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Summary 

The gram positive bacterium Acetobacterium dehalogenans belongs to the group of 

acetogens. The anaerobe utilizes the methyl group of phenyl methyl ethers, which are 

products of the lignin degradation process, as a carbon and energy source. The O-

demethylation reaction in which the methyl group of the substrate is transferred to 

tetrahydrofolate is mediated by the key enzymes, the O-demethylases, in the methylotrophic 

metabolism. The O-demethylase enzyme complex consists of four components: a 

methyltransferase I (MT I) transfers the methyl group of a phenyl methyl ether to a super-

reduced corrinoid protein ([Co
I
]-CP) to form methylcobalamin (CH3-[Co

III
]-CP). The second 

methyltransferase (MT II) mediates the methyl transfer from CH3-[Co
III

]-CP to 

tetrahydrofolate forming methyltetrahydrofolate. The inactive form of the corrinoid protein 

([Co
II
]-CP), which is occasionally generated by inadvertent oxidation, is reduced by the 

activating enzyme (AE) in an ATP dependent reaction. Four different O-demethylase enzyme 

systems were identified as guaiacol-, syringate-, vanillate-, and veratrol-O-demethylase.  

In the work presented here, the interactions of the O-demethylase components were studied 

using two-hybrid assays, gel shift experiments and far-Western blot analyses. Emphasis was 

laid on studies on the interaction of AE and CP. With the exception of the yeast two-hybrid 

assay (Y2H), an interaction between AE and CP was always observed. In gel shift 

experiments, the presence of the corrinoid cofactor was a prerequisite for the interaction of the 

two components. On native PAGE, AE appeared as dimer. The Y2H experiments pointed to 

an involvement of the N-terminal fragment of AE (AE 1-133) in the oligomerization of the 

protein. Interaction studies in the presence of the other O-demethylase components revealed 

interactions of CP and the two MTs which is in accordance to the proposed reaction 

mechanism of the O-demethylases.  

The reductive activation of CP catalyzed by AE in an ATP dependent reaction was also 

studied. It was shown that AE is able to reduce the corrinoid cofactor of different CPs and 

therefore, AE seems to be an universal reductive activator of corrinoid enzymes of A. 

dehalogenans. The physiological electron donor for the corrinoid reduction is unknown so far. 

In this study two genes of A. dehalogenans encoding putative ferredoxins (Fds) were cloned 

and heterologously expressed in Escherichia coli. The reconstituted Fds I and II showed 

typical UV/Vis spectra for the presence of iron-sulfur clusters. The amino acid sequence 

analyses and iron determinations indicated that Fd I contains 4 [4Fe-4S] clusters while Fd II 

harbors two of these. However, the involvement of the two ferredoxins in corrinoid activation 

could not be demonstrated by the biochemical assays used. 
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Zusammenfassung 

Der gram-positive Mikroorganismus Acetobacterium dehalogenans gehört zur Gruppe der 

acetogenen Bakterien. Er verwendet die Methylgruppe von Phenylmethylethern, 

Abbauprodukten des Lignins, als Kohlenstoff- und Energiequelle. Die Methylgruppe der 

Substrate wird durch O-Demethylasen, die Schlüsselenzyme des methylotrophen 

Stoffwechsels, auf Tetrahydrofolat übertragen. O-Demethylasen sind Enzymkomplexe und 

bestehen aus vier Proteinen: die Methyltransferase I (MT I) überträgt die Methylgruppe vom 

Phenylmethylether auf das super-reduzierte Corrinoidprotein ([Co
I
]-CP) unter Bildung von 

Methylcobalamin (CH3-[Co
III

]-CP). Die Methyltransferase II (MT II) katalysiert den 

Methylgruppentransfer von CH3-[Co
III

]-CP auf Tetrahydrofolat. Methyltetrahydrofolat wird 

gebildet. Die inaktive Form des Corrinoidproteins ([Co
II
]-CP), die aufgrund von Autoxidation 

entsteht, wird in einer ATP-abhängigen Reaktion durch das Aktivierende Enzym (AE) 

reduziert. Vier verschiedene O-Demethylase-Systeme – die Guaiacol-, die Syringat-, die 

Vanillat- und die Veratrol-O-Demethylase – wurden bisher in A. dehalogenans identifiziert.  

In der vorliegenden Arbeit wurde die Interaktion der O-Demethylasekomponenten unter 

Verwendung von Two-Hybrid-Systemen, Gel-Shift- sowie Far-Western Blot-Experimenten 

untersucht. Schwerpunkt war hierbei die Interaktion von AE und CP, die mit Ausnahme des 

Yeast Two-Hybrid-Systems (Y2H) für alle Methoden nachgewiesen werden konnte. In Gel-

Shift-Experimenten war das Vorhandensein des Corrinoid-Cofaktors Voraussetzung für die 

Interaktion dieser beiden Proteinkomponenten. Auf nativen Gelen wurde AE als Dimer 

detektiert. Y2H-Analysen zeigten, dass für die Oligomerisierung wahrscheinlich ein N-

terminales AE-Fragment verantwortlich ist. Interaktionsstudien in Anwesenweit weiterer O-

Demethylasekomponenten führten zum Nachweis der Interaktion von CP mit beiden MT-

Proteinen. Dieses Ergebnis stimmt mit dem postulierten Reaktionsmechanismus überein. 

Die Reduktion von inaktivem CP, die durch AE in einer ATP-abhängigen Reaktion katalysiert 

wird, war ebenfalls Bestandteil der hier durchgeführten Untersuchungen. Es wurde gezeigt, 

dass AE verschiedene Corrinoidproteine reduzieren kann. Somit scheint AE in A. 

dehalogenans als universeller reduktiver Aktivitator von Corrinoidproteinen zu fungieren. 

Der physiologische Elektronendonor dieses Prozesses ist bisher nicht bekannt. Es wurden 

zwei mutmaßliche Ferredoxingene von A. dehalogenans heterolog in Escherichia coli 

exprimiert. Die rekombinanten Ferredoxine (Fd) I und II wiesen nach Rekonstituion typische 

UV/Vis-Spektren für Eisen/Schwefel-Cluster-enthaltende Proteine auf. Sequenzanalysen 

sowie die Bestimmung von Eisen zeigten, dass Fd I vier und Fd II zwei [4Fe-4S]-Cluster 

enthält. Eine Beteiligung der Ferredoxine bei der Corrinoidaktivierung konnte bisher jedoch 

nicht gezeigt werden. 
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1. Introduction 

1.1. Phenyl methyl ether metabolism of acetogens 

Lignin is the most abundant polymer containing aromatic compounds in the biosphere; it 

constitutes about 25% of the earth’s biomass (Bugg et al., 2011b). It is a component of wood, 

of secondary cell walls of plants and of algae. Lignin is a heterogeneous polymer consisting of 

hydroxylated and methoxylated phenylpropanoids linked by different types of covalent bonds 

such as C-C or C-O-C (Heldt & Heldt, 2005; Masai et al., 2007). The composition of lignin 

varies greatly between plants species. The complex and non-repeating heterogeneous structure 

makes plant tissues difficult to digest. Only a few bacteria and fungi are able to degrade 

lignin. In nature, degradation of lignin is achieved by specific enzyme systems such as lignin 

peroxidase, manganese peroxidase, and laccase secreted by fungi (brown rot, soft rot, or white 

rot fungi) (Bugg et al., 2011a), and bacteria (Zimmermann, 1990). The depolymerization 

process generates monomeric methoxylated aromatic compounds (phenyl methyl ethers) that 

can be further degraded by aerobic and anaerobic bacteria. The acetogens are strictly 

anaerobic bacteria which are able to catalyze the reduction of 2 mol of CO2 to acetate in their 

energy metabolism (Diekert & Wohlfarth, 1994). The involvement of acetogens in the 

anaerobic degradation of phenyl methyl ethers was discovered in the early 1980s (Bache & 

Pfennig, 1981). The key reactions in phenyl methyl ether degradation are the cleavage of 

substrate ether bond in an O-demethylation reaction and the transfer of the methyl group to 

tetrahydrofolate (Kaufmann et al., 1997). 

 

1.1.1. O-demethylase systems of acetogens 

Several acetogenic bacteria comprising Acetobacterium dehalogenans (Kaufmann et al., 

1997), A. woodii (Bache & Pfennig, 1981), Moorella thermoacetica (formerly Clostridium 

thermoaceticum) (Daniel et al., 1991), M. thermoautotrophica (formerly C. 

thermoautotrophicum) (Daniel et al., 1988), Sporomusa ovata (Stupperich & Konle, 1993), 

and an acidobacterium Holophaga foetida (Kreft & Schink, 1997; Anderson et al., 2012) can 

use phenyl methyl ethers (e.g. syringate or vanillate) as energy sources. Upon cleavage of the 

substrate ether bond in an O-demethylation reaction, the corresponding hydroxylated 

compound is formed. The aromatic ring is usually not metabolized further whereas the O-
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methyl group is used as an one carbon growth substrate (Bache & Pfennig, 1981). The methyl 

group is transferred to tetrahydrofolate (FH4) forming methyltetrahydrofolate (CH3-FH4). In 

the energy metabolism, 25% of the methyl group of CH3-FH4 is subsequently oxidized to 

CO2. The reducing equivalents generated in this process are utilized for the reduction of CO2 

to enzyme-bound carbon monoxide by the bifunctional carbon monoxide 

dehydrogenase/acetyl-CoA synthase (CODH/ACS) (for reviews on the acetogenic catabolism, 

see Diekert & Wohlfarth, 1994; Müller, 2003). The remaining part of the CH3-FH4 serves as 

methyl donor during synthesis of acetyl-CoA. To gain energy, acetyl-CoA is further 

converted to acetate (Wood, 1991; Ragsdale, 2008). The methylotrophic metabolism of 

acetogens is summarized in Figure 1.1.  

 

Fig. 1.1. Methylotrophic metabolism of acetogens. FH4: tetrahydrofolate; [H]: reducing 

equivalents. The thick black arrows indicate where the methyl compounds enter the pathway 

(Diekert & Wohlfarth, 1994).  

The O-demethylation reaction is mediated by the key enzymes, the inducible O-demethylases 

(Messmer et al., 1993). Depending on the growth substrate, different O-demethylases are 
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induced. Investigations on the specificity of the O-demethylating activity of M. thermoacetica 

revealed that the bacterium can metabolize at least twenty out of forty-two methoxylated 

aromatics tested (Daniel et al., 1991). A. woodii can grow on at least 11 methoxylated 

aromatic compounds (Frazer, 1995). O-demethylase systems were purified and characterized 

from A. dehalogenans (Kaufmann et al., 1997) and M. thermoacetica (Naidu & Ragsdale, 

2001). The characterization of an O-demethylase enzyme system of the non-acetogenic 

bacterium Desulfitobacterium hafniense DCB-2 was recently reported (Studenik et al., 2012).  

The enzyme systems characterized so far consist of three or four different components. In M. 

thermoacetica, three components of the vanillate-O-demethylase were isolated (Naidu & 

Ragsdale, 2001). MtvB catalyzes the transfer of the methyl group from a phenyl methyl ether 

to MtvC, a corrinoid protein. A second methyltransferase MtvA mediates the transfer of the 

methyl group from MtvC to tetrahydrofolate, producing CH3-FH4. The vanillate-O-

demethylase of A. dehalogenans was the first O-demethylating enzyme system purified 

(Kaufmann et al., 1997) followed by the isolation of another O-demethylase system, the 

veratrol-O-demethylase, from the same organism (Engelmann et al., 2001). Recently, two 

more enzyme systems, the syringate-O-demethylase and the guaiacol-O-demethylase, were 

identified (Lange, 2009; Frenkel, 2010). The enzyme systems of A. dehalogenans are 

composed of four components: a methyltransferase I (MT I), a methyltransferase II (MT II), a 

corrinoid protein (CP) and an activating enzyme (AE). The methyl group is transferred from 

the phenyl methyl ether to the super-reduced corrinoid protein by MT I. The methylated 

corrinoid protein is subsequently demethylated and the methyl group is transferred to 

tetrahydrofolate by MT II. The inactive form of the corrinoid protein, the cob(II)alamin form, 

which is occasionally generated by inadvertent oxidation, is reduced by the activating enzyme 

in an ATP dependent reaction; hence, AE exerts a repair function. The reaction mechanism is 

shown in Figure 1.2. 
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Fig. 1.2. Scheme of the O-demethylase reaction catalyzing the methyl group transfer 

from a phenyl methyl ether to tetrahydrofolate in A. dehalogenans. FH4: 

Tetrahydrofolate. AE: activating enzyme, MT I: methyltransferase I; MT II: methyltransferase 

II; [Co
I
], [Co

II
], [Co

III
]: corrinoid protein with cobalt in the given redox states. 

 

1.1.2. Characteristics of the O-demethylase components of Acetobacterium dehalogenans 

A. dehalogenans is able to grow on phenyl methyl ethers or on methyl chloride as energy 

source (Traunecker et al., 1991). Studies on the O-demethylation revealed that it contains 

more than one O-demethylase system which enables the growth on different substrates. 

Methyltransferase I of the vanillate-O-demethylase (MT Ivan) was purified from A. 

dehalogenans together with three other components in the study of Kaufmann et al. (1997). 

Upon the observation that A. dehalogenans can grow with methoxylated aromatic compounds 

which were not demethylated by the vanillate-O-demethylase, the second methyltransferase I 

was isolated and characterized as a single component of the veratrol-O-demethylase system 

(MT Iver). Both MTs I share the same functions: they cleave the ether bond of a phenyl methyl 

ether and transfer the methyl group to the corrinoid protein of the enzyme system. These 

enzymes are similar to methanogenic methyltransferases (Daas et al., 1996a; Sauer & Thauer, 

1997; Matthews et al, 2008). MT Ivan is a monomer with an apparent molecular mass of 36 

kDa. The enzyme is colorless and exhibits the UV/Vis spectrum of a protein lacking a visible 

prosthetic group. In the presence of AE, titanium(III)citrate, ATP, and the corrinoid protein 

(CPvan), MT Ivan converted vanillate to 3,4-dihydroxybenzoate and transferred the methyl 

group to the reduced corrinoid (Kaufmann et al., 1998a). MT Iver was purified to apparent 
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homogeneity. It was a monomer with an apparent molecular mass of 32 kDa (Engelmann et 

al., 2001). Like MT Ivan, MT Iver is colorless and shows a typical UV/Vis spectrum of a 

protein without any additional visible cofactors. The two proteins exhibit different substrate 

spectra. While MT Ivan usually cleaves the ether bond of phenyl methyl ethers with a hydroxyl 

group in ortho-position to the methoxy group, MT Iver can catalyze the demethylation of 

phenyl methyl ethers independent from the presence or absence of the ortho-hydroxyl group 

(Engelmann et al., 2001). It should be mentioned that the enzymes are named according to the 

substrate yielding the highest activity of MT I. As an example, MT Iver showed the highest 

activity with veratrol in an in vitro assay, however, it was isolated from cells cultivated on 3-

hydroxyanisole as growth substrate and veratrol was not a growth substrate for the bacterium. 

For the syringate- and guaiacol-O-demethylases, the specific growth substrates inducing these 

proteins are not yet known. The substrate spectra of MT Ivan and MT Iver partially overlap as 

illustrated in Figure 1.3.  

 

Fig. 1.3. Several substrates for the methyltransferases I of the vanillate- and veratrol-O-

demethylases (MT Ivan and MT Iver). (A) Substrates of MT Ivan; (B) Substrates of both 

enzymes; (C) Substrates of MT Iver. 

Amino acid sequence analyses revealed that the two proteins show only 22% of sequence 

identity and do not share any conserved regions (Kreher et al., 2010). Both proteins were 

heterologously produced in Escherichia coli. They were found to contain zinc (Schilhabel et 
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al., 2009). Unique zinc binding motifs were identified by site directed mutagenesis, namely 

E-X14-E-X20-H for MT Ivan and D-X27-C-X39-C for MT Iver (Studenik et al., 2011). Different 

from all other characterized corrinoid-dependent methyltransferases, cysteine is apparently 

not involved in zinc binding in MT Ivan (Studenik et al., 2011). Zinc was found to be located 

in the TIM-barrel structure of the C-terminal part of MT I which is in accordance to the 

proposed catalytic function of this domain, whereas the N-terminal part of MT I is responsible 

for the substrate specificity of the enzymes (Kreher et al., 2010). 

The corrinoid protein was purified as a monomer. The apparent molecular mass determined 

by SDS-PAGE and gel filtration was 25 kDa and 26 kDa, respectively. The reddish-brown as-

isolated protein had an UV/Vis spectrum typical for the presence of a cob(II)alamin corrinoid 

cofactor with a major peak at 475 nm (Kaufmann et al., 1997). In the O-demethylase system, 

it functions as a methyl group acceptor in the reaction catalyzed by MT I and as a methyl 

donor for MT II. Hence, CP is a substrate for MT I in its super-reduced, non-methylated form 

and for MT II in its methylated form. Usually, the genes encoding the methyltransferases and 

the corrinoid protein are located on one operon. The gene encoding the corrinoid protein of 

the vanillate-O-demethylase (odmA) was cloned, sequenced and expressed in E. coli. 

Sequence analyses revealed the presence of the conserved vitamin B12 binding motif 

[DXHXXG-41-SXL-(26/28)-GG] in the gene product of CPvan (OdmA) (Kaufmann et al., 

1998b). The OdmA sequence shows high similarity to that of the cobalamin-binding region of 

the cobalamin-dependent methionine synthase of E. coli (Banerjee et al., 1989), to the 

corrinoid protein of the monomethylamine:coenzyme M methyltransferase of Methanosarcina 

barkeri (Burke et al., 1998) and to the corrinoid-binding subunit of the methanol:coenzyme M 

methyltransferase of the same methanogen (Sauer & Thauer, 1997). The prosthetic group of 

the corrinoid protein of A. dehalogenans is apparently base- or his-on as in the 

methanol:coenzyme M methyltransferase of M. barkeri (Sauer & Thauer, 1999). Recombinant 

CPvan was produced in E. coli as cofactor-free protein. The reconstitution with 

hydroxocobalamin recovered its function as methyl group acceptor. 

The methyltransferase II was found as dimeric protein with an apparent molecular mass of 30 

kDa for the monomer. It does not contain any prosthetic group that was detectable by UV/Vis 

spectroscopy. MT II catalyzes the tetrahydrofolate-dependent demethylation reaction of the 

methylated corrinoid protein. MT II has the similar function as MtvA and the 

methylcobalamin dependent methyltransferase (AcsE) of M. thermoacetica (Doukov et al., 
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2000; Naidu & Ragsdale, 2001). The N-terminal sequence of MT II exhibits a high similarity 

to tetrahydrofolate:corrinoid protein methyltransferases of M. thermoacetica and S. ovata 

(Kaufmann et al., 1998a) indicating the functional relationship between these proteins. 

The fourth component of the O-demethylase system, AE, was purified as homotrimeric 

protein with an apparent molecular mass of 67 kDa for a single subunit. The function of the 

protein was described as “reductive activator for corrinoid enzymes” (RACE) which 

reactivates and reduces CP-bound cob(II)alamin to cob(I)alamin in an ATP dependent 

reaction (Schilhabel et al., 2009). Enzymes with a similar function are the reductive activator 

(RamA) of the methylamine:CoM methyltransferase of the methanogenic archaeon M. barkeri 

(Ferguson et al., 2009) and an ATP-dependent reductive activator (RACo) of the 

corrinoid/iron-sulfur protein of Carboxydothermus hydrogenoformans (Hennig et al., 2012; 

Meister et al., 2012). AE was heterologously produced in E. coli. Sequence analyses showed 

that this enzyme is a member of the COG3894 protein family which seems to be involved in 

the protein-bound corrinoid activation and reduction (Schilhabel et al., 2009). Structural 

analyses revealed that the RACE proteins belong to the ASKHA-type (acetate and sugar 

kinases, Hsp70, and actin) ATPases (Hennig et al., 2012). The gene product of AE (OdmC) 

exhibits 30% identity to a gene encoding an AE-like protein in M. thermoacetica, however, it 

shows very low sequence identities to other members of the ASKHA family (Schilhabel et al., 

2009; Hennig et al., 2012). OdmC contains one [2Fe-2S] cluster binding motif (C-X5-C-X2-

C-Xn-C) at the N-terminus. A similar observation was reported for RACo of C. 

hydrogenoformans. Recombinant AE of A. dehalogenans was isolated by affinity 

chromatography and was reconstituted to its active form by incubation with iron and sulfur. 

The reconstituted protein exhibited the presence of a [2Fe-2S] cluster in the UV/Vis spectrum. 

Iron sulfur cluster containing activators were also found in methanogenic archaea, however, 

the latter enzymes harbor two [4Fe-4S] cluster binding motifs close to the C-terminus 

(Ferguson et al., 2009). Until now, only a single AE was purified from A. dehalogenans. 

 

1.1.3. Reactions mediated by O-demethylase components 

The O-demethylase reaction of A. dehalogenans is illustrated in Figure 1.2. As mentioned 

above, the four components of the vanillate-O-demethylase of A. dehalogenans mediate the 
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methyl group transfer of a phenyl methyl ether to FH4. The MTs I and II are members of the 

corrinoid dependent methyltransferases which can be found in methanogenic archaea, 

anaerobic bacteria, and in humans and other mammals (Matthews et al., 2008). The 

mammalian methyltransferases seem to be the only corrinoid dependent methyltransferases 

known in Eukarya. In Archaea and Prokarya, these enzyme systems play essential roles in 

metabolism, particularly in anaerobic microorganisms which use a wide range of methyl 

substrates (methanol, methylamines, methyl thiols and phenyl methyl ethers) (Banerjee & 

Ragsdale, 2003). 

