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Abstract

In vector optimization with a variable ordering structure the partial or-

dering defined by a convex cone is replaced by a whole family of convex cones,

one associated with each element of the space. As these vector optimiza-

tion problems are not only of interest in applications but also mathematical

challenging, in recent publications it was started to develop a comprehensive

theory. In doing that also notions of proper efficiency where generalized to

variable ordering structures. In this paper we study the relations between

several types of proper optimality notions, among others based on local and

global approximations of the considered sets. We give scalarization results

based on new functionals defined by elements from the dual cones which al-

low characterizations also in the nonconvex case.

Key Words: vector optimization, variable ordering structure, proper efficiency,
scalarization

Mathematics subject classifications (MSC 2000): 90C29, 90C30, 90C48

1 Introduction

In vector optimization one studies optimization problems with a vector valued ob-
jective map. For comparing elements in the objective space, i.e. elements from a
set in a linear space, one can assume that a partial ordering, and hence a convex
cone introducing this partial ordering, is given. More general concepts allow that
preferences vary depending on the current values in the objective space. This means
that an individual ordering cone is attached to each element in the objective space
which is mathematically modeled by a set-valued map on the objective space, called
ordering map, with images being convex cones. Vector optimization problems with
such variable ordering structures are the topic of this manuscript.
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Variable ordering structures were already introduced in the seventies [28, 6] and
have gained recently more interest due to several applications [2, 27, 16, 25, 26, 10].
Various scalarization approaches have been proposed for these ordering structures,
like linear scalarizations based on elements from the dual space [16, 10], and non-
linear scalarizations based on a representation of the images of the ordering map
as Bishop-Phelps cones [14], using elements of the augmented dual cones of the im-
ages of the ordering map [15] or generalizing a functional known in the literature as
Tammer-Weidner functional [11, 24, 1]. Optimality conditions of Fermat and La-
grange type based on scalarization results [14] and also by a more general approach
[3] were proposed and also first numerical procedures were presented [19, 12, 5]. Next
to optimal and weakly optimal elements, also strongly optimal [14] and properly op-
timal elements [15] for variable ordering structures were defined. First scalarization
results for these proper optimal elements were given in [15] based on functionals
defined by elements from the augmented dual cones.

Proper optimal elements for variable ordering structures and their characteriza-
tion is the main topic of this manuscript. The set of proper optimal elements are a
subset of the set of optimal elements. By additional restrictions one tries to eliminate
”improper” optimal elements and to allow more satisfactory scalarization results for
the proper optimal elements (cf. [23]). By these additional restrictions, those opti-
mal elements are eliminated, which can be interpreted in a finite-dimensional space
as having an unbounded trade-off and which are for that reason not of interest in
applications. Moreover, it is known that, in case the set is convex, the properly
efficient elements of a set in a partially ordered space are completely characterizable
by linear scalarization based on elements from the quasi-interior of the dual cone,
while for efficient elements, the necessary and the sufficient conditions do not match.

We concentrate in this manuscript on the definitions of properly optimal elements
in the sense of Henig [18], Benson [4] and Borwein [7] for variable ordering structures.
Thereby, one has to differentiate between the concepts of nondominatedness and of
preference w.r.t. a variable ordering structure: based on the ordering map, two dif-
ferent binary relations can be defined leading to two different optimality notions,
the minimal and the nondominated elements. In [15] already generalizations of the
proper optimality notions known from partially ordered spaces have been suggested
for both concepts, the minimal and the nondominated elements. There, also scalar-
ization results based on nonlinear scalar-valued functionals defined by elements from
the augmented dual cones are provided. For that, the cones are required to have a
bounded base and in the scalarization results it is required that the cones and their
ε-conic neighborhoods satisfy some separation property.

In this paper, we study in detail the relation between the introduced proper op-
timality notions and clarify for they first time their relations and some basic prop-
erties. It turns out that most, but not all, results known to hold in partially ordered
spaces remain true in case of a variable ordering structure. Moreover, we present a
new scalarization approach which is based on elements from the dual cones of the
images of the ordering map. This scalarization can be used to characterize optimal
elements without convexity assumptions. While the definition of the functional is
based on linear functionals from the dual cones, the scalarization functional is in
general nonlinear and allows complete characterizations of weakly and properly op-
timal elements. In contrast to the scalarizations introduced in [15], the assumptions
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are weaker — and also the proofs are more direct as no theory of augmented dual
cones or separation properties for special cones are required. We also give shortly
characterization results for minimal elements based on a linear functional. By that
we generalize the known linear scalarization results known from partially ordered
spaces to vector optimization problems with a variable ordering structure. Based on
the proposed characterization results, optimality conditions of Fermat and Lagrange
type can be derived as well as numerical solution methods.

In Section 2 we give some preliminary results and collect the definitions of
(weakly, strongly) minimal and nondominated elements. The different proper op-
timality notions and their relations are the topic of Section 3. In Section 4, we
present the mentioned scalarization functionals and we give necessary and sufficient
conditions for the various optimality notions.

2 Preliminaries

In the following, let (Y, ‖ · ‖) be a real normed space and let 2Y denote the set of all
subsets of Y . For some nonempty set Ω, we denote by int(Ω), cl(Ω), cone(Ω) and
conv(Ω) the interior of Ω, the closure of Ω, the cone generated by Ω and the convex
hull of Ω. For some nonempty set Ω ∈ Y and for some element ȳ ∈ cl(Ω), T (Ω, ȳ)
denotes the contingent cone (or the Bouligand tangent cone) to Ω at ȳ, i.e.

T (Ω, ȳ) := {h ∈ Y | ∃(λn)n∈N ⊆ R++, ∃(yn)n∈N ⊆ Ω
such that lim

n→∞
yn = ȳ and h = lim

n→∞
λn(yn − ȳ)}.

Thereby, R++ denotes the set of real positive numbers. A nontrivial cone K is
a cone K with K 6= {0Y } and a base of a nontrivial cone K is a convex set B ⊆ K
such that each element k ∈ K \ {0Y } has a unique representation as k = λ b with
λ > 0 and b ∈ B.

We assume the variable ordering structure on Y is defined by a set-valued map
(also called an ordering map) D : Y → 2Y with D(y) a nontrivial convex cone for
all y ∈ Y . Let A be a nonempty subset of Y . The following definitions of opti-
mal elements (w.r.t. minimization) are known in the literature for variable ordering
structures introduced by a cone-valued map D [28, 8, 10, 14, 13].

Definition 2.1. Let ȳ ∈ A.

(a) The element ȳ is a nondominated element of A w.r.t. D if ȳ 6∈ {y}+D(y) for
all y ∈ A \ {ȳ}.

(b) Supposing that int(D(y)) 6= ∅ for all y ∈ A, ȳ is a weakly nondominated
element of A w.r.t. D if ȳ 6∈ {y}+ int(D(y)) for all y ∈ A.

