

Anja Pölck

Small TCBs of Policy-controlled Operating Systems

Small TCBs of Policy-controlled

Operating Systems

Anja Pölck

Universitätsverlag Ilmenau
2014

Impressum

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Angaben sind im
Internet
über http://dnb.d-nb.de abrufbar.

Diese Arbeit hat der Fakultät für Informatik und Automatisierung der
Technischen Universität Ilmenau als Dissertation vorgelegen.

Tag der Einreichung: 1. Juli 2013
1. Gutachter: Prof. Dr.-Ing. habil. Winfried E. Kühnhauser

(Technische Universität Ilmenau)
2. Gutachter: Prof. Dr. Elisa Bertino

(Purdue University, West Lafayette, Indiana, USA)
3. Gutachter: Prof. Dr.-Ing. habil Wolfgang Fengler

(Technische Universität Ilmenau)
Tag der Verteidigung: 19. Dezember 2013

Technische Universität Ilmenau/Universitätsbibliothek
Universitätsverlag Ilmenau
Postfach 10 05 65
98684 Ilmenau
www.tu-ilmenau.de/universitaetsverlag

Herstellung und Auslieferung
Verlagshaus Monsenstein und Vannerdat OHG
Am Hawerkamp 31
48155 Münster
www.mv-verlag.de

ISBN 978-3-86360-090-7 (Druckausgabe)
URN urn:nbn:de:gbv:ilm1-2013000632

Titelphoto: photocase.com

http://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2013000632

Abstract

IT systems with advanced security requirements increasingly apply problem-specific security
policies for describing, analyzing, and implementing security properties. Security policies
are a vital part of a system’s trusted computing base (TCB). Hence, both correctness and
tamper-proofness of a TCB’s implementation are essential for establishing, preserving, and
guaranteeing a system’s security properties.

Today’s operating systems often show that implementing security policies is a challenge; for
more than forty years, they have provided only a rather elementary support for discretionary,
identity-based access control policies. As a consequence, major parts of the applications’
security policies are implemented by the applications themselves, resulting in large, heteroge-
neous, and distributed TCB implementations. Thus, precisely identifying a TCB’s functional
perimeter is hard, which renders essential TCB properties – correctness, robustness, and
tamper-proofness – difficult to achieve.

Efforts have been made to re-collect the policy components of operating systems and appli-
cations into a central component. So called policy-controlled operating systems provide kernel
abstractions for security policies along with a policy decision and enforcement environment
to protect and enforce the policies. Current policy-controlled operating systems are based on
monolithic architectures so that their policy enforcement mechanisms are distributed all over
the kernel. Additionally, they share the ambition to provide support for a wide variety of
security policies that leads to universal policy decision and enforcement environments. Both
results in large, complex, and expensive operating system TCBs, whose functional perimeter
can hardly be precisely identified. As a consequence, a TCB’s essential properties are hard
to ensure in its implementation.

This dissertation follows a different approach based on the idea of methodically engineering
TCBs by tailoring their policy decision and enforcement environment to support only those
security policies that are actually present in a TCB. A TCB’s functional perimeter is identified
by exploiting causal dependencies between security policies and TCB functions, which results
in causal TCBs that contain exactly those functions that are necessary to establish, enforce,
and protect their policies. The precise identification of a TCB’s functional perimeter allows
for implementing a TCB in a safe environment that indeed can be isolated from untrusted
system components. Thereby, causal TCB engineering sets the course for implementations
whose size and complexity pave the way for analyzing and verifying a TCB’s correctness
and tamper-proofness. The application scenarios for causal TCB engineering range from
embedded systems and policy-controlled operating systems to database management systems
in large information systems.

v

Zusammenfassung

IT Systeme mit qualitativ hohen Sicherheitsanforderungen verwenden zur Beschreibung,
Analyse und Implementierung ihrer Sicherheitseigenschaften zunehmend problemspezifische
Sicherheitspolitiken, welche ein wesentlicher Bestandteil der Trusted Computing Base (TCB)
eines IT Systems sind. Aus diesem Grund sind die Korrektheit und Unumgehbarkeit der
Implementierung einer TCB entscheidend, um die geforderten Sicherheitseigenschaften eines
Systems herzustellen, zu wahren und zu garantieren.

Viele der heutigen Betriebssysteme zeigen, welche Herausforderung die Realisierung von
Sicherheitspolitiken darstellt; seit mehr als 40 Jahren unterstützen sie wahlfreie identitäts-
basierte Zugriffssteuerungspolitiken nur rudimentär. Dies führt dazu, dass große Teile der
Sicherheitspolitiken von Anwendersoftware durch die Anwendungen selbst implementiert wer-
den. Infolge dessen sind die TCBs heutiger Betriebssysteme groß, heterogen und verteilt, so
dass die exakte Bestimmung ihres Funktionsumfangs sehr aufwendig ist. Im Ergebnis sind
die wesentlichen Eigenschaften von TCBs – Korrektheit, Robustheit und Unumgehbarkeit –
nur schwer erreichbar.

Dies hat zur Entwicklung von Politik gesteuerten Betriebssystemen geführt, die alle Sicher-
heitspolitiken eines Betriebssystems und seiner Anwendungen zentral zusammenfassen, in-
dem sie Kernabstraktionen für Sicherheitspolitiken und Politiklaufzeitumgebungen anbieten.
Aktuelle Politik gesteuerte Betriebssysteme basieren auf monolithischen Architekturen, was
dazu führt, dass ihre Komponenten zur Durchsetzung ihrer Politiken im Betriebssystem-
kern verteilt sind. Weiterhin verfolgen sie das Ziel, ein möglichst breites Spektrum an
Sicherheitspolitiken zu unterstützen. Dies hat zur Folge, dass ihre Laufzeitkomponenten
für Politikentscheidung und -durchsetzung universal sind. Im Ergebnis sind ihre TCB-
Implementierungen groß und komplex, so dass der TCB-Funktionsumfang nur schwer iden-
tifiziert werden kann und wesentliche Eigenschaften von TCBs nur mit erhöhtem Aufwand
erreichbar sind.

Diese Dissertation verfolgt einen Ansatz, der die TCBs Politik gesteuerter Betriebssys-
teme systematisch entwickelt. Die Idee ist, das Laufzeitsystem für Sicherheitspolitiken so
maßzuschneidern, dass nur die Politiken unterstützt werden, die tatsächlich in einer TCB
vorhanden sind. Dabei wird der Funktionsumfang einer TCB durch kausale Abhängigkeiten
zwischen Sicherheitspolitiken und TCB-Funktionen bestimmt. Das Ergebnis sind kausale
TCBs, die nur diejenigen Funktionen enthalten, die zum Durchsetzen und zum Schutz
der vorhandenen Sicherheitspolitiken notwendig sind. Die präzise Identifikation von TCB-
Funktionen erlaubt, die Implementierung der TCB-Funktionen von nicht-vertrauenswürdigen
Systemkomponenten zu isolieren. Dadurch legen kausale TCBs die Grundlage für TCB-
Implementierungen, deren Größe und Komplexität eine Analyse und Verifikation bezüglich
ihrer Korrektheit und Unumgehbarkeit ermöglichen. Kausale TCBs haben ein breites An-
wendungsspektrum – von eingebetteten Systemen über Politik gesteuerte Betriebssysteme
bis hin zu Datenbankmanagementsystemen in großen Informationssystemen.

vii

Acknowledgements

First of all, I would like to thank my supervisor Prof. Winfried E. Kühnhauser. He drew
my interest to the exciting world of computer security research and supported me with lively
and interesting discussions throughout my work. I also want to thank the reviewers of my
dissertation for their valuable feedback and their preparedness to review my dissertation.

Special thanks to the Carl-Zeiss-Stiftung for awarding me a PhD scholarship and thus
providing the financial background for my research.

Further, I would like to thank my colleagues for all the valuable and motivating discussions.
This particularly concerns Peter Amthor, who was always prepared for in-depth discussions
and valuable feedback over a cup of tea, and my favorite office mate Katja Hose, who is a
good listener. I also want to thank the students and their theses that contributed to my
research work with new ideas and their implementation. In particular, special thanks to
Felix Neumann for having the guts and the endurance for dealing with formal specifications.
I would also like to thank all my friends and neighbors for their continuous motivation and
support as well as for their occasional pestering – all kept me going. Thanks to my friend
Janine Seifert for a recreational girl’s night out once in a while; I always had a good time.

Last but not least, I would like to thank my family for their moral support – my parents
always made me believe that I can achieve my goals. I also like to thank Alex for his never-
ending energy, administrative support, and confirmation.

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Causal Trusted Computing Bases . 2
1.3 Challenges and Contributions . 3
1.4 Organization . 4

2 Related Work 7
2.1 Policy-controlled Operating Systems . 7

2.1.1 Flask Security Architecture . 7
2.1.2 Rule Set Based Access Control . 9
2.1.3 Policy Machine . 10
2.1.4 Summary . 11

2.2 Reducing the Size and Complexity of TCBs . 11
2.2.1 Nizza Security Architecture . 11
2.2.2 Other Approaches . 13

2.3 Security Models . 13
2.3.1 Model-based Security Policy Engineering 14
2.3.2 Access Control Models . 15
2.3.3 Information Flow Control Models . 16

2.4 Summary . 17

3 Security Model Core 19
3.1 Security Model Family Tree . 19
3.2 Core Definition . 23
3.3 Core Specialization . 25
3.4 Model Re-engineering . 28

3.4.1 Multilevel Security Models . 28
3.4.2 MLS Model for a Web Service Composition System Policy 29
3.4.3 Role-based Access Control Models . 31
3.4.4 Use Case RBAC Security Policy . 33
3.4.5 RBAC Model for the HIS Policy . 34
3.4.6 Attribute-based Access Control Models 36
3.4.7 ABAC Model for an Online Entertainment Store Policy 39
3.4.8 Summary . 41

3.5 Model Core Evaluation . 41
3.5.1 Expressive Power . 41
3.5.2 Model Engineering Costs . 46
3.5.3 Summary . 48

3.6 Model Core Related Work . 48
3.7 Conclusion . 50

xi

Contents

4 Causal Trusted Computing Bases 53
4.1 Requirements and Prerequisites . 53

4.1.1 Security Model Core for TCB Engineering 54
4.1.2 Design Requirements . 55
4.1.3 Hardware and Architecture Dependencies 57

4.2 TCB Design . 58
4.3 Policy-independent Runtime Environment . 64

4.3.1 Security Policy Manager . 64
4.3.2 Memory Manager . 67
4.3.3 Thread Manager . 69
4.3.4 Transaction Manager . 72
4.3.5 Inter Thread Communication . 75
4.3.6 Trusted Persistent Storage Manager . 77
4.3.7 Cryptographer . 81
4.3.8 Entity Identification Server . 82
4.3.9 Generic Object Manager . 83
4.3.10 Authenticator . 86
4.3.11 Summary . 87

4.4 Policy-dependent Runtime Environment . 87
4.4.1 Engineering Approach . 88
4.4.2 Abstract Security Model Functionality 90
4.4.3 Abstract Model Instance Functionality 104
4.4.4 Causal Dependencies . 106
4.4.5 Summary . 119

4.5 Policy-dependent RTE for the RBAC HIS Policy 120
4.5.1 RBAC Security Model Functions . 120
4.5.2 Interceptor . 137
4.5.3 Executable RBAC HIS Policy . 138

4.6 Conclusion . 140

5 Specification Engineering 143
5.1 Specification Fundamentals . 144
5.2 Requirements for TCB Specifications . 145
5.3 TCB Specification Approach . 146
5.4 TCB Specification Method . 147

5.4.1 Specification of a Core-based Security Model 148
5.4.2 Specification of a Model Instance . 152

5.5 Summary . 155

6 Evaluation 157
6.1 Evaluation Goals and Methods . 158
6.2 Functional Redundancy of the Policy-dependent RTE 159

6.2.1 Redundancy across Multiple Security Model Functions Components . 159
6.2.2 Redundancy within a Security Model Functions Component 160
6.2.3 Summary . 160

6.3 Expressive Power and Modeling Effort of Core-based Model Engineering 161
6.4 Implementation Effort for Policy Substitution 162

6.4.1 Prototype Implementation of a Policy-dependent RTE 162

xii

Contents

6.4.2 Implementation Effort . 164
6.5 Formal TCB Specifications . 167
6.6 Summary . 169

7 Conclusion 171

8 Future Work 173

Appendix 175

A Security Models 175
A.1 Notation . 175
A.2 MLS Model . 175
A.3 RBAC Model . 177
A.4 ABAC Model . 180

B Health Information System Model Instance 183
B.1 Initial State and Extension Values . 183
B.2 Authorization Scheme . 185

C Formal Rule System 189
C.1 Mapping . 189
C.2 Matrix . 194

D TCB Specification for the RBAC HIS Policy 201
D.1 Context rbac_static . 201
D.2 Context rbac_state . 202
D.3 Context rbac_userhandling . 204
D.4 Context rbac_sessionhandling . 205
D.5 Context rbac_rolehandling . 206
D.6 Context rbac_conditions . 208
D.7 Context rbac . 210
D.8 Context healthcare_context . 210
D.9 Context healthcare_generic . 213
D.10 Context healthcare . 216

List of Abbreviations 223

List of Figures 226

List of Tables 227

Bibliography 228

xiii

1 Introduction

The man who asks a question is a fool for a minute,
the man who does not ask is a fool for life.

Confucius

IT systems with advanced security requirements increasingly apply problem-specific secu-
rity policies – sets of rules designed to meet a system’s security goals [73] – for describing,
analyzing, and implementing security properties [46, 60, 74, 105, 165]. To precisely describe
security policies, formal security models such as [26, 41, 74, 100, 108, 181, 212] are applied,
allowing for formal analyses of security properties, and serving as specifications, from which
policy implementations are generated [18,65,176,180,241].

Security policies are part of a system’s trusted computing base (TCB). Consequently, cor-
rectness and tamper-proofness of a TCB’s implementation are of paramount importance for
establishing, preserving, and guaranteeing a system’s security properties.

In the general use of the term, a TCB denotes all components of a system that implement
its security properties. In this dissertation, we adopt a functional view and apply the term
to those and only those system functions that are necessary and sufficient to establish, en-
force, and preserve a system’s security properties. Moreover, we distinguish between a TCB,
its security architecture, and the security architecture’s implementation. We apply the term
security architecture to that part of a system architecture that implements the TCB; here,
in contrast to general system architectures, additional requirements apply (such as the refer-
ence monitor principles [17, 97, 125]). The term security architecture’s implementation (also
called the TCB’s implementation) then refers to the source code level, where data types and
algorithms implement the TCB.

In general it holds that the lower the complexity of a TCB and the smaller its functional
perimeter, the easier it is to assert the correctness and tamper-proofness of a TCB’s im-
plementation [97, 220]. The essential prerequisite for such an implementation is the precise
identification of a TCB’s functions. These serve as a specification for the functional re-
quirements of a security architecture, from which an implementation is finally derived. This
dissertation focuses on the starting point of these dependencies – the identification of the
functional perimeter of TCBs.

1.1 Motivation

Implementing security policies is not an easy task. Today’s commodity operating systems of-
ten have serious deficiencies in this regard; for more than forty years, they have provided only
a rather elementary support for discretionary identity-based access control (IBAC) policies.
As a consequence, the implementation of more sophisticated, application-specific security
properties has moved to the application level. For example, Web browsers implement policies
to prevent the execution of malicious code (e.g., by cross-site scripting), to identify phishing
sites, or to protect children from harmful content. Corporations integrate enterprise policies

1

1.2 Causal Trusted Computing Bases

that reflect their organizational hierarchies into Enterprise Resource Planning (ERP) systems,
and e-mail clients implement mail integrity and confidentiality policies. As a consequence,
major parts of the applications’ policies are implemented by the applications themselves,
resulting in a large, heterogeneous, and distributed TCB implementation, caused by a run-
away evolution with independent contributions from many research groups and organizations.
Thus, it is hard to precisely identify a TCB’s functional perimeter, which renders essential
TCB properties such as correctness, robustness, and tamper-proofness difficult to achieve.

On the other hand, imprecisely defined TCBs are also a problem of embedded systems,
which have strict constraints with respect to their resources. That means, the larger the
functional perimeter of the TCB of an embedded system, the larger is for instance its memory
footprint, which may lead to violating the system’s resource constraints.

This dissertation focuses on TCBs of operating systems. In this context, there have been
many approaches that combine the policy components of operating systems and applications
into a central component, thereby allowing for methodical policy engineering and analysis,
and for isolating the policy components. Operating systems – which we refer to as policy-
controlled operating systems in the following – now provide kernel abstractions for security
policies along with a policy runtime environment to protect and enforce the security policies,
e.g., Security Enhanced Linux [165, 166] or Security Enhanced BSD [197, 240]. Applications
are now able to integrate their individual security policies into the kernel. As a result, the
TCB implementations of these systems are less distributed, less heterogeneous, hence easier
to identify and isolate. However, they are neither smaller nor less complex.

The reasons for the large size and complexity of the TCBs of policy-controlled operating
systems are twofold. Policy-controlled operating systems are based on commodity operat-
ing systems, thereby maintaining their monolithic architectures and scattering their policy
enforcement mechanisms all over the kernel. On top of that, the new kernel abstractions of
policy-controlled operating systems share the ambition to be universal. In order to provide
runtime support for a wide variety of security policies, the policy decision environment as
well as the policy enforcement mechanisms are designed in an all-round fashion, rendering
them large, complex, and expensive.

Nevertheless, the approach of combining security policies into a central system component
is a major step towards methodical policy engineering and well-designed, analyzable, and
tamper-proof TCBs. To deal with the deficiencies of policy-controlled operating systems, the
dissertation develops an approach for methodical TCB engineering. This allows for precisely
identifying a TCB’s functional perimeter by systematically deriving the functions of a TCB
from its security policies. The goal is to set the course for a TCB’s implementation whose
small size and complexity reduce the effort of analyzing and verifying a TCB’s correctness
and tamper-proofness.

1.2 Causal Trusted Computing Bases

The approach of this dissertation is to tailor a TCB’s policy decision and enforcement envi-
ronment to support only those security policies that are actually present in a TCB. A TCB’s
functional perimeter is then determined by exploiting causal dependencies between security
policies and TCB functions. This approach results in policy-specific causal TCBs that contain
only those functions that are required to establish, enforce, and protect the present security
policies.

The general idea of tailoring TCBs to specific application scenarios is not new. Ker-

2

1 Introduction

nelized security architectures such as Nizza [122, 123, 220] proved application-specific TCBs
to be feasible, and this is fundamental for this dissertation. We develop a systematic and
policy-independent causal TCB engineering method that formalizes causal dependencies be-
tween security policies and TCB functions. This general method then leads to increasing
the efficiency and effectiveness of TCB engineering due to reusability of TCB functions and
policy-independent tool support.

1.3 Challenges and Contributions

We discuss the challenges and contributions of this dissertation along three questions:

• What is a suitable starting point to derive TCB functions from security policies?

• What is a suitable methodical approach to derive TCB functions from security policies?

• How can we implement the derived TCB functions in a security architecture?

The first question focuses on the formal representation of a TCB’s security policies and
imposes the challenge to identify a uniform model notation. Security policies are usually
described by informal sets of rules. Since these are inadequate for policy analyses and policy
implementation, the security community has developed numerous formal security models such
as [26,41,74,100,108,181,212,251,254], which allow for formal analyses of security properties
and increasingly serve as specifications for policy implementations. This dissertation shows
that formal security models are also suitable to serve as a basis for specifying the functional
requirements of causal TCBs. However, the wide variety of models makes it difficult to exploit
common abstractions for causal TCB engineering. Based on the shared model abstractions
of existing security models, we show that a uniform model notation that can express a wide
variety of significant models can be found, which serves as basis to formalize security models,
in order to derive TCB functions.

This dissertation answers this challenge by making the following contributions:

1. Identification of shared model abstractions of access control and information flow secu-
rity models.

2. A uniform model notation for access control and information flow models.

3. An engineering method for access control and information flow models in the uniform
model notation that allows for model-independent methods and tools for causal TCB
engineering.

The second question is related to a systematic and model-independent engineering approach
to identify a causal TCB’s functional perimeter. This imposes the challenges to create a
functional design for causal TCBs, to develop an approach that derives TCB functions from
a TCB’s policies, and to specify a rule system that formalizes causal dependencies between
policies and TCB functions. The functional design specifies a framework for the derived
TCB functions. It must consider that policies with shared model abstractions also have
identical requirements regarding the functional perimeter of a TCB. On the other hand,
policy-specific abstractions result in policy-specific requirements and thus in policy-specific
TCB functions. In addition, all policies require TCB functions to ensure that they cannot
be bypassed and are protected against unauthorized manipulations. Thus, a functional TCB

3

1.4 Organization

design must contain a policy-dependent and a policy-independent component. Moreover, it
has to meet specific requirements such as support for policy substitution, multiple policies,
and engineering methods and tools. In particular, the causal TCB engineering method that
derives TCB functions from a TCB’s policies needs to be supported. The main requirement for
this method is to produce a functional perimeter of TCBs that is nonredundant and complete
with respect to a TCB’s policies. Therefor, a sound theoretical foundation, including a rule
system to formalize causal dependencies, is required, which also provides the basis for an
automated TCB composition tool.

These challenges are addressed by this dissertation through the following contributions:

4. A functional design for causal TCBs that consists of a policy-independent and a policy-
dependent TCB component.

5. A rule system that formalizes causal dependencies between security policies and TCB
functions.

6. A model-independent causal TCB engineering method that precisely identifies the func-
tional perimeter of

• the policy-independent TCB component and

• a TCB’s policy-dependent component based on the formal rule system.

7. A sound theoretic and methodic foundation that allows for an automated TCB com-
position tool.

The last question deals with implementing the functions of causal TCBs. While the im-
plementation of the policy-independent TCB component is to be accomplished once, imple-
menting the policy-dependent TCB component is a repeating process for each individual
application scenario. This imposes the challenge to provide policy-independent method and
tool support that generates a TCB’s implementation from its functions. Here, the main re-
quirement is that the completeness and consistency of the resulting TCB implementation
with respect to the identified TCB functions are ensured.

The dissertation’s contributions with respect to this challenge are:

8. A policy-independent formal specification method that provides the basis for automated
TCB generation tools.

9. Formal TCB specifications that are amenable to tool-supported validation techniques
and that provide a sound foundation for automated source code generation tools.

1.4 Organization

This dissertation is divided into eight sections. Section 2 discusses related work on the policy
runtime environments of policy-controlled operating systems and approaches that aim at
reducing the size and complexity of a TCB’s implementation. It also surveys access control
and information flow models that are significant for modeling real-world security policies.
Thereby, relevant terminology is introduced.

Based on this survey, Section 3 introduces a uniform model notation. Additionally, it
presents an engineering method to develop models in the uniform notation, demonstrates
it by means of examples, and evaluates it regarding its expressive power and the involved

4

1 Introduction

modeling costs. In doing so, this section also introduces an RBAC policy that is based
on a real-world application scenario and serves as running example. Moreover, this section
discusses related work on the uniform model notation.

Afterwards, Section 4 presents a functional causal TCB design along with a systematic
causal TCB engineering method. Thereby, this section motivates the functional perimeter
of a TCB’s policy-independent component and presents a model-independent engineering
method that, based on a formal rule system, derives the functions of the policy-dependent
TCB component. The latter is demonstrated by means of the RBAC policy.

To implement a TCB’s policy-dependent component without jeopardizing the implemen-
tation’s correctness and completeness with respect to the identified TCB functions, Section 5
presents a formal TCB specification method. Therefor, it discusses requirements for TCB
specifications and presents approaches to meet them. A formal TCB specification for the
RBAC policy is presented afterwards.

Section 6 demonstrates that the main objective of this dissertation – the precise iden-
tification of a TCB’s functional perimeter – has been achieved. In addition, it evaluates
the feasibility of the model-based engineering approach of causal TCBs with respect to its
application in real-world scenarios.

Finally, Sections 7 and 8 conclude this dissertation with a summary and a discussion of
future work.

5

2 Related Work

One’s person paranoia is another person’s engineering
redundancy.

Marcus J. Ranum

The goal of this section is to review related work that is relevant to the goals and the
approaches of this dissertation. On this account, we present work in three research areas:
work on policy-controlled operating systems, TCBs, and security models for access control
and information flow policies. Section 2.1 presents policy-controlled operating systems with
the objective to discuss the properties of their TCBs. Here, we focus on the design of the
systems rather than their implementation. In the area of TCBs, we present approaches that
aim at reducing the size and complexity of a TCB (Section 2.2). Afterwards, Section 2.3
discusses security models in with the goal to identify common model abstractions in the
following.

2.1 Policy-controlled Operating Systems

The objective of policy-controlled operating systems is to support a high degree of security
policy flexibility, which comprises a wide variety of security policies that may even change
for instance if new application software or a system update is installed. This is attained by
kernel abstractions for security policies along with a policy runtime environment (RTE) that
strictly isolates policy enforcement mechanisms – generally called Policy Enforcement Points
(PEPs) – from the policy decision environment (Policy Decision Point (PDP)). That way,
different policies can be integrated in a system’s PDP and policy flexibility is provided by
adapting the PDP without modifying the PEPs.

Policy-controlled operating systems have been developed for almost 20 years. Prominent
representatives are the Flask operating system (OS) [225], Rule Set Based Access Control
(RSBAC) [189,191], and the Policy Machine [82,84,115]. Particularly based on the Flask se-
curity architecture introduced by the Flask OS, further reference implementations for various
platforms and application scenarios have been developed. This section presents these systems
with the objective to discuss the properties of their TCBs. While Section 2.1.1 introduces the
Flask security architecture along with prominent reference implementations, Sections 2.1.2
and 2.1.3 present RSBAC and the Policy Machine.

2.1.1 Flask Security Architecture

The Flask security architecture [225] was first implemented in the Flask OS, which is based
on the Fluke microkernel [93]. The main goal of the Flask architecture is to provide for
policy flexibility by ensuring that all its components always have a consistent view of policy
decisions; secondary goals are application transparency and a low performance impact [225].
Based on these goals, the components of Flask are a set of objects managers and a central

7

2.1 Policy-controlled Operating Systems

security server (Figure 2.1). The security server is the PDP of Flask and contains the system’s
security policy. Object managers are responsible for enforcing policy decisions and thus are
PEPs. That way, when a process tries to access an object, e.g., a file or another process,
the responsible object manager traps this access, queries the security server, and enforces its
decision by either granting or denying the access. To minimize the performance overhead, all
object managers contain an access vector cache (AVC) that allows them to cache the access
decisions of the security server [225].

Figure 2.1: The Flask Security Architecture [225]

Besides requesting policy decisions, object managers also request labeling decisions from
the security server. Labeling decisions specify security attributes that each policy-controlled
object is assigned to. Security attributes are subsumed in a policy-specific security context
that may consist of a user identity, a classification, or a role [225]. However, since the
performance impact would be too high if labeling and policy decisions were based on this
context, each object is also given a policy-independent security identifier [225]. The security
identifier is created by the security server based on the policy by determining a context for an
object and deriving a corresponding identifier. The identifier is given to the object manager,
which binds it to the new object. The Flask OS implements four types of policies: multi level
security (MLS), type enforcement (TE), IBAC, and role-based access control (RBAC).

Based on this security architecture, several reference implementations have been developed;
most prominent ones are Security Enhanced (SE) Linux [165, 166] and SEBSD [197, 240].
SELinux [165, 166] implements Flask as part of the Linux kernel with the goal to address
the weaknesses of the Linux’ discretionary access control (DAC) mechanisms [165]. The
SELinux security server therefor defines a mandatory access control (MAC) policy that is a
combination of TE, RBAC, and optionally MLS. The security context thus contains a user
identity, a role, a type, and optionally an MLS level/range. SELinux originally provides
object managers only for kernel objects. As a consequence, application-specific objects are
not controlled by the policy. Recent work such as [52, 133, 244] has tackled this problem by
developing userspace object managers that enable control for such objects. For example, [52]
has developed a userspace object manager for GConf [194], a configuration application for the
GNOME desktop. In doing so, the flexibility of the SELinux policy is further improved. On
the other hand, userspace object managers contribute to distributing the TCB on kernel and
application level. As a consequence, essential TCB properties such as correctness, robustness,
and tamper-proofness are difficult to achieve.

SEBSD [197, 240] is a port of SELinux to FreeBSD in the context of the TrustedBSD
project [197]. Here, the goal is to run the Flask architecture as a plug-in module to the
TrustedBSD MAC Framework [246]. Since SEBSD is a port of SELinux, the policy used
by SEBSD is roughly the same as the SELinux policy; differences result only from system
adaptations [240]. The SELinux AVC and security server are also directly ported [240]. Thus,
SEBSD and SELinux mainly differ in their implementations.

8

2 Related Work

Convinced by the feasibility of the existing Flask reference implementations, Flask has
also been implemented in the Android OS for mobile devices, e.g., SE Android [217, 222],
FlaskDroid [47–49], or [56, 175]. The goal of SE Android is to address the weaknesses of
DAC that occur since Android uses Linux access control mechanisms [222] by integrating the
SELinux implementation in Android. This leads to three main benefits: (i) confinement of
privileged Android processes, (ii) isolation of Android apps, and (iii) a centralized policy that
can be engineered and analyzed [222]. The migration of SELinux to Android has imposed
many challenges, one of which is the specification of a suitable policy. Due to a different
application scenario of Android compared to a conventional Linux system and the large
size of the SELinux reference policy, the latter is not suited for mobile devices. Thus, a
specialized policy has been developed, which combines TE and MLS to confine domains for
system processes and user apps, and to isolate apps and files from each other. The result is
that the SE Android policy is much smaller in terms of the binary policy size, the number of
domains, objects, allow rules, and type transitions [222]. As with SELinux, SE Android also
supports userspace object managers that allow for applying policy control on application-
specific objects [222]. Thereby, the TCB is enlarged and distributed, hence harder to identify
and isolate.

Similar to SE Android in goals and approaches are TrustDroid [48] and XManDroid [47],
which are subsumed by FlaskDroid [49]. The objective of FlaskDroid is to provide a generic
security architecture for the Android OS that can serve as a flexible and effective framework
for different security requirements [49]. The approach is to provide a set of object managers
both on kernel level and on userspace level. The latter enforces access control decisions made
by a userspace security server, while kernel-level object managers request policy decisions
from a kernel-level security server. The policies of both servers are synchronized at runtime;
for instance a change in the userspace policy must be supported by the kernel-level policy [49].
As a result, FlaskDroid can provide a fine-grained and highly flexible access control security
policy. On the other hand, the TCB is enlarged and is distributed on userspace and ker-
nel level. On top of that, the policy is also distributed, which complicates security policy
engineering and analysis.

2.1.2 Rule Set Based Access Control

Rule Set Based Access Control (RSBAC) [3, 189–191] is an orthogonal approach to Flask
that aims at providing support for mandatory and fine-grained access control. Based on
the Generalized Framework for Access Control (GFAC) [4, 148], RSBAC extends the Linux
kernel by a security architecture that consists of three components (Figure 2.2): the Access
Decision Control Facility (ADF) along with the Access Control Information (ACI) component
form the PDP, while the Access Enforcement Facility (AEF) represents the PEP. The ADF
enforces a set of different policies, including instances of the Bell-LaPadula model, simple
RBAC policies, or a malware scanner policy; for more details refer to [190, 191]. Besides,
the ADF also implements a meta policy that combines the results of all policies that are
involved in policy decision making. The ACI module is responsible for administrating the
security attributes of objects and subjects [191], including attribute assignments as well as
the nonvolatile attribute storage of nonvolatile objects.

In summary, RSBAC mainly differs from the other systems in the supported security
policies and implementation details. This includes for example a missing cache for policy
decisions in the PEPs, missing support for userspace PEPs, or the usage of Linux user
identifiers instead of a platform-independent security identifier. The latter particularly leads

9

2.1 Policy-controlled Operating Systems

Figure 2.2: The RSBAC Security Architecture [191]

to that RSBAC always depends on Linux user management such that its TCB can not be
properly isolated, even though Linux were not based on a monolithic architecture.

2.1.3 Policy Machine

The Policy Machine (PM) [61,82,84,89,115] is a security architecture with the goal to provide
a unifying framework for a wide range of attribute-based access control (ABAC) policies or
policy combinations through a single mechanism. The PM can be implemented in both
centralized and distributed systems. For this reason, it consists of a PM Server, which acts
as PDP, including a PM data base, and a Policy Administration Point (PAP), and a set
of PM Clients, each comprising a PEP, an application programming interface (API), and
PM-aware applications. Figure 2.3 shows the system architecture. The foundation of the PM

Figure 2.3: The Security Architecture of the Policy Machine [82]

server is the PM access control framework, which provides a uniform formalism for a range
of access control policies based on shared model abstractions; details on this formalism are
provided in Section 3.6. To implement the policies, the PM server, which also is referred to
as “logical machine”, contains a fixed set of data relations and functions [82]. By managing
the data relations via the PAP, the PM server is configured to support specific policies. The
functions of the PM server aid in policy decision making and thus enforcing the expressed
policies. Thereby, the event processing module may dynamically update the configuration
of the policies by client events. The authors have developed a reference implementation
of the PM server that can enforce a wide variety of security policies, including instances
and combinations of DAC, MAC, RBAC, ABAC, and Chinese Wall; for more details refer
to [61,82].

The PEP within the client controls each access attempt and requests a policy decision
from the PDP within the PM server to allow or deny the access request [82]. The physical

10

2 Related Work

location of any object that a client may access is only known to the PM server. Thus, in case
an access is allowed by the PM server, the policy decision response is accompanied by the
object’s location such that the client can enforce the policy decision.

The PM is the work that is most closely related to this dissertation. It follows the same
approach by identifying a uniform security model notation and developing a corresponding
policy RTE, which is able to enforce a wide variety of access control models that express
both operating system policies as well as application policies. However, the PM is a “general
purpose protection machine” [82], which offers a large library of supported security policies.
Thus, the TCB of the PM also is a general purpose one that contains more functions than
actually required for a specific application scenario. The authors tackle the problem of a large
TCB at implementation level by decoupling policy decision making from the host system.

2.1.4 Summary

All discussed policy-controlled systems have in common that they follow a similar approach
by strictly isolating the PDPs from PEPs in order to provide policy flexibility; however,
they differ greatly in their implementations and the types of security policies they support.
Compared to the contributions of this dissertation, the main goal of these systems is policy
flexibility and not the reduction of the size and complexity of their TCBs. Though indeed
some of them are concerned about the amount of trusted code, reducing the latter is only
a subordinated goal and is approached at the level of implementation. Besides, all systems
aim at general-purpose PEPs and PDPs, resulting in large and complex TCBs that contain
more functions than actually required for a specific application scenario. On top of that,
by allowing for userspace PEPs or even userspace PDPs, the policy components are not
located exclusively in the kernel anymore. As a result, the TCBs are again distributed,
which makes their identification and isolation hard, rendering essential TCB properties such
as correctness, robustness, and tamper-proofness difficult to achieve. Additionally, userspace
PDPs also result in decentralized security policies, which complicates policy engineering and
analysis in order to establish a system’s security properties.

2.2 Reducing the Size and Complexity of TCBs

The goal of this section is to discuss related work that aims at reducing the size and complexity
of a system’s TCB. All presented work has in common that it tackles the problem of TCB
reduction at the level of TCB implementation rather than at the functional level like this
dissertation does. Among this work, one approach – Nizza [122, 123, 220] – stands out since
it not only is groundbreaking for our approach to engineer policy-specific TCBs but also
provides a sound implementation platform for causal TCBs. On this account, Section 2.2.1
introduces Nizza in more detail. Afterwards, Section 2.2.2 summarizes other approaches.

2.2.1 Nizza Security Architecture

Nizza [122, 123, 220] is a security architecture that aims at reducing a system’s TCB by
tailoring it to a specific application scenario. It is based on two main requirements – a
trusted software stack and compatibility with legacy software [123] –, which have lead to
three fundamental design principles. (i) Security-sensitive source code is strictly isolated from
security-insensitive code, thereby reducing the TCB implementation. (ii) Nizza uses trusted
wrappers to reuse untrusted system components such as device drivers, or file systems, in order

11

2.2 Reducing the Size and Complexity of TCBs

to provide confidentiality and integrity [123]. (iii) A container is used to run an untrusted
standard OS isolated from security-sensitive components.

Based on these design principles, a security architecture is derived that consists of four
parts: A small kernel, a secure-platform layer providing trusted service, secure applications,
and an untrusted legacy OS [123]. The reference implementation of Nizza is based on the

Figure 2.4: The Nizza Security Architecture [123]

Fiasco microkernel [112], which is responsible for enforcing domain isolation and for allowing
communication between the domains. To provide the full functionality of a standard OS,
the reference implementation uses L4Linux, which is a paravirtualized Linux kernel that
uses the L4 microkernel interface instead of directly accessing the hardware [123]. Hence,
L4Linux is executed in untrusted mode and cannot corrupt other system components. The
secure-platform layer is application-specific and contains only those trusted services that are
fundamental for an application scenario. Such services are typically a trusted loader, a trusted
GUI, or secure storage. Secure applications are those application parts that execute security-
sensitive code. This code is isolated from the remaining, i.e., security-insensitive, application
part and executed within the TCB. Identifying the point of separation of security-relevant and
security-irrelevant source code along with defining suitable interfaces is done manually and has
to be accomplished for each software application individually. From a TCB engineering point
of view, this is an obstacle to engineering efficiency (e.g., by reusing code) and automated
TCB composition.

In this dissertation, we take Nizza’s approach one step further by developing a system-
atic and application-independent causal TCB engineering method. This leads to increasing
the efficiency and effectiveness of TCB engineering due to reusability of TCB functions and
policy-independent tool support. Besides, the Nizza reference implementation provides a
sound implementation platform for causal TCBs. The reasons are as follows: (i) it already
implements functions that are required by causal TCBs, e.g., isolation mechanisms, authenti-
cated booting, a trusted GUI, and secure storage. (ii) The implementation of these functions
is demonstrably small [123]. For example, the TCB of a Nizza implementation for signing
emails has about 105,000 lines of code (LOC), where a Linux 2.4 kernel with a minimal con-
figuration already has 155,000 LOC [123]. (iii) Nizza is able to integrate the policy RTE of
causal TCBs in a straightforward way – as trusted service within the secure-platform layer,
and policies are isolated from each other by isolation mechanisms provided by the microker-
nel. By this means, Nizza can be enhanced by a tailored policy RTE that enforces security
policies to control either the legacy OS and its legacy applications or any secure application.

12

2 Related Work

2.2.2 Other Approaches

A research project that is closely related to Nizza is Mikro-SINA [110], which aims at reducing
the size and complexity of the TCB of a Virtual Private Network (VPN) gateway. The
approach is based on the Nizza security architecture; thereby extracting the security-relevant
functions of a VPN implementation and executing them in a separate protection domain.
The result is that the size and complexity of the TCB in means of LOC is reduced by an
order of magnitude compared to using a standard Linux kernel [110].

A security architecture that basically shares its goals with Nizza but is an orthogonal
approach is Perseus [50, 195, 201]. It executes secure applications on a minimal security
platform and provides support for a legacy OS, in order to provide compatibility for stan-
dard security-insensitive application software. Thus, Perseus and Nizza are very similar;
the Perseus reference implementation even applies some of components used by the Nizza
reference implementation such as Fiasco and L4Linux.

The goal of the VPFS project [249] is to provide a secure and reliable storage for security-
sensitive applications that run on top of a microkernel, which may concurrently execute
untrusted application software. This is achieved by a security architecture for a virtual
private file system (VPFS) that is based on both a small amount of trusted storage and an
untrusted legacy file system residing on the same machine.

In general, a small TCB implementation with low complexity sets the basis for formally
verifying a TCB’s correctness and tamper-proofness. This statement is substantiated by the
seL4 microkernel [137, 138], which is a formally verified microkernel based on interactive,
machine-assisted, and machine-check proof techniques. Thereby, [137,138] have shown that a
formal verification is practically achievable for OS microkernels. As a consequence, kernelized
application-specific TCBs such as the ones discussed before not only are feasible with respect
to their implementation, but also provide the basis for verifying a system’s security properties.

In contrast to approaches that build kernelized security architectures, other research work
such as [53, 109, 143, 170] aims at reducing the size and complexity of the TCBs of todays
commodity, i.e., monolithic, operating systems. For example, [143] reduces the TCB of
Linux systems by analyzing them with respect to unused kernel source code and removing
it. By this means, the general-purpose Linux OS also is to a certain extend tailored to
a specific application scenario. On the other hand, Flicker [170] is an infrastructure for
executing security-sensitive source code in complete isolation alongside a commodity OS.
Flicker therefor utilizes hardware support for late launch and attestation, which has already
been introduced in commodity processors from AMD and Intel [170].

Finally, the motivation of a small TCB with low complexity is also shared by virtualization
systems. This has lead to several research projects that aim at developing hypervisors with
small TCBs, e.g., NOVA [227,238], TrustVisor [169,171], SecVisor [216], or Terra [96].

2.3 Security Models

The goal of this section is to survey existing security models, in order to identify common
model abstractions in the following. Based on the latter, we then specify a uniform model
notation, which provides the basis for model-based causal TCB engineering. The secondary
goal of this section is to discuss how causal TCB engineering improves the efficiency and
effectiveness of model-based security policy engineering. On this account, Section 2.3.1 dis-
cusses the process model of model-based security policy engineering that this dissertation

13

2.3 Security Models

refers to and thereby provides the terminology used. Afterwards, Sections 2.3.2 and 2.3.3
survey existing security models of the access control and information flow control domains.

2.3.1 Model-based Security Policy Engineering

Causal TCB engineering improves the efficiency and effectiveness of model-based security
policy engineering, since it can be integrated without semantic gaps and is supported by
policy-independent tools. This claim is supported by this dissertation by showing that (i)
causal TCB engineering uses existing security models that are rewritten in a uniform model
notation, (ii) causal dependencies between security policies and TCB functions can be formal-
ized, which allows for tool-supported TCB composition, and (iii) a specification method can
be developed, which enables automated source code generation of a TCB’s implementation.
On top of that, security policies that are expressed by models in a uniform model notation
are unlocked to a family of model-independent analyzing methods and tools [15,16,91,144].

The resulting security policy engineering process consists of six steps (Figure 2.5). At the

Security
Model

Policy Design

Model Engineering

Model Analysis

Implementation

Requirements Engineering

TCB Engineering

Figure 2.5: Model-based Security Policy Engineering

beginning, informal security requirements are stated as precisely as possible by a thorough
requirements engineering. In this context, several specialized approaches for model-based
requirements engineering have emerged, e.g., [78, 80, 124, 135]. In the next step, a set of
operational rules is designed to meet the identified security requirements [73], resulting in an
informal security policy, e.g., [77, 98, 168, 231], that suits the specific needs of the intended
application scenario. The policy is then expressed by formal means to get a sound foundation
for policy analysis or TCB engineering. In doing so, security model engineering either uses an
existing domain-specific security model or creates a new one for instance by using a uniform
model notation. A security model is a set of abstractions to precisely describe the semantics of
a policy such as object classification, role-based access rules, or auditing and logging practices.
Once formalized in a suitable model, the policy is analyzed by methods and tools that operate
on this model or the uniform model notation such as [16]. During this step, the formalized
policy – which we refer to as model instance of this particular model – is analyzed with
respect to the required security properties, e.g., access right proliferation [15, 91, 106, 209],
information flow leakage [67, 104, 218, 242], or implementation adequacy [28, 252]. These are
derived from an application’s security requirements and are formally defined by its security

14

2 Related Work

model. That way, a valid formal representation of a policy is provided. Parallel to model
analysis, the functional perimeter of the TCB that is required to enforce and protect the
policy is engineered. Here, TCB functions are derived from a model in a uniform model
notation, in order to compose the functional perimeter of a causal TCB. Both, the formal
model instance as well as the derived TCB functions, then provide a precise specification for
a policy’s implementation.

2.3.2 Access Control Models

Butler Lampson published the ground-breaking work of access control models in 1971 [145].
The goal of his model is to provide precise rules about which subjects in a computer system
(users or processes) are allowed to execute specific operations (such as read or write) on
the objects (such as files or printers) in that system. Lampson used a simple access control
function (ACF): subjects ✂ objects ✂ operations Ñ ttrue, false✉ (often represented by an
isomorphic access control matrix) to model a snapshot of the protection state of an access
control system.

Lampson’s model was augmented by a state automaton with the objective to model dy-
namic behavior of the protection state [69, 101]. Each state of the automaton is a triple
♣S , O, mq where S and O are sets of subjects and objects respectively, and m : S✂O Ñ 2rights

is an access control matrix (ACM). S , O, and m can now be modified by rules that create
and destroy subjects/objects, as well as grant/transfer and delete access rights, which rep-
resents the automaton’s state transitions. By combining an automaton with ACMs, model
dynamics was introduced; this paved the way for modeling real-world security policies, for
which modifying privileges and adding/deleting users and objects are important features.

Harrison, Ruzzo, and Ullman [107] combined ACMs and state machines more formally.
Each state of an HRU model reflects a single protection state of an access control system;
state transitions are triggered by system-specific operations that modify this state. Secu-
rity properties such as right proliferation now can be analyzed by observing state transitions
caused by input sequences; in particular, the boundaries of right proliferation can be ex-
plored by state reachability analyses. Formally, any HRU security model is a state machine
♣Q, Σ, δ, q0q with a state set Q, an input alphabet Σ, a state transition function δ, and an
initial state q0. Each state q P Q is a triple ♣Sq , Oq , mqq where Sq and Oq are the subject and
object set of that state, and mq : Sq ✂ Oq Ñ 2R is the state’s ACM with a finite right set
R. Model dynamics are defined by the transition function δ : Q ✂ Σ Ñ Q that models the
impact of application-specific operations on the state. In real-world applications, operations
in Σ typically (but not exclusively) are used by security administrators and eventually involve
users, files, or access rights.

HRU models allow for the analysis of the dynamic behavior of access control systems. In
particular, their property whether to leak access rights into matrix cells was addressed as the
HRU safety problem, which is not decidable in general. As a consequence, several safety-
decidable fragments of the HRU calculus emerged, which buy safety decidability by limiting
the expressive power of the calculus, e.g., monotonic HRU models [106], or by introducing
news abstractions like types, e.g., the Schematic Protection Model (SPM) [12, 13, 204] or the
Typed Access Matrix (TAM) model [209].

The above mentioned access control models are mainly applied to model IBAC policies.
In the early 1990s however, IBAC policies became insufficient as commercial applications
required application-oriented access control policies that were in compliance with business
processes. Hence, the ability to specify enterprise-specific access control policies and to

15

2.3 Security Models

streamline the typically burdensome process of authorization management have been the
main motivations for RBAC models [86, 87, 205, 212] and ABAC models such as [39, 63, 130,
147,219,251,254]. The central idea of RBAC models is that rights are associated with roles,
which are assigned to users. While roles reflect various job functions, users are assigned
to roles based on their responsibilities and qualifications [210]. The ACM is thus defined as
m : roles✂objects Ñ 2rights. Analogous to IBAC models, models such as URA97 RBAC [129],
miniARBAC [229], PARBAC [228], or the RBAC model of [157] then combine this ACM
with an automaton to express model dynamics. Besides, other approaches combine the ACM
with additional security-relevant attributes such as spatial attributes [31, 64] or temporal
attributes [30,131].

