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General Introduction 

 

Introduction into stream ecosystems 

Streams are linear definite one dimensional structures and several theoretical concepts 

aiming the stream ecology are existing. The River Continuum Concept (RCC) for instance 

describes streams as a continuous series of physical gradients and associated biotic 

adjustments indicating that the stream organisms interact with the longitudinal changing 

environment (Vannote et al., 1980). The products of streams are highly appropriate to be 

transported downstream than reaching the river bottom (Schönborn, 2003). Most of the 

organic matter available in streams is of allochthonious origin, as leaves from the riparian 

zones (99%). After entering the stream, allochtonious material undergoes three phases of 

processing: leaching, microbial colonization (conditioning) and fragmentation by physical 

forces and invertebrate feeding (Fisher and Likens, 1973). The amount of terrestric organic 

carbon transported or transformed by stream and river ecosystems world wide is about 2 Pg 

per year whereas the metabolic capacity in these fluvial systems may result from microbial 

attachements as biofilms (Battin et al., 2008). 

 

Occurance of microbial biofilms and the economic impact 

Biofilms are structured communities of bacteria, algae, cyanobacteria, fungi, and 

protozoa embedded in a polymeric (EPS) matrix (Lock et al., 1993). The first recorded 

observation of biofilms comes from Henrici (1933) who found that it is quite evident that for 

the most part water bacteria are not free floating organisms, but grow upon submerged 

surfaces. These cells develop structures that are morphologically and physiologically different 

from free living bacteria (Davies et al., 1998; Sauer and Camper, 2001).  

Prokaryotes benefit from the association with surfaces by using cellular division of labor, 

accessing resources that cannot effectively be utilized by single cells, collectively defending 

against antagonists, and optimizing population survival by differentiating into distinct cell 

types (Beveridge et al., 1997; Shapiro, 1998; Ghigo, 2001). 

The economic role of biofilms is significant. They foul the surfaces of ships, oil rigs, heat 

exchangers, water reticulation and hydro-electric systems etc. (Marshall and Blainey, 1991). 

Microbial biofilms are known for their resistance against antibiotics (Nickel et al., 1985; 
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Costerton et al., 1999; Purevdorj et al., 2002) and the protection against UV-radiation 

(Hodoki, 2005a). Harmful biofilms are abundant reaching from dental plaque (Kolenbrander 

and London, 1993; Kaplan et al., 2003) to Pseudomonas aeruginosa biofilms in the alveoli of 

fibrosis patients. On the other hand microbial biofilms can play a beneficial role in certain 

wastewater treatment operations (e.g. rotating biological contractors), natural stream 

purification, and specific fermentation processes (Bryers and Characklis, 1981).  

 

Formation and structural appearances of microbial biofilms in different environments 

Biofilm formation begins with the interaction of planktonic cells with the surface 

which become sessil as a result of phenotypic changes in the bacteria. Cell-cell 

communication, a response to microbial population density (Quorum Sensing, QS) may play a 

role in this initial attachment process (Sauer and Camper, 2001). QS has been described for 

single bacterial species biofilms (Fuqua et al., 2001) and between different bacterial species 

(Whitely, 2001).  

Development of biofilm can be recorded in 5 steps, (1) initial attachment with the surface, (2) 

production of the exopolymeric matrix (EPS) resulting in a more firmly adhered “irreversible” 

attachment, (3) early development of biofilm architecture, (4) biofilm maturation, (5) 

dispersion of single cells from the biofilm (Stoodley et al., 2002). Behind the initial 

attachment different mechanisms can occur. For P. aerugenosa typ IV pili-mediated twitching 

motility plays a key role (O'Toole and Kolter, 1998). A second mechanism is the binary 

division of attached cells, daughter cells spread outward and upward from the attachment 

surface and build cluster (Heydorn et al., 2000). A third mechanism of aggregation is the 

recruitment of cells from the bulk fluid to the developing biofilm (Tolker-Nielsen and Molin, 

2000). The main hallmark of an “irreversible” attached biofilm is the EPS matrix which 

surrounds the bacteria and attaches them to a substratum. Microbial EPS are biosynthetic 

polymers that can be highly diverse in chemical composition and may include substituted and 

unsubstituted polysaccharides and proteins, nucleic acids, and phospholipids (Wingender et 

al., 1999). The ability of bacteria to secrete polymeric substances is impressive. It has been 

calculated that a single cell of Azotobacter sp. can produce enough EPS to coat more than 500 

particles (0.4 µm diam) per day (Underwood and Paterson, 1995). During the maturation 

phase a complex architecture with pores, channels and a redistribution of bacteria away from 

the substratum occurs (Davies et al., 1998). Finally cells and entire biofilms can detach from 

the surface in response to starvation which allows bacteria to search for nutrient-rich habitats 
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(O'Toole et al., 2000). Biofilms are not rigid fixed to the surface. Single cells, cell cluster and 

entire biofilms can flow over porous media with velocities up to 1 mm per hour (Hall-

Stoodley et al., 2004).  

Three conceptual models of biofilm architecture exist (i) the water-channel model, with a 

proliferation of mushroom forms attached by stalks of EPS and microorganisms, water 

channels penetrate almost to the base of the film (Costerton et al., 1995), (ii) the 

heterogeneous mosaic biofilm model, an extreme form of the water-channel model, were 

microorganisms form stacks attached to the substratum but well separated to the neighbors, 

and (iii) the dense biofilm models used for dental plaque and in-dwelling medical catheters 

reviewed in Wimpenny and Colasanti (1997). These models are based on bacterial biofilms 

whereas natural biofilms grown in aquatic environments with more “trophic levels” form a 

more complex building with hexagonal structures and ripples dependent on the environmental 

conditions (Okabe et al., 1998; Battin et al., 2003).  

The biofilm matrix exhibits great microheterogeneity and is a dynamic environment in which 

numerous microenvironments exist. The component microbial cells appear to reach 

homeostasis and are optimally organized to use all available nutrients (Sutherland, 2001) (Fig 

1). 

 

 

 

 

 

 

 

 

 

 

Fig.1. Transmission electronic microscope images of a biofilm on coarse sediment in the 

Stream Breitenbach (Germany, Hesse). Shown is a loose matrix of fibrillar 

polysaccarides. Photo by Ditner and Lock (University of Wales, Bangor).
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Colonization patterns of bacteria and algae in aquatic environments  

Colonization of surfaces in natural aquatic systems displays a successional pattern. 

Initial biofilm colonizers are bacteria and algae. Within the bacterial community early 

colonization is dominated by Betaproteobacteria (BETA) followed by Alphaproteobacteria 

(ALPHA). Bacteria from the Cytophaga-Flovobacterium (CF) group appear at later stages 

(Manz et al., 1999). The proportion of Actinobacteria (HGC) usually account for less than 1% 

(Araya et al., 2003) of the community.  

Diatoms represent the main compound in algal assemblages in riverine biofilms (Roberts et 

al., 2004; Patil and Anil, 2005). Coccal green algae Chlorococcus are highly competitive in 

early biofilm development and appear as primar colonizers, in later developmental state 

diatoms are more dominant (Sekar et al., 2002; Sekar et al., 2004), whereas low profile forms 

appear first followed by long-stalked and large-rosette diatoms. Finally filamentous greenalge 

and cyanobacteria appear (Hoagland et al., 1982; Sekar et al., 2004).  

The relationship of bacteria and algae in biofilms is positive. Both organism groups encourage 

the immigration of the other (Lock, 1993; Rier and Stevenson, 2001; Hodoki, 2005b) and a 

direct competition for nutrients could not be detected so far (Currie, 1990; Carr et al., 2005). 

Algae and bacteria have specific abilities for nutrients and other organic and inorganic 

compounds, but biofilm thickness may affect these abilities, both through a decrease in 

diffusion and by enhancing recycling within biofilms (Sabater et al., 2002). 

In streams grazing interferes with the relative efficiency of biofilms, by simplifying the 

composition of the biofilm community and by decreasing the amount of sorption and uptake 

of the biofilm (Sabater et al., 2002). In some cases biofilm bacteria are successfully adapted to 

situations of protozoan grazing. In early biofilm formations of Pseudomonas aerugenosa the 

bacteria are resistant against protozoan (Rhynchomonas nasuta) grazing due to QS whereas 

organinms in mature biofilms produce toxicants against protozoans (Matz et al., 2005).  

 

Metabolic activity of biofilm organisms and the capacity of the EPS matrix  

In addition to numeric dominance attached bacteria in natural environments have been 

found to be metabolically more active than planktonic bacteria (Van Loosdrecht et al., 1990).  

Under functional aspects, CF degenerates biopolymeres as cellulose, chitin, and pectine, 

ALPHA are often found in environments with low sediment organic matter content, low 

dissolved organic carbon (DOC) content, and low nitrite/nitrate concentrations. BETA and 

Gammaproteobacteria (GAMMA) are involved in nitrogen cycling and be found in 
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environments with high DOC and nitrite/nitrate concentrations (Teske et al., 1994; Kirchman, 

2002; Zwisler et al., 2003; Gao et al., 2005). 

The productivity within biofilms is dependent on the availability of external carbon supplies 

and the productivity of algae which release extracellular organic carbon that can be rapidly 

utilized by bacteria and so periphyton plays a key role in carbon and nutrient dynamics of 

stream ecosystems (Sundh and Bell, 1992; Romani and Sabater, 1999; Rier and Stevenson, 

2002). 

EPS (extracellular polymeric substances) released by bacteria and algae perform a wide range 

of important functions in aquatic and terrestrial systems (Hirst et al., 2003). It acts as a site of 

entrapment for soluble and particulate matter and the accumulation of extracellular enzymes 

(Sinsabaugh et al., 1991; Lock, 1993). In streams and rivers biofilms are seen as the major 

sites of carbon cycling (Romani et al., 2004). Biofilms react slowly to dissolved organic 

matter (DOM) reductions in the river water, suggesting the presence of a substantial organic 

matter reservoir within the biofilm. So the matrix provides a buffer against changing organic 

nutrients (Lock, 1993; Freeman and Lock, 1995; Sutherland, 2001).  

Cellulose and hemicellulose are the main high molecular weight carbon sources in a stream 

(Atlas and Bartha, 1987) and the extracellular enzymes beta-glucosidase and beta-xylosidase 

are involved in the degradation of both (Chrost, 1990). Beta-glycosidase is predominantly 

produced by bacteria and fungi in aquatic environments (Hoppe, 1983). Phosphate is one of 

the limiting nutrient in rivers (Mohamed et al., 1998). Alkaline phosphatase catalyses the 

hydrolysis of a variety of phosphate esters (Barman, 1969). It has been demonstrated in 

filtrates of algal cultures, in phytoplankton, bacteria, protozoans, and zooplankton as well as 

dissolved (extracellular) in aquatic environments. As well as for carbon attached bacteria have 

disproportionately higher protein-degrading activities than planktonic bacteria. Leucine 

aminopeptidase is associated with heterotrophic bacteria. It has been shown that a high 

concentration of algal proteins after blooms induces a release of this enzyme (Chrost, 1989).  

Biofilm organisms itself serve as an important nutrient source for higher organisms as protists 

(Hunt and Parry, 1998; Lawrence, 2002) and macroinvertebrates (Burns and Walker, 2000). 

 

Flow velocity: The main force for biofilm formation and function in streams 

The surfaces of bacteria are highly interactive with their environment (Beveridge et al., 

1997). In streams and rivers the biofilm structure is related to the current velocity. Initial 

biofilms under flow conditions in flumes transform into ripple-like structures and 
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quasihexagonal networks due to the prominence of pennate diatoms orientated along their 

axes to form the hexagons. Biofilms that develop under slow velocities are thicker and have 

larger surface sinuosity and higher areal densities than those grown under higher velocities 

(Battin et al., 2003). A honeycomb structure of biofilm makes it more resistance to water flow 

(Okabe et al., 1998). Water velocity influences the uptake of nutrients. Under increasing flow 

velocity the spiral length of single nutrients decreases (Lock, 1993). The DOM spiralling 

model suggests that the uptake lengths for DOM molecules increase with decreasing flow 

velocity (Kaplan and Newbold, 2004). In biofilms, problems of slow diffusive transport under 

low flow velocity conditions, and high biofilm densities can reduce nutrient availability as 

phosphor. Therefore, cellular excretion of algae may be an important phosphorous source for 

biofilm bacteria, which may lack the same capacity algae have for sequestering external 

sources of phosphorous. Since bacteria have phosphate uptake kinetics superior to those of 

algae, bacterial cells within biofilms may benefit from the phosphatase activity of nearby algal 

cells (Espeland and Wetzel, 2001). But the current also has a direct impact on the organisms. 

Bentic algal biomass is tightly related to fluctuations of the discharge (Romani and Sabater, 

1999). Diatom immigration rates are greater in areas protected from the direct stream flow. 

Occasional diatom densities are more than three times as dense in slow current (15 cm per s) 

than under fast flow (40 cm per s) (Lock, 1993). Finally high flow velocities and shear stress 

can lead to biofilm detachement and sediment relocation leaving empty spaces for 

colonization (Blenkinsopp and Lock, 1994). 

In the RCC a close interactive relation of the biota to the longitudinal changing environment 

is suggested. The habitats offer different and changing resources and the communities may 

reflect the instable requirements. For invertebrate communities a specialization of organism 

groups to the different organic matter sources offered and so an adaptation to special locations 

in the stream systems are already demonstrated (Vannote et al., 1980). However whether 

microbial biofilms reflect the ecological environment in a stream is in question so far.  

 

Regulation of the flow velocity in stream by small dams 

World-wide more than half of the large river systems are affected by fragmentation by 

dams (Nilsson et al., 2005). Generally dams alter the down-stream flux of water and sediment, 

which modifies biogeochemical cycles, change water temperature, influences organismal 

bioenergetics and hinders biotic exchanges. Very distinct is the impact of dams as 

sedimentation traps (Poff and Hart, 2002; Stanley and Doyle, 2002). The fact, that many 

streams are disrupted by more than one weir the river continuum as proposed by Vannote 
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(1980) becomes highly fragmented which possibly leads to a serial pattern of small 

continuums between the weirs.  

An important theoretical concept describing modern riverine systems altered by 

fragmentation, the Serial Discontinuity Concept (Ward and Stanford, 1983) predicts that dams 

can shift stream ecosystem structure upstream or downstream depending on dam size. Low 

head dams often do not completely act as barriers (Benstead et al., 1999) and effects on water 

characteristics often are not predictable (Santucci et al., 2005; Nichols et al., 2006). Fish and 

the macroinvertebrate community seem to be more affected by impoundments (Growns and 

Growns, 2001; Grubbs and Taylor, 2004; Santucci et al., 2005) than periphytic diatoms 

(Growns and Growns, 2001; Nichols et al., 2006). How fragmentation and an increase of 

sedimentation affect the microbial community as biofilms which are highly effective in 

organic matter conditioning is unclear so far. 

Small dams provide sites with predictable flow conditions with slow flow velocities in front 

and fast flow velocities behind the barrier. Because of the close proximity of the sites the 

nutrient conditions are expected to be equally. Thus small dams are excellent habitates for 

investigations of the impact of the flow velocity and sedimentation on microbial biofilms in a 

natural stream. The Stream Ilm (Thuringia, Germany) is highly fragmentated by more than 50 

small dams and was the study object of a graduated school founded by the DFG (266/3 at the 

Friedrich-Schiller-University Jena). 

In earlier investigations of the stream the impact of a low-head dam on the macroinvertebrate 

community and their resources was only local and the occurrence of more than 50 dams along 

the stream did not alter the zonation of invertebrates along the stream (Arle, 2005). 

 

Thesis structure 

In the present work microbial biofilms grown on glass slides exposed in the 3
rd

 order Stream 

Ilm has been investigated. In contrast to flumes and rotation reactors which are often used for 

biofilm investigations, a natural stream provides a permanent change in large (floods) and 

small (drought) scale fluids as well as laminar and turbulent flow. The permanent changes of 

the flow motions as well as the temperature and nutrition may affect the microbial community 

structure and function.  

The colonization pattern and community structure of bacteria and algae and the extracellular 

enzyme activity of the community have been investigated. In a second experiment the focus 

was on the impact of the flow velocity on the structure and function of the biofilm 
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community. Biofilm thickness was used to prove the matrix stability at different flow 

velocities in the stream and organic and inorganic matter content which may provide 

important resources for the community were measured. In a flow channel experiment under 

laboratory conditions the impact of different amounts of inorganic sediment particles on the 

bacterial community structure, algal biomass, biofilm thickness, and the turnover of an added 

carbon source have been investigated. Finally the abundance of bacteria at three different 

weirs in close approximaty was investigated to prove the impact of fragmentation in the 

stream.  

 

Hypotheses: 

 

1. Colonization of empty spaces occurs rapidly by bacteria and algae. 

2. Slow flow velocities enhance sedimentation which changes the community structure 

and metabolic activities of biofilm organisms. 

3. Stability of biofilms is dependent on the magnitude of the current and the amount of 

inorganic sediment incorporated. 

4. Smal weirs provide sites of nutrient accumulation in a stream entailed by 

sedimentation which in turn enhance biofilm turnover. 

 

The present work is based on the following questions:  

 

1. Which time interval is needed for early colonizers to contribute to the degradation of 

organic matter in streams?  

2. Does sedimentation entailed by slow flow velocities change the biofilm community 

structure and function in a stream? 

3. Does the incorporation of increasing amounts of sediment particles modify the biofilm 

structure and the carbon turnover of microbial biofilms? 

4. Do weirs affect the microbial community in biofilms and which are the consequences? 
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The first chapter “Pioneering Bacterial and Algal Communities and Potential 

Extracellular Enzyme Activities of Stream Biofilms” gives an insight into the initial 

biofilm formation at a natural sampling site in the Stream Ilm (Thuringia, Germany). Glass 

slides where exposed and the bacterial and algal community has been investigated. 

Measurements of the extracellular enzymatic activity represent the functional aspect of the 

community (Qustion 1). 

In the second chapter “Distinct Flow Velocities and Sedimentation Affect Microbial 

Biofilms in a Stream” the main focus was on the impact of the flow velocity and 

sedimentation of inorganic matter on the structure and function of the biofilm community. 

Besides the microbial community structure and the enzymatic activities the biofilm thickness 

as a parameter for biofilm stability has been measured. Glass slides for biofilm sampling were 

exposed in front and behind a weir to ensure that the flow conditions at the natural stream 

remained predictable during the sampling season (Question 2). 

The chapter three, “Influence of Incorporated Inorganic Sediment on Stream 

Biofilms” gives an insight into the impact of sedimentation on the structure and function of 

biofilms in flow channels. Besides the bacterial community structure the consumption rate of 

an added carbon sorce as well as the stability of the biofilm matrix at high flow velocities has 

been proved (Question 3). 

In chapter four “Enhanced Abundances of Biofilm Bacteria at Small Weirs in the 

Stream Ilm (Thuringia, Germany)” the impact of three different weirs in a close proximity 

on the abundance of the biofilm bacteria has been investigated (Question 4). 