(c) The element ȳ is a strongly nondominated element of A w.r.t. D if ȳ ∈ {y}−
D(y) for all y ∈ A.

(d) The element ȳ is a minimal element of A w.r.t. D if y /∈ {ȳ} − D(ȳ) for all
y ∈ A \ {ȳ}.

3



(e) The element ȳ with int(D(ȳ)) 6= ∅ is a weakly minimal element of A w.r.t. D
if y /∈ {ȳ} − int(D(ȳ)) for all y ∈ A.

(f) The element ȳ is a strongly minimal element of A w.r.t. D if A ⊆ {ȳ}+D(ȳ).

If D(y) = K for all y ∈ Y with K some pointed nontrivial convex cone then the
definitions of a (weakly/strongly) nondominated element of a set A w.r.t. D and of a
(weakly/strongly) minimal element of a set A w.r.t.D coincide with the concepts of a
(weakly/strongly) optimal element of A in the space Y partially ordered by the con-
vex cone K. We will denote the (weakly/strongly/properly) optimal elements w.r.t.
the partial ordering introduced by some convex coneK as (weakly/strongly/properly)
efficient elements.

Throughout the paper we assume that for the ordering map D : Y → 2Y the
cones D(y) are pointed nontrivial convex cones for all y ∈ Y .

3 Proper optimality

Following the definitions for properly efficient elements given by Henig [18], Ben-
son [4] and Borwein [7] in partially ordered space the following generalizations for
variable ordering structures were introduced in [15]. Note that we do not require in
the definitions that the elements ȳ ∈ A are a nondominated/minimal element of A
w.r.t. D as it was done in [15]. We will show later that the definitions below already
imply that ȳ is a nondominated or a minimal element of A w.r.t. D, respectively.

Definition 3.1. Let ȳ ∈ A.

(a) The element ȳ is a properly nondominated element in the sense of Henig of
A w.r.t. D if there is a cone-valued map K : Y → 2Y with K(y) a convex cone
and D(y) \ {0Y } ⊆ int(K(y)) for all y ∈ Y such that ȳ is a nondominated
element of A w.r.t. K, i.e.

ȳ 6∈ {y}+K(y) ∀ y ∈ A \ {ȳ}.

(b) The element ȳ is a properly nondominated element in the sense of Benson of
A w.r.t. D if ȳ is a nondominated element of the set

{ȳ}+ cl(cone(
⋃

a∈A

({a}+D(a))− {ȳ}))

w.r.t. D.

(c) The element ȳ is a properly nondominated element in the sense of Borwein of
A w.r.t. D if ȳ is a nondominated element of the set

{ȳ}+ T (
⋃

a∈A

({a}+D(a)) , ȳ)

w.r.t. D.
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(d) The element ȳ is a properly minimal element in the sense of Henig of A w.r.t.
D if there is a cone-valued map K : Y → 2Y with K(y) a convex cone and
D(y) \ {0Y } ⊆ int(K(y)) for all y ∈ Y such that ȳ is a minimal element of A
w.r.t. K, i.e.

y 6∈ {ȳ} − K(ȳ) ∀ y ∈ A \ {ȳ}.

(e) The element ȳ is a properly minimal element in the sense of Benson of A
w.r.t. D if ȳ is a minimal element of the set

{ȳ}+ cl(cone(A+D(ȳ)− {ȳ}))

w.r.t. D.

(f) The element ȳ is a properly minimal element in the sense of Borwein of A
w.r.t. D if ȳ is a minimal element of the set

{ȳ}+ T (A+ D(ȳ), ȳ)

w.r.t. D.

Note that in the definition of Henig proper optimality one normally requires
closed pointed ordering cones (here: D(y)). In case D(y) is a pointed convex cone
with D(y) \ {0Y } an open set for all y ∈ Y , then for K(y) := D(y)

D(y) \ {0Y } = int(D(y)) = int(K(y)).

Hence, in this case, the definitions above for properly minimal/nondominated ele-
ments in the sense of Henig coincide with the definitions of minimal/nondominated
elements w.r.t. D.

According to [17] we define by ndGHe(A,D)/ndBe(A,D)/ndBo(A,D) and by
mGHe(A,D)/mBe(A,D)/mBo(A,D) the set of all properly nondominated elements
and the set of all properly minimal elements in the sense of Henig/Benson/Borwein
of A w.r.t. D, respectively. We will also use the following sets: Let ȳ ∈ A,

M :=
⋃

a∈A

({a}+D(a)) and Mȳ := A+D(ȳ) . (1)

The above definitions imply that ȳ is a nondominated or a minimal element of A
w.r.t. D, respectively, and hence this requirement, as given in the original definitions
in [15], is redundant and can be omitted:

Lemma 3.2. Let ȳ ∈ A.

(i) If ȳ ∈ ndGHe(A,D) or ȳ ∈ ndBe(A,D) then ȳ is a nondominated element of
A w.r.t. D.

(ii) If ȳ ∈ mGHe(A,D) or ȳ ∈ mBe(A;D) then ȳ is a minimal element of A w.r.t.
D.

Proof. The conclusions follow immediately from the definition of a nondomina-
ted/minimal element, since D(y) ⊆ K(y) for all y ∈ Y , A ⊆ {ȳ}+cl(cone(M−{ȳ})),
and A ⊆ {ȳ}+ cl(cone(Mȳ − {ȳ})) with M and Mȳ as defined in (1).
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For the analogous results in the case of Borwein we refer to the forthcoming
Lemma 3.7(i) and Theorem 3.8(i).

The following results are direct consequences from the fact that for sets Ω and
elements ȳ ∈ Ω, T (Ω, ȳ) ⊆ cl(cone(Ω − {ȳ})), and in case Ω is starshaped w.r.t. ȳ
even equality holds, see for instance [20, Theorem 3.44 and Corollary 3.46].

Lemma 3.3. Let ȳ ∈ A and let the sets M and Mȳ be defined as in (1). Then the
following holds:

(i) ȳ ∈ ndBe(A,D) ⇒ ȳ ∈ ndBo(A,D).

(ii) If the set M is starshaped w.r.t. ȳ, then ȳ ∈ ndBe(A,D) ⇔ ȳ ∈ ndBo(A,D).

(iii) ȳ ∈ mBe(A,D) ⇒ ȳ ∈ mBo(A,D).

(iv) If the set Mȳ is starshaped w.r.t. ȳ, then ȳ ∈ mBe(A,D) ⇔ ȳ ∈ mBo(A,D).

For relating properly minimal elements in the sense of Henig w.r.t. D with prop-
erly efficient elements in the sense of Henig in a partially ordered space we need
the following lemma. This lemma also gives an alternative way of defining proper
minimality in the sense of Henig w.r.t. a variable ordering structure.

Lemma 3.4. [15, Lemma 4] Let ȳ ∈ A. Then ȳ ∈ mGHe(A,D) if and only if
there is a convex cone K with D(ȳ) \ {0Y } ⊆ int(K) such that y 6∈ {ȳ} −K for all
y ∈ A \ {ȳ}.

