro-
clusters produced by remote sites are small sufficient for meeting the requirement
of communication efficiency.

The goal of this experiment is to determine the size of local clustering. The Dis-
CluStream was used in this experiment. We used KDD Cup99 for this experiment.
The framework consists of one remote site and one coordinator. At the remote site,
the number of micro-clusters was fixed to 100. The coordinator received the local
clustering and wrote it to file. We changed the number of instances in the window
(an update epoch) in the range 1000, 2000, 3000, 4000, 5000. The size of local
clustering file was invariant and equals to 13.2KB. In fact, the actual size of local
clustering in memory may be smaller than 13.2 KB as the local clustering file in-
cludes the size of file format. The size of local clustering is invariant because we
fixed the number of micro-clusters to 100. Therefore, the size of local clustering in
DisClustream is independent of the number of instances that a remote site receives
in an update epoch.

7.4.3 Effect of Block Width and Number of Micro-clusters

The success of a distributed framework for clustering streaming data depends on
the scalability of the local stream clustering algorithm and the scalability in term
of number of remote sites. The scalability of the micro-clustering algorithm used

138 Chapter 7. Distributed Clustering of Streaming Data

at the remote sites is mandatory because it must process the large volume of in-
coming data. The scalability of the micro-clustering algorithm Clustream in the
number of data dimensions, and the number of clusters was thoroughly evaluated
[Aggarwal 2003] in term of the time needed to produce clustering. In contrast, we
evaluated the scalability of DisClustream in terms of communication time by in-
creasing the number of micro-clusters, and the number of instances in the update
block.

7.4.3.1 Effect of Block Width

This group of experiments studied the scalability in the increasing number of in-
stance in the block. The underlying stream clustering algorithm was used to eval-
uate the scalability of our proposed framework is Clustream. As such, the micro-
clustering algorithm at the remote sites the micro-clustering method of Clustream
while the macro-clustering algorithm at the coordinator is K-means. Figure 7.4
shows how our distributed stream clustering framework scale with the number of
instances in an update epoch. As we experimented with the sensor data set in which
each record consisted of two attributes, we can observe the time to transmit the lo-
cal clustering to the coordinator in Figure 7.4 . We also tested the scalability in
window size with KDD Cup data set. The result of this experiment demonstrated
that, the time needed to create local clustering scales with the number of instances
in an update epoch. However, the time needed to transmit the local clustering is
hardly varied. For example, with KDD Cup data set, the time needed to create the
local clustering (18,11 seconds) was much larger than the time needed to transmit
the local clustering (46 miliseconds) with the number of instances in an update
epoch 10000. As the number of instances in an update epoch increases 10 times
(100000), the time needed to create local clustering was almost 3 (minutes) while
the time needed to transmit local clustering was only 47 (milliseconds).

7.4.3.2 Effect of Number of Micro-clusters

To evaluate the scalability of our algorithm in the increasing number of micro clus-
ters. Evaluation on the scalability of our algorithm was done on two data sets Intel
sensor data set and KDDCup 99 data set. We set up experiment as follows. The
number of instances was fixed to 10000 instances. There were nine remote sites
connected to the coordinator sites. The number of micro clusters was selected from
the range 100, 150, 250, 350, 400, 450, 500 as shown in Figure 7.5. An increase in
the number of micro-clusters resulted in the increasing time to transmit micro-
clusters In our experiments, time required to produce micro-clusters is much larger
than the time required to transmit local micro-clusters.

Our experiments on the scalability with DisClustream showed that the time

7.4. Empirical Results 139

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

number of instances

tim
e

(in
 m

s)

to cluster
total time
time to send

Figure 7.4: Effect of block width

100 150 200 250 300 350 400 450 500
30

40

50

60

70

80

90

Number of kernels

T
im

e
to

 tr
an

sm
it

lo
ca

l m
ic

ro
−

cl
us

te
rs

 (
m

ili
 s

ec
on

d)

Figure 7.5: Effect of number of micro-clusters

140 Chapter 7. Distributed Clustering of Streaming Data

needed to create local clustering in an update epoch scales with the increasing
number of instances in the window, and the increasing number of micro-clusters
while the time needed to transmit a local clustering is almost invariant. The data
stream clustering algorithms that are fast sufficient to deploy in resource-limited
applications such as sensor networks are still open questions.

7.5 Related Work

The first two-phased stream clustering algorithm Clustream introduced by Aggar-
wal et al [Aggarwal 2003] has two separate parts: online and off-line components.
The role of the online component is to process and to extract summary information
from data stream while the off-line builds the meaningful clustering structure from
the extracted summary information.

Clustream can efficiently maintain a very large number of micro-clusters, which
are then used to build macro-clusters. Further, clustering structure can be observed
in arbitrary time horizons by using pyramidal time model. Hence, Clustream is
capable of monitoring the evolution of clustering structure. However, one of the
main drawbacks of Clustream is that it requires the number of clusters in advance.
To overcome this drawback, Cao et al. [Cao 2006] have proposed a density-based
clustering data streams. This advantage of this approach is that it can handle out-
liers in data streams, and adapt to the changes of clusters. However, the major
limitation of DenStream is that it frequently runs the off-line component in order
to detect the changes of clusters. As such, the off-line component consumes the
cost of computing clusters much. In the experimental evaluation, we use two well-
known algorithms Clustream [Aggarwal 2003], and DenStream [Cao 2006] as the
local stream clustering algorithms at the remote sites.

Cormode et al. [Cormode 2007] presented a suite of k-center-based algorithms
for clustering distributed data streams. The communication topology consists of
N remote sites, and one coordinator. Any two remote sites can directly commu-
nicate with each other. Their approach can provide a global clustering that is as
good as the centralized clusterings. However, this approach provide a approximate
clustering by using the underlying k-centers stream clustering algorithm. Zhou et
al. [Zhou 2007] considered the problem of clustering distributed data stream by
using EM-based approach. The advantage of this approach is that it can deal with
the noisy and incomplete data streams. To deal with the evolving data streams, they
used the reactive approach to rebuild the local clustering and global clustering when
it no longer suits the data. However, it is not scalable in the large number of remote
sites such as in a sensor network of thousands of nodes. Although this drawback
can be overcome by model-merging technique, the global clustering quality consid-
erably reduces. Furthermore, the memory consumption at the remote site increases

7.6. Summary 141

with the increasing number of data dimensionality and the increasing number of
models. In contrast to the work introduced by Zhou et al. [Zhou 2007], Zhang et
al.[Zhang 2008] introduced a suite of k-medians-based algorithms for clustering
distributed data streams, which work on the more general topologies: topology-
oblivious algorithm, height-aware algorithm, and path-aware algorithm. To deal
with the evolving data streams, they selected periodic approach in which the global
clustering at the root site is continuously updated every period called update epoch.
Similar to [Cormode 2007], the global clustering is approximately computed on the
summaries that are received from the internal and leaf nodes.

7.6 Summary
We have proposed a distributed framework for clustering streaming data by ex-
tending the two-phased stream clustering approach that is widely used to cluster
a single data stream. While the remote sites create and maintain micro-clusters
by using the micro-clustering method, the coordinator creates and maintains the
global clustering by using the macro-clustering algorithm. We have theoretically
analyzed our framework in the following aspects. The global clustering created in
an update epoch is similar to the clustering created by the centralized stream clus-
tering algorithm. We also estimated the communication cost as well as proved that
the speed of our framework scales with the number of remote sites. Our empirical
results demonstrated that the global clustering generated by our distributed frame-
work was almost the same as the clustering generated by the underlying centralized
algorithm on the same data set with low communication cost. In conclusion, by us-
ing the local micro-clustering approach, our framework achieves scalability, and
communication-efficiency while assuring the global clustering quality. Our work
along with other work can be seen as one of the first steps towards a novel dis-
tributed framework for mining streaming data by using micro-clustering method as
an efficient and exact method of data summarization.