The chapter five “Querying the Obvious: Lessons from a Degraded Stream” gives 

an outline for restoration ecology purposes. The question whether weirs provide a disturbance 

or a benefit for a stream ecosystem has been discussed (Question 4). 
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Abstract  1 

Microbial biofilms are important for the turnover of organic matter in small streams. A rapid 2 

colonization of epilithic surface will become more important given the predicted increase of 3 

flood events. Here, we elucidated the pioneering community structure and activity of stream 4 

biofilms. Colonization of glass slides exposed in a small stream for 1, 4, 8, 12, and 24 hours 5 

were compared with those exposed for 7 days or 5 months. 40,000 bacterial cells and 10 algae 6 

per cm
2
 attached to the glass slides within 1 hour of exposure. Catalyzed reporter deposition 7 

fluorescence in situ hybridization (CARD-FISH) demonstrated that the pioneer community 8 

which settled within 12 hours was dominated by Cytophaga-Flavobacteria. Later stages were 9 

characterized by an enrichment of Gammaproteobacteria and Betaproteobacteria especially 10 

after 24 hours. Green algae dominated the pioneering algal groups but were outnumbered by 11 

filamentous algae after the attachment period. Potential activity of alkaline phosphatase was 12 

already detected after 4 hours, β-glucosidase after 8 hours, and β-xylosidase only after 7 days 13 

of biofilm formation. Thus, biofilm formation occurred rapidly and the functionality of the 14 

assemblages was given within few hours. However, the potential activity ratios of β-15 

xylosidase:β-glucosidase suggested that initial biofilms relied more on autochthonous than on 16 

allochthonous carbon sources in contrast to mature biofilms. 17 

 18 
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 21 
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 23 

 24 

 25 

 26 

 27 

 28 

 29 
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Introduction 1 

Microbial biofilms, i.e. assemblages of bacteria, archaea, fungi, algae, and protozoans, are 2 

formed at any submerged surface in rivers, such as stones, plants, and roots (Zubkov & 3 

Sleigh, 1999). Structure and function of biofilms are dependent on the environmental 4 

conditions given (Beyenal & Lewandowski, 2002; Crump et al., 2003; Stoodley et al., 2005). 5 

In streams, the flow velocity is the primary physical force shaping biofilm colonization 6 

dynamics and biofilm structure-function coupling (Battin et al., 2003). Under laminar flow 7 

cell transport to the surface and mass transfer of nutrients are the limiting steps. Thus, the 8 

extent of biofilm growth increases with increasing flow velocity (Costerton et al., 1995; 9 

Characklis, 2009). However, high flow velocities under flood events can cause a significant 10 

biofilm removal (Marxsen, 2001). Sediment fractions which are relocated during floods 11 

provide new epilithic surfaces for colonization. Grazing by invertebrates like snails will also 12 

yield empty surfaces (Sheldon & Walker, 1997). Thus, stream biofilms are subjected to 13 

frequent disturbances and stable late growth phases like in controlled microcosm experiments 14 

(Besemer et al., 2007) will seldom reached by the biofilm community. 15 

Colonization of surfaces displays a successional pattern. Initial biofilm colonizers in 16 

streams are bacteria, which reach abundances up to 0.2 x 10
9
 cells cm

-2 
after 2 days (Battin et 17 

al., 2003). The community structure of bacteria in aquatic environments is mainly represented 18 

by Alpha-, Beta-, and Gammaproteobacteria, Cytophaga-Flavobacteria and Actinobacteria 19 

(Glöckner et al., 2000; Kirchman et al., 2004). The proportion of these bacterial groups can 20 

change over time according to environmental factors. In stream biofilms Betaproteobacteria 21 

are early colonizers whereas in mature states Alphaproteobacteria and Cytophaga-22 

Flavobacteria dominate (Manz et al., 1999). 23 

The dominant algae in riverine biofilms are diatoms (Roberts et al., 2004; Patil & 24 

Anil, 2005). Pennate diatoms are a major component in mature biofilms and filamentous 25 

algae oscillating in the water flow can develop in these biofilms (Battin et al., 2003). Initial 26 

colonizers on plexiglas surfaces in a fresh water reservoir are small green algae followed by 27 

colonial green algae and diatoms, whereas filamentous green algae predominate after 10 days 28 

(Sekar et al., 2004). Only few studies have investigated the combined succession of bacteria 29 

and algae during the initial colonization phase in streams (Sobczak & Burton, 1996; Battin et 30 

al., 2003; Besemer et al., 2007). However, in these studies sampling intervals started after 31 

more than one day which excluded the initial colonization phase. Studies focusing on marine 32 

biofilm formation demonstrate a change in the bacterial community within the first 9 hours of 33 
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colonization indicating that pioneering organisms have to be identified with much finer 1 

temporal resolution (Lee et al., 2008). 2 

Biofilms are hot spots for the turnover of organic matter in small streams (Geesey et 3 

al., 1978). The biofilm matrix permits the storage of nutrients and extracellular enzymes 4 

(Lock, 1994). These extracellular enzymes that can be free or bound to the cell (Wetzel, 1991) 5 

hydrolyze high-molecular-weight (HMW) organic compounds into smaller molecules, which 6 

than are available for microbial uptake. Their activity is regulated by catabolic processes 7 

(Chrost, 1989) and can be correlated with the relative abundance of different bacteria groups 8 

(Kirchman et al., 2004). Indeed no single species can express all extracellular enzymes with 9 

high activity, and these results in variation of extracellular enzyme activities among bacterial 10 

species (Castillo, 2000). Particularly bacteria from the Cytophaga-Flavobacteria-cluster may 11 

have a specialized role in dissolved organic matter (DOM) uptake though the degradation of 12 

biopolymers such as cellulose and chitin (Kirchman, 2002). The degradation of organic matter 13 

is further influenced by the bacteria to algae biomass ratio in biofilms, because the 14 

extracellular enzyme activity is higher in autotrophic biofilms than in heterotrophic ones 15 

(Romani & Sabater, 2000). 16 

Since floods and drying events will occur more frequently in the future (Labat et al., 17 

2004), abrasions and colonization of epilithic surfaces will become more important in 18 

streams. This poses the question, which time interval is needed for early colonizers to 19 

contribute to the degradation of organic matter in streams. Thus, the goal of this study was to 20 

investigate the structure of the pioneering community of stream biofilms and to link the 21 

succession of bacterial and algal communities during the first 24 hours of biofilm formation 22 

with biofilm extracellular enzyme activities. This initial colonization phase was compared 23 

with the community structure and function of a seven days and a five months old biofilm. 24 

 25 

Material and methods 26 

Sampling 27 

Biofilm samples were taken in the third order stream Ilm at Manebach (50°44´58´´N, 28 

11°02´14´´E; Thuringia, Germany). The Ilm is a typical mountain stream which arises about 29 

800 m above sea level in the northern part of the Thuringian forest. The reach is situated at 30 

the head water region with a mean discharge of 2.45 m³ s
-1

. Sampling cylinders of perforated 31 

(perforation diameter 0.8 cm) stainless steal (cylinder diameter 8 cm, length 16 cm) for 6 32 

glass slides (Fig. 1 A) (modified after Marxsen, 1982) were exposed horizontally on tubes 33 
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near the streambed (Fig. 1 B). The cylinders had to be used to avoid destruction of the glass 1 

slides by moving gravel. The flow velocity inside the cylinders is reduced to approximately 2 

50% due to the flow resistance of the cylinders (Risse-Buhl & Küsel, 2009). Exposure of the 3 

cylinders to the stream water 5 months (March 2005), 7 days and 1 day, as well as 12, 8, 4, 4 

and 1 hours before sampling on August 17
th

 2005. Six sampling cylinders containing 36 glass 5 

slides were sampled per time point. The period of March-August was selected to minimize the 6 

likelihood of flood events. The main sampling period was done in the summer to ensure the 7 

presence of algae. 8 

 9 

Water sample analyses 10 

Triplicate samples from the water column were filtered (Whatman, polycarbonate, 0.45 µm) 11 

during the period of February 2003 to August 2005 for measurements of dissolved organic 12 

carbon (DOC), ammonia (NH
4+

), nitrate (NO3
-
) and orthophosphate (PO4

3-
). Concentrations 13 

of PO4
3- 

were determined with the ascorbic acid method (Clesceri, 1998), NO
3-

 concentrations 14 

with the ultraviolet spectrophotometric screening method (Clesceri et al., 1999) (Uvikon 931, 15 

Kontron Instruments, Italy). Ammonium was determined spectrophotometrically (Gadkari, 16 

1984) (Uvikon 931, Kontron Instruments, Italy). DOC was measured using a DIMATOC 100 17 

infrared spectrometer (Dimatec Analysentechnik GmbH, Germany). Oxygen content, pH, 18 

salinity, conductivity and turbidity were measured in the water column (Horiba U 10, 19 

Multiparameter, Water Quality Meter, Kyoto, Japan). Flow velocity was measured near the 20 

tubes after removing the cylinders in 5 cm steps beginning from the river bottom to the top of 21 

the water column (Flowmate, MARSH McBirney, USA). 22 

 23 

Biofilm sample analyses 24 

Biofilms from triplicate glass slides were scraped off and weighed after drying for 48 h at 25 

60°C and a second time following combustion for 4 h at 550 °C. For Chl a content 26 

measurements, biofilms were also scraped off and frozen in liquid nitrogen for 27 

transportatation. Chl a content was determined spectrophotometrically (Uvikon 931, Kontron 28 

Instruments, Germany) following an acetone extraction (Clesceri, 1998) and incubation at 29 

6°C in the dark for 12 h. 30 
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Bacterial community structure 1 

To estimate the abundance of biofilm prokaryotes, biofilms (5-6 replicates) were scraped 2 

from the glass slides using sterile glass slides and kept in 50 ml Greiner tubes containing 35 3 

ml prefiltered stream water (Whatman, polycarbonate, 0.2 µm pore size) and 4 

paraformaldehyde at a final concentration of 4%. To estimate the abundance of water column 5 

prokaryotes, three replicates of 50 ml stream water were fixed with paraformaldehyde (4% 6 

final concentration). Abundance of bacteria belonging to different groups were determined by 7 

catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) (Pernthaler et 8 

al., 2004) after sonification of the biofilm samples for 1 min (Sonopuls HD2200, Bandelin, 9 

Korea), because determinations with fluorescence in situ hybridization (FISH) showed very 10 

low efficiency and poor reproducibility (data not shown). Samples were filtered onto 11 

polycarbonate filters (GTTP, Millipore, Eschborn, Germany, pore size 0.2 µm) and attached 12 

with low gelling agarose 0.1%. Cells were permeabilisized with lysozyme (10 mg ml
-1

) and 13 

achromopeptidase (60 U ml
-1

). Horseradish peroxidase (HRP) labeled oligonucleotide 14 

sequences (Biomers, Ulm) specific for the domain Bacteria (Amann et al., 1990), Alpha,- 15 

Beta- and Gammaproteobacteria (Manz et al., 1992), Actinobacteria (Roller et al., 1994; 16 

Berchtold et al., 1999), and Cytophago-Flavobacteria (Manz et al., 1994) (Table S1) were 17 

linked with Alexa488 as fluorochromic dye. Finally filters were embedded into a glycerol-18 

PBS-DAPI (1 µg µl
-1

) mixture and cells were counted at 1000x magnification [Zeiss 19 

Axioplan, 450-490 FT 510 LP 515 (Alexa488) and G 365 FT 395 LP 420 (DAPI)].  20 

 21 

Algal community 22 

Algal morphotypes (pennate, central and filamentous diatoms, coccale and filamentous green 23 

algae) were quantified microscopally (Ettl, 1983; Komarék & Fott, 1983; Ettl & Gärtner, 24 

1988; Kramer, 2000) after staining with Lugol’s solution at 100x magnification (Zeiss-25 

Axiovert) (Utermöhl, 1958). Cells were differentiated as living and dead according to 26 

chlorophyll content, which was visible under the light microscope. Those cells completely 27 

filled with the chloroplast were counted as live, whereas those cells with a shrunken or no 28 

visible chloroplast were counted as dead.  29 

 30 

Extracellular enzyme activities 31 

Potential activities of -glucosidase, -xylosidase and alkaline phosphatase were measured 32 

with artificial 4-methylumbelliferyl (MUF) substrates (MUF-ß-D-glycoside, MUF-ß-D-33 
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xyloside, MUF-phosphate (Sigma)). To 100 mg of substrate 2 ml of hydroximethylether 1 

(Sigma) were added in sterile Greiner-tubes to facilitate its dissolution. Fifty ml of autoclaved 2 

distilled water was added and the solution was kept in the freezer (-20°C) until use. Three 3 

replicates of biofilm on the glass slides at each time step were transferred within minutes after 4 

sampling into 50 ml Greiner tubes with filtered (Whatman glass fiber, 0.2 µm pore size) and 5 

autoclaved river water containing the artificial substrate (0.3 mmol l
-1

) and incubated for two 6 

hours. Fluorescence was determined after adding 1 mL of 0.05 M glycine buffer (pH 10.4) 7 

(for 100 mL 80.35 mL NaOH 0.2 M and 19.64 mL Glycine 0.2 M) to stop the reaction and 8 

enhance fluorescence that was measured with a fluorescence-spectrophotometer (Perkin 9 

Elmer, LS 50 B; em 450 nm, ex 365 nm, slit 2.5). Quantification was achieved by calibration 10 

with standard MUF solutions (1-10 µmol L
-1

) (Hoppe, 1983).  11 

 12 

Statistical analyses 13 

Concentration of nutrients and environmental variables were analyzed using one way 14 

ANOVA (SigmaStat). Data of bacterial and algal abundance were analyzed using pairwise 15 

analysis (SigmaStat). 16 

 17 

Results 18 

Environmental parameters 19 

Flow velocity was much lower in August compared to March 2005 (Table 1). In addition, the 20 

discharge with 0.5 m
3
 s

-1
 in August was below the mean annual discharge (2.44 m

3
 s

-1
, gauge 21 

Gräfinau-Angstädt; data provided by the Thüringer Landesanstalt für Umwelt und Geologie, 22 

Jena). No flood or extreme drying event occurred during March and August 2005. The 23 

concentrations of nutrients in the stream water were low as expected for a mountain stream. 24 

Ammonia and orthophosphate concentrations decreased during the exposure period of five 25 

months. In contrast, DOC concentrations were elevated in August. In general, all parameters 26 

measured during the time of exposure were in the normal range of those obtained during a 2.5 27 

year period. Seven flood events with discharges ranging from 10 up to 46 m
3
 s

-1 
and one 28 

extreme drying event with a discharge of only 0.1 m
3
 s

-1 
occurred during this 2.5 year period. 29 

 30 

 31 
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Initial substratum colonization 1 

After 1 hour of exposure in August 2005, approximately 40,000 DAPI stained cells and 10 2 

live algae per cm² were detected on the glass slides indicating a rapid colonization of new 3 

substrata. After 12 hours of exposure, approximately 88,000 DAPI stained cells and 82 live 4 

algae per cm² were detected. DAPI counts and abundance of algae increased 16- and 10-fold, 5 

respectively, between 24 hours and 7 days (168 hours) of exposure (Fig. 2 A, B). After 5 6 

months (3672 hours) of exposure the abundances increased further 8- and 10–fold, 7 

respectively. The abundance of both groups was significantly correlated (P<0.001). In 8 

general, Chl a contents (Fig. 2 C), organic matter (Fig. 2 D) and biofilm dry mass (data not 9 

shown) increased over the exposure time. Chl a contents were stable during the first 12 hours 10 

of exposure, although the abundance of algae steadily increased. The increase of biofilm dry 11 

mass between 7 days (168 hours) and 5 months (3672 hours) of exposure was mainly due to 12 

the increase of organic matter, because the amount of seston was stable. 13 

 14 

Bacterial community structure 15 

The proportion of bacterial cells that hybridized with the probe specific for Eubacteria relative 16 

to the DAPI counts varied between 35 and 75%. Variations did not correlate with increasing 17 

time of substratum exposure. This discrepancy might be caused by the low CARD-FISH 18 

efficiency and /or the presence of archarea picoeucaryote cells not accounted in this study. 19 

With the exception of Gammaproteobacteria, all specific groups addressed with probes were 20 

detected after 1 hour of exposure (Table 2). Cells that hybridized with the Cytophaga-21 

Flavobacteria probe were the dominant pioneering group after 1, 4, and 8 hours of exposure. 22 

Only in mature biofilms (5 months) this group was outnumbered by Actinobacteria and 23 

Betaproteobacteria. The abundances of all groups did not show an increasing trend during the 24 

first 24 hours of exposure. Between 24 hours and 7 days of exposure, cell abundances 25 

increased 8 to 130 fold. The mean relative proportion of other cells which could be not 26 

identified with specific probes in this study approximated 71%. Again, variations did not 27 

correlate with increasing time of substratum exposure. 28 

 29 

Algal community structure 30 

A high proportion of dead algal cells were always detected. After 1 hour and 7 days of 31 

exposure this proportion approximated 72 and 44%, respectively (Table 3). Melosira- and 32 

Fragilaria-like species and pennate diatoms dominated the dead algal community. Within the 33 
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live algal morphotypes the proportion of green algae dominated the early colonization periods 1 

of 1 to 4 hours with 78 and 68% respectively. No further increase was observed between 24 2 

hours and 7 days of exposure, whereas the abundance of pennate diatoms increased. The main 3 

representatives of the green algae community colonizing the substratum within the first day 4 

were taxa from the orders of Chlorococcales (spherical and cylindrical morphotypes), 5 

Chlamydomonadales (e.g. Chlamydomonas) and Desmidiales (e.g. Closterium). After 7 days 6 

and 5 months of exposure, the green algae community contained mainly taxa from 7 

Klebsormidiales (e.g. Klebsormidium), Chlorococcales (e. g. Scenedesmus), 8 

Chlamydomonadales (e.g. Chlamydomonas), and Desmidiales (e.g. Closterium). Pennate 9 

(31%) and filamentous diatoms (58%) dominated after 7 days of exposure. Pennate diatoms 10 

were represented by Navicula, Pinnularia, Cymbella, Fragilaria, Stauroneis, Gomphonema, 11 

Tabellaria, Cocconeis, Synedra, Meridion, and Diatoma. Central diatoms played a minor role 12 

at all time steps. Representatives of the centric diatoms were Melosira and Cyclotella (Table 13 

3). 14 

 15 

Extracellular enzyme activity 16 

There was no extracellular enzyme activity detectable after 1 hour of substratum exposure. 17 

Activity of alkaline phosphatase was detectable after 4 hours of exposure followed by the 18 

detection of -glucosidase after 8 hours (Table 4). -xylosidase was first detected after 7 days 19 

of exposition. Between 7 days and 5 months of exposure, the activity of alkaline phosphatase, 20 

-glucosidase, and -xylosidase increased 7-, 11, and 46-fold, respectively. 21 

 22 

Discussion 23 

Pioneering bacterial community structure 24 

Although biofilm formation is initiated by attachment of specific groups of free-living 25 

bacteria present in fresh- or seawater, the composition of bacterial communities in biofilms 26 

differs from that of the water phase (Besemer et al., 2007; Lee et al., 2008). The community 27 

difference can be explained by a rapid growth of a subpopulation of pioneer species that are 28 

present in the water at low abundances or by a continuous attachment of these pioneer species 29 

to the substratum. Surface properties of the submerged material are not so crucial, because 30 

only slight differences in the bacterial community are detected for acryl, glass, and steel 31 

substrata (Lee et al., 2008). In this study, 40,000 DAPI stained cells per cm
2
 attached to glass 32 
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slides within 1 hour of exposure suggesting that these cells present the pioneer population of 1 

this stream. The high number of cells was surprising as was the fact that the identified 2 

bacterial cells were dominated by Cytophago-Flavobacteria and not by Betaproteobacteria. It 3 

is proposed that Betaproteobacteria attach more easily to surfaces during initial biofilm 4 

formation than other groups of bacteria and, thus, dominate biofilm succession (Araya et al., 5 

2003). Similarly, fine temporal resolution of the formation of marine biofilms show the 6 

predominance of Gammaproteobacteria and not of Alphaproteobacteria in the pioneering 7 

population (Lee et al., 2008). Gammaproteobacteria did not belong to the early pioneering 8 

population in this stream biofilm, because the first cells were detected after 4 hours on the 9 

glass surfaces. 10 

 11 

Bacterial community succession  12 

In this study, bacterial development occurred in several phases beginning with attachment 13 

apparently without growth during the first 12 hours resulting in an increasing density of 14 

bacterial cells between 1 and 7 days. Comparative community structure analyses indicated 15 

that the pioneer community in stream biofilms settled within 12 hours and developed into 16 

later stages by an enrichment of Gammaproteobacteria and Betaproteobacteria especially 17 

after 24 hours. Mechanisms of the succession of bacterial communities in biofilms are 18 

characterized as the sequence of pioneer-driven accumulation of biomass followed by an 19 

enrichment of other groups (Jones et al., 2007). However, the exact time frame for settlement 20 

of pioneer groups and subsequent recruitment of other groups have not been known, because 21 

previous studies on succession in stream biofilms were performed at >1-day intervals. The 22 

community structure of the 7 days old biofilm was dominated by Cytophaga-Flavobacteria, 23 

Gamma- and Betaproteobacteria (Fig. 3) which are typical for stream water environments 24 

(Hullar et al., 2006; Beier et al., 2008). Settlement of pioneer groups and subsequent 25 

recruitment of other groups should not be dependent on the flow velocity, since it was 26 

recently shown that flow velocity does not affect the initial bacterial community of stream 27 

biofilms (i.e. the first 10 days) (Besemer et al., 2007). The flow velocity measured at this site 28 

varied between laminar and turbulent flows, but transitional to turbulent flows dominated 29 

during the time of exposure. No flood events with very high flow velocities occurred during 30 

the period March-August. The main sampling period was done in August to ensure the 31 

presence of algae, because developmental patterns appear to be driven by algae which 32 

modulate their microenvironment (Besemer et al., 2007). After 5 months of exposition, the 33 
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abundances of the investigated groups were similar to each other, representing a typical 1 

stream bacterial community (Glöckner et al., 2000; Hullar et al., 2006; Beier et al., 2008). 2 

The abundance of DAPI stained cells approximated 2 x 10
6
 cells cm

-2 
 after 7 days and 16 x 3 

10
6
 cells cm

-2
 after 5 months, which is in the range of cell numbers (5 to 80 x 10

6
 cells cm

-2
) 4 

reported from stream biofilms (Geesey et al., 1978; Freeman et al., 1990; Romani & 5 

Marxsen, 2002). 6 

Although probes that hybridize with specific groups typical for freshwater 7 

environments were used, the amount of “other cells” varied between 16 and 94% indicating 8 

high abundances of unknown groups. However, other molecular techniques like phylogenetic 9 

analysis of dominant DGGE bands from stream biofilms yield sequences related to the known 10 

typical groups (Besemer et al., 2007). Cells that hybridized with the Eubacterial probe 11 

accounted only for 35 to 75% of the DAPI cell numbers similar to studies done with the 12 

benthos of nine streams (Gao et al., 2005). The low recovery during the first samplings was 13 

surprising, because the EPS matrix which could act as a barrier for the labeled probes should 14 

not be so pronounced in the very early phase of biofilm formation. Other reasons than matrix 15 

effects have to be responsible, because FISH analyses of lake bacterioplankton reveal also a 16 

low recovery of 10 to 59% of the DAPI counts (Zwisler et al., 2003). 17 

 18 

Algal community succession 19 

Algae colonized the surfaces very rapidly within 1 hour (Fig. 2 B) and algal abundance 20 

increased continously over the time of exposure. Algae can settle passively per sedimentation 21 

or actively by motile species (Sekar et al., 2002; Sekar et al., 2004). Within the algal 22 

community the dominance of small green algae represented by Chlorella spec. 23 

(Chlorophyceae) within the first 4 hours is possibly based on the ability to fast attachment of 24 

this group. With increasing exposure time algae abundance increased, but their overall 25 

propotion was low, which might be due to a low competive ability, a specialized herbivore or 26 

a decreased ability in settling on pre-occupied aerea. Filamentous algae outnumbered other 27 

groups similar to other studies (Besemer et al., 2007), after the attachement phase, whereas 28 

pennate diatoms dominated the 5 months old biofilm. Although centric diatoms are dominant 29 

in the water phase (Patil & Anil, 2005), this group was always of less importance in this 30 

study. The high percentage of dead cells might be caused by an increased number of dead 31 

cells in the water phase in late summer caused by nutrient limitations (e.g. ammonia, Table 1). 32 