Remark 3.5. As a direct consequence of the definitions and of Lemma 3.4, ȳ is a
properly minimal element in the sense of Henig/Benson/Borwein of A w.r.t. D if
and only if it is a properly efficient element in the sense of Henig/Benson/Borwein
of A in the space Y partially ordered by the convex cone K := D(ȳ).

We define by effGHe(A,K)/effBe(A,K)/effBo(A,K) the set of all properly effi-
cient elements in the sense of Henig/Benson/Borwein of A w.r.t. a partially ordering
introduced by the pointed convex cone K. For the study of the relation of properly
nondominated and minimal elements in the sense of Benson and Henig we need the
following result.

Lemma 3.6. [9, Proposition 2.2] Let P ⊆ Y be a weakly closed nontrivial cone and
C ⊆ Y be a cone with a weakly compact base such that P ∩ C = {0Y }. Then there
exists a closed pointed convex cone K ⊆ Y which has a closed bounded base such
that C \ {0Y } ⊆ int(K) and P ∩K = {0Y }.

This result is used in the proofs of the following lemma and of Theorem 3.8.

Lemma 3.7. Let ȳ ∈ A. Then the following holds:

(i) If ȳ ∈ mBo(A,D), then ȳ is a minimal element of A w.r.t. D.

(ii) If ȳ ∈ mGHe(A,D) and the cone K(ȳ) in the definition can be chosen to be
pointed, then ȳ ∈ mBe(A,D).

(iii) If D(ȳ) has a weakly compact base, then ȳ ∈ mBe(A,D) ⇒ ȳ ∈ mGHe(A,D).
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Proof.
(i) is a consequence of Remark 3.5 and the fact that ȳ ∈ effBo(A,K) implies that ȳ
is an efficient element of A w.r.t. K, see [21, Proposition 3.2].
(ii) follows from Remark 3.5, together with the inclusion effGHe(A,K) ⊆ effBe(A,K),
given in [17, Theorem 4.2] (and for the finite dimensional case already in [18, The-
orem 2.1]) and noting that closedness of K is not required for the proof given there
while pointedness of the cone K ′ which contains K \ {0Y } in its interior is needed.
(iii) follows from Remark 3.5, together with the inclusion effBe(A,K) ⊆ effGHe(A,K)
given in [22, Remark 5.3] based on Lemma 3.6 (see also [17, Theorem 4.2 and p.
9]).

We give in Lemma 4.8 assumptions under which ȳ ∈ mGHe(A,D) always implies
that the cone K(ȳ) in the definition can be chosen to be pointed.

For properly nondominated elements we can prove the following results.

Theorem 3.8. Let ȳ ∈ A. Then the following holds:

(i) If ȳ ∈ ndBo(A,D), then ȳ is a nondominated element of A w.r.t. D.

(ii) If D(y) has a weakly compact base for all y ∈ Y , then ȳ ∈ ndBe(A,D) ⇒ ȳ ∈
ndGHe(A,D).

Proof.
(i) Let ȳ ∈ ndBo(A,D) and the set M be defined as in (1). Assume that ȳ is not
a nondominated element of A w.r.t. D. Then there exist ŷ ∈ A \ {ȳ} ⊆ M \ {ȳ}
and d ∈ D(ŷ) \ {0Y } such that ȳ = ŷ + d. Let λn := n, dn := (1 − 1

n
)d ∈ D(ŷ) and

yn := ŷ + dn ∈ {ŷ}+D(ŷ) ⊆M for all n ∈ N. Then it follows

lim
n→∞

yn = lim
n→∞

(ŷ + dn) = lim
n→∞

(

ȳ −
1

n
d

)

= ȳ

and

lim
n→∞

λn (yn − ȳ) = lim
n→∞

n (ŷ + dn − ȳ) = lim
n→∞

n (dn − d) = −d ∈ T (M, ȳ).

Hence, ȳ = ŷ + d ∈ {ŷ} + D(ŷ) and ŷ = ȳ − d ∈ ({ȳ}+ T (M, ȳ)) \ {ȳ} being a
contradiction to that ȳ ∈ ndBo(A,D).
(ii) Let ȳ ∈ ndBe(A,D) and define M̄ȳ := {ȳ}+cl(cone(M −{ȳ})). Let y ∈ A\ {ȳ}
be arbitrarily chosen. Since A ⊆ M̄ȳ and, by definition, ȳ /∈ {z} + D(z) for all
z ∈ M̄ȳ \ {ȳ} we get y − ȳ /∈ −D(y). As D(y) is a cone it follows

cl(cone({y − ȳ})) ∩ (−D(y)) = {0Y }.

Using Lemma 3.6 there exists a closed pointed convex cone K(y) ⊆ Y with

D(y) \ {0Y } ⊆ int(K(y)) and cl(cone({y − ȳ})) ∩ (−K(y)) = {0Y }.

Hence, we obtain y − ȳ /∈ −K(y) respectively ȳ /∈ {y}+K(y), and we are done.

For the opposite direction in the conclusion of Theorem 3.8(ii) we refer to the fol-
lowing example, which shows that even under strong assumptions ȳ ∈ ndGHe(A,D)
does not imply ȳ ∈ ndBe(A,D) or ȳ ∈ ndBo(A,D).
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Example 3.96
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D(ȳ) w.c.b.

ȳ ∈ ndBe(A,D) ȳ ∈ mBe(A,D)
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x





M stars. w.r.t. ȳ





y

x





Mȳ stars. w.r.t. ȳ

ȳ ∈ ndBo(A,D) ȳ ∈ mBo(A,D)

Figure 1: Diagram illustrating results of Lemma 3.3, Lemma 3.7, and Theorem 3.8.
We use the abbreviations w.c.b. for weakly compact base and stars. for starshaped.

Example 3.9. Let A = {(y1, y2) ∈ R
2 | y1 + y2 ≥ 0, y1 − y2 ≤ 2}, ȳ = (0, 0), and

D(y) =

{

cone(conv({(0, 1), (1, 1)})) ∀ y ∈ A \ {ȳ},
cone(cone({(−1, 1), (1, 1)})) ∀ y ∈ (Y \ A) ∪ {ȳ}.

Then ȳ ∈ ndGHe(A,D). To see this, define (for example) for a small ε > 0

K(y) =

{

cone(conv({(−ε, 1), (1 + ε, 1)})) ∀ y ∈ A \ {ȳ},
cone(cone({(−1− ε, 1), (1 + ε, 1)})) ∀ y ∈ (Y \ A) ∪ {ȳ}.