The methyl group of the phenyl methyl ether is transferred to the cobalt of the corrinoid 

cofactor to form the organometallic methyl-cob(III)alamin intermediate by MT I. The key 

step of O-demethylation and also N-demethylation is to activate the methyl groups of the 

substrates since the methyl bond strength such as C-O or C-N is quite large. Therefore, the 

powerful nucleophile cob(I)alamin is required (Schrauzer & Deutsch, 1969). Studies on the 

crystal structure of the CH3-FH4 dependent methyltransferase (MeTr) from M. thermoacetica 

(Doukov et al., 2000), the CH3-FH4 binding domain of the cobalamin-dependent methionine 

synthase of E. coli (Evans et al., 2004), and the methanol-cobalamin methyltransferase 

complex of M. barkeri (Hagemeier et al., 2006) revealed a similar mechanism of methyl 

group activation. These enzymes seem to activate the methyl moiety by donating a positive 

charge to the heteroatom (O, N, or S) attached to the methyl group. The enzymes bind the 

methyl substituent within an α/ß TIM barrel structure. The presence of zinc in MT I also plays 

a role in catalyzing the methyl transfer reaction (Matthews & Goulding, 1997). Recently, the 

crystal structures of the corrinoid iron sulfur protein/methyltransferase (CFeSP/MeTr) 

complex in the presence and absence of the methyl donor, CH3-FH4, have been solved (Kung 

et al., 2012). Studies on this complex unveiled the mechanism of the methyl transfer. Before 

methyl group binding occurs, cobalamin (B12) is capped in the small subunit of CFeSP 

designated as the resting state. Upon the presence of substrate, the B12 domain becomes 

loosened and moves toward the access site. Binding of CH3-FH4 to the MeTr shifts the 

conformational equilibrium of the B12 domain in such a way that CH3-FH4 is accessible to the 

B12 and the nucleophilic attack. After methyl transfer, B12 returns to its resting state (Kung et 

al., 2012). Like the methyl transfer of methylamines in M. barkeri, the methylation of 

cob(I)alamin in A. dehalogenans was found to be irreversible (Kaufmann et al., 1998b), 

whereas the methyl transfer of methanol in M. barkeri and of CH3-FH4 in the cobalamin-
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dependent methionine synthase of E. coli are reversible (Matthews, 2001). In A. 

dehalogenans, the methyl group of the methylated corrinoid protein is transferred to 

tetrahydrofolate by MT II. Unlike the methyltransferase II of H. foetida, the MT II of A. 

dehalogenans cannot catalyze the demethylation of free methylcobalamin (Kreft & Schink, 

1994; Liesack et al., 1994; Kaufmann et al., 1998a). The reaction was also found to be 

irreversible (Kaufmann et al., 1998a). 

The interaction between components of the methyltransferases is necessary for the methyl 

transfer reaction. In C. hydrogenoformans, the methyl group transfer from CH3-FH4 to acetyl-

CoA synthase (ACS) by the cobalamin-dependent methyltransferase system CFeSP/MeTr is 

believed to depend on the conformational change of the corrinoid protein CFeSP 

(Svetlitchnaia et al., 2006). The C-terminal domain of the large subunit of CFeSP is flexible 

and allows the interaction between the acetyl-CoA synthase and the methylcobalamin cofactor 

to facilitate the methyl transfer. In M. barkeri, the formation of a complex composed of three 

components (MtaABC) seems to be essential for the methyl transfer by the methanol-

cobalamin dependent methyltransferase (Hagemeier et al., 2006). The cobalamin-dependent 

methionine synthase (MetH) of E. coli catalyzes the reaction of transferring the methyl group 

from CH3-FH4 to L-homocysteine to form methionine. Four modules of the enzyme show 

functional interactions which are essential for the catalytic reaction. The N-terminal module 

binds and activates methyltetrahydrofolate and presents it to the cobalamin which is bound to 

the corrinoid binding module. The methyl acceptor module binds homocysteine and presents 

it to methylcobalamin for methyl transfer. The C-terminal module binds S-

adenosylmethionine (AdoMet) for reductive activation/methylation of the protein (Matthews, 

2009). 

Three redox states are known for the corrinoid cofactor. The super-reduced cob(I)alamin acts 

as a methyl acceptor, methyl-cob(III)alamin acts as a methyl donor and the inactive form in 

methyl transfer reactions is cob(II)alamin. During the O-demethylase reaction, the cobalt 

center cycles between the Cob(I) and methylated Cob(III) states. The standard midpoint redox 

potential of the Cob(II)/Cob(I) couple is usually very low which depends on the corrinoid 

type and environment. In A. dehalogenans, the midpoint potential of Cob(II)/Cob(I) was 

estimated to be lower than -550 mV. Therefore, it is very likely that the Cob(I) occasionally 

undergo inadvertent oxidative inactivation to Cob(II) during the catalytic cycles. Reentry into 

the cycle requires the reductive activation by a low potential electron donor. In methionine 
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synthase of human, the reduction is achieved by methionine synthase reductase, a protein with 

homology to flavodoxin oxidoreductase (Leclerc et al., 1998). In E. coli, the enzyme requires 

flavodoxin as electron donor (Bandarian & Matthews, 2004); after reduction the corrinoid is 

methylated by AdoMet which prevents the re-oxidation. In the CH3-FH4/CFeSP 

methyltransferase systems of M. thermoacetica, the reactivation occurs by the transfer of one 

electron from the [4Fe-4S] cluster to the Co center of CFeSP (Menon & Ragsdale, 1998). In 

A. dehalogenans and some other anaerobes, the reductive activation was shown to require an 

activator. For A. dehalogenans it was shown that in the presence of ATP, the activating 

enzyme shifts the redox potential of the cob(II)/cob(I)alamin couple in CP from <-550 mV to 

about -300 mV, which facitlitates reduction of the corrinoid cofactor (Siebert et al., 2005). In 

methanol and methylamine methyltransferase systems of methanogens, the methyltransferase 

activation protein (MAP) was shown to be involved in the ATP dependent reductive 

activation of the Cob(II) species (Daas et al., 1996a; Daas et al., 1996b). However, no 

prosthetic group was detected in MAP by UV/Vis spectroscopy. The RACE systems which 

are represented by AE of A. dehalogenans, RamA of M. barkeri, and RACo of C. 

hydrogenoformans, catalyze the reduction of the Cob(II) to the Cob(I) state in an ATP 

dependent reaction. All these enzymes contain [Fe-S] clusters. In vitro, AE of A. 

dehalogenans reduces cob(II)- to cob(I)alamin of CP in the presence of ATP under anoxic 

conditions. Titanium(III)citrate serves as artificial electron donor. The physiological electron 

donor is unknown so far. 

  

1.2. Aims of the study 

Although recent studies have unveiled a part of the mechanisms of the O-demethylase 

reactions, still a number of questions remained open. One of these questions is how AE can 

shift the very low redox potential of Cob(II)/Cob(I) couple ( -550 mV). The midpoint 

potential of the [2Fe-2S]
2+/1+

 redox couple of AE (-330 mV) is more positive than that of the 

cob(II)/cob(I)alamin couple, which makes the electron transfer to the non-activated CP 

thermodynamically unfavorable ((Siebert et al., 2005; Schilhabel et al., 2009). It is feasible 

that the hydrolysis of ATP provides the energy for a conformational change of the corrinoid 

protein bound to AE in such a way that the redox potential of the cob(II)/cob(I)alamin couple 

is shifted to a more positive value (Kaufmann et al., 1997). It is assumed that the electrons for 
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the corrinoid reduction are supplied by the Fe-S cluster of AE. The physiological electron 

donor for the reduction of AE is not yet known. A preliminary study indicated that O-

demethylation is mediated by crude extracts of A. dehalogenans in the presence of ATP, 

hydrogen, hydrogenase, and methyl viologen instead of Ti(III)citrate (Kaufmann et al., 

1998a). Methyl viologen could be replaced by enriched ferredoxin (the redox potential is 

usually between -350 and -550 mV) of A. dehalogenans.  

Since a protein’s role is reflected in its interactions with others, much of the function can be 

predicted from identifying its interacting partners. Interaction between proteins may result in a 

change of the kinetic properties of enzymes, in signaling for a start of a reaction, in allowing 

for substrate channeling, or in creating a new binding site (Phizicky & Fields, 1995; Berggard 

et al., 2007). Hence, studies on the interaction between the O-demethylase components may 

provide insight into the structural properties and the reaction mechanism of these enzymes 

such as the native form of proteins (monomer of multimer), the stoichiometry of two 

interacting partners, the binding affinity of proteins, the conformation of proteins, and 

interaction sites or domains. As mentioned above, protein interaction between 

methyltransferase and corrinoid protein was studied so far in methanogenic archaea, where 

the corrinoid protein appears to be a subunit of the methyltransferase rather than a separate 

protein. There is, however, little information about the interaction of these components in O-

demethylase systems of acetogens such as A. dehalogenans, where the corrinoid protein is a 

distinct and separate protein. Recently, the interaction between AE and CP of A. 

dehalogenans was shown by gel shift experiments. The interaction appears to require the 

presence of the corrinoid cofactor (Schilhabel et al., 2009). However, further experiments are 

required to confirm this observation. 

The aims of the study are: 

- To study the interactions between the O-demethylase components to gain more 

information on the reaction mechanism of the enzyme system. 

- To search for the physiological electron donors for the ATP dependent reductive 

activation of corrinoid proteins catalyzed by the activating enzyme.  
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2. Materials and Methods 

All chemicals and reagents used in the experiments, if not stated otherwise, were of the 

highest available purity and were purchased from Aldrich (Steinheim, Germany), AppliChem 

GmbH (Darmstadt, Germany), Fluka (Neu-Ulm, Germany), Merck (Darmstadt, Germany), 

Sigma (Deisenhofen, Germany), and VWR (Darmstadt, Germany).  

 

2.1. Cultivation of microorganisms 

2.1.1. Cultivation of Acetobacterium dehalogenans 

A. dehalogenans was cultivated anaerobically on the substrates fructose, syringate or vanillate 

as described earlier (Traunecker et al., 1991). One liter of basal medium contained 0.1% (w/v) 

NH4Cl, 3 ml 1 M potassium phosphate buffer, pH 7.5, 40 ml 0.5 M sodium phosphate buffer, 

pH 7.25, 0.01% (w/v) MgSO4 and 0.0005 % (w/v) resazurin, 1 ml vitamin solution, 2 ml trace 

element solution (Table 2.1), and 0.2% (w/v) yeast extract. The anaerobisation of the medium 

was achieved by repeated degassing and flushing with nitrogen for at least 25 cycles (3 min 

each). The nitrogen and carbon dioxide were then added to the gas phase of the medium at a 

ratio of 25% N2/ 75% CO2 and 0.5 bar. After autoclaving, 10 ml 5% (w/v) cysteine-HCl and 

25 ml 10% (w/v) potassium carbonate were added to one liter of the medium. To cultivate the 

bacteria, 20 mM (final concentration) of the substrate (fructose, syringate, or vanillate) was 

added to the autoclaved medium. 10 to 15 % of the final volume of the culture was used for 

inoculation. The culture was allowed to grow anaerobically at 28 °C on a shaker at 120 rpm 

for 3 days. 

2.1.2. Cultivation of Escherichia coli 

E. coli was cultivated in Luria-Bertani broth (LB) medium. Appropriate antibiotic(s) with the 

plasmid used in the E. coli strain was added to the culture before inoculation with the 

preculture. A defined amount of IPTG was added when an optical density of 0.6 was reached. 
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Table 2.1. Trace element solution and vitamin solution of A. dehalogenans. 

Trace element solution  

(500fold) 

Vitamin solution 

(1,000fold) 

Nitrilotriacetic acid 5 g/l Biotin 2 mg/l 

0.5 M NaOH 100 ml/l Folic acid 2 mg/l 

MgSO4 x 7 H2O 62 g/l Pyridoxal-HCl 10 mg/l 

MnSO4 x H2O 5 g/l Thiamine-HCl 5 mg/l 

NaCl 10 g/l Riboflavin 5 mg/l 

FeSO4 x 7 H2O 1 g/l Nicotinic acid 5 mg/l 

CoCl2 x 6 H2O 1.7 g/l Calcium pantothenate 5 mg/l 

CaCl2 x 2 H2O 1.3 g/l Vitamin B12 2 mg/l 

CuSO4 x 5 H2O 0.5 g/l 4-Aminobenzoic acid 5 mg/l 

ZnSO4 x 7 H2O 1.8 g/l Lipoic acid 5 mg/l 

AlCl3 x 3 H2O 0.1 g/l   

Na2MoO4 x 2 H2O 0.11 g/l   

NiCl2 0.2 g/l   

Na2SeO3 x 5 H2O 21 mg/l   

 

2.1.3. Cell harvest and storage 

The cells were harvested under aerobic conditions in the late exponential growth phase by 

centrifugation at 10,000 xg and 10 °C for 10 min. Cell pellets were resuspended in 50 mM 

Tris HCl pH 7.5 and were stored at -20 °C until use. 

 

2.2. Molecular biology methods 

2.2.1. DNA agarose gel electrophoresis 

The gel was prepared by heating 0.7% (w/v) agarose in TAE buffer (40 mM Tris, 20 mM 

acetic acid, 1 mM EDTA) in a microwave oven for 5 min. 0.5 µg/ml ethidiumbromide was 

added to the melted agarose solution and the mixture was poured directly into a Mini 

Sub®Cell GT gel casting tray (Biorad, Munich, Germany). The gel was cooled down and 

solidified at room temperature for 30 min. Samples were mixed with the 6x DNA loading dye 

(Fermentas, St. Leon-Rot, Germany) with a ratio of five volumes of sample to one volume of 

buffer. After loading the samples to the wells of the agarose gel, the lid and power leads were 
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placed on the apparatus, and the electrophoresis was started with a voltage of 90 V for one 

hour. The DNA fragments were visualized by using the Gel Doc 2000 (Bio-Rad Laboratories 

GmbH, Munich, Germany).  

2.2.2. Amplification of A. dehalogenans genes 

The PCR was performed in the Primus Thermal Cycler (MWG Biotech, Ebersberg, Germany) 

according to Mullis (1994). Amplification of DNA fragments from the genomic DNA of A. 

dehalogenans as template was achieved by adding 100 ng DNA template, 25 pmol of each 

primer, 0.2 mM dNTPs, 1.5 mM MgCl2, 10 mM Tris HCl pH 8.0, 50 mM KCl, and 2.5 units 

of Taq-polymerase in a final volume of 25 µl. The mixture was initially denatured for 2 min at 

95 °C and was subjected to 35 cycles of denaturation (95 °C, 2 min), annealing (55 °C, 45 s), 

and elongation (72 °C, 2 min). The PCR product was applied onto an agarose gel for 

analyzing the efficiency of PCR.  

2.2.3. Ligation 

The PCR product was extracted from the gel using a gel DNA recovery kit (Zymoclean, 

Epigenetics, USA). The isolated DNA fragments were mixed with a molar ratio of insert to 

vector of 10:1. The mixture was preincubated at 45 °C for 5 min and was put on ice. The final 

reaction volume was adjusted to 20 µl. The reaction started with the addition of T4-ligase. 

The mixture was incubated at 22 °C for 1 hour. The ligation reaction was stopped by 

incubating at 65 °C for 15 min. 

2.2.4. Preparation of chemically competent E. coli cells 

A stock culture of an isolated colony of E. coli strain (either XL1-blue or BL21(DE3)) was 

inoculated into 5 ml LB medium for making competent cells. The culture was grown 

overnight at 28 °C. 10% of the final volume of the culture were used for inoculation to 100 ml 

SOB medium (2% (w/v) tryptone, 0.5% (w/v) yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 

mM MgCl2, 10 mM MgSO4). The culture was then cultivated at 28 °C until the OD578 nm 

reached 0.6. It was then incubated on ice for 10 min and centrifuged at 4 °C and 2,500 xg for 

10 min. The supernatant was removed and 40 ml of TB buffer (10 mM HEPES, 15 mM 

CaCl2, 250 mM KCl, 55 mM MnCl2, pH 6.7) were added to resuspend the cells. After 10 min 

incubation on ice, the cells were centrifuged again using the same conditions. The cells were 
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resuspended in 10 ml of TB buffer followed by the drop-wise addition of 0.75 ml DMSO. The 

cell suspension was incubated for 10 min on ice before transferring 250 µl to 1.5 ml tubes that 

were then stored at -80 °C. 

2.2.5. Transformation of E. coli 

For transformation of E. coli, 5 µl of vector was mixed with 250 µl of competent cells of E. 

coli in a 1.5 ml tube and was incubated on ice for 30 min. The mixture was then placed in a 

heat block for 45 seconds at 42 °C and immediately cooled down on ice. 750 µl of LB 

medium was added to the tube. The culture was grown for one hour at 37 °C on a mixing 

block (Biozym Scientific, Oldendorf, Germany) at 1,000 rpm. The cells were spread on a LB-

agar plate containing the antibiotic and were incubated at 37 °C for 18 - 24h.  

2.2.6. Isolation of plasmid DNA 

Isolation of the plasmid DNA was achieved by either using GeneJet plasmid miniprep kit 

(Fermentas, St. Leon-Rot, Germany) or by the method according to Birnboim & Doly (1979). 

The cells containing the plasmid were cultivated and harvested as described above. The cell 

pellets were resuspended in a 1.5 ml tube containing 300 µl 25 mM Tris, 10 mM EDTA 

solution. Afterward, 300 µl of 0.2 M NaOH, 1% (w/v) SDS was added to the cell suspension. 

After inverting for 3-4 times, 300 µl of 3 M sodium acetate pH 5.2 was added and the sample 

was mixed thoroughly. The sample was incubated on ice for 10 min and was centrifuged at 

top speed for 10 min. The supernatant was transferred to a new tube and 750 µl of isopropyl 

alcohol was added and mixed thoroughly. The sample was again incubated on ice for 10 min 

and centrifuged for 20 min. The supernatant was discarded. 500 µl of 70% (v/v) ethanol was 

used to wash the plasmid DNA. The ethanol was then removed by centrifugation and the 

plasmid was dried at 50 °C for 20 min. 50 µl of sterile water containing 0.01% (w/v) RNase 

was used for resuspending the sample. 

 

2.3. Cloning and expression of putative ferredoxin genes 

Isolation of genomic DNA from A. dehalogenans was performed as described previously 

(Schilhabel et al., 2009). Via PCR, A3KS_00044 was initially amplified from the genomic 

DNA of A. dehalogenans by using primer probes Awo_c25230_Fw and Awo_c25230_Rv1 
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which are degenerated oligonucleotides derived from the Awo_c23230 gene of 

Acetobacterium woodii. After successfully amplifying the DNA fragment, a set of specific 

primers was designed using the genomic DNA from A. dehalogenans as template. A DNA 

fragment containing A3KS_00044 was amplified (primers Amp_A3KS_00044_Fw and 

Amp_A3KS_00044_Rv). The amplified fragment was subsequently used as a template for the 

second PCR using primers A3KS_00044_NdeI_Fw and A3KS_00044_Strep_Rv introducing 

NdeI and a part of the Strep-tag sequence. The third PCR was performed to complete the 

Strep-tag sequence (IBA, Goettingen, Germany) and insert the restriction site BamHI at the 3' 

end of A3KS_00044 by using primers A3KS_00044_NdeI_Fw and Strep_BamHI_Rv (Table 

2.2). 

The DNA fragment containing A3KS_02576 was amplified by PCR using primers Amp_ 

A3KS_02576_Fw and Amp_ A3KS_02576_Rv. The amplified fragment was used as a 

template for secondary PCR using primers A3KS_02576_NdeI_Fw and 

A3KS_02576_Strep_Rv introducing NdeI and a part of the Strep-tag sequence. The third PCR 

was performed to complete the Strep-tag sequence (IBA, Goettingen, Germany) and insert the 

restriction site BamHI at the 3' end of A3KS_02576 by using primers A3KS_02576_NdeI_Fw 

and Strep_BamHI_Rv. List of the primers used for cloning of A3KS_00044 was shown in 

Table 2.2. 

Table 2.2. Oligonucleotides used for the amplification of the genes encoding the two putative 

ferredoxins. 

Primer Sequence  PCR Step 
 

Awo_c25230_Fw GCATAATGAAAAAA(G)TTA(G)GTTGTC(T)  

Awo_c25230_Rv1 ATCTTAAGATTCTTTAATTGC  

Amp_A3KS_00044_Fw TACCCATCGCTGAAGTAGTTGC 1
st
 

Amp_A3KS_00044_Rv CAGTAGGAAGCTCATAATCAGCGTAG 1
st
 

A3KS_00044_NdeI_Fw CGCGTTCATATGATGAAAAAAGTAGTCG 2
nd

 

A3KS_00044_Strep_Rv CTGCGGGTGGCTCCAAGCGCTGGATTCTTTAAT 2
nd

 

A3KS_00044_NdeI_Fw CGCGTTCATATGATGAAAAAAGTAGTCG 3
rd

 

Strep_BamHI_Rv CAGCCGGATCCTTATTTTTCGAACTGCGGGTGGC 3
rd

 

Amp_ A3KS_02576_Fw TGCGGTCGAACGACC 1
st
 

Amp_ A3KS_02576_Rv GAGCTAAAGCTCTTTTTTGGC 1
st
 

A3KS_02576_NdeI_Fw CGCGTTCATATGGCTTATAAAA 2
nd

 

A3KS_02576_Strep_Rv CTGCGGGTGGCTCCAAGCGCTGTCCTGAAC 2
nd

 

Amp_ A3KS_02576_Fw TGCGGTCGAACGACC 3
rd

 

Strep_BamHI_Rv CAGCCGGATCCTTATTTTTCGAACTGCGGGTGGC 3
rd
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The amplified A3KS_00044 fragment was digested with NdeI and BamHI and was ligated into 

pET11a (Stratagene, Heidelberg, Germany), yielding pET11a_A3KS_00044. The 

A3KS_02576 fragment was digested with NdeI and BamHI and ligated into pET11a, 

generating pET11a_A3KS_02576. The resulting plasmids were transformed into E. coli XL1-

blue and were grown in the LB medium containing 100 µg/ml ampicillin. The plasmids were 

isolated from the cell extracts and the sequences were verified by DNA sequence analyses. 