This phenomenon is known to explain the viability of marine algae which show a significant 33 
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reduction in late summer (Hayakawa, 2008). The association within the biofilm matrix may 1 

allow algae and bacteria to persist during periods of nutrient limitation, because autotrophics 2 

and heterotrophics in the biofilm use nitrogen and phosphorus from the stream water leading 3 

to an increased downstream nutrient decline (Sabater et al., 2002).  4 

Algal biomass is a good predictor of epilitic bacterial density. However, for a 5 

quantitative relationship between algae and bacteria, a minimum algal biomass (> 5 µg 6 

Chlorophyll a per cm
2
) appears to be necessary (Rier & Stevenson, 2001), which was given in 7 

the biofilms after 7 days. Filamentous green algae can form structural templates on which 8 

bacterial communities develop (Besemer et al., 2007). Similarly to stalked diatoms that can be 9 

important as secondary substrata for bacteria forming a loosely attached biofilm fraction 10 

(Tuji, 2000; Rier & Stevenson, 2002). 11 

 12 

Extracellular enzyme activity 13 

River biofilms are critical for organic matter processing (Sabater et al., 2002). Extracellular 14 

enzymes accumulate in the biofilm and are both adhered to the bacteria (up to 81% in young 15 

and up to 37% in old biofilms) or are interspersed within the matrix (Romani et al., 2008). 16 

The appearance of phosphatase activity after 4 hours of exposure might be due to the 17 

Betaproteobacteria and the early settlement of algae (Bruckmeier et al., 2005; Wilczek et al., 18 

2005). Betaproteobacteria have been found to be highly correlated with phosphatase activity 19 

in surface waters (Kirchman et al., 2004). Potential activities of the three enzymes measured 20 

after 7 days were in the upper range of activities reported from other streams (Romani & 21 

Marxsen, 2002) suggesting a highly active population despite their small cell number. The 22 

increased extracellular enzyme activities in 5 months old biofilms are comparable with results 23 

from stomatolitic algal patches from La Solana River (Spain) (Romani & Sabater, 1998). 24 

Conspicuous is the switch from a very low ratio of β-xylosidase:β-glucosidase to a higher 25 

ratio of 0.4 after 7 days and 5 months, respectively, indicating a change in organic matter 26 

resources which were utilized by the biofilm community. High ratios indicate the importance 27 

of hemicellulose which is mainly of allochthonous origin (Romani & Sabater, 2000). Low 28 

ratios show that microorganisms preferentially hydrolyze cellobiose which originates from a 29 

great variety of autochthonous and allochthonous sources. Thus, our data suggest a switch 30 

from more autochthonous carbon sources delivered directly by attached algae and used by the 31 

bacterial community in the initial stage of development to increased importance of 32 

allochthonous compounds in biofilms that reach a mature state.  33 
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Table 1. Environmental parameters measured in triplicates on March and August 2005 at the 

sampling site. In addition, the range of these parameters measured during February 2003 and 

August 2005 is presented. 

 

Parameter Unit March 2005 August 2005 Range 

Flow velocity cm s
-1

 78 ± 39 18 ± 9 0 - 120 

Temperature °C 1.5± 0.0 12.8 ± 0.0 1.5 - 16.3  

Conductivity µS cm
-1

 165 ± 0.0 137 ± 0.0 105 - 172 

pH  7.81 ± 0.0 7.22 ± 0.0 6.2 - 7.6 

Ammonium µmol l
-1

 12.2 ± 0.0 <1 <1 - 20 

Nitrate µmol l
-1

 129 ± 0.0 119 ± 50.2 12 – 159 

Phosphate µmol l
-1

 1.9 ± 0.3 0.51 ± 0.03 1.6 - 4.9 

DOC mg l
-1

 1.3 ±  0.8 1.7 ± 0.0 0.2 - 1.6 

 

 

 

 



 

 

Table 2. Mean abundance (± standard deviations) of bacterial cells (* 10
4
 cm

-2
) (n between 3 and 6) that hybridized with probes specific for 

Eubacteria, Alpha,- Beta-, and Gammaproteobacteria, Cytophaga-Flavobacteria, and Actinobacteria on glass slides exposed for 1, 4, 8, 12, 24 

hours, 7 days, and 5 months in the stream Ilm. The group “others” represents the percentage of cells which hybridized with the Eubacterial probe 

but not with the more specific ones. 

Targeted groups Mean abundance (± standard deviations) of cells (* 10
4
 cm

-2
) and percentage of others on glass slides exposed for 

 1 h 4 h 8 h 12 h 24 h 7 days 5 months 

Alphaproteobacteria 0.04 (± 0.03) 0.12 (±0.15) 0.09 (±0.08) 0.13 (±0.03) 0.06 (±0.04) 0.06 (±0.04) 21.4 (±10.4) 

Betaproteobacteria 0.05 (±0.02) 0.16 (±0.11) 0.06 (±0.06) 0.21 (±0.00) 0.06 (±0.04) 2.25 (±0.45) 39.2 (±18.7) 

Gammaproteobacteria 0 0.05 (±0.04) 0.24 (±0.19) 0.06 (±0.06) 0.03 (±0.17) 3.89 (±1.99) 11.9 (±11.9) 

Cytophaga-Flavobacteria 0.40 (±0.40) 0.20 (±0.05) 1.10 (±0.91) 0.27 (±0.13) 0.31 (±0.18) 3.89 (±1.99) 30.9 (±34.7) 

Actinobacteria 0.10 (±0.10) 0.09 (±0.10) 0.09 (±0.10) 0.13 (±0.04) 0.03 (±0.05) 1.20 (±0.68) 39.2 (±28.9) 

Eubacteria 1.69 (±0.54) 6.65 (±5.23) 1.87 (±2.27) 2.75 (±1.68) 7.99 (±1.46) 66.5 (±31.9) 702.0 (±480) 

Others 65.1 90.7 15.5 70.9 93.9 79.9 79.9 

 

 



 

 

Table 3. Mean abundance (± standard deviations) of live algal cells (cm
-2

) (n=3) and percentage of dead cells on glass slides exposed for 1, 4, 8, 12, 

24 hours, 7 days, and 5 months in the stream Ilm. 

Algal groups Mean abundance (± standard deviations) of cells (cm
-2

) and percentage of dead cells (%) on glass slides exposed for 

 1 h 4 h 8 h 12 h 24 h 7 days 5 months 

Centrales 0.2 (± 0.4) 0.4 (±0.7) 1.0 (±1.0) 0 0 120 (±30) 179 (±161) 

Pennales 1.0 (±1) 2.0 (±2.0) 18 (±4.0) 13 (±3.0) 74 (±97) 468 (±145) 13538 (±18889) 

Filamentous diatoms 1.0 (±1) 6.0 (±8) 11 (±8) 29 (±22) 20 (±4) 882 (±202) 1472 (±1544) 

Green algae 8 (±13) 18 (±31) 8 (±8) 40 (±52) 65 (±91) 40 (±46) 441 (±686) 

Dead cells 72 48 51 45 56 34 54 

 



 

 

Table 4. Mean activity rates (± standard deviations) of extracellular enzymes of the community on glass slides (n=3) exposed for 1, 4, 8, 12, 24 

hours, 7 days, and 5 months in the stream Ilm. 

Extracellular enzymes Mean activity rates (± standard deviations) of the community (nmol cm
-2

 h
-1

) on glass slides exposed for 

 1 h 4 h 8 h 12 h 24 h 7 days 5 months 

Alkaline phosphatase n.d.* 0.3 (±0.7) 0.8 (±1.0) 10.4 (±22.6) 9.1 (±13.5) 91 (±71) 611 (±151) 

β-glucosidase n.d. n.d. 1.4 (±2.5) n.d. 1.6 (±2.8) 60 (±28) 630 (±237) 

β-xylosidase n.d. n.d. n.d. n.d. n.d. 5.3 (±8.3) 242 (±97) 

 

* n.d.: not detected 
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Figure legends 

 

Fig. 1. (A) Sampling basket for 6 glass slides. (B) Exposition of the basket horizontally to the 

stream bed. 

 

Fig. 2. Abundances (mean ± standard deviations) of bacteria (A) and algae (B), as well as Chl 

a (C) and organic matter (D) content on glass slides exposed for 1, 4, 8, 12, 24 hours, 7 days, 

and 5 months in the stream Ilm. Asterisks above the columns indicate significant differences 

(* P<0.05, ** P<0.001). 

 

Fig. 3. Frequencies of bacterial cells that hybridized with probes specific for Alpha-, Beta-, 

and Gammaproteobacteria, Cytophaga-Flavobacteria, and Actinobacteria relative to the total 

number of cells affiliated to these groups on glass slides exposed for 1 h, 12 h, 7 days, and 5 

months in the Stream Ilm. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A                                                    B 



 

 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (hours)

1 10 100 1000 10000

A
b
u
n
d
a
n
c
e
 o

f 
B

a
c
te

ri
a
 (

1
0

6
 c

m
 -2

)

0.01

0.1

1

10

100

Time (hours)

1 10 100 1000 10000

A
b
u

n
d

a
n

c
e

 o
f 
A

lg
a
e

 (
1
0

3
 c

m
-2

)

0.01

0.1

1

10

100

Time (hours)

1 10 100 1000 10000

O
rg

a
n
ic

 M
a
tt
e
r 

(m
g
 c

m
-2

)

0.001

0.01

0.1

1

10

Time (hours)

1 10 100 1000 10000

C
h

lo
ro

p
h

y
ll 

 (
µ

g
 c

m
-2

)

0.01

0.1

1

10

100

* * 

* * 

* * 

* * 

* 

A B 

C D 



Elisabeth Pohlon  Chapter 1 

 41 

Figure 3 
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Supplement 1. Sequences of oligonucleotide probes and references used for CARD-FISH 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specificy Common Name 

 

Sequence (5´- 3´) 

 

 

 

 

Reference 

Bacteria S-D-Bact-0338-a-A-18  

 

 

 

 

GCTGCCTCCCGTAGGAGT (Amann et al. 1990) 

Alpha-Proteobacteria S-Sc-aProt-0019-a-A-17  CGTTCGYTCTGAGCCAG (Manz et al. 1992)  

Beta-Proteobacteria L-Sc-bProt-1027-a-A-17  GCCTTCCCACTTCGTTT (Manz et al. 1992) 

Gamma-Proteobacteria L-Sc-gProt-1027-a-A-17 GCCTTCCCACATCGTTT (Manz et al. 1992)  

Cytophaga-Flavobacteria S-P-CyFla-0319-a-A-18  TGGTCCGTGTVAGTAG (Manz et al. 1994) 

Actinobacteria HCG69a TATAGTTACCACCGCCGT (Roller et al. 1994) 

(Berchtold et al. 1999) 
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Abstract  1 

We examined the impact of the flow velocity and sedimentation on the structure and 2 

function of stream microbial biofilms. Glass slides were exposed in a stream at slow flow 3 

velocities (0.17 m s
-1

) in front and high velocities (0.4 m s
-1

) behind a barrier as well as at a 4 

natural site (0.4 m s
-1

). In front and behind the barrier high fractions of inorganic matter were 5 

incorporated. At this sites the total bacterial abundance, biofilm thickness, and 6 

Betaproteobacteria in 2 weeks old biofilms were enhanced. Extracellular enzyme activities at 7 

the natural site per bacterial biomass were significantly higher indicating the demand for low 8 

molecular weight nutrients at this site. The biofilm thickness in biofilms grown at slow flow 9 

velocities was significantly reduced after 7 weeks obviously caused by small flood events. To 10 

evaluate the impact of inorganic sediments on the structure and function of the biofilm 11 

community 0, 1, 5 and 15 mg cm
-2

 of inorganic sediment particles were added to biofilms in 12 

flow channels. The abundance of bacteria, algal biomass, biofilm thickness, organic matter 13 

content, and the carbon turnover was enhanced after the addition of sediment at a flow 14 

velocity of 0.7 cm s
-1

. With addition of 5 mg cm
-2

 sediment Beta- and Gammaproteobacteria 15 

were enhanced and Alphaproteobacteria reduced. After exposing to higher flow velocities (20 16 

and 60 cm s
-1

) for 1 h the biofilms with inorganic sediment of 5 and 15 mg cm
-2

 sustained loss 17 

in thickness. These results show that inorganic sediment fractions incorporated in the matrix 18 

enhance the bacterial abundance and turnover capacity but in higher concentrations lead to 19 

instability. 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 
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INTRODUCTION 1 

Biofilms are ensembles of autotrophic and heterotrophic organisms formed at any 2 

submerged surface in streams, such as stones, plants, and roots (Fuchs et al. 2000). The 3 

biofilm matrix formed by extracellular polymeric substances (EPS) provides a refuge for the 4 

microbial community against shear stress and desiccation and capture extracellular enzymes 5 

and products from hydrolysis (Freeman and Lock 1995, Ramasamy and Zang 2005). Activity 6 

of extracellular enzymes in biofilms is linked to representatives of the bacterial community 7 

(Kirchman 2002), the nutrient condition in the stream (Artigas et al. 2008), and the presence 8 

of algae (Rier et al. 2007). Most abundant heterotrophic bacterial groups in aquatic 9 

environments include 3 subdivisions of Proteobacteria (Alpha-, Beta-, 10 

Gammaproteobacteria), Cytophaga-Flavobacteria, and Actinobacteria (Glöckner et al. 2000, 11 

Kirchman 2004). Diatoms represent the main part of algae in stream biofilms (Roberts et al. 12 

2004; Patil and Anil 2005). 13 

The architecture and dynamics of biofilms in natural streams depends on the current velocity. 14 

Biofilms grown under slow flow velocities (6 cm s
-1

) in flumes are thicker with higher 15 

abundances of bacteria and differ in structure compared with the counterparts from fast flow 16 

velocities (23 cm s
-1

) resulting in dissimilar turnover DOC conditions. Biofilms grown under 17 

fast velocities are more dependent on the DOC load from the water column (Battin et al. 18 

2003). Under slow flow velocities biofilms exhibit low densities in internal architecture and 19 

high effective diffusivity but cannot resist higher shear stress, whereas biofilm grown at 20 

higher flow velocities are denser and can resist higher shear stress but have a lower affective 21 

diffusivity (Beyenal and Lewandowski 2002). Honeycomb structures of biofilms for instance 22 

result in a resistance to water flow (Okabe et al. 1998). High flow velocities (15.5 cm s
-1

) can 23 

intensify shear stress and frictional forces both acting on the amount of surface attached 24 

biomass (Cheng et al. 1997).  25 

Disturbed freshwater communities can recover their numerical and species composition by 26 

succession within 14 days. The recovery of the microbial community in biofilms is dependent 27 

on age and taxonomic composition of the community, nutrient condition, shading, and the 28 

flow velocity (Stevenson 1990; Peterson and Stevenson 1992; Peterson 1994; Railkin 1998). 29 

In a stream 40,000 bacteria and 10 algae (8 green algae) per cm
2
 colonized the surface within 30 

1 h (Pohlon et al. submitted), whereas marine biofilms in a laboratory experiment consisted of 31 

460,000 bacteria and 16,300 diatoms per cm
2
 after 1 h (Railkin 1998). Initial colonization of 32 

surfaces by ciliates occurs faster at slow flow velocities (9 cm s
-1

) in a stream and in flow 33 

channels with a flow velocity of 5 cm s
-1

 (Risse-Buhl and Küsel 2009). 34 
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Sediment fractions play a key role in bacterial community and production in rivers. Bacterial 1 

production in sediments is higher than in the pelagic zone (Fischer and Pusch 2001). But 2 

bacterial carbon production (BCP) is dependent on sediment conditions in a stream. In sandy 3 

(0.5 mm) sediments the BCP is higher (7.8 µg per mL sediment and day) as in coarse (>0.5 4 

mm) sediments (3.6 µg per mL sediment and day) (Marxsen 2001). Furthermore bacteria 5 

prefer colonization of fine fractions (<0.063 mm) of sediments whereas the coarse sediments 6 

(0.063-1 mm) contribute the major proportion of particulate organic matter (Koutny and Rulik 7 

2007). 8 

In the current study the structure and function of microbial biofilms grown under different 9 

flow velocities in a natural stream has been investigated. For this porpose a small weir with 10 

predictable flow velocities in the Stream Ilm (Thuringia; Germany) was chosen. In front of 11 

the barrier slow flow velocities were predominant and significantly higher behind (Table 1). 12 

Furthermore small weirs are known as sedimentation traps (Stanley et al. 2002; Magilligan et 13 

al. 2003) and so the impact of sedimentation on the bacterial and algal community structure, 14 

the enzymatic activity, and the biofilm thickness in 2 and 7 weeks old biofilms has been 15 

investigated. Additionally colonization of glass slides by bacteria between 4 hours – 14 days 16 

at different flow velocities were mesured. Glass slides were exposed in front and behind the 17 

barrier as well as at a natural site with high flow velocities. In a flow channel experiment the 18 

impact of the amount of inorganic sediment particles on the microbial community structure 19 

and the carbon turnover has been evaluated. After adding 0, 1, 5 and 15 mg cm
-2

 of inorganic 20 

sediment particles to biofilms the bacterial community structure, algal biomass, biofilm 21 

thickness and sucrose degradation was measured at a flow velocity of 0.7 cm s
-1

. Finally these 22 

biofilms were exposed to flow velocities of 20 or 60 cm s
-1

 respectively for one hour to 23 

evaluate biofilm stability.  24 

 25 

MATERIAL AND METHODS 26 

Sampling. Biofilm samples were taken in the third order stream Ilm (50°44´58´´N, 27 

11°02´14´´E; Thuringia, Germany) at Manebach (natural site, river km 120) and at Griesheim 28 

(weir, river km 100). The reach Manebach is situated at the head water region with a mean 29 

discharge of 2.45 m³ per s
1

.  The pool is situated in front of a small weir and the outlet behind 30 

of the same weir. 31 

Sampling baskets of punched (diameter of the holes 5 mm) stainless steal (diameter 8 cm, 32 

length 16 cm) for 6 glass slides were exposed on tubes above the river ground so that the 33 
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slides were aligned horizontally to the surface water (Pohlon et al. submitted). The initial 1 

colonization (1, 3, 5, 7, and 14 days) of biofilm bacteria (DAPI-counts) was estimated in 2 

November 2003 and in May 2004 (4 and 8 hours and 3 days of exposition). In February 2005 3 

samples for the examination of 2 and 7 weeks old biofilms were taken. The community 4 

structure of biofilm bacteria and algae, biofilm tickness, and organic- and inorganic matter 5 

content was estimated. Extracellular enzyme activity was measured at March 3
rd

 2005 in 3 6 

weeks old biofilms grown on clay tiles (Sabater and Romani 1996). 7 

Laboratory biofilms were grown in flow channels (50 x 16 x 4 cm; length x width x height) 8 

containing 24 glass slides in a climate chamber at 13 C in a 12 h light-dark cycle. 9 

Photosynthetic active radiation approximated 100 µmol m
-2

 s
-1

 above the water surface during 10 

the light period. Flow velocity in all channels was adjusted to 0.7 cm s
-1

, all channels were 11 

connected to one pump reservoir. Five liters of stream water per channel were circulated using 12 

one rotary pump per channel (WIND'S 1200, Sacem, Giorgio, Italy) and replaced every two 13 

weeks. The water was taken from the Leutra, a 1
st
 order rock stream near Jena (Thuringia, 14 

Germany) during 27.01.2006 to 25.05.2006 without disturbing the streambed to minimize the 15 

amount of suspended sediment. 16 

Sediment addition. To six out of 24 channels in total, 0, 1, 5, and 15 mg cm
-2

 combusted 17 

(550 °C) silicium dioxide (SiO2) particles (0.5 - 10 µm diameter; >80 % between 5 - 10 µm) 18 

were added respectively. Pre-experiments demonstrated that this size was embedded into the 19 

biofilm to approximately 82% in comparison to silicium dioxide particles with a particle size 20 

of 0.014-0.5 µm or 210-297 µm that were embedded into the biofilm only to 10 or 30%, 21 

respectively. The total amount of sediment for each channel was divided in six equal parts, 22 

and added at day 1, 4, 8, 11, 15 and 18. For each addition, the silicium dioxide was suspended 23 

in 24 mL of channel water. The suspension was distributed over the glass slides in 24 steps, 24 

using a pipette. Per step, 1 mL suspension was added over one glass slide respectively, with 25 

vigorous shaking of the suspension between every step. To achieve a homogeneous 26 

distribution on the biofilm, the silicium dioxide was released as high as possible in the water 27 

column, maximizing dispersal due to sedimentation of the particles in the water. 28 