CHAPTER 8

Conclusion

Our only security is our ability to change. (John Lilly)

Contents

8.1 Key Contributions . 143

8.2 Future Directions . 146

This dissertation has addressed the problem of change detection in streaming
data by studying a wildfire warning system using wireless sensor network as a
motivating scenario. This scenario poses the challenges for the problem of change
detection in streaming data as follows. These challenges include those coming from
the problems of change detection, those arising from the data stream model, those
originating from the distributed nature of sensor streaming data, and those result-
ing from the restricted resources of wireless sensor network such as limited range
of sensing, small memory, low power of computing, and limited energy of battery.
From the motivating scenario and its challenges, the solution to the problem of
change detection in streaming has been formulated. Change detection in wireless
sensor network has been thoroughly studied for a long time. However, much effort
has been only focused on one-shot change detection, that means detecting and re-
acting to a change once it occurs. Only recently, the continuous distributed monitor-
ing model has been received attention from research community [Cormode 2013].
Along with this line of research, this dissertation presents a distributed framework
for detecting changes in streaming data by using the local approach. Sec 8.1 sum-
marizes the key contributions of this dissertation. The possibilities of extending this
work in promising directions are presented in Section 8.2.

8.1 Key Contributions

1. As data stream is infinite in nature and the systems resources are limited,
this dissertation proposes the methods for detecting changes by quantify-
ing the difference between the reference window and the current one. This

144 Chapter 8. Conclusion

approach is based on the work proposed by Kifet et al. [Kifer 2004]. An im-
portant distinction between our approach and theirs lies in the choice of dis-
similarity measures quantifying the change. While Kifet et al. [Kifer 2004]
use Kolmogorov-Smirnov distance with high complexity of computation, we
used the geometric distances such as the Euclidean distance, and Manhattan
distance for quantifying the change. Besides, by changing the relative posi-
tions of the reference and sliding windows, the change detection algorithms
for different purposes are developed such as the problem of change point de-
tection using overlapping windows model, or interval-based change detection
using adjacent windows model. The detection performance of a change de-
tection method using sliding windows model depends on the factors such as
the window width, the distance measure, and the detection threshold. While
the previous work on change detection only evaluates the detection accuracy
in a snap-shot of a data stream, it is the first time we can evaluate the detec-
tion performance of our change detectors at anytime or the entire data stream
(assume that the data stream is finite). We compare detection accuracy of two
change detectors in both ROC-space and PR-space. Two well-known models
for processing data stream include time-based model (in Oracle CEP model),
and tuple-based model (in StreamBase) [Jain 2008]. Our methods for detect-
ing changes are only for tuple-based model. Another limitation is that our
change detection methods use the fixed size window that makes the choice
of window width difficult.

2. Raw streaming data is defined as data that has not been transformed by any
transformation. In Chapter 3, we uses two windows to truncate two seg-
ments of a data stream. The original streaming data in these two segments
preserves. Therefore, change detection methods presented in Chapter 3 are
change detection method in raw streaming data. As the sliding window size
can be too large to store in memory, a general synopsis-based change de-
tection framework is proposed. Besides, data comes from streaming data
sources incrementally, thus incremental change detection is necessary. Dis-
crete Fourier Transform converts a data stream in time domain into frequency
domain and vice versa. Discrete Fourier Transform can be used to reduce the
data dimension. Besides there exists many fast Fourier transform algorithms
that can meet the requirement for fast computing in streaming data. Thus,
the DFT-based change detector is designed and evaluated as an example of
synopsis-based change detector. As the data stream must be processed under
the resource constraints with high speed, an incremental method of comput-
ing DFT coefficients was exploited to further speed up the DFT-based change
detector.

3. A question that arises is how the detection accuracy of synopsis-based

8.1. Key Contributions 145

change detection methods is compared with the non-synopsis change de-
tection methods. Theoretical and empirical analysis shows that the detection
performance of synopsis-based detector is similar to that of non-synopsis
change detector if a distance function quantifying the changes is preserved
under the synopsis construction process. In addition to DFT transforma-
tion, there are the similar techniques such Haar Wavelet transformation
[Chan 1999], Johnson-Lindenstrauss transformation [Achlioptas 2003].

4. As automated systems require the capability of realtime processing, and
adapting to the changing environments. For instance, sensor networks need
the automated change detection methods in which detection threshold must
adapt to these changes of the environment. Besides, the change detection
methods presented in Chapter 3 and Chapter 4 can be only applied for uni-
variate data stream, or single dimensional data stream. Hence, we have pro-
posed an automated change detection algorithm in streaming multivariate
data by clustering. This change detection algorithm can automatically de-
tect the changes in streaming multivariate data without requiring the detec-
tion thresholds. We present a method for building and maintaining clustering
over sliding window by using reactive approach in which the clustering is
rebuilt once a change in the data distribution is detected. The drawback of
the change detection methods presented in Chapters 3, 4, and 5 is that the
window width is fixed. The selection of window width is challenging and
application-specific dependent.

5. In real-world applications, streaming data may come from multiple sources
such as continuous data streams from sensor networks. A framework for de-
centralized change detection in wireless sensor networks is proposed, and an
instance of this model is presented and simulated by using Gossip scheme.
Chapter 6 proposes a distributed framework for detecting changes in stream-
ing data that is created from multiple sources. The distributed detection
framework consists of three components: local change detectors, decision
fusion schemes, and detection network of network protocol and communica-
tion protocol. In particular, we have proposed a framework for decentralized
change detection in wireless sensor networks. The locations of events are
estimated using a global decision model based on gossiping. By choosing
different models of local change detection, global decision fusion, and data
exchange protocols, different design goals can be achieved. For the decen-
tralized decision fusion framework, the decision fusion models efficiently
improve the accuracy of event location estimation. Specifically, push-gossip
can be implemented for power efficiency design aims, while push-pull-gossip
is a good choice in reducing decision dissemination time, which is the key
factor in emergency applications. The distributed change detection scheme

146 Chapter 8. Conclusion

using gossip-based approach works with the assumption that the knowledge
of detection performance of every local change detector is known to the fu-
sion center, that means probability of detection and probability of false alarm
are known to the fusion center.

6. A distributed framework for clustering streaming data is proposed by ex-
tending the two-phased stream clustering approach which is widely used
to cluster a single data stream. While the remote sites create and maintain
micro-clusters by using the local micro-clustering method, the coordinator
creates and maintains the global clustering by using the macro-clustering al-
gorithm. The theoretical analysis and empirical experiments show that, the
global clustering which is created in an update epoch is similar to the clus-
tering which is created by the centralized stream clustering algorithm. We
also estimated the communication cost as well as showed that the speed
of our framework scales with the number of remote sites. By using the
local micro-clustering approach, our framework achieves scalability, and
communication-efficiency while assuring the global clustering quality. In
chapter 5, we describes how to detect changes in streaming multivariate data,
hence in Chapter 7, we present a distributed clustering method for streaming
data, and then extend it for the distributed detection of changes in streaming
multivariate data. In particular, remote sites will summarize streaming multi-
variate data by using online phase, and send it to the coordinator, coordinator
will detect the changes by using the clustering-based change detection pre-
sented in Chapter 5.

8.2 Future Directions
Our results presented in this dissertation suggest the future directions of research
as follows.

• Although change detection methods proposed in this thesis meet the cer-
tain requirements such the ability to work in the environment with restricted
resources, they need to further improve the processing performance in or-
der to keep up with the high speed of the modern data streams. A widely
used approach to dealing with the high speed of data stream is sampling
techniques [Vitter 1985]. As the goal of change detection is only to detect,
localize, and report the change, the approximate summary built from data
stream is acceptable for change detection. Recent work on change detec-
tion by sampling have been proposed by Cho and Ntoulas [Cho 2002], Li et
al. [Li 2007]. However, the approach proposed by Li et al. [Li 2007] quan-
tify the changes by the statistical distance that is quite complex A distance

8.2. Future Directions 147

in [Kifer 2004]. Therefore, fast detection of changes in streaming data by
sampling use the geometric distances Lp

p is necessary. In particular, Cohen
and Kaplan [Cohen 2012] have recently proposed the novel approaches to
estimating the changes from the samples for the Manhattan and Euclidean
distances instead of computing these distances on original data.

• Change detection methods using two overlapping windows can be incorpo-
rated with the incremental query processing to improve the performance of
incremental query processing proposed in [Liarou 2012, Liarou 2013].