The pET11a_A3KS_00044 and pET11a_A3KS_02576 were aerobically expressed in E. coli 

BL21(DE3) (Stratagene, Heidelberg, Germany) after induction with 0.5 mM and 0.25 mM 

IPTG, respectively. At OD578 of 1.5 (after overnight induction), cells were collected by 

centrifugation for 10 min at 10,000 xg. 

 

2.4. Polyacrylamide gel electrophoresis 

2.4.1. SDS-PAGE 

Separation of denatured proteins can be achieved by SDS-PAGE (Laemmli, 1970). The 

electrophoresis was performed on the Mini Gel Twin apparatus (Biometra, Goettingen, 

Germany). The mixture of the resolving gel contained 410 mM Tris-HCl pH 8.8, 0.1% (w/v) 

SDS, 12-15% (v/v) acrylamide (Rotiphorese® Gel 30; Roth, Karlsruhe), 0.1% (w/v) APS, and 

0.04% (w/v) TEMED. The resolving gel should polymerize in 30 min. After the 

polymerization process was finished, the stacking gel was prepared on top of the resolving 

gel. The mixture of the stacking gel contained 58 mM Tris-HCl pH 6.8, 0.05% (w/v) SDS, 5% 

(v/v) acrylamide (Rotiphorese® Gel 30), 0.1% (w/v) APS and 0.1% (w/v) TEMED. The 

comb was inserted and the mixture was polymerized for 20-30 min. Samples were prepared 

by mixing one to one with the loading buffer (125 mM Tris-HCl pH 6.8, 4% (w/v) SDS, 20% 

(v/v) glycerol, 10% (v/v) mercaptoethanol and 0.01% (w/v) bromophenol blue) and heating at 

95 °C for 5 min. The samples were loaded into the wells of the stacking gel. The running 

buffer containing 25 mM Tris, 100 mM glycerol and 0.1% (w/v) SDS was filled in the upper 

and lower reservoir of the apparatus. The electrophoresis was started with a current of 13 mA 

and increased to 25 mA when the samples entered the stacking gel. The electrophoresis was 

continued until the blue dye reached the bottom of the gel. The gel was then fixed with the 

fixing solution containing 25% (v/v) isopropyl alcohol and 10% (v/v) acetic acid for 15 min 
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and stained with staining solution (0.025% (w/v) Coomassie Brilliant Blue G250 in 10% (v/v) 

acetic acid) for 20-30 min. The background was destained by incubating the gel in 10% (v/v) 

acetic acid on a shaker until the background color was washed out. 

2.4.2. Tricine SDS PAGE 

Tricine SDS PAGE was performed according to Schägger (2006). Samples were run on a 4% 

stacking gel and 12% resolving gel. The resolving gel was composed of 1 M Tris HCl pH 8.4, 

0.1% (w/v) SDS, 0.4% (w/v) APS, 0.04% (w/v) TEMED. The stacking gel contained 0.75 M 

Tris HCl pH 8.4, 0.075% (w/v) SDS, 0.125% (w/v) APS, 0.0125% (w/v) TEMED. The upper 

reservoir of the apparatus was filled up with the cathode buffer containing 0.1 M Tris tricine, 

0.1% (w/v) SDS, pH 8.25. The lower reservoir was filled up with the anode buffer (0.1 M Tris 

HCl pH 8.9). A voltage of 30 V was applied to the system and gradually increased (10 V in 

every 20 min) up to 100 V during the electrophoresis. The gel was stained with Coomassie 

Brilliant Blue and destained as described above. 

2.4.3. Gel shift experiment 

The experiment was performed with anoxic buffers under the room conditions. Two 

recombinant proteins of interest were incubated in different ratios (30 pmol:10 pmol, 10 

pmol:10 pmol, 10 pmol:30 pmol) for two hours at 4 °C under anoxic conditions. The mixtures 

were then mixed one to one with non-denaturing loading buffer (125 mM Tris-HCl pH 6.8, 

20% (v/v) glycerol, 10% (v/v) mercaptoethanol and 0.01% (w/v) bromophenol blue) and were 

applied to a native polyacrylamide gel. The samples were run on a stacking gel composed of 

58 mM Tris-HCl pH 6.8, 5% acrylamide, 0.1% (w/v) APS and 0.1% (w/v) TEMED and a 

resolving gel containing 410 mM Tris-HCl pH 8.8, 8.5% acrylamide, 0.1% (w/v) APS, and 

0.04% (w/v) TEMED. The running buffer was 25 mM Tris, 100 mM glycerol. The separated 

bands were visualized by silver stain (Switzer et al., 1979). After the electrophoresis was 

finished, the gel was incubated in the fixing solution. The gel was washed twice with water 

and was then incubated with 0.005% (w/v) sodium thiosulfate for 15 min. The gel was 

incubated with 0.1% (w/v) silver nitrate for 15-30 min. After washing with water for few 

seconds, the gel was developed in 0.036% (v/v) formaldehyde, 2% (w/v) sodium carbonate 

for 1 - 2 min. The reaction was stopped by incubating the gel in 50 mM EDTA for 15-60 min. 
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For the mixtures that contained methylcobalamin, all manipulation steps were performed in 

the dark. 

 

2.5. Purification of recombinant AE , CP, MT I and MT II 

The proteins were produced in E. coli according to Schilhabel et al. (2009). The plasmids 

used are summarized in Table 2.3. The cells were disrupted by French Press procedure. The 

recombinant proteins except for MT I were purified by pH shift using a 1ml HiTrap 

Streptavidin HP column (GE Healthcare, Freiburg, Germany). The column was pre-

equilibrated with ten bed volumes of washing buffer (67 mM sodium phosphate buffer pH 8.5 

containing 150 mM NaCl and 1 mM PMSF). One ml of cell extract was loaded to the column 

by using a syringe. Purification of the recombinant proteins was carried out according to 

manufacturer’s protocol. Twenty column volumes of washing buffer were passed through the 

column before eluting with 67 mM sodium phosphate buffer pH 5.0 containing 150 mM NaCl 

and 1 mM PMSF. The column could be reused after equilibrating with ten column volumes of 

the washing buffer. 

Table 2.3. Plasmids used for production of O-demethylase components. 

Plasmid Relevant characteristics Source 
   

pAEvanStrep  Gene of AE odmC in pASK IBA3+ Schilhabel et al. (2009) 

pCPguaStrep Gene of CPgua gdmA in pET11a Frenkel (2010) 

pCPsyrStrep Gene of CPsyr sdmA in pET11a Lange (2009) 

pCPvanStrep Gene of CPvan odmA in pET11a Schilhabel et al. (2009) 

pCPverStrep Gene of CPver vdmA in pET11a Schilhabel et al. (2009) 

pMTIvanStrep Gene of MT I odmB in pET11a Schilhabel et al. (2009) 

pMTIIvanStrep Gene of MT II odmD in pET11a Schilhabel et al. (2009) 

 

Purification of MT I was achieved by applying the MT I-cell extract on a pre-equilibrated 1 

ml Strep-Tactin Superflow affinity column. Unbound protein was washed out with twenty 

column volumes of the buffer and MT I protein was then eluted with 2 mM desthiobiotin in 

the washing buffer. To regenerate the column desthiobiotin was displaced by 1 mM of HABA 

in the washing buffer. After removal of HABA by ten column volumes of washing buffer, the 

column could be re-used. The purified proteins were enriched using a Vivaspin 10 kDa 
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MWCO concentrator (Vivascience AG, Hannover, Germany) by centrifugation at 6,000 xg 

and at 4 °C for 30 min. An appropriate volume of cOmplete EDTA-free Protease Inhibitor 

Cocktail solution (Roche Diagnostics, Mannheim, Germany) was added to the purified 

proteins. All isolated proteins were stored at 10 °C until use. Protein determination was 

performed by using the Bradford method (Bradford, 1976) with BSA as a standard protein. 

 

2.6. Isolation and reconstitution of recombinant corrinoid proteins by FPLC 

Recombinant corrinoid proteins (CPgua, CPsyr, CPvan, CPver) were produced as Strep-tag fusion 

in E. coli. The cells were harvested by the procedure described above. Cell pellets was 

resuspended in 3 volumes (w/v) of 50 mM Tris HCl pH 7.5 and were disrupted with French 

Press (2,000 kPa). The cell extracts were ultra-centrifuged at 133,000 xg (36,000 rpm) and 10 

°C for 45 min. The supernatants were diluted by the addition of an equal volume of 50 mM 

Tris HCl pH 7.5 anoxic buffer containing 0.5 mM dithiothreitol (DTT) (buffer A) and 1 mM 

PMSF before applying to the ÄKTA FPLC system (GE Healthcare, Freiburg, Germany). All 

chromatographic steps were carried out in an anoxic chamber with N2/H2 (95%/5%) as gas 

phase. The isolation procedure was identical for all four different CPs. The crude extracts 

were separately applied onto a Q-Sepharose HP column (1 x 10 cm) pre-equilibrated with 

buffer A. Components were eluted from the column with an increasing gradient from 0 to 

0.25 M KCl in buffer A (5 column volumes), then from 0.25 to 1 M KCl in buffer A (5 

column volumes). The column was washed with 3 column volumes of 1 M KCl in buffer A. 

The CP containing fractions were eluted between approximately 0.25 - 0.3 M KCl. The 

fractions were combined and 3.6 M ammonium sulfate in buffer A was added to the pool to 

adjust to a final concentration of 1.2 M ammonium sulfate. After filtration, the solution was 

loaded onto a phenyl superose HR column (1 x 10 cm) pre-equilibrated with 1.2 M 

ammonium sulfate in buffer A. The samples were eluted with a decreasing gradient from 1.2 

to 0 M of ammonium sulfate in buffer A. The CP containing fractions were collected and 

evaluated by SDS-PAGE. One cOmplete EDTA-free protease inhibitor cocktail tablet and 25 

mM DTT were added to the pooled fractions (from approximately 0.2 to 0.3 M (NH4)2SO4). 

Protein determination was carried out by using the Bradford method as described above. 
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Reconstitution of proteins was performed under strictly anoxic conditions. 6 M betaine was 

step-wise added to the pool of each apo-protein. The mixtures were stirred until the compound 

was completely dissolved. A five-fold molar excess of hydroxocobalamin or methylcobalamin 

(in case of CPvan) was added and dissolved. The solutions were incubated for at least 48 h at 

10 °C. The mixtures were then diluted 1:60 by drop-wise addition of buffer A with 1 mM 

PMSF at 4 °C. If methylcobalamin was used for reconstitution, the samples were protected 

from light during all manipulations. The samples were then filtrated and oxygen was removed 

by repeated degassing and flushing with N2 before applying to the MonoQ HR (1 x 10 cm) 

column pre-equilibrated with buffer A. The samples were eluted with an increasing gradient 

from 0 - 0.4 M KCl in buffer A (5 column volumes), then from 0.4 to 1 M KCl in buffer A 

(2.5 column volumes). The column was washed with 1 column volume of 1 M KCl in buffer 

A. The reconstituted corrinoid proteins were eluted at approximately 0.3 M KCl. Purity of 

proteins was determined by SDS-PAGE. The fractions containing purified proteins were used 

for the corrinoid reduction assay.  

 

2.7. Purification and reconstitution of putative ferredoxins 

The cells harboring putative ferredoxins Fd I and Fd II, which were encoded by A3KS_00044 

and A3KS_02576, respectively, were disrupted by French Press. Therefore, the cell sediment 

was suspended with an equal volume of 67 mM sodium phosphate buffer containing 150 mM 

NaCl, pH 8.8 (washing buffer) with 1 mg DNase and 1 mM phenylmethyl sulfonyl fluoride 

(PMSF). The cells were disrupted in a French pressure cell (G. Heinemann, Schwäbisch 

Gmünd, Germany) at 14 MPa. The cell extracts were centrifuged at 10,000 xg and 10 °C for 

10 min and then the cell debris was removed. The supernatants were mixed with an equal 

volume of washing buffer containing 1 mM PMSF and were ready for protein purification. 

For purification, the samples were diluted 1:1 (v/v) with the washing buffer and 2 ml were 

applied to a pre-equilibrated 1 ml Strep-Tactin Superflow affinity column (IBA, Goettingen, 

Germany). After washing with 20 column volumes of buffer, the putative ferredoxins were 

eluted with 2 mM desthiobiotin in the washing buffer. The column was regenerated with 1 

mM of HABA in the washing buffer before re-applying samples. The fractions which 

contained Fd I or Fd II were pooled and concentrated on a Vivaspin 3 kDa MWCO 
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concentrator (Vivascience AG, Hannover, Germany) by centrifugation at 6,000 xg to a final 

volume of about 1 ml. The purity of proteins was checked by SDS PAGE. 

Insertion of the Fe-S clusters into apo-Fd I and apo-Fd II was performed as follows. The 

pooled fractions of Fd I and Fd II were purged by nitrogen for 10 min at room temperature. 

DTT (2 mM) was added followed by addition of 5 fold molar excess (in respect to the 

theoretical values of iron in the proteins) of ammonium iron(III)citrate. After incubation on 

ice for 30 min, a 5 fold molar excess (in respect to the theoretical values of sulfur in the 

proteins) of lithium sulfide was added. The solution was incubated for 16 hours at 10 °C 

under anoxic conditions. The unbound iron and sulfide were removed by passing the sample 

through a 5 ml HiTrap Desalting column (GE Healthcare, Freiburg, Germany) pre-

equilibrated with 50 mM Tris HCl pH 7.5 containing 0.5 mM DTT. The pooled fractions with 

Fd I and Fd II were collected and used for determination of iron (Fish, 1988).  

 

2.8. Enzyme assays 

2.8.1. Corrinoid reduction assay 

The test was performed in anoxic rubber-stopper closed quartz cuvettes purged with nitrogen. 

Cob(II)alamin is converted to cob(I)alamin in the presence of activating enzyme, ATP and an 

artificial electron donor Ti(III)citrate and is quantified photometrically. An appropriate 

amount of a CP containing sample was added to the cuvette. 2 mM of ATP and 5 µl of 

Ti(III)citrate were subsequently added to the solution. The reaction started by adding 5 µl of 

AE crude extract. The reduction was recorded by the increasing absorption at 386 nm and 

decreasing absorption at 475 nm.  

2.8.2. Hydrogenase activity assay 

The hydrogenase activity was measured in crude extracts and fractions of A. dehalogenans in 

a photometric assay. The assay was carried out in an anoxic quartz cuvette with methyl 

viologen as artificial electron acceptor. 100 µl assay solutions contained 5 mM methyl 

viologen in 100 mM Tris HCl (pH 8.0) saturated with H2. Ti(III)citrate was added prior to the 

conduction of the assay until a slightly blue color of the buffer was observed. Absorbance 

increase was measured at 578 nm after addition of crude extract of A. dehalogenans. The 
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assay was monitored for 2 - 3 min at room temperature. Slopes were converted into activity 

using Beer's Law with an extinction coefficient of 9.7 mM
-1 

x cm
-1

. 1 mol MV reduced 

corresponds to 0.5 mol H2 oxidized. 

2.8.3. Formate dehydrogenase activity assay 

Formate dehydrogenase activity was measured using a methyl viologen-coupled colorimetric 

assay in an anoxic quartz cuvette. 100 µl assay solutions contained 5 mM methyl viologen in 

100 mM Tris HCl (pH 8.0) and 5 mM formate. Ti(III)citrate was added prior to the start of 

assay until a slightly blue color of the buffer was observed. Absorbance was measured at 578 

nm after addition of the crude extract of A. dehalogenans. The assay was monitored for 2 - 3 

min at room temperature. Slopes were converted into activity using Beer's Law with an 

extinction coefficient of 9.7 mM
-1 

x cm
-1

. 1 mol MV reduced corresponds to 0.5 mol formate 

oxidized. 

 

2.9. Dot far-Western blot 

For far-western blotting, one protein of the O-demethylase system was used as a prey and the 

other components were used as baits. Different amounts of prey proteins (30, 15, 5, and 1 

pmol) were spotted as dots on a PVDF membrane (Roche Diagnostics, Mannheim, Germany). 

The membranes were dried at room temperature. Prey protein-containing strips were 

incubated with the bait proteins (0.1 mg/ml) in PBST buffer (140 mM NaCl, 1 mM KCl, 6.4 

mM Na2HPO4, 2 mM KH2PO4 and 0.05% (v/v) Tween 20) overnight at 18 °C. The strips 

were then washed three times (10 min each) with PBST buffer. Bait proteins which bound to 

the prey proteins in case of protein-protein interaction were detected by incubating with bait-

protein-specific 1
st
 antibodies for at least 3 hours at room temperature. The primary antibodies 

were rabbit polyclonal antisera against AE, MT I or MT II and guinea pig polyclonal 

antiserum against CP (Sigma, Deisenhofen, Germany). Negative control for each interaction 

pair was the prey protein blotted on the membrane and incubated with specific antibodies 

against bait proteins without incubation with the bait proteins. After incubation with the 1st 

antibody, the membranes were washed again three times with PBST (10 min each) and were 

incubated with alkaline-phosphatase labeled secondary antibodies against either rabbit or 

guinea pig for one hour (Sigma, Deisenhofen, Germany). After washing, signals on the 
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membranes were visualized in the NBT/BCIP reaction. The strips were pre-equilibrated with 

the substrate buffer (100 mM Tris-HCl pH 9.5, 100 mM NaCl, 50 mM MgCl2) for 2 min. Ten 

ml buffer containing 0.34 mg NBT and 0.175 mg BCIP were subsequently applied to the 

membranes. Signals were allowed to develop for several minutes. The staining reaction was 

stopped by addition of 10 mM Tris-HCl pH 7.4 and 1 mM EDTA.  

 

2.10. Bacterial two-hybrid system 

2.10.1. Plasmid construction 

For the generation of the pKNT25, pKT25, pUT18 and pUT18C-derived plasmids 

(Euromedex, Souffelweyersheim, France), AE, CP, MT I, and MT II genes were amplified 

from A. dehalogenans genomic DNA by PCR as described above. A list of the primer pairs 

used is shown in Table 2.4.  

Table 2.4. Oligonucleotides for the amplification of the genes encoding the O-demethylase 

components used in the B2H system. 

Primer Sequence Vectors 
 

AE_Fw_HindIII ATCCAAGCTTGATGTCATCTTTGAATAC pKNT25, pUT18 

AE_Rv_BamHI GCATGGATCCTCTTTCATTTCATTTTG pKNT25, pUT18 

CP_Fw_HindIII ATCCAAGCTTGATGTCAAAAATTGAAG pKNT25, pUT18 

CP_Rv_BamHI GCATGGATCCTCCGCTGTTGCCAG pKNT25, pUT18 

MT1_Fw_HindIII ATTGAAGCTTGATGTTAACAAAAAGACAG pKNT25, pUT18 

MT1_Rv_BamHI GCATGGATCCTCGAACAATTTCTCTG pKNT25, pUT18 

MT2_Fw_HindIII ATCCAAGCTTGATGATTATTATCGGAG pKNT25, pUT18 

MT2_Rv_BamHI GCATGGATCCTCTTTCTTCTGACCG pKNT25, pUT18 

AE_Fw_BamHI ATCTGGATCCCATGTCATCTTTGAATAC pKT25, pUT18C 

AE_EcoRI_Rv GCATGAATTCTTATTTCATTTCATTTTGACC pKT25, pUT18C 

CP_Fw_BamHI ATCCGGATCCCATGTCAAAAATTGAAG pKT25, pUT18C 

CP_EcoRI_Rv ACTAGAATTCTTACGCTGTTGCCAGTTC pKT25, pUT18C 

MT1_Fw_BamHI ATTGGGATCCCATGTTAACAAAAAGACAG pKT25, pUT18C 

MT1_KpnI_Rv GCTTGGTACCTTAGAACAATTTCTCTGACATC pKT25, pUT18C 

MT2_Fw_BamHI ATCCGGATCCCATGATTATTATCGGAG pKT25, pUT18C 

MT2_EcoRI_Rv GCTAGAATTCTTATTTCTTCTGACCGAAAATCC pKT25, pUT18C 
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The PCR products were ligated into pKNT25 and pUT18 vectors using the BamHI/HindIII 

restriction sites and into pKT25 and pUT18C vectors using BamHI/EcoRI restriction sites. As 

an exception, BamHI/KpnI restriction sites were used for the ligation of MT I and 

pKT25/pUT18C. Positive controls, pT25-zip/pT18-zip, which contain the sequence of a 35 

amino acid leucine zipper motif of GCN4, a yeast transcriptional activator (Blondel & 

Bedouelle, 1991), were cloned into pKNT25 and pUT18 and were provided in the kit. As 

negative controls the empty vectors pKNT25 and pUT18 were used. The insert sequence of 

positive clones was checked by DNA sequence analyses. The resulting plasmids were used 

for the screening (Table 2.5).  