Sucrose addition and flow velocity adjustment. After 28 days, 10 mg C L
-1

sucrose 29 

(C12H22O11) was added to all flow channels. From now on, all channels had separated water 30 

circuits. Three flow channels of each treatment (channels with sediment addition and control 31 

channels without added sediment) were run in darkness, the other three continued under the 32 

light-dark cycle, all for seven more days. 33 
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At the end of the sucrose incubation, six glass slides from every treatment were transferred 1 

immediately to two flow channels (98 x 25 x 2 cm; length x width x height). This transfer was 2 

necessary as the smaller channels did not allow for a sufficient flow velocity increase. The 3 

flow velocity was adjusted to 20 and 60 cm s
-1

, chosen to simulate a high discharge event in 4 

the Leutra stream. Bacterial abundances and inorganic biofilm mass were determined from 5 

triplicate samples of each treatment after one hour and compared to those obtained at the end 6 

of sucrose incubation. 7 

Stream water sample analyses. Triplicate samples from the water column were filtered 8 

(Whatman, polycarbonate, 0.45 µm) during the period of 2003 to August 2005 for 9 

measurements of dissolved organic carbon (DOC), ammonia (NH
4+

), nitrate (NO3
-
) and 10 

orthophosphate (PO4
3-

). Concentrations of PO4
3- 

were determined with the ascorbic acid 11 

method (Clesceri, 1998), NO
3-

 concentrations with the ultraviolet spectrophotometric 12 

screening method (Clesceri et al. 1999) (Uvikon 931, Kontron Instruments, Italy). 13 

Ammonium was determined spectrophotometrically (Gadkari 1984) (Uvikon 931, Kontron 14 

Instruments, Italy). DOC was measured using a DIMATOC 100 infrared spectrometer 15 

(Dimatec Analysentechnik GmbH, Germany). Oxygen content, pH, salinity, conductivity and 16 

turbidity were measured in the water column (Horiba U 10, Multiparameter, Water Quality 17 

Meter, Kyoto, Japan). Flow velocity was measured near the tubes after removing the cylinders 18 

in 5 cm steps beginning from the river bottom to the top of the water column (Flowmate, 19 

MARSH McBirney, USA). 20 

Laboratory experiment. Nutrient concentrations were determined from water samples taken 21 

from the stream at the beginning, two weeks after start, and end of glass slides exposure. In 22 

flow channels, samples were taken at the start, water exchanges, and the end of the 23 

experiment. Average nutrient values in the Leutra water were 0.02  0.06 mg L
-1

 ammonium, 24 

32.9  4.3 mg L
-1

 nitrate, 0.16  0.07 mg L
-1

 phosphate, and 2.4 ± 0.3 mg C L
-1

 DOC. 25 

Following sucrose addition, water samples of 1 mL were taken by sterile syringes from each 26 

channel five times a day (every four hours, and one eight hour interval during night), and 27 

sucrose concentrations were determined using a high pressure liquid chromatograph 28 

connected to a refractive index detector (System Gold, Beckman Coulter, USA). 29 

Biofilm sample analyses. Biofilms from triplicate glass slides were scraped off and 30 

weighed after drying for 48 h at 60°C and a second time following combustion for 4 h at 31 

550°C. 32 

Determination of bacterial community. To estimate the abundance of biofilm prokaryotes, 33 

biofilms (5-6 replicates) were scraped from the glass slides using sterile glass slides and kept 34 
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in 50 mL Greiner tubes containing 35 mL prefiltered stream water (Whatman, polycarbonate, 1 

0.2 µm pore size) and paraformaldehyde at a final concentration of 4%. To estimate the 2 

abundance of water column prokaryotes, three replicates of 50 mL stream water were fixed 3 

with paraformaldehyde (4% final concentration). Abundance of bacteria belonging to 4 

different groups were determined by catalyzed reporter deposition fluorescence in situ 5 

hybridization (CARD-FISH) (Pernthaler et al. 2004) after sonification of the biofilm samples 6 

for 1 min (Sonopuls HD2200, Bandelin, Korea), because determinations with fluorescence in 7 

situ hybridization (FISH) showed very low efficiency and poor reproducibility (data not 8 

shown). Samples were filtered onto polycarbonate filters (GTTP, Millipore, Eschborn, 9 

Germany, pore size 0.2 µm) and attached with low gelling agarose 0.1%. Cells were 10 

permeabilisized with lysozyme (10 mg mL
-1

) and achromopeptidase (60 U mL
-1

). Horseradish 11 

peroxidase (HRP) labeled oligonucleotide sequences (Biomers, Ulm) specific for the domain 12 

Bacteria (Amann et al. 1990), Alpha,- Beta,- and Gammaproteobacteria (Manz et al. 1992), to 13 

Actinobacteria (Roller et al. 1994; Berchtold et al. 1999), and Cytophago-Flavobacteria 14 

(Manz et al. 1994) (Table S1) were linked with Alexa488 as fluorochromic dye. Finally filters 15 

were embedded into a glycerol-PBS-DAPI (1 µg µL
-1

) mixture and cells were counted at 16 

1000x magnification [Zeiss Axioplan, 450-490 FT 510 LP 515 (Alexa488) and G 365 FT 395 17 

LP 420 (DAPI)].  18 

Algal community. Algal morphotypes (pennate, centrale and filamentous diatoms, coccale 19 

and filamentous green algae) were quantified microscopally (Ettl 1983; Komarék and Fott 20 

1983; Ettl and Gärtner 1988; Kramer 2000) after staining with Lugol’s solution at 100x 21 

magnification (Zeiss-Axiovert) (Utermöhl 1958). Cells were differentiated as living and dead 22 

according to chlorophyll content, which was visible under the light microscope. Those cells 23 

completely filled with the chloroplast were counted as live, whereas those cells with a 24 

shrunken or no visible chloroplast were counted as dead.  25 

Extracellular enzyme activities. Activities of -glucosidase, -xylosidase and alkaline 26 

phosphatase were measured with artificial 4-methylumbelliferyl (MUF)substrates  MUF-ß-D-27 

glycoside, MUF-ß-D-xyloside, MUF-phosphate (Sigma), for aminopeptidase Leucine-MCA 28 

(L-leucine-4 methyl-coumarinyl-7-amide (Calbiochem)) was used. To 100 mg of substrate 2 29 

mL of hydroximethylether (Sigma) were added in sterile Greiner-tubes to facilitate its 30 

dissolution. Fifty mL of autoclaved distilled water was added and the solution was kept in the 31 

freezer (-20°C) until use. Three replicates of biofilm on the glass slides at each time step were 32 

transferred within minutes after sampling into 50 mL Greiner tubes with filtered (Whatman 33 

glass fiber, 0.2 µm pore size) and autoclaved river water containing the artificial substrate (0.3 34 
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mmol L
-1

) and incubated for two hours. Fluorescence was determined after adding 1 mL of 1 

0.05 M glycine buffer (pH 10.4) (for 100 mL 80.35 mL NaOH 0.2 M and 19.64 mL Glycine 2 

0.2 M) to stop the reaction and enhance fluorescence that was measured with a fluorescence-3 

spectrophotometer (Perkin Elmer, LS 50 B; em 450 nm, ex 365 nm, slit 2.5). Quantification 4 

was achieved by calibration with standard MUF solutions (1-10 µmol L
-1

) (Hoppe 1983). 5 

Bacterial biomass was estimated using the converting factor 2.2*10
-13

 gC µm
3
 (Bratbak and 6 

Dundas 1984, Kemp 1990). 7 

Examination of biofilm thickness. Slides were kept in 50 mL prefiltered river water 8 

(Whatman, 0.2 µm) and formaldehyde (4% final concentration) and stained with the 9 

fluorescence marker 5(4,6-dichlorotriazinyl) aminofluorescein (DTAF) (Schumann and 10 

Rentsch 1998). After leaving out the drying step at the end of the staining procedure to avoid 11 

collaboration of the biofilm, 3 samples per time step were examined using a confocal laser 12 

scanning microscope (CLSM) (Zeiss LSM 510 META) at 630x magnification. Images of the 13 

biofilm were analyzed using Zeiss LSM 5 Image Browser. 14 

Statistical analyses. Concentration of nutrients and environmental factors listed in table 1 15 

as well as bacteria numbers were analyzed using oneway ANOVA. T-tests were used to test if 16 

inorganic biofilm mass, algal biomass, organic matter content or bacterial abundances differed 17 

before and after the flow velocity increase. The analyses were done in SigmaStat for 18 

Windows version 2.03. 19 

 20 

RESULTS 21 

Stream water analyses. The flow velocity at the natural (40 ± 30 cm s
-1

) site and the outlet 22 

(40 ± 30 cm s
-1

) was significantly higher (P<0.05, one way ANOVA) than at the pool of the 23 

weir (17 ± 9 cm s
-1

). Conductivity, turbidity, ammonium-, and phosphate concentrations of 24 

pool and outlet was significantly higher than at the natural site (P<0.05, one way ANOVA) 25 

(Table 1).  26 

Abundance and structure of the bacteria community. Colonization of glass slides in 27 

May 2004 occurred rapidly after 4 hours at all sampling sites with 250,000 DAPI stained cells 28 

per cm
2
 respectively. After one day the abundance at the pool was significantly higher than at 29 

the natural site and the outlet (P<0.05, one way ANOVA) (Fig 1A). In November 2003 after 1 30 

day 200,000 cells per cm
2
 (Natural), 240,000 cells per cm

2
 (Pool), and 280,000 cm

2
 (Outlet) 31 

colonized the slides. After 3 days at the pool the cell abundance was enhanced which was 32 

significant compared with the natural site (P<0.05, one way ANOVA). From day 5 on the 33 
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abundances at the pool and outlet increased but not at the natural site (Fig 1B, 2A). After 7 1 

weeks the abundance at the natural site was significantly higher than at the weir (P<0.05, one 2 

way ANOVA) (Fig 2A). 3 

The bacterial community at the natural site after 2 weeks was dominated by CF (about 60%) 4 

followed by BETA (about 30%). At the pool BETA were dominant after 2 weeks (about 65%) 5 

followed by CF (about 25%) and at the outlet BETA represented 50% of the community and 6 

CF about 40%. After 7 weeks the CF fraction at the natural site reached 70% and BETA 25%. 7 

At the pool CF and BETA were equally in proportion with 40% respectively. At the outlet CF 8 

dominated with 50% followed by BETA with 25% (Fig 3).  9 

The abundance of Eubacteria relative to DAPI counts was between 41 and 99%. The overall 10 

abundance of cells of the examined groups relative to the counts of Eubacteria was between  11 

13 and 60% (Table 2). 12 

Abundance and structure of the algal community. The abundance of living algae was 13 

highest at the outlet after 2 and 7 weeks. At the natural site the abundance increased over time 14 

and at the pool and outlet it decreased (Fig 2B). Abundance of dead shells was high (about 15 

50%) at all sites and sampling times (data not shown). Pennate diatom community at all 16 

sampling sites was mainly represented by Navicula, Primularia, Stauroneis, Fragilaria, 17 

Synedra, Eunotia, Cocconeis, Meridion, and Cymbella. At the pool Diatoma, and 18 

Gomphonema were found and Tabellaria at the outlet. Main representative of central diatoms 19 

was Melosira. 20 

Green algae were highly abundant at all sampling sites representing nearly 50% after 2 weeks. 21 

After 7 weeks at the natural site and the outlet the proportion increased further reaching nearly 22 

60%. Proportion of pennate diatoms was highest at the pool after 7 weeks followed by 23 

chrysophytes. At the natural site the proportion of pennate diatoms increased, chrysophytes 24 

did not change over time. At the outlet chrysophytes decreased and pennate diatoms were 25 

consistent. Centrale diatoms and filamentous greenalgae were minor at all sites after 2 and 7 26 

weeks (Fig 4). 27 

Biofilm Structure. Biofilm thickness at the natural site was about 80 µm after 2 and 7 28 

weeks of exposure. At the pool the biofilm was about 200 µm thick and after 2 weeks it 29 

decreased significantly (P<0.05, one way ANOVA) to a thickness of 80 µm (7 weeks). At the 30 

outlet the biofilm at 2 and 7 weeks was 200 µm thick (Fig 5).  31 

The amount of organic matter incorporated in the biofilm matrix was not different at all 32 

sampling sites and times (Fig 6A), whereas at the the pool and outlet of the weir high amounts 33 

of inorganic matter were accumulated (P<0.05, one way ANOVA) (Fig 6B).  34 
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Extracellular enzyme activity. Phosphatase (Phos) activity was high at all sampling sites 1 

with a maximum at the natural site. Activity of beta-glucosidase (Glu), beta-xylosidase (Xyl) 2 

and leucin-aminopeptidase (AP) was highest at the outlet (Fig 7A). With comprehension to 3 

the bacteria biomass at the natural site the activity of Phos, Glu, and AP was significantly 4 

(P<0.05, one way ANOVA) higher than at the other sites. The activity of Phos, Xyl, and AP 5 

per bacteria biomass at the pool was higher than at the outlet (Fig 7B).  6 

Flow channels. In the flow channels concentrations of ammonium after 4 weeks decreased 7 

with exception of the addition of 1 mg cm
-2

 of inorganic sediment. Nitrate was highest with 1 8 

mg cm
-2

 sediment, phosphate decreased at all treatment to one third of the concentrations 9 

which were measured in the beginning. Total DOC was highest in the controls without 10 

addition of sediment (Table 3). 11 

Abundance of bacteria and algal biomass. The abundance of bacteria in the channels 12 

with sediment addition at 0.7 cm s
-1

 was significantly (P<0.05) higher than without the 13 

addition (Fig 8A). In the treatments with flow velocities of 20 and 60 cm s
-1

 the abundance in 14 

biofilms with additionally 1 and 15 mg cm
-2 

sediment decreased (Fig 9A).  15 

The biomass of algae with the addition of 1 and 15 mg cm
-2

 sediment was enhanced (8B). The 16 

transfer to flow velocities of 20 and 60 cm s
-1

 did not change the algal biomass (Fig 9B). 17 

Biofilm thickness and organic matter content. Biofilms at 0.7 cm s
-1

 with sediment 18 

addition were thicker than without the addition (Fig. 8C). Biofilm thickness with additional 1 19 

mg cm
-2

 was not reduced after the transfer into the channels with high flow velocities (Fig. 20 

9C). Organic matter content at flow velocities of 0.7 and 20 cm s
-1

 and all sediment treatments 21 

was enhanced (Fig 8D; 9D). 22 

Bacterial community structure. Proportion of Betaproteobacteria was highest at all 23 

treatments (Fig 10 A-C). In biofilms with 5 mg cm
-2

 abundance of Gammaproteobacteria and 24 

Cytophaga-Flavobacteria was enhanced. With increasing sediment proportions the 25 

Alphaproteobacteria decreased (Fig 10A-C). The percentages of Eubacteria relative to DAPI 26 

counts in the channels was between 81 and 100 %, and the sum of Alpha-, Beta-, Gamma- 27 

Proteobacteria, Cytophaga-Flavobacteria, and Actinobacteria relative to Eubacteria was 28 

between 27 and 90% (Table 4). 29 

Sucrose reduction. Sucrose reduction in the channels with additional sediment after 6 30 

days was significant in contrast to the controls with remaining 5 mg L
-1

 at the end of the 31 

experiment. Between the different sediment treatments the sucrose reduction was insignificant 32 

(Fig 11). 33 

 34 
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DISCUSSION 1 

Colonization patterns of bacteria in the Stream Ilm. Flow velocity and the 2 

concentrations of nutrients did not affect the early colonization of glass slides by bacteria 3 

which occurred rapidly within hours in the same range at all three sampling sites in the Ilm. 4 

On day scale the slow flow at the pool possibly caused a faster increase of the bacteria 5 

abundances. Especially the early biofilm formation is continually interacting with the water 6 

column (Jefferson 2004) and so for the low numbers of bacteria at the natural site additional 7 

effects as nutrient depletion and high flow velocities are possible. Furthermore the number of 8 

bacteria available in the water column (data not shown) did not show any effects on the 9 

number of bacteria attched on the slides at all sampling sites. 10 

After two weeks of biofilm formation the high loads of sediment particles at the weir which 11 

may include additional nutrients flushed out from the pool might result in high bacteria 12 

numbers. The abundance of bacteria did not stagnate after 7 weeks indicating a high dynamic 13 

in biofilm formation in accordance to the permanent changing conditions in the stream. At 14 

this stage of biofilm formation the inner biofilm nutrient cycles may arise, making the 15 

attached organisms more independent from the environmental. Epilithic biofilm matrix can be 16 

effective in accumulating carbohydrase activity making the biofilm community resistant to 17 

DOM fluctuations (Sinsabaugh et al. 1991) also at sites with low nutrients as the natural site. 18 

Bacterial community structure. The bacterial community at the natural site was 19 

dominated by CF which are most commonly associated with the occurrence of high molecular 20 

weight organic matter and important in releasing phosphorus from organic matter (Van 21 

Ommen Kloeke and Geesey 1999; Kirchman 2002). BETA are known as primary colonizer in 22 

initial biofilms (10-12 days) reaching percentages of more than 50% (Manz et al. 1999) which 23 

dominated the pool whereas in this study a combination of CF and BETA was found in 24 

mature biofilms (7 weeks). BETA are involved in nitrogen cycling and be found in 25 

environments with high DOC and nitrite/nitrate concentrations (Teske et al. 1994; Kirchman 26 

2001, Zwisler et al. 2003, Gao et al. 2005). The high proportion of GAMMA at the outlet 27 

indicates high nutrient conditions. This group is opportunistic in nutrient rich environments 28 

(Pinhassi and Berman 2003). 29 

Colonization patterns of algae. Green algae dominated the biofilm at all sites. This group 30 

occurs in biofilms in initial phases (Sekar et al. 2004, Pohlon et al. submitted) and prefers 31 

sites without light limiting conditions. In the present study the lack of shading in winter might 32 

benefit the occurrence of high abundances of green algae. Another important fact was the 33 
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occurrence of a flood event during exposure of the glass slites which reached the 7 fold 1 

discharge as the mean annual discharge of 2.44 m
3
 s

-1
. Grazers with preferences to diatoms 2 

(McCormick and Stevenson 1991, Barranguet et al. 2005), seasonal changes in water 3 

temperature, light and water velocity may have the same effects as flood events which reset 4 

periphyton to early successional stages (Oemke and Burton 1986).  5 

Biofilm structure. In this study biofilm thickness was not dependent on the flow velocity,  6 

the bacterial abundance, and biofilm age but probably on algal abundance. Algae were highest 7 

abundant at the outlet. At this site the thickest biofilm was recorded over the whole time 8 

period. At the pool the drastic decrease could be caused by instability. The matrix at the pool 9 

developed under slow flow velocities and was possibly more susceptible to a small flood 10 

event which occurred during the exposition time (Jan. 21- Jan. 25. 2005). The incorporation of 11 

high amounts of inorganic particles might have enhanced this effect. The biofilm at the outlet 12 

also consisted high amounts of inorganic matter which could have intensified the thickness of 13 

the matrix. At this site with high flow velocities the matrix outlasted the flood events. The 14 

resulting thin biofilm at the natural site might emphasize the importance of sediment particles 15 

for this parameter. 16 

Extracellular enzyme activity. Phosphatase activity was highest at all sites indicating the 17 

high demand for phosphorus in the biofilm. On the per-cell basis of the activities in the 18 

biofilm the patterns of the activities changed completely. At the natural site the activity for 19 

phospahtase, beta-glucosidase, and aminopeptidase was significantly higher compared with 20 

the other sampling sites. The thin biofilm matrix at the natural site possibly does not provide 21 

enough storage facilities for nutrients making a release of more enzymes necessary. Under 22 

phosphorus limitation biofilm bacteria can produce more EPS than under nutrient availability 23 

which might be an adaptive mechanism to store limiting resources in oligotrophic waters 24 

(Mohamed et al. 1998), however high flow velocities as at the natural site can possibly 25 

interfere with that mechanism.  26 

Flow channels. The addition of 1 mg sediment per cm
-2

 was optimal for biofilm formation 27 

and caused an enhancement of all parameters measured at flow velocities of 0.7 cm s
-1

. Even 28 

after the transfer into the flow channels with high flow velocities no effects on the biofilm 29 

formation occurred. With higher sediment loads alterations in the abundance of bacteria (at 15 30 

mg sediment per cm
2
) or algal biomass (at 5 mg sediment per cm

2
), biofilm thickness and 31 

organic matter content (at 5 and 15 mg sediment per cm
2
) occurred after the transfer into the 32 

channels with higher flow velocities. These findings indicate that the inorganic sediment 33 

particles may provide space for colonization of bacteria and algae and result in an increase of 34 
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biofilm thickness and organic matter content as well as the carbon turnover. On the other hand 1 

higher loads also cause instability. Betaproteobacteria might be supported by low and high 2 

sediment loads even at higher flow velocities and Gammaproteobacteria at intermediate 3 

sediment loads. Both bacteria groups prefer sites with high DOC contents (Kirchman 2002, 4 