The main application scenarios of ABAC policies are web-based applications like web
services where user attributes such as age or location are of more importance than their
identities. Access control rules are based on these attributes and the ACM is defined as
m : subjectattributes✂objectattributes Ñ 2rights. Like RBAC models, ABAC models are orig-
inally static snapshots of a protection system, e.g., [37,39,63,147,219,251]. To model policy
dynamics, attribute-based ACMs are combined with the notions of HRU models, resulting for
instance in the Attribute-based Access Matrix (ABAM) model [254] or [59, 130, 254]. A state
of the ABAM model is a tuple q ✏ ♣Sq , Oq , mq , ATTqq where S , O, and m are the standard
HRU model components and ATT is the set of attribute tuple values that each subject and
object is assigned to.

2.3.3 Information Flow Control Models

Access control models are designed to control immediate access to objects without taking
into consideration information flow paths that are implied by a collection of access control
rights [67]. The issue of unauthorized access by obscure information flow paths is tackled by
information flow control models, which are primarily concerned with preserving confidential-
ity of sensitive information; only few models deal with information integrity.

The concept of information flow control was first formally defined by Denning’s lattice
model [67]. Since this model has provided the foundation for numerous follow-up work, we
consider it the pioneer in the domain of information flow control models. The lattice model
is a tuple ♣S , O, L, cl,❵q where S and O are sets of subjects/objects, L ✏ ♣SC ,↕q is a lattice
with SC being a set of security classes corresponding to disjoint classes of information and
↕ defining a flow relation on pairs of security classes (partial ordering). cl is a classification
function that assigns a security class to each subject and object, and ❵ is a class-combining
operator that specifies an associative and commutative binary operator for pairs of security
classes [67]. Information flow between subjects and objects is then controlled by information
flow between their security classes (also called security labels) and the lattice’s flow relation,
which defines all authorized information flow paths between security classes.

A special case of information flow control policies are MLS policies. MLS policies are
based on a hierarchy of security classes by a total ordering of the flow relation ↕ (also
called dominance relation); and information flow is only authorized from a lower security
level to a higher security level. The first formalization of MLS policies was published by
Bell and LaPadula [26,27] and is known as the Bell-LaPadula (BLP) (confidentiality) model.
The BLP calculus combines a lattice (reflecting the confidentiality hierarchy) with the HRU
calculus. In doing so, authorized information flow is modeled on an application-oriented level
of abstraction via an information flow graph, and precise rules (known as the Simple-Security
Rule and the ✍✁Property) govern the correct mapping of the information flow graph to the

16

2 Related Work

model’s ACM (BLP security).
The work of Denning, Bell, and LaPadula has inspired many derivatives of these mod-

els. For example, Foley introduced a similar model (Confinement Flow Model (CFM) [92])
with the objective to allow greater flexibility in the assignment of security classes to sub-
jects/objects, and to provide a model for a framework of security policies. This is done by
adding a confine-function, associating a pair of security classes with each subject/object sim-
ilar to [68,167]. Analogous to the BLP model, [92] applies an HRU derivate to model policy
dynamics and implemented the lattice by a modified ACM.

A more popular derivative was motivated by commercial applications with the objective to
protect integrity – the Biba Integrity model [35]. Instead of BLP’s confidentiality hierarchy,
the Biba model has an integrity level hierarchy, and information cannot flow up towards
higher integrity levels. Correspondingly, the ACM controlling rules are dual to the BLP rules
and are formulated in terms of No Read Down and No Write Up rules.

Another well-known security policy motivated by the commercial sector is the Chinese Wall
policy, preventing unauthorized information flow between consultants and companies of the
same line of business. A Chinese Wall model was published first by Brewer and Nash [41].
The Brewer/Nash model is based on ACMs (reflecting the discrete IBAC component) and
relations reflecting access histories and rivalry between companies. Later, an MLS model
for enforcing this policy was introduced by Sandhu [207, 208], in which mutually disjoint
conflict of interest (COI) classes control information flow between companies and consultants.
Each object of the model is labeled by security labels that are defined as n-element vector
ri1, i2, ..., ins where each ik P COI . The model also uses the Simple Security Rule and the
✍✁Property from BLP-Models to govern the correct mapping of the information flow graph
to the ACM.

A more recent application scenario for MLS models is dynamic web service composition.
Here, complex services that are available on the Web are composed at design time by service
composition planners such as SHOP2 [118]. Hutter et al. [118–120] have developed an MLS
model and a system implementing this model for automatically composing web services for
collaborative business processes and health care composition plans. Compared to the BLP
model, the difference is that the security level of a web service is subdivided with respect to the
type of information. Thus, depending on a specific model instance, different lattices are com-
bined, i.e., each lattice ♣C1,↕1q, ♣C2,↕2q, . . . , ♣Cn ,↕nq represents one type of information, to
a composed lattice L ✏ ♣C ,↕q by C ✏ C1✂C2✂. . .✂Cn and ♣c1, c2, . . . , cnq ↕ ♣c✶

1, c✶
2, . . . , c✶

nq
if ci ↕ c✶

i holds for all 1 ↕ i ↕ n.
Parallel to researching static and dynamic lattice-based models for information flow poli-

cies, various other approaches have emerged such as programming-language techniques for
specifying and enforcing information-flow policies [200], decentralized information flow mod-
els like the Decentralized Label Model (DLM) [172–174], or models to specify information flow
policies that may change during policy runtime, e.g., Flow Locks [42–44]. These models are
out of the scope of this dissertation since they use other levels of abstractions for modeling
information flow policies.

2.4 Summary

This section has discussed relevant related work in the research areas of policy-controlled
operating systems, TCBs, and security models. In doing so, it has shown that today’s policy-
controlled operating systems have large and complex TCBs. Thus, it is hard to precisely

17

2.4 Summary

identify the TCBs’ functional perimeter. Furthermore, this section has introduced approaches
to develop small TCBs. All approaches have in common that they tackle the problem of
TCB reduction at the level of TCB implementation. As a consequence, the great potential of
reducing the size and complexity of TCBs already at higher levels of abstraction, i.e., during
earlier steps of software development, is not exploited. Finally, this section has presented a
wide variety of security models in the domain of access control and information flow control.
Thereby, it has shown that many of these models share commonalities.

The composition of these facts leads to the methodical approach of this dissertation.

18

3 Security Model Core

It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories,

instead of theories to suit facts.

Sir Arthur Conan Doyle,
Sherlock Holmes

Section 2.3 has shown that diverse security models have been developed, which makes it
difficult to exploit common abstractions for model engineering, model analysis, or model
implementation. Our goal is to provide the foundation for these activities by analyzing
a considerable amount of security models – namely these, which have either been proven
relevant in practice or provided the foundation for further security models – in order to
reveal common model abstractions. The approach is to identify a uniform model foundation
that is common to many security models allowing for model-independent engineering methods
and engineering tools. We will refer to this uniform model foundation as security model core
in the following.

The model core is a key enabler for engineering models with shared model abstractions
and thus for engineering common policy specifications. This enables us (i) to facilitate the
process of model engineering by reusing model components, (ii) to develop model-independent
methods for model analysis and implementation, (iii) to provide model-independent tool
support for model engineering, model analysis, and model implementation, and (iv) to develop
causal TCBs that are tailored to a specific security model. Out of these four merits, this
dissertation focuses on methods for developing causal TCBs.

The goal of this chapter is to show that many security models share such a common model
core. For this purpose, we identify common model components by showing that models
emerge from each other and form a family tree (Section 3.1). On this account, the common
model core is exposed for which we afterwards provide a formal definition (Section 3.2). The
formal model core along with a core-based model engineering method then establishes the
basis for designing causal TCBs. For this purpose, Section 3.3 proposes core-based model
engineering. Afterwards, we evaluate the feasibility and expressive power of the model core
along with core-based model engineering by rewriting three well-known models in Section 3.4
and discussing the model core’s expressive power together with the involved modeling effort
(Section 3.5). Finally, Section 3.6 differentiates the model core from related work that also
focuses on security models to express a variety of models.

3.1 Security Model Family Tree

In analogy to a family tree in genealogy describing relations between individuals, a security
model family tree describes relations between security models. In contrast to a genetic fam-
ily tree, a security model family tree does not represent the parental lineage of individuals.

19

3.1 Security Model Family Tree

Instead, it represents relations between models based on shared model abstractions like at-
tributes or types. Security models descend from each other whenever they inherit at least
one model abstraction to specify specific model components. In this way, a security model
family tree enables us to identify the common model core.

In order to compile a security model family tree, we refer to the existing levels of abstraction
between models (Section 2.3). More precisely, we discuss how these abstractions represent
lineage relations between models and form a model family tree. We first propose a family tree
for each of the considered model domains exposing shared model components within these
domains. Second, by merging these trees we form a single family tree and thus show that
models share components – the model core – even beyond domain borders.

State
Automaton
(Q, Σ, δ, q0)

TAM Model
(Q, Σ, T, te, δ, q0)

q = (S, O, m)

SPM
(Q, Σ, δ, q0, T, R)

q = (S ᴜ O, ty, d)

ABAM Model
(Q, Σ, A, δ, q0)

q = (S, O, m, ATT)

Types
t: S ᴜ O→ T

Attributes
a: S ᴜ O→ A

RBAC Model
m: RO x O → 2

R
ABAC Model

m: AS x AO → 2
R

ACF / ACM
m: S x O → 2

R

Protection Model
(Q, Σ, δ, q0)
q = (S, O, m)

HRU Model
(Q, Σ, δ, q0)
q = (S, O, m)

Monotonic HRU
Model

(Q, Σ, δ, q0)
q = (S, O, m)

URA97 RBAC
(Q, Σ, U, δ, q0)

q = (ua, pa, rh, ca,
cr, co)

Figure 3.1: A Family Tree of Access Control Models

Comparing components of access control models (Figure 3.1), it becomes apparent that
any model contains components to assign permissions to subjects and objects. Lampson’s
ACF [145] or rather the isomorphic ACM defined as acm : subjects✂objects Ñ 2rights directly
assigns permissions to subjects and objects and is thus on a rather elementary abstraction
level. RBAC and ABAC models introduce a new level of abstraction that reflects the models’
application-oriented level of abstraction by assigning permissions to subjects via roles or
attributes. This is usually modeled by an ACM, e.g., acm : roles ✂ objects Ñ 2rights, and
additional components that for instance map roles to subjects. Hence, all these access control
models share the concept of ACMs to model permission assignments and on this account we
consider Lampson’s ACM model to be the ancestor of the access control model family from
which any model emerges directly or indirectly.

20

3 Security Model Core

Similarly, all access control models supporting policy dynamics are based on a deterministic
automaton ♣Q, Σ, δ, q0q. Forerunner of these dynamic models is the protection model of [69,
101] where each q P Q is Lampson’s ACM. By introducing new levels of abstractions, dynamic
models emerge from [69,101] and its more formalized descendant – the HRU calculus [107,108]
– inheriting the automaton with its ACM-based state space and adapting it to reflect the
new models’ levels of abstraction. For example, the ABAM model [254] combines the ACM
with subject and object attributes; and both the ACM as well as the attribute assignments
are state components. Hence, all dynamic access control models share a deterministic state
automaton to describe policy dynamics. For all holds that a state of the automaton always
represents a policy’s protection state, e.g., a system’s right, role, or attribute assignments,
and policy dynamics is represented by changing right, role, or attribute assignments via state
transitions.

State
Automaton
(Q, Σ, δ, q0)

Attributes
a: S ᴜ O→ A

ACF / ACM
m: S x O → 2

R

Lattice Model
(S, O, L, cl,)

IFG
(V, E)

Chinese Wall
MLS Model

(Q, Σ, S, O, L, δ, q0)
q = (m, cl)

BLP Model
(Q, Σ, S, O, L, δ, q0)

q = (m, cl)

CFM
(Q, Σ, L, δ, q0)

q = (E, CONF,)

Figure 3.2: A Family Tree of Information Flow Models

In analogy to access control models, we now sketch a family tree of information flow models
(Figure 3.2) by comparing their components. Common to all information flow models is a
lattice representation L ✏ ♣SC ,↕q of an information flow graph (IFG) and a subject/object

21

3.1 Security Model Family Tree

attribute assignment (classification function) cl : S ❨ O Ñ SC that assigns a security class
to subjects and objects. Therefore, we consider the lattice model of Denning [67] to be the
ancestor of the information flow model family.

On top of that, many of the discussed dynamic information flow models apply an determin-
istic automaton ♣Q, Σ, δ, q0q to model policy dynamics. Forerunner of dynamic information
flow models is the BLP model [26,27]; and by introducing new levels of abstraction, dynamic
models emerge from the BLP model. Models inherit the automaton and the lattice, and
adapt them to reflect the models’ levels of abstraction. For example, CFM [92] inherits the
HRU derivative from BLP for modeling policy dynamics and implementing the lattice but
adds a confine function to its state space. For all models it is true that a state of the automa-
ton always represents a policy’s protection state, e.g., a system’s subject/object classification
into security levels, and policy dynamics is modeled by a state transition function that for
example implements reclassification rules.

State
Automaton
(Q, Σ, δ, q0)

TAM Model
(Q, Σ, T, te, δ, q0)

q = (S, O, m)

SPM
(Q, Σ, δ, q0, T, R)

q = (S ᴜ O, ty, d)

ABAM Model
(Q, Σ, A, δ, q0)

q = (S, O, m, ATT)

Types
t: S ᴜ O→ T

Attributes
a: S ᴜ O→ A

RBAC Model
m: RO x O → 2

R
ABAC Model

m: AS x AO → 2
R

ACF / ACM
m: S x O → 2

R

Protection Model
(Q, Σ, δ, q0)
q = (S, O, m)

HRU Model
(Q, Σ, δ, q0)
q = (S, O, m)

Monotonic HRU
Model

(Q, Σ, δ, q0)
q = (S, O, m)

Lattice Model
(S, O, L, cl,)

IFG
(V, E)

Chinese Wall
MLS Model

(Q, Σ, S, O, L, δ, q0)
q = (m, cl)

BLP Model
(Q, Σ, S, O, L, δ, q0)

q = (m, cl)

CFM
(Q, Σ, L, δ, q0)

q = (E, CONF,)

Figure 3.3: A Family Tree of Security Models

Figures 3.1 and 3.2 reveal that security models do not only share domain-specific compo-
nents but also a domain-independent abstraction. This sets the course for merging both trees

22

3 Security Model Core

into a single family tree (Figure 3.3), which then contains lineage relations beyond domain
borders. More precisely, all dynamic access control and information flow models share the
following domain-independent abstractions:

1. A deterministic automaton to model policy dynamics.

2. A state transition function that describes the dynamic behavior of a policy, e.g., by
changing right, role, or attribute assignments.

3. An automaton state that represents a policy’s protection state, e.g., its right, role, or
attribute assignments, depending on a model’s domain.

4. Static components that are not modified during policy runtime. Just like states, static
components depend on the model domain.

In the remainder of this dissertation we refer to the automaton as the security model core.
Its formal definition is provided in the following section.

3.2 Core Definition

The proposed core-based model engineering approach (Section 3.3) along with the proposed
approach for engineering causal TCBs (Section 4) requires a sound formal basis. Therefore,
this section provides the formal definition of the identified common model core and thus
establishes a foundation for the following sections.

The model core is a deterministic automaton. It generalizes the HRU automaton [141] and
then allows for its specialization. Security models can be derived from the model core by core
specialization inspired by object-oriented design.

Definition 3.1 (Security Model Core) The security model core is a tuple ♣Q, Σ, δ, q0, Eq
combining a deterministic automaton ♣Q, Σ, δ, q0q with a vector E of static extensions where
Q is a set of protection states, Σ is a finite set of inputs, δ : Q✂Σ Ñ Q is the state transition
function, and q0 P Q is the initial protection state.

The state set Q ✏
➅n

i Di , n ➙ 1, represents the set of protection states of a security
model and is in general infinite1. A protection state q ✏ ♣d1q , ..., dnqq may consist of several
different components di P Di where each di is a set, relation, or function with its individual
meaning, e.g., subject set, role set, or role assignment function. Thus, a protection state is
an n-tuple consisting of n structurally different components. These components are dynamic
and can be modified by policy-specific inputs.

Besides a description of the dynamic model state, the definition also contains static model
components. The extension vector E represents a virtual type for such static model com-
ponents E ✏ ♣e1, e2, ..., ehq, h ➙ 0, where each extension ei is a set, relation, or function with
its model-specific interpretation, e.g., type set, security level set, or a dominance relation of
security levels. Thus, the extension vector contains h structurally different components.

The input set Σ ✏ C✂X is defined by the finite set C of policy-specific commands and an
input vector set X of command parameters. Policy-specific commands are those commands
whose executions are protected by a policy and which modify protection states, e.g., adduser

1Note that a security model can be engineered in such a way that its set of protection states is finite. The
model core is then specialized to a deterministic finite automaton (DFA).

23

3.2 Core Definition

or chmod in a Unix/Linux-based system. Command-specific input parameters are modeled
by l-dimensional vectors x so that for any input holds: x P X with X ✏ t♣x0, ..., xlq ⑤ ∀xi , 1 ↕
i ↕ l : xi P tj , tj P T , 0 ↕ j ➔ |T |✉ where any vector element of x may have an individual
type. This is modeled by a type set T ✏ tD1, ..., Dn , d1q , ..., dnq , e1, ..., eh , 2e1 , ..., 2eh✉, which
is a set of all components of a model’s state set, state, and extension vector, along with the
power sets of the extension vector components2.

Model dynamics are specified by the state transition function δ by executing a policy-
specific command c P C . Any command defines authorization rules that consist of (i) condi-
tions to check whether executing the command is allowed and (ii) primitive actions to modify
the model’s state. Thus, each command c is a tuple ♣xc, Condc, Primcq where xc is the vector
of formal parameters (represented by a vector of literals), Condc is a set of conditions and
Primc is a sequence of primitive actions. Executing a command c depends on the current
model state and its input parameters xp and may result in modifying the state so that the
automaton enters a subsequent state q ✶ P Q where δ♣q, ♣c, xpqq ÞÑ q ✶ and xp is some value of
xc. More precisely:

Definition 3.2 (State Transition Function) The state transition function δ : Q✂Σ Ñ Q
is a function that transitions a model’s protection state q to a subsequent state q ✶ iff all of
the required conditions are met.

δ♣q, ♣c, xpqq ÞÑ

✧
q ✶, ∀cond P Condc : cond♣q, xpq ✏ true
q, otherwise

q P Q is the current model state, c P C is a policy-specific command, xp P X are the input
parameters according to the formal parameter vector xc, and cond P Condc are conditions
specific to c.

The subsequent state is computed as

q ✶ ✏ primk♣primk✁1♣...♣prim2♣prim1♣q, xpq, xpq, ...q, xpq, xpq

where Primc ✏ ♣prim1, . . . , primkq is the sequence of primitive actions specific to c, k → 0.
We refer to PRIM as the set of all primitive actions of a model. Accordingly, the set COND
contains all possible conditions of a model.

Definition 3.3 (Condition) A condition cond : Q✂X Ñ Bool is a boolean function based
on first-order logic consisting of one or more clauses for expressing requirements that need to
be met to enable primitive actions to modify the model state.

cond♣q, xpq ÞÑ

✧
true, cl1♣xpq ❫ . . .❫ clm♣xpq
false, otherwise

q P Q denotes the model state, xp P X are the input parameters according to the formal
parameter vector xc, and cl1 ❫ . . .❫ clm are conjunctively combined clauses specific to cond,
m → 0.

The main purpose of primitive actions is to define rules which allow for creating any
protection state that is needed by a security model. These rules then describe, how the
states are created by modifying the state components d1q , ..., dnq .

2Note that a function must be denoted as left-total and right-unique relation so that its power set can be
created.

24

3 Security Model Core

Definition 3.4 (Primitive Action) A primitive action prim : Q ✂ X Ñ Q modifies a
model’s protection state depending on the model state and the vector of input parameters:
prim♣q, xpq ÞÑ q ✶. q P Q is the current policy state, xp P X are the input parameters according
to the formal parameter vector xc, and q ✶ P Q is the subsequent state.

Summary By generalizing the HRU automaton and providing a formal definition, the foun-
dation for specializing the model core has been laid. Core components that can now be
specialized to a model are

(i) the protection state q ✏ ♣d1q , ..., dnqq, and thus the state set Q ✏
➅n

i Di , n ➙ 1,

(ii) the extension vector E ✏ ♣e1, e2, ..., ehq, h ➙ 0,

(iii) the finite primitive set PRIM ✏ tprim1, . . . , priml✉, l ➙ 1,

(iv) the finite condition set COND ✏ tcond1, . . . , condk✉, k ➙ 0, and

(v) the input vector set X of the input set Σ.

We discuss core specialization methods in the following section.

3.3 Core Specialization

Specializing the common model core allows for tailoring the core components to meet the
needs of a model’s individual characteristics. The notion of specializing the model core goes
back to generalization/specialization concepts of object-oriented (OO) software design. In
OO design, a subclass is derived from a super class by inheriting attributes, operations, and
constraints of the super class with the goal of reusing software. Thus, subclasses are allowed
to add new features, e.g., new attributes and operations, or to specialize inherited operations
in order to express individual class characteristics. In the context of security models, the
model core corresponds to a super class and any security model corresponds to a subclass
that can be derived from the model core. Consequently, models inherit the core components
Q, Σ, δ, q0, and E , which may then be specialized.

The result of core specialization is a model-specific state automaton with a specialized
model state, a specialized state transition function, as well as a specialized extension vector.
The model core is specialized following six steps; details on each of the six steps are given
below. On top of that, each step is demonstrated by means of an example based on the
HRU model. We have chosen the HRU model here, because it is well-known and allows the
reader to focus on the steps of core-based engineering. The latter is also supported because
both, the model core and the HRU model, apply the same levels of abstraction. Besides that,
Section 3.4 provides additional examples in terms of more previous and more application-
oriented models.

1. Model Components: identifying the individual components of a model.

2. State Set: combining dynamic model components to specialize the state set.

3. Extension Vector: combining static model components to specialize the extension vec-
tor.

4. Input Vector Set: deriving the input vector set.

25

3.3 Core Specialization

5. Primitive Actions: defining primitive actions that modify the dynamic model state.

6. Interrelations: identifying interrelations between dynamic and static model components
and hence the set of conditions.

1. Model Components: It is necessary to identify all components of a model first. In
this context, some typical model components are: (i) entities that are protected by a policy,
including passive entities (such as files or directories) and active entities (e.g., users and
processes) as well as the entities’ actions, (ii) entity attributes such as types, rights, or roles,
and (iii) relations between the identified model components, e.g., assignment attributes to
entities. Once all components are identified, their types have to be defined. Common types
are set, function, relation, tuple, and any combination of these.
Result is a finite set of model components M ✏ tm1, m2, ..., mn✉, n P N, n ➙ 1, which are
described by a name and a type.
Example The HRU calculus defines an infinite subject set S , an infinite object set O, a
finite set of access rights R, and a function acm that maps a pair of subjects and objects to
a subset of R. Thus, M ✏ tS , O, R, acm✉.

2. State Set: Now, the state set can be composed by selecting all those model components
contained in M that may be modified during policy runtime. In terms of object orientation,
Q ✏

➅n
i Di , n ➙ 1, represents a virtual type for the dynamic model component. Di are

sets of dynamic state components di , which represent those model components that can be
modified by primitive actions.
Result is an n-tuple q ✏ ♣d1q , . . . , dnqq, where diq P Di and diq P M . q0 must then be
initialized according to the state space Q ✏

➅n
i Di , n ➙ 1, where q0 ✏ ♣d10

, ..., dn0
q.

Example Dynamic components of the HRU model are the subject and object sets along with
the matrix; any state q ✏ ♣Sq , Oq , acmqq then contains the state-specific subject set Sq , the
state-specific object set Oq , and a state-specific acmq . Thus, Q ✏ 2S ✂ 2O ✂ ACM where
Sq ❸ S , Oq ❸ O, acmq P ACM , and ACM ✏ tacm⑤acm : S ✂O Ñ 2R✉.

3. Extension Vector: After having selected all state components from M in step 2, M
purely consists of static components that are not part of the model’s state and thus are not
modifiable by primitive actions. These components can now be inserted in the extension
vector of the model core.
Result is a model-specific extension vector E ✏ ♣e1, . . . , ehq with h static model components,
h ➙ 0, ei P M ③tdj✉, 1 ↕ i ↕ h, and dj is a tuple element of q.
Example The right set of the HRU model cannot be modified by δ. For this reason, the
right set R is considered static. Thus, there is one element R in the extension vector that is
added to the model core ♣Q, Σ, δ, q0, ♣Rqq.

4. Input Vector Set: Having specialized a model’s state components and static extensions,
the input vector set X based on the set of input types T can be derived.
Result is an l-dimensional input vector set X ✏ t♣x0, ..., xlq ⑤ ∀xi , 1 ↕ i ↕ l : xi P tj , tj P
T , 0 ↕ j ➔ |T |✉ where the type set T consists of all the components of Q, q, E , and the
power sets of E ’s components. Thus, T ✏ tD1, ..., Dn , d1q , ..., dnq , e1, ..., eh , 2e1 , ..., 2eh✉ where
Q ✏
➅n

i Di , diq P Di and ej is an element of E where 1 ↕ j ↕ h.

26

3 Security Model Core

Example Based on the steps before, the type set T of the HRU model is defined as T ✏
t2S , 2O, ACM , S , O, acm, R, 2R✉.

5. Primitive Actions: Primitive actions are atomic operations modifying the state com-
ponents of the model. Policy semantics confine the set of all possible functions to those that
are actually needed. For example, based on real-world IBAC policies, where the ability to
create or remove privileges is an important requirement, models usually contain primitive
actions that add elements to a set or relation, or delete elements. Depending on the results
of the previous step, a set of primitive actions can now be defined that allows for creating
any protection state that is needed by a policy.
Result is a set PRIM ✏ tprim1, . . . , priml✉, l ➙ 1, where every primitive action primi P
PRIM , 1 ↕ i ↕ l, is a function primi : Q ✂X Ñ Q where primi♣q, xplq ÞÑ q ✶ with q ✶ P Q.
Example The HRU calculus defines six primitives: Sq and Oq are modified by creating and
destroying subjects/objects, and acmq is modified by entering and deleting rights. For ex-
ample, the enter-primitive enters a right r P R into an ACM cell m♣s, oq. This is rewritten
in core notation as primenter_r♣q, ♣xs, xoqq ÞÑ ♣Sq , Oq , mq♣xs, xoq ❨ tr✉q.

6. Interrelations between Dynamic and Static Model Components: In order to relate
extensions to the policy state, security models define interrelations between dynamic and
static model components by means of using the conditions of the transition function. Thus,
δ makes policy decisions not only based on state components but also on core extensions.
Result is a set of conditions COND ✏ tcond1, . . . , condk✉, k ➙ 0, that relates the extension
vector E to the dynamic model component q. Each condition cond P COND is a function
cond : Q ✂X Ñ Bool where cond♣q, xpq ÞÑ ttrue, false✉.
Example The HRU calculus defines a Boolean expression based on one clause r P m♣xs, xoq
that checks whether a subject xs has the right r on an object xo by verifying whether r
is element of cell m♣xs, xoq. In core notation the HRU condition is defined as condHRU :
Q ✂X Ñ Bool where

condHRU ♣q, ♣xs, xoqq ÞÑ

✧
true, r P mq♣xs, xoq
false, otherwise

Having employed all specialization options, the result of core-based model engineering is a
core-based model representing the individual characteristics of a specific model. This model
can now be applied to model application-specific security models as shown in Appendix B.

Summary This section has proposed a core-based model engineering method for access
control and information flow models. Inspired by object-oriented software design, where
specialized subclasses are derived from a super class, the common model core corresponds
to a super class and models (corresponding to subclasses) are engineered by specializing the
common model core. The outcome are core-based models with shared model abstractions.

The contributions of core-based model engineering can be exploited in four ways: (i) reuse of
core components, (ii) model-independent security analysis and implementation methods, and
(iii) model-independent tool support for model engineering, analysis, and implementation,
and (iv) development of causal TCBs that are tailored to specific security models. In order
that these merits have a precise foundation, we have provided a formal definition of the core
along with an engineering method.

27

3.4 Model Re-engineering

3.4 Model Re-engineering

After having discussed how to tailor the common model core to individual models, the goal
of this section is to show the generality and feasibility of core-based model engineering by
means of three models: an MLS, an RBAC, and an ABAC model. Even though these models
belong to different generations and were developed for different application scenarios, we can
demonstrate that they share common abstractions. Indeed, we show that the MLS model
contains the model core although it is not obvious. In contrast, the RBAC and the ABAC
model are static and do not contain the model core by any means. However, we show that their
design principles enable core-based model engineering, which results in a dynamic RBAC and
a dynamic ABAC model. By re-engineering all three models, the model core becomes obvious,
which then allows for applying model-independent methods and tools. Moreover, once we
have applied these model-independent engineering methods, the models can be executed in
a model-independent runtime environment for core-based models (Section 4).

Therefore, this section briefly sketches the three models (Sections 3.4.1, 3.4.3, and 3.4.6)
and introduces an RBAC policy that provides the basis for re-engineering the RBAC model
(Section 3.4.4). On top of that, the RBAC policy is used as running example in the fol-
lowing sections. A discussion on the re-engineering process for each model follows in Sec-
tions 3.4.2, 3.4.5, and 3.4.7. Note that the resulting core-based models are too extensive to
discuss all the details in this section. Hence, we focus on excerpts of each of the six model
engineering steps; the complete models are illustrated in Appendix A.

3.4.1 Multilevel Security Models

For more than 30 years, multilevel security models such as [26,35,92] have been an important
utility for modeling information flow security policies. The main application area of MLS
policies have been highly trustworthy IT systems in military and governmental environments.
Still, the number of IT Systems enforcing MLS policies is steadily increasing, e.g., trusted
operating systems such as SELinux [177, 223, 224], Security Enhanced BSD [240, 246, 247],
or Oracle Solaris 10 [186], database management systems such as the Oracle Database 11g
Release 1 [185], and hypervisors such as XenClient XT by Citrix [54]. One important ap-
plication scenario is dynamic web service composition, where complex services available on
the Web are composed at design time by service composition planners such as SHOP2 [118].
Hutter et al. [118–120] have developed an MLS model and a system implementing this model
for automatically composing web services for collaborative business processes and health care
composition plans.

The wide variety of contemporary IT systems and application scenarios shows that MLS
models are by no means deprecated. Inspired by the BLP model [26, 27], many new mod-
els and IT systems have emerged adapting the basic concepts towards modern application
scenarios. Thus, even though MLS models were developed 40 years ago, they still represent
a significant class of models. For this reason, we demonstrate core-based model engineering
by means of an contemporary MLS model – the model for dynamic web service composi-
tion [118–120]. Since it was derived from the BLP model, we briefly sketch the main concepts
of the BLP model in more detail before introducing the model of Hutter et al. [119,120].

The BLP model ♣Q, Σ, δ, q0, ♣L, S , O, Rqq combines a lattice with components of the HRU
model. The lattice L ✏ ♣C ,↕q represents a hierarchy of a finite set of security classes
C modeled by the dominance relation ↕ as a total ordering. Every state q P Q of the
automaton is a tuple q ✏ ♣mq , clqq, where mq is an ACM as defined in Section 2.3.2 and

28

3 Security Model Core

clq : S ❨ O Ñ C is a classification function assigning a security class to each subject and
object. In order to modify mq and clq , the model defines four primitive operations that
pairwise perform modifications on the matrix and the classification function: enter right into
and delete right from the matrix, classify and reclassify subjects/objects. Entering a right
into the matrix is controlled by the classification function and the lattice. This is established
by the Simple-Security Rule and the ✍✁Property, which map legal information flow onto
specific rights (read or write) in the matrix. Thus, the matrix may only contain those rights
that are allowed by the lattice and the classification function. Since the matrix does not
need to be equivalent to the lattice, information flow can be controlled by two equivalent
conditions: (i) ∃r P R : r P mq♣s, oq checking whether the corresponding right (read or write)
is in a matrix cell, or (ii) cl♣oq ↕ cl♣sq that checks whether the security class of s dominates
the security class of o in order to allow that information flows from o to s (respectively,
cl♣sq ↕ cl♣oq allowing information to flow from s to o).

The BLP model has inspired numerous models such as the semi-formal model for web
service composition policies [119, 120]. In analogy to the BLP model, the web service model
consists of a set of objects O, a set of subjects WS called web services, a classification function
cl : WS ❨ O Ñ C , and a lattice L ✏ ♣C ,↕q to model a security class hierarchy. However, the
definition of the lattice differs. Similar to the compartments of the BLP model, [119,120] intro-
duce different types of information. Instead of assigning compartments to objects/subjects,
the security level of a web service is subdivided with respect to the type of information.
Thus, different lattices are combined, i.e., each lattice ♣C1,↕1q, ♣C2,↕2q, . . . , ♣Cn ,↕nq repre-
sents one type of information, to a composed lattice L ✏ ♣C ,↕q by C ✏ C1 ✂ C2 ✂ . . .✂ Cn

and ♣c1, c2, . . . , cnq ↕ ♣c✶
1, c✶

2, . . . , c✶
nq iff ci ↕ c✶

i holds for all 1 ↕ i ↕ n. The number of
lattices n depends on the policy the model is engineered for, e.g., the model defines two types
of information for a travel agency policy [119]: location and finance resulting in a composed
lattice L ✏ ♣LO ✂ FI ,↕q. In contrast to the BLP model, this model does not contain an
ACM and models policy dynamics semi-formally.

Dynamically composing web services in order to fulfill a specific task results in the prob-
lem that a customer usually does not know all web services that will be involved [119].
Consequently, whenever a new web service is added to the composition plan, it needs to be
classified. For this purpose, the model contains a delegation function del : WS ❨O Ñ C that
allows a web service to classify a new web service according to the delegation classification.
del♣wsq ÞÑ ♣c1, ..., cnq denotes the maximal classification a web service may delegate to an
unknown web service [119].

Having introduced all concepts of the semi-formal model of Hutter et. al., the following
section discusses how to re-engineer this model.

3.4.2 MLS Model for a Web Service Composition System Policy

The model of Hutter et al. [119, 120] considers policy dynamics in a semi-formal way and
hence contains the model core even though it is not obvious. The challenge of model engi-
neering (Section 3.3) is now to expose the model core by defining the state set and primitive
operations, and relating state components and static extensions. In doing so, we follow the
notions of the BLP model, because of the similarities of both models.

Step 1 now defines all model components. The model components are analogous to
the model components of Hutter et. al. and thus M consists of seven elements M ✏
tWS , O, cl, del, LO, FI ,↕✉.

29

3.4 Model Re-engineering

Afterwards, step 2 determines the state components3. Since the set of web services can be
modified by adding new web services and hence the classification function and the delegation
function are modified by adding mappings for new web services, WS , cl, and del are considered
dynamic. Consequently, the state set is defined as Q ✏ 2WS ✂ CL ✂ DEL where CL ✏ tcl ⑤
cl : WS ❨O Ñ LO ✂ FI ✉ and DEL ✏ tdel ⑤ del : WS ❨O Ñ LO ✂ FI ✉. Any state is a tuple
q ✏ ♣WSq , clq , delqq where WSq ❸ WS , cl P CL, and del P DEL.

Step 3 specializes the extension vector by including the remaining components O, LO, FI ,
and ↕ in the extension vector E , resulting in a model ♣Q, Σ, δ, q0, ♣LO, FI ,↕, Oqq.

After having specialized the model’s dynamic and static components, we can derive the
type set T of the input vector set X in step 4. According to the specialized core components
Q, q, and E , T ✏ t2WS , CL, DEL, WS , cl, del, LO, FI ,↕, O, 2LO, 2FI , 2↕, 2O✉.

To precisely specify the legal modifications of a model state, step 5 defines the set of
primitive actions. Since web services can only be added and not deleted, and delegations
and classifications can only be granted once for the new web services, primitives for deleting
web services and for reclassifying web services and objects are not required. Thus, we define
a primitive for adding web services and a primitive for classifying web services. The entire
set of primitives is given in Appendix A.2. Note that in order to define the primitives, a
binary operation called functional overriding ❵ is required; it is defined as follows. Given two
functions f : X Ñ Z and g : Y Ñ Z ; the overriding of f by g is defined as f ❵g : ♣X❨Y q Ñ Z

where f ❵ g ♣xq ÞÑ

✧
g♣xq, x P Y
f ♣xq, otherwise.

addWebService : Q ✂X Ñ Q

addWebservice♣q, txws1
, . . . , xwsn✉q ÞÑ ♣WSq ❨ txws1

, . . . , xwsn✉, clq , delqq

classify : Q ✂X Ñ Q

classify♣q, ♣xws, xl , xf qq ÞÑ ♣WSq , clq ❵ t♣xws, ♣xl , xf qq✉, delqq

Finally, we need to relate the extensions to the model state. In doing so (step 6), we follow
the notation of MLS models by rewriting their conditions, e.g.,

condMLS1
: Q ✂X Ñ BOOL

condMLS1
♣q, xws, xoq ÞÑ

✧
true, clauseMLS1

♣q, clq♣xoq, clq♣xwsqq
false, otherwise

clauseMLS1
: Q ✂X Ñ BOOL

clauseMLS1
♣q, xl , xf q ÞÑ

✧
true, xl ↕ xf

false, otherwise

Moreover, the model requires a condition that checks whether copying the delegation classifi-
cation of one web service to a new one is allowed. Thus, the core-based MLS model contains
a total of three conditions including three clauses.

Summary We have demonstrated core-based model engineering by means of an MLS model
for web service composition systems [119, 120]. This model is an offspring of the BLP
model [26,27] that has long been proven relevant in the security community.

3Note that the authors of this model have given some freedom in the interpretation of which model compo-
nents may be modified and how to do so. Due to demonstration purposes we have restricted the use case
policy in such a way that the resulting model is straightforward and comprehensible.

30

3 Security Model Core

The MLS model already contains the model core (even though it is not obvious) by the
model components WS , cl, and del, since they may change during policy runtime. How-
ever, the original model does not formally define how to do so. Hence, the challenge of
re-engineering has been to define the primitive actions that modify the model state. The
result is a dynamic MLS model with an exposed model core, which is now unlocked to a
family of engineering methods and tools.

3.4.3 Role-based Access Control Models

In the early 1990s, commercial applications required the ability to specify and enforce
enterprise-specific access control policies in order to streamline the typically burdensome
process of authorization management [86]. This resulted in the development of role-based ac-
cess control models, e.g., [86,87,184,205,210,212,229], which have quickly become relevant for
expressing and implementing application-oriented access control policies. This is reflected by
a wide variety of commercial and noncommercial applications, e.g., [45,83,187,232], which are
widely scattered in the sectors of government and military, bank and finance [213], insurance
and health care [77,221]. More case studies are discussed [86,177].

Among the wide variety of RBAC models, Sandhu’s RBAC model family [212] is the basis
for the most relevant models: RBAC0, RBAC1, RBAC2, and RBAC3. These models are
standardized by the American National Standard 359-2004 [88,152,205] and many researchers
and software vendors have provided methods, e.g., for role engineering [179], and tool support
for these models [86].

Unfortunately, these RBAC models have a severe drawback. They focus on specifying
static snapshots of RBAC policies without considering modifications during their runtime.
For example, commercial IT systems such as [187] show that defining new roles and as-
signing them to users are indispensable features of RBAC systems. Moreover, numerous
publications, e.g., [157,228,229], have illustrated that modeling a static snapshot of a policy
is not sufficient for analyzing RBAC models with respect to their safety properties (HRU
models in Section 2.3.2). The promising potential of RBAC models is yet to be fully ex-
ploited. On this account, literature proposes to upgrade existing RBAC models by model
dynamics [157,228,229].

Our approach is to structurally engineer a dynamic RBAC model based on Sandhu’s static
model family. The goal is to demonstrate that RBAC models, even though they are originally
static, share the common model core. In doing so, we refer to the RBAC3 model and engineer
it to be suitable for a Health Information System (HIS) policy that is used as running example
in this dissertation. The re-engineered RBAC model then enables to formally describe the
sample policy, which we then use for demonstrating causal TCB engineering. On this account,
this section gives a short overview of RBAC models; a comprehensive discussion can be found
in [86,205,212]. Afterwards Section 3.4.4 introduces the HIS policy, which provides the basis
for re-engineering the Sandhu’s RBAC3 model in Section 3.4.5.

Figure 3.4 illustrates the components of Sandhu’s RBAC3 model. Basically, any RBAC
model consists of four sets: users U , roles R, permissions P, and sessions S (also known as
subjects). Users assume roles, modeled by a user-to-role assignment relation UA ❸ U✂R, and
roles are associated with permissions by a role-permission assignment relation PA ❸ P ✂ R.
The set of permissions P ✏ 2♣OP✂Oq is defined by relating a policy’s operations and objects;
a permission is a set of tuples where each tuple consists of an operation that is allowed to be
executed on an object.

A session represents a user in the system and carries out all requests by the user. This is

31

3.4 Model Re-engineering

UA PA

RH

Figure 3.4: RBAC Security Model [212]

modeled by a mapping user : S Ñ U that maps a session to a user. Note that a user may
have more than one session, e.g., he may be logged in to a system multiple times. However,
any session strictly represents only one user.

A session activates a subset of the user’s roles by a function roles : S Ñ 2R where roles♣sq ÞÑ
tr P R ⑤ ♣user♣sq, rq P UA✉. This means, a session can only activate roles that are assumed by
its user. Once a session has activated some of the user’s roles, it is authorized to perform an
operation on an object if it has an activated role with a permission that allows the operation
to be executed on the object. This is modeled by a function access : S ✂OP ✂O Ñ Bool [86]
where

access♣s, op, oq ÞÑ

✧
true, ∃r P R, p P P : r P roles♣sq ❫ ♣p, rq P PA❫ ♣o, opq P p
false, otherwise

So far, these definitions are common to all RBAC models. Unique features of the RBAC3

model are role hierarchies and separation of duty constraints that can be defined on any
model component. We motivate and illustrate these concepts in the following.

Role Hierarchies are a natural means for structuring roles in order to reflect an organi-
zation’s authority or responsibility lines [212]. It is common practice that roles within an
organization overlap and thus share some of their permissions. This results in permission re-
dundancies and therefore also results in increased maintenance effort. To avoid redundancy
Sandhu [212] introduced role hierarchies for permission inheritance between roles. For exam-
ple, when a role doctor inherits permissions from a role nurse, all permissions of the nurse
are added to the individual permissions of the doctor. In other words, the nurse’s permissions
become a subset of the doctor’s permissions.

Role hierarchies are usually modeled by a partial order RH ❸ R ✂ R (denoted by r ➞ r ✶)
where ∀r , r ✶ P R : r ➞ r ✶ ô all permissions of r ✶ are also permissions of r and all users of
r are also users of r ✶ [86]. This leads to a redefinition of access in order to perform access
control checks in the presence of role hierarchies [86]. Access is thus only granted when
the user’s session activates a role inheriting a permission from another role that allows an
operation to be executed on an object. Since role hierarchies are reflexive, anti-symmetric,
and transitive, access does not exclude the roles (and their permission) directly activated by

32

3 Security Model Core

the user’s session:

access♣s, op, oq ÞÑ

✩✫
✪

true, ∃r , r ✶ P R, p P P : r ➞ r ✶ ❫ r P roles♣sq ❫ ♣p, rq P PA
❫♣o, opq P p

false, otherwise

It is also common practice that individuals within an organization may not assume certain
duties at the same time – a common principle called separation of duty – in order to constrict
the possibility to endanger the organization’s business or security. Well known examples
are the roles of purchasing manager and accounts payable manager. A user is generally not
allowed to assume both duties because this creates the opportunity to committing fraud [212].

Such organizational restrictions are transferred to RBAC models by attaching separation
of duty constraints to model components; a prominent representative of such constraints are
mutual disjoint roles, where a user may not assume two or more roles at the same time.
Depending on whether mutual disjoint roles are defined as static or dynamic separation of
duty constraints, i.e., whether they are enforced during authorization-time or runtime (by
either constricting UA or roles), the modeling of such constraints is manifold, e.g., [139,158].
The health information system policy is based on a simple authorization-time role exclusion
with shared privileges. For this reason, the model needs to restrict the user-to-role assignment
relation UA. This is typically modeled by a nonreflexive, symmetric, and nontransitive role
exclusion relation RE ❸ R ✂ R (denoted by ✓ex), where ∀r , r ✶ P R : r ✓ex r ✶ ô r and r ✶

are mutually exclusive. This means that whenever a user tries to assume a new role, the
model has to ensure that the new role and any other role already assumed by the user are
not mutually exclusive.

Based on these concepts, the RBAC3 model is able to specify static snapshots of RBAC
policies, including organizational role hierarchies and separation of duty constraints by means
of mutually disjoint roles. In the following section, we first introduce the sample HIS pol-
icy and afterwards show how the static RBAC3 model is re-engineered to support policy
dynamics, in order to formalize the HIS policy.

3.4.4 Use Case RBAC Security Policy

This section briefly introduces an RBAC security policy that is used as a running example
in this dissertation. The policy is roughly based on a small real-world HIS for an aged-
care facility and was first introduced by [77]. In order to develop a formal model for this
policy, [99,228,229] have precisely specified the policy, enhanced it by additional policy rules,
and extended the policy with parameters, or some aspects of electronic health records [25].

Due to demonstration purposes, this dissertation uses only a small excerpt of the policy
rules based on ten roles, 15 objects, seven operations, a role hierarchy, and separation-of-duty
based on role exclusion. Thereby, we adopt the policy limits identified by [229] that lead to
a low policy complexity, which suits our demonstration purposes very well: the policy does
not support parameters for objects, roles, or permissions, such that it is only suitable for
a single department. It focuses on the dynamics of the user-role assignment instead of also
considering the dynamics of the role-permission assignment. Hence, the policy’s object set,
permission set, and role-permission assignment do not change during policy runtime. Besides
that, we have added a collection of explicit management functions, which are dedicated to
manage the users and their roles, and a role UserAdmin, which may perform these functions.
For example, the role UserAdmin may add new users if the aged-care facility recruits new
employees.

33

3.4 Model Re-engineering

Other than that, the policy defines only roles that we consider to be standard for a HIS
system, e.g., Doctor, Nurse, Patient, and Manager. The roles and their permissions are
managed in a role hierarchy as shown in Figure 3.5. Here, roles with fewer permissions are
located at the bottom such that the role Employee has the fewest permission, which are
directly inherited by the roles Receptionist and Nurse.

Employee

Nurse

Doctor

Receptionist

MedicalManager

Manager

Figure 3.5: Role Hierarchy of RBAC HIS Policy [178]

Additionally, roles are mutually exclusive based on the user-role assignment. For example, a
user who is assigned the role Doctor may not have the roles Receptionist and Manager.

Objects of the policy are also standard objects for a HIS system, e.g., OldMedical-
Records, RecentMedicalRecords, Prescriptions, PatientMedicalInfo, PatentientPersonalInfor,
or LegalAgreement. Roles may access these objects by a couple of different access opera-
tions such as view, add, modify, create, or sign. For example, the role Doctor may create
Prescriptions, while the role Nurse may only view Prescriptions.

The entire set of policy elements that are used in this dissertation, e.g., the role-permission
assignment (Table B.1), is illustrated in Appendix B.

3.4.5 RBAC Model for the HIS Policy

The goal of re-engineering the RBAC3 model is to show that RBAC models also share design
principles that allow to specialize the common model core with low effort. For this purpose,
we demonstrate that core-based model engineering of a dynamic RBAC3 model is straight-
forward. Exposing the model core results in a model that fulfills the requirements of the
sample policy in Section 3.4.4.

In principle, the model components (step 1) are analogous to the RBAC3 definition with
only minor changes:

• U , R, S , UA, user , roles, O, OP, RH , and RE are unchanged in comparison to RBAC3.

• To emphasize the affinity of access control matrices and permissions, we define the role
permission assignment relation PA as an ACM m : R ✂O Ñ 2OP denoting that a role
has the right to perform a specific set of operations on an object.