Furthermore, for the set M defined as in (1) we have M = A and for z = (2,−2) ∈
cl(cone(M − {ȳ})) = {(y1, y2) ∈ R

2 | y1 + y2 ≥ 0} we have ȳ ∈ {z} +D(z). Hence,
ȳ 6∈ ndBe(A,D). Finally, since M is a convex set, it follows ȳ /∈ ndBe(A,D) =
ndBo(A,D) by using Lemma 3.3(ii).
The cones D(y) are closed pointed convex cones with a compact base and according
to [12, Lemma 2.1] the binary relation ≤ defined by y1 ≤ y2 :⇔ y2 ∈ y1 + D(y1)
for all y1, y2 ∈ Y is even transitive and antisymmetric.

See Figure 1 for a diagram illustrating the relations between the different proper
optimality notions.

4 Scalarization results

In the following (Y ∗, ‖·‖∗) denotes the topological dual space with the induced norm
‖ ·‖∗. To some set K ⊆ Y , K∗ := {ℓ ∈ Y ∗ | ℓ(y) ≥ 0 for all y ∈ K} denotes the dual
cone and K# := {ℓ ∈ Y ∗ | ℓ(y) > 0 for all y ∈ K \ {0Y }} denotes the quasi-interior
of the dual cone. If K is a closed convex cone, then

K = {y ∈ Y | ℓ(y) ≥ 0 for all ℓ ∈ K∗} , (2)

and if K is a convex cone with int(K) 6= ∅, then

int(K) = {y ∈ Y | ℓ(y) > 0 for all ℓ ∈ K∗ \ {0Y ∗}}, (3)

see for instance [20, Lemma 3.21].
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4.1 Characterizing nondominated elements

Let a map ℓ : Y → Y ∗ and an element ȳ ∈ Y be given. We consider the functional
ϕȳ : Y → R with

ϕȳ(y) := ℓ(y)(y − ȳ) for all y ∈ Y .

Obviously it holds ϕȳ(ȳ) = ℓ(ȳ)(ȳ − ȳ) = ℓ(ȳ)(0Y ) = 0. Note that while ℓ(y)
is a continuous linear functional for each y, the functional ϕȳ is in general non-
linear. This is even the case if ℓ : Y → Y ∗ is a linear map, as the following example
demonstrates:

Example 4.1. Let Y be the Euclidean space R
m and let ℓ : Rm → R

m be defined by
ℓ(y) = My for all y ∈ R

m with M := diag(1, 2, . . . , m). Thus ℓ is linear and each
ℓ(y) defines a linear map by z 7→ (ℓ(y))⊤z = y⊤Mz for all z ∈ R

m. Nevertheless,
ϕȳ(y) = y⊤M(y − ȳ) =

∑m

i=1(iy
2
i − iyiȳi) is not a linear map.

The following lemma gives two sufficient criteria for nondominated elements as
well as a complete characterization of weakly and strongly nondominated elements of
A w.r.t. D. Note that the necessary condition for weakly nondominated elements is
also a necessary condition (in case of int(D(y)) 6= ∅ for all y ∈ A) for nondominated
elements.

Lemma 4.2. Let ȳ ∈ A. Then the following holds:

(i) Let ℓ : Y → Y ∗ be a map with ℓ(y) ∈ D(y)∗ \ {0Y ∗} for all y ∈ A \ {ȳ}. If

ϕȳ(y) > ϕȳ(ȳ) = 0 ∀y ∈ A \ {ȳ}, (4)

then ȳ is a nondominated element of A w.r.t. D.

(ii) Let ℓ : Y → Y ∗ be a map with ℓ(y) ∈ D(y)# for all y ∈ A \ {ȳ}. If

ϕȳ(y) ≥ ϕȳ(ȳ) = 0 ∀y ∈ A, (5)

then ȳ is a nondominated element of A w.r.t. D.

(iii) If additionally int(D(y)) 6= ∅ for all y ∈ A, then ȳ is a weakly nondominated
element of A w.r.t. D if and only if there is a map ℓ : Y → Y ∗ with ℓ(y) ∈
D(y)∗ \ {0Y ∗} for all y ∈ A \ {ȳ} such that (5) holds.

(vi) If D(y) is additionally closed for all y ∈ A, then ȳ is a strongly nondominated
element of A w.r.t. D if and only if (5) holds for every map ℓ : Y → Y ∗ with
ℓ(y) ∈ D(y)∗ for all y ∈ A \ {ȳ}.

Proof.
(i) Let ℓ : Y → Y ∗ be a map with ℓ(y) ∈ D(y)∗ \ {0Y ∗} and ϕȳ(y) > 0 for all
y ∈ A \ {ȳ}. Assume to the contrary that ȳ is not a nondominated element of
A w.r.t. D. Then there exists ŷ ∈ A \ {ȳ} with ȳ − ŷ ∈ D(ŷ) \ {0Y ∗}. Since
ℓ(ŷ) ∈ D(ŷ)∗ \ {0Y ∗} we obtain ℓ(ŷ)(ȳ − ŷ) ≥ 0 and hence ϕȳ(ŷ) = ℓ(ŷ)(ŷ − ȳ) ≤ 0
being a contradiction to ϕȳ(y) > 0 for all y ∈ A \ {ȳ}.
(ii) Let ℓ : Y → Y ∗ be a map with ℓ(y) ∈ D(y)# and ϕȳ(y) ≥ 0 for all y ∈ A \ {ȳ}.
Assume to the contrary that ȳ is not a nondominated element of A w.r.t. D. Then
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there exists ŷ ∈ A \ {ȳ} with ȳ − ŷ ∈ D(ŷ) \ {0Y ∗}. Since l(ŷ) ∈ D(ŷ)# we obtain
l(ŷ)(ȳ − ŷ) > 0 and hence l(ŷ)(ŷ − ȳ) < 0 being a contradiction to ϕȳ(y) ≥ 0 for all
y ∈ A.
(iii) Let ȳ be weakly nondominated element of A w.r.t. D and y ∈ A \ {ȳ} be
arbitrarily chosen. Then

{ȳ} ∩ ({y}+ int(D(y))) = ∅

an by using a separation theorem, see for instance [20, Theorem 3.16], there exist
some ly ∈ Y ∗ \ {0Y ∗} and α ∈ R with

ly(ȳ) ≤ α ≤ ly(y + d) for all d ∈ D(y) .