Gao et al. 2005). After only one hour exposition of the biofilms at flow velocities of 20 and 60 5 

cm s
-1 

the biofilm organisms can sustain a drastic decrease. These findings support the results 6 

from the pool at the weir in the Stream Ilm. Biofilms grown at slow flow velocities with 7 

additional high loads of inorganic particles are instable during flood events.  8 

 9 
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Table 1. Mean values (±STADV) of abiotic parameters at the sampling 

   sites in the Stream Ilm (asteriscs indicate significant  

                           differences, P<0.05 ANOVA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Natural 

 

Pool 

 

Outlet 

 

pH 

 

7.2 ± 0.29 

 

7.6 ± 0.4 

 

7.7 ± 0.5 

Conductivity (ms L
-1

) 123 ± 19 278 ± 35* 277 ± 42* 

Turbidity FTU 0.24 ± 0.7 47 ± 100* 21 ± 61* 

Oxygen (mg L
-1

) 9.6 ± 1.5 9.2 ± 1.9 9.3 ± 1.8 

Temperature (°C) 9.4 ± 3.9 9.5 ± 3.5 9.7 ± 3.6 

Ammonium (mg L
-1

) 0.22 ± 0.0 0.70 ± 0.02* 0.73 ± 0.02* 

Nitrate (mg L
-1

) 8.0 ± 0.0 16.3 ± 0.6 16 ± 0.0 

Phosphate (mg L
-1

) 0.15 ± 0.02 0.27 ± 0.02* 0.27 ± 0.01* 

DOC (mg CL
-1

) 1.3 ± 0.8 1.9 ± 0.1 1.9 ± 0.5 

Flow velocity (cm s
-1

) 40 ± 30* 17 ± 9 4 0± 30* 
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Table 2. Percentages of Eubacteria relative to DAPI counts and the sum of Alpha-, Beta-, 

Gammaproteobacteria, Cytophaga-Flavobacteria, and Actinobacteria relative to 

Eubacteria in biofilms of the Stream Ilm. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Natural 

 

Pool 

 

Outlet 

 

Time of Exposition (weeks) 

 

2 

 

7 

 

2 

 

7 

 

2 

 

7 

 

EUB relative to DAPI (%) 

 

77 

 

99 

 

59 

 

46 

 

41 

 

56 

∑ cells of group specific probes 

relative to EUB (%) 
 

50 

 

13 

 

40 

 

20 

 

60 

 

40 
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Table 3. Mean (±STADV) of water chemistry parameters at the Leutra and in the flow 

channels 

 
Experiment  Ammonium Nitrate Phosphate Total DOC 

treatment  (mg L
-1

) (mg L
-1

) (mg L
-1

) (mg C L
-1

) 

      

Field site  0.02  0.06 32.9  4.3 0.16  0.07 2.4 ± 0.3 

      

Experiment      

Start  0.16 30.8 0.35 n.d.
# 

4 wks – control  0.07  32.2  0.11  12.9 

4 wks – 1 mg cm
-1

 sediment  0.20  17.4  0.13  3.8 

4 wks – 5 mg cm
-1

 sediment  0.10  30.8  0.13  6.1 

4 wks – 15 mg cm
-1

 sediment  0.01  23.9  0.10  0.02 4.5 

5 wks – control   0.07  0.07 32.2  5.0 0.10  0.02 12.9  6.8 

5 wks – 1 mg cm
-1

 sediment  0.19  0.18 17.4  5.1 0.13  0.01 3.8 

5 wks – 5 mg cm
-1

 sediment  0.09  0.24 30.8 3.5 0.13  0.01 6.1 

5 wks – 15 mg cm
-1

 sediment  0.01 0.02  23.9 2.5 0.10  0.02 4.5 
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Table 4. Percentages of Eubacteria relative to DAPI counts and the sum of Alpha-, Beta-, 

Gamma- Proteobacteria, Cytophaga-Flavobacteria, and Actinobacteria relative to 

Eubacteria in the flow channels with inorganic sediment addition at different flow 

velocities. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sediment added 

 

 

0 mg cm
-2

 

 

1 mg cm
-2

 

 

5 mg cm
-2

 

 

15 mg cm
-2

 

 

Flow velocity 

(cm s
-1

) 

 

 

0.7 

 

20 

 

60 

 

0.7 

 

20 

 

60 

 

0.7 

 

20 

 

60 

 

0.7 

 

20 

 

60 

 

EUB relative to 

DAPI (%) 

 

 

95 

 

100 

 

81 

 

100 

 

100 

 

90 

 

88 

 

60 

 

87 

 

97 

 

72 

 

100 

∑ cells of group 

specific probe 

relative to EUB 

(%) 

 

40 

 

34 

 

36 

 

55 

 

63 

 

90 

 

31 

 

38 

 

27 

 

43 

 

65 

 

41 
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Figure Legends 1 

 2 

Fig. 1.  3 

Mean abundance (±STADV) of biofilm bacteria at the natural sampling site, the pool and 4 

outlet of the weir in the Stream Ilm. Samples were taken within (A) 4 h and 72 h (May 2004) 5 

and (B) between 1 and 14 d (Nov 2003) of exposure of glass slides. Letters above the columns 6 

indicate significant differences (p<0.05, ANOVA). 7 

 8 

Fig. 2.  9 

Mean (±STADV) abundance of biofilm bacteria (A) and algae (B) at the natural site and the 10 

pool and outlet of the weir in the Stream Ilm after 2 and 7 weeks of exposure. Letters above 11 

the columns indicate significant differences (p<0.05, ANOVA). 12 

 13 

Fig. 3.  14 

Distribution of Alpha- ,Beta-, Gammaproteobacteria, Cytophaga-Flavobacteria, and 15 

Actinobacteria at the natural site, the pool, and outlet of the weir in the Stream Ilm after 2 and 16 

7 weeks of exposure. Proportion of other groups, not targeted by probes is not included (see 17 

Table 2).  18 

 19 

Fig. 4.  20 

Distribution of the main groups of living biofilm algae at the natural site, the pool and outlet 21 

of the weir in the Stream Ilm after 2 and 7 weeks of exposure. 22 

 23 

Fig. 5. 24 

Mean (±STADV) thickness of biofilms on glass slides at the natural site, pool, and outlet of 25 

the weir in the Stream Ilm after 2 and 7 weeks of exposure. Letters above the columns 26 

represent significant differences (P<0.05, ANOVA).  27 

 28 

Fig. 6.  29 

Mean (± STADV) of organic (A) and inorganic (B) matter incorporated in the biofilm matrix 30 

after 2 and 7 weeks of exposure. Letters above the columns mark significant differences (t-31 

test). 32 

 33 

 34 
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Fig. 7.  1 

Mean (± STADV) of extracellular enzyme activity in biofilms on glass slides using 2 

flourigenic artificial substrates after 1 h of incubation. (A) absolute activity, (B) activity per 3 

bacterial biomass. Letters above the columns represent significant differences (P<0.05, 4 

ANOVA). 5 

 6 

Fig. 8. 7 

Mean (± STADV) abundance of bacteria (A), biomass of algae (B), biofilm thickness (C) and 8 

organic matter content (D) in 5 weeks old biofilms on glass slides in flow channels at flow 9 

velocities of 0.7 cm s
-2

 with additional inorganic sediments of 0, 1, 5 and 15 mg cm
-2

. Letters 10 

above the columns represent significant differences (t-test). 11 

 12 

Fig. 9. 13 

Mean (± STADV) abundance of bacteria (A), biomass of algae (B), biofilm thickness (C) and 14 

organic matter content (D) in 5 weeks old biofilms on glass slides in flow channels with 15 

additional inorganic sediments of 0, 1, 5 and 15 mg cm
-2

. Biofilm samples were exposed over 16 

one hour at flow velocities of 20 cm s
-2,

 and 60 cm s
-2

. Letters above the columns represent 17 

significant differences (t-test). 18 

 19 

Fig. 10. 20 

Distribution of Alpha- (ALPHA), Beta- (BETA), Gammaproteobacteria (GAMMA), 21 

Cytophaga-Flavobacteria (CF), and Actinobacteria (HGC) in 5 weeks old biofilms on glass 22 

slides in flow channels with additional inorganic sediments of 0, 1, 5 and 15 mg cm
-2

. (A) at 23 

flow velocities of 0.7 cm s
-2

. Biofilm samples were than separated and exposed over one hour 24 

at flow velocities of 20 cm s
-2

 (B), and 60 cm s
-2

 (C). Proportion of other groups, not targeted 25 

by probes is not included (see Table 4).  26 

 27 

Fig. 11. 28 

Decrease of previously added sucrose (Begin) by biofilms with additional inorganic sediments 29 

of 0, 1, 5 and 15 mg cm
-2

 in flow channels over 6 days (End).  30 

 31 

 32 

 33 

 34 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time of Exposition

2 wks 7 wks

A
b
u
n
d
a
n
c
e
 o

f 
A

lg
a
e
 (

1
0

3
 c

m
-2

)

0

20

40

60

80

100

 
 

 

 

 

 

 

 

 

 

 

 

2 wks 7 wks

A
b
u

n
d
a
n

c
e
 o

f 
B

a
c
te

ri
a
 (

1
0

6
 c

m
-2

)

0

5

10

15

Natural 

Pool 

Outlet 

a 

ab 

a 

A 

B 



Elisabeth Pohlon  Chapter 2 

 69 

Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Supplement S1 

Sequences of oligonucleotide probes and references used for CARD-FISH. 

 

 

Specificy         Common Name   Sequence (5´-3´)         Reference  

Eubacteria     S-D-Bact-0338-a-A-18        GCTGCCTCCCGTAGGAGT        (Amann et al., 1990) 

Alphaproteobacteria           S-Sc-aProt-0019-a-A-17             CGTTCGYTCTGAGCCAG     (Manz et al., 1992) 

Betaproteobacteria           L-Sc-bProt-1027-a-A-17             GCCTTCCCACTTCGTTT     (Manz et al., 1992) 

Gammproteobacteria           L-Sc-gProt-1027-a-A-17             GCCTTCCCACATCGTTT     (Manz et al., 1992) 

Cytophaga-Flavobacteria       S-P-CyFla-0319-a-A-18              TGGTCCGTGTVAGTAG     (Manz et al., 1994) 

Actinobacteria   HCG69a          TATAGTTACCACCGCCGT     (Roller et al., 1994) (Berchtold et al., 1999) 
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Abstract 1 

Benthic bacteria are responsible for the bulk part of carbon cycling in stream 2 

ecosystems, usually considered to live either as biofilms attached to stone or rock surfaces or 3 

in-between fine streambed sediments. The effects of fine, inorganic sediments incorporated 4 

into attached biofilms have received relatively little attention, although it might represent a 5 

large part of the biofilm mass. In this study, the effects of incorporated inorganic sediment on 6 

the bacterial community structure, sucrose utilization and abrasion resistance of flow channel 7 

grown biofilms were investigated. Biofilms with 5 mg cm
-2

 added silicium dioxide had 4.3 to 8 

6.9 times higher eubacterial abundances compared to biofilms without added sediment. 9 

Abundances of Cytophaga – Flavobacteria and γ-Proteobacteria were enhanced, and those of 10 

α-Proteobacteria reduced by sediment addition. Decrease rates of added sucrose were 1.5 to 11 

1.7 fold higher in the sediment treatments compared to the control treatments, likely due to 12 

the increased eubacterial abundances. A part of the observed differences could be due to an 13 

enhanced shading effect of the sediment particles on autotrophic biofilm organisms. In 14 

contrast to control biofilms, biofilms with added sediment lost significant amounts of bacteria 15 

and sediment under an increased flow velocity. Thus, given the spatial and temporal 16 

variability of sedimentation in streams, incorporation of inorganic particles in biofilms could 17 

be an important ecosystem factor. 18 

 19 
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Introduction 1 

Bacterial communities play an important role in the carbon cycle of stream 2 

ecosystems. They constitute an important part of heterotrophic biomass (36%) and the major 3 

fraction of heterotrophic production (71%) in a stream (Marxsen, 2006). Besides their 4 

classical role as decomposers, they are an important food source for consumers ranging from 5 

protists to invertebrates and fish. Allochthonous organic matter is usually the main energy 6 

source in streams, and heterotrophic bacteria provide a link between this organic matter and 7 

higher trophic levels (Meyer, 1994; Augspurger et al., 2008). 8 

The majority of stream bacteria live attached to the streambed (Geesey et al., 1978), 9 

either in sediments or as biofilms attached to stones. Biofilms consist of microorganisms 10 

embedded in a matrix of extracellular polymeric substances (EPS) exposed to permanent 11 

sedimentation of particles from the water column. Inorganic particles will accumulate on the 12 

biofilm and are subsequently incorporated into the matrix. Deposited sediment can exceed 13 

organic biofilm mass in gravel streams and affect ciliate colonization (Risse-Buhl and Küsel, 14 

2008) and patch selection by grazing invertebrates (Suren, 2005). However, their influence on 15 

biofilm structure and function is unclear. 16 

In stream sediments, the structure and function of microbial communities is affected 17 

by the sediment particles. Sand and silt particles are preferentially colonized. Bacterial 18 

biomass is higher in finer grained particles (e. g. Bott and Kaplan, 1985 and Meyer-Reil 19 

1994), although higher abundances are reported on larger standardized glass particles 20 

(Santmire and Leff, 2007). Microbial assemblages are significantly correlated to sediment 21 

particle size in hyporheic zones (Sliva and Williams, 2005), and differences between bacterial 22 

communities in sediments and biofilms grown on stones are higher than within samples of 23 

one habitat (Beier et al., 2008). Metabolic activity differs between biofilms on sand and rock 24 

substrata (Romaní and Sabater, 2001), and biofilm metabolism is affected by the physical 25 

habitat heterogeneity of streambeds, i.e. the variance of substratum size (Cardinale et al., 26 

2002). 27 

Natural microbial communities are structured by multiple interacting forces, and their 28 

composition can have functional significance (e.g. Cavigelli and Robertson, 2000; Horz et al., 29 

2004; Bell et al., 2005; Monson et al., 2006). Species sorting in response to local 30 

environmental factors is a key determinant of aquatic bacterial community composition (Van 31 

der Gucht et al., 2007). Factors affecting microbial communities in streams include 32 

temperature (Hullar et al., 2006), inorganic nutrients and dissolved organic carbon (DOC) 33 

(Olapade and Leff, 2005; Hullar et al., 2006; Beier et al., 2008), as well as the quality of total 34 
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organic matter (Fazi et al., 2005). Biofilm community composition can also be influenced by 1 

autochthonous carbon sources (Olapade and Leff, 2005; Hullar et al., 2006), supporting the 2 

possibility of a strong internal coupling of primary producers and heterotrophs in biofilms. 3 

Biogeography has only a weak effect (Van der Gucht et al., 2007), although a distance effect 4 

along a stream can be observed (Beier et al., 2008), probably due to the unique unidirectional 5 

flow in lotic systems. 6 

The flow regime is a key factor in stream ecosystems, and transport and sedimentation 7 

of particles is governed by the flow velocity. Streambed heterogeneity results in spatial 8 

variations in the flow pattern, and biofilms can adapt their internal structure to resist shear 9 

stress under higher flow velocities (Beyenal and Lewandowski, 2002). Nevertheless, temporal 10 

discharge peaks, e.g. following snowmelts or heavy rainfalls, can result in biofilm abrasion 11 

due to overwhelming shear stress, resetting biofilm growth. 12 

The aim of this study was to elucidate the effects of inorganic particles incorporated 13 

into the matrix of biofilms. We hypothesized that (1.) added sediment particles increase the 14 

available substrate surface for bacteria, and thus lead to higher abundances. (2.) Accumulation 15 

of inorganic particles in the matrix changes the microhabitat in biofilms, which results in an 16 

altered bacterial community structure. (3.) Furthermore, shading due to the sediment particles 17 

will lower primary production, resulting in a decreased production of algal exudates. Hence, 18 

utilization of carbon sources from the water column should increase. (4.) The incorporated 19 

sediment will destabilize the EPS matrix, making it more vulnerable to increased shear stress 20 

under higher flow velocities. In a pre-experiment, biofilms were grown simultaneously in 21 

flow channels and in a stream to evaluate the comparability of flow channel biofilms and their 22 

natural counterparts. In the main experiment, biofilms were grown under light in flow 23 

channels, one half of them receiving regular sediment additions. After four weeks, sucrose 24 

was added to all channels. Channels were run for one more week, now either with or without 25 

a light source. Finally, these biofilms were exposed to an increased flow velocity to test their 26 

stability under increased shear stress. 27 

 28 

Methods 29 

Biofilm growth 30 

Stream biofilms were grown for five weeks on glass slides at two pool sites in the 31 

Leutra; a 1
st
 order rock stream near Jena (Thuringia, Germany). Flow velocities at normal 32 

discharge varied between < 0.01 m s
-1

 in larger pools up to 0.2 m s
-1

 in riffles. Twelve glass 33 

slides were exposed in plastic frames at both pool sites. Laboratory biofilms were grown in 34 
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flow channels (50 x 16 x 4 cm; length x width x height) containing 24 glass slides in a climate 1 

chamber at 13 °C in a 12 h light-dark cycle. Photosynthetic active radiation approximated 2 

100 µmol m
-2

 s
-1

 above the water surface during the light period. Flow velocity in all channels 3 

was adjusted to 0.01 m s
-1

, and channels were connected to one pump reservoir. Five litres of 4 

Leutra water per channel were circulated using one rotary pump per channel (WIND'S 1200, 5 

Sacem, Giorgio, Italy) and replaced every two weeks. The water was taken from the stream 6 

without disturbing the streambed to minimize the amount of suspended sediment. In the 7 

pre-experiment, biofilms were grown in three flow channels simultaneously with the 8 

exposition of slides in the Leutra. 9 

Sediment and sucrose addition 10 

In the main experiment, 5 mg cm
-2

 combusted (550 °C) silicium dioxide (SiO2) 11 

particles (0.5 - 10 µm diameter; >80 % between 5 - 10 µm) were added to six out of twelve 12 

channels in total. The total amount of sediment for each channel was divided in six equal 13 

parts, and added at day 1, 4, 8, 11, 15 and 18. For each addition, the silicium dioxide was 14 

suspended in 24 ml of channel water. The suspension was distributed over the glass slides in 15 

24 steps, using a pipette. Per step, 1 ml suspension was added over one glass slide 16 

respectively, with vigorous shaking of the suspension between every step. To achieve a 17 

homogeneous distribution on the biofilm, the silicium dioxide was released as high as 18 

possible in the water column, maximizing dispersal due to sedimentation of the particles in 19 

the water. After 28 days, 10 mg C L
-1

sucrose (C12H22O11) was added to all flow channels. 20 

From now on, all channels had separated water circuits. Three flow channels of each 21 

treatment (channels with sediment addition and control channels without added sediment) 22 

were run in darkness, the other three continued under the light-dark cycle, all for seven more 23 

days. 24 

Biofilm abrasion under higher flow velocity 25 

At the end of the sucrose incubation, six glass slides from every treatment, 26 

respectively, were transferred immediately to two flow channels (98 x 25 x 2 cm; length x 27 

width x height). This transfer was necessary, as the smaller channels did not allow for a 28 

sufficient flow velocity increase. The flow velocity was adjusted to 0.60 m s
-1

, chosen to 29 

simulate a high discharge event in the Leutra stream. Bacterial abundances and inorganic 30 

biofilm mass were determined from triplicate samples of each treatment after one hour and 31 

compared to those obtained at the end of sucrose incubation. 32 

 33 

 34 



Elisabeth Pohlon  Chapter 3 

 84 

Biotic parameters 1 

Eubacterial abundance and eubacterial population structure were determined at the end 2 

of the pre-experiment and immediately before and after sucrose incubation in the main 3 

experiment. Samples were taken in triplicate by scraping the biofilm off one glass slide into 4 

filter sterilized 3.6 % formaldehyde. α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, 5 

Cytophaga-Flavobacteria, and Aktinobacteria were quantified to determine changes in the 6 

community structure. These groups were selected due to their abundance in streams and their 7 

preference for different organic compound classes (Santmire and Leff, 2007), and detected 8 

with catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) 9 

(Pernthaler et al., 2002; Pernthaler et al., 2004), which gives better results compared to FISH 10 

in sediments (Fazi et al., 2005). Group specific horseradish peroxidase (HRP) labeled 11 

oligonucleodite 5´-3´ sequences (Biomers, Ulm, Germany) and a NON probe were used 12 

(Table 1) with Alexa488 as fluorochromic dye. Euacteria were enumerated with CARD-FISH 13 

and compared to counts after staining with 4',6-diamidino-2-phenylindoldihydrochloride 14 

(DAPI) (Porter and Feig, 1980). The difference between eubacterial counts and the sum of α-, 15 

β-, γ- Proteobacteria, Cytophaga – Flavobacteria, and Actinobacteria counts was calculated to 16 

represent the abundance of Eubacteria not belonging to these groups, and is hereafter referred 17 

to as ‘other Eubacteria’. Additionally, after the sucrose incubation chlorophyll a (Chl a) 18 

concentrations of biofilms were determined spectrophotometrically following an acetone 19 

extraction (Clesceri, 1998), and biofilms were examined using a confocal laser scanning 20 

microscope (400 x magnification; Leica TCS SP). DAPI counts were used to determine 21 

bacterial abundances after the abrasion test.  22 

Abiotic parameters 23 

Inorganic biofilm content was determined at the end of the pre-experiment, and after 24 

sucrose incubation and at the end of the abrasion test in the main experiment. Triplicate 25 

samples were weighted after drying for 48 h at 60 °C and following combustion for 4 h at 26 