• In many real-world applications, streaming data is sparse, thus it is impor-
tant to develop change detection methods for sparse streaming data. Based
on the results of Chapter 3 and Chapter 4, and the recent advances in com-
pressive sensing [Hassanieh 2012a, Hassanieh 2012b, Davenport 2006], we
can develop change detection methods for sparse streaming data by using
compressive sensing. The change detection problem is in fact a binary classi-
fication problem. One of the challenges facing a classification problem is the
unbalanced class problem, that means the class distribution is unbalanced.
For example, for the rare change detection problems, the number of change
points is much smaller than the number of non-change points. An open re-
search direction should be devoted to the problem of rare change detection
using compressive sensing.

• Micro-clustering approach is used in many tasks of data mining. For in-
stance, micro-clustering method is used to summarize cluster information
for the data stream classification [Masud 2008]. In chapters 5, 6.3.3, and 7,
we used micro-clusters as synopses that are used for clustering, change de-
tection. In chapter 7, our theoretical and empirical results show that we can
develop a general framework for mining distributed streaming data by us-
ing micro-clusters. The remote sites create and maintain micro-clusters or
the variants of micro-clusters. The coordinator can generate and maintain the
global pattern from the micro-clusters that are received from the remote sites
by using the micro-clusters based data mining such as classification, clus-
tering, and frequent pattern mining. The reasonable foundation behind this
local micro-clustering approach to data stream mining is that micro-clusters
maintain statistics at a sufficiently high level of granularity (temporal and
spatial)[Aggarwal 2003]. As such, micro-clustering algorithms can be seen
as a data summarization method. For the problem of clustering distributed
streaming data, there are some open questions such as: How to create and
maintain the global clustering by cluster ensembles method on the micro-
clusters that are received from the remote sites? How to build and maintain
the global clustering in sliding window in a distributed environment by using

148 Chapter 8. Conclusion

the local micro-clustering algorithm?

• We can extend the distributed framework which were presented in Chapter
6 for other network topologies. The main challenge facing the problem of
distributed detection of changes in streaming data presented in Chapter 6is
that the detection performance of local change detections are impossible to
compute in the real-world application because of the lack of ground truth
data. Therefore, a framework that can control the false discovery rate in order
to achieve the better performance of the fusion and decision making at the
fusion center can be developed by extending the recent work of Ray and
Varney [Ray 2011] for the streaming model.

• The motivating scenario for wildfire warning system was used to illustrate
the need for the change detection methods presented in this thesis. How-
ever, these methods can be also used for the other applications such as medi-
care monitoring system [Sun 2010, Huang 2013]. In particular, DFT-based
change detection is very useful for physiological streaming data in medicare
monitoring system such [Huang 2013] since physiological data is periodic.

• Similar to clustering, and classification of streaming data, the evaluation of
detection accuracy, and performance of the change detectors is very impor-
tant. Although many change detection methods have been proposed and de-
veloped, a standard benchmark for change detectors in streaming data is still
open issue. Benchmarking for change detection in streaming data faces the
following challenges. The first challenge here is that in order to evaluate de-
tection accuracy of detectors, we need to know how to generate groundtruth
data that allows us to determine the true change point, true unchange points.
The second challenge is the metrics for evaluating detection accuracy. Re-
cently, some work on performance of change detectors for streaming data
have been proposed in [Dasu 2011, Tran 2011b]. The third challenge is the
evaluation of detection accuracy should be performed continuously due to
the theoretically infinite nature of data streams. In this thesis, to our best
knowledge, we have continuously evaluated the detection accuracy despite
the length of data stream. We also made a comparative study of two detec-
tors: the Euclidean detector and the Manhattan detector. The results of these
comparisons shows that depending on each metric space (ROC or PR), we
can obtain different conclusions on the quality of each change detector. Be-
sides, there has been a benchmark for change detection in the field of video
processing 1. Based on these initial results, we can develop a benchmark for
change detection in streaming data. Chapter 3 presents two change detectors

1http://www.changedetection.net/

http://www.changedetection.net/

8.2. Future Directions 149

using the Euclidean distance, and the Manhattan distance. The future work
is dedicated to various distance measures, and compare the detection accu-
racy of these detectors by developing a benchmark for change detection in
streaming data.

• Change detection methods proposed in this thesis can be seen as the first steps
for developing the real world environment monitoring systems such wild-
fire monitoring system presented in this thesis, building monitoring system
[Karnstedt 2007], or medicare monitoring systems [Sun 2010, Huang 2013].
The reasonable foundation is that most of the algorithms presented in this
thesis are implemented Java. Besides, many data stream engines are avail-
able. For instance, we can integrate these change detection methods into the
continuous monitoring systems by using the emerging technology DataTur-
bine [Fountain 2012].

Change detection in streaming data is an exciting and challenging area of research.
It provides a challenging but promising source of research problems. As the nature
of streaming data is dynamic, the success of many streaming applications mostly
depends on the ability of change detection algorithms for detecting changes in
streaming data. There are of course many open and challenging questions of the
change detection in streaming data. We believe that the contributions of this disser-
tation provide insights that will be valuable in addressing the challenges of the data
deluge.

Bibliography

[Achlioptas 2003] D. Achlioptas. Database-friendly random projections:
Johnson-Lindenstrauss with binary coins. Journal of computer and Sys-
tem Sciences, vol. 66, no. 4, pages 671–687, 2003. (Cited on page 145.)

[Agarwal 2012] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei and
K. Yi. Mergeable summaries. In Proceedings of the 31st symposium
on Principles of Database Systems, pages 23–34. ACM, 2012. (Cited on
page 86.)

[Aggarwal 2003] C.C. Aggarwal, J. Han, J. Wang and P.S. Yu. A framework for
clustering evolving data streams. In Proceedings of the 29th international
conference on Very large data bases-Volume 29, pages 81–92. VLDB En-
dowment, 2003. (Cited on pages 85, 127, 130, 135, 138, 140 and 147.)

[Aggarwal 2006] C. Aggarwal and P. Yu. On clustering techniques for change
diagnosis in data streams. Advances in Web Mining and Web Usage Anal-
ysis, pages 139–157, 2006. (Cited on page 10.)

[Aggarwal 2007] C.C. Aggarwal and P.S. Yu. A SURVEY OF SYNOPSIS CON-
STRUCTION IN DATA STREAMS. Data streams: models and algorithms,
page 169, 2007. (Cited on pages 21, 25 and 67.)

[Aggarwal 2012] C.C Aggarwal. A segment-based framework for modeling and
mining data streams. Knowledge and information systems, vol. 30, no. 1,
pages 1–29, 2012. (Cited on page 9.)

[Akyildiz 2002] IF Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci. Wire-
less sensor networks: a survey. Computer networks, vol. 38, no. 4, pages
393–422, 2002. (Cited on page 102.)

[Alippi 2012] C. Alippi, S. Ntalampiras and M. Roveri. An HMM-based change
detection method for intelligent embedded sensors. In Neural Networks
(IJCNN), The 2012 International Joint Conference on, pages 1–7. IEEE,
2012. (Cited on page 91.)

[Babcock 2002] B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom. Mod-
els and issues in data stream systems. In Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systemsbabcock2002models, pages 1–16. ACM, 2002. (Cited on page 67.)

152 Bibliography

[Bandyopadhyay 2006] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta,
K. Liu and S. Datta. Clustering distributed data streams in peer-to-peer
environments. Information Sciences, vol. 176, no. 14, pages 1952–1985,
2006. (Cited on page 128.)

[Barbará 2001] D. Barbará and P. Chen. Tracking clusters in evolving data sets. In
Proceedings of the Fourteenth International Florida Artificial Intelligence
Research Society Conference, pages 239–243. AAAI Press, 2001. (Cited
on page 84.)

[Barbará 2002] D. Barbará. Requirements for clustering data streams. ACM
SIGKDD Explorations Newsletter, vol. 3, no. 2, pages 23–27, 2002. (Cited
on page 127.)

[Benjamini 2005] Y. Benjamini and M. Leshno. Statistical methods for data min-
ing. Data Mining and Knowledge Discovery Handbook, pages 565–587,
2005. (Cited on page 113.)