Step 2 selects all model components that are modifiable by primitive actions. According
to our health care policy, dynamic components are: U , S , UA, user , and roles. The state set
of the model core is thus defined as Q ✏ 2U ✂ 2S ✂ 2UA ✂ USER ✂ ROLES . Accordingly,

34

3 Security Model Core

a model state is defined as q ✏ ♣Uq , Sq , UAq , userq , rolesqq where Uq ❸ U , Sq ❸ S , UAq ❸
UA, userq P USER ✏ tuser ⑤ user : S Ñ U ✉, and rolesq P ROLES ✏ troles ⑤ roles : S Ñ 2R✉.

In step 3 we specialize the core’s extension vector. All components that are not part of the
model state, are static and can now be included in the extension vector: m, R, O, OP, RH ,
and RE. Thus, the extension vector is 6-dimensional ♣Q, Σ, δ, q0, ♣O, OP, R, m, RH , REqq and
each element is defined as above.

Having defined all the state and extension vector components, we can now derive the input
vector set X in step 4. According to the specialized Q, q, and E , the type set is defined as T ✏
t2U , 2S , 2UA, USER, ROLES , U , S , UA, user , roles, O, OP, R, m, RH , RE , 2O, 2OP , 2R, 2m ,

2RE✉ with X ✏ t♣x0, ..., xlq ⑤ ∀xi , 1 ↕ i ↕ l : xi P tj , tj P T , 0 ↕ j ➔ |T |✉.
To modify the model state, step five defines primitive actions that allow for creating any

model state needed by a policy. Thus, the model contains a total of ten primitive actions that
perform pairwise modifications on the state components. For example, there are two prim-
itives modifying UA: assignUserToRoles and revokeUserFromRoles. A list of all primitive
actions is given in Appendix A.3.

assignUserToRoles : Q ✂X Ñ Q

assignUserToRoles♣q, xu , txr1
, . . . , xrn✉q ÞÑ ♣Uq , Sq , UAq ❨ t♣xu , xrwq, . . . , ♣xu , xrnq✉,

userq , rolesqq

revokeUserFromRoles : Q ✂X Ñ Q

revokeUserFromRoles♣q, xu , txr1
, . . . , xrn✉q ÞÑ ♣Uq , Sq , UAq③t♣xu , xrwq, . . . , ♣xu , xrnq✉

It remains to define the conditions for the model in step six. One condition is already given
by the standard RBAC3 model in terms of the access-function. Hence, it only needs to be
rewritten in core notation:

condcore : Q ✂X Ñ BOOL where

condcore♣q, xs, xo, xopq ÞÑ

✩✫
✪

true, ∃r , r ✶ P R : r ➞ r ✶ ❫ r ✶ P rolesq♣sq
❫ xop P m♣r ✶, xoq

false, otherwise

condcore consists of three clauses and each clause is rewritten in functional notation like:

clauseRH : X Ñ BOOL

clauseRH ♣xr1
, xr2

q ÞÑ

✧
true, xr1

➞ xr2

false, otherwise

clauseUA : Q ✂X Ñ BOOL

clauseUA♣q, xr , xuq ÞÑ

✧
true, ♣xu , xrq P UAq

false, otherwise

clauseRH is responsible for checking whether two roles are related in the role hierarchy;
clauseUA queries the model state whether a user is assigned a specific role. The dynamic
RBAC model contains five conditions (Appendix A.3) where one condition implements sepa-
ration of duty and three conditions are deviations of condcore. Additionally, the model defines
a total of five clauses.

35

3.4 Model Re-engineering

Summary We have shown that even though static RBAC models do not contain the model
core, they share design principles that enable core-based model engineering. The challenge
of re-engineering a static model has been to determine the components of the model state.
This is usually provided by the policy that the model is designed for. Once dynamic and
static components are defined, re-engineering an RBAC model is straightforward since many
components are already defined by the static RBAC model, e.g., conditions and clauses, that
just need to be rewritten in core notation. The result is a dynamic RBAC model reusing the
abstractions of the static RBAC3 model.

The outcome of this section is that a wide spectrum of RBAC security policies is now
unlocked to a range of engineering methods and tools for model engineering, model analysis
and model implementation. This contributes to exploiting the potential of RBAC models.

3.4.6 Attribute-based Access Control Models

At the end of the 1990s, industrial and government organizations alike increasingly required
collaborative business processes beyond organizational boundaries. This requirement has
inspired loosely coupled systems with a high degree of interoperability that use web services
as system interfaces. The increasing use of web services was attended by a need for new access
control models. In contrast to traditional IT systems where the set of users is well-known
and changes only sporadically, the user set of web services in service-oriented architectures is
usually not known a priori and may change ad-hoc. Consequently, IBAC or RBAC models
are not feasible to formalize access control policies for such highly interoperable systems.
Instead, a user’s properties such as her age, her location, or the organization she belongs to,
now come to the fore. Besides that, [251] argue that traditional access control models are too
simple, static, and coarse-grained to model security policies for web service applications. As
a result, a wide variety of attribute-based access control (ABAC) models, e.g., [37,39,63,130,
147, 193, 219, 251, 254] and flexible access control frameworks supporting attributes [32, 245]
have been developed. However, although numerous ABAC models have been published, there
is no widely accepted ABAC model like the NIST standard for RBAC models yet [130].

In general, ABAC models are characterized by access control decisions that are based
on subject and object attributes rather than subject identity or roles. By means of two
attribute assignment functions as : Subject Ñ Att1 ✂ Att2 ✂ . . . ✂ Attn , n P N, and
ao : Object Ñ Att1 ✂Att2 ✂ . . .✂Attm , m P N, attribute values are assigned to all subjects
and objects. In order to make access control decisions, subject and object attribute values
then are traded against each other, depending on the attributes’ syntax and semantics. For
example, in order to access data via web services, a user’s location within the network of an
organization may be critical: if a user is in a local area network (LAN) of an organization,
she may access all objects with all security levels. If she is in a wide area network (WAN),
however, she may only access objects that have the attribute value ‘public’ as security level.
The user’s identity here is irrelevant; only her attributes reflecting her location are important.

Unfortunately, many ABAC models, e.g., [37,39,63,147,219,251], have the same drawback
as Sandhu’s RBAC models (Section 3.4.3): they only specify a static snapshot of an ABAC
policy without considering runtime modifications of this snapshot. However, recent work such
as [59,130,245] shows that modifying subject and object attributes are key features of ABAC
systems. Additionally, these features are also required to analyze ABAC models regarding
their safety properties as discussed by [254]. Thus, to exploit the potential of ABAC models,
first work like [59,130,254] has upgraded static ABAC models by integrating model dynamics.

We take this work one step further: our approach is to structurally engineer a dynamic

36

3 Security Model Core

ABAC model by means of the ABAC model for web services introduced by [251]. We have
chosen this model, because it is very general and can be adapted to support a wide variety
of ABAC policies. The goal is to demonstrate that ABAC models also share the common
model core, even though they are static by design. For this purpose, this section gives a
short overview of the original ABAC model. In doing so, we demonstrate the adaptation of
the general model by means of an example policy for an Online Entertainment Store inspired
by [10, 251]. The Online Entertainment Store provides web services for watching movies; it
has to guarantee that users may only watch those movies whose content rating approves a
user’s age. Section 3.4.7 then re-engineers the adapted ABAC model as core-based ABAC
model.

In its most general form the original ABAC model introduced by [251] defines three basic
sets: subject set S , set of resources R, and set of environments E , and for each set there is
an attribute assignment function aS , aR, and aE , which maps attribute values to subjects,
resources, or environments respectively.4 Subject attributes define the characteristics of a
subject; for example, such attributes may be a subject’s name, organization, job title, or role.
Resources are entities that subjects act upon; their attributes are usually extracted from
their metadata, e.g., the title, date, or author of a resource. Environment attributes describe
the operational, technical, and situational environment or context, in which the information
access occurs [251]. Such attributes can be the current date, time, or the network’s security
level.

• aS : S Ñ SA1✂SA2✂ . . .✂SAK , where SAk are the pre-defined attributes for subjects,
1 ↕ k ↕ K ,

• aR : R Ñ RA1 ✂ RA2 ✂ . . . ✂ RAM , where RAm are the pre-defined attributes for
resources, 1 ↕ m ↕ M , and

• aE : S Ñ EA1 ✂ EA2 ✂ . . . ✂ EAN where EAn are the pre-defined attributes for envi-
ronments, 1 ↕ n ↕ N .

Given all attribute assignments, access decisions are then made by a set of policy rules,
which are Boolean functions evaluating the attributes of some combination of s, r , and e. A
policy rule is generally defined as:

can_access : S ✂ R ✂ E Ñ Bool

can_access♣s, r , eq ÞÑ f ♣aS♣sq, aR♣rq, aE♣eqq

A subject may access a resource in a given environment if the evaluation of some function f
is true. Otherwise access is denied. We now adapt this general model to an ABAC model
that is able to formalize the security policy of an Online Entertainment Store; here, we also
provide examples for policy rules using specific attributes.

In the context of the Online Entertainment Store, only two of the basic sets are needed to
express a suitable security policy: the set of subjects S , acting on behalf of the users, and
the set of resources R, representing the movies. The environment set E along with environ-
ment attributes is not explicitly addressed in this example; though, [251] shortly discusses

4Note that we deviate from the original model here: it defines attribute assignment relations instead of
functions. We use the functional notation, because it is more convenient for defining clauses and primitive
actions in the following section. This is feasible since the relations must be left-total and right-unique.
Besides, the original model also uses the functional notation for accessing value assignments.

37

3.4 Model Re-engineering

how environment attributes may be integrated in this application scenario. Critical subject
attributes are a user’s age and her role, indicating whether a user is a premium or a regular
customer based on the membership fee paid. Thus, the set of subject attributes consists of
two elements SA ✏ tAGE , ROLE✉, where AGE ❸ N and ROLE ✏ tPremium, Regular✉.
Resource attributes important for this application scenario are the content rating of a
movie and its release date. The latter allows to categorize movies either as New Re-
lease or Old Release. Thus, the set of resource attributes also consists of two elements
RA ✏ tRATING, TYPE✉, where RATING ✏ tR, PG ✁ 13, G✉ represents the movie ratings
and TYPE ✏ tNewRelease, OldRelease✉ contains the release types. The authorization rules
for movie ratings and user age are shown in Table 3.1.

Movie Rating Authorized Users

R Age 21 or older
PG ✁ 13 Age 13 or older

G Everyone

Table 3.1: Authorization Rules [251]

Based on these subject and resource attributes, the attribute assignment functions are
defined as aS : S Ñ AGE ✂ ROLE and aR : R Ñ RATING ✂ TYPE .

In order to make policy decisions, the ABAC model defines two policy rules based on the
attribute assignment functions. can_accessAR evaluates a movie’s content rating with respect
to a user’s age by enforcing the authorization rules of Table 3.1. can_accessRT evaluates a
user’s role with respect to a movie’s release type such that regular customers may only
watch Old Releases of a specific movie, while premium users may watch all movies. Due to
convenience reasons, we use the functional notation age♣sq and role♣sq to individually select
the first or second tuple element of the subject attribute assignment aS♣sq ÞÑ ♣age♣sq, role♣sqq.
The individual attribute values of a resource are selected by rat♣rq and type♣rq where aR♣rq ÞÑ
♣rat♣rq, type♣rqq.

can_accessAR : S ✂ R Ñ BOOL

can_accessAR♣s, rq ÞÑ

✩✬✬✫
✬✬✪

true, ♣age♣sq ➙ 21❫ rat♣rq P tR, PG, G✉q
❴ ♣age♣sq ➙ 13❫ age♣sq ➔ 21❫ rat♣rq P tPG, G✉q
❴ ♣age♣sq ➔ 13❫ rat♣rq P tG✉q

false, otherwise

can_accessRT : S ✂ R Ñ BOOL

can_accessRT ♣s, rq ÞÑ

✩✫
✪

true, ♣role♣sq ✏ ‘Premium’q
❴ ♣role♣sq ✏ ‘Regular ’❫ type♣rq ✏ ‘OldRelease’q

false, otherwise

The access function can_access : S ✂R Ñ BOOL is then defined by conjunctively combining
both policy rules such that

can_access♣s, rq ÞÑ can_accessAR ❫ can_accessRT

By means of these model elements, a static snapshot of an ABAC policy for an Online
Entertainment Store can be formalized. The following section now demonstrates that even
though this ABAC model is static, it is based on design principles that allow for re-engineering

38

3 Security Model Core

it as core-based model that supports policy dynamics. Note that the re-engineering method
can also be applied for the ABAC model in its most general form and any specific ABAC
model that is derived.

3.4.7 ABAC Model for an Online Entertainment Store Policy

The goal of this section is to demonstrate that core-based engineering of an ABAC model
is feasible and straightforward. On top of that, we extend the static ABAC model [251]
by introducing policy dynamics that is expressed in core notation. For this purpose, this
section re-engineers the adapted ABAC model that formalizes a static policy of an Online
Entertainment Store as core-based ABAC model (Section 3.4.6). In doing so, we show that
the adapted ABAC model and also the general ABAC model of [251] are based on design
principles that render core-based model engineering possible.

The first step is to determine the components of the core-based ABAC model: M ✏
tS , R, aS , aR, SA, RA, AGE , ROLE , RATING, TYPE✉. As can be seen, these are identi-
cal to the components of the adapted security model with SA ✏ tAGE , ROLE✉ and
RA ✏ tRATING, TYPE✉.

The next step defines the model state, which is provided by the application scenario of the
Online Entertainment Store. Here, key features are to add and delete users and movies, and
to change their attribute assignments, for instance if a user gets older or the release type of
a movie changes. Thus, dynamic model components are S , R, aS , and aR such that the state
set is defined as Q ✏ 2S ✂ 2R ✂ AS ✂ AR where AS ✏ tas ⑤ aS : S Ñ AGE ✂ ROLE✉ and
AR ✏ taR ⑤ aR : R Ñ RATING ✂ TYPE✉. Hence, any state is a tuple q ✏ ♣Sq , Rq , aSq , aRqq
with Sq ❸ S , Rq ❸ R, aSq P AS , and aRq P AR.

From this it follows that the extension vector E is 2-dimensional, containing the components
SA and RA. The core-based ABAC model hence is defined as ♣Q, Σ, δ, q0, ♣SA, RAqq.

Based on the definition of the model state and the extension vector, we can now specify
the input types T of the input vector set X in the fourth step. With respect to Q, q,
and E , T is defined as T ✏ t2S , 2R, AS , AR, S , R, aS , aR, AGE , ROLE , RATING, TYPE ,

2AGE , 2ROLE , 2RATING , 2TYPE✉.
The fifth step defines the set of primitive actions for modifying the model state. As already

mentioned, the Online Entertainment Store features the modification of the subject and the
resource set, requiring that the subject and object attribute assignments can also be modified.
On this account, a total of eight primitive actions is needed that pairwise modify the state
components. For example, the subject set may be modified by addSubject : Q ✂X Ñ Q and
deleteSubject : Q ✂ X Ñ Q; the subject attributes can be modified by assignSubjAttributes :
Q ✂ X Ñ Q and resignSubjAttributes : Q ✂ X Ñ Q. An overview of all primitive actions of
the ABAC model can be found in Appendix A.4.

addSubject : Q ✂X Ñ Q

addSubject♣q, txs✉q ÞÑ ♣Sq ❨ txs✉, Rq , aSq , aRqq

deleteSubject : Q ✂X Ñ Q

deleteSubject♣q, txs✉q ÞÑ ♣Sq③txs✉, Rq , ts✉⊳✁ aSq , aRqq

assignSubjAttributes : Q ✂X Ñ Q

assignSubjAttributes♣q, xs, xage, xroleq ÞÑ ♣Sq , Rq , aSq ❵ t♣xs, xage, xroleq✉, aRqq

resignSubjAttributes : Q ✂X Ñ Q

39

3.4 Model Re-engineering

resignSubjAttributes♣q, xs, xage, xroleq ÞÑ ♣Sq , Rq , aSq③t♣xs, xage, xroleq✉, aRqq

The last step specifies the conditions of the ABAC model. One condition is already given
by the static ABAC model by the policy rules can_accessAR and can_accessRT . It only
remains to rewrite them as clauses and combine them by the condition condaccess. The
rewriting of can_accessAR is shown in the following; rewriting can_accessRT is illustrated in
Appendix A.4.

clauseAR : Q ✂X Ñ BOOL

clauseAR♣q, xs, xrq ÞÑ

✩✬✬✫
✬✬✪

true, ♣ageq♣xsq ➙ 21q
❴ ♣ageq♣xsq ➙ 13❫ ageq♣xsq ➔ 21❫ ratq♣xrq P tPG, G✉q
❴ ♣ageq♣xsq ➔ 13❫ ratq♣xrq P tG✉q

false, otherwise

condaccess : Q ✂X Ñ BOOL

condaccess♣q, xs, xrq ÞÑ

✧
true, clauseAR♣q, xs, xrq ❫ clauseRT ♣q, xs, xrq
false, otherwise

Since the original ABAC model is static, it is not concerned with policy administration.
However, the core-based ABAC model for the Online Entertainment Store example requires
a condition that ensures that the model state can only be modified by a privileged instance
such as an administrator. For this reason, we have enhanced the value range of the subject
attribute ROLE by an additional role that we call ‘Admin’, which can now be evaluated
for state modifications by the additional management condition condman . In case this is
too course-grained, additional attribute values may be added according to a given policy
specification.

clauseman : Q ✂X Ñ BOOL

clauseman♣q, xsq ÞÑ

✧
true, roleq♣xsq ✏ ‘Admin’
false, otherwise

condman : Q ✂X Ñ BOOL

condman♣q, xs, xrq ÞÑ clauseman♣q, xsq

The core-based ABAC model altogether defines a total of three clauses and two conditions,
out of which two clauses and one condition have already been predefined by the original
ABAC model. The condition condman based on clauseman has been added for guarding state
modifications via primitive actions.

Summary This section has shown that although ABAC models are not originally based on
the model core, they share design principles that render core-based model engineering possi-
ble. As with static RBAC models (Section 3.4.5), the challenge of re-engineering an ABAC
model is to determine the components of its state. Once dynamic and static components are
defined, the re-engineering is straightforward since many components are already specified
by the static ABAC model and just need to be rewritten in core notation. For example, the
original ABAC model defines two policy rules, which can easily be rewritten as two clauses.
Result is a dynamic ABAC model that applies the abstractions of the static ABAC model
enriched by the core.

40

3 Security Model Core

This section’s achievement is that numerous ABAC models, namely all those that can be
derived from the general ABAC model of [251], are now unlocked to a variety of methods
and tools for model engineering, analysis, and implementation. This makes a significant
contribution to developing and exploiting the potential of a standard ABAC model.

3.4.8 Summary

We have illustrated core-based model engineering by means of three models: an MLS, an
RBAC3, and an ABAC model. We have argued that these models are relevant for specifying,
analyzing, and implementing real-world security policies, since there have been numerous
application scenarios and IT systems implementing them.

Even though these models belong to different domains and contain domain-specific model
abstractions (e.g., lattices, role hierarchies, and attribute assignments), they also share com-
mon abstractions, namely the common core that we have exposed by applying core-based
model engineering. This section has shown that the approach of a domain-independent model
core is feasible and universal. It can be applied for models belonging to the access control or
the information flow domain. Moreover, core-based model engineering is comprehensible and
straightforward since it is composed of six clearly arranged steps that build upon each other.

The main merits of core-based model engineering are twofold: (i) models in core notation
are able to express policy dynamics by means of the deterministic automaton. (ii) Core-based
models share common abstractions, which is the key enabler for applying model-independent
methods for model engineering, analysis, implementation, and execution. On this account,
core-based model engineering contributes to an integrated security policy engineering process
without semantic gaps.

3.5 Model Core Evaluation

The goal of this section is to evaluate the model core along with core-based model engineering
with respect to its expressive power and the resulting modeling costs. For this purpose, we
first discuss the types of models that can be engineered with core-based model engineering in
Section 3.5.1. Afterwards, we consider the modeling costs that come with core-based model
engineering (Section 3.5.2).

3.5.1 Expressive Power

The common model core is a deterministic automaton that generalizes the ideas of the HRU
model. Thus, its computational power is precisely equivalent to a Turing Machine. The
computational power alone, however, is not sufficient to evaluate the expressive power of a
security model, which captures the notion of whether different policies can be adequately
formalized by that model [234]. A security model is said to express a policy adequately if it
provides model abstractions with only a minimal semantic gap to the policy’s paradigms. On
this account, we subsequently discuss the expressive power of the model core with respect to
different policies and their models.

In this context, the four Role-based Trust management (RT) models RT[], RT[❳], RT[և],
and RT[❳,և] introduced by [156,159] take a special position. In contrast to the HRU model,
the authors have shown that safety in their models is efficiently decidable [156,159]. For this
reason, they have studied the relationships between the RT models and the HRU model with
the result that the HRU model cannot adequately express the RT models [156,159]. On this

41

3.5 Model Core Evaluation

account, the goal of this section is to show that core-based model engineering is able to even
produce a model whose expressive power is incomparable to the expressive power of the HRU
model [156,159,234].

Section 3.3 has illustrated that the model core still subsumes the HRU model, which has
been generally believed to have considerable expressive power [107, 108, 233, 234]. Conse-
quently, the model core must be at least as expressive as the HRU model. So far, we have
supported this claim by showing that the model core can engineer a wide variety of DAC and
MAC models, namely IBAC, RBAC, and ABAC models (Sections 3.3 and 3.4). Addition-
ally, we have demonstrated how to engineer an MLS model as a prominent representative for
information flow models.

Recent work has shown that the expressive power of the HRU model is limited though.
More precisely, while [156,159] have informally discussed that already a rather simple trust-
management model, RT[], cannot be adequately expressed by an HRU model, [234] has
given the first formal evidence. On the other hand, [156, 159] have discussed that RT[] also
cannot subsume the HRU model due to its complexity bounds. The reason are the different
commands supported by the HRU model and RT[]. Thus, the expressive powers of the HRU
and the RT[] model are mutually exclusive.

From the formal proof of [234] follows: if we can derive a model from the model core that
is expressively equivalent to RT[], we show that the model core is more expressive than
the HRU model. However, thereby we also show that the model core is more expressive
than RT[], since (i) the model core can be specialized as an HRU model (demonstrated in
Section 3.3) and (ii) RT[] cannot adequately express the HRU model as shown by [156,159].

In order to verify this dissertation, the remainder of this section analyses whether RT[] can
be expressed as a core-based model. For this purpose, we briefly discuss the characteristics
of RT[], before sketching core-based RT[] model engineering.

3.5.1.1 RT[] Model

The goal of trust management (TM) models is to express delegation in distributed systems. A
principal may transfer limited authority over one or more resources to other principals, which
results in giving away a certain degree of control [156,159]. Here, the question arises whether
a resource owner still has some guarantees about who can access their resources [156, 159].
The RT models are members of the RT model family [153–155,160], combining the advantages
of RBAC and TM models [155]. The goal of the RT models is to model trust delegation by
means of role delegation, in order to enable security analysis in trust management systems.
For this purpose, the models contain a set of statements that define how roles are assigned
and delegated to principals; the roles’ specific permissions are irrelevant here. The authors
have introduced four models RT[], RT[❳], RT[և], and RT[❳,և] [159], which together form
a slightly simplified but expressively equivalent version of RT0 [160] as the simplest member
of the RT family. These models differ in the types of role delegation statements they support;
RT[] is the most basic one with only two types of statements.

The basic sets of the RT models are principals, roles, and role names [159]. Principals (P)
represent the entities of a TM system and are denoted by A, B, D, F , X , Y , and Z [160]. Role
names (N) are identifiers denoted by r , u, and w. Roles (R) consist of a principal and a role
name, separated by a dot, e.g., A.r , thereby assigning a role to a principal, which gains the
permission to assign the role to other principals. For example, A.r is a role whose member
A may assign A.r to other principals [159].

42

3 Security Model Core

All RT models are based on an automaton, where each state is described by a set of
delegation statements. States of RT[] consist of two types of delegation statements, each of
which being a statement made by a principal about the members of its role:

• Simple Member: A.r ÐÝ B

• Simple Inclusion: A.r ÐÝ B.r1

Simple member is a statement made by A, that defines B as a member of A’s role A.r . On
the other hand, simple inclusion is a statement made by A, which says that all members of
B’s role B.r1 are also members of A’s role A.r . This represents a delegation by A to B, since
only B has the authority to specify the members of its roles. In other words, B.r1 contains
(all the members of) A.r , which is the inverse of a dominance relation [155]. The left part
of a statement (here A.r) is called the statement’s head; the right part (here B or B.r1) is
called the statement’s body. Refer to [155] for more details on RT statements.

State transitions in RT[] are made by adding and removing simple member and simple
inclusion statements, resulting in the modification of a state’s set of statements. State tran-
sitions are guarded by state-independent restriction rules of the form R ✏ ♣GR, SRq where
GR ❸ R and SR ❸ R are sets of RT[] roles. GR is the set of growth-restricted roles; no policy
statement assigning these roles can be added [159]. That means, if A.r P GR, statements with
A.r as head may not be added [234]. Roles in SR are called shrink-restricted; policy state-
ments that assign these roles cannot be removed [159]. That means, if A.r P SR, statements
with A.r as head may not be removed [234].

[159] defines three kinds of queries in RT[] for analyzing a model’s security properties.
Analysis problems are answered by evaluating these queries with logic programs that are
derived from the model state P and the restriction rule R. For more details refer to [156,159].

3.5.1.2 RT[] Model Re-engineering

Domain-specific security models such as RBAC and ABAC models, and particularly the RT
models [156,159] have identified the following differences compared to HRU models:

1. In RT[], creating and removing principals are implicit. A principal can be under-
stood as created if it is used in a statement; a principal is considered removed if there
is no statement that contains it. In contrast, the HRU model requires that all sub-
jects and objects are explicitly created and removed by using the primitive operations
create/destroy subject and create/destroy object.

2. One atomic state change operation in RT[] corresponds to executing many primitive
operations in the HRU model, depending on the number of subjects or objects in a
matrix. The primitive section of HRU commands, however, does not support universal
or existential quantifiers.

3. The HRU model does not provide any means to model delegation as defined by RT[].
To support delegation, auxiliary constructs such as trigger programs would be required.
For example, adding A.r ÐÝ B.r1 means that A delegates B the authority to delegate
A’s role r to all members of B.r1. If another statement such as B.r1 ÐÝ E is added
afterwards, E becomes a member not only of B’s role r1 but also of A’s role r . To
enforce the latter role assignment, trigger programs are needed that must be executed
whenever the matrix is modified.

43

3.5 Model Core Evaluation

In the following, we briefly sketch core-based model engineering of RT[], and in doing so
we show that the model core does not share these shortcomings.

The set of components of RT[] is defined as M ✏ tP, N , R, mem, RH , GR, SR✉ where
P, N , R, GR, and SR are defined as above, mem : R Ñ 2P is a role-to-member assignment
function, and RH ⑨ R ✂ R is a role hierarchy, modeled by a partial order on R, written as
➞, where ∀r , r ✶ P R : r ➞ r ✶ ô r dominates r ✶, or any user who is a member of r also is
automatically a member of r ✶ [155]. Hence, mem♣A.rq ÞÑ tB✉ represents a role assignment
by a simple member statement A.r ÐÝ B in core notation, and a simple inclusion statement
A.r ÐÝ B.r1 is represented by ♣B.r1, A.rq P RH where B.r1 ➞ A.r .

A state transition in RT[] is modeled by adding or removing at least one simple member
or one simple inclusion statement. In the equivalent core-based RT[] model, this corresponds
to modifying mem and RH , including R and N since they contribute to the domain of mem.
P is modified whenever principals are added or removed. Thus, the state set is defined as
Q ✏ 2P ✂ 2N ✂ 2R ✂ MEM ✂ 2RH where MEM ✏ tmem⑤mem : R Ñ 2P✉; any RT[] state
in core notation is defined as q ✏ ♣Pq , Nq , Rq , memq , RHqq where Pq ❸ P, Nq ❸ N , Rq ❸ R,
memq P MEM , and RHq ❸ RH . The extension vector E consists of the remaining elements
of M such that E ✏ ♣GR, SRq and the model is defined by ♣Q, Σ, δ, q0, ♣GR, SRqq.

Since adding or removing statements are the most primitive changes of the state, these
changes must be implemented by the set of primitive actions. Hence, the model defines
four primitive actions, which we call add_simple_member ♣asmq, remove_simple_member
♣rsmq, add_simple_inclusion ♣asiq, and remove_simple_inclusion ♣rsiq. Adding a statement
A.r ÐÝ B equals calling the primitive action asm♣q, A.r , Bq, respectively rsm♣q, A.r , Bq
for removing it. Adding or removing a statement A.r ÐÝ B.w corresponds to calling
asi♣q, A.r , B.wq or rsi♣q, A.r , B.wq:5

asm : Q ✂ R ✂ P Ñ Q

asm♣q, A.r , Bq ÞÑ ♣Pq ❨ tA, B✉; Rq ❨ tA.r✉; Nq ❨ tr✉; ∀X .u P Rq ,

X .u P devotee♣q, A.rq : memq ❵ t♣X .u, memq♣X .uq ❨ tB✉q✉; RHqq

rsm : Q ✂ R ✂ P Ñ Q

rsm♣q, A.r , Bq ÞÑ ♣∀p P PIN , ❊♣X .u, Y .wq P RHq , X ✏ p ❴Y ✏ p, ❊♣X .u, P1q P memq ,

p P P1 : Pq③tp✉; Rq ; Nq ; ∀X .u P Rq , X .u P devotee♣q, A.rq :

memq③t♣X .u, memq♣X .uqq✉ ❨ t♣X .u, memq♣X .uq③tB✉q✉; RHqq

asi : Q ✂ R ✂ R Ñ Q

asi♣q, A.r , B.wq ÞÑ ♣Pq ❨ tA, B✉; Rq ❨ tA.r , B.w✉; Nq ❨ tr , w✉; ∀X .u P Rq ,

X .u P devotee♣q, A.rq : memq ❵ t♣X .u, memq♣X .uq

❨memq♣B.wqq✉; RHq ❨ t♣B.w, A.rq✉q

rsi : Q ✂ R ✂ R Ñ Q

rsi♣q, A.r , B.wq ÞÑ ♣∀p P PIN , ❊♣X .u, Y .wq P RHq , X ✏ p ❴Y ✏ p,

❊♣X .u, P1q P memq , p P P1 : Pq③tp✉; Rq ; Nq ; ∀X .u P Rq ,

X .u P devotee♣q, A.rq : memq③t♣x.U , memq♣X .uqq✉

❨ t♣X .u, memq♣X .uq③memq♣B.wqq✉; RHq③t♣B.w, A.rq✉q

5For better readability state components are separated by semicolons instead of commas in the following,
e.g., q ✏ ♣Pq; Nq; Rq; memq; RHqq.

44

3 Security Model Core

We subsequently discuss a few details regarding the primitives’ semantics: first,
devotee : Q ✂ R Ñ 2R is an auxiliary function that recursively assembles all roles that the
given role dominates (Algorithm 1). It ensures reflexivity and transitivity of the dominance
relation and is thus required every time a role assignment or a delegation is made. Second,
principals are added with every added statement. There are no redundancies, because this is
modeled by the set operator ‘❨’. In contrast, a principal is removed only if there is no pair
both in memq and RHq , containing this principal. This is enforced whenever a statement is
removed. To our knowledge, roles and role names do not need to by removed. Last, PIN

is an auxiliary set that collects all principals of the input parameters; here it is defined as
PIN ✏ tA, B✉.

Algorithm 1: Dominance Relation Assembly
Input: a model state q P Q, a role A.r P R
Output: a set of roles RDEV

function devotees(in q P Q, in A.r P R)
for X .u P Rq do

if ♣A.r , X .uq P RHq then
RDEV Ð RDEV ❨ tX .u✉;
devotees(q, X .u);

RDEV Ð ∅❨ tA.r✉;
devotees♣q, A.rq;

It remains to specify the model’s clauses, which are directly defined by the restriction rules
of RT[] as follows: if A.r P GR, the primitive actions asm♣q, A.r , Bq and asi♣q, A.r , B.wq may
not be executed with A.r as second input parameter. Thus, there must be a clause, called
clauseG♣A.rq, which enforces growth restriction by guarding the execution of asm♣q, A.r , Bq
and asi♣q, A.r , B.wq. In analogy, there must be a second clause, called clauseS♣A.rq, which
enforces shrink restriction by guarding the execution of rsm♣q, A.r , Bq and rsi♣q, A.r , B.wq:

clauseG : R Ñ BOOL

clause♣A.rq ÞÑ clauseAR ÞÑ

✧
true, A.r ❘ GR

false, otherwise

clauseS : R Ñ BOOL

clause♣A.rq ÞÑ clauseAR ÞÑ

✧
true, A.r ❘ SR

false, otherwise

Summary This section has shown that the model core can adequately express RT[]. Hence,
the model core does not share the expressive limits of the HRU model. The reason is that
primitive actions may define arbitrary programs instead of fixed schemas as specified by the
HRU model. This allows for modeling primitives in such a way that they exactly represent
the atomic commands of RT[]: they enable the implicit adding and removing of principals
and that one step of state change in RT[] exactly represents one step of state change in
the core-base model. Besides, auxiliary constructs like trigger programs are not needed since
primitive actions may contain recursive functions to model RT[] delegation. Beyond that,

45

3.5 Model Core Evaluation

the model core can also express the other models RT[❳], RT[և], and RT[❳,և] of the RT
family, since these merely add other types of statements.

In the previous sections, we have demonstrated that the model core also is more expressive
than RT[]: it can still express the HRU model and a wide variety of traditional IBAC, RBAC,
and ABAC models (each in their DAC and MAC variants), and MLS models as a prominent
representative of information flow models.

3.5.2 Model Engineering Costs

After having discussed the expressive power of the model core, the goal of this section is to
discuss the costs of core-based model engineering. Note that the notion of modeling costs
is not a standard one; it is inspired by the work of Bertino et al. [32, 34], which captures
structural differences of access control models to reason about the models’ expressive power.
Based on these ideas, we use structural properties of security models in a more general way
to informally appraise the modeling effort of core-based model engineering.

Before discussing the costs of core-based model engineering in detail, there are two general
statements to be made: (i) as shown in Section 3.2, the core ♣Q, Σ, δ, q0, Eq provides a mod-
eling framework for a wide variety of dynamic access control and information flow models,
which is minimal with respect to domain-specific model abstractions. Any domain-specific
model abstraction, e.g., role hierarchies, matrices, or attribute assignments, along with spe-
cific model components must thus be individually defined in the course of core-based model
engineering. However, this can be supported by model engineering tools such that the model-
ing effort is limited to specializing the model core. (ii) The actual effort involved in core-based
model engineering depends on the individual goal of a modeler. Here, we differ between three
engineering goals, for each of which we discuss the modeling effort in the following:

1. Re-engineering a dynamic model.

2. Re-engineering a static model.

3. Engineering a novel model.

Re-engineering a Dynamic Model If the goal is to re-engineer an existing dynamic model
in core notation, every required detail is already predefined. This means, domain-specific
model abstractions along with specific model components do not have to be engineered, and
the composition of a deterministic automaton and the components is also already specified
(by means of the model state and state transition rules), even if it is done in an informal way.
Hence, it only remains to find an adequate representation in core notation for all components;
the semantic composition of the components and the automaton does not change. Out of the
three goals, this is the easiest, resulting in the lowest modeling effort, which only arises from
component rewriting.

For example, Section 3.5.1 has demonstrated this kind of model re-engineering based on
RT[]. Here, all model components (P, R, N , A.r ÐÝ B, . . .), the model state as well as state
transition and restriction rules (R ✏ ♣GR, SRq) have been defined, though partially informally.
The remaining challenge has been to rewrite the model components in core notation, i.e., to
find a precise representation of the simple member and simple inclusion statements along with
primitive actions. Besides, the model clauses have been directly adopted from the restriction
rules R ✏ ♣GR, SRq.

46

3 Security Model Core

Re-engineering a Static Model The modeling effort for re-engineering a static model is
very low, since only the extension vector E of the model core has to been specialized.

On top of that, the model core provides the opportunity to enhance a static model by
dynamic model components, which results a security model that can express policy dynamics.
However, this requires that the remaining core components are also specialized. Compared
to re-engineering a dynamic model, this is more comprehensive and involves more modeling
effort. The reason is that even though the static model already defines its components,
the composition of the components and a deterministic automaton is missing. Thus, the
challenge here is to define such a composition by mapping the existing model components to
the components of the model core.

The required mapping steps are as follows: the model state and the extension vector have
to be defined first. A modeler therefor has to know the security policy to be formalized or at
least the policy’s application scenario. Once she has determined the dynamic components,
specializing the state and the extension vector merely deals with rewriting the corresponding
components in core notation (previous paragraph). The second step is to specify the prim-
itive actions and conditions. This step does not only semantically depend on the state and
extension vector definition, but also in terms of the modeling effort: in general it holds, the
more tuple elements a state contains, the more primitive actions may be specified. While the
set of primitive actions needs to be created from scratch, the condition set may already be
partly defined by the original model. The reason is that static models usually define autho-
rization or information flow rules for allowing a subject to access a resource or information
to flow. These rules only need to be rewritten as conditions in core notation and possibly
extended by additional conditions that guard the execution of primitive actions. Examples
of this kind of model engineering are given in Sections 3.4.5 and 3.4.7.

The higher modeling effort hence results from specifying the semantics of the model core
components based on the predefined model components, namely by mapping the model com-
ponents to q and E , and defining primitive actions and additional conditions. The modeling
effort for rewriting the existing model components and conditions remains the same compared
to re-engineering a dynamic model.

Engineering a Novel Model Compared to the other engineering types, a modeler has to
start from scratch when engineering a novel core-based security model. That means, since the
model core does not provide any domain-specific model abstractions to be used, they have
to be modeled, too. Afterwards, the modeler has to derive all components that are required
by the novel model: (i) entities to be protected and active entities, (ii) entity attributes, and
(iii) relations that describe interrelations between entities and attributes. Here, the modeling
effort depends on the complexity of a security model and its components. Once all components
are defined, they can be mapped to the components of the model core’s automaton (previous
paragraph).

From this it follows that compared to the other two types of core-based model engineering,
engineering a novel model is the most comprehensive one, involving the most modeling effort.
The reason is that in addition to the modeling steps of the other types, it also requires the
definition of adequate model abstractions and components, which may be very burdensome
and requires at lot of modeling experience.

Furthermore, engineering a novel model in core notation usually involves more effort than
when applying a domain-specific model that already provides adequate abstractions. The
advantage of a model in core notation though is that core-based security model are unlocked

47

3.6 Model Core Related Work

to a range of model-independent methods and tools for model engineering, analysis, imple-
mentation, and execution.

3.5.3 Summary

This section has argued that the model core does not share the expressive limits of HRU
models since it is able to adequately express the RT models as representatives of TM models.
Additionally, the model core is still able to express traditional IBAC, RBAC, ABAC models
(each in their DAC and MAC variant), including the HRU model, and information flow
models, which shows that the model core is even more expressive than the RT models.

The basis of the model core’s expressive power is a minimal modeling framework that is
the key enabler of model-independent methods and tools for model engineering, analysis,
implementation, and execution. Since the minimal framework does not provide domain-
specific abstractions, modeling a novel core-based model leads to a higher modeling effort than
when domain-specific models that already provide adequate model abstractions are applied.
In case an existing model is to be re-engineered, the modeling effort depends on the model to
be re-engineered: if it is dynamic and already applies a deterministic automaton, the effort is
limited to rewriting its components in core notation. In case it is static, the modeling effort
arises from composing the existing components with the model core in addition to rewriting
the model components in core notation.

3.6 Model Core Related Work

Since 1970, the research community has proposed a wide variety of security models for express-
ing domain-specific access control and information flow rules. As a consequence, researchers
have spent much effort in developing generalized models and languages that can express a
range of models, in order to provide a basis for common policy specifications. The goal of
this section is to differentiate the model core from related work.

Some of the relevant related work is roughly based on the same motivation as the model
core: designing a general access control model, from which both existing and novel models
can be derived. In this context, Barker’s meta-model of access control [20–22] expressed in
a fibred security language is closely related; several similar approaches are SecPAL [24] and
the RT model family [155], providing policy languages that allow for expressing decentral-
ized authorization policies. The proposed meta-model is based on a similar approach that
we have adopted to identify the model core: identifying primitive notions of existing access
control models that can then be specialized [22]. While our result has been the deterministic
automaton combined by a vector of extensions, Barker et al. have identified primitive no-
tions that generalize domain-specific model abstractions: principals, categories, relationships
between categories and between categories and principals, and modalities (e.g., permissions
and authorizations). This differs from our approach in that the model core does not provide
any means of model abstractions, neither generalized nor specialized. To our knowledge, the
reason is that [20–22] focus on access control models, which is the second significant differ-
ence. Regarding their expressive power, Barker et al. have shown that their meta-model
can express rule-based access control models such as [23], RBAC and status-based access
control (SBAC) models, DAC as well as MAC models by means of the "no read up“ and ”no
write down“ rules of the BLP model [26]. On top of that, the authors have demonstrated
that statements of the RT family proposed by Li et al. [155] can also be expressed by their

48

3 Security Model Core

meta-model. From this it follows, that the meta-model is able to express a wide variety of
security models just as the model core.

Based on Barker’s meta-model, [132] has developed an information flow control meta-model.
By this means, [132] has demonstrated the flexibility and generality of Barker’s meta-model.
Moreover, the authors have specialized the information flow control meta-model to model the
policy of a file sharing system and of the HiStar system [253]. Hence, they have also shown
that the information flow control meta-model can formalize complex and realistic information
flow control mechanisms. Compared to the model core, the information flow control meta-
model shares the same difference as Barker’s meta-model: it provides primitive notions that
generalize domain-specific model abstractions.

Other related work has aimed at a unifying formalism to encompass a range of access
control models and policies, in order to combine them for policy analysis or policy imple-
mentation [115]. These aims have lead to the Policy Machine (PM) [82,84,85,115], which is
an access control framework and a system architecture for policy specification and enforce-
ment. The approach of the authors also has been to identify a minimal set of primitives
that can specify and enforce a large variety of access control models; however, the authors
have focused on ABAC policies. Like Barker’s meta-model, the PM is based on a set of
generalized domain-specific abstractions, namely data, assignment and prohibition relations,
obligations, and functions where data encompasses the basic elements like authorized users,
processes, system operations, and objects. Additionally, the PM includes four abstractions
called user attributes, object attributes, operation sets, and policy classes. By this means,
the model core provides a smaller set of primitive components than compared to the PM.
For modeling state transitions, PM uses administrative operations, which are parameterized
procedures describing the modification of data sets or relations; administrative commands
are parameterized sequences of administrative operations prefixed by a condition. Thus,
administrative operations are semantically equivalent to the model core’s primitive actions
and administrative commands semantically equal the core’s commands. That means, even
though the basic abstractions of the PM are quite different, the modeling of state transitions
applies the same notion as done by the model core. With respect to the expressive power,
the authors have shown that the PM can express DAC and RBAC models, the Bell-LaPadula
model [26] as well as the Chinese Wall model [41]; whether or not the PM can express the
models of the RT family [155] remains undiscussed by the authors. However, due to [82], we
doubt that modeling RT models with the PM is as straight forward as with the model core.

At SACMAT 2008, there was a panel discussing that RBAC may be fundamental to access
control and that it may be extended to express a variety of other models and policies [81].
Moreover, it has been suggested that the basic relations of the PM are similar to that of RBAC
and that some of the PM components could be applied in extending the RBAC model [81]. It
has even been shown that RBAC is policy neutral and can express DAC and MAC models as
well as lattice-based access control models [182,188,206,211]. In doing so, [206] has qualified
that RBAC is more suitable for expressing MAC rather than DAC models. The reason is
that a high number of specific roles is needed due to several roles are required for each object.
This makes simulating DAC quite complex. From this it follows that even though RBAC
in general is able to express DAC and MAC models, the resulting models merely simulate
the underlying model and do not lead to tailored domain-specific security models. As such
the simulating models are not suitable for model-independent analysis and implementation
methods as domain-specific core-based security models are. Besides, it has not been discussed
whether RBAC models can express formal models like the HRU, SPM [204], TAM [209], or

49

3.7 Conclusion

the RT models, so that the actual expressive power of this approach remains unclear.
Due to its relevance, however, the RBAC model has been extensively investigated, e.g.,

by [30,59,83,129,139,157]. An important work on RBAC is temporal RBAC (TRBAC) [30]
that includes periodic enabling of roles and temporal dependencies among roles as required by
some real-world applications. Based on this work, the generalized temporal role-based access
control (GTRBAC) model [131] has been proposed, which subsumes TRBAC by allowing for
the specification of a comprehensive set of temporal constraints. Compared to the model
core, even though GTRBAC is more general as TRBAC, it only focuses on RBAC models
and does not consider the rewriting of other security models. It thus cannot be compared
to a unifying formalism for security models like the model core, the meta-model, or the PM.
Besides, in the context of the model core, RBAC is only one out of numerous security models
that can be derived from the model core.

More related work has been motivated by designing a language that can express a variety
of access control models to allow for comparing the expressive power of these models [32,34]
or to provide a unified implementation environment for policies [126]. Bertino et al. [32, 34]
have introduced a logical framework based on the C-Datalog language for expressing a variety
of access control models in order to reason about their expressive power. More precisely, the
framework captures differences by access equivalence and structural equivalence to compare
the authorization rules and components of access control models. This approach, however,
only deals with particular states of the models; it does not consider state-change rules. That
means, even though the authors have shown that their framework can express DAC and
MAC models as well as the RBAC and the Bell-LaPadula model, it does not formalize
state change rules, which are an immanent part of core-based model engineering. Thus,
the expressive power is limited to static access control models. Jajodia et al. [126] have
proposed a framework, called Flexible Authorization Framework (FAF), that can capture
several discretionary access control models. However, already [32,34] have shown that FAF
can be represented by their framework because programs written in this language are a subset
of Datalog programs.

Another general language for domain-specific security policies is the eXtensible Access
Control Markup Language (XACML) [18] by OASIS. XACML is an XML-based language
describing access control policies as well as policy decision requests and responses. Though
XACML can be used to describe a range of access control policies such as RBAC or ABAC, it
does not consider state change rules, which severely limits the policies that can be described
and enforced. Moreover, since XACML is based on XML, it is not suitable for policy analyses
that require access control models with a sound formal foundation.

3.7 Conclusion

This section has identified basic, domain-independent model abstractions that are shared by a
large number of access control and information flow models. This sets the course for building
a security model family tree beyond domain boundaries that exposes common properties of
security models. The result is the identification of model abstractions shared by numerous
models, which we have generalized by the uniform model core.

The model core provides the basis for re-engineering existing and engineering novel models
with shared abstractions. This can be exploited in four ways: (i) reuse of model compo-
nents, (ii) model-independent security analysis and implementation methods, (iii) model-
independent tool support for model engineering, analysis, and implementation, and (iv)

50

3 Security Model Core

model-specific causal TCBs. To provide a precise foundation, we have introduced a for-
mal definition of the model core along with a model engineering method. To evaluate their
feasibility and generality, core-based model engineering has been illustrated by re-engineering
three relevant models from different domains. We have shown that even though these models
belong to different domains, they share the common model core.

We have evaluated core-based model engineering with respect to its expressive power and
the involved modeling costs. We have argued that the model core can express traditional
IBAC, RBAC, ABAC models (each in their DAC and MAC variant), including the HRU
model, information flow models, as well as trust management models like the RT family.
The basis of the model core’s expressive power is a modeling framework that is minimal with
respect to domain-specific model abstractions. As a consequence, it only remains to specialize
the model core. On top of that, the model core provides abstractions that allow specialized
models to express policy dynamics.