550 °C. Incorporation of added sediment was calculated as the difference in inorganic biofilm 27 

content between the sediment addition and control treatments. Water samples were taken 28 

from the stream at the beginning, two weeks after start, and end of glass slides exposure. In 29 

flow channels, water samples were taken at the start, immediately before and after water 30 

exchanges, and at the end of the experiment. Ammonium, nitrate and phosphate were 31 

determined photometrically (Clesceri, 1998). DOC was measured using an infrared 32 

spectrometer (DIMATOC 100, Dimatec Analysentechnik GmbH, Germany). Average 33 

nutrient values in the Leutra water were < 2.8, 444.1  111.2, 2.8  1.2, and 2.4  0.3 for 34 
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ammonium, nitrate, phosphate and DOC, respectively. After sucrose addition, water samples 1 

of 1 mL were taken by sterile syringes from each channel five times a day (every four hours, 2 

and one eight hour interval during night). Concentrations of sucrose were determined using a 3 

high pressure liquid chromatograph connected to a refractive index detector (System Gold, 4 

Beckman Coulter, USA) (Reiche et al., 2008). 5 

 6 

Results 7 

Leutra biofilms vs. flow channel biofilms 8 

Inorganic biofilm content of the Leutra biofilms was 8.3 to 10.3 times higher 9 

compared to flow channel biofilms (Figure 1A). Leutra biofilms contained 1.4 to 1.9 times 10 

more eubacteria compared to flow channel biofilms (p<0.05; one way ANOVA), with 11 

abundances of 95.3 ± 10.0 x 10
6
 cells cm

-2
 and 106.4 ± 6.1 x 10

6
 cells cm

-2
 in biofilms of the 12 

two Leutra sites and 54.9 ± 12.9 x 10
6
 cells cm

-2
 in the flow channel biofilm (Figure 2A). 13 

Eubacterial counts represented 82 to 112 % of the DAPI counts. -Proteobacteria was the 14 

most abundant group targeted with CARD-FISH (Table 2), γ-Proteobacteria reached almost 15 

as high abundances in the Leutra biofilms. Both Leutra sites had similar community 16 

compositions, whereas the community in the flow channel biofilm had a lower proportion of 17 

γ-Proteobacteria (6.8 % vs. 12.8 and 13.8 % in the field site biofilms) and Cytophaga – 18 

Flavobacteria (0.7 % vs. 2.7 and 3.1 % in the field site biofilms). Nutrient concentrations in 19 

the flow channel water were similar to the Leutra water (see appendix A). 20 

Community structure in 4 week old biofilms 21 

Inorganic mass of biofilms with 5 mg cm
-2

 sediment added was similar to the 22 

inorganic mass of biofilms grown in the Leutra (Figure 1A and 1B), whereas in channels 23 

without additional sediment the amount of inorganic biofilm mass was 11.9 to 15.2 times 24 

lower (p<0.05; one way ANOVA). Eubacterial counts represented 74.7 to 97.7 % of the 25 

DAPI counts. Eubacterial abundances in biofilms with added sediment were 5.3 to 6.9 times 26 

higher compared to those in control biofilms (p<0.05; one way ANOVA) (Figure 3A). 27 

Eubacterial community structure differed between biofilms with added sediment and control 28 

biofilms (Figure 3B). Relative abundances of γ-Proteobacteria and Cytophaga – Flavobacteria 29 

were higher in biofilms with added sediment (18.1 % vs. 7.5 %, and 11.6 % vs. 5.4 %, 30 

respectively), and α-Proteobacteria and other Eubacteria had lower relative abundances in 31 

biofilms with added sediment (4.8 % vs. 8.2 %, and 39.7 % vs. 52.5 %, respectively), while 32 

β-Proteobacteria and Aktinobacteria had similar relative abundances in biofilms with and 33 

without sediment addition (22.2 % vs. 23.0 %, and 3.6 % vs. 3.4 %, respectively). 34 
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Influence of sucrose addition 1 

Sucrose concentrations decreased 1.7 fold and 1.5 fold faster in channels with added 2 

sediment in the light and dark treatment, respectively (p<0.05; one way ANOVA) (Figure 4). 3 

There was a trend for a faster decrease in channels without light, but no significant differences 4 

could be detected. The decrease rates are equivalent to a per cell decrease rate of 20.7 x 10
-

5 

9 
mg C h

-1
 and 22.9 x 10

-9
 mg C h

-1
 in the light and dark treatment of the control channels, and 6 

5.0 x 10
-9

 mg C h
-1

 and 6.6 x 10
-9

 mg C h
-1

 in the light and dark treatment with sediment 7 

addition. Resulting from the different sucrose decrease rates, DOC concentrations were lower 8 

in channels with added sediment (see appendix A) than in control channels, while inorganic 9 

nutrients did not differ between treatments (p<0.05; one way ANOVAs). 10 

In the light treatment, eubacterial abundances increased 1.9 fold in biofilms with 11 

sediment addition compared to a 3.0 fold increase in biofilms without sediment addition 12 

(Figure 3C). In the dark treatment, eubacterial abundances increased 2.4 fold in biofilms with 13 

sediment addition compared to a 2.5 fold increase in biofilms without sediment addition 14 

(Figure 3C). Eubacterial abundances were still 4.3 to 5.0 times higher in biofilms with added 15 

sediment compared to those without sediment addition (p<0.05; one way ANOVA), but there 16 

was no difference in eubacterial abundances between the respective light and dark treatments 17 

(p>0.05; one way ANOVA). In channels with sediment addition, abundances of the 18 

specifically targeted groups did not increase much, if at all. They were in the range of 0.8 to 19 

1.3 times of their abundance after 4 weeks (Table 2). Hence, in biofilms with sediment 20 

addition not specifically targeted eubacteria accounted mostly for the observed increase in 21 

total abundances (Figure 3C and 3D). In the control channels increase in abundances was 22 

more evenly spread among the groups. Strong increases were detected in α-Proteobacteria 23 

(2.3 and 2.2 fold increase with and without light, respectively), β-Proteobacteria (2.7 and 2.2 24 

fold increase with and without light, respectively), Aktinobacteria (2.7 and 4.6 fold increase 25 

with and without light, respectively), and other Eubacteria (3.4 and 2.9 fold increase with and 26 

without light, respectively) (Table 2). Cytophaga – Flavobacteria increased strongly only in 27 

light (4.4 fold increase vs. 1.2 fold increase without light), and γ-Proteobacteria had the 28 

lowest increase (1.7 and 1.1 fold increase with and without light, respectively) (Table 2). 29 

After 5 weeks, Chl a content did not differ between treatments, except for lower 30 

concentrations in the control dark treatment (p<0.05; one way ANOVA). Chl a 31 

concentrations were 0.039 ± 0.005 µg cm
-2

and 0.016 ± 0.002 µg cm
-2

in control channels with 32 

and without light, respectively, and 0.053 ± 0.009 µg cm
-2

, and 0.046 ± 0.004 µg cm
-2

 in 33 

channels with sediment addition with and without light, respectively. Microscopy revealed 34 
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that inorganic particles covered almost the entire surface in the sediment treatments, whereas 1 

only a few particles were present in the control treatments. Biofilms rarely covered the whole 2 

area in the microscope pictures in all treatments, but sediment particles in the control 3 

treatment (if present) where always covered with a dense biofilm. 4 

Effects of increased flow velocity 5 

Abrasion was visible in biofilms with added sediment almost immediately after 6 

exposure to the increased flow velocity, loosing lobate parts of several mm
2
 in size. After five 7 

to ten minutes, visible abrasion stopped. In control biofilms, no abrasion was visible during 8 

the whole time. After one hour, biofilms with added sediment had lost in average 34.1 % and 9 

51.4 % of incorporated sediment, and 25.5 % and 60.7 % of their bacteria in the light and dark 10 

treatment, respectively (p<0.05; t-tests) (Table 3). No differences were found in biofilms 11 

without added sediment (p>0.05; t-tests). 12 

 13 

Discussion 14 

Flow channel biofilms vs. stream biofilms 15 

Bacterial communities in stream biofilms differ from those in the water column 16 

(Besemer et al., 2007), and thus mostly independent during biofilm development. The initial 17 

biofilm colonizers, however, seem to be selected stochastically from the water column 18 

(Jackson et al., 2001). In this study, Leutra biofilms had similar bacterial community 19 

structures compared to simultaneously grown flow channel biofilms initiated with Leutra 20 

water. The detected shift in γ-Proteobacteria and Cytophaga – Flavobacteria as well as the 21 

difference in total eubacterial abundances was also observed in the main experiment between 22 

channels with and without sediment addition. In contrast to the flow channel biofilms, Leutra 23 

biofilms were exposed to the natural occurring sedimentation. Hence, this is likely a result of 24 

the higher sediment content present in the Leutra biofilms, and flow channel biofilms seemed 25 

to represent natural biofilm community structures well. 26 

Sediment influence on biofilm communities 27 

Surfaces in aquatic environments are rapidly colonized by bacteria (Costerton et al., 28 

1995). The added sediment particles provided new, clean surfaces for colonization, and 29 

biofilms in those treatments had higher bacterial abundances compared to control channels. 30 

Particles present in the control biofilms seemed to be favored spots for biofilm growth. It 31 

could be that elevated spots provide more favorable nutrient and resource conditions, and 32 

hence are actively colonized by bacteria (Klausen et al., 2003). 33 
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In the sediment treatments, autotrophic activity might be reduced due to enhanced 1 

shading by the added sediment particles, making relatively more inorganic nutrients available 2 

for heterotrophic organisms. Abundances of Cytophaga – Flavobacteria and γ-Proteobacteria 3 

were enhanced in these channels, and both groups can be associated with high concentrations 4 

of nitrate and DOC (Kirchman 2002; Gao et al., 2005). α-Proteobacteria, in streams more 5 

abundant in low nutrient habitats and correlated to algal exudates (Gao et al., 2005), were 6 

reduced by sediment addition. However, the eubacterial groups responding to the sucrose 7 

addition differed strongly between biofilms with and without sediment addition, and seemed 8 

not to be related to the described nutrient preferences. Thus, the detected community structure 9 

could not reveal all differences in community composition, which reveals the limitations of 10 

the coarse taxonomic resolution of groups. At the same time, it highlights the differences 11 

between bacterial communities present in biofilms with and without added sediment. 12 

Sediment influence on sucrose uptake 13 

The faster sucrose decrease was likely related to the overall higher eubacterial 14 

abundances in biofilms with added sediment, as both per cell decrease rates and increase in 15 

eubacterial abundances were higher in control biofilms. Algal exudates can be a significant 16 

carbon source for biofilms even with high sugar concentrations present in the water. Self 17 

shading, however, can result in lower photosynthesis rates (Boston and Hill, 1991; Guasch 18 

and Sabater, 1995) and it seems plausible that sediment particles enhance this effect. As 19 

hypothesized, sucrose utilization was higher in channels with added sediment. However, 20 

decrease rates did not differ between light and dark (i.e. without primary production) 21 

treatments, suggesting that production of algal exudates was overall low. On the other hand, 22 

this effect might have been countered by the higher increase in bacterial abundances in the 23 

control treatment; release of algal exudates might not have resulted in lower sucrose 24 

utilization, but in higher growth rates. Nevertheless, the observed differences in sucrose 25 

utilization seemed to mostly result from the enhanced eubacterial abundances in biofilms with 26 

added sediment. 27 

Sediment influence on abrasion 28 

In sediments, high microbial biomass supports sediment stability (Yallop et al., 2000). In 29 

biofilms, high sediment density might decrease biofilm stability, as abrasion occurred in 30 

biofilms with added sediment, but not in control biofilms. Sediment particles could be 31 

obstacles in the biofilm matrix, preventing the formation of a coherent and thus stable 32 

structure. Furthermore, biofilms with added sediment had a higher biomass and contained 33 

more inorganic particles per area, and consequently should have been thicker compared to the 34 
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control biofilms. The resulting shear stress from the water flow would be higher in thicker 1 

biofilms and could lead to increased abrasion. Therefore, at least a part of the induced 2 

instability by sediment particles could be an indirect effect as they enhanced biofilm growth 3 

in the first place. 4 

Consequences for stream ecosystems 5 

Stream biofilms are hybrids somewhere between biofilms (i.e. microorganisms 6 

attached to a surface) and colonized streambed sediments, depending on the amount of 7 

sediment incorporated in the matrix. Sedimentation rates depend on the local flow velocities, 8 

which are determined by the physical topography of the streambed, riffle-pool sequences, 9 

straightenings, weirs, and the streambed slope. The heterogeneity of the topography in turn 10 

can affect biofilm community structure and function (Cardinale et al., 2002). Consequently, 11 

variation in incorporated inorganic sediment particles resulting from this heterogeneity could 12 

be an important factor involved in these processes. 13 

Temporal variation in sedimentation comes with discharge fluctuations, which, in turn, 14 

can be mediated by large physical structures like weirs (Pohlon et al., 2007). Additionally, 15 

discharge peaks might also reset biofilm growth due to abrasion, especially in areas with high 16 

sedimentation. Thus, regions which favor bacterial growth due to sedimentation under normal 17 

discharge are more vulnerable to increased flow velocities, whereas regions of lower 18 

sedimentation might be more resistant to discharge fluctuations. 19 

 20 
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Table 1: Sequences of oligonucleotide probes used for bacterial community analysis. 

Taxon Common Name Sequence (5´-3´) Reference 

Eubacteria S-D-Bact-0338-a-A-18 GCTGCCTCCCGTAGGAGT (Amann et al. 1990) 

α- Proteobacteria S-Sc-aProt-0019-a-A-17 CGTTCGYTCTGAGCCAG (Manz et al. 1992) 

β- Proteobacteria L-Sc-bProt-1027-a-A-17 GCCTTCCCACTTCGTTT (Manz et al. 1992) 

γ- Proteobacteria L-Sc-gProt-1027-a-A-17 GCCTTCCCACATCGTTT (Manz et al. 1992) 

Cytophaga-Flavobacteria S-P-CyFla-0319-a-A-18 TGGTCCGTGTVAGTAG (Aman et al. 1995) 

Aktinobacteria HCG69a TATAGTTACCACCGCCGT (Amann et al. 1995) 

NON NON338 ACTCCTACGGGAGGCAGC (Wallner et al. 1993) 

 

 

 



 

 

Table 2: Abundances (mean  standard deviation) of bacterial groups in biofilms targeted with CARD-FISH. In the pre-experiment, 

abundances were determined in 5 week old biofilms simultaneously grown in two pools of the Leutra stream and in laboratory flow channels with  

Leutra water. In the main experiment, light grown biofilms had been separated after 4 weeks to either continued growth under light or darkness for 

one more week. 

 α- Proteobacteria β- Proteobacteria γ- Proteobacteria Cytophaga –

Flavobacteria 

Actinobacteria 

Treatment [10
5
 cells cm

-2
] [10

5
 cells cm

-2
] [10

5
 cells cm

-2
] [10

5
 cells cm

-2
] [10

5
 cells cm

-2
] 

Pre-experiment      

Leutra pool 1   62.65    2.93 166.52  33.91 122.13  11.30   25.57  19.85     0.84    0.28 

Leutra pool 2   74.95  18.58 151.40  15.94 147.05  12.86   33.48    3.24     0.95    0.55 

flow channels   47.76  13.04   84.87  24.08   37.15  14.25     3.69    1.11     1.05    0.43 

Main experiment      

4 weeks      

control     1.25    0.49     3.54    1.44     1.16    0.44     0.87    0.90     0.51    0.13 

sediment     4.42    1.35   20.51    3.12   16.82    2.64   10.85    2.42     3.34    0.10 

5 weeks      

control light     2.91    0.29     8.64    2.73     1.65    0.79     1.86    1.18     1.41    0.28 

control dark     2.69    0.76     8.52    3.13     1.49    0.50     1.62    0.80     2.26    0.60 

sediment light   17.38    7.27   69.95  20.38   16.20    0.70   15.46    2.30     7.57    0.83 

sediment dark   17.79    9.39   74.82  32.99   17.65    2.20   14.66    9.90     3.56    2.26 

 

 



 

 

Table 3: Inorganic sediment content and bacterial abundances of 5 week old biofilms with and without added sediment before and after an 

one hour increase in flow velocity from 0.01 m s
-1

 to 0.6 m s
-1

. After 4 weeks, light grown biofilms had been separated to either continued growth 

under light or darkness. Values represent means  standard deviation. 

 Unit before after 

Treatment  flow increase flow increase 

Inorganic Sediment    

control light mg cm
-2 

0.35 ± 0.08 0.19 ± 0.09 
ns 

control dark mg cm
-2 

0.30 ± 0.09 0.15 ± 0.10 
ns 

sediment light mg cm
-2 

4.32 ± 0.38 3.22 ± 0.48 * 

sediment dark mg cm
-2 

4.60 ± 0.17 1.81 ± 1.45 * 

    

Bacterial abundances
# 

   

control light 10
6
 cells cm

-2 
  4.55 ± 1.21   4.52 ± 0.85 

ns 

control dark 10
6
 cells cm

-2 
  4.31 ± 0.42   3.97 ± 0.30 

ns 

sediment light 10
6
 cells cm

-2 
20.81 ± 3.60 13.72 ± 2.18 * 

sediment dark 10
6
 cells cm

-2 
18.34 ± 5.76   8.91 ± 4.17 * 

ns
 no significant difference (p>0.05; t-test) before and one hour after the flow velocity increase. 

* significant difference (p<0.05; t-test) before and one hour after the flow velocity increase. 

#
 DAPI counts 
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FIGURE LEGENDS 1 

Figure 1: Inorganic sediment content in 5 week old biofilms grown (A) simultaneously 2 

in the Leutra stream and in laboratory flow channels with Leutra water, and (B) in laboratory 3 

flow channels with Leutra water with or without 5 mg cm
-2

 sediment addition. After 4 weeks, 4 

channels were separated either under light or dark conditions. Different letters indicate 5 

significant differences (p<0.05 ;one way ANOVA). 6 

 7 

Figure 2: Eubacterial abundances (A) and eubacterial community structure (B) 8 

determined by CARD-FISH in 5 week old biofilms grown simultaneously in the Leutra 9 

stream and in laboratory flow channels with Leutra water. Different letters indicate significant 10 

differences (p<0.05 ;one way ANOVA). 11 

 12 

Figure 3: Eubacterial abundances (left column) and eubacterial community structures 13 

(right column) determined by CARD-FISH in 4 week old, light grown biofilms (upper row), 14 

with or without 5 mg cm
-2

 sediment addition. Ten mg C L
-1

 sucrose was added after 4 weeks, 15 

and channels were separated either under light or dark conditions for one more week (lower 16 

row). Different letters indicate significant differences (p<0.05 ;one way ANOVA). 17 

 18 

Figure 4: Sucrose decrease rates detected in flow channels containing biofilms with or 19 

without added sediment. Biofilms were grown under light conditions for 4 weeks. At this 20 

time, 10 mg C L
-1

 sucrose were added and decrease rates determined over one more week 21 

under either light or dark conditions. 22 

 23 

 24 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

 

 



 

 

Appendix A 

 

Table A1: Water chemistry parameters. Water samples were taken from the stream at the beginning, two weeks after start, and end of glass 

slides exposure. In flow channels, water samples were taken at the start, two and four weeks after start, and at the end of the experiment. In the main 

experiment, light grown biofilms with and without added sediment had been separated after 4 weeks to either continued growth under light or 

darkness, and 10 mg C L
-1

 sucrose added after 4 weeks of biofilm growth. Five week data represents remaining sucrose at the end of the experiment. 

  Ammonium Nitrate Phosphate  Total DOC Added sucrose DOC - sucrose 

  [µmol L
-1

] [µmol L
-1

] [µmol L
-1

]  [mg C L
-1

] [mg C L
-1

] [mg C L
-1

] 

Pre-experiment         

Field site  < 2.8    2.4 ± 0.3    -
# 

   -
# 

Flow channel  < 2.8        -
# 

   -
# 

         

Main experiment         

Start  < 2.8 308.8 3.6    n.d.
 § 

    0
 

n.d. 

2 weeks  < 2.8 352.5 3.7  n.d.
 

    0
 

n.d. 