It follows by standard arguments that ly ∈ D(y)∗ \ {0Y ∗}, ly(ȳ) ≤ ly(y), and ly(y −
ȳ) ≥ 0. By setting ℓ(y) := ly for all y ∈ A \ {ȳ} we obtain a map ℓ : Y → Y ∗ with
ℓ(y) ∈ D(y)∗ \ {0Y ∗} and ϕȳ(y) ≥ 0 for all y ∈ A \ {ȳ} and thus ϕȳ(y) ≥ 0 for all
y ∈ A.
Next let ℓ : Y → Y ∗ be a map with ℓ(y) ∈ D(y)∗ \ {0Y ∗} and ϕȳ(y) ≥ 0 for all
y ∈ A \ {ȳ}. Assume to the contrary that ȳ is not a weakly nondominated element
of A w.r.t. D. Then there exists ŷ ∈ A \ {ȳ} with ȳ − ŷ ∈ int(D(ŷ)). Since ℓ(ŷ) ∈
D(ŷ)∗ \ {0Y ∗} it follows by (3) ℓ(ŷ)(ȳ − ŷ) > 0 and hence ϕȳ(ŷ) = ℓ(ŷ)(ŷ − ȳ) < 0
being a contradiction to ϕȳ(y) ≥ 0 for all y ∈ A \ {ȳ}.
(iv) If ȳ ∈ A is a strongly nondominated element of A w.r.t. D, then y − ȳ ∈ D(y)
for all y ∈ A\{ȳ}. Hence, for every ℓ : Y → Y ∗ with ℓ(y) ∈ D(y)∗ for all y ∈ A\{ȳ}
we obtain ϕȳ(y) = ℓ(y)(y − ȳ) ≥ 0 for all y ∈ A \ {ȳ} and thus for all y ∈ A.
If ϕȳ(y) = ℓ(y)(y− ȳ) ≥ 0 for all y ∈ A holds for every ℓ : Y → Y ∗ with ℓ(y) ∈ D(y)∗

for all y ∈ A \ {ȳ}, then by (2) we obtain y − ȳ ∈ D(y) for all y ∈ A \ {ȳ} and we
are done.

For the proof of a sufficient condition for properly nondominated elements in
the sense of Henig we need the following lemma which characterizes the interior of
special cones.

Lemma 4.3. Let φ ∈ Y ∗ \ {0Y ∗} and K be the closed convex cone defined by
K := {u ∈ Y | φ(u) ≥ 0}. Then int(K) = {u ∈ Y | φ(u) > 0}.

Proof. Let φ ∈ Y ∗ \ {0Y ∗}. Hence it holds ||φ||∗ > 0. If u ∈ int(K), then there
exists an ε > 0 with {u} + B(0Y , ε) ⊆ K. Let h ∈ B(0Y , ε) with φ(h) > 0. Then,
as u− h ∈ K, φ(u) = φ(u− h) + φ(h) > 0 and thus int(K) ⊆ {u ∈ Y | φ(u) > 0}.

For u ∈ Y with φ(u) > 0 we get for all h ∈ B(0Y , ε) with ε :=
φ(u)
||φ||∗

> 0

φ(u+ h) = φ(u) + φ(h) ≥ φ(u)− ||φ||∗ ||h|| ≥ φ(u)− ε||φ||∗ = 0,

thus u+ h ∈ K and hence {u ∈ Y | φ(u) > 0} ⊆ int(K).

The following theorem gives sufficient and necessary conditions for properly non-
dominated elements in the sense of Henig/Benson/Borwein of A w.r.t. D. Thereby
we get in case of D(y) is closed for all y ∈ A a complete characterization of properly
nondominated elements in the sense of Henig. Note that the sufficient condition for
a properly nondominated element in the sense of Benson of Theorem 3.3(i) is also
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a sufficient condition for a properly nondominated element in the sense of Borwein
and both necessary conditions for a properly nondominated element in the sense of
Benson are by Lemma 3.3(ii) under the additional assumption thatM is starshaped
w.r.t. ȳ also a necessary conditions for a properly nondominated element in the sense
of Borwein.

Theorem 4.4. Let ȳ ∈ A, the set M be defined as in (1), and the sets M̄ȳ and D̄
be defined by

M̄ȳ := {ȳ}+ cl(cone(M − {ȳ})) and D̄ :=
⋃

y∈M̄ȳ

D(y).

Then the following holds:

(i) If there exists a map ℓ : Y → Y ∗ with ℓ(y) ∈ D(y)# for all y ∈ A \ {ȳ} such
that (4) holds, then ȳ ∈ ndGHe(A,D).

(ii) If additionally D(y) is closed for all y ∈ A, then ȳ ∈ ndGHe(A,D) if and only
if there is a map ℓ : Y → Y ∗ with ℓ(y) ∈ D(y)# for all y ∈ A \ {ȳ} such that
(4) holds.

(iii) If there exists a map ℓ̄ ∈ D̄# with ℓ̄(y− ȳ) ≥ 0 for all y ∈ A, i.e. (5) holds for a
map ℓ : Y → Y ∗ with ℓ(y) := ℓ̄ ∈ D̄# for all y ∈ A\{ȳ}, then ȳ ∈ ndBe(A,D).

(iv) If additionally D(y) is closed for all y ∈ A and ȳ ∈ ndBe(A,D), then there
exists a map ℓ : Y → Y ∗ with ℓ(y) ∈ D(y)∗ \ {0Y ∗} for all y ∈ A \ {ȳ} such
that (4) holds.

(v) If additionally the topology gives Y as the topological dual space of Y ∗, D(y) is
closed and int(D(y)∗) 6= ∅ for all y ∈ A and ȳ ∈ ndBe(A,D), then there exists
a map ℓ : Y → Y ∗ with ℓ(y) ∈ D(y)# = int(D(y)∗) for all y ∈ A \ {ȳ} such
that (5) holds.

Proof.
(i) Let ℓ : Y → Y ∗ be a map with ℓ(y) ∈ D(y)# ⊆ D(y)∗ \ {0Y ∗} for all y ∈ A \ {ȳ}
such that ϕȳ(y) > 0 for all y ∈ A \ {ȳ} and let y ∈ A \ {ȳ} be arbitrarily chosen.
We define the set

K(y) := {z ∈ Y | ℓ(y)(z) ≥ 0} .

Obviously K(y) is a closed convex cone. By the assumptions it follows ℓ(y)(w) > 0
for all w ∈ D(y) \ {0Y } and ℓ(y)(ȳ − y) < 0. Thus by Lemma 4.3 we obtain
D(y) \ {0Y } ⊆ int(K(y)), and also ȳ /∈ {y}+K(y). By setting K(y) := K(y) for all
y ∈ A \ {ȳ} and K(y) := Y for all y ∈ (Y \A) ∪ {ȳ} the assertion follows.
(ii) The sufficiency was shown in (i). It remains to show the necessarity of the
condition. By definition there is a cone-valued map K : Y → 2Y with K(y) a convex
cone and D(y) \ {0Y } ⊆ int(K(y)) for all y ∈ Y such that

ȳ − y 6∈ K(y)
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for all y ∈ A \ {ȳ}. We can assume the cones K(y) to be closed. Let y ∈ A \ {ȳ}
be arbitrarily chosen. Then by a separation theorem, see for instance [20, Theorem
3.18], there exists some ly ∈ Y ∗ \ {0Y ∗} and some α ∈ R such that

ly(ȳ − y) < α ≤ ly(k) for all k ∈ K(y)

By standard arguments we obtain ly ∈ K(y)∗ \ {0Y ∗} and ly(y − ȳ) > 0. By (3) it
holds

D(y) \ {0Y } ⊆ int(K(y)) = {z ∈ Y | l(z) > 0 ∀ l ∈ K(y)∗ \ {0Y ∗}}

and hence ly ∈ D(y)#. By setting ℓ(y) := ly for all y ∈ A \ {ȳ} we obtain a map
ℓ : Y → Y ∗ with ℓ(y) ∈ D(y)# for all y ∈ A \ {ȳ} and ϕȳ(y) > 0 for all y ∈ A \ {ȳ}.
(iii) Let ℓ̄ ∈ D̄# be a map with ℓ̄(y − ȳ) ≥ 0 for all y ∈ A. Hence ℓ̄ ∈ D(y)# for all
y ∈ M̄ȳ. Let now y ∈ M̄ȳ \ {ȳ} be arbitrarily chosen. Then there exist a sequence
(λn)n∈N ⊆ R+ and sequences (yn, dn)n∈N with yn ∈ A and dn ∈ D(yn) for all n ∈ N

such that
y = ȳ + h and h := lim

n→∞
λn(yn + dn − ȳ) .