[Beringer 2006] J. Beringer and E. Hullermeier. Online clustering of parallel data
streams. Data & Knowledge Engineering, vol. 58, no. 2, pages 180–204,
2006. (Cited on page 127.)

[Bhaduri 2008] K. Bhaduri and H. Kargupta. An efficient local algorithm for dis-
tributed multivariate regression in peer-to-peer networks. Proceedings of
SDM 08, pages 153–164, 2008. (Cited on page 15.)

[Bifet 2007] A. Bifet and R. Gavalda. Learning from time-changing data with
adaptive windowing. In SIAM International Conference on Data Mining,
pages 443–448. Citeseer, 2007. (Cited on page 42.)

[Bifet 2010a] A. Bifet. Adaptive Stream Mining: Pattern Learning and Mining
from Evolving Data Streams. In Proceedings of the 2010 conference on
adaptive stream mining: Pattern learning and mining from evolving data
streams, pages 1–212. IOS Press, 2010. (Cited on page 15.)

[Bifet 2010b] A. Bifet, G. Holmes, R. Kirkby and B. Pfahringer. Moa: Massive
online analysis. The Journal of Machine Learning Research, vol. 11, pages
1601–1604, 2010. (Cited on page 134.)

[Bondu 2011] A Bondu and M Boullé. A supervised approach for change detec-
tion in data streams. In Neural Networks (IJCNN), The 2011 International
Joint Conference on, pages 519–526. IEEE, 2011. (Cited on page 22.)

Bibliography 153

[Boriah 2008] S. Boriah, V. Kumar, M. Steinbach, C. Potter and S. Klooster. Land
cover change detection: a case study. In Proceeding of the 14th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 857–865. ACM, 2008. (Cited on page 24.)

[Botan 2012] I. Botan, P. M Fischer, D. Kossmann and N. Tatbul. Transactional
stream processing. In Proceedings of the 15th International Conference on
Extending Database Technology, pages 204–215. ACM, 2012. (Cited on
page 29.)

[Busch 2007] C. Busch and S. Tirthapura. A deterministic algorithm for summa-
rizing asynchronous streams over a sliding window. STACS 2007, pages
465–476, 2007. (Cited on pages 113 and 114.)

[Cabanes 2012] G. Cabanes and Y. Bennani. Change detection in data streams
through unsupervised learning. In Neural Networks (IJCNN), The 2012
International Joint Conference on, pages 1–6. IEEE, 2012. (Cited on
page 23.)

[Cao 2006] F. Cao, M. Ester, W. Qian and A. Zhou. Density-based clustering over
an evolving data stream with noise. In Proceedings of the 2006 SIAM
International Conference on Data Mining, pages 328–339, 2006. (Cited on
pages 85, 127 and 140.)

[Casolari 2012] S. Casolari, S. Tosi and F. Lo Presti. An adaptive model for online
detection of relevant state changes in internet-based systems. Performance
Evaluation, vol. 69, no. 5, pages 206–226, 2012. (Cited on page 67.)

[Chan 1999] K.P. Chan and A.W.C. Fu. Efficient time series matching by wavelets.
In Data Engineering, 1999. Proceedings., 15th International Conference on,
pages 126–133. IEEE, 1999. (Cited on pages 71 and 145.)

[Chang 2003] J.H. Chang and W.S. Lee. estWin: adaptively monitoring the recent
change of frequent itemsets over online data streams. In Proceedings of
the twelfth international conference on Information and knowledge man-
agement, pages 536–539. ACM, 2003. (Cited on pages 24 and 26.)

[Chen] K. Chen and L. Liu. HE-Tree: a framework for detecting changes in clus-
tering structure for categorical data streams. The VLDB Journal, pages
1–20. (Cited on pages 26 and 68.)

[CHEN 2009] T. CHEN, C. YUAN, A.S. SHEIKH and C. NEUBAUER.
SEGMENT-BASED CHANGE DETECTION METHOD IN MULTIVARI-
ATE DATA STREAM, April 9 2009. WO Patent WO/2009/045,312. (Cited
on pages 9, 10, 67 and 92.)

154 Bibliography

[Cho 2002] J. Cho and A. Ntoulas. Effective change detection using sampling.
In Proceedings of the 28th international conference on Very Large Data
Bases, pages 514–525. VLDB Endowment, 2002. (Cited on page 146.)

[Cohen 2012] E. Cohen and H. Kaplan. How to estimate change from samples.
arXiv preprint arXiv:1203.4903, 2012. (Cited on pages 48, 52 and 147.)

[Cormode 2005] G. Cormode and M. Garofalakis. Efficient strategies for contin-
uous distributed tracking tasks. IEEE Data Engineering Bulletin, vol. 28,
no. 1, pages 33–39, 2005. (Cited on pages 16 and 102.)

[Cormode 2007] G. Cormode, S. Muthukrishnan and W. Zhuang. Conquering the
divide: Continuous clustering of distributed data streams. In Data Engi-
neering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages
1036–1045. IEEE, 2007. (Cited on pages 128, 140 and 141.)

[Cormode 2013] G. Cormode. The Continuous Distributed Monitoring Model.
SIGMOD Record, vol. 42, no. 1, page 5, 2013. (Cited on pages 4 and 143.)

[Curry 2007] C. Curry, R.L. Grossman, D. Locke, S. Vejcik and J. Bugajski. De-
tecting changes in large data sets of payment card data: a case study.
In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1018–1022. ACM, 2007.
(Cited on page 68.)

[Da Silva 2010] A. Da Silva, R. Chiky and G. Hebrail. CLUSMASTER: A Clus-
tering Approach for Sampling Data Streams in Sensor Networks. In Data
Mining (ICDM), 2010 IEEE 10th International Conference on, pages 98–
107. IEEE, 2010. (Cited on page 128.)

[Dai 2004] B.R. Dai, J.W. Huang, M.Y. Yeh and M.S. Chen. Clustering on de-
mand for multiple data streams. In Data Mining, 2004. ICDM’04. Fourth
IEEE International Conference on, pages 367–370. IEEE, 2004. (Cited on
page 127.)

[Das 2009] K. Das, K. Bhaduri, S. Arora, W. Griffin, K. Borne, C. Giannella
and H. Kargupta. Scalable Distributed Change Detection from Astronomy
Data Streams using Local, Asynchronous Eigen Monitoring Algorithms. In
SIAM International Conference on Data Mining, Nevada, 2009. (Cited on
pages 16, 27, 28 and 29.)

[Dasu 2005] T. Dasu, S. Krishnan, S. Venkatasubramanian and K. Yi. An
information-theoretic approach to detecting changes in multi-dimensional
data streams. In 38th Symposium on the Interface of Statistics, Computing
Science, and Applications. Citeseer, 2005. (Cited on page 24.)

Bibliography 155

[Dasu 2009] T. Dasu, S. Krishnan, D. Lin, S. Venkatasubramanian and K. Yi.
Change (Detection) You Can Believe in: Finding Distributional Shifts in
Data Streams. In Proceedings of the 8th International Symposium on Intel-
ligent Data Analysis: Advances in Intelligent Data Analysis VIII, page 34.
Springer, 2009. (Cited on pages 7, 22, 26 and 92.)

[Dasu 2011] T. Dasu, S. Krishnan and G.M. Pomann. Robustness of change detec-
tion algorithms. In Advances in Intelligent Data Analysis X, pages 125–
137. Springer, 2011. (Cited on page 148.)

[Datta 2006] S. Datta, K. Bhaduri, C. Giannella, R. Wolff and H. Kargupta. Dis-
tributed data mining in peer-to-peer networks. IEEE Internet Computing,
pages 18–26, 2006. (Cited on pages 29 and 129.)

[Davenport 2006] M. A Davenport, M. B Wakin and R. G Baraniuk. Detection and
estimation with compressive measurements. Dept. of ECE, Rice University,
Tech. Rep, 2006. (Cited on page 147.)

[Davis 2006] J. Davis and M. Goadrich. The relationship between Precision-
Recall and ROC curves. In Proceedings of the 23rd international confer-
ence on Machine learning, pages 233–240. ACM, 2006. (Cited on pages 34
and 35.)