Table 2.5. Plasmids used for the bacterial two-hybrid screen. 

Plasmid Relevant characteristics Source 

pKNT25 Cloning vector for creating in frame fusions at the 

N-terminal end of T25 fragment of CyaA , Kan
r
 

Karimova et al. (1998a) 

pKNT25-AE odmC in pKNT25 This study 

pKNT25-CP odmA in pKNT25 This study 

pKNT25-MT1 odmB in pKNT25 This study 

pKNT25-MT2 odmD in pKNT25 This study 

pKT25 Cloning vector for creating in frame fusions at the 

C-terminal end of T25 fragment of CyaA, Kan
r
 

Karimova et al. (1998a) 

pKT25-AE odmC in pKT25 This study 

pKT25-CP odmA in pKT25 This study 

pKT25-MT1 odmB in pKT25 This study 

pKT25-MT2 odmD in pKT25 This study 

pUT18 Cloning vector for creating in frame fusions at the 

N-terminal end of T18 fragment of CyaA, Amp
r
 

Karimova et al. (1998a) 

pUT18-AE odmC in pUT18 This study 

pUT18-CP odmA in pUT18 This study 

pUT18-MT1 odmB in pUT18 This study 

pUT18-MT2 odmD in pUT18 This study 

pUT18C Cloning vector for creating in frame fusions at the 

C-terminal end of T18 fragment of CyaA, Amp
r
 

Karimova et al. (1998a) 

pUT18C-AE odmC in pUT18C This study 

pUT18C-CP odmA in pUT18C This study 

pUT18C-MT1 odmB in pUT18C This study 

pUT18C-MT2 odmD in pUT18C This study 

pT18-zip Gene of the leucine zipper of GCN4 in pUT18 Karimova et al. (1998a) 

pT25-zip Gene of the leucine zipper of GCN4 in pUTKT25 Karimova et al. (1998a) 
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2.10.2. Screening procedure 

Bacterial two-hybrid assays were performed as described in Karimova et al. (1998). All 

combinations of the recombinant plasmids were co-transformed into the reporter strains E. 

coli cya DHM1 or cya BTH101 (Euromedex, Souffelweyersheim, France) by heat-shock 

(Sambrook et al., 2006). Transformants were plated on selective LB-plates containing 25 

µg/ml kanamycin and 50 µg/ml ampicillin. Six randomly chosen cotransformants were 

inoculated into 5 ml of LB-medium containing 50 µg/ml ampicillin, 25 µg/ml kanamycin and 

0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and were grown at 28 °C to an OD600 

nm of 0.6 - 1. The clones were then spotted on LB/X-Gal (LB medium including 40 µg/ml β-

X-gal) and MacConkey (56 g/l MacConkey (AppliChem, Darmstadt, Germany), 1% (w/v) 

maltose) plates containing 100 µg/ml ampicillin, 50 µg/ml kanamycin and 0.5 mM IPTG. The 

plates were incubated at 28 °C for 2 - 4 days.  

The efficiency of the complementation of the interaction pairs could be quantified by 

measuring the β-galactosidase activity for test clones grown overnight in LB medium under 

the conditions described above. The assay was performed as described by Miller (1972) with 

some modifications. The optical density of each culture was recorded at 600 nm. Afterwards, 

800 µl of assay buffer (70 mM Na2HPO4, 30 mM NaH2PO4, 1 mM MgSO4, 0.2 mM MnSO4, 

and 100 mM β-mercaptoethanol) were added to 200 µl of each culture. Permeabilization 

solution containing 30 µl 10% (w/v) SDS and 60 µl chloroform was subsequently added to 

each sample. After incubation at 30 °C for 10 min, 0.25 µl 0.4% (w/v) ONPG was added to 

the mixtures and the color development started. When the samples turned yellow, the reaction 

was stopped by adding 500 µl 1 M Na2CO3. The mixtures were then centrifuged and the top 

layer was taken to measure the absorption at 420 nm. The activity in Miller units was 

calculated by following equation: 

1,000 x (A 420 nm)/ (A 600 nm x assay volume (ml) x reaction time (min)) 

2.10.3. Confirmation of the protein production by Western blot 

The Western blotting was carried out to confirm the correct production of the fusion proteins 

(Towbin et al., 1979). Cells containing fusion proteins were disrupted by direct lysis in 

Laemmli buffer. Fusion proteins of B2H assay were separated by Tris glycine SDS-PAGE 

(13.5%). The PVDF membrane and the gel after PAGE were incubated in blotting buffer (25 
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mM Tris, 100 mM glycerol, 20% (v/v) methanol) for 15 min. The proteins were transferred to 

the membranes by using a semi-dry blot apparatus (Biorad, Munich, Germany) at a voltage of 

15 V for 1 h. To prevent unspecific binding on the remaining surface, the membrane was then 

incubated in the blocking solution containing 3% (w/v) nonfat dried milk in PBST buffer. The 

membrane was washed three times with PBST buffer (10 min each) and was incubated with 

1
st
 antibody overnight at 18 °C. The primary antibodies were rabbit polyclonal antisera 

against AE, MT I or MT II and guinea pig polyclonal antiserum against CP. After repeating 

the washing step, the membrane was incubated in the solution containing secondary 

antibodies against either rabbit or guinea pig labeled with alkaline phosphatase. Signals were 

visualized as described above (see 2.9). 

 

2.11. Yeast two-hybrid system 

2.11.1. Plasmid construction 

The DNA fragments encoding CP, MT I and MT II were amplified by PCR and fused in 

frame into the yeast two-hybrid vectors pGADT7 and pGBKT7 (CLONTECH, Saint-

Germain-en-Laye, France) using the NdeI/BamHI restriction sites. The DNA fragment 

encoding AE was amplified by PCR and were cloned in frame into pGADT7 and pGBKT7 

using the NdeI/EcoRI and NcoI/BamHI restriction sites, respectively. Similarly, the DNA 

fragments encoding test fragments CP 1-78, CP 79-209, MT I 1-87, MT I 88-326 were 

amplified by PCR and were cloned in frame into pGADT7 or pGBKT7 using the NdeI/BamHI 

restriction sites. The coding regions of AE 1-133 and AE 134-598 were cloned in frame into 

pGADT7 and pGBKT7 using the NdeI/EcoRI and NcoI/BamHI restriction sites, respectively. 

The DNA fragments encoding AE 101-176 were amplified by PCR and were cloned in frame 

into pGADT7 or pGBKT7 using the EcoRI/BamHI restriction sites. List of the primers used 

for the test is indicated in Table 2.6. As positive control the plasmids pGBKT7-AMTR-AG 

and pGADT7-LITU-AGL2 were used. These DNA fragments were kindly provided by the 

Department of Genetics of the Friedrich-Schiller-University Jena, Germany (Härter, 2011). 

The insert sequences of positive clones were checked by DNA sequence analyses. The 

resulting plasmids were used for the screening (Table 2.7). 
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Table 2.6. Oligonucleotides used for the amplification of the genes and gene fragments 

encoding the O-demethylase components used in the Y2H system. 

Primer Sequence  Vectors 
 

AEvan_FspBI_FW01 CGCGTTCTAGCATGTCATCTTTGAATAC pGADT7 

AEvan_EcoRI_RV ATGAATTCTTATTTCATTTCATTTTGACC pGADT7 

AEvan_PciI_FW GATATAACATGTCATCTTTGAATACTATTCGCG pGBKT7 

AEvan_BamHI_RV ATGGATCCTTATTTCATTTCATTTTGACCAAGGG pGBKT7 

CPvan_NdeI_FW GGAGATATACATATGTCAAAAATTGAAGAAG pGADT7, pGBKT7 

CPvan_BamHI_RV1 ATGGATCCTTACGCTGTTGCCAGTTCTTTAGC pGADT7, pGBKT7 

MTIvan_NdeI_FW GGAGATATACATATGTTAACAAAAAGACAG pGADT7, pGBKT7 

MTIvan_BamHI_RV1 ATGGATCCTTAGAACAATTTCTCTGACATCTTGT pGADT7, pGBKT7 

MTIIvan_NdeI_FW GGAGATATACATATGATTATTATCGGAG pGADT7, pGBKT7 

MTIIvan_BamHI_RV ATGGATCCCTTTCTTCTGACCGAAAATCC pGADT7, pGBKT7 

AEvan_FspBI_FW01 CGCGTTCTAGCATGTCATCTTTGAATAC pGADT7 

AEvan_aa01-133_Stop_EcoRI_RV TGATGAATTCTAACTTAACTGGCATTTCAAGG pGADT7 

AEvan_aa134-598_FspBI_FW CGCGTTCTAGCATGTCTTCTATTAAAGTATTAC pGADT7 

AEvan_EcoRI_RV ATGAATTCTTATTTCATTTCATTTTGACC pGADT7 

AEvan_PciI_FW GATATAACATGTCATCTTTGAATACTATTCGCG pGBKT7 

AEvan_aa01-133_Stop_BamHI_RV TGATGGATCCCTTACTTAACTGGCATTTC pGBKT7 

AEvan_aa134-598_PciI_FW GATATAACATGTCTTCTATTAAAGTATTAC pGBKT7 

AEvan_BamHI_RV ATGGATCCTTATTTCATTTCATTTTGACCAAGGG pGBKT7 

AEvan_aa101-176_EcoRI_FW GCATAGAATTCATGAAAACCAGAGTGGTA pGADT7, pGBKT7 

AEvan_aa101-176_BamHI_RV TGATGGATCCCATTGAGCTCTTT pGADT7, pGBKT7 

CPvan_NdeI_FW GGAGATATACATATGTCAAAAATTGAAGAAG pGADT7, pGBKT7 

CPvan_aa01-78_Stop_BamHI_RV TGATGGATCCCTTACAGTGGTTTTAAAAC pGADT7, pGBKT7 

CPvan_aa79-209_NdeI_FW_Y2H AGATATACATATGGCTGGCGACGG pGADT7, pGBKT7 

CPvan_BamHI_RV1 ATGGATCCTTACGCTGTTGCCAGTTCTTTAGC pGADT7, pGBKT7 

MTIvan_NdeI_FW GGAGATATACATATGTTAACAAAAAGACAG pGADT7, pGBKT7 

MTIvan_aa01-87_Stop_BamHI_RV TGATGGATCCCTTAGGGAGCTTTAACATAATC pGADT7, pGBKT7 

MTIvan_aa88-326_NdeI_FW_Y2H GGAGATATACATATGAATCTTGATTATCCTG pGADT7, pGBKT7 

MTIvan_BamHI_RV1 ATGGATCCTTAGAACAATTTCTCTGACATCTTGT pGADT7, pGBKT7 
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Table 2.7. Plasmids used for the yeast two-hybrid assay. 

a 
Numbers correspond to the amino acid position. 

2.11.2. Transformation of Yeast 

According to manufacturer’s protocol the constructs of pGADT7 and pGBKT7 were 

subsequently transformed into the yeast strains Y187 and AH109 (CLONTECH, Saint-

Germain-en-Laye, France), respectively. A tube containing 1% (w/v) carrier DNA was heated 

at 95 °C for 10 min and then was chilled on ice. A blob of yeast from YPAD plate was picked 

up and suspended in 1 ml sterile water. The suspension was centrifuged for 1 min and the 

transformation mix (120 µl PEG 4000 50% (v/v), 0.1 M lithium acetate, 5 µl boiled carrier 

DNA, 1 µg plasmid DNA in sterile water, final volume 180 µl) was transferred to the pellet. 

Plasmid Relevant characteristics Source 
   

pGADT7 Cloning vector for creating in frame fusion with the 

GAL4 activation domain (AD; amino acids 768–881) 

Louvet et al. 

(1997) 

pGADT7-AE odmC in pGADT7 This study 

pGADT7-AE 1-133 Derivative of pGADT7-AE, odmC 1-133
a
 This study 

pGADT7-AE 101-176 Derivative of pGADT7-AE, odmC 101-176
a
 This study 

pGADT7-AE 134-598 Derivative of pGADT7-AE, odmC 134-598
a
 This study 

pGADT7-CP odmA in pGADT7 This study 

pGADT7-CP 1-78 Derivative of pGADT7-CP, odmA 1-78
a
 This study 

pGADT7-CP 79-209 Derivative of pGADT7-CP, odmA 79-209
a
 This study 

pGADT7-MT I odmB in pGADT7 This study 

pGADT7-MT I 1-87 Derivative of pGADT7-MT I, odmB 1-87
a
 This study 

pGADT7-MT I 88-326 Derivative of pGADT7-MT I, odmB 88-326
a
 This study 

pGADT7-MT II odmD in pGADT7 This study 

pGBKT7 Cloning vector for creating in frame fusion with the 

GAL4 binding domain (DNA-BD; amino acids 1-147) 

Louvet et al. 

(1997) 

pGBKT7-AE odmC in pGBKT7 This study 

pGBKT7-AE 1-133 Derivative of pGBKT7-AE, odmC 1-133
a
 This study 

pGBKT7-AE 101-176 Derivative of pGBKT7-AE, odmC 101-176
a
 This study 

pGBKT7-AE 134-598 Derivative of pGBKT7-AE, odmC 134-598
a
 This study 

pGBKT7-CP odmA in pGBKT7 This study 

pGBKT7-CP 1-78 Derivative of pGBKT7-CP, odmA 1-78
a
 This study 

pGBKT7-CP 79-209 Derivative of pGBKT7-CP, odmA 79-209
a
 This study 

pGBKT7-MT I odmB in pGBKT7 This study 

pGBKT7-MT I 1-87 Derivative of pGBKT7-MT I, odmB 1-87
a
 This study 

pGBKT7-MT I 88-326 Derivative of pGBKT7-MT I, odmB 88-326
a
 This study 

pGBKT7-MT II odmD in pGBKT7 This study 

pGADT7-LITU-AGL2 LITU-AGL2 in pGADT7 Härter (2011) 

pGBKT7-AMTR-AG AMTR-AG in pGADT7 Härter (2011) 
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The cells were resuspended by mixing vigorously. The mixture was incubated at 42 °C for 1 - 

3 hours. The transformants were then recovered by centrifugation of the mixture for 2 min. 

The pellets were resuspended in 200 µl sterile water and were spread on a selection plate, SD-

Leu for Y187 clones and SD-Trp for AH109 clones. The transformants were grown at 30 °C 

for 3-4 days in the selective media (Gietz & Schiestl, 2007a; Gietz & Schiestl, 2007b).  

2.11.3. Screening procedure 

The clones grown on selection plates were used for yeast mating. Single colonies from a-type 

(AH109) and α-type (Y187) were mated and grown on YPAD plates for one day and were 

then transferred to a selective plate, SD-Leu-Trp (+His). After 2 - 3 days of incubation, the 

colonies were selected and used for testing. To screen the colonies, the diploid yeast cells 

were spotted on the SD-Leu-Trp (+His) as control plate, and on SD-Leu-Trp-His and SD-Leu-

Trp-His with 0.5 mM of 3-aminotriazole (3AT) as test plates and were incubated at 28 °C for 

3-4 days (Miller & Stagljar, 2004). Positive and negative controls were included on each test 

plate. The positive control was the diploid yeast of pGBKT7-AMTR and pGADT7-LITU. 

The negative controls were the diploid cells of either two empty vectors or of one empty 

vector and a test protein. The clones grown on the test plates were considered to be putative 

positive interaction pairs. The presence of HIS3 inhibitor, 3AT, reduces the background and 

may eliminate the unspecific activation. β-galactosidase assay was performed directly on the 

colonies grown on the SD-Leu-Trp-His plates as described in the Matchmaker
TM

 Library 

construction and screening kits protocol (CLONTECH, Saint-Germain-en-Laye, France). The 

composition of media used in the screen was also described in the protocol. 
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3. Results 

3.1. Interactions of the activating enzyme and the corrinoid protein  

This study is devoted to analyze the interaction of the O-demethylase components of 

Acetobacterium dehalogenans. In this section, the interaction of AE and CP and the role of 

the corrinoid cofactor of CP are investigated. Efforts to identify specific residues that are 

important for the oligomerization of the two proteins are also described. 

 

3.1.1. Sequence analysis of genes encoding for the activating enzyme and corrinoid proteins 

of different O-demethylases of A. dehalogenans  

Recent studies indicated that there are several O-demethylase enzyme systems present in the 

anaerobe A. dehalogenans. The isolation and characterization of two O-demethylating 

systems vanillate- (Odm) and veratrol-O-demethylase (Vdm) were published (Kaufmann et 

al., 1997; Engelmann et al., 2001). Two others have been recently identified as syringate- 

(Sdm) and guaiacol-O-demethylase (Gdm) based on their substrate preferences (unpublished 

data). The genes of the four different O-demethylase systems were found in separate operons. 

However, they all contain the genes encoding for the three major components of the system: 

MT I, MT II, and CP. For Odm, the gene of MT II is missing. While the genes encoding for 

CP, MT I and MT II are usually present in the same operon, the gene encoding for AE 

(odmC) is located separately. This is the first and only AE that was identified and 

characterized from A. dehalogenans so far. The odmC gene was found approximately 3 kb 

upstream of the syringate-O-demethylase operon (Schilhabel et al., 2009). The gene product 

consists of 598 amino acids and contains a [2Fe-2S] cluster binding motif in the N-terminal 

part. The recombinant enzyme shared the same characteristics of the purified one from A. 

dehalogenans. Recently, the four different CP genes encoding CPgua, CPsyr, CPvan, CPver were 

heterologously expressed as Strep-tag fusions in Escherichia coli. Amino acid sequence 

analyses showed a high similarity between the four CPs (from 80 to 90%). They consist of 

208 to 209 amino acids, corresponding to the molecular masses of approximately 21-22 kDa. 

They all contain the consensus sequence for vitamin B12 binding [DXHXXG-41-SXL-(26-

28)-GG] (Kaufmann et al., 1998a) (Fig. 3.1). Since a high similarity between the four 

corrinoid proteins was observed and only one AE has been known so far, it was assumed that 
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the O-demethylases may utilize one AE for the reactivation of different corrinoid proteins. In 

order to confirm this hypothesis, several approaches were employed. The first attempt was to 

study the interaction of AE and different CP by gel shift experiments. 

CPvan MSKIEEVKAK VEVGKSKLVP GLVQEALDEG SAPGEILQAM VDSMGVVGEK FSSGEIFVPE 60 

CPsyr MSKIQEVKEK VEIGKTKLVP GLVQEALDEG SSAADILQAM VDSMGVVGEK FSSGEIFVPE 60 

CPver MSKITEVKQL VEAGKSKKIG PAVQEALNAG GQPVEILQPM VDSMSVVGDK FSAGEIFVPE 60 

CPgua MSKIEEVKAK VEIGKTKLIP GLVQEALDEG NAPGEILQAM VDSMSVVGEK FSSGEIFVPE 60 

   

CPvan MLIAAKAMSK GVEVLKPLMA GDGSASLGTC VIGTVAGDLH DIGKNLVSMM IESAGFDMVD 120 

CPsyr MLIAAKAMAK GVDVLRPLLA GDTSNSLGTR IIGTVAGDLH DIGKNLVSMM IESAGFTMVD 120 

CPver MLIAAKAMSK GVDVLRPLMA GDNAASLGTC VIGTVAGDLH DIGKNLVSMM IESAGFTMVD 120 

CPgua MLIAAKAMSK GVDVLRPLMA GDTSASLGTC IIGTVAGDLH DIGKNLVSMM IESAGFTMVD 120 

   

CPvan LGVDVPADTF VQAVKDNTNV KLVACSGLLT TTMPALKEAV QTIKAAYP-D MKVIVGGAPV 179 

CPsyr LGVDVPAERF VEAIKENKNV TLVACSGLLT TTMPALKEAV QTIKASGL-D VKVIVGGAPV 179 

CPver LGVDVPAEKF VAAARENDNV TLIACSGLLT TTMPALKEAV ATIKASGLAG CKVIVGGAPV 180 

CPgua LGVDVPAERF VEAVKENENV TLVACSGLLT TTMPALKEAV QTIKASGL-D CKVIVGGAPV 179 

   

CPvan TPEYAAEVGA DGYAPDAGSA AVKARELATA 209  

CPsyr TPEYAAEIGA DGFAPDAGSA AVKAKEMVA- 208  

CPver TSEFAAEIGA DGYAADAGSA AVKAKDLVK- 209  

CPgua TPEYAAEIGA DGFAPDAGSA AVKAKELVA- 208  

 

Fig. 3.1. Sequence alignment of the corrinoid proteins of vanillate-O-demethylase 

(CPvan), syringate-O-demethylase (CPsyr), veratrol-O-demethylase (CPver), and guaiacol-

O-demethylase (CPgua) of A. dehalogenans. Amino acid residues in boxes were shown to 

participate in cobalamin binding of methionine synthase (MetH) of E. coli. The vitamin B12 

binding region of MetH was determined from the X-ray structure (Drennan et al., 1994). 