4 weeks  8.6 497.4 3.7  12.2     10.0
 

2.2 

5 weeks – control light           
 

 

5 weeks – control dark           
 

 

5 weeks – sediment light           
 

 

5 weeks – sediment dark           
 

 
#
 No sucrose added in this experiment. 

§
 not determined. 
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Abstract  

In urban areas dam constructions regulate the discharge of streams by reducing the 

peak flows. The effects of dams on the stream morphology and the organisms are dependent 

on dam size. In the current study the impact of small weirs on the abundance of bacteria and 

invertebrates as well as the nutrient conditions in a stream has been investigated. In streams 

biofilm bacteria degenerate particulate organic matter and transform it into biomass which 

provides an important resource for higher organisms. These processes are dependent on the 

flow which is a major determinant in streams. Glass slides were exposed at three weirs in 

close proximity and a natural sampling site. Biofilm bacteria abundance, abiotic parameters, 

and nutrients were estimated after 14 days in June, August, October, December 2003 and 

March 2004. A single weir was chosen for estimations of the flow pattern and the invertebrate 

community structure. With the exception of March 2004 the flow velocity at the natural site 

was significantly higher than at the pools of the weirs. At the pools of the weirs the flow 

velocity was lower than at the corresponding oulets. At the natural site the range of bacterial 

abundance was between 0.6 and 4.0 *10
6
 cells cm

-2
, at the pools between 0.3 and 74 *10

6
 

cells cm
-2

 and at the outlets between 0.3 and 81 *10
6
 cells cm

-2
. The abiotic parameters at the 

different sampling sites were not different with the exception of the conductivity which was 

lower at the natural site. The ammonium and nitrate concentrations increased over time at all 

sampling sites. The flow patterns clearly show a unification of the flow at the pool. The outlet 

was denoted by a large pool behind the weir and a lage riffle adjacent. At the natural site 

small poos and riffles alternated. These results indicate that small weirs alter the flow pattern 

of a stream and the abundance of bacteria.  
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Introduction 

More than 50% of large rivers in the northern hemisphere are affected by dams. 

Impacts of dams on the ecosystem up-and downstream is often originated by inundation, flow 

manipulation, and fragmentation (Nilsson et al., 2005). Dams vary in size, structure and 

function. Many of the effects of dams on the biophysical regime are related to the dam size 

operational mode. Dam size (height, width) strongly influences many environmental factors 

such as thermal stratification and thermal regime modification which influence biotic 

variables, barrier effects to biota migration, and sediment transport (Poff and Hart, 2002). A 

three-level hierarchy catches the effects of dams on the river. First order effects include water 

quality, sediment load, and flow regime and cause second order effects as the changes in 

channel cross-section, bed-sediment movement, and primary production which lead to the 

third order effects in changes of the macroinvertebrate community and other biota (Arle, 

2005; Nichols et al., 2006).  

The serial discontinuity concept describes changes of physical parameters, biological 

phenomena at the population, community, and ecosystem level caused by regulation over the 

entire longitudinal stream profile (Ward and Stanford, 1983). For example, coarse particulate 

organic matter is trapped in the reservoir of large dams which leads to a local increase of 

respiratory activity of heterotrophic organisms. The higher demand for oxygen under low 

flow velocity conditions initiates anoxia in deeper water layers causing a shift in the entire 

biological community. In contrast, the increase of the light intensity at the stream bottom 

behind a dam due to a clarification of the turbid streams might stimulate photosynthetic 

productivity (Ward and Stanford, 1983).  

Small weirs influence local velocity patterns and sediment composition (Stanley et al., 2002; 

Magilligan et al., 2003), particulate organic matter budget (Wagner et al., 2003), and fish and 

macroinvertebrate communities (Söderström, 1987; Benstead et al., 1999; Grubbs and Taylor, 

2004; Santucci et al., 2005). Flow regulation by dams and weirs also stabilize seasonal water 

levels which might promote growth of filamentous algae at the expense of bacteria in biofilms 

(Sheldon and Walker, 1997). All factors affect the turnover efficiency of organic and 

inorganic matter in biofilms, which are autotrophic and heterotrophic organisms attached to 

surfaces (Beveridge et al., 1997). Biofilm structure and function is tightly related to the flow 

velocity. Under a laminar flow cell transport to solid surfaces and mass transfer of nutrients 

are the limiting steps during colonization. Thus, the extent of biofilm growth increases with 

increasing flow velocity. However, when the flow velocity increases to conditions of 

turbulence, biofilm erosion or sloughing of the adhered biomass occurs (Costerton et al., 
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1995). The abundance of microorganisms (number of cells cm
-2

) is lower under conditions of 

turbulence than under laminar flow (Franca and Cravo, 2000) and fluctuating water levels and 

turbidity appear to maintain biofilm communities in a state of early succession (Sheldon and 

Walker, 1997).  

How small weirs affect the stream biota or whether additional effects of dams in a close 

proximity exist are the qustions of this study. Biofilm and stream water bacteria as well as 

physical and chemical parameters at three weirs in close proximity have been investigated. 

The main focus was on the effects of impoundment and the resulting alteration in flow 

velocity on the abundance of biofilm bacteria. Additionally the flow patterns, at one of the 

three weirs have been investigated. The results have been compared with findings from 

natural sites of the stream.  

 

Methods 

Sampling sites 

Biofilm samples were taken in the 3
rd

 order Stream Ilm (Thuringia, Germany). At 

Griesheim (stream km 103) three low head weirs are situated in close proximity (< 1 km). The 

three natural sites were chosen at Manebach (126 km, Natural 1), 1 km upstream of the first 

weir (104 km, Natural 2), and three km down stream of the first weir (100 km, Natural 3) at 

Griesheim (Fig 1). 

Sampling  

Biofilm samples for bacteria enumeration were taken after 14 days of exposure on  

June 20
th

, August 13
th

, October 22
nd

 and December 2
nd

 2003, and March 12
th

 2004.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Course of the Stream Ilm. Green arrows mark the natural sampling sites and red the weirs.  
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The first weir (Pool 1 and Outlet 1) is situated in the main stream of the Ilm. The construct 

includes two steps of concrete with overflowing water flow (Fig 2).  

 

 

 

 

 

 

 

 

Fig. 2. The first weir is situated at the main stream of the Stream Ilm. The water flow passes the 

barrier atop the wall. 

 

 

The sampling site of the second weir (Pool 2 and Outlet 2) is located at the upstream site of a 

tributary short behind the separation from the main stream. The flow passes underneath the 

two wooden gates which can be opened (Fig 3).  

 

 

 

 

 

 

 

 

Fig. 3. The second weir is situated at a tributary of the stream. The water flow passes underneath the 

wooden gates 
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The third weir (Pool 3 and Outlet 3) is situated down stream the brunch approximately 100 m 

distant from the second weir. It consits of 5 wooden gates and the water flow passes 

underneath (Fig 4).  

 

 

 

 

 

 

 

Fig. 4. The third weir is situated at the end of the tributary. The the water flows passes underneath the 

gates. 

 

Measurement of environmental factors 

Triplicate samples from the water column were filtered (Whatman, 0.45 µm pore size) 

for determination of ammonia (NH
4+

), and nitrate (NO
3-

). Concentrations of NO
3-

 were 

determined using the ultraviolet spectrophotometric screening method (Clesceri, 1998) 

(Uvicon 931, Kontron Instruments, Italy). NH
4+

 was determined spectrophotometrically 

(Gadkari, 1984)(Uvicon 931, Kontron Instruments, Italy). Oxygen content, pH, salinity, 

conductivity and turbidity were measured in the water column (Horiba U 10, Multiparameter, 

Water Quality Meter, Kyoto Japan). Flow velocity was measured (Flowmate; MARSH 

McBirney) at all tubes after removing the baskets in 5 cm steps beginning from the river 

bottom up to the top of the water column. For the contour plots flow velocity was measured in 

5 cm steps from the river bed on up to the water surface and horizontally in 500 cm steps in 

flow direction and transversal. 

 

Sample collection and enumeration of bacteria (DAPI) 

Samples were collected after exposition of glass slides in a sampling cylinder of 

punched (diameter of the holes 5 mm) stainless steal basket (diameter 8 cm, length 16 cm) for 

6 glass slides fixed horizontally on tubes above the river ground (Pohlon et al. submitted). 

Five to six replicates were taken at each sampling site (Fig 1, Chapter 1). Biofilms were 
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scraped of the slides using sterile glass slides and kept in a 50 ml Greiner tube adding 

formaldehyde with a final concentration of 4%. At each sampling time and site, three 

replicates of stream water were taken and fixed with formaldehyde (4% final concentration). 

Presonicated biofilm samples and water samples (3-12 replicates) were stained with DAPI 

(1µg ml
-1

) (Porter and Feig, 1980) before counting at 1000 x magnification (Zeiss Axioplan).  

 

Statistical analyses  

Bacteria abundances of the different sampling sites, flow velocities as well as the 

physico-chemical data were analyzed using one way ANOVA (SigmaStat). Abundance of 

biofilm bacteria at all sampling sites were correlated with the abundances of the 

corresponding stream water bacteria as well as the corresponding flow velocities (SigmaStat). 
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Results  

Physical and chemical parameters 

There were no effects of the weirs on the water quality data. Oxygen, pH, turbidity, 

and temperature were not different. Conductivity at Natural 1 was significantly lower than at 

the other sampling sites. This sampling site is situated close to the spring with different 

geological conditions than all the other sampling sites (Table 1).  

 

 

Table 1. Mean (STDAV) of physical parameters at the sampling sites (Cond=conductivity, Turb= 

              Conductivity, Temp=temperature), asterisks indicate significant differences (ANOVA, P<0.05). 

  

 

Site 

 

 

pH 

 

Cond 

µs cm
-1

 

 

Turb 

 

O2 

mg l
-1

 

 

Temp 

°C 

 

Natural 1 

 

7.2±0.3 

 

123±19 * 

 

0.2±0.7 

 

9.6±1.5 

 

9.4±3.9 

 

Natural 2 

 

8.2±1.2 

 

306±53 

 

12±21 

 

9.3±1.4 

 

8.7±6.8 

 

Natural 3 

 

7.8±0.2 

 

316±45 

 

15±22 

 

9.3±1.5 

 

8.4±6.3 

 

Pool 1 

 

7.3±0.5 

 

292±58 

 

1.0±0.8 

 

10.3±1.1 

 

7.5±5.0 

 

Pool 2 

 

7.6±0.4 

 

278±35 

 

47±100 

 

9.2±1.9 

 

9.5±3.5 

 

Pool 3 

 

7.7±0.7 

 

300±61 

 

2.2±2.2 

 

9.7±1.3 

 

8.1±5.2 

 

Outlet 1 

 

7.2±0.4 

 

289±56 

 

1.0±2.0 

 

10.8±1.0 

 

7.7±5.4 

 

Outlet 2 

 

7.7±0.5 

 

276±42 

 

21±62 

 

9.3±1.8 

 

9.7±3.6 

 

Outlet 3 

 

7.1±0.7 

 

294±61 

 

1.0±1.2 

 

10.4±1.2 

 

8.2±5.2 

 

 

Concentration of nitrogen and ammonium increased over time at all sampling sites with no 

significant differences between natural sites, pool, and outlets of the weirs (Table 2). 
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Table 2. Mean (STDAV) of nitrate – and ammonium concentrations at all sampling sites 

and dates. 

 

Site 

 

 

 

     Date 

NO3 

µmol l
-1

 

NH4 

mmol l
-1

 

     Natural 1 June / 20 / 03 17.2±0.2 0.1±0.03 

 August / 13 / 03 30.0±4.1 <0.1 

 October/ 22 / 03 n.d. n.d. 

 December / 12 / 

03 

24.7±7.9 0.6±0.6 

 March / 3 / 04 75.9±82.7 2.7±3.7 

     Natural 2 June / 20 / 03 27.4±2.2 0.6±0.08 

 August / 13 / 03 29.1±4.7 <0.1 

 October/ 22 / 03 n.d. n.d. 

 December / 12 / 

03 

67.9±24.5 3.9±4.4 

 March / 3 / 04 105.0 <0.1 

     Natural 3 June / 20 / 03 19.7±6.5 0.4±0.02 

 August / 13 / 03 39.2±3.3 <0.1 

 October/ 22 / 03 n.d. n.d. 

 December / 12 / 

03 

73.4±17.0 0.7±0.2 

 March / 3 / 04 102±5.6 9.1±9.8 

     Reservoir 1 June / 20 / 03 34.1±2.0 0.5±0.04 

 August / 13 / 03 27.4±1.8 <0.1 

 October/ 22 / 03 n.d. n.d. 

 December / 12 / 

03 

63.6±11.4 0.3±0.2 

 March / 3 / 04 99.1±6.8 7.2±8.6 

     Reservoir 2 June / 20 / 03 n.d. n.d. 

 August / 13 / 03 34.6±9.6 <0.1 

 October/ 22 / 03 n.d. n.d. 

 December / 12 / 

03 

75.5±9.7 n.d. 

 March / 3 / 04 105±2.1 6.7±8.2 

     Reservoir 3 June / 20 / 03 19.7±6.5 0.4±0.02 

 August / 13 / 03 36.0±5.7 <0.1 

 October/ 22 / 03 n.d. n.d. 

 December / 12 / 

03 

75,0±6.8 0.5±0.4 

 March / 3 / 04 102±5.6 9.6±8.8 

     Outlet 1 June / 20 / 03 30.8±4.0 0.5±0.04 

 August / 13 / 03 25.2±6.0 <0.1 

 October/ 22 / 03 n.d. n.d. 

 December / 12 / 

03 

24.7±7.9 2.6±3.0 

 March / 3 / 04 75.9±82.7 7.5±9.8 

     Outlet 2 June / 20 / 03 n.d. n.d. 

 August / 13 / 03 40.8±7.1 <0.1 

 October/ 22 / 03 n.d. n.d. 

 December / 12 / 

03 

67.9±24.5 2.0±0.3 

 March / 3 / 04 105.0 9.7±7.5 

     Outlet 3 June / 20 / 03 n.d. n.d. 

 August / 13 / 03 29.2±8.3 <0.1 

 October/ 22 / 03 n.d. n.d. 

 December / 12 / 

03 

73.4±17.0 0.8±0.5 

 March / 3 / 04 102±5.6 12.7±14.7 
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Discharge and flow pattern 

The discharge of the Stream Ilm during the sampling time was below mean annual 

values (2.45 m³ per s). At 2003 the number of days below mean discharge was with 42 days 

very high (mean value of annual days below mean discharge is 19). The discharge on June 

20
th

 was 0.51 m
3
 s

-1
, on August 13

th
 0.161 m

3
 s

-1
, on October 22

nd
 0.6 m

3
 s

-1
, on December 2

nd
 

2003 0.85 m
3
 s

-1
, and on March 12

th
 2004 0.85 m

3
 s

-1
. Between January 12

th
 and February 20

th
 

2004 the discharge was high with 2 flow peaks of 5 and 11 m
3
 s

-1
. 

 

Flow velocity 

The mean flow velocity at the pools was lower (10 fold) than at the natural sites and 

the outlets. The velocities at the natural sites and the outlets varied between 20 and 40 cm per 

second and were not different in magnitude and variability. The flow velocity at Pool 2 was 

higher than at the other pools from October 2003 on. In August 2003 the flow velocity at 

Outlet 1 and 2 was reduced due to the extreme low water level in summer 2003 (Table 3). 

 

At the Natural 1 small patches of slow and fast flow velocities alternated (Fig 5). The mean 

(±STADV) flow velocity was 51 (±3) cm s
-1

. Pool 2 was characterized by an uniformity of 

slow flow velocities with a mean value of 17 (±9) cm s
-1

 (Fig 6). At Outlet 2 a large pool 

behind the barrier occurred followed by a single large riffle. The mean flow velocity at this 

site was 42 (±22) cm s
-1

 (Fig 7).  

Table 3. Mean flow velocity (±STADV) at the sampling sites and dates. Asterisks indicate significant 

differences between sampling sites (P>0.05, ANOVA). 

 

 Jun 20, 2003 Aug 13, 2003 Oct 22, 2003 Dec 2, 2003 Mar 12, 2004 

Natural 1 43 (±10) * 13 (±8.1) * 25 (±13) * 39 (±17) * 22 (±19) 

Reservoir 1 2.2 (±3.5) 0.7 (±2.5) 3.5 (±2.4) 5.2 (±4.8) 7.2 (±3.5) 

Reservoir 2 13 (±7.1) 2.2 (±4.7) 9.7 (±7.3) 12 (±7.0) 19 (±12) 

Reservoir 3 5.5 (±3.4) 3.4 (±2.2) 5.2 (±2.0) 6.5 (±2.4) 8.3 (±5.8) 

Outlet 1 18 (±10) 2.6 (±1.3) 26 (±13) * 29 (±6.7) * 26 (±9.7) 

Outlet 2 37 (±19) * 38 (±17) * 26 (±13) * 30 (±1.8) * 25 (±25) 

Outlet 3 42 (±13) * 19 (±21) * 37 (±16) * 26 (±6.3) * 55 (±18) * 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Contour plot of the mean flow velocities (ms
-1

) measured from the river bed surface up to the head water in 5 cm steps vertically and in  

0.5 m steps in flow direction as well as transversal at the natural site in Manebach (Natural 1). Pink dots mark the positions of the sampling 

baskets. 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Contour plot of the mean flow velocities (ms-1) measured from the river bed surface up to the head water in 5 cm steps vertically and in  

0.5 m steps in flow direction as well as transversal at the weir 2 in Griesheim (Pool 2). Pink dots mark the positions of the sampling baskets. 
 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Contour plot of the mean flow velocities (ms-1) measured from the river bed surface up to the head water in 5 cm steps vertically and in  

0.5 m steps in flow direction as well as transversal at the weir 2 in Griesheim (Outlet 2). Pink dots mark the positions of the sampling 

baskets. 
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Abundance of Bacteria 

The mean bacterial abundance at the natural site over the entire time period varied 

between 0.6 and 4.0 *10
6
 cells cm

-2 
at the pools between 0.3 and 74 *10

6
 cells cm

-2
 and at the 

outlets between 0.3 and 81 *10
6
 cells cm

-2
. 

At Natural 1 on June 20
th

, October 22
nd

, and March 12
th

 the abundance was in the same order 

of magnitude. On August 13
th

 the abundance was 6-fold and on December 2
nd

 two-fold higher 

(Fig 8A). Only on March 12
th

 2004 the mean (±STADV) abundance of biofilm bacteria at 

Natural 2 and 3 was measured with 0.46 (±0.2) and 0.43 (±0.2) bacteria * 10
6
 per cm

3
 

respectively. 

At Pool 2 and 3 on June 20
th

 the abundances of biofilm bacteria was 6- and 7-fold (P<0.05 

ANOVA) higher than at Pool 1 respectively. At Pool 3 on August 13
th

 the abundance was 

significantly (P<0.05 ANOVA) (15- and 9-fold, respectively) lower than at Pool 1 and 2. On 

December 2
nd

 the abundance at Pool 3 was significantly (P<0.05 ANOVA) reduced (5- and 3-

fold) again (Fig 8B).  

At Outlet 1 on August 13
th

 the abundance was significantly (27-and 62-fold, respectively) 

higher than at Outlet 2 and 3 and on December 2
nd

 8-and 4-fold lower than Outlet 2 and 3, 

respectively. At March 12
th

 the abundance at all three outlets was lowest (Fig 8C). 
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Fig. 8. Mean (±STDAV) bacterial abundance in biofilms at the natural site 1 (Manebach) (A), the 

pools of three weirs (B), and the corresponding outlets (C). 
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The magnitude of the bacterial number in the water column at all sampling sites was equally 

with two exceptions: March 12
th

 2004, the abundance at Natural 2 was significantly higher 

than at Natural 1 and 2, and August 13
th

, possibly regarding to the low water level at this time 

the abundance of bacteria in the stream water was high (Table 4). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Mean (STDAV) of stream water abundance at all sampling sites and dates. 

Sampling Date 20.06.2003 13.08.2003 22.10.2003 02.12.2003 12.03.2004 

Natural 1 0.83 (±0.25) 4.54 (±1.62) 0.22 (±0.31) 1.08 (±0.68) 0.35 (±0.15) 

Natural 2 2.03 (±0.54) 1.94(±0.64) 0.63 (±0.28) 0.46 (±0.45) 2.24 (±1.41) 

Natural 3 4.03 (±3.18) 3.02 (±.1.60) 4.68 (±4.53) 1.15 (±1.15) 1.29 (±0.97) 

Reservoir 1 7.03 (±0.82) 14.04 (±3.91) 2.68 (±4.53) 0.49 (±0.39) 1.02 (±0.00) 

Reservoir 2 2.29 (±0.02) 15.97 (±3.90) 2.01 (±2.44) 1.52 (±1.13) 1.82 (±0.42) 

Reservoir 3 4.79 (±2.52) 14.05 (±2.21) 1.33 (±0.56) 1.38 (±0.51) 1.62 (±0.10) 

Outlet 1 2.83 (±0.00) 16.84 (±8.25) 10.45 (±13.3) 1.07 (±,0.17) 1.42 (±0.18) 

Outlet 2 3.06 (±0.76) 13.92 (±0.92) 0.49 (±0.37) 1.14 (±0.47) 1.12 (±0.25) 

Outlet 3 3.17 (±1.66) 13.13 (±1.38) 1.34 (±0.39) 0.55 (±0.52) 0.50 (±0.32) 
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Discussion 

Flow Velocity 

The flow patterns (Fig 5-7) clearly show a reduction of the flow velocity and an 

unification at the pool of the weir whereas at the outlet no mosaic like pattern of the flow 

exists as shown at the natural site. In contrast to the natural site with a higher number of small 

riffles and pools the outlet was dominated by one large pool short behind the weir followed by 

one large riffle. The slow flow velocity and the appearance of Megaloptera as a typical 

colonizer of muddy sediments only at the weir sites support the assumption that this sites 

function as sedimentation traps. The presence of more than 55 weirs along 130 km in the 

Stream Ilm builds a longitudinal pattern of large pools in front of the barriers followed by 

large riffle like structures at the outlets. Due to the decrease of the flow velocity, the pools 

might exhibit zones of sedimentation.  