By the continuity and linearity of ℓ̄ it follows

ℓ̄(y − ȳ) = ℓ̄(h) = lim
n→∞

λn
(

ℓ̄(yn − ȳ) + ℓ̄(dn)
)

.

Since λn ∈ R+, yn ∈ A and dn ∈ D(yn) ⊆ D̄ for all n ∈ N and ℓ̄ ∈ D̄# we obtain
ℓ̄(y − ȳ) ≥ 0. By setting ℓ(y) := ℓ̄ for all y ∈ M̄ȳ \ {ȳ} it follows

ϕȳ(y) = ℓ(y)(y − ȳ) ≥ 0

and ℓ(y) ∈ D(y)# for all y ∈ M̄ȳ \ {ȳ}. Hence, by using Lemma 4.2(ii) ȳ is a
nondominated element of M̄ȳ and thus ȳ ∈ ndBe(A,D).
(iv) Let ȳ ∈ ndBe(A,D) and y = ȳ + h ∈ {ȳ} + cl(cone(M − {ȳ})) \ {0Y } be
arbitrarily chosen. Then ȳ−y /∈ D(y) and by a separation theorem, see for instance
[20, Theorem 3.18], there exists some ly ∈ Y ∗ \ {0Y ∗} and some α ∈ R such that

ly(ȳ − y) < α ≤ ly(d) for all d ∈ D(y) .

By standard arguments we obtain ly ∈ D(y)∗ \ {0Y ∗} and ly(y − ȳ) > 0. By setting
ℓ(y) := ly for all y ∈ {ȳ} + cl(cone(M − {ȳ})) \ {0Y } we obtain a map ℓ : Y → Y ∗

with ℓ(y) ∈ D(y)∗ \ {0Y ∗} and

ϕȳ(y) = ℓ(y)(y − ȳ) > 0 for all y ∈ {ȳ}+ cl(cone(M − {ȳ})) \ {0Y } .

Since
A− {ȳ} ⊆M − {ȳ} ⊆ cl(cone(M − {ȳ}))

the assertion follows.
(v) Let ȳ ∈ ndBe(A,D) and y = ȳ+h ∈ {ȳ}+cl(cone(M−{ȳ}))\{0Y } be arbitrarily
chosen. Then ȳ − y /∈ D(y) and thus λ(y − ȳ) /∈ −D(y) for all λ > 0, and hence

cone({y − ȳ}) ∩ (−D(y)) = {0Y } .
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By a conic separation theorem, see for instance [20, Theorem 3.22], there exists some
ly ∈ Y ∗ \ {0Y ∗} such that

ly(−d) ≤ 0 ≤ ly(z) for all d ∈ D(y) and all z ∈ cone({y − ȳ})

and ly(d) > 0 for all d ∈ D(y)\{0Y }. Thus ly ∈ D(y)# and ly(y− ȳ) ≥ 0. By setting
ℓ(y) := ly for all y ∈ {ȳ} + cl(cone(M − {ȳ})) \ {0Y } we obtain a map ℓ : Y → Y ∗

with ℓ(y) ∈ D(y)# and

ϕȳ(y) = ℓ(y)(y − ȳ) ≥ 0 for all y ∈ {ȳ}+ cl(cone(M − {ȳ})) \ {0Y } .

According to [20, Lemma 3.21(d)], D(y)# = int(D(y)∗). By using A − {ȳ} ⊆
cl(cone(M − {ȳ})) we are done.

Theorem 4.4(i) is also a direct consequence of [15, Theorem 8] by choosing
(ℓ#y , α

#
y ) := (ℓ(y), 0) for all y ∈ Y as elements from of augmented dual cones of

the cones D(y) in the definition of the scalarization functional used there. For com-
pleteness and because of the simplicity of the direct proof, we nevertheless provided
the proof above. Theorem 4.4(iii) also follows from [15, Theorem 9] by choosing
α# = 0. Note that ℓ̄(y − ȳ) ≥ 0 for all y ∈ A is equivalent to that ȳ is a minimal
solution of the scalar-valued optimization problem miny∈A ℓ̄(y). This problem was
considered in [10, Theorem 3.2] for some ℓ̄ ∈

⋂

y∈A(D(y)#). There it was shown
that a minimal solution of this problem is a nondominated element of A w.r.t.
D. Theorem 4.4(ii) and (v) deliver a stronger necessary conditions under weaker
assumptions as those proposed in [15, Theorem 10 and 11] and (ii) includes the
necessary condition presented in [15, Theorem 10] as a special case.

4.2 Characterizing minimal elements

Let a map ℓ : Y → Y ∗ and an element ȳ ∈ Y be given. We consider additionally the
functional ψȳ : Y → R with

ψȳ(y) = ℓ(ȳ)(y − ȳ) for all y ∈ Y .

Obviously it holds ψȳ(ȳ) = ℓ(ȳ)(ȳ − ȳ) = ℓ(ȳ)(0Y ) = 0. We will make use of the
following

Remark 4.5. As a direct consequence of the definitions ȳ is a (weakly/strongly)
minimal element of A w.r.t. D if and only if it is a (weakly/strongly) efficient element
of A w.r.t. the partial ordering defined by K := D(ȳ).

For (weakly/strongly) efficient elements of A w.r.t. a partially ordering intro-
duced by a pointed convex cone K various scalarization results are well known, see
for instance [20, Chapter 5]. Note that some of the results given there are formu-
lated in non-topological spaces using elements from the algebraic dual space, but the
results remain true using elements from the topological dual space, i.e. continuous
linear functionals (use the separation theorem [20, Theorem 3.16] instead of [20,
Theorem 3.14] if necessary in the corresponding proofs). Hence, by using Remark
4.5 we obtain immediately from [20, Theorem 5.18(a)], [20, Theorem 5.18(b)], [20,
Theorem 5.4], [20, Theorem 5.28], [20, Corollary 5.29], and [20, Theorem 5.6] the
following lemma:
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Lemma 4.6. Let ȳ ∈ A and the set Mȳ be defined as in (1). Then the following
holds:

(i) Let ℓ : Y → Y ∗ be a map with ℓ(ȳ) ∈ D(ȳ)∗. If ψȳ(y) > ψȳ(ȳ) = 0 for all
y ∈ A \ {ȳ}, then ȳ is a minimal element of A w.r.t. D.