 

3.1.2. Studies on the interactions of AE and CP by gel shift experiments 

The interaction of AE and CPvan using gel mobility assay was already investigated by 

Schilhabel et al. (2009). In this study, AE appeared as dimer in the native gel whereas CPvan 

possessed a monomeric form. For the interaction, the presence of the corrinoid cofactor was 

essentially required. The stoichiometry of the dimeric complex of AE and CPvan was 

determined to be one to one. In order to prove the reproducibility of the method, the 

experiment was repeated before performing any further investigations. The result obtained 

was in good agreement with the previous observations (Fig. 3.2, CPvan). For that reason the 

interaction of AE with different CPs of A. dehalogenans was further investigated. The four 

different CPs were purified by column chromatography and were reconstituted with 

hydroxocobalamin. AE and cofactor-free CP were obtained by affinity chromatography using 
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1 ml HiTrap Streptavidin HP columns (see Materials and Methods). AE and CP were pre-

incubated in different molar ratios in buffer containing 2 mM DTT and were separated by 

native PAGE. Protein bands were visualized by silver staining. For CPgua a ladder of bands 

running from 21 kDa to 67 kDa was observed. CPsyr and CPvan were present as monomeric 

proteins in the gel shift experiment as shown by single bands at around 21 kDa. Interestingly, 

CPver appeared to migrate and form one major band at 42 kDa suggesting the formation of a 

dimer. The bands corresponding to the complex of 2AE/2CP appeared clearly at around 180 

kDa for all interaction pairs (Fig 3.2). At the molar ratio of 1:1, only protein complex bands 

were observed, the bands of both interacting partners (AE and CP) almost disappeared. When 

incubating the mixtures with excess amounts of either AE or CP (molar ratios of 3:1 and 1:3, 

Fig. 3.2), the band corresponding to the protein with higher molar ratio was still present. 

Taken together, AE showed its ability to interact with all four different CPs. The dimeric 

complexes of AE and CPs have 1:1 stoichiometries.  

 

Fig. 3.2. Gel shift experiment to investigate the interaction of AE and reconstituted 

corrinoid proteins of different O-demethylase systems. Protein mixtures containing 

different molar ratios of AE and CP (30:10, 10:10, 10:30; pmol:pmol) were incubated under 

anoxic conditions for 2 hours at 10 °C before applying to the native PAGE (8.5%). Each 

interaction pair of AE and CP is shown in different boxes. The signals were developed by 

silver stain. The molecular masses of the marker proteins are shown on the left.  

When incubating the AE:CP mixtures in the absence of the corrinoid cofactor, almost no 

signal of the 180 kDa band was observed (Fig. 3.3), whereas in the presence of the cofactor, 

the 180 kDa band of the 2AE/2CP complex were detected (Fig. 3.3). The observation that the 
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complex formation was obtained only in the presence of the corrinoid cofactor 

hydroxocobalamin appears to be valid for all interaction pairs. 

  

Fig. 3.3. Gel shift experiments to demonstrate the interaction of AE and CP in the 

absence and presence of the corrinoid cofactor hydroxocobalamin. AE:CP mixtures with 

a molar ratio of 1:1 without (-B12) and with (+B12) hydroxocobalamin as corrinoid cofactor 

were separated by native PAGE (8.5 %) after pre-incubation at 10 °C for 2 hours. Each 

interaction pair of AE and CP is shown in separate boxes. The molecular masses of the 

marker proteins are shown on the left. 

In gel shift experiments of AE and cofactor-free CP, almost no AE/CP complex was formed. 

The main protein band detected was the AE dimer. This is also indicated in Figure 3.3 where 

no defined band of the CPs was found in the lanes of the AE/CP mixtures without the 

presence of the corrinoid cofactor. For that reason the behavior of both CP forms (-B12/+B12) 

on native PAGE was checked. Our experimental data indicated that the cofactor-free CPs 

showed no defined band on the native gel (Fig. 3.4.A). The presence of hydroxocobalamin 

has a significant effect on the conformation of CP in gel shift experiments. All four 

reconstituted CPs showed better shapes and clear major bands in comparison to those of the 

non-reconstituted ones.  
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Fig. 3.4. Native PAGE of different corrinoid proteins without (A) and with (B) the 

corrinoid cofactor hydroxocobalamin. (A) Native gel of different CPs without corrinoid 

cofactor (-B12) after silver stain (10 pmol each). (B) Native gel of different CPs after 

reconstitution with the corrinoid cofactor hydroxocobalamin (+B12) after silver stain (10 and 

20 pmol). 

 

3.1.3. Specific activities of AE in the presence of different CPs 

To compare the specificity of reductive activation of AE for different CPs, a corrinoid 

reduction assay was performed. The redox state of CP was monitored by continuous recording 

of the characteristic UV/Vis spectrum of the bound corrinoid cofactor. In the presence of ATP 

and Ti(III)citrate as artificial electron donor, the purified AE was able to reduce all four 

different corrinoid proteins. During the reduction, the absorbance at 475 nm decreased due to 

conversion of the cob(II)alamin species of CP coupled to an increase in absorbance at 386 nm 

due to the formation of cob(I)alamin (Fig. 3.5). The difference in absorption at 386 and 475 

nm was used for determination of the specific corrinoid reduction activity of AE. As shown in 

Table 3.1, the enzyme activity was highest with CPsyr and CPvan, whereas in the presence of 

CPgua and CPver the specific activity was lowered to 70% and 50%, respectively.  
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Fig. 3.5. Reduction of cob(II)alamin to cob(I)alamin in the presence of AE, ATP and 

Ti(III)citrate. The reaction was performed at room temperature under anaerobic conditions 

as described in the Materials and Methods section. Spectral changes occurring during the 

reduction of cob(II)alamin (475 nm) to cob(I)alamin (386 nm) were recorded every 1 min. 

  

Table 3.1. Specific activities of AE with corrinoid proteins of different O-demethylases.  

The activity was measured in triplicate for two different CP concentrations. Ti(III)citrate 

served as artificial electron donor. For details, see Materials and Methods. 

Corrinoid 

protein  

CP  

(µM)  

Enzyme activity 

(nkat/mg)  

CPgua  40  3.37 

CPgua  15  1.97 

CPsyr  40 6.70 

CPsyr  15  4.16 

CPvan  40 6.39 

CPvan  15  3.82 

CPver  40 4.79 

CPver  15  2.66 

 

The results of the corrinoid reduction assay were in accordance to those obtained in gel shift 

experiments. The shifted bands (dimeric AE/CP complex) were fully observed only in the 

mixtures of AE:CPsyr and AE:CPvan at a molar ratio of 1:1 (see Fig. 3.2). For mixtures 

containing CPgua or CPver, there were still trace amounts of AE and CP left. However, these 

minor differences in the gel shift were not significant so that no conclusion can be drawn from 
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this observation. A relationship between the specific activity of AE and the sequence 

identities between the four CPs is not detectable. Although CPver shows the lowest sequence 

identity compared to the other three CPs, the corrinoid reduction activity is higher than for 

CPgua.  

For further investigation, several attempts were performed to create fragments of AE and CP. 

However, all attempts have not been successful so far. The fragments of either AE or CP 

seem to be unstable or were produced only in tiny amounts close to or below the detection 

limit. 

 

3.1.4. Studies on the interactions of AE and CP by yeast two-hybrid screens 

In order to verify the interaction of the two components, different methods including yeast 

and bacterial two-hybrid systems were employed. The first attempt was to use the yeast two-

hybrid (Y2H) system which is based on the direct transcriptional activation of GAL4 domain. 

In the yeast two-hybrid assay, two proteins, either AE or CPvan were fused in frame to two 

domains, one is a GAL4 transcriptional activation domain (found on plasmid pGADT7) and 

the other is a DNA binding domain (found on plasmid pGBKT7). If two proteins interact, a 

functional reconstitution of the GAL4 transcription factor occurs and the expression of the 

reporter genes is activated (Fig. 3.6). The activation is shown as cell growth on medium 

without histidine. It is known that the yeast two-hybrid assay may generate a significant 

number of false positives which probably represents a random generation of histidine-positive 

colonies (Causier & Davies, 2002). To minimize the unspecific activation, 3-amino-1,2,4-

triazole (3AT) was included in the test plates. 3AT is the competitive inhibitor of HIS3 

production, therefore only colonies with a strong activation of HIS3 (as a result of the 

interaction) will produce histidine and can grow on the test plates. The positive control was 

the combination of pGADT7-LITU/pGBKT7-AMTR. Combinations of fusion proteins and 

empty vectors (pGADT7, pGBKT7) were used as negative control. If any clone of these 

combinations grows on the test plate, all interactions observed with the fusion protein in this 

clone will be considered to be false positive. In order to control the growth of the colonies, 

selection plates with histidine were used (Fig. 3.7A). The screening procedure was described 

in the Materials and Methods section. 
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Fig. 3.6. Overview of the mechanism of the Matchmaker yeast two-hybrid system (Takara 

Bio Europe/Clontech, Saint-Germain-en-Laye, France). One protein of interest (X) is fused in 

frame to the GAL4 transcriptional activation domain (GAL4-AD), the other protein (Y) is 

fused in frame to the DNA binding domain (GAL4-BD). The two fusion proteins are 

transformed into the appropriate yeast strain. The yeast strains are mated and the diploid cells 

are used for the test. The interaction between proteins X and Y leads to the reconstitution of a 

transcription factor (GAL4) in such a way that the reporter genes (HIS3, ADE2, lacZ) are 

expressed (Coates & Hall, 2003). 

Using this assay, no interaction between AE and CP was observed since no growth of 

colonies comprising AE-CP pairs in both directions (pGADT7-AE/pGBKT7-CP and 

pGADT7-CP/pGBKT7-AE) occurred (Fig. 3.7B). It should be mentioned that there is no 

cobalamin biosynthesis in yeast. In gel shift experiments, the presence of the corrinoid 

cofactor was a prerequisite for an interaction of AE and CP. This is probably also true for the 

yeast two-hybrid screen. Interestingly, a positive interaction was observed for the AE-AE pair 

(Fig. 3.7B). 
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Fig. 3.7. Screening for interaction of AE and CP by Y2H assay. The genes of AE and CP 

were fused in frame to GAL4 BD (pGBKT7 plasmid) or GAL4 AD (pGADT7 plasmid). The 

constructs were transformed into the appropriate yeast strain of opposite mating type (a and α) 

and were grown on selection disks. After mating, both constructs were present in the diploid 

yeast. The diploid cells were cultivated for 72 h at 30 °C on the control plate with histidine 

(A), and on test plates lacking histidine but with the addition of 3AT (B). As positive control 

cells bearing the pGADT7-LITU/pGBKT7-AMTR pair were used. The combination of two 

empty vectors or one empty vector and one test protein represented the negative controls.  

To have a closer look into the self-interaction of the AE molecule, two fragments of AE were 

prepared. In silico analyses of the structure indicated an [Fe-S] cluster binding motif at the N-

terminus of the protein which comprises amino acids 1 to 133. As stated in the Introduction 

section, AE was shown to contain a [2Fe-2S] cluster which is involved in the activation 

and/or reduction of corrinoid proteins (Schilhabel et al., 2009). The other part of the protein 

contains several functional domains where nucleotide binding and hydrolysis may occur. To 

specify the site of interaction, two fragments of AE, one at the N-terminus of the protein 

(residues 1-133, AE1-133) and the other at the C-terminal part of AE (residues 134-598, 

AE134-598) were prepared. The interaction of AE domains was assayed on the control and 

test plates (Fig. 3.8) as described above. The AE134-598 fragment was able to interact neither 

with itself nor with the parental AE. Interestingly, the fragment AE1-133 interacted with each 

other and also with full length AE. This result was observed in both directions, when AE1-

133 was fused to either the activation or the binding domain of GAL4.  
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Fig. 3.8. Investigation of fragments involved in the oligomerization of AE by Y2H assay. 

The two AE fragments AE 1-133 and AE 134-598 were fused in frame to pGADT7 and 

pGBKT7 and were tested for the interaction by Y2H screen. The growth of the clones was 

monitored on the control plate (A). Positive interactions are shown as growth of clones on the 

test plate (B). 

In the course of these investigations, a study was published indicating the site responsible for 

the dimerization of an AE-like protein (Hennig et al., 2012). In this study, the crystal structure 

of the ATP-dependent reductive activator of the corrinoid iron/sulfur protein (CFeSP) of 

Carboxydothermus hydrogenoformans was solved. The structure of the activator (RACo) can 

be divided into four domains: the N-terminal domain (residues 3-94) with the [2Fe-2S] 

cluster, the linker domain (residues 95-125) which connects the N-terminal domain to the 

middle domain (residues 126-206) and the large C-terminal domain (residues 207-630). The 

middle domain was shown to be involved in the dimerization of RACo. On the basis of this 

structure a reliable computational model of AE of A. dehalogenans was predicted (Sperfeld, 

2012). In this model the middle domain of AE was detected for residues 101-176. Therefore, 

new AE fragments (AE101-176 in pGADT7 and pGBKT7) for the further investigation of the 

interaction were prepared. The full-length AE-AE pair served as the positive control of the 

test. No interaction was detected between AE101-176 and full-length AE or AE101-176 itself 

(Fig. 3.9).  
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Fig. 3.9. Investigation of the interaction of the AE101-176 fragment with itself and with 

full length AE by the Y2H assay. The AE-AE pair served as the positive control in this 

assay. The growth of the clones was monitored on the control plate (A). Positive interaction is 

shown as growth of clones on the test plate (B). 

 

3.1.5. Studies on the interactions of AE and CP by bacterial two-hybrid system 

Because unspecific activation occasionally happens in yeast and there is a possibility that 

some interactions are not detected, we used another two-hybrid system which based on 

indirect activation – the bacterial two-hybrid (B2H) assay (Karimova et al., 1998; Karimova 

et al., 2000a). In the B2H system, one protein of interest is fused to the T25 fragment and the 

other is fused to the T18 fragment of the catalytic domain of Bordetella pertussis adenylate 

cyclase. The fused genes encoding the hybrid proteins were coexpressed in an E. coli strain 

deficient in its endogenous adenylate cyclase production. Upon interaction of the hybrid 

proteins, the T25 and T18 fragments are brought to proximity which results in the functional 

complementation of the two fragments, leading to cAMP synthesis and in turn to 

transcriptional activation of catabolic operons (Fig. 3.10).  
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Fig. 3.10. Overview of the mechanism of the bacterial two-hybrid system 

(EUROMEDEX, Souffelweyersheim, France). Two proteins of interest (X and Y) were 

genetically fused to the complementary fragments T25 and T18 from the catalytic domain of 

B. pertussis and co-expressed in E. coli Δcya cells. Interaction between two-hybrid proteins 

resulted in functional complementation between the T25 and the T18 fragments leading to 

cAMP synthesis. Cyclic AMP produced by the reconstituted chimeric enzyme binds to the 

catabolite activator protein, CAP and activates catabolic operons of E. coli. The activation 

turns on the transcriptional process of reporter genes such as lacZ and mal giving rise to the 

selectable phenotypes (Karimova et al., 2000b).  

An advantage of the B2H over Y2H is that the proteins of interest can be fused either to the 

N- or C-terminal end of the T25 or T18 fragment which provides an extended range of 

combinations to study protein-protein interactions. The pKNT25 and pUT18 allow the 

expression of the selected genes encoding proteins fused to the N-terminal ends of the T25 

and T18 domains of the adenylate cyclase, respectively. The pKT25 and pUT18C allow the 

expression of the selected genes encoding proteins fused to the C-terminal ends of T25 and 

T18 domains of adenylate cyclase, respectively. The leucine zipper of the yeast GCN4 

transcription factor served as a positive control (Karimova et al., 2000b). As negative control 

the empty vectors pKNT25 and pUT18 were used. Full-length AE and CP were fused to T25 

and T18 using all four possible fusion types (at either C- or N-terminus of the two fragments) 

and were co-transformed into the cyaA deficient BTH101 strain generating 16 interaction 

pairs. For each interaction pair, three clones were used for the screening. A positive 

interaction will create a functioning adenylate cyclase, which will then synthesize cAMP and 

subsequently turn on catabolic reporter genes such as lacZ or mal in E. coli (Fig. 3.10). The 
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clones which are capable of producing β-galactosidase or using maltose as unique carbon 

source can be discriminated by selectable phenotypes. The differences can be seen when 

clones grew on the LB/X-gal or MacConkey plates. On MacConkey plates, clones having 

positive protein-protein interaction will turn red because of acidic production as a result of the 

mal reporter gene activation. On LB/X-gal plates, clones showing positive interaction will 

turn blue because of the activation of the lacZ reporter gene resulting in the production of β-

galactosidase. This enzyme degrades the X-gal on plate leading to the formation of blue color 

(Karimova et al., 2000b).  

 

Fig. 3.11. Screening for interaction of AE and CP by B2H assay. AE and CP were fused to 

the C-terminus of the T25 and T18 fragment of B. pertussis adenylate cyclase by using 

plasmids pKT25 and pUT18C, respectively and to N-terminus of the T25 and T18 fragment 

by using plasmids pKNT25 and pUT18, respectively. Two constructs of each pair were co-

transformed into E. coli Δcya and cells were dropped on the specific test plates. (A) Clones 

were cultivated on the LB/X-Gal plate. Positive interaction resulted in a blue color of 

colonies. (B) Clones were cultivated on the MacConkey plate. A positive interaction resulted 

in a red color of colonies. As positive control the leucine zipper of GCN4 transcription factor 

was used. Negative control was the combination of two blank vectors (pKNT25/pUT18). 

Figure 3.11 depicts the results of the B2H assay with the selected clones after screening 

procedure. The two assays on LB/X-Gal and MacConkey plates gave conformable results. AE 

showed a strong self-interaction which was detected for all fusion types. Interestingly, the 

self-interaction of CPvan which was not found in Y2H system was observed in B2H. The 

interaction seems to be not as significant as that of AE. Notably, an interaction of AE and CP 

was also observed using this assay. To our knowledge the E. coli strain used for the test is not 
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able to produce cobalamin itself. Therefore, like in Y2H system, the interaction between AE 

and CP was not expected. It should be noted that the interaction was only observed when one 

protein was fused to N-terminal end of T25 and the other was fused to the C-terminus of T18 

(AE-T25 / T18-CP or CP-T25 / T18-AE).  

The reproducibility of the system was checked by carrying out the experiment in triplicate. 

The second test was in good agreement with the first one. The third test which was performed 

one month later showed different results. Most of the strong interactions obtained in the first 

experiment changed to either faint or moderate ones. Although discrimination between the 

positive and negative ones was still possible, the differences were not as significant as those 

obtained from the previous results. We carried out a number of tests in order to improve the 

reproducibility of method. As indicated in the manufacture’s protocol, in BTH101 an 

unstability of the plasmids may appear. Therefore, the tests were repeated in the more stable 

DHM1 strain. However, similar observations were made. Several trials were performed to 

change the growth conditions, i.e. changing the concentration of antibiotics, IPTG, lowering 

the temperature, using new clones of BTH101. Unfortunately, all trials were not successful. 

In order to interact, proteins must be accumulated in the host cells. The Western blot method 

was performed to investigate the protein expression and accumulation during the B2H assay. 

Cell extracts carrying the plasmids expressing the fusion pairs were tested for accumulation 

using specific antibodies against either AE or CP. The results obtained were not 

unambiguous. In most cases proteins of the fusion pairs did not accumulate but in some others 

they did. This observation can be even found in the cells showing positive interactions in the 

test plates. Figure 3.12 showed one example in which the Western blots were carried out for 

all pairs harboring the fusion protein of T25 and AE or T18 and CP. Using AE antibodies, 

only the accumulation of AE-T25 in the AE-T25/T18-CP pair, which showed significant 

interaction on both LB/X-gal and MacConkey plates, was detected. The others did not show 

any level of accumulation of T25-AE or AE-T25. In contrast, no accumulation of T18-CP of 

the AE-T25/T18-CP pair by using CP antibody occurred (Fig 3.12B). In this test, the pair AE-

T25/CP-T18 appeared to accumulate CP-T18. As shown in Figure 3.11 this pair exhibited no 

interaction via plate assay. This pointed to the possibility that the constructs were not 

accumulated thus they could not be detected by Western blot. This was also the case for both 

BTH101 and DMH1 strains (data not shown). Similar observations were also obtained by 
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using anti-Bordetella pertussis CyaA (Santa Cruz Biotechnologies, CA, USA) antibodies to 

detect the accumulation of proteins by Western blot.  

 

Fig. 3.12. Western blot to verify the presence of the recombinant proteins in E. coli Δcya. 

The cell extracts were tested for the accumulation of the fusion proteins by Western blot using 

AE (A) or CP (B) antibodies. The negative control (-) applied to the last lane was the crude 

extract containing the empty vectors pKNT25/pUT18. The solid line on the right side of each 

blot was the expected band of the respective fusion protein. The molecular mass of the protein 

markers is indicated on the left. 

 

3.1.6. Interaction between AE and CP studied by far-Western blot 

Interestingly, the absence of the corrinoid cofactor did not have any effect on the interaction 

between AE and CP in B2H assay. To verify this observation, a second in vitro approach via 

far-Western blot was employed. The test was performed on a PVDF membrane. Another 

membrane material, nitrocellulose, was also used for the test but didn’t show good results in 

comparison to those with PVDF membranes (data not shown). In far-Western blots, the test 

protein (prey protein) was spotted directly onto the membrane in different concentrations and 

was incubated with the interacting partner (bait protein). The mixture was then incubated with 

the first antibody against the bait protein, then with the secondary antibody labeled with 

alkaline phosphatase for visualizing the signals. A negative control was included to control 

the unspecific binding between the bait protein antibodies and the prey protein. The negative 

control was prepared as the test samples but without incubation of the membrane with the bait 
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protein. The intensity of signals detected in relation to that of the negative control was used to 

estimate the binding affinity of the proteins. A weak background staining occurred on almost 

all test strips as a result of incubating with an excess amount of bait protein. This phenomenon 

was not observed on the negative control strips. 