[Dean 2008] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. Communications of the ACM, vol. 51, no. 1, pages 107–
113, 2008. (Cited on page 3.)

[Demers 1987] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart and D. Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the sixth annual ACM Sym-
posium on Principles of distributed computing, pages 1–12. ACM, 1987.
(Cited on page 107.)

[Dindar 2011] N. Dindar, P. M Fischer, M. Soner and N. Tatbul. Efficiently corre-
lating complex events over live and archived data streams. In ACM DEBS
Conference, 2011. (Cited on page 24.)

[Dindar 2012] N. Dindar, N. Tatbul, R. J Miller, Laura M. Haas and I. Botan. Mod-
eling the execution semantics of stream processing engines with SECRET.
The VLDB Journal, pages 1–26, 2012. (Cited on page 41.)

[Dong] G. Dong, J. Han, L.V.S. Lakshmanan, J. Pei, H. Wang and P.S. Yu. Online
mining of changes from data streams: Research problems and preliminary
results. Citeseer. (Cited on page 20.)

156 Bibliography

[Draisbach 2012] U. Draisbach, F. Naumann, S. Szott and O. Wonneberg. Adap-
tive windows for duplicate detection. In Data Engineering (ICDE), 2012
IEEE 28th International Conference on, pages 1073–1083. IEEE, 2012.
(Cited on page 42.)

[Fawcett 2004] T. Fawcett. ROC graphs: Notes and practical considerations for
researchers. Machine Learning, vol. 31, pages 1–38, 2004. (Cited on
pages 35 and 59.)

[Fountain 2012] T. Fountain, S. Tilak, P. Shin and M. Nekrasov. The open source
dataturbine initiative: empowering the scientific community with streaming
data middleware. Bulletin of the Ecological Society of America, vol. 93,
no. 3, pages 242–252, 2012. (Cited on pages xiii, 6 and 149.)

[Gaber 2006] M.M. Gaber and P.S. Yu. Classification of Changes in Evolving
Data Streams using Online Clustering Result Deviation. In Proceedings of
the third International Workshop on Knowledge Discovery in Data Streams
June, volume 29. Citeseer, 2006. (Cited on pages 9, 65 and 68.)

[Gama 2007] J. Gama and M. M. Gaber. Learning from data streams: process-
ing techniques in sensor networks, volume 21. Springer, 2007. (Cited on
page 8.)

[Gandy 2013] A. Gandy and F. D. Lau. Non-restarting cumulative sum charts
and control of the false discovery rate. Biometrika, vol. 100, no. 1, pages
261–268, 2013. (Cited on page 114.)

[Ganguly 2008] A. R Ganguly, J. Gama, O. A Omitaomu, M. M. Gaber and R. R.
Vatsavai. Knowledge discovery from sensor data, volume 7. CRC, 2008.
(Cited on page 29.)

[Ganti 1999] V. Ganti, J. Gehrke and R. Ramakrishnan. A framework for mea-
suring changes in data characteristics. In Proceedings of the eighteenth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 126–137. ACM, 1999. (Cited on pages 25 and 68.)

[Ganti 2002] V. Ganti, J. Gehrke, R. Ramakrishnan and W.Y. Loh. A framework
for measuring differences in data characteristics. Journal of Computer and
System Sciences, vol. 64, no. 3, pages 542–578, 2002. (Cited on pages 25
and 68.)

[Geisler 2010] S. Geisler, C. Quix and S. Schiffer. A data stream-based eval-
uation framework for traffic information systems. In Proceedings of the
ACM SIGSPATIAL International Workshop on GeoStreaming, pages 11–
18. ACM, 2010. (Cited on page 19.)

Bibliography 157

[Girod 2007] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan, H. Balakrish-
nan and S. Madden. The case for a signal-oriented data stream manage-
ment system. In Proc. CIDR. Citeseer, 2007. (Cited on page 73.)

[Girod 2008] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan, H. Balakrish-
nan and S. Madden. Xstream: A signal-oriented data stream management
system. In Proc. ICDE, pages 1180–1189. IEEE, 2008. (Cited on page 73.)

[Golab 2003] L. Golab and M.T. Özsu. Issues in data stream management. ACM
Sigmod Record, vol. 32, no. 2, pages 5–14, 2003. (Cited on page 41.)

[Golab 2009] L. Golab, T. Johnson, J. S. Seidel and V. Shkapenyuk. Stream ware-
housing with DataDepot. In Proceedings of the 35th SIGMOD interna-
tional conference on Management of data, pages 847–854. ACM, 2009.
(Cited on pages 7 and 25.)

[Gretton 2012] A. Gretton, K.M. Borgwardt, M.J. Rasch, B. Schölkopf and
A. Smola. A kernel two-sample test. The Journal of Machine Learning
Research, vol. 13, pages 723–773, 2012. (Cited on page 92.)

[Guha 2003] S. Guha, A. Meyerson, N. Mishra, R. Motwani and L. O’Callaghan.
Clustering data streams: Theory and practice. Knowledge and Data Engi-
neering, IEEE Transactions on, vol. 15, no. 3, pages 515–528, 2003. (Cited
on page 126.)

[Gustafsson 1997] F. Gustafsson and J. Palmqvist. Change detection design for
low false alarm rates. threshold, vol. 10, page 4, 1997. (Cited on page 91.)

[Gustafsson 2001] F. Gustafsson and F. Gustafsson. Adaptive filtering and change
detection. Wiley Londres, 2001. (Cited on page 68.)

[Handy 2002] MJ Handy, M. Haase and D. Timmermann. Low energy adaptive
clustering hierarchy with deterministic cluster-head selection. In Mobile
and Wireless Communications Network, 2002. 4th International Workshop
on, pages 368–372. IEEE, 2002. (Cited on pages 11 and 126.)

[Hassanieh 2012a] H. Hassanieh, P. Indyk, D. Katabi and E. Price. Nearly opti-
mal sparse Fourier transform. In Proceedings of the 44th symposium on
Theory of Computing, pages 563–578. ACM, 2012. (Cited on pages 73, 81
and 147.)

[Hassanieh 2012b] H. Hassanieh, P. Indyk, D. Katabi and E. Price. Simple and
practical algorithm for sparse Fourier transform. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1183–1194. SIAM, 2012. (Cited on pages 73, 81 and 147.)

158 Bibliography

[Heinzelman 2000] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan.
Energy-efficient communication protocol for wireless microsensor net-
works. In System Sciences, 2000. Proceedings of the 33rd Annual
Hawaii International Conference on, pages 10–pp. IEEE, 2000. (Cited on
page 104.)

[Hernández-Orallo 2012] J. Hernández-Orallo, P. Flach and C. Ferri. A unified
view of performance metrics: translating threshold choice into expected
classification loss. Journal of Machine Learning Research, vol. 13, pages
2813–2869, 2012. (Cited on page 53.)

[Hey 2009] A. JG Hey, S. Tansley and K. M. Tolle. The fourth paradigm: data-
intensive scientific discovery. Microsoft Research Redmond, WA, 2009.
(Cited on page 3.)

[Hido 2008] S. Hido, T. Idé, H. Kashima, H. Kubo and H. Matsuzawa. Unsu-
pervised change analysis using supervised learning. In Proceedings of
the 12th Pacific-Asia conference on Advances in knowledge discovery and
data mining, pages 148–159. Springer-Verlag, 2008. (Cited on page 19.)

[Hirte 2012] S. Hirte, A. Seifert, S. Baumann, D. Klan and K. U. Sattler. Data3–
A Kinect Interface for OLAP Using Complex Event Processing. In Data
Engineering (ICDE), 2012 IEEE 28th International Conference on, pages
1297–1300. IEEE, 2012. (Cited on page 91.)

[Ho 2007] S.S. Ho and H. Wechsler. Detecting changes in unlabeled data streams
using martingale. In Proceedings of the 20th international joint conference
on Artifical intelligence, pages 1912–1917. Morgan Kaufmann Publishers
Inc., 2007. (Cited on page 23.)