(ii) Let ℓ : Y → Y ∗ be a map with ℓ(ȳ) ∈ D(ȳ)#. If

ψȳ(y) ≥ ψȳ(ȳ) = 0 ∀y ∈ A \ {ȳ}, (6)

then ȳ is a minimal element of A w.r.t. D.

(iii) If ȳ is a minimal element of A w.r.t. D and Mȳ is convex with int(Mȳ) 6= ∅,
then there is a map ℓ : Y → Y ∗ with ℓ(ȳ) ∈ D(ȳ)∗ \ {0Y ∗} such that (6) holds.

(iv) Let ℓ : Y → Y ∗ be a map with ℓ(ȳ) ∈ D(ȳ)∗ \ {0Y ∗} and int(D(ȳ)) 6= 0. If (6)
holds, then ȳ is a weakly minimal element of A w.r.t. D.

(v) If additionally Mȳ is convex and int(D(ȳ)) 6= 0, then ȳ is a weakly minimal
element of A w.r.t. D if and only if there is a map ℓ : Y → Y ∗ with ℓ(ȳ) ∈
D(ȳ)∗ \ {0Y ∗} such that (6) holds.

(vi) If D(ȳ) is additionally closed, then ȳ ∈ A is a strongly minimal element of A
w.r.t. D if and only if (6) holds for every map ℓ : Y → Y ∗ with ℓ(ȳ) ∈ D(ȳ)∗.

The main drawback of the results above is the required convexity for the nec-
essary conditions. When using the functional ϕȳ we get the following results for
(weakly) minimal elements, where we do not need the convexity of the set Mȳ.

Lemma 4.7. Let ȳ ∈ A. Then the following holds:

(i) If additionally D(ȳ) is closed, then ȳ is a minimal element of A w.r.t. D if and
only if there is a map ℓ : Y → Y ∗ with ℓ(y) ∈ D(ȳ)∗ \ {0Y ∗} for all y ∈ A \ {ȳ}
such that (4) holds.

(ii) If additionally int(D(ȳ)) 6= ∅, then ȳ is a weakly minimal element of A w.r.t.
D if and only if there is a map ℓ : Y → Y ∗ with ℓ(y) ∈ D(ȳ)∗ \ {0Y ∗} for all
y ∈ A \ {ȳ} such that (5) holds.

Proof.
(i) The conclusion follows immediately from the Remark 4.5 and [20, Theorem 5.5].
(ii) Let ȳ be a weakly minimal element of A w.r.t. D, then

y 6∈ {ȳ} − int(D(ȳ)) for all y ∈ A \ {ȳ} .

Since int(D(ȳ)) 6= ∅ it also holds int({ȳ}−D(ȳ)) 6= ∅. Furthermore the set {ȳ}−D(ȳ)
is convex. Using a separation theorem, see for instance [20, Theorem 3.16], there
exists for each y ∈ A \ {ȳ} some ly ∈ Y ∗ \ {0Y ∗} and some α ∈ R with

ly(ȳ)− ly(k) ≤ α ≤ ly(y) for all k ∈ D(ȳ) .

By standard arguments we obtain ly ∈ D(ȳ)∗ \ {0Y ∗} and ly(y − ȳ) ≥ 0. Hence,
by setting ℓ(y) := ly for each y ∈ A \ {ȳ} we obtain a map ℓ : Y → Y ∗ with
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ℓ(y) ∈ D(ȳ)∗ \ {0Y ∗} and ϕȳ(y) ≥ 0 for all y ∈ A \ {ȳ}.
If int(D(ȳ)) 6= ∅ and ℓ : Y → Y ∗ is a map with ℓ(y) ∈ D(ȳ)∗ \ {0Y ∗} and ϕȳ(y) =
ℓ(y)(y− ȳ) ≥ 0 for all y ∈ A \ {ȳ}, then by using (3) we obtain y 6∈ {ȳ} − int(D(ȳ))
for all y ∈ A and we are done.

Note that in Lemma 4.2 we assume ℓ to be a map with ℓ(y) ∈ D(y)∗ \ {0Y ∗}
and ℓ(y) ∈ D(y)# for all y ∈ A \ {ȳ} while in the lemma above we assume ℓ(y) ∈
D(ȳ)∗\{0Y ∗} and ℓ(y) ∈ D(ȳ)# for all y ∈ A\{ȳ}, respectively. If D(ȳ) ⊆ D(y) holds
for a nondominated element ȳ w.r.t. D and all y ∈ A\{ȳ}, and thus D(y)∗ ⊆ D(ȳ)∗,
then it is known that ȳ is also a minimal element of A w.r.t. D, cf. [10, Remark 2.1].
Analogously for minimal elements in case D(y) ⊆ D(ȳ) for all y ∈ A \ {ȳ}.

The next lemma gives conditions under which ȳ ∈ mGHe(A,D) always implies
that the cone K(ȳ) in the definition can be chosen to be pointed. We need this
lemma for the proof of the necessary condition in Lemma 4.9(iv).

Lemma 4.8. Let the topology give Y as the topological dual space of Y ∗, ȳ ∈
mGHe(A,D), D(ȳ) be additional closed and int(D(ȳ)∗) 6= ∅. Then there is a pointed
convex cone K̃ with D(ȳ)\{0Y } ⊆ int(K̃) such that y 6∈ {ȳ}− K̃ for all y ∈ A\{ȳ},
i.e. the cone K(ȳ) in the definition of Henig proper minimal can be chosen to be
pointed.

Proof. By Lemma 3.4, ȳ ∈ mGHe(A,D) if and only if there exists a convex cone
K with D(ȳ) \ {0Y } ⊆ int(K) such that y 6∈ {ȳ} − K for all y ∈ A \ {ȳ}. If K
is pointed, then we are done. Otherwise, there exists some element k 6= 0Y with
k ∈ K ∩ (−K). As D(ȳ) is pointed, at least k or −k 6∈ D(ȳ). Without loss of
generality let k 6∈ −D(ȳ), i.e.

cone({k}) ∩ (−D(ȳ)) = {0Y } .

By a separation theorem for closed convex cones, see for instance [20, Theorem 3.22],
there exists l ∈ Y ∗ \ {0Y ∗} with

l(x) ≤ 0 ≤ l(y) for all x ∈ −D(ȳ) and all y ∈ cone({k})

and l(x) > 0 for all x ∈ D(ȳ)\{0Y }. Thus l ∈ D(ȳ)#. We define the pointed convex
cones

C := {y ∈ Y | l(y) > 0} ∪ {0Y }

and
K̃ := K ∩ C ⊆ K .