 

Fig. 3.13. Dot far-Western blot to study the interaction between AE and CP in the 

absence (A) and presence (B) of the corrinoid cofactor hydroxocobalamin. Proteins in 

different concentrations were directly spotted on a PVDF membrane and allowed to absorb as 

dots (as prey protein). The protein amount is indicated on the left. After blocking, the 

membrane was incubated with the interacting partner (bait protein in solution, 0.1 mg/ml) and 

afterwards with the first antibody against the bait. Signals were visualized in the NBT/BCIP 

reaction using alkaline-phosphatase labeled secondary antibodies. Two strips per interaction 

pair are shown – on the left: the interaction pair tested, on the right: the control without bait.  

To continue in the same line of previous experiments, CPvan was used for testing the 

interaction with AE. As shown in Figure 3.13A, strong signals for the interaction of AE and 

CP were observed. The interaction of this pair can be detected in both directions when AE is 

on the membranes and CP in the solution or vice versa. Remarkably, the interaction occurred 

regardless of the absence or presence of the corrinoid cofactor hydroxocobalamin as the result 

obtained showed no difference between the two assays (Fig. 3.13).  

 

3.2. Interactions of the other O-demethylase components  

Beside the interactions of AE and CP, which were one target of the work presented here, the 

interactions of the other O-demethylase components were studied in more detail using the 
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methods described above. We used the same approaches to further investigate the additional 

interactions between the O-demethylase components. 

 

3.2.1. Gel shift experiments 

To analyze the interactions in which the methyltransferases I and II (MT I, MT II) and/or AE 

and CP are involved, all recombinant proteins were produced in E. coli as C-terminal Strep-

tag fusions and were purified by one step purification using Strep-tactin columns as described 

above (see Materials and Methods). The purity of proteins was confirmed by SDS PAGE. 

Schilhabel et al. (2009) mixed AE, CP, MT I and MT II at a molar ratio of 1:1:1:1. After pre-

incubation, the sample was subjected to native PAGE. Only the shifted band at 180 kDa 

which corresponds to a dimeric AE/CP complex (see also Fig. 3.2) was observed. No other 

interaction was found. Using the same approach, the interaction was studied for mixtures of 

only two components. The pair consisting of AE and reconstituted CPvan served as positive 

control. The CP used for the test was the one reconstituted with hydroxocobalamin. The four 

recombinant proteins were combined yielding six pairs: AE-CP, AE-MT I, AE-MTII, CP-MT 

I, CP-MT II and MT I-MT II. For each pair, three molar ratios (30:10, 10:10, and 10:30; in 

pmol) were used. The mixtures were incubated in the presence of 2 mM DTT for two hours at 

10 °C. The results were obtained by native PAGE and silver stain.  

Figure 3.14A showed the results of the test for the interaction of the activating enzyme and 

the two methyltransferases. MT I appeared as a single band in the gel at around 21 kDa. The 

apparent molecular mass is different from the predicted one (36 kDa). In native PAGE, 

protein mobility is determined by a complex combination of factors, e. g. the shape of the 

protein molecule. Under certain conditions, proteins may move in unpredictable ways. 

Moreover, since native charge is preserved, proteins can migrate towards either electrode, 

depending on their charge. Therefore, molecular mass determination by this method does not 

yield reliable results. For MT II a diffuse band at approximately 40 kDa was detected. The 

predicted molecular mass is 30 kDa. For both combinations (AE-MT I, AE-MT II), no shifted 

bands were observed (Fig. 3.14A). AE runs as dimer or trimer, MT I or MT II bands were 

visible. However, there was no decrease or increase in the intensity of the signals of the 

proteins in the three different molar ratios compared to the single protein bands suggesting 

that the quantities of the mixture components were not changed. For the pair CP-MT I (Fig. 
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3.14B) the CP and MT I bands overlap. No shifted band was visible. Similar results were 

obtained for the CP-MT II and MT I-MT II pairs. (Fig. 3.14B and C). Taken together, it 

seems that no further interaction was found except for AE and CP by using gel shift 

experiments.  

 

 Fig. 3.14. Interaction of O-demethylase components investigated by gel shift 

experiments. The interaction pairs are separated in boxes. (A) Interaction between AE and 

MT I or MT II. (B) Interaction between CP and MT I or MT II. (C) Interaction between MT I 

and MT II. The AE-CP pair served as positive control. In each box, the first two lanes show 

the purified proteins (10 pmol, each). In the other three lanes the test mixtures in three molar 

ratios (30:10, 10:10, 10:30; pmol:pmol) were applied. The molecular masses of marker 

proteins are indicated on the left.  

For the interaction of CP-MT II, it is possible that the oxidized form of CP may create a 

conformation which is not optimal for the MT II binding. According to the reaction 

mechanism of O-demethylases, methylcolabamin bound to CP (CH3-[Co
III

]-CP) may ensure a 

conformation of CP to allow the access of MT II. Therefore, the methylated form of CP was 
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prepared and the interaction of the CH3-[Co
III

]-CP and MT II was studied. Since the 

methylcobalamin is light sensitive, the entire test was performed in the dark. The mixture of 

CH3-[Co
III

]-CP and MT II was incubated for 2 hours at 10 °C and was separated on the native 

PAGE to check for the interaction. Similar to the results of the hydroxocobalamin harboring 

CP, no interaction of CH3-[Co
III

]-CP and MT II was observed (data not shown). We cannot 

exclude the possibility that the methylated form of CP was unstable under the experimental 

conditions. We continued with the two-hybrid screens to study the interactions in which both 

methyltransferases and/or AE and CP are involved. 

 

3.2.2. Yeast two-hybrid assay 

Interactions of the full length proteins of the O-demethylase components were evaluated using 

the Y2H screen. The genes encoding AE, CP, MT I, and MT II were cloned as fusions of the 

GAL4 DNA binding or activation domain into AH109 and Y187 strains, respectively. The 

clones were then mated in all possible 26 combinations. The negative controls were the 

combination of one protein and a blank vector (either pGADT7 or pGBKT7), or a 

combination of the two blank vectors. The positive control used is mentioned in the section 

3.1.4.  

The diploid cells were plated onto the medium lacking leucine and tryptophan (SD-Leu-Trp) 

to control the growth (Fig. 3.15A), and onto the medium lacking leucine, tryptophan, and 

histidine (SD-Leu-Trp-His) for primary selection of clones capable of activating the reporter 

genes like ADE2 and HIS3. Clones which showed growth on the latter plate were used for the 

β-galactosidase assay. The presence of the lacZ gene encoding β-galactosidase in yeast served 

as an additional reporter gene which is activated as a result of interaction (Fields, 2001). The 

clones which were able to activate the lacZ gene will turn blue. To minimize the false positive 

signals, the diploid cells were also plated on the test plate which contains 3AT (SD-Leu-Trp-

His+3AT). 

As shown in Figure 3.15B, four combinations were found to grow on the test plate. The 

interactions of the positive control and of the AE-AE pair were already described in the 

section above. Interestingly, an additional interaction observed was CP-MT I. It has to be 

noted that the interaction of CP-MT I was only detected in a non-reciprocal way, i. e. when 
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CP was fused to the activation domain of GAL4 and MT I to the binding domain and not vice 

versa (pGADT7-CP/pGBKT7-MT I). The signal of the clone harboring the pGADT7-

CP/pGBKT7 pair growing on the SD-Leu-Trp-His plate could be referred as false positive, 

which resulted from an unspecific activation in Y2H. This was confirmed by the β-

galactosidase assay (Fig. 3.15C). On the β-galactosidase assay plate, only three clones turned 

blue as a result of activation of the lacZ reporter gene. The clone harboring the combination of 

CP and pGBKT7 remained white. This observation was further supported by the results of the 

test plate containing 3AT (Fig. 3.15D). Here, only three clones grew, the false positive one 

failed to show any growth on this plate.  

 

Fig. 3.15. Screening of the interaction of all O-demethylase components by Y2H assay. 

The genes of the four components were fused in frame with GAL4-BD (pGBKT7 plasmid) or 

GAL4-AD (pGADT7 plasmid). The constructs were transformed into the appropriate yeast 

strain of opposite mating type (a and α) and were grown on selection disks. After mating, both 

constructs were present in the diploid yeast. Yeast clones were cultivated on the control plate 

(A) and on the test plate without histidine (B). The latter plate was subsequently used for the 

β-galactosidase assay (C). False positives can be eliminated by addition of 3 mM 3-

aminotriazol (3AT) (D), which is a competitive inhibitor of the HIS3 gene product. 
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We further investigated which domain of CP and/or MT I is responsible for interaction. 

Bioinformatics analysis revealed two domains of CP: The N-terminal fragment consists of 

residues 1-78 (CP 1-78). The C-terminal fragment comprises residues 79-209 and harbors the 

vitamin B12 binding motif. Recent studies demonstrated that MT I can be genetically 

separated into two fragments, the first fragment (residues 1-87) represents the substrate 

recognition domain (MT I 1-87) while the second fragment (residues 88-326) contains the 

catalytic domain (MT I 88-326) (Studenik et al., 2011). Therefore, the four aforementioned 

fragments of CP and MT I were used to evaluate their interactions.  

The plasmids were prepared for the combination of fragments and full length proteins and 

were transformed to appropriate yeast strains. After mating diploid cells were used for testing 

the interactions (Fig. 3.16A and B). To cover all possible interactions, the fragments were 

fused in frame to either pGADT7 or pGBKT7 and were used for the fragment-fragment 

interaction test by Y2H assay (Fig. 3.16C). No interaction was found in the fragment-

fragment interaction assay. In contrast, a strong auto-activation was obtained for the clones 

bearing the pGBKT7-MT I 88-326 fusion protein. The auto-activation can be easily identified 

with the combination of the blank vector pGADT7 and pGBKT7-MT I 88-326. For all 

combinations in which this construct was present, growth occurred on the test plates (SD-Leu-

Trp-His+3AT). In the β-galactosidase assay, a color change to blue for the pair pGBKT7-MT 

I 88-326 and the blank vector pGADT7 was observed (data not shown). These findings 

indicate an auto-activation of the GAL4 reporter genes in the presence of pGBKT7-MT I 88-

326. 
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Fig. 3.16. Analysis of CP and MT I fragments possibly responsible for the CP-MT I 

interaction by Y2H assay. (A) Interaction of fragments fused to AD of GAL4 and full length 

proteins fused to BD of GAL4. The solid line separates the test clones on the left from the 

controls on the right. (B) Interaction of fragments fused to BD of GAL4 and full length 

proteins fused to AD of GAL4 (C) Interaction between the fragments of CP and MT I. The 

assays were performed on SD-Leu-Trp+His and SD-Leu-Trp-His+3AT plates. (*) The pair 

pGADT7-CP/pGBKT7-MT I served as an additional positive control. 
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3.2.3. Bacterial two-hybrid screen 

In the B2H system, the proteins of interest were fused to one of the two physically separable 

fragments T25 and T18 of the Bordetella pertussis adenylate cyclase. As mentioned in the 

previous section, by switching the fusion to either C- or N-terminus of the T25 or T18 

fragment, four possible fusion types can be achieved. This resulted in a maximum of 8 

combinations for each protein-protein interaction and in 4 combinations for one protein self-

interaction tests. In total, for the O-demethylase components 66 interaction pairs were 

prepared. For each pair, three randomly chosen clones were tested. Three methods were used 

to screen the interaction including MacConkey and LB/X-gal plates and the β-galactosidase 

assay in liquid cultures. The liquid culture assay shares the same mechanism of the lacZ gene 

activation as the color change of clones on LB/X-gal plates and was used for the quantiative 

determination of the complementation efficiency. A high β-galactosidase activity reflects the 

interaction between the hybrid proteins (Dove & Hochschild, 2004).  

In constrast to the Y2H system, a number of interactions was detected in the B2H screen. Self 

interaction of proteins was observed for AE, CP, and MT I as indicated by a color change to 

blue (LB/X-gal) or red (MacConkey/maltose) (Fig. 3.17). For MT II, there are almost no, if 

any, colonies that showed a color change indicating a very low interaction potential. This was 

the first time in this study that MT I showed the ability to form oligomers. Beside the self-

interaction of O-demethylase components, interactions between different protein components 

were also observed (Fig. 3.17). Interestingly, most of the interactions were only detected 

when using the fusion orientation of X-T25/ T18-Y in which X and Y are the proteins used in 

the test. Fusion proteins in this orientation may yield a good environment for protein folding 

and binding to the matching partner.  
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Fig. 3.17. Investigation of the interaction of the O-demethylase components by B2H 

assay. All genes were cloned into the plasmids pUT18, pUT18C, pKN25 and pKT25. 

Plasmids pUT18 and pUT18C allow the expression of the selected enzymes fused either to 

the N- or C-terminus of the T18 domain of the B. pertussis adenylate cyclase, respectively. 

Plasmids pKNT25 and pKT25 allow the expression of the selected enzymes fused either to 

the N- or C-terminus of the T25 domain of the adenylate cyclase, respectively. This results in 

4 possible combinations for each pair which is shown in the figure as boxes framed with solid 

lines. (A) The degradation of X-Gal (color change to blue) indicates the presence of a 

functional adenylate cyclase due to the interaction of the two proteins of interest. (B) Acid 

production due to maltose consumption is shown as color change to red. Maltose consumption 

is induced by activation of the mal gene as a result of functional reconstitution of the T18 and 

T25 fragment in the case of interaction. Interactions of AE and CP were already described in 

Section 3.1.5 and were hidden in the grey box. 

The interaction of CP-MT I which was found in the Y2H system was also observed in the 

B2H assay, on both LB/X-gal and MacConkey plates. Additionally, interactions between AE 

and MT I, CP and MT II, and MT I and MT II were detected. For AE-MT II and MT II-MT 

II, either weak or no signals were found. The pairs CP-MT I and CP-MT II showed reciprocal 

interactions (X-T25/ T18-Y and Y-T25/ T18-X) while for the pairs of AE-MT II and MT I-

MT II only non-reciprocal ones were detected. This observation suggested a strong and more 

profound interaction between CP and the two methyltransferases than the two latter ones. 
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Fig. 3.18. Quantitative determination of the complementation efficiency by β-

galactosidase assay. The co-transformants were grown in LB medium supplemented with 

appropriate antibiotics and IPTG (0.5 mM) until an OD600 of 0.6-1.0 was reached. The 

cultures were subsequently used for the ß-galactosidase activity measurement. The activities 

are expressed in Miller units. (A) Proteins fused to the N-termini of the T25 and T18 domains. 

(B) Proteins fused to the C-termini of the T25 and T18 domains. (C) Proteins fused to the N-

terminus of the T25 and to the C-terminus of the T18 domain. (D) Proteins fused to the C-

terminus of the T25 and to the N-terminus of the T18 domain. 

The clones harboring a combination of proteins fused to either the N-terminal end of T25 or 

the C-terminus of T18 showed significant β-galactosidase activity (Fig. 3.18). The other 

fusion orientations showed low β-galactosidase activities. As depicted in Figure 3.18C, the 

interaction of AE-AE, AE-CP, CP-CP, CP-AE, CP-MT I, MT I-AE MT I-CP, and MT II-CP 

were the most significant ones among all combinations. The results of β-galactosidase assay 

were in good agreement with those of the test plates (Fig. 3.17).  

 

3.2.4.  Dot far-Western blot 

The recombinant proteins were purified as described for the gel shift experiments. Ten pairs 

which represent all possible interactions were prepared for the test (Fig. 3.19). The test 

procedure was described in the Materials and Methods section. One protein was applied on 
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the membrane creating a “prey” and was incubated with its interacting partner (in solution) 

which served as a “bait”. The negative control was included to each pair to control the 

unspecific binding of antibodies. The signals were detected by incubating the test membrane 

with the first antibody against the bait and subsequently with appropriate alkaline 

phosphatase-labeled secondary antibodies.  

As shown in Figure 3.19, the signals for the interaction of AE-MT II appeared to be the 

strongest in the far-Western blot analysis. The other pairs showed either moderate or weak 

interactions. The interaction of CP-MT I which was shown in both two-hybrid systems 

appeared as weak signals on the test membrane in far-Western blot. This interaction was only 

detected in one direction in which MT I is on the membrane and CP in the solution. Similar 

results were obtained for the CP-MT II pair. The signals for the interaction were only detected 

when MT II was fixed on the membrane and was incubated with CP in the solution. However, 

the interaction of CP and MT II seems to be stronger than that of CP-MT I.  

The influence of the corrinoid cofactor hydroxocobalamin on the interaction between CP and 

the two MTs was also investigated. The cofactor-containing form of CP was prepared as 

described in the Materials and Methods section. All experimental steps were carried out under 

anaerobic conditions. The results of the interaction of the cofactor bound CP and the two 

methyltransferases showed no difference to those obtained with the non-reconstituted proteins 

(data not shown) indicating that the presence of the cofactor does not influence the interaction 

of CP-MT I or CP-MT II in this experiment. In the case of the MT I and MT II pair, a 

moderate interaction was detected when MT I was spotted onto the strip but not when MT I is 

in solution. This phenomenon can be explained by the non-native conformations of the 

proteins, especially when spotted on the membrane. The interaction of AE-MT I was found in 

a reversible manner. Although good signals were observed on the test strips, the binding 

affinity of the two was considered to be weak because of the relatively strong intensity of the 

negative controls’ signals which were very likely a result of non-specific binding between the 

prey protein and the first antibodies. 
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Fig. 3.19. Interaction of the O-demethylase components by dot far-Western blot. Each set 

contains the test sample (left strip, incubated with a bait protein) and a negative control (right 

strip, incubated with buffer alone) performed in parallel for each study. Proteins in different 

concentrations were spotted on a PVDF membrane as prey protein. After blocking, the 

membrane was incubated with the interacting partner (bait protein in solution, 0.1 mg/ml) and 

afterwards with the first antibody against the bait. Signals were visualized in the NBT/BCIP 

reaction using alkaline-phosphatase labeled secondary antibodies. 

 

In-gel far-Western blot 

Polyacrylamide gels are generally not suitable for immunoblotting because it seems to be 

impermeable to antibodies and large proteins. Several methods were recently developed to 

circumvent this obstacle (Chan et al., 2008; Xiong et al., 2009). One method was applied 

successfully by pre-treating the gel with 50% isopropyl alcohol before performing the 

Western blot. The sensitivity of the detection by this method was remarkable (Desai et al., 

2001). The in-gel far-Western blot is generally used for detection of protein but there were not 

many reports on using this method to study the protein-protein interaction. To allow a good 

accessibility of the prey and the bait proteins, an in-gel far-Western blot was performed with a 

AE-MT I interaction

CP-MT I interaction CP-MT II interaction MT I-MT II interaction

AE-MT II interaction

CP-MT II CPMT I-CP MT ICP-MT I CP

MT II-AE MT IIAE-MT II AEMT I-AE MT IAE-MT I AE
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MT II antibody CP antibodyMT I antibody CP antibody MT I antibodyMT II antibody
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few modifications (Edmondson & Roth, 2001). The prey proteins were subjected to native 

PAGE. After electrophoresis, the gel was pre-treated with 50% isopropyl alcohol followed by 

distilled water treatment. The gel was then incubated with the bait proteins for three hours. 

We assumed that by performing this step, the bait proteins would have more space to move 

freely and bind the in-gel-prey proteins; therefore, the interaction sites would be more 

accessible in comparison to the far-Western blot analysis. The gel containing the bait-prey 

mixture was incubated with the first antibody against bait protein and then with Phototope®-

HRP linked secondary antibodies (Cell Signaling, USA). Signals were developed on an x-ray 

film under light preventing conditions. Unfortunately, by using this method it was not 

possible to detect any signals (data not shown). To make sure that the test samples were on 

the gels, the gels were stained with Coomassie blue after immunodetection. After staining, 

protein bands were detected. If the native gel with the prey protein was used for Western 

blotting (on PVDF membrane) signals were observed on the membrane. The detection of the 

prey protein in the native gel failed. The results imply that the detection method used seems to 

be not suitable for in-gel detection. One possible explanation is that the in-gel signals could 

not be transferred to the film. Another possibility is that the baits did not diffuse into the gel 

or could not bind to the in-gel-preys so that no signal was detected. 

 

3.3. Possible electron donors involved in the ATP-dependent corrinoid reduction 

catalyzed by the activating enzyme 

3.3.1. Amplification of A3KS_00044 and A3KS_02576 DNA fragments 

At the point we started to search for a possible electron donor in vivo, the genome sequence of 

A. dehalogenans was not available. Therefore, the genome sequence of the close relative A. 

woodii was analyzed (Genbank: CP002987.1). The genome of A. woodii consists of a single 

circular 4,044,785 bp chromosome with a GC content of 39.3% (Poehlein et al., 2012). In 

total, 10 annotated ferredoxin genes were found in the genome of this species by searches 

using NCBI server. The database searches (BLAST) (Altschul et al., 1997) were refined and 

the most likely candidate Awo_c25230 was chosen for the design of degenerated primers 

which were used in combination with genomic DNA of A. dehalogenans. By using this 

approach, a DNA fragment of A. dehalogenans was amplified by PCR. The fragment was 

identified as a part of a gene encoding a putative ferredoxin. While these studies were 
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underway, the first draft version of the A. dehalogenans genome was released. Now, the gene 

fragment could be assigned to the gene A3KS_00044 of A. dehalogenans and the whole gene 

was amplified using specific primers derived from the genome sequence of A. dehalogenans. 