Besides these advantages, the model core also provides the basis for an causal TCB engi-
neering method. The following section presents this method and discusses its merits.

51

4 Causal Trusted Computing Bases

If you have a procedure with 10 parameters, you
probably missed some.

Alan J. Perlis,
Epigrams on Programming, 1982

TCBs of today’s commodity policy-controlled operating systems such as SELinux [165, 166]
or SEBSD [240, 246, 247] are characterized by their large functional perimeter. Due to their
ambition to provide runtime support for a wide variety of security policies (IBAC, RBAC,
ABAC, MLS policies, each in their DAC and MAC variants), the policy runtime environment
as well as the enforcement mechanisms are designed in an all-round fashion, rendering them
large, complex, and expensive.

This dissertation follows a different approach. The idea is to systematically engineer TCBs
by tailoring their policy decision and enforcement environment to support only those security
policies that are actually present in the TCBs. A TCB’s functional perimeter is then deter-
mined by exploiting causal dependencies between security policies and TCB functions. This
approach results in policy-specific causal TCBs that contain only those functions which are
necessary to establish, enforce, and protect their present security policies. Causal TCBs thus
set the course for implementations whose size and complexity provide the basis for analyzing
and verifying a TCB’s correctness and tamper-proofness.

The proposed TCB engineering method is quite similar to core-based model engineering:
all causal TCBs share a common TCB component – a security policy runtime environment
(RTE) – to protect and enforce a wide variety of security policies formalized by core-based
security models. Policy-specific causal TCBs are engineered by systematically tailoring the
security policy RTE due to causal dependencies between security policies and TCB functions.
For this purpose, a formal representation of the causal dependencies is needed, which enables
method and tool support for TCB engineering.

The goal of this chapter is to present the TCB engineering approach for causal TCBs. For
this purpose, Section 4.1 first presents requirements and prerequisites for designing causal
TCBs. In Section 4.2 we then introduce a functional design of causal TCBs along with
a general TCB engineering method. Afterwards, Section 4.3 precisely identifies the func-
tional perimeter of a security policy RTE, before Section 4.4 discusses the functional range of
policy-specific TCBs. This includes the identification of causal dependencies between secu-
rity policies and TCB functions that allow for a precise reasoning about the functions to be
included in causal TCBs. Section 4.5 concludes with demonstrating causal TCB engineering
by means of an example.

4.1 Requirements and Prerequisites

In order to design causal TCBs and develop an engineering method for causal TCBs, we
consider three types of requirements: general requirements that arise from the applied TCB

53

4.1 Requirements and Prerequisites

engineering approach, design requirements, and architectural prerequisites. The goal of this
section is to motivate and discuss these requirements and prerequisites.

To apply the common model core as a specification of the functional requirements of causal
TCBs, it needs to be enhanced. Section 4.1.1 motivates and presents these core enhancements.
Section 4.1.2 then discusses general requirements and prerequisites that influence both the
design and the functional perimeter of causal TCBs. Hardware and architecture prerequisites
are considered in Section 4.1.3.

4.1.1 Security Model Core for TCB Engineering

The basic idea of this dissertation is to exploit formal security models to serve as a spec-
ification of the functional requirements of causal TCBs. Thus, security models have to be
complete with respect to a security policy’s responsibilities.

Even though the common model core (Section 3) provides the basis for a uniform formal-
ization of policies, it cannot serve as a specification for the functional requirements of causal
TCBs. The reason is that its main purpose so far has been the development of methods
and tools for model engineering and analysis. On this account, the model core contains
only those operations that modify the policy state (command set C), but lacks operations
that merely query the policy state whether their execution is allowed without modifying the
state. To implement a policy, however, we need to model the entire policy interface, including
state-modifying as well as non-state-modifying operations. As a consequence, the model core
needs to consider the latter ones. For example, standard Linux/Unix access control policies
protect system calls such as chmod() to modify the right assignments of a policy by adding
or removing a user’s rights. In contrast, open() and read() [164] are system calls that allow
for opening/creating and reading a file descriptor if a user is assigned the required rights.

Definition 4.1 defines the enhanced model core by modifying the model components of
Definition 3.1 as follows: the set of commands C of the input set Σ ✏ C ✂X is extended and
now contains both state-modifying and non-state-modifying commands. The domain of the
state transition function δ is then confined to the set of state-modifying commands.

Definition 4.1 (Enhanced Model Core) The enhanced model core is defined as a tuple
♣Q, Σ, δ, q0, E , λq, combining the model core ♣Q, Σ, δ, q0, Eq with an output function λ where

• Q, Σ, δ, q0, and E are defined in Definition 3.1,

• C is the set of state-modifying and non-state-modifying commands, and

• λ : Q ✂ Σ Ñ ttrue, false✉ is the output function.

The output function is defined in analogy to the state transition function δ by Definition 4.2.

Definition 4.2 (Output Function) The output function λ : Q ✂ Σ Ñ ttrue, false✉ is a
Boolean function that implements a positive policy decision iff all of the command-specific
conditions are met.

λ♣q, ♣c, xpqq ÞÑ

✧
true, ∀cond P Condc : cond♣q, xpq ✏ true
false, otherwise

q P Q is the current policy state, c P C is either a non-state-modifying or state-modifying
command, xp P X are the input parameters according to the formal parameter vector x, and
cond P Condc are the conditions of c.

54

4 Causal Trusted Computing Bases

As a result, core-based models are complete with respect to a security policy’s responsibil-
ities and may serve as a specification of a TCB’s functional requirements. They are now able
to explicitly model policy decisions for state-modifying as well as non-state-modifying oper-
ations. The latter becomes particularly important whenever the implemented policy needs
to export its decisions to other TCB components. For example, the view() command of the
RBAC policy in Section 3.4.4 is now modeled as follows:

λ♣q, ♣view, ♣xs, xoqqq ÞÑ condcore♣q, xs, xo, viewq

It should be mentioned that the core enhancements do not influence core-based model
engineering since non-state-modifying operations are policy-specific just as state-modifying
operations are; they have to be defined during policy engineering. Thus, the enhanced model
core can still be applied for model engineering and model analysis. Additionally, it is also
qualified for engineering causal TCBs since core-based security models can now serve as
complete specifications for the functional requirements of causal TCBs.

4.1.2 Design Requirements

In addition to requirements that arise from the TCB engineering approach, there are require-
ments that have a direct influence on the design and on the functional perimeter of causal
TCBs. Besides, these requirements also confine the application domain of this dissertation.
This section motivates and discusses these requirements and thus provides the premise to
make design decisions and to identify the required TCB functions (Section 4.2). The main
requirements are: Support for

1. Security models in core notation,

2. Multiple security policies,

3. A nonredundant and complete functional perimeter,

4. Substitutionality of security policies, and

5. Engineering methods and tools.

Core Notation To develop a feasible and well-accepted TCB engineering method, a sound
formal foundation for security policies is required. Security models in core notation (Section 3)
enable such a sound and even uniform formalization of policies, which generally provides the
basis for security models to serve as specifications for TCB functions. Additionally, policy
specifications in core notation have the following advantages: (i) they are implementation-
oriented and follow algorithmic paradigms. Result is only a small semantic gap between
formal models and policy implementations, setting the course for an efficient TCB engineering
method. (ii) Core-based model engineering allows for modeling a wide variety of access control
and information flow control models (Section 3.5.1). Both advantages are significant for this
dissertation’s goals such that causal TCB engineering exclusively focuses on policies in core
notation.

55

4.1 Requirements and Prerequisites

Multi-policy Support For almost two decades, multi-policy systems have gained in impor-
tance [33, 114]. According to Hosmer [113, 114] the main reasons are diverse security goals
and policies within a single IT system, users belonging to different organizations, or multiple
policies for different states of software development [70]. Due to the increasing interest in
multi-policy systems, e.g., [33,37,127,142,146,243], causal TCBs must also be able to enforce
and protect multiple policies at the same time.

This requirement has a strong impact on the functional perimeter of causal TCBs. It has
to contain not only all functions necessary to enforce the entire set of present policies, but
also functions that implement the diverse relations between the policies. Here, we distinguish
between two main kinds of relations: (i) policies are independent and do not influence each
other. In particular, policies have disjoint command and object sets and make independent
policy decisions. Causal TCBs thus have to enforce the policies and their decisions indepen-
dently from each other. (ii) Policies cooperate with each other and make corporate policy
decisions. In this case, meta policies like [19,29,36,39,140,168] are required. A meta policy
is "a set of rules coordinating the enforcement of multiple security policies“ [113]; they typ-
ically specify the order in which policies are composed and enforced, and dissolve conflicts
whenever conflicting policy decisions are made [113]. Meta policies thus become a new TCB
component. On top of that, TCBs must also provide runtime functions for protecting and
enforcing meta policies.

Causal TCBs basically need to be able to support both kinds of policy relations. However,
we focus on independent security policies; deriving runtime and enforcement functions for
meta policies as well as developing meta policies qualified for causal TCBs is out of the scope
of this dissertation.

A Nonredundant and Complete Functional Perimeter Even though the set of functions
of a causal TCB is by definition nonredundant and complete, this may not apply to a TCB’s
implementation. Causal TCBs have to be designed in such a way that the design maintains the
functional perimeter’s completeness and avoids functional redundancies. This sets the course
for establishing redundancy-free but still complete TCB implementations. This requirement
becomes particularly important whenever causal TCBs enforce multiple policies of the same
type. Policies of the same type can be formalized with the same model; they only differ in
their model instances. This implicates that to some extent these policies require the same
TCB functions for their enforcement. The TCB design has to consider this by aggregating
these functions instead of integrating them multiple times.

Substitutionality of Security Policies Since 2000, IT systems have increasingly become
service oriented systems that allow for spontaneous communication and interaction. Thus,
today’s systems, e.g., [62, 192], are very dynamic applications with spontaneously changing
security requirements that frequently require to modify existing application-specific policies
and meta policies. Because of this combination of flexibility and dynamics along with the
growing demand for security, IT systems need to provide concepts that are able to manage
the increasing need of replacing application-specific policies. More precisely, systems must
be able to integrate, update, and remove policies ad hoc.

In the context of causal TCBs, modifying a TCB’s policies may lead to changing a TCB’s
functional perimeter. Causal TCBs thus have to be able to reload and unload the relevant
TCB functions.

56

4 Causal Trusted Computing Bases

Method and Tool Support The goal of this dissertation is to develop a TCB engineering
that can be efficiently and effectively applied to develop causal TCBs for real-world appli-
cation scenarios. On this account, method and tool support similar to software engineering
is required, e.g., design patterns [95], modeling languages and tools [11, 183], or code gener-
ators [134, 196, 199]. The objective is to efficiently bridge the gap between formal security
models, TCBs, and their implementations. In this context, method and tool support for
reusing and generating TCB functions is particularly important since causal TCBs have to
be developed individually for each application scenario. The prerequisite is that causal TCBs
support such methods by design.

Summary This section has presented basic design requirements and prerequisites for causal
TCBs with the objective to confine the application domain of this dissertation. The require-
ments are mainly motivated by the methodical approach of this dissertation and by recent
works on policy-controlled IT systems. The following section introduces design influencing
hardware and architecture dependencies.

4.1.3 Hardware and Architecture Dependencies

This dissertation strictly adheres to a top-down design approach that is based on three steps.
We first design the functional range of causal TCBs in dependence on their security poli-
cies (functional design). Afterwards, the TCB functions are embedded in an architectural
design that requires to meet additional prerequisites such as the reference monitor princi-
ples [17, 97, 125]. Finally, the architectural design has to be implemented on a specific im-
plementation platform where implementation details such as programming languages, data
types, or privilege levels are of importance (implementation). However, a few implementation
details already have to be considered during the functional and architectural design of causal
TCBs. This section motivates and discusses these details.

Causal TCBs may perform numerous concurrent activities. In order to support these,
the functional design of causal TCBs provides an explicit abstraction called thread, which
models a causally independent activity in a TCB. To what extent these independent and
possibly concurrent threads may be exploited by a TCB’s implementation, i.e., the level of
parallelism, remains to be analyzed with respect to specific implementation platforms.

Existing policy-controlled systems such as SELinux [165, 166], SEBSD [240, 246, 247], So-
laris Trusted Extensions [79], or Xen [202, 203], were developed by integrating new kernel
abstractions into contemporary OS systems. The main advantage of this approach is the
compatibility with existing software systems and user applications. On the other hand, this
design decision along with the ambition of the new abstractions to be general leads to hetero-
geneous, large, redundant, distributed, and complex TCB implementations whose functional
perimeter cannot be identified precisely. Since this is diametrically opposed to the objective
of this dissertation, we decided to develop a novel design.

In addition, the functional TCB design is independent of any operating system (OS) archi-
tecture with respect to the standard monolithic and microkernel architecture. For example,
let us assume the memory management of monolithic and microkernel-based operating sys-
tems. In a monolithic OS the memory management sub-system, including paging and swap-
ping mechanisms, is a large software component that runs in kernel mode. By implementing
virtual memory management, it abstracts away a special hardware device, the memory man-
agement unit (MMU), while implementing memory protection and easing the implementation

57

4.2 TCB Design

of user applications. The memory management sub-system exports a hardware-independent
user interface to higher software layers, including functions like malloc() and realloc() of a
Linux/Unix based OS [164], which allow a process to dynamically allocate memory. The
MMU implements the translation of physical addresses to virtual memory addresses used by
the memory management sub-system to implement its memory management strategies.

In contrast to a monolithic OS, the memory management sub-system of a microkernel-based
OS is designed differently in that the only memory management functions running in kernel
mode are those that hide the hardware concept of address spaces [161–163]. Consequently,
only a very small part of the memory management sub-system runs in privileged kernel mode.
Management strategies, including paging and swapping, are usually implemented as servers
on top of the microkernel in user mode [51,150,161,162].

From a functional point of view all components are part of the memory management
sub-system independent of the mode they run in (analogously thread management and inter-
process communication (IPC)). It is thus irrelevant which OS architecture and implementa-
tion techniques to consider; only the functionality and the interfaces to higher software layers
are significant for this dissertation. On this account, the functional design of causal TCBs is
independent from these OS architectures.

Finally, we discuss a hardware requirement that implementation platforms for causal TCBs
have to meet – a Trusted Platform Module (TPM) [235]. A TPM is responsible for assuring a
system’s integrity by building a chain of trust that is rooted in the TPM to protect a system’s
cryptographic keys and measurement information. Causal TCBs require TPMs to protect
their cryptographic credentials, which are needed for protecting and enforcing their policies.

4.2 TCB Design

In due consideration of the above mentioned requirements, the goal of this section is to
present a functional TCB design along with a TCB engineering method for causal TCBs.
The proposed TCB engineering method is quite similar to core-based model engineering.
Analogously to security models, all causal TCBs share a security policy RTE that protects
and enforces a wide variety of core-based models. Policy-specific causal TCBs are derived
from the functional causal TCB by systematically tailoring the policy RTE due to causal
dependencies between policies and TCB functions. A discussion on the plausibility of the
functional TCB design and the resultant engineering approach regarding the above mentioned
requirements concludes this section.

As shown in Section 3.1, many security models such as [69, 101, 107, 145, 204, 209, 254]
share design principles. Based on this observation, we have identified a common model
core (Section 3.2) that can be specialized to express a wide variety of existing and novel
security policies. Policies that are formalized by models in core notation then share the
core’s components but may differ in policy-specific specializations of the state, authorization
scheme, and extension vector.

We now apply this approach to engineering causal TCBs. The idea is that security poli-
cies that share common model components also have identical requirements regarding the
functional perimeter of a TCB to enforce them. On the other hand, policy-specific core spe-
cialization results in policy-specific requirements and thus in policy-specific TCB functions.
On top of that, all policies require a runtime environment ensuring that policies cannot be
bypassed and are protected against unauthorized manipulations – typical goals of a reference
monitor [17,97,125].

58

4 Causal Trusted Computing Bases

From this it follows that causal TCBs contain two different types of functions that are
necessary to protect and enforce their present policies:

• Policy-independent functions supporting the model core,

• Policy-dependent functions to support policy-specific core specializations, containing

– Security model functions, and

– Security model instance functions.

Before discussing the two types of TCB functions in more detail and deriving a general design
of causal TCBs, a common understanding of the term function is required. For this reason,
we provide a definition of the term function.

Definition 4.3 (Function) A function is a mathematical mapping that is described by a
domain, a codomain and two additional attributes, called access status and return value, the
latter of which is typed and optional.

access_status retValue_T functionName(Param1_T name1, Param2_T name2, ...)

The access_status defines the access level of a function by other TCB components. Each
function has one of three possible statuses: public, protected, or private.

The keyword public marks a function as interface function to be used by any TCB func-
tion and security policy. While protected TCB functions are only accessible by policy-
independent functions, private functions are not accessible by other TCB components; they
can only be called by the component that implement them. Moreover, we indicate the types
of the input parameters and the return value by Param_T or retValue_T , e.g., PPID_T as
type for policy process identifications or Name_T as type for names, which are abstract data
types. If a function does not have a return value, this is indicated by the keyword void

instead of a return value type. Having introduced a general understanding of the term TCB
function, we now provide details on the two types of TCB functions.

Policy-independent functions are necessary to protect and enforce any security policy con-
sidered in this dissertation. They are inherent in any causal TCB and provide a policy-
independent RTE. On the contrary, policy-dependent functions provide a policy-dependent
RTE, consisting of functions that depend on both the policies’ models and the policies’
model instances. Hence, they are individual for any causal TCB. Security model functions
are based on the similarities of policies that allow for modeling policies with the same models;
they implement the policies’ specific models by which they are formalized. Individual char-
acteristics of policies (the authorization scheme) are reflected by model instances and require
individual model instance functions to support them.

Based on this differentiation of TCB functions, the design of causal TCBs consists of two
main hierarchical layers and two sublayers. Figure 4.1 illustrates the functional design of
causal TCBs where the lower layer represents the policy-independent RTE and the higher
layer represents the policy-dependent RTE; within the latter there are two functional sublay-
ers that contain security model and model instance functions. Generally it is true that the
higher a layer or sublayer is arranged in the TCB design, the higher is the degree of policy
dependency of the functions it contains.

The lowest layer contains policy-independent functions necessary to ensure the policies’
protection and enforcement, e.g., by isolation and interception mechanisms. This can be

59

4.2 TCB Design

Policy-independent Functions Policy-independent
Runtime Environment

Policy-dependent

Runtime Environment
Security Model Functions

Security Model Instance Functions

RBAC3 ABAC BLP ...

RBAC3

Instance
ABAC

Instance
BLP

Instance
RBAC3

Instance

Figure 4.1: Functional Design of Causal TCBs

compared to operating systems, where the lowest layer contains basis abstractions and mech-
anisms to protect and execute the application software running on a OS.

Within the policy-dependent RTE, the lowest sublayer contains functions that support the
security models by which the policies have been modeled. For example, let us consider a TCB
that among others enforces two dynamic RBAC3 policies and one ABAC policy. This TCB
must contain model functions that support these security models. In particular, this sublayer
contains the functions that support the RBAC3 model only once (instead of twice) since the
RBAC3 policies share similarities that are usually modeled by the same model, requiring the
same TCB model functions (Figure 4.1).

In order to support policy-specific functional requirements, the second sublayer contains
model instance functions which are required to enforce exclusively those policies that are
actually present in a TCB. By this means, the RTE suitable for all policies that can be
modeled by the supported model is now tailored to an RTE that only provides support for
the present policies.

The result is a functional design for causal TCBs whose functional perimeter is to be
tailored to the security policies. Tailoring a causal TCB means to functionally specialize the
TCB’s policy-dependent RTE by configuring both the security model functions as well as the
model instance functions according to the functional requirements of the application-specific
policies. The policy-independent RTE is mandatory for all policies in core notation and does
not need be tailored.

The design is inspired by microkernel architectures in that they provide a small functional
perimeter. In likewise manner, microkernel-based systems provide an RTE for application
programs (instead of security policies), which is functionally specialized according to the
requirements of the programs. Figure 4.2 presents a functional view of a microkernel-based
system. Analogous to causal TCBs, it consists of two main hierarchical layers and two
sublayers, where each layer contains a set of functions sharing the same degree of application
software dependency. Again, the higher a function is arranged in the layer hierarchy, the
more application-depend it is.

The lowest functional layer is represented by the microkernel itself, providing a runtime
environment that is necessary for executing any possible application software [162,163]. Ac-
cording to [162], a function is tolerated inside the microkernel if it is mandatory to implement
a system’s required functionality; basic microkernel functions are thus address spaces, threads,
and IPC.

60

4 Causal Trusted Computing Bases

Microkernel:
Threads, Address Spaces, IPC

Application-independent

Runtime Environment

Application-dependent

Runtime Environment
Servers

Application Libraries

File

System

Device

Drivers
GUI ...

Java RTE
Qt

Libraries
...glibc

Figure 4.2: Design of Microkernel-based IT Systems

Within the application-dependent RTE, the lower sublayer contains typical OS services
(called servers), e.g., a file system, device drivers, or a windowing system as a component of
a graphical user interface (GUI), depending on the application scenario of the system. Consid-
ering systems with advanced security requirements for example, the middle layer may contain
servers that provide encrypted file system functions like [123] or that provide a windowing
manager with special security mechanisms such as [90].

The application-dependent RTE is completed by the topmost layer containing application-
specific functions that are typically called application libraries. These provide application-
specific runtime and library functions such as the Java Runtime Environment, glibc, or the
Qt framework.

Analogously to causal TCBs, microkernel-based systems are functionally tailored accord-
ing to the requirements of the present applications. In contrast to microkernel-based systems
where the functional requirements of application software may be arbitrary inspired by any
computable application scenario, the functional requirements of causal TCBs are derived
from policies that share the same abstractions. More precisely, even though the model core
is able to formalize a wide variety of access control and information flow models, the models’
syntax is limited and unified. From an engineering point of view, this enables straightfor-
ward engineering of causal TCBs with increased efficiency. On top of that, the model-based
specification also sets the course for avoiding superfluous TCB functions and functional re-
dundancies.

Having introduced a functional design for causal TCBs and a causal TCB engineering
approach, the remainder if this section discusses the plausibility of both with respect to the
design requirements of Section 4.1.2.

Core Notation The functional design of causal TCBs follows the same idea as core-based
model engineering. For this reason, it optimally supports policies in core notation: analo-
gously to models in core notation, all causal TCBs share a common TCB component – the
policy-independent RTE to protect and enforce a wide variety of models in core notation.
Causal TCBs are engineered by systematically tailoring the policy-dependent RTE based on
causal dependencies between policies and TCB functions.

Focusing on policies in core notation has an impact on the functional perimeter of the
policy-independent RTE though (Figure 4.1). In addition to functions that generally protect
and enforce the policies, it must also contain functions that support the model core, e.g., by

61

4.2 TCB Design

implementing a state automaton, since it is shared by all considered models. On top of that,
model functions support policy-specific specializations of the model core, and model instance
functions complete the functional perimeter by supporting the instance of the core-based
model.

Multi-policy Support To enforce multiple security policies at the same time, causal TCBs
have to provide support for policy isolation, policy communication as well as coordination
by means of policy composition or meta policies, and scalability with respect to the number
of policies. The latter is the only property that can be discussed at the level of TCB design;
the remaining properties must be considered at the stage of developing a TCB’s architecture
and implementation.

Scalability is the ability of causal TCBs to integrate multiple policies without modifying
more than the necessary TCB functions. To integrate policies into a causal TCB, the policy-
independent RTE does not need to be modified at all; only the policies themselves and policy-
specific functions have to be added to the functional perimeter. Here, we have to consider
two possibilities. (i) Policies can be modeled by the same model and only differ in their model
instances. In this case, the design allows for including the necessary model functions once;
only the set of policy-specific model instance functions depends on the number of different
policies. (ii) Policies must be described by varying models. The sets of model functions then
depend on the number of different policy types; again, the number of policies to be integrated
determines the different sets of model instance functions. For example, Figure 4.1 sketches a
causal TCB that provides functions for three models and four model instances, hence covering
both cases.

Policy-independent Functions Policy-independent
Runtime Environment

Policy-dependent

Runtime Environment
Security Model Functions

Security Model Instance Functions

RBAC3 RBAC2

Shared Model Functions

ABAC

RBAC3

HealthCare
Instance

RBAC2

Insurance

Instance

ABAC
Instance

Figure 4.3: Causal TCB Enforcing an RBAC3, RBAC2, and ABAC Policy

A Nonredundant and Complete Functional Perimeter The causal TCB design along with
the TCB engineering approach provides the basis for nonredundant but complete TCB im-
plementations. By tailoring a TCB’s functional perimeter to the present security policies,
only those model functions and model instance functions that are essential for enforcing the
policies are in the TCB. Due to the engineering approach of exploiting causal dependencies
between policies and TCB functions, no functions other than causally dependent functions are
included. Thus, each set of model functions is redundancy-free and complete by construction
with respect to a specific model. The same holds for the set of model instance functions with
respect to a specific model instance. However, when integrating more than one policy, e.g.,

62

4 Causal Trusted Computing Bases

an RBAC2 and an RBAC3 policy, which are formalized by models that share some (but not
all) model components, functional redundancy may occur beyond the model function sets.

We deal with this by subsuming the model functions that are shared by these two policies.
The model-specific sets of functions then contain only those functions which are specific for a
security model. The shared functions also reside in the first sublayer of the policy-dependent
RTE, but are arranged below the model-specific function sets so that they have access to
the shared functions. In doing so, we avoid functional redundancy when models share more
model components than the common model core. Figure 4.3 sketches the design of a causal
TCB, tailored to enforce two dynamic RBAC policies – an RBAC3 policy for a healthcare
application and an RBAC2 policy for an application for insurance companies.

On top of that, if the policy-independent RTE is designed in such a way that it is nonre-
dundant and complete. Thus, causal TCBs set the basis for nonredundant but complete TCB
implementations.

Substitutionality of Security Policies Just like causal TCBs support multiple security poli-
cies by design, they also provide support for flexible policies without major changes to their
design and functional perimeter. That means, neither the policy-independent RTE nor the
policy-depend RTE of other policies is affected. In this dissertation, we distinguish policy
dynamics as follows: changes of (i) the model instance, e.g., by adding a new command to
the authorization scheme, or (ii) the model, e.g., by adding a new component to the model
state. In both cases, the policy-independent RTE does not need to be adapted, only the
policy-dependent RTE. Here, the degree of design and functional adaptations depends on the
extent of changes. Changes of a model instance require to adapt the set of model instance
functions; changes of the security model result in adaptations of model functions, requiring
changes to model instance functions, too. Nevertheless, additional model and model instance
functions that enforce other policies are not affected by such adaptations.

Method and Tool Support Engineering causal TCBs requires to provide method and tool
support that among others allow for reusing TCB functions and generating TCB implemen-
tations. This requirement is met by the functional design of causal TCBs as follows. Since
the policy-independent RTE is mandatory for any policy in core notation, it can be reused
in any application scenario without modifications. In contrast, the policy-dependent RTE is
application-specific. Since it is derived from a policy’s model and model instance by causal
dependencies that can be formally described, this allows for developing an engineering method
supported by (semi-) automatable tools, e.g., for generating policy-dependent runtime func-
tions using dedicated compiler-like tools. Additionally, security model functions to support
a specific model must be derived only once for any model; they then provide an RTE for any
policy instance of the same type. Only the minority of TCB functions, i.e., model instance
functions, have to be derived for each individual application scenario.

Summary This section has presented a TCB design that greatly differs from today’s general
purpose TCBs. The idea is to systematically engineer policy-specific TCBs based on causal
dependencies between security policies and TCB functions. Engineering causal TCBs then
is similar to engineering core-based security models. All security models in core notation
share the common model core that is tailored to formalize specific security policies. Causal
TCBs share the policy-independent RTE to protect and enforce all security policies. Here,

63

4.3 Policy-independent Runtime Environment

the policy-dependent RTE is tailored to provide only those functions that are necessary to
enforce the security policies that are present in a TCB.

The following sections provide a detailed motivation and discussion of the functions of
the policy-independent RTE and the policy-dependent RTE. In doing so, they discuss the
functional components of causal TCBs, the abstractions and interfaces they provide as well
as their interrelations.

4.3 Policy-independent Runtime Environment

The goal of this section is to motivate and present the TCB functions of the policy-
independent RTE. For this purpose, we give a short overview of the functional components
of causal TCBs before discussing the policy-independent RTE in more detail.

Figure 4.4 illustrates the functional components of causal TCBs and their interdepen-
dencies. Functional components are groups of functions that provide the same basic TCB
abstractions. The policy-independent RTE contains ten functional components establish-
ing eight basic TCB abstractions: security policy process, address space, thread,
transaction, message, gate, trusted persistent storage (TPS), and object1. The
AuthenticityTPS is a special instances of the abstraction TPS, which is provided by the
component TPS manager. The policy-dependent RTE consists of two functional components
that provide two basic abstractions (Section 4.4). Each functional component exports at
least one interface to be used by security policies and other functional components. The
functional components generic object manager and authenticator are special TCB com-
ponents; they are the only components that export interface functions beyond the borders of
causal TCBs. These functions then define the entrypoints to a TCB. All other interfaces of
the functional components are protected and can only be called within the TCB.

We motivate and discuss each functional component of the policy-independent RTE along
with its interfaces and interrelations to other TCB components in the following subsections.
For this purpose, we present small excerpts of Figure 4.4 focusing on the functional component
and its interfaces that is currently discussed.

4.3.1 Security Policy Manager

According to the requirements discussed in Section 4.1.2, causal TCBs have to provide multi-
policy support. For addressing this requirement, we refer to a similar problem in operating
systems. Operating systems can be considered as runtime systems for arbitrary application
software written in various programming languages; and their users have long been familiar
with installing and running many applications in parallel on one OS. This is enabled by the
OS abstraction ‘process’ and the process manager sub-system that together allow for flexibly
executing arbitrary application software by creating, running, and stopping processes. Among
others, the process manager includes a process scheduler that allows for running processes
concurrently based on a well-defined scheduling strategy. Thus, with respect to application
software operating systems already provide well-established abstractions to meet the above
mentioned requirements. We now adopt these ideas for causal TCBs.

The security policy manager (Figure 4.5) is the central functional component of causal
TCBs and can be compared to an OS’s process manager. It provides the abstraction security

1In order to ease reading, all functional components, abstractions, and functions of causal TCBs will be
highlighted by typewriter font throughout this dissertation.

64

4 Causal Trusted Computing Bases

Entity
Identification

Server

Message,

Gate

Security
Policy

Manager

Thread
Manager

Memory
Manager

Security
Policy

Process

Thread

TPS Manager

TPS

Authenticator

Policy-independent
Runtime Environment

Address

Space

Interceptor

Executable

Security

Policies

Authorization

Scheme

Security

Model
Functions

State, Extension

Vector

Policy-dependent
Runtime Environment

Cryptographer

Generic
Object

Manager

Authenticity

TPS
Inter Thread

Communication

O
b

je
c
t

Transaction
Manager

Transaction

Figure 4.4: Functional Components of Causal TCBs

Security
Policy

Manager

Thread
Manager

Memory
Manager

Security
Policy

Process

Thread

TPS Manager

TPS

Address

Space

Authenticity

TPS

Figure 4.5: Security Policy Manager

policy process (also called policy process), representing a policy that is executed and
enforced by a TCB just as an OS’s process is an application in execution. Likewise, a policy

process also has different states. Compared to OS processes though, it may only enter two
states as shown in Figure 4.6. When a policy process is created, it enters the state non-
enforcing where it is prepared to be enforced. To enforce a policy process, it is started,
resulting in that it enters the enforcing state. Here, a policy process is being executed,
which means that it waits for policy requests, makes request-dependent policy decisions, and
exports them. A policy request is a call of one command of the policy’s authorization scheme
by some software component outside the TCB; the policy then makes a policy decision, which
must be enforced by the TCB. In contrast to an OS, where a process is executed only for
a limited time before it is terminated or preempted by the scheduler, a policy process in
general is in the state enforcing as long as the policy is not stopped, either to be restarted, e.g.,
for system restart, or to be destroyed. A policy process is destroyed, when its executable

security policy is modified or removed from a TCB.
In order to manage all policy processes, the security policy manager implements a

65

4.3 Policy-independent Runtime Environment

Non-Existing

Non-Enforcing Enforcing

Destroyed

createPolProc()

startPolProc()

stopPolProc()

destroyPolProc()

Figure 4.6: Three-State Security Policy Process Model

security policy process control block (PPCB) just as an OS implements a process control block
(PCB). Analogously, a PPCB contains identification information of the policy process

called policy process identifier (PPID) and control information to control and coordinate
the existing policy processes. Control information contains among others information
regarding inter policy process communication (IPPC). IPPC enables policy processes to
communicate with each other in order to make common policy decisions. It thus is a basic
mechanism to support multi-policy frameworks such as [38].

A policy process is created by the interface function createPolProc(). Here, the iden-
tifier of the security policy (SPID) to be executed is required, which is created whenever
a new policy is integrated in the TCB. When creating a policy process, it is also given
a unique identifier (PPID) that is only destroyed when the policy process is destroyed.
That means, a PPID is stored persistently such that a policy process has the same iden-
tifier after restart. The reason is as follows: security policies can be executed by multiple
policy processes at the same time. This results in the situation that the policy state
must be linked to the executing policy process instead of the policy. A persistent PPID is
required to permanently map a policy process to its policy state, which is also stored in
a nonvolatile fashion by a trusted persistent storage (Section 4.3.6). In addition, it is
required for memory management and thread management.

In order to create a policy process, a privileged instance calls createPolProc(). Here,
the unique PPID is generated, mapped to the policy process, and is persistently stored.
startPolProc() starts a policy process, for which its PPCB must be created. A PPCB
contains the entire runtime information of a policy process; it only exists while a process

is in the enforcing state. As soon as it is stopped by stopPolProc(), the PPCB is deleted.
In contrast, a PPID is deleted when a process is destroyed by destroyPolProc().

public PPID_T createPolProc(SPID_T spid)

public void startPolProc(PPID_T ppid)

public void stopPolProc(PPID_T ppid)

public void destroyPolProc(PPID_T ppid)

As can be seen, the interface of the security policy manager that exports the abstraction
policy process is not used by other TCB components. The reason is that this interface must

66

4 Causal Trusted Computing Bases

be called by a privileged instance – typically known as security administrator – for example
via a graphical user interface or a script when booting a TCB. Both are not designed in the
context of this dissertation since they do not add to the policy RTE but merely deal with
user handling.

The security policy manager contains a directory service that allows to search for
policy processes by their policies; the mapping from the PPID to the identifier of a policy

process is contained in the security policy manager. This also provides the foundation
for a multi-policy system where IPPC and thus the location of policy processes are re-
quired.

public List_T findPolProcesses(SPID_T spid)

A policy process needs to know its PPID whenever it wants to access for instance its
TPS that stores its state. For this reason, the security policy manager provides a function
getPPID(), returning the persistent identifier of a policy process.

public PPID_T getPPID()

In order to implement the above mentioned interface functions, the security policy

manager contains the following additional functions, which are private and thus not provided
by the interface.

private void initPPCB(PPID_T ppid, SPID_T spid)

private void deletePPCB(PPID_T ppid)

4.3.2 Memory Manager

The memory manager is responsible for enforcing tamperproofness of security policies by
their isolation. In general, today’s isolation mechanisms are based on either software or
hardware [9]. Software isolation concepts rely on type-safe programming languages, static
compiler-based type-checking mechanisms, and type-checking mechanisms by a run-time sys-
tem [94, 116, 117]. Hardware isolation via hardware-enforced address space boundaries is an
orthogonal approach, which can be found in today’s standard operating systems as well as
in microkernel architectures [161–163]. While the quality of isolation of both approaches are
similar [116], hardware-enforced isolation has the considerable advantage that it requires only
a few software functions and an MMU that has long been a standard component of today’s
computer system. Thus, hardware isolation contributes to a small functional perimeter of
TCBs. In contrast, software-enforced isolation depends on the correctness of the compiler-
enforced type system, the run-time-based type-checking mechanisms as well as on the overall
process of system generation. Additionally, software isolation concepts require all security
policies to be expressed by type-safe policy specification languages. This means that the
expressive power of the policy specification languages are restricted to enforce type safety.
On this account, software isolation concepts are not feasible with respect to the requirements
discussed in Section 4.1; we thus decide on hardware-based isolation mechanisms.

In order to establish memory protection and isolation, the memory manager protects the
hardware that implements virtual memory management. Figure 4.7 shows the functional
component memory manager and its interrelations to other TCB components. The memory

manager provides the abstraction address space, which is a range of virtual memory ad-
dresses. Each policy process has its own private address space, which has a unique iden-

67

4.3 Policy-independent Runtime Environment

Security
Policy

Manager

Thread
Manager

Memory
Manager

Security
Policy

Process

Thread

Address

Space

Executable

Security

Policies

Authorization

Scheme

Inter Thread

Communication

Figure 4.7: Memory Manager

tifier (address space identifier, ASID) that is specified by the PPID of the owning policy

process. The memory manager is responsible for managing all existing address spaces,
including the protection of the address spaces from each other. It implements an interface
for exporting address spaces, which is used by the security policy manager for creat-
ing and destroying address spaces whenever a policy process is created or destroyed, by
policy processes, or by a component called thread manager.

When a policy process is created by the security policy manager, the memory

manager is called to create an empty address space with a unique identifier. Afterwards,
a thread that has already been created by the thread manager is bound to the address

space, enabling the allocation of memory by mapping the information of the thread, e.g.,
code, stack, and heap, into the address space. Accordingly, when a policy process is
destroyed, its address space is also destroyed and its memory is deallocated.

public void createAddressSpace(PPID_T owner)

public void destroyAddressSpace(ASID_T asid)

A policy process can contain more than one thread (Section 4.3.3); all threads executing
the same policy process then run in the policy’s address space. This enables to parallelize
policy decisions in multi-user systems. Since only a policy process may know the optimal
number of threads for its enforcement, policy processes are allowed to start and stop
threads. Every thread then has to be bound to the policy’s address space by the memory

manager. bindThreadToAS() is provided as an interface function to the thread manager

so that a policy process does not have to deal with the TCB’s management functions; it
binds a thread to its address space by establishing an injective function f : PPID_T Ñ
2TID_T ③∅ (thread identifier, TID). Accordingly, removeThreadfromAS() removes a thread

from its address space when it is terminated. In order to destroy an address space, all
threads running in this address space have to be removed from the address space and

68

4 Causal Trusted Computing Bases

terminated before.

protected void bindThreadToAS(ASID_T asid, TID_T threadid)

protected void removeThreadFromAS(ASID_T asid, TID_T threadid)

The size of the allocated memory of a policy process mainly depends on the policy’s
dynamic and static components – the protection state and extension vector. These in turn
depend on the policy’s application scenario, e.g., an ACM with a few thousands of cells of a
project-specific documentation application vs. an ACM with billions of cells of an institution’s
file server [14]. Additionally, due to policy state changes, the required memory size of a
security policy may also change during runtime, requiring more memory or less memory. For
these reasons, the memory manager is not only responsible for isolating policy processes

from each other, but also for dynamically managing the size of the allocated memory.

public Memory_T mem_alloc(Size_T size)

public Memory_T mem_realloc(Memory_T mem, Size_T size)

public void mem_free(Memory_T mem)

A policy process is allowed to dynamically manage the size of its heap within its address

space by allocating, reallocating, and releasing memory. This approach equals the dynamic
memory management of Unix-based operating systems, which provide among others system
calls like malloc(), realloc(), or free() [164]. Within its address space, a policy process

can allocate memory by the function mem_alloc(), which returns the allocated memory of
type Memory_T. Size_T is an abstract type for the amount of memory to be allocated. In
order to dynamically adapt the size of the allocated memory, a policy process must use
mem_realloc() to expand or reduce the previously allocated memory according to size. For
deallocating memory for further allocations, the memory manager provides mem_free() that
needs the memory to be deallocated as input parameter.

4.3.3 Thread Manager

A security policy performs numerous concurrent activities: in a policy-controlled OS, applica-
tions usually have their individual policies so that many policy decisions may be requested at
the same time. Here, we have observed that depending on the enforced policy, the majority
of the policy requests does not modify the policy state but only reads it. Additionally, a
policy is also responsible for management duties, which are independent of policy requests.
Such duties are, for instance, memory management and inter policy process communication.
For this reason, the thread manager provides the basic abstraction thread that enables to
execute policy processes with concurrent activities.

A thread is a sequential, causally independent flow of control within an address space.
It has a unique thread identifier (TID) and an address space, which is shared by those
threads that belong to the same policy process. The requirement of causal TCBs to
support concurrent activities within a policy along with the general ambition to build a small
policy-independent RTE with low complexity, leads to the design of a five-state thread model
with the states and state transitions as shown in Figure 4.8; we motivate and discuss the
state model in the following.

The state model deviates from standard state models implemented in today’s commodity
operating systems by lacking the state new. The state new typically indicates that an OS’s

69

4.3 Policy-independent Runtime Environment

execution abstraction – usually a process – is already created but not loaded into main
memory due to some limit, based on the number of existing processes or the amount of
virtual memory committed to existing processes [226]. For now, we omit this state since
TCB’s do not have such limits. The reason is twofold: first, the research community has
not gained any experience so far about the average number of i) policies running in a policy-
controlled system and ii) threads that execute a single policy. Second, as we aim to design a
small policy-independent RTE with low complexity, we do not consider any state for which
we cannot precisely argue. All other thread states are standard states inspired by process
models of today’s operating systems. In the following, we discuss their relevance and state
transitions.

Blocked

Ready

Non-Existing

Running

Terminated

unblock()

createThread()

activate()

deactivate()

block()

exitThread()

Figure 4.8: Three-State Thread Model

• Ready: A thread has been created and is now ready to be executed. That means, the
thread is bound to its address space and loaded into memory.

• Running: Once a thread has been activated by the scheduler of the thread manager,
it is executed.

• Blocked: A thread enters the blocked state if it requests I/O resources for which it
must wait. For example, the functional component TPS manager provides nonvolatile
storage for a policy’s state (Section 4.3.6). This resource is shared by all threads of a
policy process; it thus may happen that a thread has to wait before it can access
the storage. Moreover, a thread enters the blocked state when it has to wait for a new
policy request. A thread returns to the ready state when the event for which it has
been waiting occurs.

The thread manager is responsible for managing and controlling threads. Figure 4.9 illus-
trates the thread manager and its interrelations with other functional components of causal
TCBs. When a policy process is created by the security policy manager, the thread

manager is asked to create a main thread for the policy process. The main thread is a
special thread of the policy because it is the only thread that is not started and terminated
by the policy but by the security policy manager; all other threads are controlled by their
policy process. As soon as the main thread is activated and put in the running state, the
policy process is put in the state enforcing where it is initialized and waiting for policy
requests. A thread must deactivate itself when it can not be executed but is not blocked.
This is the only state transition that may be triggered by a thread itself, and only threads

70

4 Causal Trusted Computing Bases

implementing transactions (Section 4.3.4) may need to make this state transition. A thread

is terminated when it has completed its task or is terminated by its policy process. The
typical reason for termination is that the policy process has been destroyed for shutting
down the system or for removing the security policy from the TCB. When a policy process

is destroyed, all threads bound to the policy process must be terminated.

Security
Policy

Manager

Thread
Manager

Memory
Manager

Security
Policy

Process

Thread

Policy-independent
Runtime Environment

Address

Space

Executable

Security

Policies

Authorization

Scheme

Inter Thread

Communication

Transaction
Manager

Transaction

Figure 4.9: Thread Manager

Additionally, the thread manager is responsible for scheduling threads. For this reason,
it maintains a data structure that is called thread control block, containing a thread’s identi-
fication, processor state information, and thread control information. While processor state
information contains information about a thread’s control and status registers, thread con-
trol information consists of scheduling information, including the current thread state, and
information about inter thread communication and memory management.

When a thread is created by either the security policy manager or a policy process

with the interface function createThread(), a unique TID is generated (e.g., for inter thread
communication). Afterwards, the thread is mapped to the policy’s address space, allocat-
ing the memory for the thread, and its thread control block is initialized by initThCB().
All threads are terminated by the function exitThread(). Here, the thread’s inter thread
communication is stopped, its references are removed, and its memory is freed. Additionally,
the thread control block is removed by deleteThCB() and its memory is freed.

public TID_T createThread(ASID_T asid)

private void initThCB(TID_T tid)

public void exitThread(TID_T tid)

private void deleteThCB(TID_T tid)

71

4.3 Policy-independent Runtime Environment

Whenever the attributes of a thread are modified, its thread control block storing these
attributes needs to be updated. Among others, these attributes are references to its memory,
especially the dynamically allocated memory managed by policy processes (Section 4.3.2),
and information about inter thread communication. Depending on the attributes, this is ei-
ther done by the thread manager or by the memory manager by calling the interface function
updateThCB().

protected void updateThCB(TID_T tid, Attribute_T attributes)

As mentioned above, the thread manager is also responsible for scheduling all runnable
threads. Here, we apply a nonpreemptive first-come-first-serve strategy since it is sufficient
and does not add unnecessary complexity. The thread manager has an abstract data struc-
ture that we call ready queue, containing all threads in the ready state. Threads are inserted
in the ready queue by the function enqueue(). activate() selects the next thread in the
ready queue for execution; the activated thread has to be deleted from the ready queue by
the function dequeue(). If a thread deactivates itself by calling deactivate(), it releases
the CPU and transitions back to the ready state. Here it must be inserted at the end
of the ready queue. Blocking and unblocking of threads is implemented by block() and
unblock(). When a thread is waiting for an event, the thread manager executes block()

to release the CPU and update the thread’s thread control block. unblock() is called when
an event has occurred; the thread then transitions to the ready state.

private void enqueue(Queue_T queue, TID_T tid)

private void dequeue(Queue_T queue, TID_T tid)

private void activate(TID_T tid)

public void deactivate(TID_T tid)

private void block(TID_T tid)

private void unblock(TID_T tid)

4.3.4 Transaction Manager

Whenever concurrently running threads share common resources, the consistency of these
resources has to be preserved. In the context of causal TCBs, shared resources are the states
of the policies. All threads executing one policy process use the same state for making
policy decisions or changing attribute assignments. Causal TCBs thus have to ensure the
states’ consistency and isolate all operations performed on policy states, i.e., the commands
of the policy’s authorization scheme.

This requirement among others has been dealt with by transactional information systems,
which guarantee system properties, commonly known as ACID properties (atomicity, consis-
tency, isolation, durability) [102,121], that enable concurrent program execution while dealing
with failures. By hiding concurrency and failures with the help of a transaction program-
ming interface, clients are easier to develop since they can ignore the complexity of concurrent
process execution and failure handling [248].

Atomicity requires that a transaction is completely executed or not at all. That means if
a transaction is completely executed, no errors occurred. On the other hand, if a transac-
tion is abnormally terminated, e.g., in case of hardware failure, all the changes of the failed
transaction must be undone. Mechanisms to provide atomicity are shadow paging or persis-

72

4 Causal Trusted Computing Bases

tent logging. Consistency is defined on the data that a transaction computes; a transaction
preserves its consistency when it transitions from a consistent state to another consistent
state. This implies that intermediate results are not displayed to the client. There are no
self-contained mechanisms to preserve consistency. Instead, a transactional system must be
programmed in such a way, e.g., by exploiting constraint declaration statements or triggers,
that it eventually reaches a consistent state [248]. If these constraints are violated, a transac-
tion is aborted such that in conjunction with atomicity, consistency is ensured [248]. Isolation
of transactions ensures that the result of concurrently executed transactions equals the result
of sequentially executing these transactions. This means, transactions are isolated from each
other when every transaction works on a consistent state that resulted from completely ex-
ecuted transactions. Isolation is usually enforced by pessimistic (conservative) or optimistic
(aggressive) concurrency control algorithms. Durability of the computed data is preserved
when all updates that a transaction has made are guaranteed to survive subsequent software
or hardware failures [248]. This implicates that they are stored persistently.