It holds D(ȳ) ⊆ C. Moreover,

int(K̃) = int(K) ∩ int(C) = int(K) ∩ (C \ {0Y }) .

Thus D(ȳ) \ {0Y } ⊆ int(K̃) and we are done.

Lemma 4.9. Let ȳ ∈ A and the set Mȳ be defined as in (1). Then the following
holds:

(i) If there exists a map ℓ : Y → Y ∗ with ℓ(ȳ) ∈ D(ȳ)# such that (6) holds, then
ȳ ∈ mBe(A,D) and ȳ ∈ mBo(A,D).
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(ii) Let additionally D(ȳ) have a weakly compact base and let ℓ : Y → Y ∗ be a map
with ℓ(ȳ) ∈ D(ȳ)#. If (6) holds, then ȳ ∈ mGHe(A,D).

(iii) If additionally the topology gives Y as the topological dual space of Y ∗, D(ȳ)
is closed with int(D(ȳ)∗) 6= ∅, and Mȳ is convex, then ȳ ∈ mBo(A,D) =
mBe(A,D) if and only if there is a map ℓ : Y → Y ∗ with ℓ(ȳ) ∈ D(ȳ)# =
int(D(ȳ)∗) such that (6) holds.

(iv) Let the topology give Y as the topological dual space of Y ∗, D(ȳ) be closed with
int(D(ȳ)∗) 6= ∅, and Mȳ be convex. If ȳ ∈ mGHe(A,D), then there is a map
ℓ : Y → Y ∗ with ℓ(ȳ) ∈ D(ȳ)# = int(D(ȳ)∗) such that (6) holds.

Proof.
(i) follows immediately from the Remark 4.5, [20, Theorem 5.21], and Lemma
3.3(iii). Note that the proof of [20, Theorem 5.21] is given for properly efficient
elements in the sense of Borwein but works analogously for properly efficient ele-
ments in the sense of Benson.
(ii) follows immediately from (i) together with Lemma 3.7(iii). Note that the con-
clusion can also be proven directly by using Lemma 3.4 and Lemma 3.6.
(iii) follows immediately from the Remark 4.5, [20, Corollary 5.22], Lemma 3.3(iv),
and [20, Lemma 3.21(d)].
(iv) follows immediately from (iii) together with Lemma 3.7(ii) and Lemma 4.8.

Lemma 4.9(i) is also a direct consequence of [15, Theorem 5] by choosing (ℓ#ȳ , α
#
ȳ ) :=

(ℓ(ȳ), 0) as element of the augmented dual cone of the cone D(ȳ) in the definition
of the scalarization functional used there. Lemma 4.9(ii) gives the same sufficient
condition as in [15, Theorem 6(iii)] by choosing (ℓ#ȳ , α

#
ȳ ) := (ℓ(ȳ), 0). But in [15],

the assumption of a reflexive space as well as that the cones D(y) have ε-conic
neighborhoods with which the cones satisfy a separation property are needed.

However, the necessary conditions for properly minimal elements in the sense
of Benson/Borwein/Henig presented in [15, Theorem 6(i),(ii) and Theorem 7] do
not require convexity of the set Mȳ as assumed here in Lemma 4.9(iii) and (iv).
When we use the functional ϕȳ instead of ψȳ, we can also give necessary conditions
without this convexity assumption. Note that the necessary condition in (i) for a
proper minimal element in the sense of Henig is also a necessary condition for a
proper minimal element in the sense of Benson in case the cone D(ȳ) has a weakly
compact base. Moreover, in case the set Mȳ is starshaped w.r.t. ȳ, then (ii) also
gives a necessary condition for a Borwein proper minimal element.

Theorem 4.10. Let ȳ ∈ A and the set Mȳ be defined as in (1). If D(ȳ) is closed,
then the following holds:

(i) If ȳ ∈ mGHe(A,D), then there exists a map ℓ : Y → Y ∗ with ℓ(y) ∈ D(ȳ)# for
all y ∈ A \ {ȳ} such that (4) holds.

(ii) If additionally the topology gives Y as the topological dual space of Y ∗, int(D(ȳ)∗) 6=
∅ and ȳ ∈ mBe(A,D), then there exists a map ℓ : Y → Y ∗ with ℓ(y) ∈ D(ȳ)# =
int(D(ȳ)∗) for all y ∈ A \ {ȳ} such that (5) holds.
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Proof.
(i) By Lemma 3.4 there is a convex cone K with D(ȳ) \ {0Y } ⊆ int(K) such that
ȳ − y 6∈ K for all y ∈ A \ {ȳ}. We can assume the cone K to be closed. Let
y ∈ A \ {ȳ} be arbitrarily chosen. Then by a separation theorem, see for instance
[20, Theorem 3.18], there exists some ly ∈ Y ∗ \ {0Y ∗} and some α ∈ R such that

ly(ȳ − y) < α ≤ ly(k) for all k ∈ K .

By standard arguments we obtain ly ∈ K∗ \{0Y ∗} and ly(y− ȳ) > 0. By (3) it holds

D(ȳ) \ {0Y } ⊆ int(K) = {z ∈ Y | l(z) > 0 ∀ l ∈ K∗ \ {0Y ∗}}

and hence ly ∈ D(ȳ)#. By setting ℓ(y) := ly for all y ∈ A \ {ȳ} we obtain a map
ℓ : Y → Y ∗ with ℓ(y) ∈ D(ȳ)# for all y ∈ A \ {ȳ} and ϕȳ(y) > 0 for all y ∈ A \ {ȳ}.
(ii) Let ȳ ∈ mBe(A,D) and y = ȳ+h ∈ {ȳ}+cl(cone(Mȳ−{ȳ}))\{0Y } be arbitrarily
chosen. Then ȳ − y /∈ D(ȳ) and thus

cone({y − ȳ}) ∩ (−D(ȳ)) = {0Y } .

By a conic separation theorem, see for instance [20, Theorem 3.22], there exists some
ly ∈ Y ∗ \ {0Y ∗} such that

ly(−d) ≤ 0 ≤ ly(z) for all d ∈ D(ȳ) and all z ∈ cone({y − ȳ})

and ly(d) > 0 for all d ∈ D(ȳ)\{0Y }. Thus ly ∈ D(ȳ)# and ly(y− ȳ) ≥ 0. By setting
ℓ(y) := ly for all y ∈ {ȳ} + cl(cone(Mȳ − {ȳ})) \ {0Y } we obtain a map ℓ : Y → Y ∗

with ℓ(y) ∈ D(ȳ)# and

ϕȳ(y) = ℓ(y)(y − ȳ) ≥ 0 for all y ∈ {ȳ}+ cl(cone(Mȳ − {ȳ})) \ {0Y } .

According to [20, Lemma 3.21(d)], D(y)# = int(D(y)∗). By using

A− {ȳ} ⊆ cl(cone(Mȳ − {ȳ}))

we are done.
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