In parallel, the genome sequence of A. dehalogenans was analyzed for the presence of other 

putative ferredoxin genes. At least 5 genes encoding small Fe/S cluster containing proteins are 

present. A3KS_02576 which shows structural similarities to a Clostridium pasteurianum 

ferredoxin (PDB database) (Berman et al., 2003) was also chosen for heterologous expression 

in E. coli.  

 

3.3.2. Sequence analysis 

The evidence for the presence of [4Fe-4S] clusters of protein Fd I encoded by A3KS_00044 

was obtained by sequence alignments. Searches for sequence similarities were performed 

using BLASTP. The Fd I protein of A. dehalogenans exhibits a high degree of sequence 

identity to putative ferredoxins of Clostridium ljungdahlii and C. carboxidivorans (59 - 61%). 

The sequence identity to the annotated ferredoxin of A. woodii was about 93% (Fig. 3.20A). 

The analysis using the web-based software Myhits (Pagni et al., 2004) revealed that Fd I 

contains four [4Fe-4S] cluster binding motifs with the consensus sequence C-X2-C-X2-C-X3-

C. The sixteen cysteine residues which are involved in binding of the [4Fe-4S] clusters are 

highly conserved (Fig. 3.20A). For the second putative ferredoxin Fd II encoded by 

A3KS_02576, the sequence identity of the protein was about 88% compared to a known 

ferredoxin of the methylotrophic hetero-acetogen Butyribacterium methylotrophicum (Saeki 

et al., 1989). Fd II also showed high sequence homology to annotated ferredoxins of C. 

pasteurianum and C. carboxidivorans (64 - 66%). Two C-X2-C-X2-C-X3-C motifs, probably 

binding the two [4Fe-4S] clusters, are highly conserved among these bacterial ferredoxins 

(Fig. 3.20B). Fd II consists of 55 amino acids, accounting for a molecular mass of 6 kDa 

which is the common size for ferredoxins found in acetogenic bacteria (Rabinowitz, 1972; 

Ragsdale & Ljungdahl, 1984; Reubelt et al., 1991). 
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Fig. 3.20. Sequence alignment of the putative ferredoxins Fd I (A) and Fd II (B) of A. 

dehalogenans and other closely related ferredoxins. The alignments were done using the 

BLAST network service (Altschul et al., 1997). Conserved residues are shown in bold. The 

cysteine residues, predicted to bind the [4Fe-4S] clusters, are indicated in boxes. Ferredoxins 

of the following bacteria are compared: (A) A. woodii (Locus: AFA49280), Clostridium 

ljungdahlii (Locus: YP_003780413), C. carboxidivorans P7 (Locus: ZP_05391398); (B) 

Butyribacterium methylotrophicum (Saeki et al., 1989), C. carboxidivorans P7 (Locus: 

ZP_05394166), C. pasteurianum (Locus: ZP_20958515), C. botulinum A (Locus: 

YP_001252608). 

 

3.3.3. Heterologous expression of putative ferredoxin genes and reconstitution of the iron 

sulfur clusters  

The genes encoding A3KS_00044 and A3KS_02576 were cloned into the pET11a vector using 

the NdeI and the BamHI restriction sites of the multiple cloning region. The resulting 

plasmids were transformed into E. coli XL1-blue and then into the BL21 (DE3) strain for 

production of recombinant proteins. Proteins were produced in E. coli as C-terminal Strep-tag 

fusions. Cells were grown on LB medium containing ampicillin. IPTG was added after the 

OD of the culture reached 0.6. The cells were harvested 16 h after induction and were 

disrupted using a French Press. After the first French press cycle, Fd I was insoluble and only 

A.  A3KS_00044  

A. dehalogenans MKKVVVADQA ACVKCLGCEL ACANAFYKEP VSELSCIKIT EKEDGSPKTL  50 

A. woodii MKKLVVVDQS ACVKCLGCEL ACANAFYKEP VSELACIRIT EKEDGSPKTL  50 

C. ljungdahlii MKKLVVKDKS LCMSCLSCEM ACSEAFYKTY GN--SCIKID EGKDGCVDLK  48 

C. carboxidivorans MKKLVVNDSS LCMACLSCEI ACSEAFYKTY GN--SCIKID VKKDNSPNIK  48 

   

A. dehalogenans VCVQCGKCAK ACEAGAITQN AKGVYMISKK LCVNCGKCVE VCPFGVLVKS  100 

A. woodii VCVQCGKCAK VCEAGAITKN AKGVYMINKK LCVNCGKCVE ACPFGVLVKS  100 

C. ljungdahlii VCNQCGVCAK KCPEEAIKQN AKGIYMIDKK ACTGCGTCVE ACPKGIIVKV  98 

C. carboxidivorans TCNQCGLCAK KCPEGAIKQN AKGIYMIDKK TCTSCFKCVE VCPKGIIVKT  98 

   

A. dehalogenans EDRDVPSKCI ACGICVEACP QDVLAIKES 129 

A. woodii EDRDVPSKCI ACGICVEACP QDVLAIKES 129 

C. ljungdahlii EDKPNPSKCM ACGICVKACP MGVLEIQED 127 

C. carboxidivorans EDKPNPSKCI ACGICVKACP MEVLEIQEN 127 

   

B. A3KS_02576  

A. dehalogenans MAYKITDECI ACGSCMDECP VEAISEGD-I YVIDAATCTD CGACAEQCPV EAIVQD 55 

B. methylotrophicum -AYKITDECI ACGSCADQCP VEAISEGS-I YEIDEALCTD CGACADQCPV EAIVPE 54 

C. carboxidivorans MAYKIADSCV SCGACASECP VNAISQGDSI FVIDADTCID CGNCANVCPV GAPVQE 56 

C. pasteurianum MAYKIEDSCV SCGTCASECP VNAISQGDSI FVIDESTCID CGNCANVCPV GAPVQE 56 

C. botulinum MAYKITDACV SCGACAAECP VNAISQGDSI FDIDADTCID CGNCANVCPV GAPVQD 56 
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detected in the total protein fraction (Fig. 3.21A, lane 3). The second French Press cycle of 

the same cell extracts yielded in a higher amount of soluble protein (Fig. 3.21A, lane 4). The 

protein was purified by affinity chromatography on Strep-tactin. The apparent molecular mass 

of the isolated protein was estimated to be 15 kDa by SDS-PAGE and was in good agreement 

with the one calculated from the amino acid sequence (14.2 kDa).  

 

Fig. 3.21. SDS-PAGE of heterologously expressed putative ferredoxins of A. 

dehalogenans. (A) Production of Fd I after Coomassie stain. T0 and T1 are the crude extracts 

of Fd I before adding IPTG (lane 1) and after overnight induction (lane 2), respectively. FP1: 

Soluble fraction of the first French Press cycle. FP2: Soluble fraction of the second French 

Press cycle. Fd I: purified Fd I (1 µg). (B) Production of Fd II after silver stain. 1 µg of the 

crude extract of Fd II or purified protein were applied. Lanes 1 and 2 of T0: crude extracts 

before adding IPTG; lanes 1 and 2 of T1: crude extracts after adding IPTG. Fd II: purified Fd 

II. 

The crude extract of the second putative ferredoxin Fd II did not show any trace amount of the 

recombinant protein after SDS-PAGE and Coomassie staining. Assuming that the Coomassie 

stain might not be suitable for detection of the protein, silver stain was used. Fd II was 

isolated according to the method of Fd I. The purity of isolated protein was checked by SDS-

PAGE and silver stain. After silver stain of the gel containing crude extract samples and 

purified ferredoxin, a band of around 12 kDa was detected for purified Fd II (Fig. 3.21B, lane 

5) which corresponds to the double molecular mass of Fd II compared to the calculated one. 

The reason for this phenomenon is unknown. A possible explanation is that the presence of 

multi-charged iron sulfur clusters in the protein might influence the separation by SDS-

PAGE. The yield of purified protein was very low (about 0.1% of total protein) despite all 

attempts to optimize the production of ferredoxin. Nevertheless, sufficient protein was 
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obtained for the characterization of the Fds I and II. The presence of the Strep-tag fusion 

proteins were verified by Western blot using anti-Strep antibodies (IBA, Goettingen, 

Germany) (data now shown). 

The isolated proteins showed a slightly brown color which was a good indication for the 

presence of [Fe-S] clusters. However, the iron determination revealed that the isolated 

proteins contain only 0.1 - 0.3 mol iron per mol protein. In addition, the UV/Vis spectrum of 

the two proteins showed a small peak at 390 nm (data not shown) which indicates a low 

amount of iron. The two proteins were subjected to a reconstitution step to recover their active 

form. During reconstitution, the proteins were incubated with a 5-fold molar excess of 

ammonium iron(III) citrate and lithium sulfide in the presence of DTT. Reconstituted proteins 

were obtained after passing through a desalting column. The iron determination showed that 

reconstituted Fd I contained approximately 20 mol of Fe per mol protein which is slightly 

higher than the expected value (16 mol of Fe per mol protein). Reconstituted Fd II contained 8 

mol Fe per mol protein after reconstitution. This value is in excellent accordance with the 

presence of 2 [4Fe-4S] clusters as described above.  

 

3.3.4. Characterization of Fd I and Fd II by UV/Vis spectroscopy 

The reconstituted putative ferredoxins were dark green (Fd I) or brown (Fd II) in colour. The 

absorption spectrum of both proteins is depicted in Figure 3.22. A shoulder (Fd I) or peak (Fd 

II) at around 400 nm and a protein peak at 280 nm were visible. Both ferredoxins could be 

reduced by Ti(III)citrate resulting in a significant bleaching of the peak at 400 nm. The 

spectrum of Fd II correlated well with other 2 [4Fe-4S] ferredoxins found in the literature, 

including a ferredoxin of Methanosarcina thermophila (Clements et al., 1994) or C. 

acetobutylicum (Guerrini et al., 2008). The UV/Vis spectrum of Fd I was a little different 

from that of the Fd II, which is maybe due to the presence of a higher number of iron in the 

protein.  
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Fig. 3.22. UV/Vis spectra of Fd I (A) and Fd II (B). The spectra of samples were recorded 

in 50 mM Tris HCl, pH 7.5. The spectra of the oxidized proteins (solid line) and the 

Ti(III)citrate-reduced proteins (dotted line) are shown. The spectrum of the reduced proteins 

could only be recorded down to 360 nm due to the strong absorbance caused by Ti(III)citrate 

below this wavelength. Fd I: 0.58 mg/ml; Fd II: 0.15 mg/ml.  

In order to check the ability of the purified Fds to act as electron donors for the reductive 

activation reaction catalyzed by AE, the functionality of these proteins had to be tested. Since 

ferredoxin often serves as electron acceptor for hydrogenases or formate dehydrogenases, the 

reduction of the purified ferredoxins by these enzymes was studied. For this purpose, crude 

extracts of A. dehalogenans were prepared and tested for hydrogenase and formate 

dehydrogenase activities. In the presence of formate (5 mM) or hydrogen (100%, 1 atm) with 

methyl viologen as artificial electron acceptor, addition of the crude extract to the enzyme 

assay resulted in a significant increase in absorbance at 578 nm indicating the reduction of 

methyl viologen (data not shown). This indicates a high hydrogenase and formate 

dehydrogenase activity of the crude extract. The Fds I and II were then used in an assay to 

check if the crude extract is able to reduce the Fds under anoxic condition. The crude extract 

or Ti(III)citrate as a control was step-wise added to the solution containing Fd I or Fd II 

saturated with hydrogen. The result showed no significant reduction of the Fds by using the 

crude extract while the reduction by Ti(III)citrate was observed as shown earlier. Similar 

results were observed when using formate as electron donor. Since the reduction of both Fds 

by enzymes of the crude extract of A. dehalogenans (e. g. hydrogenase or formate 

dehydrogenase) was not detected, the involvement of the purified Fds in the reductive 

activation seems to be unlikely. Indeed, in the presence of ATP and the purified Fd I or Fd II, 

AE failed to activate the oxidized CP under anaerobic conditions (data not shown).  
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4. Discussion 

Methyl transfer catalyzed by the O-demethylases is a key step in the methylotrophic 

metabolism of acetogens. The enzyme systems catalyze the transfer of the methyl group from 

a phenyl methyl ether to tetrahydrofolate forming methyltetrahydrofolate which is further 

oxidized to CO2. The reducing equivalents generated in this process are used for the synthesis 

of acetyl-CoA. In Acetobacterium dehalogenans, the O-demethylating systems were found to 

consist of four components, two methyltransferases (MT I and MT II), a corrinoid protein 

(CP) and an activating enzyme (AE). During numerous methyl transfer cycles, the 

cob(I)alamin form of CP may be accidentally oxidized to the inactive form cob(II)alamin due 

to the low redox potential of the cob(II)/cob(I)alamin couple. The reductive activation of the 

corrinoid cofactor of CP is required to maintain the methyltransferase reaction. This reductive 

activation is mediated by AE. Hence, the corrinoid protein in its Co(II)-form is a substrate for 

AE and should interact with this enzyme. The interaction of AE and CPvan was earlier 

demonstrated by Schilhabel et al (2009). The identification and expression of four different 

CP genes (encoding CPvan, CPver, CPsyr, CPgua) of A. dehalogenans enabled the further 

investigation on the interaction of the two components. Based on the fact that the four CPs 

show high homology and only one AE was found, it was assumed that the O-demethylase 

system may require only one AE for the activation of different CPs. The results of gel shift 

experiments described in this communication provide strong evidence for this hypothesis. 

From the data, it is obvious that AE is able to interact with the four different CPs in the 

presence of the corrinoid cofactor hydroxocobalamin. For all interaction pairs, the dimeric 

complex was formed with a stoichiometry of 1:1 suggesting that AE interacts with the four 

CPs in a similar mode of action. The ability to interact and activate multiple CPs was 

confirmed by the corrinoid reduction assay. AE was able to reduce all four different CPs 

under the same assay conditions. However, the specific activities of the various CPs differ 

slightly. AE was most active on CPsyr. The reduction activity towards CPvan is comparable to 

that towards CPsyr. The specific activities on the other two were about 50% - 70% of the 

activity compared to that with CPsyr. No relationship between the sequence identity and the 

specific activity was found. We could not exclude that CPver and CPgua may require different 

derivatives of cobalamin rather than hydroxocobalamin in vivo which may provide the 

optimal conditions for the interaction and corrinoid activation. Notably, the extraction of 

corrinoids resulted in only one B12 peak (unpublished data). Thus, it is likely that only one 



DISCUSSION 

 
65 

 

cobalamin is present in the different CPs. The ability of AE to recognize different CPs is 

similar to the function of RamA in Methanosarcina barkeri, a member of RACE proteins. It 

functions as the activator of corrinoid-dependent methylamine methyltransferases. The 

enzyme is capable of reducing the corrinoid proteins of trimethylamine, dimethylamine, and 

monomethylamine methyltransferases (MttC, MtbC and MtmC, respectively). However, the 

interaction of the activator and the corrinoid proteins has not been shown (Ferguson et al., 

2009). 

The presence or absence of the corrinoid cofactor significantly affects the native form of CP 

and consequently affects the interaction of AE and CP. The cofactor-free CPs did not show 

any defined band in the native gel while the reconstituted CPs generally showed strong bands. 

Moreover, in gel shift experiments the interactions between AE and the four CPs cannot be 

observed in the absence of the corrinoid cofactor. These observations seem to be good 

evidence for the influence of the corrinoid cofactor on the correct conformation of CP. Under 

the experimental conditions applied in the gel shift experiments, CP may require 

hydroxocobalamin for correct folding which is essential for the binding to its interacting 

partner AE. The crucial role of the cofactor in alternating the conformation of CP for methyl 

transfer reactions was demonstrated before for the corrinoid containing methionine synthase 

(Matthews et al., 2008). Since the redox potential of the Cob(II)/Cob(I) couple is very low, 

the inactive cob(II)alamin form of CP was used in the test. The presence of the inactive 

cofactor may change the conformation of CP in such a way that AE is able to recognize CP 

and interacts. In a similar activation system, RACo of Carboxydothermus hydrogenoformans, 

the corrinoid protein (CFeSP) possesses a relatively high redox potential of the 

cob(II)/cob(I)alamin couple which is 50 - 100 mV more positive compared to other cobalamin 

containing methyltransferases (Harder et al., 1989). Thus, the active cob(I)alamin form was 

more stable and interaction studies were performed in the presence of the CFeSP in different 

redox states. In this system, the activating enzyme RACo appears to have a higher affinity to 

the inactive [Co(II)-CFeSP] than to the active [Co(I)-CFeSP] form, which makes sense since 

only the Co(II)-form is the substrate of RACo. Therefore, it may be assumed that the 

interaction between AE and CP requires the inactive Co(II)-form of CP. Cob(I)alamin 

harboring CP is not a substrate of AE, therefore it is very likely that its affinity to AE is lower 

than to that of the inactive one. 
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It should be mentioned that the reductive activation of CP is ATP-dependent. The presence of 

Ti(III)citrate as reducing agent with a very low redox potenial is not sufficient to reduce 

cob(II)- to cob(I)alamin (Schilhabel et al., 2009). In vitro experiments require the addition of 

ATP besides Ti(III)citrate and AE to fulfill the reductive activation of CP. The ATP 

hydrolysis during activation could be demonstrated (unpublished data). In gel shift 

experiments, the absence of ATP did not have any effect on the interaction of the two 

proteins. This observation suggests a direct interaction between AE and CP in the presence of 

the inactive Cob(II) species. Unlike corrinoid proteins of methyltransferases involved in 

methylation of CODH/ACS (CO dehydrogenase/acetyl-CoA synthase) (Menon & Ragsdale, 

1998; Menon & Ragsdale, 1999; Svetlitchnaia, 2006), CPs of O-demethylases of A. 

dehalogenans do not contain any iron-sulfur cluster. The reductive activation by AE increases 

the midpoint redox potential of CP by more than 200 mV to -320 mV at pH 7.5 (Siebert et al., 

2005). ATP is probably required for altering the redox potential of CP to more “positive” 

rather than for contributing to the interaction of the two proteins. The standard redox potential 

of the cob(II)/cob(I)alamin varies according to the type of the corrinoid and environment. The 

redox potential of a base-on corrinoid was shown to be significantly lower than that of the 

base-off corrinoid (-700 mV and -400 mV, respectively) (Harder et al., 1989; Pratt, 1993). 

The presence of ATP may induce a conformational change that favors the formation of the 

base-off form and shifts the redox potential to more positive as reported in the case of the 

methyltransferase activating protein (MAP) of M. barkeri (Daas et al., 1996a). Another 

possibility is that the binding of AE to ATP and/or the hydrolysis of ATP may lead to a 

conformational change in such a way that an unknown electron donor has access and transfers 

the electron to AE to facilitate the reduction of CP. Further experiments are required to 

confirm these hypotheses.  

The activator of a 2-hydroxyisocaproyl-CoA dehydratase of Clostridium difficile catalyzes the 

reductive activation in an ATP dependent reaction. In this protein, the reduction of the 

dehydratase requires a very low redox potential of about -900 mV while the redox potential of 

the activator is ca. -350 mV (Buckel et al., 2005). A hydrolysis of two ATP should overcome 

the redox barrier between the two proteins. Reduction of the activator and binding of ATP 

induce conformational changes of the activator which enables the electron transfer to the 

dehydratase as shown in Acidaminococcus fermentans (Hans et al., 2002). As soon as the 

complex between the activator and dehydratase has been formed, ATP is hydrolysed (Kim et 
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al., 2007). In A. dehalogenans, AE of the O-demethylase in the presence of ATP and 

Ti(III)citrate increases the redox potential of the corrinoid cofactor to about -320 mV (Siebert 

et al., 2005). The activation mechanism of CP therefore differs from that of the dehydratase in 

this anaerobic bacterium. 

The interaction between AE and CP was also observed by two other assay systems: the 

bacterial two-hybrid screen (B2H) and far-Western blot. Surprisingly, the corrinoid cofactor 

was not required for the interaction. In the bacterial two-hybrid system, the interaction of AE 

and CP was only observed when one protein was fused to the N-terminal part of T25 and the 

other protein was fused to the C-terminus of T18. Protein fused in this orientation may yield 

optimal folding so that the interaction occurs. It should be noted that cobalamin is not 

produced by the E. coli strains used for the test. This indicates that the interaction of the two 

fusion proteins does not necessarily require the corrinoid cofactor. However, it should be 

considered that the fusion of the proteins may create a folding which is different from the one 

of the physiologic environment. Thus, it is very likely that the interaction between the two 

fusion proteins may occur in this way. The interaction between AE and CP was also detected 

by far-Western blot analysis. The presence or absence of the corrinoid cofactor did not have 

any influence on the interaction of the two proteins in these experiments. This finding was in 

accordance with the result of the B2H assay, but contradictory to that of the gel shift 

experiment. One possible explanation for these results is that the folding of the proteins may 

be affected by the methods used in this study. In far-Western blot, one of the proteins is 

applied onto the membrane, which may lead to a conformational change, by which the 

interaction sites of either AE and/or CP are more exposed. If so, an interaction of AE and CP 

is more likely and takes place even in the absence of the corrinoid cofactor. The interaction 

between AE and CP was not detected in the yeast two-hybrid system (Y2H). In yeast, the 

biosynthesis of cobalamin does not take place. If the assumption for the crucial role of the 

corrinoid cofactor on the interaction between AE and CP is true, the interaction of the two 

proteins will not occur. Moreover, when the proteins are fused to either GAL4 DNA binding 

or activating domain, there is a possibility that the fusion domains may interfere with the 

protein’s function or binding regions. Therefore, it is not surprising that no interaction of the 

two components was found in the Y2H assay.  