[Huang 2003] W. Huang, E.R. Omiecinski and L. Mark. Evolution in Data
Streams. 2003. (Cited on pages 21 and 25.)

[Huang 2009] Weiyun Huang, Edward Omiecinski, Leo Mark and Minh Nguyen.
History Guided Low-Cost Change Detection in Streams. Data Warehousing
and Knowledge Discovery, pages 75–86, 2009. (Cited on page 25.)

[Huang 2013] G. Huang, J. He, J. Cao, Z. Qiao, M. Steyn& and K. Tarapore-
walla&6. A Real-Time Abnormality Detection System for Intensive Care
Management. In Proceeding of ICDE 2013 Conference, 2013. (Cited on
pages 148 and 149.)

[Ikonomovska 2009] E. Ikonomovska, J. Gama, R. Sebastião and D. Gjorgjevik.
Regression trees from data streams with drift detection. In Discovery Sci-
ence, pages 121–135. Springer, 2009. (Cited on page 26.)

Bibliography 159

[Jain 1999] A.K. Jain, M.N. Murty and P.J. Flynn. Data clustering: a review. ACM
computing surveys (CSUR), vol. 31, no. 3, pages 264–323, 1999. (Cited
on page 126.)

[Jain 2008] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrish-
nan, U. Çetintemel, M. Cherniack, R. Tibbetts and S. Zdonik. Towards a
streaming SQL standard. Proceedings of the VLDB Endowment, vol. 1,
no. 2, pages 1379–1390, 2008. (Cited on pages 41, 42 and 144.)

[Juang 2002] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh and D. Ruben-
stein. Energy-efficient computing for wildlife tracking: Design tradeoffs
and early experiences with ZebraNet. In ACM Sigplan Notices, volume 37,
pages 96–107. ACM, 2002. (Cited on page 12.)

[Kargupta 2001] H. Kargupta and B.H. Park. Mining decision trees from data
streams in a mobile environment. In Data Mining, 2001. ICDM 2001, Pro-
ceedings IEEE International Conference on, pages 281–288. IEEE, 2001.
(Cited on page 71.)

[Karnstedt 2007] M. Karnstedt, K.-U. Sattler and J. Quasebarth. Incremental Min-
ing for Facility Management. LWA 2007 Lernen–Wissen–Adaption, page
183, 2007. (Cited on pages 126, 127 and 149.)

[Karnstedt 2009] M. Karnstedt, D. Klan, C. Pölitz, K.-U. Sattler and C. Franke.
Adaptive burst detection in a stream engine. In Proceedings of the 2009
ACM symposium on Applied Computing, pages 1511–1515. ACM, 2009.
(Cited on page 20.)

[Kawahara 2009] Y. Kawahara and M. Sugiyama. Change-point detection in time-
series data by direct density-ratio estimation. In Proceedings of 2009
SIAM International Conference on Data Mining (SDM2009), pages 389–
400, 2009. (Cited on page 19.)

[Kifer 2004] D. Kifer, S. Ben-David and J. Gehrke. Detecting change in data
streams. In Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30, page 191. VLDB Endowment, 2004. (Cited
on pages 14, 23, 24, 43, 81, 144 and 147.)

[Kim 2008] Y. M. Kim, G. Zheng, S. H. Sohn and J. M. Kim. An alternative energy
detection using sliding window for cognitive radio system. In Advanced
Communication Technology, 2008. ICACT 2008. 10th International Con-
ference on, volume 1, pages 481–485. IEEE, 2008. (Cited on page 66.)

160 Bibliography

[Kim 2009] A.Y. Kim, C. Marzban, D.B. Percival and W. Stuetzle. Using labeled
data to evaluate change detectors in a multivariate streaming environment.
Signal Processing, vol. 89, no. 12, pages 2529–2536, 2009. (Cited on
pages 22 and 92.)

[Klan 2011] D. Klan, M. Karnstedt, K. Hose, L. Ribe-Baumann and K.U. Sat-
tler. Stream engines meet wireless sensor networks: cost-based planning
and processing of complex queries in AnduIN. Distributed and Parallel
Databases, vol. 29, no. 1, pages 151–183, 2011. (Cited on pages 11, 67,
125 and 127.)

[Kranen 2009] P. Kranen, I. Assent, C. Baldauf and T. Seidl. Self-adaptive anytime
stream clustering. In Data Mining, 2009. ICDM’09. Ninth IEEE Interna-
tional Conference on, pages 249–258. IEEE, 2009. (Cited on page 127.)

[Krishnamurthy 2003] B. Krishnamurthy, S. Sen, Y. Zhang and Y. Chen. Sketch-
based change detection: Methods, evaluation, and applications. In Pro-
ceedings of the 3rd ACM SIGCOMM Conference on Internet Measure-
ment, pages 234–247. ACM New York, NY, USA, 2003. (Cited on pages 22
and 67.)

[Kuncheva 2011] L. Kuncheva. Change Detection in Streaming Multivariate Data
Using Likelihood Detectors. Knowledge and Data Engineering, IEEE
Transactions on, no. 99, pages 1–1, 2011. (Cited on pages 22, 23 and 92.)

[Lai 2008] L. Lai, Y. Fan and H.V. Poor. Quickest detection in cognitive ra-
dio: A sequential change detection framework. In Global Telecommunica-
tions Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages 1–5. IEEE,
2008. (Cited on page 73.)

[Li 2006] Y. Li, Z. Wang and Y. Song. Wireless sensor network design for wildfire
monitoring. In Intelligent Control and Automation, 2006. WCICA 2006.
The Sixth World Congress on, volume 1, pages 109–113. IEEE, 2006.
(Cited on pages xiii and 5.)

[Li 2007] W. Li, X. Jin and X. Ye. Detecting change in data stream: Using sam-
pling technique. In Natural Computation, 2007. ICNC 2007. Third Inter-
national Conference on, volume 1, pages 130–134. IEEE, 2007. (Cited on
pages 67 and 146.)

[Liarou 2012] E. Liarou, S. Idreos, S. Manegold and M. Kersten. MonetDB/Dat-
aCell: online analytics in a streaming column-store. Proceedings of the
VLDB Endowment, vol. 5, no. 12, pages 1910–1913, 2012. (Cited on
pages 42 and 147.)

Bibliography 161

[Liarou 2013] Erietta Liarou, Stratos Idreos, Stefan Manegold and Martin Kersten.
Enhanced stream processing in a DBMS kernel. In Proceedings of the 16th
International Conference on Extending Database Technology, pages 501–
512. ACM, 2013. (Cited on pages 42 and 147.)

[Liu 2010] X. Liu, X. Wu, H. Wang, R. Zhang, J. Bailey and K. Ramamohanarao.
Mining distribution change in stock order streams. Prof. of ICDE, pages
105–108, 2010. (Cited on pages 20, 23 and 58.)

[Macmillan 2005] N.A. Macmillan and C.D. Creelman. Detection theory: A user’s
guide. Lawrence Erlbaum, 2005. (Cited on page 31.)

[Madden 2002] S. Madden and M. J Franklin. Fjording the stream: An architec-
ture for queries over streaming sensor data. In Data Engineering, 2002.
Proceedings. 18th International Conference on, pages 555–566. IEEE,
2002. (Cited on pages 109 and 110.)

[Manku 2002] G.S. Manku and R. Motwani. Approximate frequency counts over
data streams. In Proceedings of the 28th international conference on Very
Large Data Bases, pages 346–357. VLDB Endowment, 2002. (Cited on
page 24.)

[Manyika 2011] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Rox-
burgh and A.H. Byers. Big data: The next frontier for innovation, compe-
tition and productivity. McKinsey Global Institute, May, 2011. (Cited on
page 3.)

[Maslov 2012] A. Maslov, M. Pechenizkiy, T. Kärkkäinen and M. Tähtinen. Quan-
tile index for gradual and abrupt change detection from CFB boiler sensor
data in online settings. In Proceedings of the Sixth International Workshop
on Knowledge Discovery from Sensor Data, pages 25–33. ACM, 2012.
(Cited on page 24.)

[Massey Jr 1951] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness
of fit. Journal of the American statistical Association, vol. 46, no. 253,
pages 68–78, 1951. (Cited on page 14.)