No consistent flow patterns at the three weirs could be observed during the sampling season. 

Flow velocities at the pool of the second weir (Pool 2) differed at three sampling times from 

the other pools. The mode how the flow passes the barrier has no effect on the flow velocities 

up- and down stream of the barriers. The stream water passes the first weir atop the wall 

(overflow) and the weirs 2 and 3 underneath. The fact that there were no differences of the 

chemical and physical values indicate that low-head dams do not alter chemical attributes of 

the stream water, which has been shown in other studies for temperature and dissolved 

oxygen (Stanley et al., 2002).  

 

Abundance of bacteria 

The bacterial abundance was independent from the flow velocity at all sampling sites. 

The tenfold higher abundance of biofilm bacteria at all weir sites compared to the natural sites 

might be caused by the sediment trapping at the pools which also provides nutrients (Stanley 

and Doyle, 2002) for the biofilm organisms. This finding can be supported by the abundance 

of bacteria in the stream water which were not different at natural- and weir sites. In August 

2003 the low number of bacteria was possibly by caused by the low water level during the 

extreme dry summer. 
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Restoration purposes 

In straightened rivers and streams which conquer high altitute difference as the Ilm 

small weirs can play a key role as zones with a reduced flow. Straightening increases flow 

velocities and results in shorter turnover lengths, but also results in a reduced stream length. 

However, the increased turnover capacity in straightened zones has to be balanced with the 

loss of streambed area, i.e. turnover area. Thus, reservoirs in front of small weirs seem to be 

important zones of transient storage for organic matter processing. Especially under flooding 

conditions, artificial pool sites like impoundment areas might be important “refuge zones” for 

microbial biofilm activities.  

Flow is a major determinant of biotic composition in rivers. During dam construction 

invertebrate abundance and diversity can decrease as a reflection of the changes in flow, 

substrate, temperature, and a reduction in substrate heterogeneity together with an 

accumulation of sediment (Boon, 1988). Dam construction can also result in shifts of 

microbial community structures as biofilms which in turn can alter the turn over in the river 

section concerned. On the other hand artificial weirs provide a successful tool to re-establish 

the riffle-pool character in regulated river (Gordon et al., 1996). Probably an enhancement of 

the water passage to reduce the first order effects of the dam can be a first step to re-establish 

“natural-like” conditions for the community. 

For restoration purposes each weir needs to be evaluated individually. Long term 

investigations are necessary to make sure how the environment has been changed after dam 

constructions and how the community can be supported. The lack of streams without human 

impacts as constructions of different feature makes this evaluation more difficult. Definitely it 

is clear that it is not advisable to remove all artificial structures without a detailed examination 

of all community levels.  
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General Discussion 

 

Dynamic of Stream Ecosystems 

The main hallmark of stream ecosystems is the down stream flow which requires adaptive 

efforts from the entire biota (Schönborn 1992). For microorganisms the EPS matrix fulfills 

this requirement by protecting the community against shear stress and acting as storage room 

for nutrients and enzymes (Freeman and Lock 1995, Ramasamy and Zang 2005). Furthermore 

annual drought and flood events cause significant impacts on the stream ecosystem in extreme 

circumstances the loss of the habitat (Blenkinsopp and Lock 1994, Galle 2004; Cheng et al. 

1997). Associated with the current high loads of organic and inorganic matter become 

relocated dependent on the water mass and land use (Walling 2006; Wang 2008; Battin et al. 

2008) including the associated microorganisms. It is predictable that the stream biofilm is 

stressed by this continuously changing chemical and physical environment. Therefore it is 

advantages for the biofilm organisms that the colonization of spaces offered occurs rapidly. 

 

Colonization Patterns of Bacteria and Algae in the Stream Ilm 

Early colonization of empty spaces offered in the Stream Ilm in Manebach (Natural Site 1) 

in August 2005 occurred rapidly by bacteria and algae emphasizing the effort for settlement 

of both organism groups. Green algae dominated the early biofilm (24 h) and diatoms in later 

stages as described in other studies (Sekar et al. 2002; Sekar et al. 2004). The first day of 

colonization by bacteria was denoted by the appearance of the examined groups (12 h) and an 

enrichment of GAMMA and BETA after 24 h. Between 1 and 7 days the major increase of 

the bacterial abundance occurred (Fig 1) and the community was dominated by CF, GAMMA 

and BETA. In contrast to earlier findings (Manz et al. 1999), in the beginning of biofilm 

formation CF dominated the community and not BETA and ALPHA. Surprisingly HGC 

occurred in high proportions at all time steps. This group usually accounts for less than 3% of 

the community (Olapade and Leff 2004). The proportion of the community composition 

changed further and until 5 months all investigated groups appeared in percentages of about 

10 to 25%. These results suggest that the succession of the bacterial community in the current 

study did not terminate until 7 days (Araya et al. 2003), (Chapter 1). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. CLSM images of the colonization patterns of biofilms in the Stream Ilm. Within the first day a thin biofilm was developed. Single 

bacteria cells and motile green algae appeared (1 h) and after 4 h stalked diatoms colonized the surface. After 24 h filamentous bacteria and 

pennate diatoms were detectable. The highest increase of the abundance of both organism groups occurred between 1 and 7 days and the 

cells associated into large cell cluster. After 5 months filamentous algae and protozoans were abundant.  
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In February 2005 the community structure of algae after 2 and 7 weeks at all sampling sites 

was dominated by green algae suggesting that the biofilm community remained in an early 

succession state. During the exposition time several flood events occurred (with a 7 fold 

increase of the mean annual discharge) and green algae are successful primer colonizers 

(Chapter 1). The bacterial community at all sampling sites and times of exposition was 

dominated by CF and BETA in different proportions because the bacteria community 

composition changes during the seasons of the year with highest numbers of CF and BETA in 

winter (Olapade and Leff 2004). The difference in the proportion of the dominant groups 

according to the sampling sites with different flow velocities may indicate that besides the 

seasonal changes other physical or / and chemical parameters affect the bacteria community 

structure in the stream, (Chapter 2). 

 

Impact of the Flow Velocity and Sedimentation on the Microbial Community in Stream 

Biofilms 

The biofilm structure and function is largely related to the current velocity (e.g. Battin et 

al. 2003). In this study the early (4 and 8 h) bacterial abundance at the pool (17 cm s
-1

), outlet 

(40 cm s
-1

), and the natural site (40 cm s
-1

) was of the same magnitude. Only in day scale the 

bacteria seemed to be affected by high flow velocities because at the pool the abundance was 

significantly enhanced. After 14 days at the pool and outlet of the weir the abundance of 

bacteria regardless of the different velocities, was higher than at the natural site. This effect 

might be caused by high nutrient concentrations in the water column of the weir sites but also 

by high amounts of inorganic material incorporated in the biofilm matrix (Fig 2).  

 

 

 

 

 

 

 

 

 

 

Figure 2. CLSM image of sediment particles (white and black) incorporated in the biofilm 

matrix of biofilms grown at the pool of a weir in the Stream Ilm. 
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Sediment particles provide space for colonization (Fig 3) and may increase the capacity for an 

enhancement of the number of bacteria and algae in biofilms. Furthermore the addition of 1, 

5, and 15 mg cm
-1

 sediment particles in flow channels at a flow velocity of 0.7 cm s
-1

 resulted 

in an increase of the bacterial abundance, algal biomass, biofilm thickness, organic matter 

content, and sucrose turnover. But the transfer of these biofilms into flow channels with 20 

and 60 cm s
-1 

for only 1 h led to instability in biofilms with additional 5 and 15 mg cm
-1 

sediment. The community composition in the Stream Ilm at the natural site was dominated by 

CF and at the pool and outlet of the weir by BETA or the combination of CF and BETA. 

After 7 weeks at the outlet GAMMA were enhanced. In the flow channels with sediment 

addition CF and GAMMA were enhanced and ALPHA reduced. Proportions of CF and 

BETA were high at sites with low and high sediment loads as well as in the flow channels. 

But it seems that GAMMA are competitive at sites with sediment loads. There is evidence 

that the addition of 1 mg cm
-1

 sediment in biofilms grown in the flow channels was optimal. 

As shown in the Stream Ilm with about 10 mg cm
-1

 of inorganic sediment incorporated in the 

matrix the biofilm thickness at the pool was largely decreased after the flood event and those 

at the sites with high flow velocities were not affected irrespectively of the amount of 

sediment incorporated. Biofilms grown at slow flow velocities with high amounts of inorganic 

matter incorporated can not resist events with high flow velocities. So the addition of 

sediment may provide space for colonization and additional nutrients but also cause instability 

leading to loss of biomass (Chapter 2 and 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. CLSM image of a sediment particle colonized by bacteria in biofilms from the pool 

of the Stream Ilm. 
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Evaluation of the Biofilm Structure in the Stream Ilm 

Ripple like- and honeycomb structures of biofilms (Okabe et al. 1998; Battin et al. 2003) 

may be beneficial for the biofilm community in streams. In the current study biofilm 

formation started with single cells and small colonies (1 h) over a formation of streamers (4 h) 

up to big cell cluster (7 d and 5 mo) (Fig 1). Additionally high amounts of sediment flocks 

were incorporated (Fig 2). The resulting biofilm was patchy. In some areas the biofilm cover 

reached high altitudes but also larges areas were covered by a thin matrix (Fig 4). Organic and 

inorganic sediment particles incorporated may cause the patchy environment. Sediment 

particles are subjected to small scale fluid motions of the stream close to the biofilm surface 

and might be flushed out easily. Especially big sediment particles might be vulnerable to high 

flow velocities. Thus a certain pattern could not bee detected (Chapter 1 and 2). 

 

 

 

 

Figure 4. (A) CLSM image of a biofilm grown in the Stream Ilm. Patches of low (black) and 

high (red) altitude biofilms alternate. (B) Profile of the section marked by the red 

line. 
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Measurements of the extracellular enzyme activity 

In this study the extracellular enzyme activities were measured at very early states of 

biofilm formation. The enzymatic activity is linked to biofilm organisms (Hoppe 1983) 

accordingly with the appearance of high numbers of bacteria and algae at these early stages 

the alkaline phosphatase activity could be measured already after 4 hours as well as the beta-

glucosidase after 8 hours. Phosphate is a limiting nutrient in aquatic environments (Mohamed 

et al. 1998) and the release of high concentrations of alkaline phosphatase by the organisms 

might be necessary for the demand of phosphate during early stages of biofilm formation. The 

switch of the beta-xylosidase : beta-glucosidase ratio from very low 0.1 to 0.4 in 5 months old 

biofilms indicate a change in organic matter resources utilization by the biofilm community. 

High ratios indicate the importance of hemicellulose of allochthonous origin (Romani and 

Sabater 2000) which might be incorporated in the biofilm matrix (Chapter 1).  

At the natural site and the weir the alkaline phosphatase activity was 4-times higher as 

the other enzymes measured emphasizing the demand of phosphorus for the organisms. The 

differences in the enzyme activity due to the flow – and sediment conditions at the sampling 

sites were low, beta-xylosidase and alkaline phosphatase activity was high at both weir sites. 

But referred to the bacteria cell numbers the activities of alkaline phosphatase, beta-

glucosidase and aminopeptidase were significantly higher at the natural site. The biofilm from 

this site was thin at the entire time period of sampling and the amount of incorporated 

material was low. Nutrient concentrations were significantly lower for ammonium and 

phosphate in the water column. These high per cell enzymatic activity might be a feature for a 

high turnover necessity of high molecular weight nutrients at this site. Bacteria at the weir 

sites might be benefited by sedimentation which causes an enhancement of the abundances of 

bacteria and algae and probably which provide additional low molecular weight nutrients 

(Chapter 1 and 2).  

 

Flow pattern and the bacterial community at small weirs in the Stream Ilm 

The flow velocities in front of the three small weirs investigated in the Stream Ilm 

were reduced and the flow patterns of the second weir clearly showed a unification of the 

current. Straight behind the barrier of the second weir a large pool occurred and adjacent a 

large riffle. Thus the impact of the weirs is not restricted to the area in front of the barrier, also 

behind. At the natural sampling site in Manebach the current was dominated by high flow 

velocities with a high diverse flow pattern, so small pools and riffles alternated.  
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Overall the bacteria cell numbers were one dimension higher at the weir sites compared with 

the natural site indicating an enhancement at the weirs possibly due to sedimentation. 

The bacterial community structure in 5 months old biofilms at the natural site was denoted by 

an nearly balanced proportion of the investigated groups whereas at the pool CF and 

GAMMA dominated and at the outlet CF, GAMMA, and BETA (Fig 5). As shown in the 

flow channels GAMMA are enhanced at sites with high amounts of sediment incorporated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Proportion of the bacterial community in 5 months old biofilms at the natural site 

and the pool and outlet of a weir in the Stream Ilm in August 2005. 

 

Small weirs might be important for stream ecosystems as storage for nutrients in small scales. 

A serial impoundment of a stream by small weirs may despite of the negative impact as 

barriers for higher organisms, locally slow down the flow velocity and build a series of large 

pools and riffles. Especially in straightened streams small weirs may be important sites for 

processing of organic material by entrapment of particulate organic matter (POM) (Chapter 5 

and 6).  
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Conclusion 

Colonization of empty spaces offered in a stream occurs rapidly by bacteria and algae. The 

early enzymatic activity measured emphasizes high turnover activities from the beginning of 

biofilm formation on. After only 7 days the major “work” in biofilm formation has been done. 

(Hypothesis and Question 1).  

The barrier slows the steam flow down and causes sedimentation at this site. This effect is not 

restricted to the pool. At both weir sites high amounts of inorganic sediment incorporated 

enhance the bacterial abundance and within the bacterial community Gammaproteobacteria. 

Bacteria at these sites are less active by exhibiting a lower per cell enzymatic activity as at the 

natural site (Question and Hypothesis 2). 

The incorporation of amounts up to 15 mg cm
-2

 of inorganic sediments is advantages for the 

biofilm community by enhancing the abundance and the turnover. However biofilms grown at 

a slow flow velocity with 5 and 15 mg cm
-2

 sediment particles incorporated also suffer loss. 

Sediment loads of about 1 mg cm
-2

 are optimal (Question and Hypothesis 3). 

Small weirs generate longitudinal series of pools and riffles in high altitudes. The over all 

influence of weirs in the Stream Ilm on the microbial community structure and function seems 

to be positive. Only biofilms grown at slow flow velocities might be affected by loosing 

biomass after flood events. The longer residence time of the sediments in front of the weir 

might be beneficial for the biofilm community and their consumers by providing additional 

organic matter. However small weirs do not replace natural barriers as trees and stones 

although in streams modified by human impacts as straightening it might be the best and 

mostly only option to slow the current down (Question and Hypothesis 4). 
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Summary 

 

Biofilms are assamblages of bacteria, algae, fugi, and protozoans embedded in a polymeric 

matrix (EPS). In small streams biofilms cover plants and stones and are hot spots in carbon 

turn over by transferring particulate organic material into biomass and providing a resource 

for higher organisms. The microorganisms hydrolyse high molecular weight organic material 

by extracellular enzymes which can be stored within the matrix. Because of the discharge 

coupled with sediment transport in streams, biofilms are exposed to a permanent changing 

environment. In extreme circumstances floods and droughts affect the biofilm community and 

turnover. But also human impact as straightening and dam construction might affect the 

biofilm in a stream. In the current study the impact of the flow velocity and sedimentation on 

the bacterial and algal community in the Stream Ilm (Thuringia, Germany) has been 

investigated. Furthermore the enzymatic activity and biofilm structure was measured. The 

early colonization patterns of bacteria and algae on artificial surfaces have been investigated 

and a small weir was used to determine the impact of the flow velocity on the structure and 

function of the biofilm community. Finally the impact of different amounts of inorganic 

sediment on the bacterial community structure and carbon turnover was investigated in flow 

channels in the laboratory. Bacteria and algae colonize surfaces very quickly and the early 

turnover is denoted by the release of extracellular enzymes within hours. The colonization 

follows a successional pattern. The pioneer community of algae is dominated by greenalge 

and the bacteria by Cytophaga-Flavobacteria. In streams small weirs lead to a reduction of 

the flow velocity and enable sedimentation of organic and inorganic material. Biofilms grown 

under slow flow velocities and at sites with high sediment loads as weirs are thicker and 

contain higher numbers of bacteria and algae. Inorganic sediment particles provide space for 

colonization and might also contain additional nutrients. But the stability of biofilms grown at 

slow flow velocities with increasing amounts of inorganic sediment incorporated decreases. 

Biofilms grown at high flow velocities with low fractions of inorganic sediment incorporated 

are thin and the extracellular enzyme activity per cell is higher than at the sites with high 

sediment loads indicating a demand for nutrients at this sites. It seems that Beta- and 

Gammaproteobacteria are enhanced and Alphaproteobacteria reduced in biofilms with high 

inorganic sediment loads incorporated. The impact of sedimentation on the microbial biofilm 

by a small weir is not restricted to the pool of the weir but also to the outlet despite of the 

predominantly high flow velocities at this site. Because of small weirs the down flow of a 
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stream is local reduced and unified, but in streams with high flow velocities or in straightened 

streams small weirs provide zones of sedimentation leading to retention. Besides the fact that 

weirs act as barriers for the up and down stream movement and transport they also increase 

the turn over fascilities of particulate organic matter accumulated at this sites and promote the 

carbon transport into higher trophic levels.  
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Zusammenfassung 

 

Biofilme sind Gemeinschaften von Bakterien, Algen, Pilzen und Protozoen eingebettet in 

einer Matrix aus polymeren Substanzen (EPS). Sie besiedeln in Fließgewässern die 

Oberflächen von Steinen und Pflanzen und spielen eine wichtige Rolle im 

Kohlenstoffkreislauf des Gewässers. Mittels extrazellulärer Enzyme können sie allochthones 

organisches Material hydrolysieren, zersetzen und in Biomasse umsetzen und somit für 

höhere trophische Ebenen verfügbar machen. Durch die Fließgewässerdynamik sind Biofilme 

ständig verändernden Bedingungen ausgesetzt bis hin zu Extremzuständen wie Austrocknung 

und Flutereignissen, wobei auch anthropogene Veränderungen der Fließgewässerstruktur, wie 

Wehre, eine Rolle spielen. Gegenstand der vorgelegten Arbeit war es, die 

Besiedlungsdynamik und Populationsstruktur der Bakterien- und Algengemeinschaft auf 

künstlich exponierten Oberflächen aufzuklären und einen Einblick in den Stoffumsatz dieser 

Biofilme in den jeweiligen Stadien der Entwicklung zu geben. An einem Wehr wurde der 

Einfluss von Fließgeschwindigkeit und Sedimentation auf die Struktur der Bakterien- und 

Algengemeinschaft und der enzymatischen Aktivität untersucht. Dieser experimentelle Ansatz 

wurde in einem Fließrinnenexperiment im Labor nachgestellt, um explizit den Einfluss von 

unterschiedlichen Sedimentmengen auf die Biofilmstruktur und den Kohlenstoffumsatz zu 

untersuchen. Die Besiedlung von ausgebrachten Oberflächen durch Bakterien und Algen in 

der Ilm erfolgt sehr schnell und sukzessiv, wobei der mikrobielle Stoffumsatz durch eine hohe 

enzymatische Aktivität bereits zu Beginn der Besiedlung gesichert wird. Die 

Pioniergemeinschaft der Algen ist von Grünalgen und die der Bakterien von Cytophaga-

Flavobakterien geprägt. Kleine Wehre sind Barrieren und führen zu einer Verringerung der 

Fließgeschwindigkeit im Fließgewässer und ermöglichen somit die Sedimentation von 

organischem und anorganischem Material. Biofilme, die in Bereichen mit hoher 

Sedimentation und / oder langsamen Fließgeschwindigkeiten wachsen, sind dicker und weisen 

eine höhere Anzahl an Bakterien und Algen auf. Allerdings nimmt die Stabilität insbesondere 

in Biofilmen, die bei langsamen Fließgeschwindigkeiten gewachsen sind mit steigender 

Sedimentmenge ab. Offenbar werden bei hohen Sedimentmengen, akkumuliert in der Matrix, 

Beta- und Gammaproteobakterien begünstigt und Alphaproteobakterien reduziert. Der 

Einfluss von Sedimentation auf Biofilme an einem kleinen Wehr ist nicht nur auf den Bereich 

vor der Barriere beschränkt, sondern erstreckt sich auch noch in den Bereich hinter der 

Barriere ungeachtet der dort vorherrschenden hohen Fließgeschwindigkeiten. Durch kleine 
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Wehre wird die Fließgeschwindigkeit in dem gesamten Staubereich künstlich herabgesetzt 

und vereinheitlicht, doch insbesondere in Gewässern mit sehr hohen Fließgeschwindigkeiten 

oder bei Begradigung können diese Wehre zu Sedimentation und zu Retention führen. Unter 

Restorationsgesichtspunkten stellen Wehre Barrieren dar, die den Durchfluss des Gewässers 

behindern, aber auch Zonen von Gewässerberuhigung. Erhöhte Sedimentation und die 

Möglichkeit von hohem mikrobiellem Stoffumsatz in diesen Bereichen des Fließgewässers 

können den Kohlenstofftransfer zu höheren Trophieebenen begünstigen. 
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