From this it follows that transactions are well suited as semantics for executing policy
requests, i.e., calls to the commands of a policy’s authorization scheme. However, they come
with great efforts in terms of complexity and thus TCB functions. On the other hand, a high
degree of parallelism provides the basis for applying causal TCBs in real-world systems where
multiple users require applications with high performance. Consequently, the goal must be
a compromise between the required high degree of parallelism and the efforts involved. Our
approach is to support only those ACID properties that are indispensable for causal TCBs
by implementing a lightweight transaction management. On this account, we discuss the
significance of each property for causal TCBs in the following.

The main responsibility of causal TCBs is to ensure that the present security policies are
correctly enforced. This includes that (i) policy decisions are always based on a consistent
policy state and (ii) the result of executing concurrent policy requests must be identical to
the result of sequentially executing the same requests. Hence, consistency of the policy states
and isolation of the policy requests are indispensable properties that need to be preserved by
causal TCBs.

There is no requirement that causal TCBs need to deal with hardware or system failures;
in this case, a policy may indeed reach an inconsistent state. However, to correctly enforce its
policies, a TCB must still ensure the consistency of policy states even though system failures
occur. This means, atomicity is an important property of causal TCBs that contributes
to preserve the consistency of all states. Additionally, to correctly enforce policies beyond
system restart, the states of all policies have to be stored in a nonvolatile and consistent
fashion. The policy-independent RTE supports this by the abstraction trusted persistent

storage. However, the policies themselves are responsible for storing their states, i.e., they
define the degree of durability they want to preserve.

To guarantee the properties atomicity, consistency, and isolation (ACI), and to support a
policy in its management tasks, the transaction manager provides a transaction program-
ming interface that implements a lightweight transaction management. The programming
interface is implemented via transactional memory [103,111,149], which guarantees the ACI
properties for concurrent activities within shared memory by design. Threads that belong
to a policy process then communicate with each other via objects in main memory by
applying transactional semantics. This allows for a high degree of parallelism and an easy
programming interface, since a policy only needs to identify its critical sections. In case the
hardware of a platform-specific TCB implementation does not contain transactional mem-

73

4.3 Policy-independent Runtime Environment

ory, the programming interface can be implemented in software. Besides, the algorithms to
implement the ACI properties, e.g., optimistic or pessimistic concurrency control algorithms,
depend on a TCB’s specific application scenario. Thus, they have to be designed during the
implementation of a specific causal TCB.

Independent of a TCB’s implementation, any transaction has two states: running and
committed (Figure 4.10). We have omitted a state aborted as we aim to design a small
policy-independent RTE with low complexity and without dispensable states. The reason
for the latter is twofold. First, a policy does not need to abort a transaction. Second, the
transaction manager can internally enforce that transactions are restarted and hence
eventually created and executed. By this means, the policy does not have to restart a
transaction; this is automatically done by the transaction manager.

Non-Existing

Running Committed

Terminated

begin()

commit()

end()

Figure 4.10: States and State Transitions of a Transaction

Transactions are implemented by threads. A thread must be in the running state
(Figure 4.8) to execute a transaction. If a transaction cannot be created, its thread

will transition back to the ready state by calling deactivate(). In case a transaction

is terminated, its thread may be terminated, too. However, a thread may also enter the
blocked state and execute another transaction afterwards.

The transaction manager provides the following transaction programming interface.
A transaction is started by begin(), where the transaction manager created a
transaction, prepares it for execution, and finally returns a unique transaction identifier
(TAID). A transaction is committed by calling commit(). To terminate a transaction

afterwards, a policy calls end(), where the transaction manager not only destroys the
transaction but also its identifier.

public TAID_T begin(List_T locks)

public void commit(TAID_T taid)

public void end(TAID_T taid)

The transaction programming interface guarantees atomicity, consistency, and isolation
of all policy states and policy requests. Though it is basically applied by policies, it can
also be used by any other TCB component that computes the policy states. As shown in
Figure 4.12, such a component is the trusted persistent storage (TPS) manager, which
is responsible for storing policy states in a trusted and nonvolatile fashion. Its motivation
and details are given in Section 4.3.6.

74

4 Causal Trusted Computing Bases

4.3.5 Inter Thread Communication

In order to realize the above mentioned design concepts, threads have to communicate
with each other. Fur this purpose, the functional component inter thread communication

(ITC) provides abstractions and functions that enable thread communication beyond address

space boundaries. Here, we distinguish two application scenarios:

• Security policy processes are isolated from the policy-independent RTE by differ-
ent address spaces. Thus, threads must be able to switch their context, in order to
use the services of the RTE.

• Security policy processes are also isolated from each other by different address

spaces. In order to lay the foundation for inter policy process communication, e.g., for
implementing meta policies, the threads of various policy processes must be able
to communicate with each other.

The first scenario is equivalent to making system calls in operating systems. Here, a process
running in user mode must make a context switch in order to be able to execute the operation
in the address space of the kernel. Analogously, whenever a policy process uses a function
of the policy-independent RTE, it must switch from its own address space to the address

space of the RTE. For this reason, the ITC component provides the function trap(), which
is called whenever a function from the RTE is called by a policy process. With the help
of the thread manager (updateThCB()) and the memory manager (bindThreadToAS()), the
policy process is able to jump to the address of the called RTE function in the address

space of the policy-independent RTE, to execute this function, and to jump back to its own
context. For this purpose, the RTE function as well as its parameters are input parameters
of trap(), from which the jump address can be retrieved. Besides, trap() must save the
return address so that the thread of the policy process can return to its context.

protected void trap(Function_T function, List_T paramList)

Figure 4.11 shows the ITC component and its interface to the security policies. For inter
policy communication, the policy processes directly use the interface of the ITC compo-
nent. For context switches, the ITC interface is called by the other TCB components; for
clarity, we refrain from illustrating the usage of this interface by all other TCB components
that provide services to policy processes. Besides that, the ITC component must be able
to communicate with the thread manager and the memory manager to actually implement
the communication between threads.

The second use case can be compared to message-based client/server communication where
meta policies are clients that request partial policy decisions from the participating security
policies (servers) and combine them to a common policy decision. Based on these consid-
erations, the basic abstractions are synchronous send and receive messages that are sent
between threads of different address spaces.

A policy process does usually not know from which thread (representing a client) to
receive messages. Consequently, it must be able to receive messages from any thread be-
longing to another policy process. For this reason, the communication is indirect, and
similar to [136, 237], it uses an abstraction gate that is bound to a thread as mediator.
Due to confidentiality, there is no central register for threads belonging to a specific policy

process. That means, whenever a policy process wants to communicate to another policy

process, there is no means of identifying the policy’s threads. Gates are bound to threads

75

4.3 Policy-independent Runtime Environment

Message,

Gate

Thread
Manager

Memory
Manager

Thread

Address

Space

Executable

Security

Policies

Authorization

Scheme

Inter Thread

Communication

Figure 4.11: Inter Thread Communication

by a mapping f : TID_T Ñ 2GATE_T that is managed by the ITC component. Gates can
then be found by calling findGatesForPolProc(), which returns a list of all gates that are
bound to the threads of the policy process.

Once a gate of the partnering policy process is found and the policy’s own threads

have created their gates and have bound them by createGate() and bind(), the
policy processes can communicate via sending and receiving messages using send() and
receive().

public void send(Gate_T receiver, Msg_T msg)

public Msg_T receive(Gate_T sender)

public Gate_T createGate(Attributes_T attributes)

public void destroyGate(Gate_T gate)

public void bind(TID_T tid, Gate_T gate)

public List_T findGatesForPolProc(PPID_T ppid)

As mentioned in Section 4.1.2, causal TCBs need to support two kinds of policy relation-
ships: independent and cooperating security policies. By establishing gates, security policies
are provided with an abstraction that is generally able to implement policy-specific commu-
nication models using message filters. This may be particularly important for supporting
cooperating security policies. For example, in order to make a common policy decision, a
meta policy requests policy decisions from all participating security policies. However, these
policies may only be called by a specific meta policy but not by others. Gates can then
implement, for example, message filters in order to prevent unauthorized messaging. By
this means, an additional level of communication, which we call inter policy process commu-

76

4 Causal Trusted Computing Bases

nication can be realized on top of ITC to implement policy-specific communication models
for cooperating policy processes. It remains future work to research which types of co-
operations between security policies may exist and thus which communication models are
required.

After having discussed the functional components responsible for security policy execution,
the remaining TCB components (TPS manager, cryptographer, entity identification

server, generic object manager, and authenticator) deal with establishing integrity and
confidentiality of the policy states while guaranteeing authenticity of all entities controlled
by the policies.

The TPS manager is responsible for storing all policy states in a trusted and nonvolatile
fashion. At the same time, it provides the basis for establishing authenticity of all policy en-
tities by storing their identifiers as well as authentication information. The cryptographer

provides the required cryptographic mechanisms for trusted storage. Entities are abstract
representations of the objects managed by an OS, whose authenticity needs to be preserved,
too. This is realized by the cooperation of three TCB components: entity identification

server, generic object manager, and authenticator. The entity identification

server centrally manages the identifiers of all entities, which must be bound to the OS
objects. This is the responsibility of the generic object manager by establishing a logic in-
terconnection between entities and their implementation as runtime or persistent OS objects.
For this purpose, the generic object manager contains all functions that are relevant for
policy enforcement independent of the object type. The implementation of a TCB then con-
tains a collection of specific objects managers, which inherit the functions of the generic

object manager but implement them for their specific objects. The authenticator can be
considered a implementation-independent specific object manager that is responsible for
establishing the authenticity of all objects representing human users. We motivate the re-
maining functional components and give details on each in the following subsections.

4.3.6 Trusted Persistent Storage Manager

TCBs are responsible for correctly enforcing their security policies at any time. While
the memory manager protects the policies during runtime via isolated address spaces, the
trusted persistent storage manager is responsible for isolating the persistent memory
of policies, storing their protection state.

In order to store the protection states of security policies, causal TCBs have to ensure
that the states’ integrity and confidentiality are preserved. Integrity, i.e., the property of
information to be protected against unauthorized modification, ensures that no other security
policy or system component outside the TCB is able to manipulate the policy state, e.g.,
with the goal to grant some subject specific rights for an object that the subject would
not have otherwise. Without maintaining the integrity of the policy state, causal TCBs
cannot guarantee that their policies are correctly enforced with respect to their specification.
In contrast, confidentiality (the property of information to be available only to authorized
users) contributes to the correct enforcement of security policies rather indirectly. Policy
states contain sensitive information about subjects and objects, e.g., subject/object attributes
like age, salary, rights, or any other attribute used for policy decisions. If any other system
component or policy may gain this kind of information, it does not have an immediate
impact on the policy enforcement. Nevertheless, an adversary gets fundamental insights in a
policy, which can then be used to accomplish well-directed attacks applying social engineering
methods. Hence, the security policy will be undermined. Of course, guarding IT systems

77

4.3 Policy-independent Runtime Environment

against social engineering attacks is not possible; we can merely raise the bar by preserving
the confidentiality of policy states.

Responsible for storing the policies’ states and maintaining their integrity and confidential-
ity is the TCB abstraction trusted persistent storage (TPS). Every policy has its own
TPS where it can save its protection state on trusted, nonvolatile storage. A TPS is attached
to a policy process; only threads that belong to the policy process, i.e., that reside in
the policy’s address space (Section 4.3.2), can access the policy’s TPS. Since the policies’
states may greatly differ in structure and size, a TPS does not provide a means of logical
organization; it is the policies responsibility to logically structure its data. Any TPS has four
attributes: a unique identifier specified by the owner of the TPS (the PPID of the policy

process), its size, a set of references to blocks of a data medium that contain the policy data,
and the current hash of the policy data stored in the TPS.

Entity
Identification

Server

Security
Policy

Manager

Security
Policy

Process

TPS Manager

TPS

Authenticator

Policy-independent
Runtime Environment

Executable

Security

Policies

Authorization

Scheme

Cryptographer

Authenticity

TPS

Transaction
Manager

Transaction

Figure 4.12: Trusted Persistent Storage Manager

The TPS abstraction is provided by the TPS manager, implementing a nonhierarchical stor-
age system whose storage units are well isolated by cryptographic mechanisms. Figure 4.12
shows the TPS manager and its interrelations to other TCB components. The TPS Manager

manages the TPS’ of all security policies integrated in a causal TCB by providing a collection
of functions that can be performed by the policies on their TPS.

public void open()

public Data_T read(Size_T size)

public void write(Data_T data, Size_T size)

public void close()

Before a policy process is able to perform a function on its state, its TPS has to be opened.

78

4 Causal Trusted Computing Bases

Here, it is important that the TPS manager ensures that a TPS can only be opened by its
policy process. Since the PPIDs of the policy process are persistent, the mapping from
the owning policy Process to its TPS well defined at any time and can easily be enforced
by the TPS Manager. Once a TPS is open, a policy process is allowed to perform functions
on its TPS. The function read() enables to read all or a portion of the policy data in the
TPS, depending on the input parameter size that indicates the amount of data to be read.
Policy data can be stored persistently by using write(), whose input parameters are the
data and the size of the data to be written. A policy process can write policy data either
by updating the existing data or adding new data. Since read() and write() are performed
directly on a policy state, the TPS manager applies the transaction programming interface
provided by the transaction manager (Section 4.3.4), to ensure a state’s consistency and
the isolation of both functions. When a policy process is terminated, its TPS has to be
closed. Threads are then no longer allowed to perform functions on the TPS.

As already mentioned, the data stored in a TPS is protected by cryptographic mechanisms;
it is encrypted and hashed for maintaining its confidentiality and integrity. We refrain from
using digital signatures, since they do not add to the degree of integrity here. The reason is
that the hashes of the TPS will never be exposed to any other security policy or to the outside
of the TCB so that they cannot be modified unauthorizedly. That means, the hashes are
encrypted by the TPS Manager before they are persistently stored, and the hash attribute of
the TPS abstraction resides in the protected address space of the owning policy process.
Moreover, asymmetric encryption is much more expensive in terms of complexity, implemen-
tation efforts, and performance. Thus, we recommend the usage of symmetric encryption
protocols for encryption, because on the one hand, asymmetric encryption is not strictly
necessary; on the other hand, redundant encryption functions for asymmetric and symmetric
keys can be avoided.

Applying cryptographic mechanisms involves that every time policy data is written to a
TPS, it has to be encrypted and the hash attribute of the TPS has to be updated. Moreover,
the hash is stored persistently and encrypted by the TPS Manager to be used after system
restart. Encrypting and hashing the contents of a TPS every time is feasible since policy
requests that modify a policy state are usually rare2. If a TPS is read, the data has to be
decrypted and the hash has to be checked. In case the result is negative, i.e., when a policy’s
data has been modified unauthorizedly, a policy process can no longer trust the stored
data to make policy decisions. Consequently, the enforcement of the policy must be stopped.
A privileged instance like an administrator then has to manually analyze the policy state and
confirm the state’s correctness. This task may be very burdensome depending on a policy’s
complexity and the size of its state. A policy does not need to encrypt, decrypt, or hash the
content of its TPS itself. All cryptographic functions are initiated by the TPS manager by
calling the interface functions of the functional component cryptographer (Section 4.3.7).

Furthermore, the TPS manager provides a set of functions for managing a policy’s TPS. This
includes the creation of a new TPS when a new policy is integrated into a causal TCB, and
the destruction of a TPS when removing a policy from the TCB. A new TPS must be created
before the policy process of the policy is started the first time; this can be accomplished
when the program code of the executable security is integrated into the TCB, e.g., by an
administrator. Here, the size of the TPS is an input parameter, since the size of the states
are policy-dependent and usually very different. On top of that, the required size of a TPS

2Note that for performance reasons, reading and writing a policy’s TPS can be independent of policy requests;
it suffices to synchronize the TPS with the virtual state in regular intervals.

79

4.3 Policy-independent Runtime Environment

can change according to the requirements of the states of the policies. Thus, in analogy to
memory management (Section 4.3.6), a policy is able to increase (s_alloc()) and decrease
(s_dealloc()) the size of its TPS as indicated by the input parameter size. Whenever the
size of the TPS or its hash has been modified, its attributes must be updated by updateTPS().

protected TPS_T createTPS(PPID_T owner, Size_T size)

protected void destroy(TPS_T tps)

public void s_alloc(Size_T size)

public void s_realloc(TPS_T tps, Size_T size)

private void updateTPS(TPS_T tps, Attribute_T attributes)

Besides the storages of the policies, the TPS Manager is responsible for two specific TPS’
that store the data of a causal TCB itself: CryptographicTPS and AuthenticityTPS. Anal-
ogous to all other storages, they are also encrypted. In contrast to the policies’ storages
where the policies are responsible for their logical organization, the organization of the
CryptographicTPS and AuthenticityTPS is managed by the TPS manager. Both must be
initialized when setting up a causal TCB; they must not be destroyed.

The CryptographicTPS holds the hashes of all TPS’ to ensure their long-term existence.
The hashes are mapped to the identifiers of the owning policy processes. Since the
CryptographicTPS and AuthenticityTPS do not belong to a policy process, their hashes
are mapped to virtual PPIDs. In order to read and write the hashes, the TPS manager

implements two functions which can only be accessed by itself. retrievHash() retrieves
the hash of a TPS by the PPID of its owning policy process. The TPS manager stores
the current hash of a TPS by saveHash(); this function also saves an additional hash of a
new TPS. When a security policy is removed, its TPS is destroyed along with its hash in the
CryptographicTPS. The latter is done by destroyHash().

private Hash_T retrieveHash(PPID_T owner)

private void updateHash(PPID_T owner, Hash_T hash)

private void destroyHash(PPID_T owner)

The AuthenticityTPS saves all data that is required by the functional components
authenticator and entity identification server. Both are responsible for ensuring
the authenticity of the subject entities protected by the policies. As such they require to per-
manently store entity identifications and credentials for user authentication. For retrieving
and saving the information of the AuthenticityTPS, the TPS manager provides four inter-
face functions. retrieveEntityIDs() allows the entity identification server to gain
access to all assigned entity identifiers, e.g., after system restart; saveEntityIDs() saves the
entity identifiers. The authenticator can retrieve an credential for a specific subject entity
by retrieveCredential(); a credential for a subject entity is saved by saveCredential().
For more details, please refer to Sections 4.3.8 and 4.3.10.

protected EntityList_T retrieveEntityIDs()

protected void saveEntityIDs(EntityList_T entities)

protected CredentialList_T retrieveCredential(EID_T user)

80

4 Causal Trusted Computing Bases

protected void saveCredential(EID_T user, Credential_T cred)

4.3.7 Cryptographer

A causal TCB requires cryptographic mechanisms to ensure the confidentiality and integrity
of permanently stored data. On this account, the cryptographer provides a collection of
cryptographic functions; their precise configuration, e.g., encryption algorithm, key length,
or hash function, depends on the implementation. Figure 4.13 shows the cryptographer

along with its interrelations to the authenticator and TPS manager.

TPS Manager

TPS

Authenticator Cryptographer

Authenticity

TPS

Figure 4.13: Cryptographer

As already mentioned, the cryptographer implements symmetric encryption. Conse-
quently, each causal TCB must have its own symmetric key for encrypting their storages;
in the following we refer to this key as TCB key. The TCB key is generated by the
cryptographer via generateKey(). Naturally, it is of utmost importance to preserve the
confidentiality of the TCB key. This is done by the storage root key (SRK) of the TPM by
integrating it in the key hierarchy managed by the TPM. This means the SRK encrypts the
TCB key before it is saved on untrusted storage. The cryptographer can gain access to the
key by the function loadKey() that locates the TCB key and calls the TPM to decrypt it
with the SRK.

private Key_T generateKey()

private void saveKey(Key_T key)

private Key_T loadKey()

The cryptographer provides the function encrypt(), which produces cyphered data de-
pending on the plain data to be inputed. The function decrypt() deciphers data, respec-
tively, requiring the ciphered data as input parameter. Since there is only one key for data
encryption, i.e., the TCB key, the key does not need to be an input parameter.

protected Cypher_T encrypt(Plain_T plainData)

protected Plain_T decrypt(Cypher_T cypherData)

On top of that, the cryptographer provides two functions for computing hashes and
performing checks on them. The function hash() produces a hash code from the input
parameter plainData; it is necessary that hash() is implemented as a one-way and collision
resistant hash function. Once the RTE is able to produce hashes, they need to be compared
to measure the integrity of the hashed data by checkHash(). The first input parameter is the
newly created hash that needs to be compared with the original hash of some data (second

81

4.3 Policy-independent Runtime Environment

input parameter), e.g., the hash attribute of an TPS. checkHash() returns true if the hashes
are equal; it returns false otherwise.

protected Hash_T hash(Plain_T plainData)

protected Boolean_T checkHash(Hash_T hashTocheck, Hash_T originalHash)

All cryptographic functions are protected interface functions to be used by the TCB compo-
nents authenticator and TPS manager. Security policies do not have to take care that their
states and user authentication data is protected; this is a service of the policy-independent
RTE provided to all security policies.

4.3.8 Entity Identification Server

One corner pillar of establishing and maintaining the authenticity of the policies’ entities is
their unambiguous identification. On this account, globally unique identifiers are required by
which any entity can be identified at any time, independent of its type, the represented OS
abstraction, or the policies by which it is protected. The entity identification server

is responsible for centrally managing the identifiers of the entities (entity identifier, EID)
in order to enforce their uniqueness. Conceptually, EIDs can be realized in two ways: non-
reusable or reusable EIDs. If EIDs are nonreusable, there will be no EID that is reused by
a new entity when its old entity is destroyed even after system restart. By this means, it is
very simple to enforce unique EIDs; however, the identifier space, no matter how large it is,
will overflow eventually. Hence, nonrepeating identifiers are not feasible. In contrast, EIDs
that will be reused by new entities right after their old entities are destroyed hardly pose
the problem of overflown identifier spaces; though the efforts for guaranteeing that entities
with reused EIDs do not gain the permissions of the former entities increase enormously.
Since both approaches are suboptimal, we choose an hybrid approach where EIDs may be
reused on specific conditions: after system restart and when the identifier space is completely
traversed. The advantage is that the identifier space cannot overflow when a feasible range
is chosen, while the effort for guaranteeing that entities with a reused EIDs do not gain old
permissions is now moderate.

In order to give security policies the opportunity to create or remove entities, the entity

server provides two interface functions for requesting new and destroying old EIDs. When-
ever a policy is provided an EID by the entity server, it can depend on the uniqueness
of the identifier and can hence assign credentials, e.g., permissions, roles, or attributes. On
the other hand, when an EID is destroyed by a policy, it’s the policy’s responsibility to en-
sure that all references to this EID are deleted. Figure 4.14 shows the functional component
entity identification server and its interrelations.

public EID_T createEntityID()

public void destroyEntityID(EID_T entityID)

As already mentioned, an EID is bound to an OS object by the generic object manager

as long as the object and thus the entity exists. This requires that EIDs of persistent ob-
jects are also bound persistently. However, the entity identification server also needs
to know the persistent identifiers after system restart for generating new EIDs. For this
reason, the persistent EIDs are also centrally stored in the AuthenticityTPS, which is pro-
vided by the TPS manager. By using the interface function retrieveEntityIDs(), the

82

4 Causal Trusted Computing Bases

Entity
Identification

Server

TPS Manager

TPS

Executable

Security

Policies

Authorization

Scheme

Authenticity

TPS

Figure 4.14: Entity Identification Server

entity identification server can load the EIDs from the AuthenticityTPS that are
currently bound to persistent objects. The function saveEntityIDs() enables the entity

identification server to store the EIDs that are assigned to objects.

4.3.9 Generic Object Manager

The second corner pillar of establishing and maintaining the authenticity of the policy enti-
ties is to correctly and irrevocably bind the EIDs managed by the entity identification

sever to their object representation within an OS. This is the responsibility of the generic

object manager, which establishes a logic interconnection between policy entities and their
implementation as runtime or persistent objects in an OS. For this purpose, the generic

object manager provides the abstraction object and a collection of functions for their man-
agement. Figure 4.15 shows the generic object manager along with its interfaces. As
shown, the generic object manager also provides an interface to the outside of the TCB.
This interface presents one of two entrypoints into the TCB for the policy-controlled OS.
Every time the generic object manager receives a request, it calls the interceptor which
then calls the security policy for making a policy decision.

Security policies of policy-controlled operating systems are responsible for protecting any
object managed by an OS. Since these objects may greatly differ in their attributes, man-
agement operations, and operations to be performed on them, operating systems typically
implement an object manager per object type (OS abstraction) or group of types. For ex-
ample, the file system is the object manager for the object types file and directory, which
have to be stored permanently and which can be created, copied, read, written to, or linked
by possibly many users at the same time. On the other hand, processes are runtime objects
managed by the process manager, which are created, executed, scheduled, or terminated.
Binding the EIDs to objects of different types and managing them thus requires different
implementation mechanisms. However, at the abstraction level of TCB functions there is no
difference between objects of different types, e.g., on this abstraction level managing files,

83

4.3 Policy-independent Runtime Environment

Authenticator

Interceptor

Generic
Object

Manager
O

b
je

c
t

Figure 4.15: Generic Object Manager

sockets, processes, threads, or pipes does not make a difference because for all holds, that an
EID has to be correctly and irrevocably bound to them such that they can be clearly identi-
fied at any time. On this account, causal TCBs contain an object type-independent generic

object manager, providing object type-independent functions for object management. For
implementing a policy-specific TCB, type-specific object managers must be derived, inher-
iting the functions of the generic object manager, which then have to be implemented
according to the specific object type.

Inspired by object orientated software design, the generic object manager provides the
generic TCB abstraction object, having abstract attributes that are shared by all object
types of an OS. When deriving type-specific object managers for a TCB’s implementation,
their specific object types have to be derived from the object by implementing the ab-
stract attributes. On top of that, the generic object manager provides a collection of
abstract functions. Analogous to the abstract attributes, any specific object manager

has to implement the abstract functions depending on its specific object type. The funda-
mental requirements for a function to be provided by the generic object manager are as
follows:

1. The generic object manager only has to provide object type-independent functions
that can be performed on all objects and must hence be shared by all specific object

managers even though their implementation may differ.

2. The generic object manager must contain only those functions that are necessary
for correctly enforcing a security policy. Thus, all other functions that are typically
provided by object managers and that are not relevant for correctly enforcing security
policies may not be part of the generic object manager. By this means, we reduce
the probability that errors in functions irrelevant for policy execution have an impact
on the enforcement of the security policies integrated in a causal TCB.

In the following, we motivate and present the functions provided by the generic object

manager. Just like other functional components of the policy-independent RTE it provides

84

4 Causal Trusted Computing Bases

two types of functions: management functions and functions to be performed on objects;
we discuss management functions first.

As mentioned above, one significant prerequisite for establishing object authenticity is
the unambiguous and irrevocable binding of the EIDs to the objects. Otherwise we cannot
guarantee that the credentials, e.g., rights or attributes, which are assigned by a policy to
the EIDs, are mapped to the correct objects. In this case, users could gain rights for
other objects than intended by a policy, which then results in undermining the policy and
thus violating the second requirement. For this reason, createObject() is provided by the
generic object manager, which creates an object and binds its EID. Input is an EID
generated by the entity identification server; the EID must first be requested by a
security policy and is then given to the generic object manager via the interceptor.
Object_T is the abstract type representing objects. Note that in a TCB’s implementation,
the specific object manager that implements persistent objects must bind the EIDs to
the objects in a permanent way.

public T_Object createObject(EID_T entityID)

public void destroyObject(EID_T objectID)

Besides object creation, destroying objects is also relevant for maintaining the objects’

authenticity and hence for the correct enforcement of the security policies. Supposing that the
deletion of objects does not reside in the TCB. Errors in the ’delete’ function may then lead
to that either an object is not destroyed even though the policy considers it as destroyed, or
an object is destroyed though a policy does not intend it to be destroyed. In the first case,
the entity identification server will provide the EID of the destroyed object to a new
object eventually, resulting in that this EID may be bound to more than one object by the
object manager. This leads to that the new object gains the credentials of the destroyed
object so that the security policy will be undermined. Hence, the second requirement is
violated. The second case may influence the correct enforcement of the policy in the mediate
term. Even though the object is destroyed, the entity identification server cannot
give the object’s EID to another object since it was not told that the object does not
exist anymore. If this happens too often and depending on the range of the EID space, it
may happen that the entity identification server is not able to produce new EIDs for
new objects. Thus, the OS cannot run correctly anymore since the policy is not able to
create new entities. On this account, the generic object manager provides the function
destroyObject() for destroying an object and releasing its EID.

On top of these management functions, the generic object manager provides the ab-
stract functions read() and write() to be performed on the objects. The reasons for
including these functions in the policy-independent RTE are as follows. The responsibility
of security policies is to protect the confidentiality and integrity of their entities. In case the
policy allows an object to be read or written to, the policy requires that i) only the request-
ing object is able to read or write this object and ii) the addressed object is the object

for which the requester is allowed to do so. For example, when a process acting on behalf of a
user is allowed to write confidential information to a file, the generic object manager must
ensure that this information is written to the correct file and not to another object, e.g.,
another file or even a network device. Reading objects follows the same argumentation. On
this account, the generic object manager provides the function read(), enabling to read
the data of an object, and the function write() that writes the data of an object.

85

4.3 Policy-independent Runtime Environment

public Data_T read(EID_T objectID)

public void write(EID_T entityID, Data_T data)

Objects usually have additional attributes, e.g., parent ID of a process, socket type, or
file system type, depending on their object types. While the EIDs of objects as well as
the data contained by objects are the only attributes significant for correctly enforcing
policies, all other attributes are irrelevant for policy enforcement. Thus, they do not have
to be managed within the policy-independent RTE so that attribute managing functions like
getting or setting an object’s attributes are to be implemented outside the TCB. In case
one of these functions is erroneous, this may result in that object type-specific OS services are
also erroneous or even not available. However, it does not influence the correct enforcement
of the policies.

4.3.10 Authenticator

The functional component authenticator can be considered a specific object manager that
is responsible for verifying the identity of the objects representing human users. It im-
plements an authentication protocol to prove the identity of the OS’s users by checking an
authentication credential that can only be provided by the according user. Depending on the
TCB implementation, authentication credentials can be passwords, certificates, or biometric
attributes.

TPS Manager

TPS

Authenticator Cryptographer

Generic
Object

Manager

Authenticity

TPS

O
b

je
c
t

Figure 4.16: Authenticator

Figure 4.16 shows the authenticator and adjacent functional components with which
it is related. The authenticator provides one interface, which represents the second en-
trypoint to the TCB. Before a user is allowed to perform any action in the OS, the user
must verify its identity by presenting the requested credential. Here, the interface function
checkCredential() must be called, requiring the EID of the user to be authenticated and the
credential. Depending on the kind of credential, the authenticator must use cryptographic
functions that are provided by the cryptographer.

public Boolean_T checkCredential(EID_T user, Credential_T cred)

The authenticator manages a policy-independent data structure credential map which
maps every entity identifier to a user-specific credential by establishing a function
f : EID_T Ñ Credential_T . Only if the presented credential equals the one stored in the
credential map for the presented EID, the function returns true. The inputed user ID must
equal an EID managed by the entity identification server.

When a new object is created by the object manager and this object represents a
human user, the object manager calls the authenticator for inserting the user’s credential

86

4 Causal Trusted Computing Bases

in the credential map. For this purpose, the authenticator provides a function addUser(),
requiring the user’s EID and credential. Once a pair of EID and credential is inserted in
the credential map, a user is enabled to authenticate herself. If a user is to be removed, her
credential also has to be removed. Here, the object manager calls deleteUser() provided
by the authenticator.

protected void addUser(EID_T user, Credential_T cred)

protected void deleteUser(EID_T user)

Just as the EIDs of the users, the users’ credentials have to be stored permanently. The
AuthenticityTPS, which already stores the EIDs, is also responsible for permanently keeping
the credential map. When an authentication request is received by the authenticator, it
retrieves the original user credential from the AuthenticityTPS and checks whether both
credentials are equal. When a new user is created, the authenticator must save the new
entry of the credential map in the AuthenticityTPS.

A common feature of software systems that implement a credential-based authentication
protocol is to enable the users to change their authentication credentials, e.g., in case they
have forgotten their passwords or leaked their certificates. Causal TCBs do not provide
a specific function for changing the credential due to the following reason. Changing the
credential is a convenient function, but it is not directly essential for correctly enforcing a
security policy. In case an authentication credential really needs to be changed for some
security reason though, an administrator can first delete the user and then add a new user
with the same EID. By this means, the administrator is able to provide a new authentication
credential for the same EID.

4.3.11 Summary

This section has motivated and presented the functional components of the policy-
independent RTE along with a detailed discussion of their functions. All functions are
characterized by well-structured signatures and well-defined responsibilities. The policy-
independent RTE contains ten functional components that provide eight abstractions, all of
which are required by any real world-based causal TCB for protecting and enforcing its secu-
rity policies. The functional perimeter of each component is straightforward and clearly laid
out; functional redundancies are avoided by applying microkernel-based approaches. While
each functional component provides a set of interface functions to be used only by security
policies or components of the policy-independent RTE, the RTE provides two dedicated inter-
faces that serve as entrypoints to the TCB and can be used by an OS. These public interfaces
are well-defined with low complexity, providing a total of five entrypoint functions.

The following sections introduce the policy-dependent RTE along with a method to derive
its functions. The latter is based on a formal rule system that allows for deriving necessary
functions of the policy-dependent RTE from a TCB’s security policies.

4.4 Policy-dependent Runtime Environment

As motivated in Section 4.2, the policy-dependent RTE consists of two sublayers, one of which
contains security model functions, while the second one contains model instance functions.
Figure 4.17 gives an overview of the functional components of the policy-dependent RTE.

87

4.4 Policy-dependent Runtime Environment

The interceptor represents the set of model instance functions (top layer of the functional
TCB design), because it is policy-specific. As implied by its name, the functional component
security model functions implements the security models by which a TCB’s policies are
formalized; it represents the middle layer of the functional TCB design. Security model

functions are directly derived from the policies by an engineering method that exploits
causal dependencies between policies and TCB functions.

Interceptor

Executable

Security

Policies

Authorization

Scheme

Security

Model
Functions

State, Extension

Vector

Policy-dependent
Runtime Environment

Figure 4.17: Functional Components of the Policy-dependent RTE

The goal of this section is to present the functions of the policy-dependent RTE. For this
purpose, we introduce an engineering method for the policy-dependent RTE and show how
TCB functions are derived from a security policy. In Section 4.4.1, we present the idea
and the approach of engineering the policy-dependent RTE and discuss important design
decisions. Sections 4.4.2 and 4.4.3 then present the engineering method in an abstract way
that is independent of any model and policy; here, we discuss the functions of the func-
tional components interceptor and security model functions by drawing an informal
link between core-based models and TCB functions. Afterwards, Section 4.4.4 formalizes
this link by specifying a formal rule system that defines necessary and sufficient conditions
for policy-dependent TCB functions.

4.4.1 Engineering Approach

The idea of engineering a TCB’s policy-dependent RTE is to derive the required TCB func-
tions from a TCB’s security policies by exploiting causal dependencies between policies and
TCB functions. Thereby, we aim at specifying a formal rule system, in order to provide the
basis for an automated TCB composition tool. To this end, a sound theoretical foundation
is required, which we establish by applying a formal algebraic approach. Core-based security
models are then formally described by a set of algebras and hence on a more implementation-
oriented level of abstraction. This results in a much smaller semantical gap between formal
models and implementation-oriented TCB functions such that bridging this gap is less error-
prone. Note that a policy engineer does not need to know the algebraic fundamentals of TCB
engineering. These are exclusively required to specify a formal rule system and to develop a
tool that automatically composes the policy-dependent RTE.

Following an algebraic approach, TCB engineering consists of two steps as shown in Fig-
ure 4.18. The first step is to rewrite a core-based model in algebraic notation (algebra engi-
neering). The rewriting does not impose a semantical change; rather, it is an object-oriented
reorganization of a model’s components where for instance primitive actions are directly at-
tached to the model’s state. This provides the basis for deriving TCB functions by a rule

88

4 Causal Trusted Computing Bases

Figure 4.18: Engineering the Policy-dependent RTE

system in the second step; result is a set of TCB functions, which are denoted by abstract data
types (ADTs) to describe the functions’ syntax and semantics (abstract data type engineering).
This approach matches the idea of deriving implementation-independent TCB functions that
can be implemented on varying platforms, instead of aiming at a specific platform-dependent
algebra implementation. Core-based models provide all required operations of an algebra and
thus define the interpretation of an ADT’s operators.

In general, there are two approaches for determining the policy-dependent functions of a
causal TCB. Functions can be derived from

(i) either a policy itself, i.e., from the policy’s model instance, or

(ii) the model.

The advantage of the first approach is that a TCB enforcing a single policy can be precisely
tailored to the functional requirements of this policy; its functional range then is minimal
with respect to this policy. On the other hand, in case a TCB enforces multiple policies
at the same time, functional redundancies may arise. The argumentation for the second
approach is vice versa; while the functional range of a single-policy TCB may not be minimal
with respect to this policy, functional redundancies in multi-policy TCBs can be avoided.
For example, let us consider two arbitrary IBAC model instances that share the same state
definition q ✏ ♣Sq , Oq , mqq, consisting of a subject set, an object set, and an ACM, but differ
in their sets of primitive actions. While the second instance can add and delete subjects and
objects as well as add rights to and delete rights from the ACM (six primitive actions), let us
assume that the authorization scheme of instance one does not add new subjects or objects
but applies only the other four primitive actions. For the sake of straightforwardness, all
other model components are equivalently defined.

Following the first approach results in two different security model functions compo-
nents, one of which provides the functions for one instance. The first component then contains
among others TCB functions that implement the policy state and the four primitive actions.
The second security model functions component supports the second instance by con-
taining functions to implement the state and the six primitive actions, including the four
primitives which are also shared by both instances. Already this small example shows that
functional redundancies may arise, which contravenes with the TCB design requirements
discussed in Section 4.1.2.

89

4.4 Policy-dependent Runtime Environment

When deriving TCB functions from models instead of model instances, it still may happen
that functional redundancies arise. However, when following this approach we are able to
avoid them a priori by applying so called subsuming security models. A subsuming security
model can be considered an upper bound for the functional perimeter of a policy-dependent
RTE. A subsuming model has the same state and extension vector definition as the sub-
sumed models and combines all primitive actions and clauses of these models. Referring to
the above example, the model underlying the second policy instance can be considered a sub-
suming model because is contains all six primitive actions. TCB functions are then derived
exclusively from the second model, resulting in a single security model functions compo-
nent that supports both models. Following this approach, we avoid functional redundancies
in multi-policy TCBs; each security model functions component contains functions to
implement one specific subsuming model, which then combines various model instances. On
the other hand, the functional range of a single-policy TCB may not be minimal with respect
to this policy. However, since avoiding functional redundancies is more important for this
dissertation, we decide on following the second approach of deriving TCB functions based on
subsuming models.

It remains to discuss how subsuming models are determined. When engineering a TCB with
multiple policies, we combine all models with the same state and extension vector definitions.
In doing so, their sets of primitive action sets as well as their condition sets are united while
all other model components remain. Result is a set of subsuming models; in the best case the
set contains only one model, in the worst case the number of subsuming models equals the
number of different model instances. When a new policy is added to a TCB, we have to check
whether there already is a subsuming model for this policy. If so, the subsuming model and
thus its security model functions component may be enhanced by new primitive actions
and conditions. Otherwise, a new subsuming model based on the given model instance has
to be defined, resulting in an additional security model functions component.

The following section shows how to derive the functions of the security model functions

component.

4.4.2 Abstract Security Model Functionality

The goal of this section is to present the engineering method for a TCB’s policy-dependent
RTE. Before discussing it in detail, we provide a formal definition of the term algebra in con-
nection with abstract data types based on [75]. Section 4.4.2.1 then shows how core-based
models are described by algebras. Afterwards, we present the functions of the functional com-
ponent security model components that are derived from said algebras in Section 4.4.2.2.
Both is done in an abstract way that is independent of any specific model.

An algebra is a pair A ✏ ♣SA, OAq with a set SA of base sets and a set OA of operations.
The domain of each operation is defined as the (potentially empty) Cartesian product of a
subset of SA. The codomain of each operation is defined by exactly one base set. For each
base set there exists at least one operation where the base set either belongs to the domain
or defines the codomain of the operation.

Definition 4.4 (Algebra) An algebra is a tuple A ✏ ♣SA, OAq where

• SA is a finite set of base sets, and

• OA ✏ toA ⑤ oA : s1,A ✂ ☎ ☎ ☎ ✂ sn,A Ñ sA✉ is a finite set of operations.

90

4 Causal Trusted Computing Bases

Every ADT is based on a signature that contains the sorts of the involved data and opera-
tors that are defined on these sorts. For each sort there must be at least one operator where
the sort is either part of the domain or specifies the codomain. While this signature defines
the number and syntax of an ADT’s operators, it does not define their interpretation. This
is usually defined by an additional set of axioms.

Definition 4.5 (Abstract Data Type) An abstract data type (ADT) consists of a signa-
ture Σ and a set of axioms X . The signature Σ ✏ ♣S, Oq of an ADT is a tuple where

• S is a finite set of sorts, and

• O ✏ to ⑤ o : s1 ✂ ☎ ☎ ☎ ✂ sn Ñ s✉ is a finite set of operators.

The set of axioms describe the interpretation of every o P O.

ADT engineering now determines for each algebra operation, which now represents the
functional specification of a TCB, those ADT operators that are required to implement
the operation. This is possible due to the causal dependencies between security policies
(represented by a set of algebras) and TCB functions (represented by ADT operators). The
approach is to define a mapping ϕ : OA Ñ P♣Oq, which maps each algebra operation to a
set of ADT operators that are required for its implementation (called basic ADT operator).
This mapping is then controlled by a rule system that formalizes causal dependencies between
policies and TCB functions (Section 4.4.4). Besides, each algebra operation is mapped to
an interface ADT operator. The resulting set of interface operators defines the interface
functions of the security model components, which are implemented by the basic ADT
operators.

4.4.2.1 Algebra Engineering

To rewrite a security model in algebraic notation, we follow two steps. In doing so, engi-
neering algebras is similar to engineering core-based models, where we first define all model
components, before specifying a models’ state and extension vector (Section 3.3). Algebra
engineering first defines algebras for all model components, before defining algebras for a
model’s state and extension vector. More precisely, algebra engineering defines

1. Component Algebras for all model components in M (Section 3.3).

2. Core Algebras, called State and ExtensionVector, that are based on said component
algebras by attaching all primitive actions and clauses of a model to either the State or
the ExtensionVector algebra.

The result is a set of algebras that contains a set of model-dependent component algebras and
two core algebras. Core algebras represent the model abstractions state q and extension vector
E and are thus called State and ExtensionVector. We do not provide an explicit representation
for the state transition function; in fact a model’s primitive actions are attached to State,
clauses are attached to both core algebras. Component algebras represent the components of
a model defined by M ; they define the basic sorts of the algebras State and ExtensionVector,
and the basic operations that can be performed on them. In the following, we show how
component algebras and core algebras are defined.

91

4.4 Policy-dependent Runtime Environment

Component Algebras In order to develop an efficient TCB engineering method with low
complexity, component algebras have to meet three basic requirements:

• Reusability: Component algebras have to be universal to allow for describing a wide
variety of model components of core-based models. This provides the basis for reusing
them to engineer causal TCBs for a wide spectrum of policies.

• Conciseness: Component algebras must be concise and pragmatic. This contributes to
reducing the degree of error-proneness of the overall TCB engineering method.

• Expandability: In order to provide support for future security policy and model trends,
the component algebras have to be easily adaptable and expandable.

These requirements have motivated two fundamental design decisions. Instead of modeling
an algebra for each model component, e.g., subject set, right set, or object set, we combine
model components of the same mathematical type to parameterized algebras. That means for
example, we design a component algebra SetrElements3 that is parameterized by an element
type, e.g., subjects, rights, and objects, instead of different algebras, e.g., Subjectset, Rightset,
or Objectset. On this account, we meet the requirement of universality and thus reusability.

Based on parameterized algebras, all standard mathematical types that are typically used
in core-based models can be modeled by a combination of two algebras that represent the
mathematical types sets and tuples. For example, we can model a binary relation as an
algebra Setr♣Domain, Targetqs, which is a set of tuples where the first tuple element is the
domain of the relation and the second element represents the codomain. This approach is
the most universal to define component algebras. At the same time, however, it is intricate
and error-prone when modeling more complex mathematical types like ACMs, which are
then considered as left-total and right-unique 3-ary relations. The latter contravenes the
second requirement so that we compromise between reusability and conciseness by specifying
an individual parameterized algebra for each mathematical type. These algebras can still
be reused for modeling different components, e.g., an algebra RelationrDomain, Targets can
model a dominance relation as well as a role exclusion relation, while they are more pragmatic
to work with. On top of that, new algebras can be designed, in case the algebra foundation
is not sufficient; hence, the third requirement is also met.

In the following, we present four basic component algebras: SetrElements,
RelationrDomain, Targets, MappingrDomain,Targets, and MatrixrRow,Column,Targets, rep-
resenting the mathematical types set, binary relation, unary mapping, and a special binary
mapping. These types have in common that they are very general and are used in nu-
merous core-based models. They build an algebra hierarchy in that they, just like the cor-
responding mathematical types, are based on each other: the algebra SetrElements builds
the foundation for the algebras RelationrDomain, Targets, MappingrDomain,Targets, and
MatrixrRow,Column,Targets. The above mentioned algebras build a universal algebra foun-
dation for TCB engineering that is sufficient to model a wide variety of models. Based on
these algebras, Section 4.4.4 then provides a formal rule system and a set of predefined TCB
functions. In case additional mathematical types are applied in models, e.g., 3-ary relations
or lattices, additional component algebras can be specified, which then require to extend the
formal rule system as well as the predefined function set.

3To ease the reading, all algebras and their operations will be written in italic style throughout this disser-
tation.

92

4 Causal Trusted Computing Bases

Any core-based model uses the mathematical type set to model elements of either the
model state or the extension vector. Hence, the component algebra SetrElements (short Set,
Table 4.1) can be used for various model components described in algebraic notation.

import Bool ✕ ttrue, false✉
Nat ✕ N

Element ✕ e :✏ element of a nonempty set of a security model, e P E , where

E ✏
➈n

i di ❨
➈h

j ej , 1 ↕ i ↕ n, 1 ↕ j ↕ h, with diq
is a component of the model

state q ✏ ♣d1q
, . . . , dnq

q, ej is an element of the extension vector E ✏ ♣e1, . . . , ehq,
and diq

and ej are of mathematical type set

sorts Set ✕ S ❸ E , S is finite

operations s_∅ :Ñ Set
s_insert : Set ✂ Element Ñ Set
s_ P: Set ✂ Element Ñ Bool
s_❨ : Set ✂ Set Ñ Set
s_③ : Set ✂ Set Ñ Set
s_numElements : Set Ñ Nat

semantics s_∅♣q :✏ ∅

s_insert♣S , sq :✏ S ❨ ts✉

is_ P ♣S , sq :✏
✧

true, s P S
false, s ❘ S

s_❨ ♣S1, S2q :✏ S1 ❨ S2

s_③♣S1, S2q :✏ S1③S2

s_numElements♣Sq :✏ |S |

Table 4.1: Abstract Component Algebra SetrElements ✏ ♣SAS
, OAS

q

SetrElements imports the sorts Bool and Nat4 and defines two sorts Element and Set.
While the sorts are independent of any model, their base sets and operations depend on an
underlying model. In general it holds that the base set of the sort Element may be defined
by any component of a model’s state or extension vector that is of mathematical type set.
Set then is defined as a finite subset of this base set. The set of operations is motivated by a
model’s primitive actions and clauses. More precisely, if an algebra describes a dynamic model
component that is part of the model’s state, its operation set contains projector operations
(including constructors) as well as selector operations. In case it describes a static model
component, the operation set only contains selector and constructor operations. For example,
the HRU primitive createSubject adds a new subject to the subject set, modeled by the set
operation ❨. Consequently, to describe the subject set in algebraic notation, an operation
with the same interpretation (called s_❨♣q) must be contained by the operation set. Table 4.1
illustrates an abstract component algebra for sets that is independent of any specific model.
Besides the constructors s_∅♣q and s_insert♣q, it contains standard set operations like P, ❨,
③, or cardinal number, which are typically used by models that have sets as state components.