[Masud 2008] M.M. Masud, J. Gao, L. Khan, J. Han and B. Thuraisingham. A
practical approach to classify evolving data streams: Training with lim-
ited amount of labeled data. In Data Mining, 2008. ICDM’08. Eighth
IEEE International Conference on, pages 929–934. IEEE, 2008. (Cited
on page 147.)

[Mörchen 2003] F. Mörchen. Time series feature extraction for data mining using
dwt and dft. 2003. (Cited on page 71.)

162 Bibliography

[Muthukrishnan 2005] S. Muthukrishnan. Data streams: Algorithms and applica-
tions. Now Publishers Inc, 2005. (Cited on pages 22 and 23.)

[Muthukrishnan 2007] S. Muthukrishnan, E. van den Berg and Y. Wu. Sequential
change detection on data streams. ICDM Workshops, 2007. (Cited on
page 23.)

[Naor 1993] M. Naor and L. Stockmeyer. What can be computed locally? pages
184–193, 1993. (Cited on pages 29 and 129.)

[Nelson 2012] J. Nelson. Sketching and streaming algorithms for processing mas-
sive data. XRDS: Crossroads, The ACM Magazine for Students, vol. 19,
no. 1, pages 14–19, 2012. (Cited on page 67.)

[Neuman 2011] B. Neuman, B. Sofman, A. Stentz and J.A. Bagnell.
Segmentation-based online change detection for mobile robots. In
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 5427–5434. IEEE, 2011. (Cited on page 91.)

[Neyman 1933] J. Neyman and E.S. Pearson. On the problem of the most efficient
tests of statistical hypotheses. Philosophical Transactions of the Royal So-
ciety of London. Series A, Containing Papers of a Mathematical or Physical
Character, vol. 231, no. 694-706, page 289, 1933. (Cited on page 33.)

[Ng 2008a] W. Ng and M. Dash. A change detector for mining frequent patterns
over evolving data streams. In Systems, Man and Cybernetics, 2008. SMC
2008. IEEE International Conference on, pages 2407–2412. IEEE, 2008.
(Cited on page 26.)

[Ng 2008b] W. Ng and M. Dash. A test paradigm for detecting changes in trans-
actional data streams. In Database Systems for Advanced Applications,
pages 204–219. Springer, 2008. (Cited on page 24.)

[Nikovski 2010] D. Nikovski and A. Jain. Fast adaptive algorithms for abrupt
change detection. Machine learning, vol. 79, no. 3, pages 283–306, 2010.
(Cited on page 24.)

[Niu 2004] R. Niu, M. Moore and D. Klamer. Decision fusion in a wireless sensor
network with a large number of sensors. 2004. (Cited on page 112.)

[Niu 2006a] R. Niu and P.K. Varshney. Performance evaluation of decision fusion
in wireless sensor networks. In Information Sciences and Systems, 2006
40th Annual Conference on, pages 69–74. IEEE, 2006. (Cited on pages 16
and 123.)

Bibliography 163

[Niu 2006b] R. Niu, P.K. Varshney and Q. Cheng. Distributed detection in a large
wireless sensor network. Information Fusion, vol. 7, no. 4, pages 380–394,
2006. (Cited on pages 16 and 123.)

[Oppenheim 1989] A.V. Oppenheim, R.W. Schafer, J.R. Bucket al. Discrete-time
signal processing, volume 2. Prentice hall Englewood Cliffs, NJ:, 1989.
(Cited on page 72.)

[Palpanas 2003] T. Palpanas, D. Papadopoulos, V. Kalogeraki and D. Gunopu-
los. Distributed deviation detection in sensor networks. ACM SIGMOD
Record, vol. 32, no. 4, pages 77–82, 2003. (Cited on pages 16, 28, 29
and 102.)

[Pham 2012] D.-S. Pham, S. Venkatesh, M. Lazarescu and S. Budhaditya.
Anomaly detection in large-scale data stream networks. Data Mining and
Knowledge Discovery, pages 1–45, 2012. (Cited on page 16.)

[Rajagopal 2008] R. Rajagopal, X.L. Nguyen, S.C. Ergen and P. Varaiya. Dis-
tributed online simultaneous fault detection for multiple sensors. In In-
formation Processing in Sensor Networks, 2008. IPSN’08. International
Conference on, pages 133–144. IEEE, 2008. (Cited on pages 15 and 123.)

[Ray 2008] P. Ray and P.K.V. Fellow. Distributed detection in wireless sensor
networks using dynamic sensor thresholds. International Journal of Dis-
tributed Sensor Networks, vol. 4, no. 1, pages 5–12, 2008. (Cited on
page 112.)

[Ray 2011] P. Ray and P. K Varshney. False Discovery Rate Based Sensor
Decision Rules for the Network-Wide Distributed Detection Problem.
Aerospace and Electronic Systems, IEEE Transactions on, vol. 47, no. 3,
pages 1785–1799, 2011. (Cited on pages 105 and 148.)

[Roddick 2000] J.F. Roddick, L. Al-Jadir, L. Bertossi, M. Dumas, H. Gregersen,
K. Hornsby, J. Lufter, F. Mandreoli, T. Mannisto, E. Mayolet al. Evolu-
tion and change in data management:issues and directions. ACM Sigmod
Record, vol. 29, no. 1, pages 21–25, 2000. (Cited on pages 18 and 20.)

[Ross 2009] G.J. Ross, D.K. Tasoulis and N.M. Adams. Online annotation and
prediction for regime switching data streams. In Proceedings of the 2009
ACM symposium on Applied Computing, pages 1501–1505. ACM, 2009.
(Cited on pages 4 and 21.)

164 Bibliography

[Sagen 2010] A. Sagen, C. Labbé, M. M. Gaber, S. Krishnaswamy, A. B. Waluyo
and S. Loke. A Data Clustering Approach to Energy Conservation in Wire-
less Sensor Networks. In Workshop on Ubiquitous Data Mining, pages
13–17, 2010. (Cited on pages 11 and 126.)

[Sebastião 2007] R. Sebastião and J. Gama. Change detection in learning his-
tograms from data streams. Progress in Artificial Intelligence, pages 112–
123, 2007. (Cited on page 67.)

[Severo 2006] M. Severo and J. Gama. Change detection with kalman filter and
CUSUM. In Proceedings of the 9th international conference on Discovery
Science, pages 243–254. Springer-Verlag, 2006. (Cited on page 68.)

[Singh 1989] A. Singh. Review Article Digital change detection techniques using
remotely-sensed data. International Journal of Remote Sensing, vol. 10,
no. 6, pages 989–1003, 1989. (Cited on page 19.)

[Song 2007] X. Song, M. Wu, C. Jermaine and S. Ranka. Statistical change detec-
tion for multi-dimensional data. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
667–676. ACM, 2007. (Cited on pages 24 and 49.)

[Sun 2006] J. Sun, S. Papadimitriou and C. Faloutsos. Distributed pattern dis-
covery in multiple streams. Advances in Knowledge Discovery and Data
Mining, pages 713–718, 2006. (Cited on page 126.)

[Sun 2010] J. Sun, D. Sow, J. Hu and S. Ebadollahi. A system for mining temporal
physiological data streams for advanced prognostic decision support. In
Data Mining (ICDM), 2010 IEEE 10th International Conference on, pages
1061–1066. IEEE, 2010. (Cited on pages 148 and 149.)

[Tao 2009] Y. Tao and M T. Ozsu. Mining data streams with periodically chang-
ing distributions. In Proceedings of the 18th ACM conference on Informa-
tion and knowledge management, pages 887–896. ACM, 2009. (Cited on
page 19.)

[Tran 2011a] D.-H. Tran and K.-U. Sattler. On detection of changes in sensor data
streams. In Proceedings of the 9th International Conference on Advances
in Mobile Computing and Multimedia, pages 50–57. ACM, 2011. (Cited
on pages 24 and 29.)

[Tran 2011b] D.-H. Tran, J. Yang and K.-U Sattler. Decentralized change detec-
tion in wireless sensor network using dft-based synopsis. In Mobile Data
Management (MDM), 2011 12th IEEE International Conference on, vol-
ume 1, pages 226–235. IEEE, 2011. (Cited on pages 12, 29, 119 and 148.)