The native gel also revealed self-association forms of the test proteins. In the presence of the 

cofactor, CPvan, CPsyr, and CPgua exhibit the monomeric forms, whereas CPver runs as dimeric 
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protein. In the bacterial two-hybrid system, CPvan in the form of a chimeric protein also shows 

self-interaction which suggests the ability to form a dimer. The oligomerization of AE was not 

only found in the gel shift experiment but also in the Y2H and B2H assays. In the native gel, 

AE possesses a dimeric form under the experimental conditions provided. Under certain 

conditions, AE forms multimers which were detected as a ladder of bands in the native gel 

(data not shown). The signal for the interaction of the two proteins could only be detected 

when AE was in the dimeric form. When AE forms a multimer, it is difficult to differentiate 

between the bands of the complex AE-CP and the trimeric form of AE. In the Y2H system, 

the cells of the AE-AE pair grew on the test plate which indicates the formation of dimers or 

multimers of the activating enzyme. In addition, the interaction of the AE-AE pair is the only 

one which was detected for all four combinations in the B2H assay. These combinations 

showed a significant β-galactosidase activity as a result of a high level of adenylate cyclase 

complementation. Three of four combinations of AE-AE showed the highest β-galactosidase 

activity in comparison to the other interaction pairs. These results are strong indications for 

the formation of dimers and oligomers of AE.  

The activator of the 2-hydroxyglutaryl dehydratase, an [4Fe-4S] enzyme catalyzing the ATP-

dependent reductive activation of the dehydratase, also shows a homodimeric form in its 

crystal structure (Locher et al., 2001). The bacterial protein RACo of C. hydrogenoformans, a 

protein which belongs to the COG3984 family as described for AE, is also a homodimer as 

shown by protein crystallization (Hennig et al., 2012). RACo has a similar function as AE. 

RACo harbors a [2Fe-2S] cluster at the N-terminus and catalyzes the reductive activation of a 

corrinoid dependent methyltransferase in an ATP-dependent reaction. Unlike the dehydratase 

activator whose dimeric structure contains a single [4Fe-4S] cluster located at the interface 

between its two identical subunits (Buckel et al., 2004), the homodimeric RACo harbors two 

[2Fe-2S] clusters which seem to act independently. The complex formation of RACo and the 

CFeSP was predicted as two molecules of CFeSP per one homodimer activator (Hennig et al., 

2012) which is in accordance with our results of the gel shift experiment, in which, according 

to the predicted size of the shifted band, a complex of 2 AE and 2 CP was formed.  

In the Y2H system, it was possible to create stable protein fragments of the O-demethylase 

components to study a sub-molecular interaction. In order to identify the specific domain 

which is involved in the self-association of AE, two fragments of AE (AE1-133 and AE134-

598) were prepared. The results revealed that the AE1-133 fragment interacts not only with 
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itself but also with the full length AE. The C-terminal fragment does not show any interaction. 

This result provides clear evidence that the N-terminal part of the protein is involved in the 

self-interaction of the AE molecule. Studies on the crystal structure of the activator RACo 

revealed that the region involved in the dimerization of this protein is located at the middle 

domain (residues 126-206). The similar fragment of AE, AE 101-176 was prepared and was 

tested for the self-association ability by the Y2H assay. This fragment showed no interaction 

in the Y2H screen. However, we could not exclude the possibility that the self-interaction of 

AE101-176 as well as the interaction of AE-CP was not detectable by Y2H assays. 

By employing a combination of the four different methods, several interactions of the O-

demethylase components distinct from AE and CP were found. Some interactions confirmed 

the ones previously reported, some others were found for the first time. However, these 

interactions should be carefully evaluated. For gel shift experiments, six possible 

combinations of the four components of the O-demethylase system were prepared (AE-CP, 

AE-MT I, AE-MT II, CP-MT I, CP-MT II, MT I-MT II). Each individual protein showed a 

visible band in the native gel. CP and MT I were monomers while AE forms a dimer. Since 

the MT II band is diffuse in the gel, its multimeric form remains to be determined. 

Unfortunately, no interaction was found for the combinations tested except for the positive 

control, the AE-CP pair, suggesting that the testing conditions of the gel shift experiment 

were not suitable for the detection of interactions of the other components. It is very likely 

that MT II has the affinity to CP containing methyl-cob(III)alamin rather than the Cob(II)-

form used in the test, since methyl-cob(III)alamin bound CP is the substrate of MT II 

according to the reaction mechanism. Several studies demonstrated that the different redox 

states of the cobalamin have a significant effect on the conformation of the molecule. Specific 

conformational changes determine the binding of CP to either MT I or MT II and facilitate the 

specific methyl transfer reaction (Jarrett et al., 1998; Hagemeier et al., 2006; Datta et al., 

2008; Koutmos et al., 2009). For this reason, methyl-cob(III)alamin bound CP was prepared 

for the test. Under light protected conditions, MT II showed no interaction with methyl-

cob(III)alamin bound CP as no shifted band appeared in the native gel. It cannot be excluded 

that the light sensitive form methyl-cob(III)alamin bound CP may degrade during the 

separation which takes 4 - 5 hours including the pre-incubation of the proteins. Furthermore, 

the diffuse band of MT II on the native gel implies that the method may not provide optimal 

conditions for MT II like it does for the others.  
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Similar to the results obtained from gel shift experiments, only a few interactions were 

detected in the yeast two-hybrid screening, namely AE-AE and CP-MT I. The interaction of 

CP-MT I is in accordance to the reaction mechanism as CP is the substrate of MT I. The 

interaction of methyltransferase I and the corrinoid protein has been studied for different 

enzyme systems (Banerjee & Matthews, 1990; Svetlitchnaia et al., 2006; Matthews et al., 

2008). In methanol-coenzyme M methyltransferase of M. barkeri, the formation of a protein 

complex consisting of the methanol-binding methyltransferase and the corrinoid protein 

(MtaBC) is essential for the catalysis. The methyltransferase MtaB binds at the N-terminal 

arm and at the corrinoid cofactor of the MtaC (Hagemeier et al., 2006). In the acetogen M. 

thermoacetica, the corrinoid iron-sulfur protein methyltransferase (MeTr) catalyzes the 

tranfer of methyl group from methyltetrahydrofolate to the corrinoid protein (CFeSP). The 

crystal structure of the complex CFeSP/MeTr revealed interaction sites. The C-terminal α-

helix of MeTr (residues 255-262) interacts with the helix (residues 191-204) of the small 

subunit of CFeSP. A weak hydrophobic interaction between MeTr and the large subunit 

([4Fe-4S]-binding domain) of the CFeSP was also detected. The formation of the 

CFeSP/MeTr complex results in a conformational change of the corrinoid binding domain and 

this is necessary for catalysis (Kung et al., 2012). It should be noted that MeTr shows 

structrural homology to the dihydropteroate synthases (DHPS) protein family which MT II 

belongs to. Although most of the residues involed in pterin binding are conserved, the 

cobalamin binding of region of MeTr differs from the DHPSs (Doukov et al., 2000). To 

identify residues which are important for the interaction of CP and MT I in A. dehalogenans, 

several fragments of the two proteins including the cobalamin binding domain of CP and the 

substrate binding and catalytic domain of MT I were prepared. Under the assay conditions, no 

interaction between these fragments was observed in Y2H assay, with the exception of an 

auto-activation of the MT I 88-326 fragment. The fusion of MT I 88-326 to the DNA binding 

domain of GAL4 may possess a transcriptional activation domain that activates the expression 

of the reporter genes. It was estimated that up to 10% of fusions of cDNA inserts to the DNA 

binding domain lead to an auto-activation of the reporter genes (Fashena et al., 2000). 

Therefore, all combinations in which the pGBKT7-MT I 88-326 fragment was involved were 

considered to be false positives. 

The B2H screening revealed a high number of interactions between the components of the O-

demethylase system. The oligomerization of AE and CP were proven as described above. The 
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multimerization of MT I was shown for the first time in A. dehalogenans. In the other systems 

such as M. thermoacetica the crystal structure of the CFeSP/MeTr complex also showed 

MeTr as homodimeric protein (Kung et al., 2012). In the methanogen M. barkeri, the crystal 

structure of the methanol-cobalamin methyltransferase complex (MtaBC) revealed a 

heterotetramer composed of two methyltransferases and two corrinoid proteins (Hagemeier et 

al., 2006). In these methyltransferase systems, the corrinoid protein appears to be a subunit of 

the methyltransferase rather than a separate protein as in the acetogenic enzyme systems. The 

interaction of CP-MT I detected by the Y2H assay was confirmed in the B2H screening. 

Unlike the results in the Y2H assay, the interaction between CP and MT I was detected in the 

reciprocal way and was one of the most significant interactions determined by the β-

galactosidase assay.  

Interaction between CP and MT II was also found in the B2H system. Only a few data about 

the interaction of these proteins are reported. The interaction of the corrinoid protein and 

methyltransferase II (AdoMet:Cob) of the corrinoid-dependent methinonine synthase in E. 

coli was essential for the methyl transfer of methylcobalamin to homocystein to form 

methionine (Matthews, 2001). In M. barkeri, the interaction of the methyltransferase II 

(MtaA) and the corrinoid protein (MtaC) was predicted based on the crystal structure of the 

MtaBC complex and a known structure related to MtaA. The three-component MtaABC 

complex was formed to catalyze the two-step methyl transfer process (Hagemeier et al., 

2006). The interaction in which more than two components of the O-demethylase systems are 

involved may also take place in vivo. A strong interaction between AE and MT I or weak 

interactions of the AE-MT II and the MT I-MT II pairs detected in the B2H assay might be 

the first clues for this assumption. The formation of the complexes such as AE-CP-MT I or 

MT I-CP-MT II during the catalysis should not be excluded. However, we could not rule out 

that the aformentioned interactions may not take place in vivo. The B2H assay is carried out 

with hybrid proteins that are possibly overproduced in comparison to the native expression 

level of the proteins. This may lead to the fact that some low affinity interactions can be 

exaggerated. Under native conditions (e. g., at lower levels of expression), such interactions 

may not occur (Karimova et al., 2005). It is also possible that fusion forms of the proteins 

may result in alternation of the native folding in such a way that an interaction can occur or is 

disabled. Therefore, more experimental evidence is required to support the assumption of the 

involvement of more than two components in the complex formation. Taken together, the 
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B2H system revealed a number of interactions which were not observed with the methods 

described before. The formation of a dimer (or oligomer) of MT I was demonstrated. The 

interaction between CP and the two methyltransferases was shown which is in accordance to 

the reaction mechanism of O-demethylases.  

The interaction between AE and MT II was shown by far-Western blot for the first time. 

According to the mechanism of the O-demethylase reaction the two enzymes seemingly have 

no connection with each other since AE is the activator of cob(II)alamin whereas MT II 

transfers the methyl group of methyl-cob(III)alamin to tetrahydrofolate. The in vivo 

interaction is therefore unlikely. In far-Western blot analysis signals for the interaction of this 

pair were the most intense ones among all test samples which imply a strong binding of the 

two. Hydropathy analysis by a web-based software (Bowen, 2008) revealed that MT II 

contains more hydrophobic regions than the other components. AE is also found to be a 

hydrophobic protein. Therefore, the interaction shown by far-Western blot is possibly based 

on unspecific hydrophobic interactions of the two proteins. In case of the MT I and MT II 

pair, the moderate interaction was detected when MT I was spotted onto the strip but not 

when MT I is in solution. This phenomenon can be explained by the non-native conformation 

of the proteins. Once protein is blotted onto the membrane, the unspecific binding of the 

protein with the membrane may lead to conformational changes. In a direction where the 

conformation of protein was not optimal. The interaction sites might be hidden. Similarly, the 

interaction of CP-MT I and CP-MT II can only be obtained when the two MTs are fixed onto 

the membranes and were incubated with CP in the solution but not vice versa. This 

observation leads to an alternative implication that the CP in its “free form” has a native 

folding and it can move freely to bind MT I and MT II. On the other way around, when CP 

was blotted onto the membrane its interaction sites might be blocked so that MT I and MT II 

have no access. The results of far-Western blot also indicated that the reconstituted cofactor 

containing CP has no influence on the association with the two MTs in the far-Western blot. 

The results revealed a new evidence of functional interactions of the O-demethylase 

components of A. dehalogenans. Using a combination of in vitro and in vivo methods, a 

number of interactions were observed. Several interactions found in this study confirm the 

results previously reported, while some interactions were observed for the first time. The 

protein-protein interactions of the O-demethylase components are summarized in Figure 4.1. 
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Figure 4.1. Interactions of the O-demethylase components deduced from the results of 

the different methods applied. (A) Interactions deduced from in vivo two-hybrid screens. 

(B) Interactions deduced from in vitro gel shift experiments and far-Western blot analysis. 

The thickness of the solid arrows indicates the strength of the interactions of the B2H screens 

(A) or far-Western blot experiments (B). The dotted arrows indicate the interactions deduced 

from Y2H screens (A) or gel shift experiments (B). Self-interaction of the protein detected by 

one (*) or two (**) methods. For details please refer to the text.  

From the gel shift experiments, the interaction between AE and CP in the presence of the 

corrinoid cofactor was confirmed. Furthermore, the self-interactions of AE and CP which 

imply the oligomerization ability of these proteins were demonstrated. The gel shift 

experiments provided the first direct evidence for the ability of AE to recognize and interact 

with different CPs. An advantage of the gel shift experiment over the other methods used in 

this study is the ability to evaluate the stoichiometries of the interacting partners. For AE and 

the four different CPs a ratio of 1:1 was determined. While the gel shift experiment seems to 

provide suitable conditions to study the interaction between AE and CP, it appears to have 

some limitations when applying to the other proteins. Little information about the 

oligomerization and interaction in which the two methyltransferases are involved were 

obtained by this assay. The ability to detect the interactions by this in vitro method depends 

on many factors, one of which is that the experimental conditions may be not suitable for the 

interactions, or the binding of proteins indeed occurred but the complex dissociated prior to or 

during electrophoresis. The in vivo yeast two-hybrid system offered an alternative method to 

detect the interactions. The two-hybrid system is described to be more sensitive than many in 

vitro methods and may be suitable to detect the weak or transient interactions (Berggard et al., 

2007; Coates & Hall, 2003; Fields, 2001). The Y2H analysis performed here confirmed the 
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MT IIMT I*
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dimerization ability of AE and the interaction between CP and MT I which was demonstrated 

in some other systems. Furthermore, initial evidence for the involvement of the N-terminal 

part in the multimerization of AE was shown. However, none of the remaining combinations 

were found to interact. The Y2H system is prone to yield false negatives due to several 

reasons. The plasmid constructs may significantly affect the folding of the hybrid protein 

which results in a protein not interacting with its partner. The interaction surfaces of proteins 

can also be masked when the protein is present in the fusion form. It is also possible that the 

fusion protein may be toxic to the yeast cells. This problem can be controlled by employing a 

control plate as indicated in the experiments presented here. The Y2H screens may also 

generate significant number of false positives (Fields & Song, 1989). This might be due to 

either non-specific activation of the reporter genes or auto-activation which is a result of the 

activators of transcription with the binding domain as in the case of the pGBKT7-MT I 88-

326 construct. The combination of this fragment and the empty vector resulted in the growth 

on the test plate. It is therefore essential to include the combination of test proteins and the 

empty vectors to control the false positives in the Y2H assay.  

To uncover as many types of interactions as possible, it is important to use other two-hybrid 

methods such as bacterial two-hybrid system. Principally, the B2H system shows several 

advantages over the Y2H assay. The B2H is based on the indirect activation which may help 

to reduce the non-specific activation that occurred in the Y2H system. The method uses the 

bacterial cells which may result in faster detection because the yeast cells usually need longer 

time to grow. Moreover, the interaction efficiency can be quantitated by the β-galactosidase 

assay. Unlike the Y2H assay which has only one option of fusing proteins to the C-terminal 

end of the GAL4 domains the B2H system provides all four possibilities of fusions. This was 

demonstrated by the results of the B2H screens. The type of fusion appears to have an effect 

on the ability of O-demethylase members to interact with their interacting partners. Most of 

the interactions were found only when one protein was fused to the N-terminus of T25 and the 

other was fused to the C-terminus of T18. The results of B2H assay confirmed the self 

associations of AE and CP. Moreover, the oligomerization of MT I was detected. The B2H 

assay also confirmed the interaction between CP and MT I which was detected in the Y2H 

system and the interaction of CP and MT II which is in accordance to the reaction mechanism. 

Some weak interactions such as AE-MT II and MT I-MT II were also found as described 

above. The B2H system, however, also has some significant drawbacks. Despite our efforts to 
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stabilize the methods, the B2H results seem to be not reproducible. As shown in the Western 

blot experiment, the accumulation of the fusion proteins was difficult to obtain and does not 

follow any predictable rules. The results indicated that it is important to perform the control 

experiment which was rarely reported in other B2H studies. We suppose that these 

phenomena may be only specific to the cyaA deficient strains required for the screen. To 

confirm this hypothesis, some random constructs were transformed to the E. coli strain XL1-

blue and were cultivated using the specific conditions similar to the assay. The cell extracts 

were used for Western blots using AE or CP antibodies. In this case, all fusion proteins of the 

test were detected (data not shown). This indicated that the accumulation and stability of 

proteins was significantly affected by the strains required for the test. Similar results were 

described in the literature (Chan et al., 2009; Workentine et al., 2009). Although the initial 

data appeared to be promising, the drawback of non-reproducibility and instability made B2H 

more difficult to apply for further investigation of protein-protein interactions.  

Similar to the two-hybrid systems, the far-Western blot method seems to have an effect on the 

conformation of the proteins under the assay conditions. As indicated in the B2H and far-

Western blot assays, the interaction between AE and CP does not require the presence of the 

corrinoid cofactor. This observation is contradictory to the results obtained by the gel shift 

experiments and may be explained by the influence of the experimental conditions, which are 

different for the different methods, on the folding of the protein. The hybrid chimeras 

generated in B2H system may provide an optimal folding of protein necessary for the 

interaction. In far-Western blot, once the protein is immobilized on the membrane, the 

conformation may have changed in such a way that the interaction site became more exposed 

or hidden depending on the characteristics of the membrane and the nature of the protein. This 

can be fully applied to the other interaction pairs used in the far-Western blot experiment 

beside the AE-CP pair. Therefore, unspecific binding derived from the non-native 

conformation of proteins should be taken into account when interpreting the results of the far-

Western blot analysis. 

As mentioned above, the reductive activation is essential to generate the active form of CP. In 

vitro, this reaction is catalyzed by AE in the presence of ATP and an artificial electron donor. 

The electron donor in vivo is unknown so far. The first evidence of the involvement of 

ferredoxins in the reactivation reaction was mentioned by Kaufmann et al. (1998b), where 

fractions containing hydrogenase showed to ability to conduct the activation of CP in the 
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presence of AE, ATP, H2 and methyl viologen. Ferredoxin is widely known to play an 

important role in electron transfer in various metabolic reactions (Valentine, 1964). In 

acetogens, ferredoxin was found as an electron donor of methylene tetrahydrofolate reductase 

of Clostridium formicoaceticum (Clark & Ljungdahl, 1984). The reduced ferredoxin or carbon 

monoxide dehydrogenase/acetyl-CoA synthase is believed to be the electron donor for the 

CFeSP from M. thermoacetica during the reductive activation of oxidized corrinoid protein 

(Harder et al., 1989; Menon & Ragsdale, 1998). To evaluate the possibility of ferredoxin as 

an in vivo electron donor, several attempts were made. One strategy was to isolate the 

ferredoxin from the crude extract of A. delalogenans. However, all attempts to purify the 

ferredoxin failed (data not shown). Alternatively, there was an option to search for the 

putative ferredoxin genes in the genome of A. dehalogenans and heterologously express them 

in E. coli. Here, we cloned and heterologously expressed two different putative ferredoxins 

genes of the genomic DNA of A. dehalogenans. The two putative ferredoxins Fd I and Fd II 

contain sets of conserved Fe-S binding motifs (C-X2-C-X2-C-X3-C) characteristic for 

ferredoxins containing 4 [4Fe-4S] and 2 [4Fe-4S] clusters, respectively. The putative 

ferredoxin Fd I exhibits the highest amino acid sequence identity with the annotated 

ferredoxin Awo_c25230 of the closely related acetogen A. woodii. The soluble protein could 

only be obtained after the second cycle of French Press. The reconstituted Fd I showed an 

UV/Vis spectrum slightly different from other isolated ferredoxins of anaerobic bacteria 

which might be a result of the high number of iron in the protein. Fd II shows the highest 

similarity to a known 2 [4Fe-4S] ferredoxin of the anaerobe Butyribacterium 

methylotrophicum (83%). Unlike Fd I, Fd II can only be detected by silver stain but not by 

Coomassie stain after SDS PAGE. The protein showed a double size in the gel as compared to 

the calculated one from the amino acid sequence which is possibly a result of the presence of 

multi-charged iron sulfur clusters. The UV/Vis spectrum of Fd II showed a high similarity to 

other isolated ferredoxins from anaerobes (Bruschi & Guerlesquin, 1988). Although these 

proteins showed similar characteristics to ferredoxins of other anaerobic bacteria, they failed 

to show any involvement in the CP reactivation process. The crude extract of A. dehalogenans 

did not show any ability to reduce both Fds I and II with H2 or formate under the conditions 

applied. Therefore, it is not clear if the ferredoxins were functional. Hence, the in vivo 

electron donor for the reductive activation of CP is still under investigation. 
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