To complete the specification of any parameterized algebra, we also have to provide spec-
ifications for each applied parameter sort, here Element as illustrated by Table 4.2. This
specification defines the sort Element and one operation, that enables to construct any ob-

4Due to completeness reasons, we need to define algebras for the sort Bool and Nat. Since such specifications
can be found in the literature numerous times, e.g., in [75,76], we refrain from doing so. In this dissertation
we refer to the base sets Bool ✏ ttrue, false✉ and Nat ✏ N with standard operations true, false, ✥, ❫, and
❴ for Bool, and 0, succ, and add for Nat.

93

4.4 Policy-dependent Runtime Environment

ject of sort Element. This is a very basic specification for a parameter sort; security models
typically require additional operations, e.g., to compare two elements for equality.

sorts Element ✕ e :✏ element of a nonempty set (Universe)

operations create :Ñ Element

semantics create♣q ✏ e

Table 4.2: Abstract Parameter Sort Element

As already mentioned, the algebra Set provides the basis for the component algebra
RelationrDomain, Targets that models binary relations (short Relation, Table 4.3). It im-
ports the sorts Bool, SetrElements, Domain, and Target, where Domain and Target are
parameter sorts like Element, and defines the sort Relation. Analogous to the algebra Set,
the sorts are model-independent; only the base sets of the parameter sorts Domain and Tar-
get as well as the operation set depend on a specific model. More precisely, the base sets for
Domain and Target are defined by the model’s state and extension vector components; the
operations are based on the model’s primitive actions and clauses. The base set of Domain
is a unification of all domains of relation components of a model; analogously the base set
of Target unifies all codomains of model components that are of type relation. Note that
we also have to define algebra specifications for Domain and Target; however, since these
are equal to the specification of Element, we refrain from doing so. Table 4.3 illustrates the
abstract component algebra RelationrDomain, Targets, where we have defined its operations
based on standard operations that are frequently used in core-based models. As can be seen,
the operation set of Relation is a subset of the operation set of Set due to their mathematical
similarities. On top of that, it contains the frequently used operations ⊳,⊲,⊳✁, and ⊲✁.

import Bool ✕ ttrue, false✉
Domain ✕ d :✏ element of a nonempty set of a security model, where

D ✏
➈n

i diq
❨
➈h

j ej , 1 ↕ i ↕ n, 1 ↕ j ↕ h, with diq
is a component of the model

state q ✏ ♣d1q
, . . . , dnq

q, ej is an element of the extension vector E ✏ ♣e1, . . . , ehq,
and diq

and ej are of mathematical type set
Target ✕ t :✏ element of a nonempty set of a security model, where

T ✏
➈n

i diq
❨
➈h

j ej , 1 ↕ i ↕ n, 1 ↕ j ↕ h, with diq
and ej as defined above

SetrElements ✕ S ❸ D ❨ T , S is finite

sorts Relation ✕ R ❸ D ✂ T , Rel is finite

operations r_∅ :Ñ Relation
r_insert : Relation ✂ Domain ✂ Target Ñ Relation
r_ P: Relation ✂ Domain ✂ Target Ñ Bool
r_❨ : Relation ✂ Relation Ñ Relation
r_③ : Relation ✂ Relation Ñ Relation
r_⊳ : Relation ✂ SetrDomains Ñ Relation
r_⊲ : Relation ✂ SetrTargets Ñ Relation
r_⊳✁ : Relation ✂ SetrDomains Ñ Relation
r_⊲✁ : Relation ✂ SetrTargets Ñ Relation

semantics r_∅♣q :✏ ∅

r_insert♣R, d, tq :✏ R ❨ t♣d, tq✉

r_ P ♣R, d, tq :✏
✧

true, ♣d, tq P R
false, ♣d, tq ❘ R

r_ ❨ ♣R1, R2q :✏ R1 ❨ R2

94

4 Causal Trusted Computing Bases

r_③♣R1, R2q :✏ R1③R2

r_ ⊳ ♣R, td1, . . . , di✉q :✏ t♣d, tq ⑤ ♣d, tq P R ❫ d P td1, . . . , di✉✉
r_ ⊲ ♣R, tt1, . . . , tj✉q :✏ t♣d, tq ⑤ ♣d, tq P R ❫ t P tt1, . . . , tj✉✉
r_ ⊳✁ ♣R, td1, . . . , di✉q :✏ t♣d, tq ⑤ ♣d, tq P R ❫ d ❘ td1, . . . , di✉✉
r_ ⊲✁ ♣R, tt1, . . . , tj✉q :✏ t♣d, tq ⑤ ♣d, tq P R ❫ t ❘ tt1, . . . , tj✉✉

Table 4.3: Abstract Component Algebra RelationrDomain, Targets ✏ ♣SAR
, OAR

q

Besides sets and relations, unary and binary mappings are also frequently used in core-based
models. Since mappings are relations with special properties (left-total and right-unique), we
may reuse the algebra Relation and add operations that are specific to mappings. However,
this contravenes the second requirement by overloading one algebra with two meanings. For
this reason, we decide on designing an extra algebra called MappingrDomain,Targets (short
Mapping), which represents a left-total and right-unique binary relation (Table 4.4). Con-
sequently, it is not surprising that the algebras Relation and Mapping have many common
characteristics regarding their sorts, base sets, and operations. As Relation, the base sets
of the sorts Domain and Target are defined by a model’s state and extension vector com-
ponents, while all other sorts are model-independent. Note that the base set of Target may
also be defined by the power set of some state or extension vector component; this depends
on the codomains of the model components (an example is given in Section 4.5.1). Com-
pared to the specification of Relation, the main difference is the definition of the modifying
operations (r_ ❨ ♣q and mp_ ❨ ♣q, r_insert♣q and mp_insert♣q) since these are responsible
for establishing the properties left-total and right-unique. All other operations are equally
defined. Additionally, mappings may also have specific operations, e.g., functional overriding
and target selection of a given domain element, as defined by mp_❵♣q and mp_getMapping♣q.

import Bool ✕ ttrue, false✉
Domain ✕ d :✏ element of a nonempty set of a security model, where

D ✏
➈n

i diq
❨
➈h

j ej , 1 ↕ i ↕ n, 1 ↕ j ↕ h, with diq
is a component of the model

state q ✏ ♣d1q
, . . . , dnq

q, ej is an element of the extension vector E ✏ ♣e1, . . . , ehq,
and diq

and ej are of mathematical type set
Target ✕ t :✏ element of a nonempty set of a security model, where

T ✏
➈n

i diq
❨
➈h

j ej ❨
➈n

i P♣diq
q ❨

➈h

j P♣ejq, 1 ↕ i ↕ n, 1 ↕ j ↕ h, with diq

and ej as defined above
SetrElements ✕ S ❸ D ❨ T , S is finite

sorts Mapping ✕ Map ❸ D ✂ T , Map is finite

operations mp_∅♣q : Mapping
mp_insert : Mapping ✂ Domain ✂ Target Ñ Mapping
mp_ P: Mapping ✂ Domain ✂ Target Ñ Bool
mp_getMapping : Mapping ✂ Domain Ñ SetrTargets
mp_❨ : Mapping ✂ Mapping Ñ Mapping
mp_③ : Mapping ✂ Mapping Ñ Mapping
mp_⊳ : Mapping ✂ SetrDomains Ñ Mapping
mp_⊲ : Mapping ✂ SetrTargets Ñ Mapping
mp_⊳✁ : Mapping ✂ SetrDomains Ñ Mapping
mp_⊲✁ : Mapping ✂ SetrTargets Ñ Mapping
mp_❵ : Mapping ✂ Mapping Ñ Mapping

semantics mp_∅♣q :✏ ∅

mp_insert♣Map, d, tq :✏
✧

Map ❨ t♣d, tq✉, ❊♣d ✶, t ✶q P Map : d ✏ d ✶

Map, otherwise

95

4.4 Policy-dependent Runtime Environment

mp_ P ♣Map, d, tq :✏
✧

true, ♣d, tq P Map
false, ♣d, tq ❘ Map

mp_getMapping♣Map, dq :✏
✧

tt✉, ♣d, tq P Map
s_∅♣q, ♣d, tq ❘ Map

mp_ ❨ ♣Map, Map✶q :✏

✩✫
✪

Map ❨ Map✶, ❊♣d, tq P Map, ♣d ✶, t ✶q P Map✶ : d ✏ d ✶

❫t ✘ t ✶

Map, otherwise
mp_③♣Map, Map✶q :✏ Map③Map✶

mp_ ⊳ ♣Map, td1, . . . , di✉q :✏ t♣d, tq ⑤ ♣d, tq P Map ❫ d P td1, . . . , di✉✉
mp_ ⊲ ♣Map, tt1, . . . , tj✉q :✏ t♣d, tq ⑤ ♣d, tq P Map ❫ t P tt1, . . . , tj✉✉
mp_ ⊳✁ ♣Map, td1, . . . , di✉q :✏ t♣d, tq ⑤ ♣d, tq P Map ❫ d ❘ td1, . . . , di✉✉
mp_ ⊲✁ ♣Map, tt1, . . . , tj✉q :✏ t♣d, tq ⑤ ♣d, tq P Map ❫ t ❘ tt1, . . . , tj✉✉
mp_ ❵ ♣Map, Map✶q :✏ t♣d, tq ⑤ ♣d, tq P Map ❫ d ❘ D✶✉ ❨ Map✶, where D✶ is the

domain of Map✶

Table 4.4: Abstract Component Algebra MappingrDomain, Targets ✏ ♣SAMap
, OAMap

q

A special case of mappings that is frequently used in core-based models are ACMs. As
demonstrated by means of examples in Section 2.3.2, ACMs are generally left-total and right-
unique binary mappings acm : X ✂ Y Ñ 2Z , which map a pair ♣x, yq to a set z P 2Z . In
this context, X represents the matrix’ rows, Y represents the columns, and 2Z is the type
of the cells’ content. When designing an algebraic representation for ACMs, we have two
alternatives. (i) We reuse the algebra MappingrDomain,Targets, redefine the sort Domain as a
tuple where its elements are of row and of column type, and specify additional matrix-specific
operations. The disadvantage of this approach is that we cannot specify operations explicitly
defined on cells or rows, e.g., for their creation or deletion, since there are no individual sorts
for rows and columns. However, such operations are significant because they are frequently
used in core-based models. On top of that, such an algebra is more intricate and does not
contribute to meet the conciseness requirement. (ii) We specify an additional component
algebra MatrixrRow,Column,Targets as explicit algebraic representation of an ACM. Here,
columns, rows, and cells are defined by individual sorts, which allow for specifying column-
and row-specific operations. However, this results in additional efforts. Nevertheless, we
follow the second approach for two reasons. First, ACMs are used in almost any core-
based model such that the high degree of reusability of this component algebra justifies the
additional effort. Second, besides row- and column-specific operations, an individual algebra
is also more pragmatic to use.

Table 4.5 illustrates the abstract component algebra MatrixrRow,Column,Targets (short
Matrix). As can be seen, it imports the sorts Bool, Row, Column, Target, and SetrElements,
where Row, Column, and Target are parameter sorts. The sort Matrix is independent of a
model; it is defined as a 3-ary relation, where the cell content is typed by the power set of a set
of target elements5. This enables a straight forward definition of the m_insert♣q operation,
which is responsible for ensuring the properties left-total and right-unique. In case a cell
does not yet exist, the cell is added or an element is inserted into an already existing cell.
The base sets of the sorts Row, Column, and Target are defined by a model’s state and
extension vector components. While it is common for core-based models to use dynamic and
static components to define the types of their ACMs’ rows and columns, e.g., subject and
object sets of HRU models, the cells’ content is usually typed by static model components

5A special case of this specification are target sets with one element, representing acm : X ✂ Y Ñ Z . By
this means, the specification is general and open to an even wider spectrum of security models.

96

4 Causal Trusted Computing Bases

such as a right set. However, the algebra Matrix allows for a dynamic cell type since this
is more general and allows to support a greater variety of models and policies. While the
operation set of the component algebra is model-specific, too, the abstract algebra’s set of
operations is inspired by typical operations on matrices used by core-based security models.
For example, m_ P ♣q checks whether a target element such as a right is in a specific cell, and
m_cellContent♣q selects all target elements of a specific cell. In case rows and columns are
defined by state rather than extension vector components, operations such as m_addRow♣q,
m_deleteRow♣q or m_addColumn♣q, m_deleteColumn♣q can be applied.

import Bool ✕ ttrue, false✉
Row ✕ r :✏ element of a nonempty set of a security model, where

R ✏
➈n

i diq
❨
➈h

j ej , 1 ↕ i ↕ n, 1 ↕ j ↕ h, with diq
is a component of the model

state q ✏ ♣d1q
, . . . , dnq

q, ej is an element of the extension vector E ✏ ♣e1, . . . , ehq,
and diq

and ej are of mathematical type set
Column ✕ c :✏ element of a nonempty set of a security model, where

C ✏
➈n

i diq
❨
➈h

j ej , 1 ↕ i ↕ n, 1 ↕ j ↕ h, with diq
and ej as defined above

Target ✕ t :✏ element of a nonempty set of a security model, where

T ✏
➈n

i diq
❨
➈h

j ej , 1 ↕ i ↕ n, 1 ↕ j ↕ h, with diq
and ej as defined above,

SetrElements ✕ ST ❸ T , S is finite

sorts Matrix ✕ M ❸ R ✂ C ✂ 2T , M is finite

operations m_∅ :Ñ Matrix
m_init : Matrix Ñ Matrix
m_insert : Matrix ✂ Row ✂ Column ✂ Target Ñ Matrix
m_ P: Matrix ✂ Row ✂ Column ✂ Target Ñ Bool
m_cellContent : Matrix ✂ Row ✂ Column Ñ SetrTargets
m_delete : Matrix ✂ Row ✂ Column ✂ Target Ñ Matrix
m_addRow : Matrix ✂ Row Ñ Matrix
m_deleteRow : Matrix ✂ Row ✂ Target Ñ Matrix
m_addColumn : Matrix ✂ Column Ñ Matrix
m_deleteColumn : Matrix ✂ Column Ñ Matrix

semantics m_∅♣q :✏ ∅

m_init♣M q :✏ t♣r , c, tq ⑤ ♣r , c, tq P M✉

m_insert♣M , r , c, tq :✏
✧

♣r ✶, c✶, ST ❨ tt✉q, ♣r ✶, c✶, ST q P M : r ✏ r ✶ ❫ c ✏ c✶

M ❨ t♣r , c, tt✉q✉, ❊♣r ✶, c✶, t ✶q P M : r ✏ r ✶ ❫ c ✏ c✶

m_ P ♣M , r , c, tq :✏
✧

true, ♣r ✶, c✶, ST q P M ❫ r ✏ r ✶ ❫ c ✏ c✶ ❫ t P ST

false, otherwise

m_cellContent♣M , r , cq :✏
✧

ST , ∃!♣r ✶, c✶, ST q P M : r ✏ r ✶ ❫ c ✏ c✶

∅, otherwise

m_delete♣M , r , c, tq :✏

✩✫
✪

M ③t♣r ✶, c✶, ST q✉
❨ t♣r ✶, c✶, ST③tt✉q✉, ♣r ✶, c✶, ST q P M : r ✏ r ✶ ❫ c ✏ c✶

M
m_addRow♣M , r ✶q :✏ M ❨ t♣r ✶, ci ,∅q ⑤ 1 ↕ i ↕ |C |✉
m_deleteRow♣M , r ✶q :✏ M ③t♣r , c, ST q ⑤ r ✏ r ✶✉
m_addColumn♣M , c✶q :✏ M ❨ t♣rj , c✶,∅q ⑤ 1 ↕ j ↕ |R|✉
m_deleteColumn♣M , c✶q :✏ M ③t♣r , c, ST q ⑤ c ✏ c✶✉

Table 4.5: Abstract Component Algebra MatrixrRow, Column, Targets ✏ ♣SAM
, OAM

q

Using these component algebras Set, Relation, Mapping, and Matrix, we are able to de-
scribe a wide spectrum of model components in algebraic notation. Moreover, we can easily

97

4.4 Policy-dependent Runtime Environment

define additional component algebras, e.g., for lattices, if the algebra foundation is not suffi-
cient. Here, the same design principles can be applied, which leads to that the novel algebra
is nested in the algebra hierarchy so that sorts and operations of the existing algebras can
be reused. We refrain from defining additional abstract component algebras here, since it
is not our intention to cover every possible special case but develop a universal method for
engineering a TCB’s policy-dependent RTE.

Core Algebras Based on the component algebras, it remains to specify the core-specific
algebras State and ExtensionVector . Again, we will provide a general method along with
abstract algebras that have to be specialized for a specific model.

As mentioned earlier, the algebra State represents the model state q P Q. Now, all compo-
nent algebras that represent the state components of a model must be imported as sorts, in
order to specify the sort State as an n-tuple of the imported sorts. The algebra’s operation set
is composed by a model’s set of primitive actions PRIM and those clauses, which are defined
on state components. If there is at least one such clause, the sort Bool must be imported. The
type of state-defined clauses is generally defined as clause : Q ✂ X Ñ Bool, where the state
set acts as an input parameter type. All remaining clauses are of type clause : X Ñ Bool.
This means, they are defined on static components and hence belong to the operation set of
the ExtensionVector algebra.

Table 4.6 illustrates the abstract algebra State; note that the imported sorts as well as
the input parameters of the operations are examples since their number and type are model-
specific. In the following, we provide more details on how to define the operations and their
semantics.

import Bool ✕ ttrue, false✉
Element ✕ e :✏ element of a nonempty set of a security model
Domain ✕ d :✏ element of a nonempty set of a security model
Target ✕ t :✏ element of a nonempty set of a security model
. . .

SetrElements ✕ S :✏ ts1, . . . , sn ⑤ n P N✉
RelationrDomain, Targets ✕ R ❸ tD ✂ T ⑤ R is finite✉
MappingrDomain, Targets ✕ Map ⑨ tD1 ✂ T2 ⑤ Map is finite✉
MatrixrRow, Column, Targets ✕ M ⑨ tR ✂ C ✂ T3 ⑤ M is finite✉
. . .

sorts State ✕ q :✏ ♣S , R, Map, M , . . . q

operations createState : SetrElements ✂ RelationrDomain, Targets✂
MappingrDomain, Targtes ✂ MatrixrRow, Column, Targets Ñ State

getSetElement : State Ñ SetrElements
getRelationElement : State Ñ RelationrDomain, Targets
getMappingElement : State Ñ MappingrDomain, Targets
getMatrixElement : State Ñ MatrixrRow, Column, Targets
. . .

prim1 : State ✂ SetrElements Ñ State
prim2 : State ✂ SetrElements Ñ State
. . .

priml : State ✂ Element ✂ Element Ñ State
clause1 : State ✂ RelationrDomain, Targets Ñ Bool
clause2 : State ✂ MappingrDomain, Targets Ñ Bool
. . .

clausem : State ✂ Domain ✂ Target Ñ Bool

98

4 Causal Trusted Computing Bases

semantics createState♣S , R, Map, M q :✏ ♣S , R, Map, M q
getSetElement♣qq :✏ S
getRelationElement♣qq :✏ R
getMappingElement♣qq :✏ Map
getMatrixElement♣qq :✏ M
. . .

prim1♣q, Sq
prim2♣q, Sq
. . .

priml♣q, si , sjq
clause1♣q, Rq
clause2♣q, Mapq
. . .

clausem♣q, d, tq

Table 4.6: Abstract Core Algebra State

The operation set consists of four operation types: constructors, selectors, and operations
that represent primitive actions and clauses. Out of these, only the constructors and selectors
are not part of a model; they are exclusively required for a model’s implementation. The
constructor createState♣q is necessary to construct an object of the sort State and to initialize
all of its tuple elements. For this reason, the constructor requires representatives of the tuple
elements as input parameters. Additionally, the selector operations, e.g., getSetElement♣q,
are required to select specific tuple elements of the State. Due to type safety, we provide an
operation for each element of the extension vector tuple. In the following, we discuss how to
derive the operations of State that represent a model’s primitive actions and clauses.

As described in Section 3.2, the model core defines the input parameters of primitive ac-
tions and clauses by the input parameter vector X ✏ t♣x0, ..., xlq ⑤ ∀xi , 1 ↕ i ↕ l : xi P tj , tj P
T , 0 ↕ j ➔ |T |✉, where T ✏ tD1, ..., Dn , d1q , ..., dnq , e1, ..., eh , 2e1 , ..., 2eh✉. The algebraic rep-
resentation differs from this notation in that it does not define an input parameter vector that
is typed by all possible components of a model’s state set, state, and extension vector, but
individual input parameters with their individual types. The reason is that the algebraic no-
tation builds the foundation for TCB functions where we aim at an implementation-oriented
function signature with typed input parameters. For example, Section 3.4.5 has described a
primitive action called assignUserToRoles, which assigns a set of roles to a user by modifying
the state component UAq :

assignUserToRoles : Q ✂ X Ñ Q

assignUserToRoles♣q, ♣xu , txr1
, . . . , xrn✉qq :✏ ♣U , S , UAq ❨ t♣u, r1q, . . . , ♣u, rnq✉, user , rolesq

In order to include this primitive action in the operation set of State, the input vector
X has to be replaced by the types of the specific input parameters. As indicated by the
parameter’s indexes, the types of the input parameters are a user xu P U and a set of roles
txr1

, . . . , xrn✉ P 2Roles such that this primitive action can be refined as assignUserToRoles :
Q ✂ U ✂ 2Roles Ñ Q. It now remains to replace the model notation by algebraic notation.
That means, the parameters of a primitive action have to be described by sorts rather than
model sets. The signature of assignUserToRoles is then described as shown in Table 4.7; the
sort State is defined by the core algebra State and the sorts User and SetrRoless are sorts
defined by component algebras as described above. This results in that SetrRoless must be
imported into State, even though it is not a state component. Hence, the imported sorts of

99

4.4 Policy-dependent Runtime Environment

State do not only depend on a model’s state components but also on the input parameters
of a model’s primitive actions and clauses.

operations assignUserToRoles : State ✂ User ✂ SetrRoles Ñ State

semantics assignUserToRoles♣q : State, u : User , tr1, . . . , rn✉ : SetrRolesq :✏
♣SU , SS , r_ ❨ ♣RUR, t♣u, r1q, . . . , ♣u, rnq✉q, MapSU , MapSSR

q

Table 4.7: Example of Rewriting a Primitive Action

The next step is to define the semantics of all primitive actions and clauses in algebraic
notation by replacing (i) all model components with their algebraic representatives and (ii)
the model operators with the appropriate operations of the component algebras. Here, it
is significant that the interpretation of the algebra operations equals the interpretation of
the model’s primitives actions and clauses. For the above example that means, the state
components Uq , Sq , UAq , userq , and rolesq are replaced by the base sets SU , SS , RUR, MapSU ,
MapSSR

of the sorts SetrUsers, SetrSessions, RelationrUser , Roles, MappingrSession, Users,
and MappingrSession, SetrRoless. Moreover, the model operator ❨ for relations is replaced
by the operation r_❨♣q defined on RelationrUser , Roles, since it has the same interpretation.

As a result, the core algebra State defines an n-tuple that exactly represents the state of
a core-based model. The algebra’s operation set is defined by the model’s primitive actions
and those clauses that are specified on the model state.

The last step of algebra engineering is the specification of the core algebra ExtensionVector .
This is done in analogy to State. Besides the sort Bool, the algebra ExtensionVector imports
all sorts that represent static model components and combines them to an n-tuple as defined
by the underlying model. Besides the constructor createExtVec♣q and selector operations,
e.g., getSetElement♣q, the operations of the algebra ExtensionVector are specified by those
clauses that are defined on static model components; the remaining clauses should already be
included in the operation set of State. To include these clauses in ExtensionVector , we apply
the same procedure as already demonstrated for the algebra State. First, the general input
parameter vector needs to be dissolved and replaced by specific input parameters. Afterwards
the clauses’ semantics are defined in algebraic notation by replacing the model components
with their algebraic representations and the model operators with the appropriate operations
of the component algebras. Result is a collection of all static model components in algebraic
notation as shown in Table 4.8; here, the imported sorts as well as the operations and their
input parameters are also exemplary since they are model-specific.

import Bool ✕ ttrue, false✉
Element ✕ e :✏ element of a nonempty set of a security model
Domain ✕ d :✏ element of a nonempty set of a security model
Target ✕ t :✏ element of a nonempty set of a security model
. . .

SetrElements ✕ S :✏ ts1, . . . , sn ⑤ n P N✉
RelationrDomain, Targets ✕ R ❸ tD ✂ T ⑤ R is finite✉
MappingrDomain, Targets ✕ Map ⑨ tD1 ✂ T2 ⑤ Map is finite✉
MatrixrRow, Column, Targets ✕ M ⑨ tR ✂ C ✂ T3 ⑤ M is finite✉
. . .

sorts ExtVec ✕ E :✏ ♣S , R, Map, M , . . . q

operations createExtVec : SetrElements ✂ RelationrDomain, Targets✂

100

4 Causal Trusted Computing Bases

MappingrDomain, Targets ✂ MatrixrRow, Column, Targets Ñ ExtVec
getSetElement :Ñ SetrElements
getRelationElement :Ñ RelationrDomain, Targets
getMappingElement :Ñ MappingrDomain, Targets
getMatrixElement :Ñ MatrixrRow, Column, Targets
. . .

clause1 : RelationrDomain, Targets Ñ State
. . .

clausen : Domain ✂ Target Ñ State

semantics creatExtVec♣S , R, Map, M q :✏ ♣S , R, Map, M q
getSetElement♣q :✏ S
getRelationElement♣q :✏ R
getMappingElement♣q :✏ Map
getMatrixElement♣q :✏ M
. . .

clause1♣xpq
. . .

clausen♣xpq

Table 4.8: Abstract Core Algebra ExtensionVector

4.4.2.2 Abstract Data Type Engineering

The result of algebra engineering is an algebraic specification of a core-based model, consist-
ing of a set of component and core algebras. Based on this set of algebras, ADT engineer-
ing now derives the TCB functions that are necessary to implement the underlying model
and that hence are contained in the functional component security model functions of
a TCB’s policy-dependent RTE (Figure 4.17). Depending on a specific core specialization,
these functions support the model components of the automaton, including the state q and
the transition function δ, as well as the extension vector E . Additionally, they implement the
underlying mathematical base types such as sets and relations, in dependence on a model’s
components and their types. In the following, we discuss how TCB functions are derived
from the set of algebras.

The goal of ADT engineering is to provide the basis for a formal rule system and an
automated TCB composition tool. Therefore, ADT engineering must also have a sound
formal foundation. To this end, ADT engineering establishes a mapping (called ϕ in the
following) that maps an algebra operation to a set of ADT operators that is required to
implement the operation. This is possible due to the causal dependencies between security
policies (represented by a set of algebras) and TCB functions (represented by ADT operators).
ϕ is then controlled by a rule system that formalizes causal dependencies between policies
and TCB functions (Section 4.4.4). The semantics of the ADT operators are described by
operations of a set-theoretic universe (formalized by an additional mapping β); only in case
ADT operators cannot be mapped to operations in the universe, axioms are applied.

Algebraic specifications are based on a set-theoretic universe. In the context of TCB
engineering, the set-theoretic universe U is based on urelements E , e.g., users, roles, or
objects, containing sets of urelements S♣Eq, sets of all finite subsets of urelements F♣S♣Eqq,
and ordered pairs (S♣Eq ✂ S♣Eq, S♣Eq ✂ S♣Eq ✂ S♣Eq). Formally, the universe is defined as
U ✏

➈
n➙0 Sn♣Eq where S♣Xq ✏ X ❨ F♣Xq ❨ X ✂ X ❨ X ✂ X ✂ X . The universe operation

set UO consists of all set-theoretic operations defined on elements of U .

101

4.4 Policy-dependent Runtime Environment

Every time when algebras are engineered for a specific model as shown in Section 4.4.2.1,
a mapping α : OA Ñ UO from the set of algebra operations OA to the universe operation
set UO is established. That means, an algebra operation oA that is mapped to a universe
operation uO has identical semantics as this set-theoretic operation, since the semantics of
the algebra operations is defined by the semantics of the universe operation. For example,
the operation s_❨♣q of the abstract component algebra Set (Table 4.1) merely is a rewriting
of the standard set operation ❨, since α♣s_❨q :✏ ❨.

UO

OA O

α : OA → UO

ϕ : OA → P(O)

β : P(O) → P(UO)

Figure 4.19: Mappings of Engineering a Policy-dependent RTE

In the course of ADT engineering two additional mappings are defined as shown in Fig-
ure 4.19. ADTs are derived from the operations of a model’s algebras by a rule system based
on causal dependencies between security policies and TCB functions. In this process the
operations do not undergo a semantic change; the semantics of the ADTs’ interface operators
exactly equals the semantics of the algebras’ operations, and a set of basic ADT operators
implements the interface operator. The rule system describes the mapping ϕ : OA Ñ P♣Oq
where OA ✏ OAS

❨ OAR
❨ OAMap

❨ OAM
are the algebra operations and O ✏

➈n
i✏1 Oi are

the basic operator sets of the ADTs Σi ✏ ♣Si , Oiq, which then semantically equal the algebra
operation. The set of interface operations is not derived by the rule system since interface
operations do not provide additional TCB functionality; they only wrap the basic ADT op-
erators that implement the corresponding algebra operation. However, interface operators
are added to O since they specify the interface functions of the security model functions

component, contribute to a concise ADT specifications, and allow for structuring the derived
TCB functions.

In order to describe the interpretation of ADT operators, we define a second mapping
β : P♣Oq Ñ P♣UOq, which maps a set of ADT operators to a set of universe operations.
That means, a set of ADT operators that is mapped to a set of universe operations implements
the semantics of all these universe operations. At the same time, the ADT’s interface operator
is also mapped to these universe operations, because it shares the same semantics.

This approach is feasible since the operations of UO are well-defined due to the design
criteria of U . The advantage of this approach is that we do not have to define axioms
for ADT operators, whose precise interpretation is already given by a model and hence its
algebra. We only have to define axioms for those ADTs, which cannot be mapped to universe
operations, because they are not based on set theory. On the whole, the efforts for ADT
engineering are greatly decreased, since we only have to define axioms and deal with their
consistency and completeness for a few ADTs; many of the derived ADT operators can be
mapped to universe operations.

In the following, we demonstrate the ADT engineering approach by means of the operation

102

4 Causal Trusted Computing Bases

s_❨ P OAS
of the algebra SetrElements; the approach is analogous for all other algebras

and their operations. As mentioned above, the algebra operation s_ ❨ ♣q shares the same
semantics as the standard union operation ❨ P UO; thus, α♣s_❨q :✏ ❨. Before deriving the
TCB functions that are necessary to implement this algebra operation, the model algebra
first requires an ADT SetrElements with an equivalent interface operator, called s_union♣q.
Since this interface operator has the same semantics as s_❨ P OAS

and thus as the universe
operation ❨ P UO, we map β♣ts_union✉q :✏ t❨✉. The next step is to derive the basic ADT
operators that implement this interface operator:

ϕ♣s_❨q :✏ t Elem_T next♣Cont_T cq,
Set_T createSet♣q,
Elem_T create♣q,
Set_T s_insert♣Set_T s, Elem_T eq,
Bool_T equals♣Elem_T e1, Elem_T e2q,
Cont_T insert♣Cont_T c, Elem_T eq,
Bool_T false♣q,
Bool_T true♣q✉

As can be seen, six TCB functions (basic ADT operators) defined on three additional sorts
(Cont_T, Elem_T, and Bool_T) are required to implement the interface function s_union♣q.
The functions createSet() and s_insert♣q are additional interface functions of Set_T,
which are required to construct the input parameters of s_union♣q, and create() is ex-
clusively required to construct the input parameter of s_insert♣q. More precisely, Cont_T

is a basic container sort that allows for storing varying numbers of elements, which are
represented by the parameter sort Elem_T, and Bool_T represents the algebra Bool. The
ADT SetrElements (short Set_T) encapsulates the container sort and the interface oper-
ators of Set_T are responsible for implementing set properties. In the context of unifying
sets according to the semantics of ❨ this means, the resulting set must not contain re-
dundant elements. Thus, an iterator function next() is required, which returns the next
elements of a container to be compared to an element of the second container by the function
equals(). The latter returns a Boolean expression, which is constructed either by false()

or true(), depending on the result of the comparison. Only if an element is not already
contained by the set, it will be inserted in the container by insert(). Thus, the combi-
nation of these functions implements the interface operator s_union♣q of Set_T such that
β♣tnext, equals, insert, false, true✉q :✏ t❨✉. The functional redundancy of such a set of ADT
operators is ensured by the operators’ names. An operator can only be added if there is
no other operator with the same name, independent of its signature. Note that we do not
consider sequence control mechanisms. Such mechanisms are provided by implementation-
specific platforms and can be used to implement the derived TCB functions.

It remains to discuss some characteristics of the mappings involved in TCB engineering.
As long as the algebraic foundation for algebra engineering is not modified, i.e., enhanced
by a novel component algebra, the set-theoretic universe is defined identically for each core-
based model. This results in that the mapping α : OA Ñ UO from algebraic operations to
universe operations is not surjective for the majority of models. However, depending on the
primitive actions and conditions used by a model, it may happen that α becomes surjective.
Additionally, α generally is not injective. The reason is that due to the design of the algebra
foundation, there are usually at least two operations that share the same semantics. For
example, s_∅♣q and r_∅♣q both are mapped to the universe operation ∅; the same holds
for s_insert♣q and s_ ❨ ♣q, which are mapped to ❨. However, these algebra operations may

103

4.4 Policy-dependent Runtime Environment

differ in their number and sorts of input parameters as well as in their output parameter sort.
Result is that different TCB functions must be derived.

The mapping β : P♣Oq Ñ P♣UOq maps ADT operators that are not based on universe
operators to the empty set, e.g., constructors for Cont_T and Elem_T where we have to
define the ADT operators’ semantics by a set of axioms. Therefore, β is not injective. In the
majority of cases, β is not surjective, since UO and thus its power set may contain universe
operations that are not required for the underlying model’s algebras and thus ADT operators.
Here, the argumentation for the characteristics of α also applies.

The rule system formalized by the mapping ϕ : OA Ñ P♣Oq from algebra operations to
ADT operators representing TCB functions is not surjective and not injective. The reasons
are as follows. ϕ is not surjective since there are TCB function sets, e.g., some singletons,
that do not have a corresponding element in the set of algebra operations. ϕ is not injective,
because it may happen that at least two algebra operations require the same set of TCB
functions for their implementation (Section 4.4.4).

The last step of ADT engineering is to define the ADTs State and ExtensionVector for
the algebras State and ExtensionVector . Here, we do not derive additional TCB functions
but merely add interface functions according to the algebras. These interface functions are
implemented by those ADT operators that are already contained in O. An example is given
in Section 4.5.1.

Result is a set of ADTs whose operators are defined by the elements of O and which
represent a TCB’s functional range contained in the component security model functions

of the policy-dependent RTE. It now remains to specify the last component of the policy-
dependent RTE, called the interceptor. This is done in the following section.

4.4.3 Abstract Model Instance Functionality

The goal of this section is to illustrate the model instance functions of a TCB’s policy-
depend RTE. These functions are concentrated in the functional component interceptor;
so this section discusses the interceptor and its interrelations with executable security

policies.
The functional range of the interceptor is not defined by a TCB’s policies although it

is policy-specific. In fact, the interface functions of the interceptor are defined by the OS
and its applications that the policies are responsible to protect. If the authorization scheme
of a policy does not match the interface of the interceptor, the policy is not qualified to
protect the given OS.

The reason for such a design is a combination of two requirements: substitutionality of
security policies and multi-policy support (Section 4.1.2). Substitutionality of policies re-
quires that these can be easily integrated, updated, and removed. This implies that the
interfaces of the executable security policies to the specific object managers are
to be modified very rarely. However, in case a modification is required, the administrator
would have to check every specific object manager that calls a policy. In the long run,
this might interfere with the requirement of total-mediation of a policy (reference monitor
principles [17, 97, 125]). On top of that, multi-policy TCBs aggravate this situation since in
the worst case all object managers have to call every single policy that participates in policy
decision making. In both cases updating a policy or replacing a policy by multiple ones is
complex and error-prone.

For this reason, the policy-depend RTE contains the functional component interceptor,
which basically acts as a proxy by wrapping all commands of the policies’ authorization

104

4 Causal Trusted Computing Bases

schemes. The specific object managers then call the interceptor which maps the policy
request to that policy that implements the command of the request. By this means, whenever
a policy is updated or replaced, any necessary modification only concerns the interceptor

and not the set of specific object managers. In case of multi-policy TCBs, only the
interceptor has to know which policy to call for processing a request. As a consequence,
policies can be integrated, updated, and removed more easily.

Interceptor

Executable

Security

Policies

Authorization

Scheme

Generic
Object

Manager

O
b

je
c
t

Figure 4.20: Interceptor

As shown in Figure 4.20, the interceptor provides an interface to the generic object

manager and uses the interfaces of all executable security policies. The interface to
the generic object manager is defined by the OS and its applications. In a single-policy
TCB, the executable policy has to implement the entire interface; in a multi-policy TCB
the interface can be shared by many policies with or without overlapping authorization
schemes6. In either case, the interceptor implements a mapping from its interface functions
to the commands of the policies’ authorization schemes. This means, the set of interface
functions C ✏

➈n
i✏1 Ci that is provided by the interceptor to the generic object manager

is composed by all command sets Ci of the policies integrated in a TCB, where each set
contains state-modifying and non-state-modifying commands (Section 4.1.1). C must then
equal the required interface functions of a given OS.

public Bool_T c_1(Set_T s, Elem_T e)

public Bool_T c_2(Rel_T r, Dom_T d)

...

public void c_m(Dom_T d, Tar_T t)

6The scope of this dissertation are multi-policy TCBs that execute independent policies without overlapping
authorization schemes.

105

4.4 Policy-dependent Runtime Environment

As shown above, the interceptor contains m commands with C ✏ tc1, c2, . . . , cm✉, whose
input parameters are defined by command-specific input vectors x P X with X ✏ t♣x0, ..., xlq ⑤
∀xi , 1 ↕ i ↕ l : xi P tj , tj P T , 0 ↕ j ➔ |T |✉, and where T ✏ tD1, ..., Dn , d1q , ..., dnq , e1, ..., eh ,

2e1 , ..., 2eh✉ contains all components of a model’s state set, state, and extension vector, along
with the power sets of the extension vector components (Section 3.2). Here, the input pa-
rameters are merely examples; we discuss how to derive command-specific input parameters
in the following.

Section 4.4.2 has illustrated an engineering method based on model algebras that basically
reflect the mathematical types of model components and ADTs that are derived from these
model algebras. This method also has an effect on the signatures of the functions within the
interceptor. Besides additional ADTs such as Bool_T or Elem_T, we have derived an ADT
for each component algebra, which are now used as input parameter types for the interface
functions. For example, the command assignRoles of the RBAC HIS policy (Appendix B.2)
is rewritten as interface function as follows.

public void assignRole(Session_T s, User_T u, Role_T r).

As already explained in Section 4.4.2, the input parameter vector X must be dissolved
to individual input parameter types. Here, it is dissolved to X ✏ S ✂ U ✂ R. Applying
the algebra engineering method, an element of S , U , or R is represented by the sort
Element, from which specialized ADTs like Session_T, User_T, or Role_T can be derived
(Section 4.4.4). Note that this function does not have an output parameter, because
assignRoles♣q is a state-modifying command. While state-modifying commands generally do
not have a return value, non-state modifying commands have return values of type Bool,
using the ADT Bool_T. For examples refer to Section 4.5.2, which presents the functional
range of the interceptor for a TCB that enforces the RBAC HIS policy.

It now remains to formally define the causal dependencies used to derive TCB functions
from the algebraic notation of core-based models.

4.4.4 Causal Dependencies

Engineering a TCB’s policy-dependent RTE requires tool support that allows for generating
and composing the policy-dependent functions of a TCB. Both algebra and ADT engineer-
ing set the course for tool support by providing a theoretical foundation that is now used
to formalize causal dependencies between security models and TCB functions. Due to the
applied formalisms, this rule system can be integrated in an automated tool that composes
the functional perimeter of a TCB’s policy-dependent RTE. With respect to the requirements
(Section 4.1.2), it is important that the resulting functional perimeter does not contain re-
dundant functions and is complete with respect to the policies.

The goal of this section is to define the formal rule system. The idea is that any rule of the
rule system leads to a set of TCB functions as a part of a TCB’s implementation. In the follow-
ing, we present the formal rules for the algebras SetrElements and RelationrDomain, Targets
and illustrate the resulting ADTs and their interrelations. The rules for the remaining
algebras MappingrDomain, Targets and MatrixrRow, Column, Targets are illustrated in Ap-
pendix C due the same design principles.

Input of the rule system is a set of component algebras that describe the components of
a core-based model; output is a set of ADT operators that are the functions contained by
the security model functions component of the policy-dependent RTE. The formal rule

106

4 Causal Trusted Computing Bases

system then defines the mapping ϕ : OA Ñ P♣Oq, where OA ✏ OAS
❨ OAR

❨ OAMap
❨ OAM

contains the operations of all component algebras and O ✏
➈n

i✏1 Oi is a set of ADT operators
defined by the operation sets of all derived ADTs with signature Σi ✏ ♣Si , Oiq. The rule
system defines a set of logic implications A Ñ B, where A is a statement containing necessary
and sufficient conditions for the existence of TCB functions and B is a statement about the
functions contained in a TCB. Conditions are denoted in first-order logic; they are defined
on the component algebra’s operations and on the mapping α : OA Ñ UO. B defines the
mapping ϕ : OA Ñ P♣Oq.

In general, the formal rule system is geared to the abstract component algebras of the
algebra foundation defined in Section 4.4.2. That means, the rule system provides a set of
predefined functions for composing a policy-dependent RTE. In case the algebra foundation
is not sufficient due to future model trends, both the algebras’ operation sets as well as
the formal rule system need to be extended. Since the algebra operations are based on the
set-theoretic universe, the latter may be extended, too.

4.4.4.1 Set

In the following we define formal rules for the algebra Set. For this purpose, we need two
predicates to evaluate the input and output sorts of the algebra’s operations.

1. param_sort♣x, Aq: x is a parameter sort of algebra A

2. set_sort♣xq : x is of sort Set

The algebra SetrElements produces the ADT SetrElements (short Set_T) that contains a set
of interface operators, which is defined by the ADT’s operator set and equals the operations
of the algebra Set. The operators of Set_T are implemented by basic operators that are
derived as shown below.

The first rule focuses on a constructor operation of the algebra, which is exemplarily called
s_∅♣q in Table 4.1 and is semantically equal to ∅ P UO, resulting in α♣s_∅q :✏ ∅. The rule
states that if an algebra operation oA semantically equals ∅, it produces a TCB function
called createContainer() defined on a basic ADT Container[Element] (short Cont_T):

1. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ∅ ϕ♣oAq :✏ t Cont_T createContainer()✉

β♣tcreateContainer✉q :✏ t∅✉
β♣tcreateSet✉q :✏ t∅✉ (Interface Function)

Cont_T represents a container data type for elements of the same type, implementing the
ADTs Set_T, Rel_T, Map_T, and Matrix_T. In the context of an implementation-specific
platform, Cont_T may be implemented by any given specific data type such as lists, ar-
rays, or vectors; specific properties of the ADTs, e.g., nonredundancy of set elements, are
implemented on top of Cont_T by the operators of Set_T, Rel_T, Map_T, and Matrix_T.
createContainer() implements s_∅♣q and is hence semantically equal to ∅ P UO such that
β♣tcreateContainer✉q :✏ ∅. On top of that, s_∅♣q becomes an interface function of the ADT
Set_T and is called createSet() in the following, since this is more implementation-oriented.
Additionally, it is also mapped to ∅ P UO since it is implemented by createContainer().

107

4.4 Policy-dependent Runtime Environment

The second rule is concerned with an operation that inserts a single element in a set (called
s_insert♣q in Table 4.1). Such an operation basically equals the set operation ❨; however,
it requires an additional TCB function to create the element to be inserted and must hence
be distinguished. The condition then requires that the operation is semantically equal to ❨,
must have exactly one input parameter si,A that is a parameter sort of the algebra Set, and
its output parameter sA must be of sort Set. The latter condition part is necessary, since the
algebras Relation, Mapping, and Matrix have identical operations but require different ADT
operators.

If such an operation is contained in OA, a TCB requires six functions for its implementation:
The ADT Cont_T must implement an operator next() that iterates the container and returns
the next element to be compared to the one to be inserted. Here, Elem_T is the basic type of
container elements, which is provided by an ADT called Element. The latter must implement
a constructing operator create() and a comparing operator equals(). Again, to implement
the comparing operator, an ADT Bool_T is required, providing the constructors false() and
true(), which allow for evaluating the results of comparing two container elements. Finally,
insert() allows to add the newly created element to the container. Besides create(), the
set of the derived ADT operators is encapsulated by the interface function s_insert♣q, which
therefore maps to the same universe operator ❨ P UO. The remaining function create♣q is
required to construct an object of type Elem_T as input parameter for s_insert♣q.

2. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ❨ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃!si,A : param_sort♣si,A, ASq Elem_T create(),

❫ set_sort♣sAq Cont_T insert(Cont_T c, Elem_T e),

Bool_T equals(Elem_T e1, Elem_T e2),

Bool_T false(),

Bool_T true()✉

β♣tnext, insert, equals, false, true✉q :✏ t❨✉
β♣ts_insert✉q :✏ t❨✉ (Interface Function)

The next rule is defined on an algebra operation that checks if an element belongs to a
given set and semantically equals P. If such an operation exists and has exactly one input
parameter that is of sort Set and exactly one other input parameter that is a parameter
sort, five functions are required to implement this operation. Again, we must distinguish
the sorts of the input parameters since the other algebras of the algebra foundation have
similar functions that equal P and have the same output parameter sort Bool, but require
different TCB functions. The resulting set of TCB functions for this algebra operation is a
subset of the required TCB functions that implement s_insert♣q. Hence, we do not discuss
their functionality again. The only difference is that the ADT Set_T must now implement
the interface function s_isElement♣q that encapsulates four of these five functions. Again,
the remaining function create♣q is required to construct an object of type Elem_T as input
parameter for s_isElement♣q.

3. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ P ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃!si,A : set_sort♣si,Aq Elem_T create(),

❫∃!sj,A : param_sort♣si,A, ASq Bool_T equals(Elem_T e1, Elem_T e2)

❫ i ✘ j Bool_T false(),

108

4 Causal Trusted Computing Bases

Bool_T true()✉

β♣tnext, equals, false, true✉q :✏ tP✉
β♣ts_isElement✉q :✏ tP✉ (Interface Function)

A generalization of the algebra operation s_insert♣q is an operation that inserts multiple
elements instead of a single one into a given set, called s_ ❨ ♣q in Table 4.1. For this reason,
the operation semantically equals s_insert♣q but differs in its input parameter sorts. While
the rule for s_insert♣q requires exactly one input parameter to be a parameter sort, all input
parameters of s_❨ ♣q must be of sort Set. This condition part is also required to distinguish
this operation from similar operations of the other component algebras, e.g., r_ ❨ ♣q and
mp_❨ ♣q. Result a set of six basic ADT operators equally to the required ADT operators of
s_insert♣q. The only difference is that in addition to the constructor operator for objects of
type Elem_T, we also require the set constructor for creating the first input parameter; these
functions are similar to the ones derived from s_∅♣q. For this reason, the required operators
equals the ones derived from the 1. and the 2. rule so that these rules can be reused. Besides
createSet♣q and s_insert♣q, Set_T must now contain the interface operator s_union♣q.
The basic operators for implementing s_union♣q are defined by a unified set of the derived
operator sets of the 1. and 2. rule.

4. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ t❨✉ ϕ♣oAq :✏ t Set_T createSet(),

❫∀si,A : set_sort♣si,Aq Set_T s_insert(Set_T s, Elem_T e)✉

β♣ts_union✉q :✏ t❨✉ (Interface Function)

In analogy to the 4. rule, there needs to be a rule for an operation that removes multiple
elements from a set. The only difference in the condition is that the algebra operation must
be equal to ③ P UO rather than ❨ P UO. The required sets of TCB functions are also
equal except for an additional function: Cont_T must now implement an deleting operator,
called delete(). We call the corresponding interface operator s_diff(). The operators
createSet(), create(), and s_insert() are required to create the input parameters of
s_diff().

5. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ t③✉ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∀si,A : set_sort♣si,Aq Set_T createSet(),

Elem_T create(),

Bool_T equals(Elem_T e1, Elem_T e2),

Cont_T delete(Cont_T c, Elem_T e),

Set_T s_insert(Set_T c, Elem_T e),

Bool_T false(),

Bool_T true()✉

β♣tnext, equals, delete, false, true✉q :✏ t③✉
β♣ts_diff ✉q :✏ t③✉ (Interface Function)

The last rule for the algebra Set is concerned with an operation that determines the number
of elements of a given set. To distinguish this operation from other algebra operations, the
condition checks whether it semantically equals the universe operation |X | P UO (cardinal

109

4.4 Policy-dependent Runtime Environment

number) and has exactly one input parameter of sort set. The set of TCB functions required
to implement this operation consists of three elements: next() iterates objects of Cont_T and
returns the next element, create() constructs an object of type Nat_T, which is an ADT
representing natural numbers, and add() defined on Nat_T allows to add a natural number
to a given one. An additional interface operator of Set_T wraps these ADT operators and is
called s_numOfElements().

6. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ t|X |✉ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃! si,A : set_sort♣si,Aq Nat_T create(),

Nat_T add(Nat_T n, Nat_T m),

β♣tnext, create, add✉q :✏ t|X |✉
β♣ts_numElements✉q :✏ t|X |✉ (Interface Function)

Applying these rules to a model-specific component algebra Set results in a set of ADTs
whose number of elements and operators naturally depend on a given security model. As-
suming that an algebra defines all operations for which we have specified formal rules, the
resulting TCB must implement all named ADTs. Otherwise, it must implement at least the
ADTs Set_T, Elem_T, and Cont_T, and probably Bool_T since almost all algebra operations
require logical values. Only if an algebra operation exists that is based on the cardinal num-
ber, the ADT Nat_T is required in a TCB. We present all ADTs in the following; the notation
of the ADTs is roughly based on [75].

Set[Element] is a parameterized ADT that defines the sort Set_T by a total of six ADT
operators (Table 4.9). It imports the sorts Bool_T, Elem_T, and Nat_T, since these are
required to define the sorts of the operators’ input and output parameters. In general, the
set of operators must be equal to the operation set of the according component algebra,
which here is Set. At the same time, the operations’ parameter sorts are replaced by the
corresponding ADT sorts. All ADT operators of Set_T are interface functions, which are
implemented by basic ADT operators. Since their semantics is defined by the mapping β, we
do not need to define axioms for these operators.

sorts Set_T

import Bool_T, Elem_T, Nat_T

operators createSet: Ñ Set_T

s_insert: Set_T ✂ Elem_T Ñ Set_T

s_isElement: Set_T ✂ Elem_T Ñ Bool_T

s_union: Set_T ✂ Set_T Ñ Set_T

s_diff: Set_T ✂ Set_T Ñ Set_T

s_numElements: Set_T Ñ Nat_T

Table 4.9: ADT Set[Element] (Set_T)

After having subsumed the operators of the ADT Set_T, we now specify the ADTs of
the imported sorts. The ADT Bool_T (Table 4.10) represents Boolean values. As defined
by the formal rule system, Bool_T must provide two operators true♣q and false♣q, which
are constructor functions to create any object of sort Bool_T. Since the semantics of these
operators is not defined by universe operators, we have to define a set of axioms that describe
their interpretation.

110

4 Causal Trusted Computing Bases

sorts Bool_T

operators true: Ñ Bool_T

false: Ñ Bool_T

axioms true() ✏ true

false() ✏ false

Table 4.10: ADT Bool_T

Elem_T is the parameter sort of Set_T and is defined by an additional ADT Element

as shown by Table 4.11. Due to the formal rule system, Elem_T defines two operators:
create♣q as constructing operator and equals♣q to compare two Elem_T objects. Again, the
interpretation of these functions is not described by universe operators so that we have to
provide a set of axioms, which is based on [75].

sorts Elem_T

import Bool_T

operators create: Ñ Elem_T

equals: Elem_T ✂ Elem_T Ñ Bool_T

variables ∀e1, e2, e3 : Elem_T

axioms equals(e1,e1) = true()

equals(e1,e2) Ñ equals(e2,e1) = true()

(equals(e1,e2) ❫ equals(e2,e3)) Ñ equals(e1,e3) = true()

Table 4.11: ADT Element (Elem_T)

It remains to define the ADTs Cont_T and Nat_T. As mentioned above, Cont_T represents
a container data type storing an arbitrary number of element objects to implement the ADTs
representing the component algebras (Table 4.12). It provides four operators that allow to
create container objects (createContainer()), to iterate a container (next()), and to insert
and delete container elements (insert(), delete()). In analogy to the ADTs Bool_T and
Elem_T, we have to define a set of axioms to specify the operators’ semantics.

sorts Cont_T

import Elem_T

operators createContainer: Ñ Cont_T

next: Cont_T Ñ Elem_T

insert: Cont_T ✂ Elem_T Ñ Cont_T

delete: Cont_T ✂ Elem_T Ñ Cont_T

variables ∀e : Elem_T, C : Cont_T

axioms delete(insert(C,e),e) = C

delete(createContainer(),e) = createContainer()

delete(insert(createContainer(),e)e) = createContainer()

Table 4.12: ADT Container (Cont_T)

111

4.4 Policy-dependent Runtime Environment

As mentioned above, the ADT Nat_T (Table 4.13) represents the set of natural numbers.
Due to the above defined causal dependencies, it only provides two operators: an constructor
createNat() to create arbitrary natural numbers and an adding operator add(), which adds
two arbitrary numbers. Again, we have to define axioms to specify their semantics. In this
context, we have to define an additional ADT operator succ() for a sound ADT specification.
However, this function is not derived from the algebra operations such that it does not belong
to the functional perimeter of a TCB.

sorts Nat_T

operators create: Ñ Nat_T

add: Nat_T ✂ Nat_T Ñ Nat_T

(succ: Nat_T Ñ Nat_T)

variables ∀n, m : Nat_T

axioms add(create(),n) = n

add(n,succ(m)) = succ(add(n,m))

Table 4.13: ADT Nat_T

All derived ADTs interrelate with each other by importing specific ADTs as sorts; Fig-
ure 4.21 gives an overview of the ADTs’ interrelations by means of an UML class diagram.
Here, we do not aim at an object-oriented design of the TCB; however, class diagrams provide
the best means to illustrate the interrelations of the ADTs in detail. Every ADT is denoted
by a class and named by the sort it provides. As can be seen, the abstract component algebra
Set requires a total of five ADTs for its implementation. Set_T contains a single attribute of
type Cont_T, implementing the underlying container data type; every object of type Set_T

existentially depends on exactly one Cont_T object. On top of that, Set_T uses the functions
of the Nat_T class to implement its function numElements♣q. Every Cont_T object is asso-
ciated with an arbitrary number of Elem_T objects. The latter uses the interface functions
of the Bool_T class for implementing its comparing function equals♣q. Elem_T is defined as
an abstract class with two abstract functions (denoted by italic style). This is not required
for the TCB functions implementing the algebra Set, but for all other component algebras.

Set_T

c : Cont_T

createSet() : Set_T
s_insert(s : Set_T,e : Elem_T) : Set_T
s_isElement(s : Set_T,e : Elem_T) : Bool_T
s_union(s1 : Set_T,s2 : Set_T) : Set_T
s_diff(s1 : Set_T,s2 : Set_T) : Set_T
s_numElements(s : Set_T) : Nat_T

Elem_T

create() : Elem_T
equals(e1 : Elem_T,e2 : Elem_T) : Bool_T

Cont_T

createContainer() : Cont_T
next(c : Cont_T) : Elem_T
insert(c : Cont_T,e : Elem_T) : Cont_T
delete(c : Cont_T,e : Elem_T) : Cont_T

Bool_T

true() : Bool_T
false() : Bool_T

Nat_T

create() : Nat_T
add(n1 : Nat_T,n2 : Nat_T) : Nat_T

1 1

1

0..*

Figure 4.21: ADTs Derived from SetrElements

112

4 Causal Trusted Computing Bases

In the following we enhance the formal rule system by rules for the algebra Relation. Here,
we apply the same approach; we present the formal rules before we illustrate the resulting
ADTs and their interrelations. As already mentioned, the rules for the remaining algebras
Mapping and Matrix can be found in Appendix C.

4.4.4.2 Relation

Since relations are sets of ordered pairs, the operation set of the algebra Set naturally is
a subset of the operation set of Relation. This results in that the set of TCB functions for
implementing Set also is a subset of the TCB function set implementing Relation. However, a
TCB requires additional functions to support ordered pairs of elements rather than primitive
elements. This affects the rule system as follows: Even though the conditions are similar
to those defined on Set, they lead to different, i.e., larger, sets of TCB functions. On top
of that, core-based models apply relation-specific operations, e.g., ⊳✁ or ⊲✁, which have to be
considered by additional rules.

To define formal rules for the algebra Relation, an additional predicate is required:

3. relation_sort♣xq: x is of sort Relation

In analogy to Set_T, the algebra Relation produces an ADT RelationrElements (short
Rel_T), which defines a set of interface operators that equals the operation set of Relation and
is implemented by operators of the derived ADTs. The first rule concerning the constructing
operation of Relation is identical to the first rule of Set. The reason is twofold: (i) Both
constructor operations semantically equal ∅ P UO. (ii) The ADTs Set_T as well as Rel_T

are both implemented by the container data type Cont_T, thus resulting in the identical set
of ADT operators.

1. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ∅ ϕ♣oAq :✏ t Cont_T createContainer()✉
β♣tcreateContainer✉q :✏ t∅✉
β♣tcreateRelation✉q :✏ t∅✉ (Interface Function)

A small difference lies in the ADTs though; instead of Set_T, a TCB now contains
Rel_T, providing the interface function createRelation() to match the component alge-
bra Relation. As mentioned earlier, neither Set_T nor Rel_T and their operators add new
functionality to a TCB so that the rule system does not consider these functions. Hence,
the rules concerning the constructing operation of Set and Relation are identical and can
be subsumed to one rule: the condition parts of both rules are subsumed to one condition:
∃oA P OA, : α♣oAq ✏ ∅, resulting in ϕ♣oAq :✏ t Cont_T createContainer()✉. This also
holds for the algebras Mapping and Matrix.

While the ADTs derived from Set and Relation have many similarities, the remarkable
difference lies in the specification of the ADT Elem_T. The latter now represents an ordered
pair consisting of basic elements of types Domain and Target instead of a single element.
That means, two new ADTs called Dom_T and Tar_T are required, representing the basic
elements of an ordered pair. Note that the ADTs Elem_T, Dom_T, and Tar_T along with
their operators are identical. We avoid functional redundancy by means of the same operator
names.

The 2. rule is geared towards an algebra operation that inserts an element into a given

113

4.4 Policy-dependent Runtime Environment

relation as part of the algebra’s object construction (compare 2. rule of Set). To distinguish
this operation from a similar operation, called mp_insert♣q of algebra Mapping (Table 4.4),
requiring different TCB functions due to its left-total and right-unique properties, the condi-
tion has to check whether the operation semantically equals ❨ P UO, has at least one input
parameter which belongs to a parameter sort (here Domain or Target), has exactly one input
parameter of sort Relation, and its output parameter is of sort Relation. If such an operation
belongs to Relation, a TCB needs to implement a total of eight functions. First, the element
to be inserted must be created by create(). This implies that the domain and the target ele-
ments are created before, which is also done by create() but returning different types. Since
the semantics of all create()-functions is the same, i.e., creating an object, create() is only
added once to the function set. Once the tuple element has been created, the container must
be iterated by next() to check whether an element with exactly the same target and domain
elements is already contained. To compare the basic elements, both Dom_T and Tar_T have
to provide comparing functions called equals(). These are semantically identical such that
the second function does not add new functionality to a TCB; the only difference lies in their
input parameter types. To evaluate the comparison results, the ADT Bool_T is required,
providing the constructor operators false() and true(), as well as a logic conjunction op-
erator called and(). Additionally, Elem_T provides the operator getFirst(), returning the
domain element, and getSecond(), returning the target element to extract individual tuple
elements from a pair. Finally, an element can be inserted into the container by insert() as
already known from Set. All operators are encapsulated by an additional interface function
r_insert() of Rel_T except for create(), which is required to construct the second input
parameter of the interface function.

2. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ❨ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃si,A : param_sort♣si,A, ARq Elem_T create(Dom_T d, Tar_T t),

❫∃!sj,A : relation_sort♣sj,Aq Cont_T insert(Cont_T c, Elem_T e),

❫ i ✘ j Bool_T equals(Dom_T d1, Dom_T d2),

❫ relation_sort♣sAq Dom_T getFirst(Elem_T e),

Tar_T getSecond(Elem_T e),

Bool_T false(),

Bool_T true(),

Bool_T and(Bool_T b1,Bool_T b2)✉

β♣tnext, insert, equals, getFirst, getSecond, false, true,

and✉q :✏ t❨✉
β♣tr_insert✉q :✏ t❨✉ (Interface Function)

The next rule aims at an algebra operation (called r_ P ♣q in Table 4.3) that checks whether
a pair of domain and target elements is contained by a given relation. Though this operation
semantically equals the universe operator P (just like s_ P ♣q), one input parameter now
is of sort Relation, and two other input parameters belong to the parameter sorts of AR.
This difference results in a different TCB function set compared to the one derived from
s_ P ♣q. While it also contains the ADT operators next(), false(), and true(), it requires
additional operators that deal with pairs (2. rule). A new interface function r_isElement()

is added to Rel_T called, encapsulating these functions. Moreover, the operator create()

is necessary to construct the input parameters of r_isElement().

114

4 Causal Trusted Computing Bases

3. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏P ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃!si,A : relation_sort♣si,Aq Dom_T create(),

❫∃sj,A : param_sort♣sj,A, ARq Bool_T equals(Dom_T d1, Dom_T d2),

❫ i ✘ j Domain_T getFirst(Elem_T e),

Target_T getSecond(Elem_T e),

Bool_T false(),

Bool_T true(),

Bool_T and(Bool_T b1,Bool_T b2)✉

β♣tnext, equals, getFirst, getSecond, false, true,

and✉q :✏ tP✉
β♣tr_isElement✉q :✏ tP✉ (Interface Function)

The next two rules are analogous to the 4. and 5. rule for the algebra Set; they only differ
in that Elem_T is a pair of basic elements, which has already been covered. Objects of type
Rel_T, which are the input parameters for the interface function r_diff♣q and r_union♣q,
have to be constructed by the constructor operators createRelation♣q and r_insert♣q of
Rel_T. These functions have already been derived from the 1. and 2. rule, so that these
rules can be reused. Note that the mapping β is equally defined as for the 2. rule. For this
reason, it is not contained in the 4. rule again.

4./5. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ❨ ϕ♣oAq :✏ t Rel_T createRelation(),

❫∀si,A : relation_sort♣si,Aq Rel_T r_insert(Rel_T r, Elem_T e)✉

β♣tr_union✉q :✏ t❨✉ (Interface Function)

∃oA P OA : α♣oAq ✏ ③ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∀si,A : relation_sort♣si,Aq Rel_T createRelation(),

Bool_T equals(Dom_T d1, Dom_T d2),

Rel_T r_insert(Cont_T r, Elem_T e),

Cont_T delete(Cont_T c, Elem_T e),

Dom_T getFirst(Elem_T e),

Tar_T getSecond(Elem_T e),

Bool_T false(),

Bool_T true(),

Bool_T and(Bool_T b1,Bool_T b2)✉

β♣tnext, equals, delete, getFirst, getSecond, false, true,

and✉q :✏ t③✉
β♣tr_diff ✉q :✏ t③✉ (Interface Function)

The remaining rules are concerned with Relation-specific operations that modify a rela-
tion’s domain and codomain. Both rules have in common that they can be applied to two
algebra operations at a time, since these operations require the same TCB functions. More
precisely, rule six can be applied to operations that either subtract or restrict the domain of
a relation. These operations can be distinguished from similar ones of Mapping by exactly
one input parameter that must be of sort Relation and an output parameter of sort Relation.
Both operations then require eight TCB functions; the semantical difference of the opera-
tions becomes apparent in a TCB’s implementation by using sequence control mechanisms in

115

4.4 Policy-dependent Runtime Environment

differing ways. Result is a set of ADT operators, out of which six functions are encapsulated
by two interface functions r_domainSub() and r_domainRes() provided by Rel_T. Both in-
terface functions require an input parameter of type Set_T. The functions createSet() and
s_insert() are necessary to create the input parameter of type Set_T and insert elements;
they require additional ADT operators, e.g., insert♣q defined on Con_T, which have already
been discussed by the 1.and 2. rule of Set.

6. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : ♣α♣oAq ✏ ⊳✁ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❴α♣oAq ✏ ⊳q Set_T createSet(),

❫∃! si,A : relation_sort♣si,Aq Set_T s_insert(Set_T s,Elem_T e),

❫ relation_sort♣sAq Bool_T equals(Dom_T d1,Dom_T d2),

Cont_T delete(Cont_T c, Elem_T e),

Dom_T getFirst(Elem_T e),

Bool_T false(),

Bool_T true()✉

β♣tnext, equals, delete, getFirst, false, true✉q :✏ t⊳✁,⊳✉
β♣tr_domainSub✉q :✏ t⊳✁✉ (Interface Function)
β♣tr_domainRes✉q :✏ t⊳✉ (Interface Function)

While the 6. rule is defined on domain subtraction and restriction, the following rule is
concerned with subtracting and restricting a relation’s codomain. Besides the semantical
difference, which is covered by the mapping α, a small difference lies in the derived TCB
function set: the manipulation of a relation’s range requires a function to select the target el-
ements of pairs (getSecond()) rather than to select the domain elements (getFirst()). This
implies that the comparing operator equals() is now defined on Tar_T instead of Dom_T. As
already mentioned, the latter does not impose a semantically different TCB function. Rel_T

needs to provide two interface functions, called r_domainSub() and r_domainRes().

7. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : ♣α♣oAq ✏ ⊲✁ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❴α♣oAq ✏ ⊲q Set_T createSet(),

❫∃! si,A : relation_sort♣si,Aq Set_T s_insert(Set_T s,Elem_T e),

❫ relation_sort♣sAq Bool_T equals(Dom_T d1,Dom_T d2),

Cont_T delete(Cont_T c, Elem_T e),

Tar_T getSecond(Elem_T e),

Bool_T false(),

Bool_T true()✉

β♣tnext, equals, delete, getSecond, false, true✉q :✏ t⊲✁,⊲✉
β♣tr_rangeSub✉q :✏ t⊲✁✉ (Interface Function)
β♣tr_rangeRes✉q :✏ t⊲✉ (Interface Function)

In case a model-specific algebra Relation defines all operations, for which we have defined
formal rules, the result are eight ADTs as described below. Relation[Domain,Target] is
a parameterized ADT defining the sort Rel_T with nine interface operators (Table 4.14).
It imports the sorts Bool_T, Dom_T, Tar_T, and Set_T to define the input and output
parameters of its operators. In analogy to Set_T, the semantics of the operators is specified
by universe operations defined by the mapping α.

116

4 Causal Trusted Computing Bases

sorts Rel_T

import Bool_T, Dom_T, Tar_T, Set_T

operators createRelation: Ñ Rel_T

r_insert: Rel_T ✂ Dom_T ✂ Tar_T Ñ Rel_T

r_isElement: Rel_T ✂ Dom_T ✂ Tar_T Ñ Bool_T

r_union: Rel_T ✂ Dom_T ✂ Tar_T Ñ Rel_T

r_diff: Rel_T ✂ Dom_T ✂ Tar_T Ñ Rel_T

r_domainSub: Rel_T ✂ Set_T Ñ Rel_T

r_rangeSub: Rel_T ✂ Set_T Ñ Rel_T

r_domainRes: Rel_T ✂ Set_T Ñ Rel_T

r_rangeRes: Rel_T ✂ Set_T Ñ Rel_T

Table 4.14: ADT Relation[Domain,Target] (Rel_T)

The ADTs Dom_T and Tar_T define the basic tuple element types of a relation, just like
Elem_T has defined the basic element type of Set_T. For each the rule system derives a
constructing function (create()) as well as a comparing function (equals()). As already
mentioned, Dom_T and Tar_T are identical to Elem_T of Set_T except for a different name
(Table 4.11).

The new ADT Elem_T (Table 4.15) is now a representative for tuple elements. As such
it has tuple-specific selectors (getFirst(), getSecond()) to individually access both tuple
elements. The constructor semantically remains the same even though it now has two input
parameters.

sorts Elem_T

import Dom_T, Tar_T

operators create: Dom_T ✂ Tar_T Ñ Elem_T

getFirst: Elem_T Ñ Dom_T

getSecond: Elem_T Ñ Tar_T

variables ∀d : Dom_T, t : Tar_T

axioms getFirst(create(d,t)) = d

getSecond(create(d,t)) = t

Table 4.15: Modified ADT Element (Elem_T)

Compared to the Bool_T ADT derived from algebra Set (Table 4.10), the ADT Bool_T

derived from Relation is enhanced by one operator and() and additional axioms for the
operator’s interpretation. The enhanced ADT is presented in Table 4.16.

117

4.4 Policy-dependent Runtime Environment

sorts Bool_T

operators true: Ñ Bool_T

false: Ñ Bool_T

and: Bool_T ✂ Bool_T Ñ Bool_T

variables ∀b1, b2 : Bool_T

axioms true() ✏ true

false() ✏ false

and(b1,false) = false

and(b1,true) = b

Table 4.16: Modified ADT Bool_T

The ADT Set_T (Table 4.17) is required to construct input parameters of type Set_T

for the interface operators r_domainSub(), r_domainSub(), r_rangeSub(), r_domainRes(),
and r_rangeRes() (6./7. rule). As such, the ADT only provides two interface functions,
whose semantics are defined by the mapping β. Since it imports Elem_T to define the input
parameters of the operator s_insert(), we also have to specify the ADT Elem_T as basic
element type for Set_T. As the rule system does not define additional operators for Elem_T

than compared to the rule system for Set, we can refer to the one presented in Table 4.11.
The same holds for the ADT Cont_T, which equals the corresponding one derived from Set;
it is illustrated by Table 4.12, but lacking the function delete().

sorts Set_T

import Elem_T

operators createSet: Ñ Set_T

s_insert: Set_T ✂ Elem_T Ñ Set_T

Table 4.17: Modified ADT Set[Element] (Set_T)

Here, we now have two conflicts: on the one hand, Elem_T represents tuple elements for
Rel_T, on the other hand it is the basic type for Set_T. The same holds for Cont_T; being
a container for tuple elements and for basic elements. These conflicts are solved by using
inheritance and polymorphism. To this end, Elem_T becomes an abstract ADT (Figure 4.22),
to define the required function interfaces and from which tuple elements TElem_T are derived.
Both derived element types share two TCB functions, the constructor and a comparison
function, which only differ in their implementations. All other functions are element-specific
and contained by the individual element types, e.g., getFirst() and getSecond(). By this
means, we avoid functional redundancy of different container and element types.

The interrelations of all ADTs derived from the algebra Relation are shown in a nutshell in
Figure 4.22. As can be seen, both Set_T and Rel_T existentially depend on Cont_T, which
is associated with the abstract Elem_T by an arbitrary number of objects, from which tuple
elements TElem_T can be derived. The namespace SET indicates that Cont_T and Elem_T

are reused. Objects of TElem_T are constructed by objects of the basic types Dom_T and
Tar_T. As already mentioned, for the sake of type safety we distinguish between two basic
types here; in an implementation they may collapse into a single one since they all provide
the same operators. All basic types use the operators of ADT Bool_T to implement their
operators.

118

4 Causal Trusted Computing Bases

Set_T

c : Cont_T

createSet() : Set_T
s_insert(s : Bool_T,e) : Set_T

Rel_T

c : Cont_T

createRelation() : Rel_T
r_insert(r : Rel_T,d : Dom_T,t : Tar_T) : Rel_T
r_isElement(r : Rel_T,d : Dom_T,t : Tar_T) : Rel_T
r_union(r1 : Rel_T,r2 : Rel_T) : Rel_T
r_diff(r1 : Rel_T,r2 : Rel_T) : Rel_T
r_domainSub(r : Rel_T,s : Set_T) : Rel_T
r_rangeSub(r : Rel_T,s : Set_T) : Rel_T
r_domainRes(r : Rel_T,s : Set_T) : Rel_T
r_rangeRes(r : Rel_T,s : Set_T) : Rel_T

TElem_T

d : Dom_T
t : Tar_T

create(d : Dom_T,t : Tar_T) : TElem_T
getFirst(te : TElem_T) : Dom_T
getSecond(te : TElem_T) : Tar_T
equals(e1 : TElem_T,e2 : TElem_T) : Bool_T

Tar_T

create() : Tar_T
equals(t1 : Tar_T,t2 : Tar_T) : Bool_T

Dom_T

create() : Dom_T
equals(d1 : Dom_T,d2 : Dom_T)

Bool_T

true() : Bool_T
false() : Bool_T
and(b1 : Bool_T,b2 : Bool_T) : Bool_T

11

11

SET::Cont_T

createContainer() : Cont_T
next(c : Cont_T) : Elem_T
insert(c : Cont_T,e : Elem_T) : Cont_T
delete(c : Cont_T,e : Elem_T) : Cont_T

1

1
11

SET::Elem_T

create() : Elem_T
equals(e1 : Elem_T,e2 : Elem_T) : Bool_T

1 0..*

Figure 4.22: ADTs Derived from RelationrDomain, Targets

Result is a formal rule system that describes causal dependencies between security models
in algebra notation and TCB functions represented by ADTs. The rule system provides a set
of predefined TCB functions, from which each rules selects the functions that are composed
by a specific policy-dependent RTE. The derived set of TCB functions consists of two ADT
types: (i) ADTs that are directly produced by the component algebras such as Set_T and
Rel_T and that provide interface functions, and (ii) ADTs that are derived from the algebras’
operations, providing basic operators to implement the interface functions. If these ADT
operators are not sufficient for implementing for instance novel security models, the algebra
foundation needs to be extended by new operations or even new algebras, which involves
extending the rule system, too.

The following section applies the formal rule system to the RBAC HIS policy and shows
that even for this real-world based example the algebra foundation along with the formal rule
system is sufficient.

4.4.5 Summary

This section has presented an engineering approach for the policy-dependent RTE of a TCB.
Based on rewriting a core-based model in algebraic notation, TCB functions are derived by
exploiting causal dependencies between security models and TCB functions. Causal depen-
dencies are defined by a formal rule system whose input is a set of algebras that represent

119

4.5 Policy-dependent RTE for the RBAC HIS Policy

a core-based model. Output of the rule system is a set of ADTs, describing the functions of
the security model functions component. By applying the concepts of subsuming secu-
rity models, inheritance, and polymorphism, the derived function set is nonredundant as far
as the trade-off with type safety allows. The functional range of a TCB’s interceptor is
defined by a security policy’s authorization scheme.

4.5 Policy-dependent RTE for the RBAC HIS Policy

After having presented the engineering method for a TCB’s policy-dependent RTE along
with causal dependencies between security models and TCB functions in an abstract way
in Section 4.4, the goal of this section is to demonstrate both by means of the real world-
based RBAC HIS policy introduced in Section 3.4.4. Moreover, this section aims at showing
that the approach of engineering causal TCBs is feasible. For this purpose, this section
engineers a causal TCB that supports the RBAC HIS policy by specifying the functionality
of the components security model functions and interceptor of the policy-dependent
RTE and discussing the interactions of the executable policy with these TCB components.
Figure 4.23 shows the design of a policy-dependent RTE that is tailored to enforce the RBAC
HIS policy. Due to demonstration purposes, the TCB will be engineered to support only this
policy. Hence, the policy-dependent RTE contains only a single component security model

functions that implements this RBAC model, called RBAC security model functions,
and an interceptor component that is matched by the executable RBAC HIS policy.

Interceptor

Authorization

Scheme

State, Extension

Vector

Policy-dependent
Runtime Environment

Executable

RBAC HIS

Policy

RBAC
Security

Model Functions

Figure 4.23: Policy-dependent RTE Tailored to Enforce the RBAC HIS Policy

The section is structured as follows. Section 4.5.1 addresses the functions of the RBAC

security model functions component and shows how they are derived from the underlying
RBAC model. Afterwards, Section 4.5.2 discusses the proxy functions of the interceptor for
the executable RBAC policy. The section closes with presenting the executable RBAC

HIS policy and showing its interactions with the components of the policy-dependent RTE
(Section 4.5.3).

4.5.1 RBAC Security Model Functions

The goal of this section is to demonstrate the derivation of TCB functions from a formal
security model by means of the RBAC HIS policy example. For this purpose, we stepwise
apply the TCB engineering method presented in Section 4.4.1. Input of the TCB engineering
method is the core-based RBAC security model described in Section 3.4.5; output is a set of
TCB functions that implement this model and is described by means of ADTs.

120

4 Causal Trusted Computing Bases

4.5.1.1 Algebra Engineering

The first step of engineering a policy-dependent RTE is to rewrite the security model in
algebraic notation. Here, we first have to define the component algebras of the RBAC
model; the core algebras State and ExtensionVector are specified afterwards. In or-
der to define the component algebras, we need to consider the set of model components
M ✏ tU , S , R, UA, user , roles, O, OP, RH , RE , m✉. While U , S , R, O, and OP are of mathe-
matical type set, UA, RH , and RE are relations, and user , roles, and m are unary and binary
mappings. As can be seen, even for this real-world example, the four basic component al-
gebras of the universal algebra foundation are sufficient. Hence, there is no need to define
additional algebras here; it remains to define the algebra’s base sets and operation sets with
respect to the RBAC model.

To begin with, we specify the component algebra SetrElements as algebraic representation
of the model components U , S , R, O, and OP (Table 4.18). The base set of the parameter
sort Element is defined as a union of these model sets so that the base set of Set then specifies
a finite subset of the base set of Element.

The operations of Set depend on the semantics of the model’s primitive actions and clauses.
Let us first consider primitive actions. The user set U and the session set S are dynamic
model components that are part of the model state. By means of four primitive actions
(addUsers/deleteUsers and createSessions/destroySessions), new users and sessions can be
added and already existing users and sessions can be deleted. In terms of set theory, these
primitive actions apply the union and the difference operator of sets (see Appendix A.3).
Thus, the operation set must contain two operations (s_❨♣q and s_③♣q), implementing these
set operators.

The remaining sets R, O, and OP are static so that there are no primitive actions to modify
them. However, the model provides clauses that check whether a given element is in a specific
set, e.g., clausem returns true if a given operation is element of a subset of the operation set
OP. For this reason, the algebra also requires an operation called s_ P ♣q that implements
the set operator P. In addition, Set needs constructors which allow for creating all objects
of the sort Set. This responsibility is met by the operations s_∅♣q and s_insert♣q. With
respect to the RBAC model, the operation set of Set is now complete.

import Bool ✕ ttrue, false✉
Element ✕ e P E :✏ U ❨ S ❨ R ❨O ❨OP, nonempty set of elements

sorts Set ✕ S ❸ E , S is finite

operations s_∅ :Ñ Set
s_insert : Set ✂ Element Ñ Set
s_ P: Set ✂ Element Ñ Bool
s_❨ : Set ✂ Set Ñ Set
s_③ : Set ✂ Set Ñ Set

semantics s_∅♣q :✏ ∅

s_insert♣S , eq :✏ S ❨ te✉

s_ P ♣S , eq :✏
✧

true, e P S
false, e ❘ S

s_❨ ♣S , S ✶q :✏ S ❨ S ✶

s_③♣S , S ✶q :✏ S③S ✶

Table 4.18: Component Algebra SetrElements for the RBAC Model

121

4.5 Policy-dependent RTE for the RBAC HIS Policy

It remains to specify the sort Element as parameter sort (Table 4.19). The only operations
of the algebra Element are the constructor create♣q and an operation equals♣q to verify the
equality of two elements. The latter is required by container sorts such as Set, in order to
implement operations like s_insert♣q or s_ P ♣q.

import Bool ✕ ttrue, false✉

sorts Element ✕ e element of a nonempty set (Universe)

operations create :Ñ Element
equals : Element ✂ Element Ñ Bool

semantics create♣q ✏ e

equals♣e1, e2q :✏
✧

true, e1 ✏ e2

false, e1 ✘ e2

Table 4.19: Component Algebra for Parameter Sort Element for the RBAC Model

In analogy to the specification of Set, we now specify the algebra Relation (Table 4.20) as
algebraic representation of the relations UA, RH , and RE . The latter are binary relations
so that two parameter sorts Domain and Target are sufficient. Since these are equivalent
to the parameter sort Element, there is no need to specify an additional parameter sort.
As mentioned in Section 4.4.2, the base sets of Domain and Target depend on the relations’
domains and codomains of the model. More precisely, while the base set of Domain is defined
as union of all domains of UAq , RH , and RE , the base set of Target specifies a union of all
codomains of these relations.

import Bool ✕ ttrue, false✉
Domain ✕ D :✏ U ❨ R ✏ td1, . . . , di , . . . , dn✉, D ✘ ∅, n P N, 1 ↕ i ↕ n
Target ✕ T :✏ R ✏ tt1, . . . , tj , . . . , tm✉, T ✘ ∅, m P N, 1 ↕ j ↕ m
SetrElements ✕ S ❸ D ❨ T , S is finite

sorts Relation ✕ Rel ❸ D ✂ T , Rel is finite

operations r_∅ :Ñ Relation
r_insert : Relation ✂ Domain ✂ Target Ñ Relation
r_ P: Relation ✂ Domain ✂ Target Ñ Bool
r_❨ : Relation ✂ Relation Ñ Relation
r_③ : Relation ✂ Relation Ñ Relation
r_⊳✁ : Relation ✂ SetrElements Ñ Relation

semantics r_∅♣q :✏ ∅

r_insert♣Rel, di , tjq :✏ Rel ❨ t♣di , tjq✉

r_ P ♣Rel, di , tjq :✏
✧

true, ♣di , tjq P Rel
false, ♣di , tjq ❘ Rel

r_ ❨ ♣Rel, Rel ✶q :✏ Rel ❨ Rel ✶

r_③♣Rel, Rel ✶q :✏ Rel③Rel ✶

r_ ⊳✁ ♣Rel, td1, . . . , di✉q :✏ t♣d, tq⑤♣d, tq P Rel ❫ d ❘ td1, . . . , di✉q✉

Table 4.20: Component Algebra RelationrDomain, Targets for the RBAC Model

Just as the operation set of any other component algebra, the operation set of Relation also
depends on the model’s primitive actions and clauses. The state component UA can be mod-
ified by three primitive actions (deleteUsers, assignUserToRoles, and revokeUserFromRoles),
which apply the standard set operators ③ and ❨. Moreover, deleteUsers uses a relation-

122

4 Causal Trusted Computing Bases

specific operator ⊳✁, called domain subtraction. For these reasons, the algebra defines the
operations r_③♣q, r_ ❨ ♣q, and r_ ⊳✁ ♣q as projectors on the sort Relation that exactly im-
plement the primitives’ operators. This results in that the already defined sort Set has to
be imported, since one of the import parameters of r_ ⊳✁ ♣q must be of sort Set. Its base set
is the subset of the union of the base sets of Domain and Target. Besides these operations,
Relation also provides the operation r_ P ♣q to check whether a pair of domain element and
target element is contained in a relation. This operation is required for supporting the clauses
clauseUA, clauseRH , and clauseRE . Moreover, the algebra needs two constructors (r_∅♣q and
r_insert♣q) to be able to create any object of the sort Relation.

The next step is to specify algebraic representations for the model components user , roles,
and m. user and roles are unary mappings; they can thus be represented by the algebra
Mapping. On the contrary, m is a binary mapping modeling an ACM so that it must be
rewritten by the algebra Matrix. In the following, we provide details on the component
algebra Mapping for the RBAC model (Table 4.21); details on the algebra Matrix will be
given afterwards.

Analogous to the specification of Relation, we define the base sets of the sorts Domain
and Target of the algebra Mapping by unifying the domains and codomains of the mappings
user and roles. Note that the base set of Target is a union of U and 2R as defined by the
codomains of user and roles. Again, the sort Set needs to be imported since it is required as
input parameter sort of two commands; its base set combines the base sets of Domain and
Target.

import Domain ✕ D :✏ S ✏ td1, . . . , di , . . . , dn✉, D ✘ ∅, n P N, 1 ↕ i ↕ n
Target ✕ T :✏ U ❨P♣Rq ✏ tt1, . . . , tj , . . . , tm✉, T ✘ ∅, m P N, 1 ↕ j ↕ m
SetrElements ✕ S ❸ D ❨ T , S is finite

sorts Mapping ✕ Map ❸ D ✂ T , Map is finite

operations mp_∅ :Ñ Mapping
mp_init : Mapping Ñ Mapping
mp_insert : Mapping ✂Domain ✂ Target Ñ Mapping
mp_getMapping : Mapping ✂Domain Ñ SetrTargets
mp_③ : Mapping ✂Mapping Ñ Mapping
mp_⊳✁ : Mapping ✂ SetrElements Ñ Mapping
mp_⊲✁ : Mapping ✂ SetrElements Ñ Mapping
mp_❵ : Mapping ✂Mapping Ñ Mapping

semantics mp_∅♣q :✏ ∅

mp_init♣Mapq :✏ t♣d, tq ⑤ ♣d, tq P Map✉

mp_insert♣Map, di , tjq :✏
✧

Map ❨ t♣di , tjq✉, ❊♣d, tq P Map : eq♣di , dq
Map, otherwise

mp_getMapping♣Map, diq :✏
✧
ttj✉, ♣di , tjq P Map
s_∅♣q, ♣di , tjq ❘ Map

mp_③♣Map, Map✶q :✏ Map③Map✶

mp_ ⊳✁ ♣Map, td1, . . . , di✉q :✏ t♣d, tq⑤♣d, tq P Map ❫ d ❘ td1, . . . , di✉q✉
mp_ ⊲✁ ♣Map, tt1, . . . , tj✉q :✏ t♣d, tq⑤♣d, tq P Map ❫ t ❘ tt1, . . . , tj✉q✉
mp_❵ ♣Map, Map✶q :✏ t♣d, tq⑤♣d, tq P Map ❫ d ❘ D✶q✉ ❨ Map✶, where D✶ is the

domain of Map✶

Table 4.21: Component Algebra MappingrDomain, Targets for the RBAC Model

Since user and roles are both part of the model state, the algebra’s operation set is de-

123

4.5 Policy-dependent RTE for the RBAC HIS Policy

fined by a set of primitives (deleteUsers, createSessions, destroySessions, mapUser-Sessions,
unmapUserSessions, activateRoles, and deactivateRoles). Additionally, the model provides
clauseroles, which selects a set of assigned roles for a given session in order to check whether
this set contains a specific role. Within clauseroles, the operation performed on the mapping
roles is to select this set of roles, while the set operator P is checking the content. Thus,
only the selection operations belong to the algebra Mapping, while the operator P must be
covered by the algebra Set. Result is an operation set consisting of seven operations, includ-
ing constructors (mp_∅♣q, mp_init♣q, and mp_insert♣q), a selector (mp_getMapping♣q), and
projectors (mp_③♣q, mp_ ⊳✁ ♣q, mp_ ⊲✁ ♣q, and mp_ ❵ ♣q). mp_init♣q is a special constructor
that copies an existing mapping object to an empty one. Set and Relation have equivalent
operations in the form of s_❨♣q and r_❨♣q. mp_getMapping♣q returns an empty set created
by the constructor of the sort Set, if there is no valid selection found.

The last component algebra that is required to rewrite the RBAC model in algebraic
notation is Matrix, shown in Table 4.22. Since this specification is analogous to the above
described algebra specifications, we will only point out two aspects and refrain from further
explanations. (i) As already described for Mapping, we define the base set of Target by the
set OP because the matrix definition already contains the power set of Target. (ii) Since m
is not part of the model state, the algebra’s operation set only depends on the clauses of the
model. More precisely, the model contains clausem that checks whether a given operation
is contained in a specific matrix cell. As with clauseroles, clausem applies two operations:
selecting the content of a specific cell and checking whether this content contains a given
element. The sort Matrix must only provide an operation to select the cell content; the
checking is the responsibility of the sort Set. For this reason, the operation set provides the
function m_cellContent♣q, which returns an empty set if the cell is empty. Furthermore, the
algebra contains three constructors m_∅♣q, m_init♣q and m_insert♣q to create any object
of the sort Matrix.

import Row ✕ Ro :✏ R ✏ tr1, . . . , di , . . . , dn✉, Ro ✘ ∅, n P N, 1 ↕ i ↕ n
Column ✕ C :✏ O ✏ tc1, . . . , ci , . . . , cm✉, C ✘ ∅, m P N, 1 ↕ i ↕ m
Target ✕ T :✏ OP ✏ tt1, . . . , ti , . . . , tk✉, T ✘ ∅, k P N, 1 ↕ i ↕ k
SetrElements ✕ ST ❸ T , S is finite

sorts Matrix ✕ M ❸ R ✂ C ✂ 2T , M is finite

operations m_∅ :Ñ Matrix
m_init : Matrix Ñ Matrix
m_insert : Matrix ✂ Row ✂ Column ✂ Target Ñ Matrix
m_CellContent : Matrix ✂ Row ✂ Column Ñ SetrTargets

semantics m_∅♣q :✏ ∅

m_init♣M q :✏ t♣r , c, tq ⑤ ♣r , c, tq P M✉

m_insert♣M , r , c, tq :✏
✧
♣r ✶, c✶, T ❨ tt✉q, ♣r ✶, c✶, T q P M : r ✏ r ✶ ❫ c ✏ c✶

M ❨ t♣r , c, tq✉, ❊♣r ✶, c✶, t ✶q P M : r ✏ r ✶ ❫ c ✏ c✶

m_cellContent♣M , r , cq :✏
✧

ST , ∃!♣r ✶, c✶, T q P M : r ✏ r ✶ ❫ c ✏ c✶

s_∅♣q, otherwise

Table 4.22: Component Algebra MatrixrRow, Column, Targets for the RBAC Model

The last step of algebra engineering is to rewrite the model state and the extension vector as
core algebras State and ExtensionVector ; we begin with rewriting the model state. Table 4.23
shows the resulting State specification where the input parameter vector of the operations

124

4 Causal Trusted Computing Bases

has already been replaced by their individual input parameter sorts and the operations are
already interpreted by the operations of the component algebras for the RBAC model. As
mentioned in Section 4.4.2, the sort State defines a tuple consisting of the base sets that
represent the individual state components of a security model. In the context of the RBAC
model, the model state q ✏ ♣Uq , Sq , UAa, userq , rolesqq is a tuple where Uq is the user set, Sq is
the session set, UAq is the user-to-role-mapping relation, userq is a user-to-session association
mapping, and rolesq is a session-roles-activation mapping (Appendix A.3). Accordingly, all
component algebras that represent these five state components are imported as sorts in the
algebra State; their base sets are then defined by the according model components. For
example, the algebra SetrUsers is the representation of Uq where the parameter sort User is
equivalent to the previously defined parameter sort Element7. From this it follows, that the
base set of SetrUsers is defined by U here.

import Bool ✕ ttrue, false✉
User ✕ u :✏ u P U , element of the nonempty set of users U
Session ✕ s :✏ s P S , element of the nonempty set of sessions S
Role ✕ r :✏ r P R, element of the nonempty set of roles R
SetrUsers ✕ SU :✏ U ✏ tu1, . . . , un ⑤ n P N✉
SetrSessions ✕ SS :✏ S ✏ ts1, . . . , sl ⑤ l P N✉
RelationrUser , Roles ✕ RUA ❸ tU ✂ R ⑤ R ✏ tr1, . . . , rk✉, ⑤RUA⑤ P N✉
MappingrSession, Users ✕ Mapuser ⑨ tS ✂ U ⑤ ⑤Mapuser ⑤ P N✉
MappingrSession, SetrRoless ✕ Maproles ⑨ tS ✂P♣Rq ⑤ ⑤Maproles⑤ P N✉

sorts State ✕ q :✏ ♣SU , SS , RUA, Mapuser , Maprolesq

operations createState : SetrUsers ✂ SetrSessions ✂ RelationrUser , Roles✂
MappingrSession, Users ✂ MappingrSession, SetrRoless Ñ State

getUserS : State Ñ SetrUsers
getSessionS : State Ñ SetrSessions
getUAR : State Ñ RelationrUser , Roles
getRolesMap : State Ñ MappingrSession, Users
getUserMap : State Ñ MappingrSession, SetrRoless
addUsers : State ✂ SetrUsers Ñ State
deleteUsers : State ✂ SetrUsers Ñ State
createSessions : State ✂ SetrSessions Ñ State
destroySessions : State ✂ SetrSessions Ñ State
mapUserSessions : State ✂ SetrSessions ✂ User Ñ State
unmapUserSessions : State ✂ SetrSessions ✂ User Ñ State
assignUserToRoles : State ✂ User ✂ SetrRoless Ñ State
revokeUserFromRoles : State ✂ User ✂ SetrRoless Ñ State
activateRoles : State ✂ Session ✂ SetrRoless Ñ State
deactivateRoles : State ✂ Session ✂ SetrRoless Ñ State
clauseroles : State ✂ Session ✂ Role Ñ Bool
clauseUA : State ✂ Role ✂ User Ñ Bool

semantics createState♣SU , SS , RUA, Mapuser , Maprolesq :✏ ♣s_ ❨ ♣∅, SU q, s_ ❨ ♣∅, SRq,
r_ ❨ ♣∅, RUSq, mp_init♣Mapuserq,
mp_init♣Maprolesqq

getUserS♣qq :✏ SU

getSessionS♣qq :✏ SS

getUAR♣qq :✏ RUA

7In order to enable a proper readability, we have renamed the parameter sorts based on the names of model
components.