Bibliography 165

[Tschumitschew 2010] Katharina Tschumitschew and Frank Klawonn. Incremen-
tal quantile estimation. Evolving Systems, vol. 1, pages 253–264, 2010.
(Cited on page 73.)

[Valizadegan 2007] H. Valizadegan and P.N. Tan. A Prototype-driven Framework
for Change Detection in Data Stream Classification. In IEEE Symposium
on Computational Intelligence and Data Mining, 2007. CIDM 2007, pages
88–95. Citeseer, 2007. (Cited on page 68.)

[van Leeuwen 2008] M. van Leeuwen and A. Siebes. Streamkrimp: Detecting
change in data streams. Machine Learning and Knowledge Discovery in
Databases, pages 672–687, 2008. (Cited on page 24.)

[Varshney 1986] PK Varshneyet al. Optimal data fusion in multiple sensor detec-
tion systems. Aerospace and Electronic Systems, IEEE Transactions on,
no. 1, pages 98–101, 1986. (Cited on pages 104 and 109.)

[Varshney 1997] P.K. Varshney and CS Burrus. Distributed detection and data
fusion. Springer Verlag, 1997. (Cited on page 28.)

[Veeravalli 2012] V.V. Veeravalli and P.K. Varshney. Distributed inference in wire-
less sensor networks. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 370, no. 1958,
pages 100–117, 2012. (Cited on pages 27, 28 and 104.)

[VISION 2007] AR VISION. Wireless Sensors in Distributed Detection Applica-
tions. IEEE SIGNAL PROCESSING MAGAZINE, vol. 1053, no. 5888/07,
2007. (Cited on page 102.)

[Vitter 1985] J. S Vitter. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS), vol. 11, no. 1, pages 37–57, 1985. (Cited
on page 146.)

[Yang 2011] J. Yang, T. Simon, C. Mueller, D. Klan and K.U Sattler. Comparing
and Refining Gossip Protocols for Fault Tolerance in Wireless P2P Sys-
tems. In Parallel, Distributed and Network-Based Processing (PDP), 2011
19th Euromicro International Conference on, pages 595–599. IEEE, 2011.
(Cited on pages 12, 110 and 119.)

[Yin 2008] J. Yin and M. M. Gaber. Clustering distributed time series in sensor
networks. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on, pages 678–687. IEEE, 2008. (Cited on pages 126 and 128.)

166 Bibliography

[Younis 2004] O. Younis and S. Fahmy. HEED: a hybrid, energy-efficient, dis-
tributed clustering approach for ad hoc sensor networks. Mobile Comput-
ing, IEEE Transactions on, vol. 3, no. 4, pages 366–379, 2004. (Cited on
pages 11 and 126.)

[Zaki 2002] M.J. Zaki and Y. Pan. Introduction: recent developments in parallel
and distributed data mining. Distributed and Parallel Databases, vol. 11,
no. 2, pages 123–127, 2002. (Cited on page 126.)

[Zhang 1996] T. Zhang, R. Ramakrishnan and M. Livny. BIRCH: an efficient
data clustering method for very large databases. ACM SIGMOD Record,
vol. 25, no. 2, pages 103–114, 1996. (Cited on pages 84 and 85.)

[Zhang 2008] Q. Zhang, J. Liu and W. Wang. Approximate Clustering on Dis-
tributed Data Streams. In ICDE, pages 1131–1139, 2008. (Cited on
pages 128 and 141.)

[Zhou 2007] A. Zhou, F. Cao, Y. Yan, C. Sha and X. He. Distributed data stream
clustering: A fast EM-based approach. In Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on, pages 736–745. Ieee, 2007.
(Cited on pages 140 and 141.)

[Zhou 2008] A. Zhou, F. Cao, W. Qian and C. Jin. Tracking clusters in evolving
data streams over sliding windows. Knowledge and Information Systems,
vol. 15, no. 2, pages 181–214, 2008. (Cited on page 26.)

[Zhu 2002] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands
of data streams in real time. In Proceedings of the 28th international con-
ference on Very Large Data Bases, pages 358–369. VLDB Endowment,
2002. (Cited on pages 14, 72 and 73.)

[Zhu 2010] X. Zhu. Stream Data Mining Repository.
http://www.cse.fau.edu/ xqzhu/stream.html, 2010., 2010. (Cited on
pages 93 and 134.)

[Zliobaite and 2012] I. Zliobaite and and B. Gabrys. Adaptive Preprocessing for
Streaming Data. Knowledge and Data Engineering, IEEE Transactions on,
vol. PP99, no. 99, page 1, 2012. (Cited on page 68.)

[Zou 2006] J. Zou, A. Gilbert, M. Strauss and I. Daubechies. Theoretical and
experimental analysis of a randomized algorithm for sparse Fourier trans-
form analysis. Journal of Computational physics, vol. 211, no. 2, pages
572–595, 2006. (Cited on pages 73 and 81.)

Bibliography 167

[Zouari 2008] R. Zouari, L. Mevel and M. Basseville. An Adaptive Statistical
Approach to Flutter Monitoring. In World Congress, volume 17, pages
12024–12029, 2008. (Cited on page 19.)

	I Introduction and Background
	Introduction
	Thesis Statement
	Motivating Scenario
	Challenges and Solutions

	Contributions of the Dissertation
	Related Work
	Change Detection in A Single Data Stream
	Reactive Monitoring
	Distributed Detection of Changes in Streaming Data

	Summary

	Background
	Introduction
	Change Detection in Streaming Data
	Change Detection: Definitions and Notation
	Change Detection Methods in Streaming Data
	Design Methodology

	Distributed Change Detection in Streaming Data
	Distributed Detection: One-time versus. Continuous
	Locality in Distributed Computing

	Efficiency Metrics
	Efficiency Metrics from Detection Theory
	Efficiency Metrics from Information Retrieval
	ROC and PR Curves

	Summary

	II Change Detection in A Single Data Stream
	Window-based Change Detection in Streaming Data
	Introduction
	Window-based Change Detection
	Sliding Window Model
	Change Detection using Sliding Windows Model

	Change Detection Criteria
	Dissimilarity Metrics
	Geometric Dissimilarity Metrics
	Statistical Dissimilarity Metrics
	Comparison of Geometric and Statistical Distances

	Detection Threshold
	Evaluation of Change Detection
	Effectiveness of Window Width
	Effectiveness of Detection Threshold
	Effectiveness of Dissimilarity Metrics

	Summary

	Synopsis-based Detection of Changes in A Single Data Stream
	Introduction
	Synopsis based Change Detection
	DFT-based Change Detection
	Incremental Computation of DFT coefficients
	Algorithm Description

	Evaluation
	Evaluation on Accuracy of Detection
	Evaluation on Performance

	Summary

	Change Detection in Streaming Data by Clustering
	Introduction
	Formal Model
	Automated Change Detection by Clustering
	Automated Change Detection
	Maintenance of Clustering using Reactive Approach

	Related Work
	Automated Change Detection
	Change Detection in Multivariate Streaming Data

	Evaluation
	Effectiveness of Window Width
	Effectiveness of Cluster Number
	Effectiveness of Sliding Step
	Evaluation on Clusterings using Reactive Approach

	Summary

	III Distributed Detection of Changes in Streaming Data
	Distributed Detection of Changes in Streaming Data
	Introduction
	Problem Formulation
	The Coordinator
	The Remote Site
	Decision Structure

	Distributed Change Detection
	Distributed Change Detection by Gossiping
	Distributed Detection by False Discovery Rate
	Distributed Detection of Change by Clustering

	Evaluation
	Simulation
	Analysis

	Related Work
	Summary

	Distributed Clustering of Streaming Data
	Introduction
	Problem Formulation
	Algorithm Description
	The Remote Process
	The Coordinator Process
	Algorithm Analysis

	Empirical Results
	Evaluation on Global Clustering
	Evaluation on Communication Efficiency
	Effect of Block Width and Number of Micro-clusters

	Related Work
	Summary

	Conclusion
	Key Contributions
	Future Directions

	Bibliography