125

4.5 Policy-dependent RTE for the RBAC HIS Policy

getRolesMap♣qq :✏ Maproles

getUserMap♣qq :✏ Mapuser

addUsers♣q, tu1, . . . , um✉q :✏ ♣s_ ❨ ♣SU , tu1, . . . , um✉q, SS , RUA, Mapuser , Maprolesq

deleteUsers♣q, tu1, . . . , um✉q :✏ ♣s_③♣SU , tu1, . . . , um✉q, SS ,

r_ ⊳✁ ♣RUA, tu1, . . . , um✉q,
mp_ ⊲✁ ♣Mapuser , tu1, . . . , um✉q, Maprolesq

createSessions♣q, ts1, . . . , sm✉q :✏ ♣SU , s_ ❨ ♣SS , ts1, . . . , sm✉q, RUA, Mapuser ,

mp_ ❵
♣Maproles, t♣xs1

, s_∅♣qq, ..., ♣sm, s_∅♣qq✉qq

destroySessions♣q, ts1, . . . , sm✉q :✏ ♣SU , s_③♣S , ts1, . . . , sm✉q, RUA,

mp_ ⊳✁ ♣Mapuser , ts1, . . . , sm✉q, ts1, . . . , sm✉qq

mapUserSessions♣q, ts1, . . . , sm✉, uq :✏ ♣SU , SS , RUA, mp_ ❵ ♣Mapuser ,

t♣s1, uq, . . . , ♣sm, uq✉q, Maprolesq

unmapUserSessions♣q, ts1, . . . , sm✉, uq :✏ ♣SU , SS , RUA, mp_③♣Mapuser ,

t♣s1, uq, . . . , ♣sm, uq✉q, Maprolesq

assignUserToRoles♣q, u, tr1, . . . , rm✉q :✏ ♣SU , SS , r_❨♣RUA, t♣u, r1q, . . . , ♣u, rmq✉q,
Mapuser , Maprolesq

revokeUserFromRoles♣q, u, tr1, . . . , rm✉q :✏ ♣SU , SS , r_③♣RUA, t♣u, r1q, . . . ,

♣u, rmq✉q, Mapuser , Maprolesq

activateRoles♣q, s, tr1, . . . , rm✉q :✏ ♣SU , SS , RUA, Mapuser , mp_ ❵ ♣Maproles, t♣s,

mp_insert♣Maproles, s, tr1, . . . , rm✉qq✉qq

deactivateRoles♣q, s, tr1, . . . , rm✉q :✏ ♣SU , SS , RUA, Mapuser , mp_ ❵ ♣Maproles,

mp_③♣Maproles, t♣s, tr1, . . . , rm✉q✉qqq

clauseroles♣q, s, rq :✏
✧

true, s_ P ♣mp_getMapping♣Maproles, sq, rq
false, otherwise

clauseUA♣q, r , uq :✏
✧

true, r_ P ♣RUA, tu, r✉q
false, otherwise

Table 4.23: Core Algebra State for the RBAC Model

As can be seen in Table 4.23, the operation set specifies a constructor, a selector opera-
tion for each tuple element, the model’s set of primitive actions plus the clauses clauseroles

and clauseUA, which are defined on the state components according to their names. In the
following, we focus on rewriting the operation createSessions, since it comprises a couple of
interesting aspects, which are scattered over the other operations.

1. createSessions : State ✂ SetrSessions Ñ State

2. createSession : ♣q, ts1, . . . , sn✉q :✏ ♣SU , SS ❨ ts1, . . . , sn✉, RUA, Mapuser ,

Maproles ❵ t♣s1,∅q, ..., ♣sn ,∅q✉q

3. createSessions♣q, ts1, . . . , sm✉q :✏ ♣SU , s_ ❨ ♣SS , ts1, . . . , sm✉q, RUA, Mapuser ,

mp_ ❵ ♣Maproles, t♣xs1
, s_∅♣qq, ..., ♣sm , s_∅♣qq✉qq

createSession generates a new session and activates an empty set of roles for this session.
As soon as roles are activated for this session by activateRoles, the empty role set is replaced
by a specific role set. The input vector X is replaced by the individual input parameter
S , which again is represented by the sort SetrSessions (1. step). The 2. step rewrites

126

4 Causal Trusted Computing Bases

the model components that are still part of the operation’s semantics by their algebraic
representations, e.g., Uq is rewritten by SU and userq is rewritten by Mapuser . In the last
step, the operations of the above defined component algebras are applied to rewrite the
interpretation of createSessions in algebraic notation. Instead of SS ❨ ts1, . . . , sn✉, we now
write s_❨♣SS , ts1, . . . , sm✉q, which is the union operator defined for the algebra SetrElements.
This step also includes that the empty set in Maproles is replaced by the constructor of the
sort Set. This approach is applied to any primitive action and state-based clause of a security
model.

import Bool ✕ ttrue, false✉
Operation ✕ op :✏ op P OP, element of the nonempty set of operations OP
Role ✕ r :✏ r P R, element of the nonempty set of roles R
Object ✕ o :✏ o P O, element of the nonempty set of objects O
SetrObjects ✕ SO :✏ to1, . . . , on ⑤ n P N✉
SetrOperations ✕ SOP :✏ top1, . . . , opm ⑤ m P N✉
SetrRoles ✕ SR :✏ tr1, . . . , rk ⑤ k P N✉
MatrixrRole, Object, SetrOperationss ✕ Mm ⑨ tR ✂ O ✂P♣OPq⑤⑤m⑤ P N✉
RelationrRole, Roles ✕ RRH ❸ tR ✂ R ⑤ ⑤RH ⑤ P N✉, RRE ❸ tR ✂ R ⑤ ⑤RE ⑤ P N✉

sorts ExtensionVector ✕ E :✏ ♣SO, SOP , SR, Mm, RRH , RREq

operations createExtVec : SetrObjects ✂ Setroperations ✂ SetrRoles✂
MatrixrRole, Object, SetrOperationss ✂ RelationrRole, Roles✂
RelationrRole, Roles Ñ State

getObjectS :Ñ SetrObjects
getOperationS :Ñ SetrOperations
getRoleS :Ñ SetrRoles
getMatrixM :Ñ MatrixrRole, Object, SetrOperationss
getRHR :Ñ RelationrRole, Roles
getRER :Ñ RelationrRole, Roles
clausem : Operation ✂ Role ✂ Object Ñ Bool
clauseRH : Role ✂ Role Ñ Bool
clauseRE : Role ✂ Role Ñ Bool

semantics createExtVec♣SO, SOP , SR, Mm, RRH , RREq :✏ ♣s_ ❨ ♣∅, SOq, s_ ❨ ♣∅, SOPq,
s_ ❨ ♣∅, SRq,
m_init♣createMatrix♣q, M q,
r_ ❨ ♣∅, RRH q, r_ ❨ ♣∅, RREqq

getObjectS♣q :✏ SO

getOperationS♣q :✏ SOP

getRoleS♣q :✏ SR

getMatrixM ♣q :✏ Mm

getRHR♣q :✏ RRH

getRER♣q :✏ RRE

clausem♣op, r , oq :✏
✧

true, s_ P ♣m_cellContent♣Mm, r , oq, opq
false, otherwise

clauseRH ♣r1, r2q :✏
✧

true, r_ P ♣RRH , r1, r2q
false, otherwise

clauseRE♣r1, r2q :✏
✧

true, r_ P ♣RRE , r1, r2q
false, otherwise

Table 4.24: Core Algebra for ExtensionVector for the RBAC Model

The procedure of rewriting the model’s extension vector as algebra ExtensionVector is

127

4.5 Policy-dependent RTE for the RBAC HIS Policy

similar. The resulting specification is illustrated in Table 4.24. The only exception is the
specification of the algebra’s operation set, which consists besides the constructor and selector
operations only of those clauses that are defined on elements of the extension vector. Here,
these clauses are clausem , clauseRH , and clauseRE . clausem is special in that it has to
check whether a given operation is contained by a specific matrix cell. For this purpose, the
operation m_cellContent♣q of the sort Matrix is used to extract the contents of the given
matrix cell. Afterwards, the operation s_ P ♣q of the sort Set checks if the given operation is
contained by the returned set.

The result of algebra engineering is an algebraic representation of the RBAC model, con-
taining four component algebras Set, Relation, Mapping, and Matrix, and the two core algebra
State and ExtensionVector . This provides the basis for deriving the TCB functions of the
policy-depend RTE by ADT engineering.

4.5.1.2 ADT Engineering

ADT engineering follows three steps; we now apply each step to the core-based model that
formalized the RBAC HIS policy (Appendix B):

1. Designing model-specific basic types,

2. Applying the formal rule system to the model-specific component algebras, and

3. Rewriting model-specific core algebras in corresponding ADTs.

The formal rule system described in Section 4.4.4 uses model-independent types such as
Elem_T, Dom_T, or Tar_T, as basic types. However, this is not sufficient for deriving TCB
functions for a specific security model, since all model-specific basic types would be subsumed
by these model-independent types, which results in undermining the type safety of the model
implementation. For this reason, we design model-specific basic types based on the basic
elements of a model. In doing so, we set the course for a type-safe implementation, where
each basic model element is represented by its own type. On top of that, it also sets the course
for easily defining element-specific attributes in an implementation. If an implementation does
not require these model-specific basic types though, they may collapse into one basic type or
may even be implemented by platform-specific basic data types like integer or string.

The RBAC model (Appendix A.3) defines five basic elements, on which all other model
components are based: users u P U , sessions s P S , roles r P R, objects o P O, and operations
op P OP. Applying the first step to the RBAC model results in five basic types, which we
call User_T, Session_T, Role_T, Object_T, and Operation_T. The operators of these ADTs
naturally depend on the model; they are derived from the model-independent basic types by
the formal rule system as shown below.

The next step is to apply the formal rule system to the model-specific component algebras.
Afterwards, all derived TCB function sets are united and each TCB function is attached to
the ADT that it belongs to. Result is a redundant-free set of TCB functions that is described
by ADT operators. We demonstrate this step by means of a collection of class diagrams. For
each component algebra, we gradually enhance the previous class diagram to illustrate the
added ADT operators and the ADTs’ interrelations. This notation is sufficient since it is not
necessary to define the semantics of the resulting operators again; we have already provided
the operators’ semantics in Section 4.4.4.

128

4 Causal Trusted Computing Bases

Set_T

c : Cont_T

createSet() : Set_T
s_insert(s : Set_T,e : Elem_T) : Set_T
s_isElement(s : Set_T,e : Elem_T) : Bool_T
s_union(s1 : Set_T,s2 : Set_T) : Set_T
s_diff(s1 : Set_T,s2 : Set_T) : Set_T

Cont_T

createContainer() : Cont_T
insert(c : Cont_T,e : Elem_T) : Cont_T
delete(c : Cont_T,e : Elem_T) : Cont_T
nextElement(c : Cont_T) : Elem_T

Elem_T

create() : Elem_T
equals(e1 : Elem_T,e2 : Elem_T) : Bool_T

Bool_T

true() : Bool_T
false() : Bool_T

User_T

Role_T

Object_T

Session_T

Operation_T

1 1

1

0..*

Figure 4.24: Derived ADTs for Algebra Set for RBAC HIS Model

We start with applying the rule system to the model-specific component algebra
Set. Set defines five operations, from which TCB functions are derived by all Set-
based rules besides the 6. rule. The 1. rule adds the operator createContainer().
The 2. rule derives the functions next(), create(), insert(), equals(), false(),
and true(). Rule 3 and 4 do not lead to any new TCB functions, since all required
functions are already contained in the derived function set OS . The 5. rule finally
adds the function delete(). Result is a TCB function set OS that contains eight
functions defined on the ADTs Cont_T, Elem_T, and Bool_T. Besides that, the ADT
Set_T, which is directly produced by Set, contains five interface functions as defined
by the algebra: createSet(), s_insert(), s_isElement(), s_union(), and s_diff().

OS :✏ t Cont_T createContainer(),

Elem_T next(Cont_T c),

Cont_T insert(Cont_T c, Elem_T e),

Cont_T delete(Cont_T c, Elem_T e),

Elem_T create(),

Bool_T equals(Elem_T e1, Elem_T e2),

Bool_T false(),

Bool_T true()✉

We now have to combine the model-specific basic types with the derived ADT func-
tions. The model-independent basic type Elem_T implements two functions create() and
equals(). Since model-dependent basic types refine model-independent basic types, all
model-specific basic types have to provide these two functions. For this reason, the class
digram shown in Figure 4.24 models Elem_T as abstract class, from which all model-specific
basic types User_T, Session_T, Role_T, Object_T, and Operation_T are derived, each of
which implementing the ADT operators create() and equals() for their needs. However,
since both TCB functions have the same semantics for each type (otherwise they would
have different names), they are contained in the TCB function set only once, thus avoiding
functional redundancies.

129

4.5 Policy-dependent RTE for the RBAC HIS Policy

OR :✏ t Cont_T createContainer(),

Elem_T next(Cont_T c),

Elem_T create(Dom_T d, Tar_T t),

Cont_T insert(Cont_T c, Elem_T e),

Cont_T delete(Cont_T c, Elem_T e),

Bool_T equals(Dom_T d1, Dom_T d2),

Dom_T getFirst(),

Tar_T getSecond(),

Bool_T false(),

Bool_T true(),

Bool_T and(Bool_T b1, Bool_T b2),

Set_T createSet(),

Set_T s_insert(Set_T s, Elem_T e)✉

In the following, we apply the same procedure to the model-specific component algebra
Relation, defining a set of six operations. The derived function set OR is composed by the
functions produced from rules 1-6, which require three additional ADTs TElem_T, Dom_T,
and Tar_T. As can be seen, all functions defined on Cont_T and Elem_T have already
been derived from Set. Bool_T defines an additional operator and(). Rule 6 requires the
interface functions createSet() and s_insert(), and the basic operators to implement
them. These operators (createContainer(), next(), insert() and so on) are already
contained in OR and do not need to be added again. Finally, the interface functions defined
on Rel_T are createRelation(), r_insert(), r_isElement(), r_union(), r_diff(), and
r_domainSub().

Adding the derived functions to the ones derived from Set results in the class diagram shown
in Figure 4.25. The ADTs Cont_T, Set_T, and Elem_T have already been derived from Set
and are reused, which is indicated by the namespace RBAC-SET. The class TElem_T is derived
from the abstract class Elem_T. Besides implementing the abstract functions create()

and equals(), it implements tuple-specific operations called getFirst() and getSecond().
Model-specific basic data types are now not only derived from Elem_T, but also from Dom_T

and Tar_T. Role_T is is derived from Tar_T since the base set of the Target sort of Relation
is defined by the set of roles. In contrast, the base set of the sort Domain is defined by a
unification of the user set and the role set. Thus, the basic types User_T and Role_T must
also be derived from Dom_T.

The next step is to derive TCB functions for the model-specific component algebra
Mapping. Except for rules 4 and 6, all rules defined on Mapping are applied. As can
been seen, there are no additional functions that have not already been derived from
Relation. The only difference is the additional ADT Map_T and its interface functions
createMapping(), mp_init(), mp_insert(), mp_isElement(), mp_union(), mp_diff(),
mp_domainSub(), mp_rangeSub(), mp_getMapping(), and mp_override().

From this it follows that the resulting class diagram (Figure 4.26) contains one new ADT
Map_T. All other ADTs and their operators have already been derived before and are reused
(namespaces RBAC-SET and RBAC-RELATION). However, there are two significant differences:
(i) here, the model-independent basic type Session_T is not only derived from Elem_T but
also from Dom_T. The reason is that the base set of the Domain sort of Mapping is defined by
the model’s session set. (ii) Set_T is derived from Tar_T since the base set of sort Target is
defined by unifying the model’s user set and the power set of the model’s role set. The latter
is supported by Set_T, which is implemented by Cont_T, consisting of arbitrary objects of

130

4 Causal Trusted Computing Bases

Rel_T

c : Cont_T

createRelation() : Rel_T
r_insert(r : Rel_T,e : TElem_T) : Rel_T
r_isElement(r : Rel_T,d : Dom_T,t : Tar_T) : Bool_T
r_union(r1 : Rel_T,r2 : Rel_T) : Rel_T
r_diff(r1 : Rel_T,r2 : Rel_T) : Rel_T
r_domainSub(r : Rel_T,s) : Rel_T

Bool_T

and(b1 : Bool_T,b2 : Bool_T) : Bool_T
true() : Bool_T
false() : Bool_T

User_T

Object_T

Session_T Operation_T

Role_T

TElem_T

d : Dom_T
t : Tar_T

create(d : Dom_T,t : Tar_T) : TElem_T
getFirst(e : TElem_T) : Dom_T
getSecond(e : TElem_T) : Tar_T
equals(e1 : TElem_T,e2 : TElem_T) : Bool_T

Dom_T

create() : Dom_T
equals(d1 : Dom_T,d2 : Dom_T) : Bool_T

Tar_T

create() : Tar_T
equals(t1 : Tar_T,t2 : Tar_T) : Bool_T

1
1

RBAC-SET::Set_T

c : Cont_T

createSet() : Set_T
s_insert(s : Set_T,e : Elem_T) : Set_T
s_isElement(s : Set_T,e : Elem_T) : Bool_T
s_union(s1 : Set_T,s2 : Set_T) : Set_T
s_diff(s1 : Set_T,s2 : Set_T) : Set_T

RBAC-SET::Cont_T

createContainer() : Cont_T
insert(c : Cont_T,e : Elem_T) : Cont_T
delete(c : Cont_T,e : Elem_T) : Cont_T
nextElement(c : Cont_T) : Elem_T

1 1

1

1

RBAC-SET::Elem_T

create() : Elem_T
equals(e1 : Elem_T,e2 : Elem_T) : Bool_T

1

0..*

1
1

Figure 4.25: Derived ADTs for Algebras Set and Relation for RBAC HIS Model

type Elem_T, from which Role_T is derived.
It remains to apply the rule system to the algebra Matrix. Here, rules 1,2,3, and 5 can be

applied, resulting in the TCB function set OM . As can be seen, three additional ADTs are
necessary, which we call TrElem_T, Row_T, and Col_T. All other ADTs are already derived in
the previous steps, including Set_T with its operators createSet() and s_insert() (rule
2). Besides that, Matrix_T contains four interface functions createMatrix(), m_init(),
m_insert(), and m_cellContent() as specified by the algebra Matrix.

OM :✏ t Cont_T createContainer(),

Elem_T next(Cont_T c),

TrElem_T create(Dom_T d, Tar_T t, Set_T s),

Cont_T insert(Cont_T c, Elem_T e),

Bool_T equals(Row_T r1, Row_T r2),

Row_T getFirst(),

Col_T getSecond(),

Tar_T getThird(),

Bool_T false(),

131

4.5 Policy-dependent RTE for the RBAC HIS Policy

Bool_T true(),

Bool_T and(Bool_T b1, Bool_T b2),

Set_T createSet(),

Set_T s_insert(Set_T s, Elem_T e)✉

The last step is to unify all derived TCB function sets as done in Figure 4.27. As can be
seen, Matrix_T, TrElem_T, Row_T, and Col_T are the only new classes; all other have al-
ready been derived before and are reused as shown by namespaces RBAC-SET, RBAC-RELATION,
and RBAC-MAPPING. Like TElem_T, TrElem_T is also derived from the abstract Elem_T. Be-
sides the functions create() and equals() that are defined by Elem_T, TrElem_T also im-
plements triple-specific functions called getFirst(), getSecond(), and getThird(). While
a pair of Row_T and Col_T objects represents the domain of a Matrix_T object, the target
object is constructed by a Set_T object. Like Dom_T and Tar_T, Row_T and Col_T also
implement the functions create() and equals() in dependence on their objects. As can be
seen, we now have four ADTs that have to implement exactly the same functions; however,
the functions are still contained in the function set only once. The model-dependent basic
type Object_T is derived from Col_T; Role_T is additionally derived from Row_T. The
reason is that the base sets of the sorts Row and Column of the Matrix algebra are defined
by the object and the row set. All other model-specific basic types remain the same.

At this stage of ADT engineering, the entire set of TCB functions to implement the TCB
component RBAC security model functions is defined. Though by further structuring the
TCB functions, we reduce the gap between a TCB’s functions and its platform-dependent
implementation. For this purpose, we follow the last step of ADT engineering, which con-
verts the core algebras State and ExtensionVector to the corresponding ADTs State_T and
ExtVec_T. The operations of these ADTs represent the model’s primitive actions and clauses,
which are implemented by the already derived basic ADT operators.

sorts State_T

import Bool_T, User_T, Session_T, Role_T, Set_T, Rel_T, Map_T

operators createState: Set_T ✂ Set_T ✂ Rel_T ✂ Map_T ✂ Map_T Ñ State_T

getUserS: State Ñ Set_T

getSessionS: State Ñ Set_T

getUAR: State Ñ Rel_T

getRolesMap: State Ñ Map_T

getUsersMap: State Ñ Map_T

addUsers: State_T ✂ Set_T Ñ State_T

deleteUsers: State_T ✂ Set_T Ñ State_T

createSessions: State_T ✂ Set_T Ñ State_T

destroySessions: State_T ✂ Set_T Ñ State_T

mapUserSessions: State_T ✂ Set_T ✂ User_T Ñ State_T

unmapUserSessions: State_T ✂ Set_T ✂ User_T Ñ State_T

assignUserToRoles: State_T ✂ User_T ✂ Set_T Ñ State_T

revokeUserFromRoles: State_T ✂ User_T ✂ Set_T Ñ State_T

activateRoles: State_T ✂ Session_T ✂ Set_T Ñ State_T

deactivateRoles: State_T ✂ Session_T ✂ Set_T Ñ State_T

clauseroles: State_T ✂ Session_T ✂ Role_T Ñ Bool_T

clauseUA: State_T ✂ Role_T ✂ User_T Ñ Bool_T

variables ∀q : State_T, S, S1 : Set_T, R : Rel_T, Map, Map1 : Map_T, u : User_T, c : Cont_T,

s : Session_T, r : Role_T

132

4 Causal Trusted Computing Bases

axioms createState(S,S1,R,Map,Map1):= function_of(s_union(), createSet(),

r_union(), createRelation(),

mp_init())

addUsers(q,S):= function_of(s_union(), getUserS())

deleteUsers(q,S):= function_of(s_diff(), getUserS(), r_domainSub(),

getUAR(), mp_rangeSub(), getUsersMap())

createSessions(q,S):= function_of(s_union(), getSessions(), next(),

mp_override(), getRolesMap(),mp_insert(),

createMapping(), createSet())

destroySessions(q,S):= function_of(s_diff(), getSessions(),

mp_domainSub(), getUsersMap(), getRolesMap())

mapUserSessions(q,S,u):= function_of(mp_override(), getUsersMap(),

mp_insert(), createMapping(), next())

unmapUserSessions(q,S,u):= mp_diff(getUsersMap(), mp_insert(),

createMapping(), next())

assignUserToRoles(q,u,S):= function_of(r_union(), getUAR(), next(),

r_insert(), createRelation())

revokeUserFromRoles(q,u,S):= function_of(r_diff(), getUAR(), next(),

r_insert(), createRelation())

activateRoles(q,s,S):= function_of(mp_override(), getRolesMap(),

mp_insert(), getRolesMap(), next(),

s_insert(), createSet())

deactivateRoles(q,s,S):= function_of(mp_override(), getRolesMap(),

mp_diff(), mp_insert(), createMapping())

clauseroles(q,s,r,) := function_of(s_isElement(), mp_getMapping(),

getRolesMap())

clauseUA(q,r,u) := function_of(r_isElement(), getUAR(), r_insert(),

createRelation())

Table 4.25: Axioms of ADT State_T for RBAC HIS Model

The model-specific ADT State_T is shown in Table 4.25. As can be seen, its operator set
contains representatives for all operations of the algebra State. It imports the sorts Bool_T,
User_T, Session_T, Role_T, and Set_T to define the input and output parameter sorts of
its operators. The sorts Cont_T, Rel_T, and Map_T are only imported since their operators
are needed to define some of the axioms. However, the axiom set does not define axioms
in a the narrower sense. Here, axioms specify which basic ADT operators and interface
operators are required to implement the primitive actions and clauses of the models. We
therefor define a new operator function_of(), which denotes that the semantics of an ADT’s
operator is specified by a set of interface operators and basic operators. For example, the
axiom addUser(q,S) := function_of(s_union(), getUsers()) states that the functions
s_union() and getUSers() are required to implement the semantics of addUser()8.

It remains to convert the algebra ExtensionVector into the corresponding ADT ExtVect_T.
As can be seen in Table 4.26, the ADT defines exactly the same operators as its algebra.

8Note that the axioms only state which of the derived functions are required; however, they do not consider
mechanisms of flow control or the operator’s composition.

133

4.5 Policy-dependent RTE for the RBAC HIS Policy

RBAC-SET::Set_T

c : Cont_T

createSet() : Set_T
s_insert(s : Set_T,e : Elem_T) : Set_T
s_isElement(s : Set_T,e : Elem_T) : Bool_T
s_union(s1 : Set_T,s2 : Set_T) : Set_T
s_diff(s1 : Set_T,s2 : Set_T) : Set_T

RBAC-SET::Cont_T

createContainer() : Cont_T
insert(c : Cont_T,e : Elem_T) : Cont_T
delete(c : Cont_T,e : Elem_T) : Cont_T
nextElement(c : Cont_T) : Elem_T

1

1

Map_T

c : Cont_T

createMapping() : Map_T
mp_insert(a : Map_T,d : Dom_T,t : Tar_T) : Map_T
mp_isElement(a : Map_T,d : Dom_T,t : Tar_T) : Bool_T
mp_union(a1 : Map_T,a2 : Map_T) : Map_T
mp_diff(a1 : Map_T,a2 : Map_T) : Map_T
mp_domainSub(a : Map_T,s : Set_T) : Map_T
mp_rangeSub(a : Map_T,s : Set_T) : Map_T
mp_getMapping(d : Dom_T) : Map_T
mp_override(a1 : Map_T,a2 : Map_T) : Map_T

1

1

RBAC-RELATION::Dom_T

create() : Dom_T
equals(d1 : Dom_T,d2 : Dom_T) : Bool_T

RBAC-RELATION::Tar_T

create() : Tar_T
equals(t1 : Tar_T,t2 : Tar_T) : Bool_T

RBAC-RELATION::Bool_T

and(b1 : Bool_T,b2 : Bool_T) : Bool_T
true() : Bool_T
false() : Bool_T

RBAC-SET::Elem_T

create() : Elem_T
equals(e1 : Elem_T,e2 : Elem_T) : Bool_T

1

0..*

RBAC-RELATION::TElem_T

d : Dom_T
t : Tar_T

create(d : Dom_T,t : Tar_T) : TElem_T
getFirst(e : TElem_T) : Dom_T
getSecond(e : TElem_T) : Tar_T
equals(e1 : TElem_T,e2 : TElem_T) : Bool_T

1

1

1

1

User_T

Object_T

Role_T

Operation_TSession_T

RBAC-RELATION::Rel_T

c : Cont_T

createRelation() : Rel_T
r_insert(r : Rel_T,e : TElem_T) : Rel_T
r_isElement(r : Rel_T,d : Dom_T,t : Tar_T) : Bool_T
r_union(r1 : Rel_T,r2 : Rel_T) : Rel_T
r_diff(r1 : Rel_T,r2 : Rel_T) : Rel_T
r_domainSub(r : Rel_T,s) : Rel_T

11

Figure 4.26: Derived ADTs for Algebras Set, Relation, and Mapping for RBAC HIS Model

134

4 Causal Trusted Computing Bases

OMap :✏ t Cont_T createContainer(),

Elem_T next(Cont_T c),

Elem_T create(Dom_T d, Tar_T t),

Cont_T insert(Cont_T c, Elem_T e),

Cont_T delete(Cont_T c, Elem_T e),

Bool_T equals(Tar_T t1, Tar_T t2),

Dom_T getFirst(),

Tar_T getSecond(),

Bool_T false(),

Bool_T true(),

Set_T createSet(),

Set_T s_insert(Set_T s, Elem_T e)✉

Again, the axioms describe which interface operators are required to implement the con-
structor operator and the model’s clauses. This is feasible, since the semantics of the ADT’s
operators is well defined by the corresponding operations of the algebra ExtensionVector .

sorts ExtVec_T

import Bool_T, Operation_T, Object_T, Role_T, Set_T, Rel_T, Matrix_T

operators createExtVec: Set_T ✂ Set_T ✂ Set_T ✂ Matrix_T ✂ Rel_T ✂ Rel_T

Ñ ExtVec_T

getObjectS: Ñ Set_T

getOperationS: Ñ Set_T

getRoleS: Ñ Set_T

getMatrixM: Ñ Matrix_T

getRHR: Ñ Rel_T

getRER: Ñ Rel_T

clausem: Operation_T ✂ Role_T ✂ Object_T Ñ Bool_T

clauseRH: Role_T ✂ Role_T Ñ Bool_T

clauseRE: Role_T ✂ Role_T Ñ Bool_T

variables ∀S, S1, S2, S3 : Set_T, R, R1 : Rel_T, M : Matrix_T, o : Object_T, r, r1 : Role_T,

op : Operation_T

axioms createExtVec(S,S1,S2,M,R,R1):= function_of(s_union(), createSet(),

m_insert(), createMatrix(),

r_union(), createRelation())

clausem(op,r,o) := function_of(s_isElement(), m_cellContent(),

getMatrixM())

clauseRH(r,r1) := function_of(r_isElement(), getRHR())

clauseRE(r,r1) := function_of(r_isElement(), getRE())

Table 4.26: ADT ExtVec_T for RBAC HIS Policy

The ADTs State_T and ExtVec_T can now be used by the executable RBAC HIC policy

to define its state and extension vector, in order to implement its authorization scheme. This
will be demonstrated in Section 4.5.3.

135

4.5 Policy-dependent RTE for the RBAC HIS Policy

User_T

Object_T
Role_T

Session_T

Operation_T

Matrix_T

createMatrix() : Matrix_T
m_init(m : Matrix_T) : Matrix_T
m_insert(m : Matrix_T,r : Row_T,d : Col_T,t : Tar_T) : Matrix_T
m_cellContent(m : Matrix_T,r : Row_T,c : Matrix_T) : Set_T

TrElem_T

create(r : Row_T,c : Col_T,s) : TrElem_T
getFirst(e : TrElem_T) : Row_T
getSecond(e : TrElem_T) : Col_T
getThird(e : TrElem_T) : Set_T
equals(e1 : TrElem_T,e2 : TrElem_T) : Bool_T

RBAC-RELATION::Rel_T

c : Cont_T

createRelation() : Rel_T
r_insert(r : Rel_T,e : TElem_T) : Rel_T
r_isElement(r : Rel_T,d : Dom_T,t : Tar_T) : Bool_T
r_union(r1 : Rel_T,r2 : Rel_T) : Rel_T
r_diff(r1 : Rel_T,r2 : Rel_T) : Rel_T
r_domainSub(r : Rel_T,s) : Rel_T

RBAC-MAPPING::Map_T

c : Cont_T

createMapping() : Map_T
mp_insert(a : Map_T,d : Dom_T,t : Tar_T) : Map_T
mp_isElement(a : Map_T,d : Dom_T,t : Tar_T) : Bool_T
mp_union(a1 : Map_T,a2 : Map_T) : Map_T
mp_diff(a1 : Map_T,a2 : Map_T) : Map_T
mp_domainSub(a : Map_T,s : Set_T) : Map_T
mp_rangeSub(a : Map_T,s : Set_T) : Map_T
mp_getMapping(d : Dom_T) : Map_T
mp_override(a1 : Map_T,a2 : Map_T) : Map_T

SET::Cont_T

createContainer() : Cont_T
next(c : Cont_T) : Elem_T
insert(c : Cont_T,e : Elem_T) : Cont_T
delete(c : Cont_T,e : Elem_T) : Cont_T

1

1

1

1

1

1

RBAC-RELATION::TElem_T

d : Dom_T
t : Tar_T

create(d : Dom_T,t : Tar_T) : TElem_T
getFirst(e : TElem_T) : Dom_T
getSecond(e : TElem_T) : Tar_T
equals(e1 : TElem_T,e2 : TElem_T) : Bool_T

RBAC-SET::Set_T

c : Cont_T

createSet() : Set_T
s_insert(s : Set_T,e : Elem_T) : Set_T
s_isElement(s : Set_T,e : Elem_T) : Bool_T
s_union(s1 : Set_T,s2 : Set_T) : Set_T
s_diff(s1 : Set_T,s2 : Set_T) : Set_T 1

1

RBAC-SET::Elem_T

create() : Elem_T
equals(e1 : Elem_T,e2 : Elem_T) : Bool_T

1 0..*

RBAC-RELATION::Tar_T

1

1
Row_T

RBAC-RELATION::Bool_T

and(b1 : Bool_T,b2 : Bool_T) : Bool_T
true() : Bool_T
false() : Bool_T

Col_T

1

1

RBAC-RELATION::Dom_T

1

1

1

1

1

1

Figure 4.27: Derived ADTs for Algebras Set, Relation, Mapping, and Matrix for RBAC HIS Model

136

4 Causal Trusted Computing Bases

4.5.2 Interceptor

To complete the functional range of the policy-depend RTE, we have to specify the functions
of the remaining component – the interceptor. For this purpose, this section derives the
interface functions of the interceptor from the RBAC HIS policy. Note that the resulting set
of interface functions basically serves as an example for the specification of an interceptor,
for which a given policy is suitable by implementing the interceptor’s interface functions.
However, the general approach is not to derive the interface of the interceptor from the
system’s policies, but from the OS and its applications to be protected. In this case, it
remains to analyze whether a given policy implements them.

As described in Section 4.4.3, the interface functions of the interceptor component must
match the authorization scheme of a policy’s model instance. The authorization scheme of the
RBAC HIS policy (Appendix B.2) consists of 16 commands, 15 of which are state-modifying
commands and one is an exemplary non-state-modifying command. This leads to 16 interface
functions as shown below. For example, the command

δ(q, (createUser ♣xs, xuqq ::✏
if ♣condcore♣q, xs, ‘Uo‘, ‘update‘qq
then

addUsers ♣q, txu✉q
end if.

requires two input parameters xs and xu where the indexes s and u indicate that the first
parameter must be a session s P S and the second one must be a user u P U . This results in
the interface function public void createUser(Session_T s, User_T u) with Session_T

and User_T being model-specific basic types as defined in Section 4.5.1. Since this function
modifies the state of the policy, it does not have a return parameter; only non-state-modifying
commands return the result of their conditions by type Bool_T. Note that the names of the
commands of a policy’s authorization scheme and the interface functions of the interceptor

must not be identical like in the example; only identical input parameter types are important
for the interceptor’s mapping.

public void createUser(Session_T s, User_T u),

public void destroyUser(Session_T s, User_T u),

public void assignRole(Session_T s, User_T u, Role_T r),

public void revokeRole(Session_T s, User_T u, Role_T r),

public void login(Session_T s, User_T u),

public void logout(Session_T s),

public void activateRole(Session_T s, Role_T r),

public void deactivateRole(Session_T s, Role_T r),

public void deactivateRole(Session_T s, Role_T r),

public void assignReferredDoctorRole(Session_T s, User_T u),

public void revokeReferredDoctorRole(Session_T s, User_T u),

public void assignPatientRole(Session_T s, User_T u,

public void revokePatientRole(Session_T s, User_T u),

public void assignMedicalTeamRole(Session_T s, User_T u),

public void revokeMedicalTeamRole(Session_T s, User_T u),

public Bool_T view(Session_T s, Object_T o)

137

4.5 Policy-dependent RTE for the RBAC HIS Policy

As shown in Appendix B.2, all input parameters of the authorization scheme’s commands
are defined by basic elements of the model, i.e., users, sessions, roles, and objects. This
results in that the input parameters of all functions of the interceptor are specified by the
model-specific basic types User_T, Session_T, Role_T, and Object_T, which represent these
primitive types. This is not necessarily so for the authorization schemes of arbitrary policies;
input parameters may also be of types Set_T, Rel_T, Map_T, or Matrix_T.

At this stage, the functional perimeter for a policy-dependent RTE that is tai-
lored to enforce the RBAC HIS policy is specified. It now remains to show how an
executable security policy interacts with the TCB’s interceptor and the security

model functions component that is derived from its model. This will be demonstrated by
means of the executable RBAC HIS policy in the following section.

4.5.3 Executable RBAC HIS Policy

The goal of this section is to discuss the design of an executable security policy that
can be enforced by a policy-dependent RTE. To this end, we focus on the interrelations
of the executable RBAC HIS policy with the RTE’s components interceptor and RBAC

security model functions.
The main responsibility of an executable security policy is to implement its autho-

rization scheme. For this purpose, it requires state and extension vector of the model instance
as well as the semantics of the primitive actions and clauses. Since all of this is required by
any policy, we have designed the RTE in such a way that it provides not only the semantical
implementation of the primitive actions and clauses but also data structures for a policy’s
state and extension vector. The only things that remain for a policy to do are to initialize
its state and extension vector according to q0 and E of its model instance and to implement
the commands of its authorization scheme. Besides that, an executable policy also has to
manage its threads, transactions, and TPS that are provided by the policy-independent
RTE; however, this is out of the scope of this section.

Figure 4.28 shows how the executable RBAC HIS policy is embedded into a policy-
dependent RTE that is tailored to support and enforce this policy. Due to readability reasons,
we have illustrated only the main ADTs; for more details refer to the class diagrams in Sec-
tion 4.5.1. As can be seen, the RBAC HIS policy provides exactly the same functions as the
interceptor. The latter acts as a proxy and calls the appropriate policy function whenever a
policy request is received. As already discussed earlier, the function sets of the interceptor

and an executable security policy do not necessarily need to be identical; in case a TCB
enforces multiple policies at the same time, merely the unification of all policy functions must
be equal to the functions of the interceptor.

As already motivated, the executable RBAC HIS policy existentially depends on its state
and extension vector. State_T defines the state of the RBAC HIS model, which is existentially
dependent on those ADTs that implement its components: State_T consists of two sets
representing the user and session set, a relation for representing UA, and two mappings for
user and roles. ExcVec_T defines the data structure for a model’s extension vector using
the ADTs Set_T, Rel_T, and Matrix_T. To implement the commands of the authorization
scheme, a policy can call the operators provided by State_T and ExcVec_T. For example,
the command createUser(s,u) can be implemented as shown by Algorithm 2; all other
commands are implemented analogously.

As can be seen, the policy also requires the interface functions of the ADTs Set_T and
Bool_T. Moreover, next() of Cont_T is also necessary for iterating the static set of roles r

138

4 Causal Trusted Computing Bases

RBAC HIS Policy

q : State_T
e : ExtVec_T

createUser(s : Session_T,u : User_T)
destroyUser(s : Session_T,u : User_T)
assignRole(s : Session_T,u : User_T,r : Role_T)
revokeRole(s : Session_T,u : User_T,r : Role_T)
login(s : Session_T,u : User_T)
logout(s : Session_T)
activateRole(s : Session_T,r : Role_T)
deactivateRole(s : Session_T,r : Role_T)
deactivateRole(s : Session_T,r : Role_T)
assignReferredDoctorRole(s : Session_T,u : User_T)
revokeReferredDoctorRole(s : Session_T,u : User_T)
assignPatientRole(s : Session_T,u : User_T)
revokePatientRole(s : Session_T,u : User_T)
assignMedicalTeamRole(s : Session_T,u : User_T)
revokeMedicalTeamRole(s : Session_T,u : User_T)
view(s : Session_T,o : Object_T) : Bool_T

State_T

s : Set_T
ua : Rel_T
user : Map_T
roles : Map_T

createState(s1 : Set_T,s2 : Set_T,r : Rel_T,a1 : Map_T,a2 : Map_T) : State_T
getUserS(q : State_T) : Set_T
getSessionS(q : State_T) : State_T
getUAR(q : State_T) : Rel_T
getRolesMap(q : State_T) : Map_T
getUserMap(q : State_T) : Map_T
addUsers(q : State_T,s : Set_T) : State_T
deleteUser(q : State_T,s : Set_T) : State_T
createSessions(q : State_T,s : Set_T) : State_T
destroySessions(q : State_T,s : Set_T) : State_T
mapUserSessions(q : State_T,s : Set_T,u : User_T) : State_T
unmapUserSessions(q : State_T,s : Set_T,u : User_T) : State_T
assignUserToRoles(q : State_T,u : User_T,s : Set_T) : State_T
revokeUserFromRoles(q : State_T,u : User_T,s : Set_T) : State_T
activateRoles(q : State_T,s1 : Session_T,s2 : Set_T) : State_T
deactivateRoles(s1 : Session_T,s2 : Set_T) : State_T
clause_roles(q : State_T,s : Session_T,r : Role_T) : Bool_T
clause_UA(q : State_T,r : Role_T,u : User_T) : Bool_T

ExtVec_T

o : Set_T
op : Set_T
r : Set_T
m : Matrix_T
rh : Rel_T
re : Rel_T

createExtVec(s1 : Set_T,s2 : Set_T,s3 : Set_T,m : Matrix_T,r1 : Rel_T,r2 : Rel_T) : ExtVec_T
getObjectS() : Set_T
getOperationS() : Set_T
getRoleS() : Set_T
getMatrixM() : Matrix_T
getRHR() : Rel_T
getRER() : Rel_T
clause_m(op : Operation_T,r : Role_T,o : Object_T) : Bool_T
clause_RH(r1 : Role_T,r2 : Role_T) : Bool_T
clause_RE(r1,r2) : Bool_T

Interceptor

createUser(s : Session_T,u : User_T)
destroyUser(s : Session_T,u : User_T)
assignRole(s : Session_T,u : User_T,r : Role_T)
revokeRole(s : Session_T,u : User_T,r : Role_T)
login(s : Session_T,u : User_T)
logout(s : Session_T)
activateRole(s : Session_T,r : Role_T)
deactivateRole(s : Session_T,r : Role_T)
assignReferredDoctorRole(s : Session_T,u : User_T)
revokeReferredDoctorRole(s : Session_T,u : User_T)
assignPatientRole(s : Session_T,u : User_T)
revokePatientRole(s : Set_T,u : User_T)
assignMedicalTeamRole(s : Session_T,u : User_T)
revokeMedicalTeamRole(s : Set_T,u : User_T)
view(s : Session_T,o : Object_T) : Bool_T

1

1

1

1

RBAC-SET::Set_T

RBAC-MATRIX::Matrix_T

RBAC-MAPPING::Map_T

1

1

1

2

1

3

1

2

1

2
1

1

RBAC-RELATION::Rel_T

RBAC-RELATION::Bool_T

and(b1 : Bool_T,b2 : Bool_T) : Bool_T
true() : Bool_T
false() : Bool_T

Figure 4.28: Integration of Executable RBAC HIS Policy in Policy-dependent RTE

contained by ExtVec_T. Here, we have added an interface function next() to Set_T, which

139

4.6 Conclusion

Algorithm 2: Implementation of createUser(s,u)

Input: e: Ext_T, q:State_T
function createUser(Session_T s, User_T u)
begin

Role_T r_1;
Role_T r_2;
for r_1:= e.getRoleS().next() do

for r_2:= e.getRoleS().next() do
Bool_T b := and(clause_RH(r_1,r_2),clause_roles(q,s,r_1));
if and(b,clause_m(’update’,r_2,’U_o’)) then

Set_T us := s_insert(createSet(),u);
q := q.addUsers(q,us);

serves as wrapper for the function next() defined on Cont_T. This is feasible since we have
not actually added a new function to the TCB but only a wrapper function to access an
already contained function more easily.

This section has illustrated the design of the executable RBAC HIS policy. By this
means, it has shown that the policy-dependent RTE tailored to enforce the RBAC HIS policy
provides everything that the executable RBAC HIS security policy requires. On top of
that, this section has demonstrated that it is straightforward to integrate an executable

security policy into an existing policy-dependent RTE by applying its data structures
(ADTs) and their functions (operators) to implement the policy’s authorization scheme.

4.6 Conclusion

Today’s commodity policy-controlled operating systems share the ambition to support a wide
range of security policies, rendering their policy runtime environment (RTE) and enforcement
mechanisms large, complex, and expensive. As a consequence, their TCBs are characterized
by a large functional perimeter that is hard to identify.

This dissertation aims at engineering a policy RTE that supports only those policies that
are actually present in a TCB. The goal is to exactly determine a TCB’s functional perimeter
by exploiting causal dependencies between policies and TCB functions. Causal TCBs then
contain only those functions that are necessary to establish, enforce, and protect the policies
that are present in a TCB.

This section has developed a functional TCB design along with a TCB engineering method.
The functional design of causal TCBs is similar to core-based models; it contains a common
TCB component – the policy-independent RTE – and a policy-specific component – the
policy-depend RTE. Causal TCBs are engineered by tailoring the policy-dependent RTE due
to causal dependencies between policies and TCB functions. We have identified the functional
perimeter of the policy-independent RTE by motivating each functional component and the
interface it provides. Additionally, an engineering method has been developed for tailoring
the policy-dependent RTE. Based on an algebraic approach, TCB functions in ADT notation
are derived by a rule system that formalizes said causal dependencies. We have demonstrated
the TCB engineering approach by engineering a policy-dependent RTE for the RBAC HIS

140

4 Causal Trusted Computing Bases

policy.
The engineering method for a policy-dependent RTE is based on a sound formal founda-

tion. As a consequence, it can be applied to develop an automated TCB composition tool
that composes the functional perimeter of causal TCBs. Based on design principles that
are inspired by microkernel architectures, the derived functional perimeter for the policy-
independent RTE is redundancy-free. The derived function set of the policy-dependent RTE
is also nonredundant, since we unify all derived function sets. Moreover, by reducing the
semantic gap between formal security models and and implementation-oriented TCB func-
tions, the algebraic approach contributes to a complete functional perimeter with respect to
the enforced policies.

141

5 Specification Engineering

I am among those who think that science has great
beauty. A scientist in his laboratory is not only a

technician: he is also a child placed before natural
phenomena which impress him like a fairy tale.

Marie Curie,
Madame Curie, by Ève Curie Labouisse, 1937

After having engineered a causal TCB, the next step of model-based security engineering
is to generate an implementation based on a TCB’s identified functions. While the imple-
mentation of the policy-independent RTE is to be accomplished once, the policy-dependent
RTE has to be implemented individually for each application scenario. It is significant for
both, however, that completeness and consistency of their implementations with respect to
the identified TCB functions have to be ensured.

In general, implementations that are amenable to correctness and consistency validation
are achieved by formal methods [250]. These rewrite a system specification in a formal math-
ematical specification, which then allows for formal validation techniques, and for generating
an implementation that is also amenable to verification.

Specification engineering, i.e., rewriting a system specification as formal specification, has
already been applied successfully for validating the correctness of OS kernels, e.g [57,58,137].
Consequently, this approach can also be applied to the policy-independent RTE to produce a
specification that serves as basis for the implementation. This is a nonrecurring effort, which
significantly contributes to the implementation correctness of the policy-independent RTE of
all causal TCBs.

In contrast, formally specifying the policy-dependent RTE of causal TCBs is a repeating
process, since we have to specify it for each application scenario based on the derived TCB
functions. Hence, method and tool support are significant.

The goal of this section is to show that implementing causal TCBs can indeed be supported
by methods and tools. In doing so, we focus on method support for implementing the policy-
dependent RTE, since this is a frequently repeating process. To this end, this section develops
a specification method that allows for rewriting the functions of a policy-dependent RTE in
a formal TCB specification that is amenable to correctness and consistency validation with
respect to the enforced security policies. Based on such specifications, compiler-like tools
can be developed, which allow for an automated generation of the required source code of a
TCB’s policy-dependent RTE.

On this account, Section 5.1 briefly introduces the fundamentals of specification engineering
to provide the basis for the following sections. A TCB specification has to meet a couple of
requirements to serve as basis for code generation. Section 5.2 discusses these requirements
before Section 5.3 presents approaches to meet them. The specification method is then
presented in Section 5.4.

143

5.1 Specification Fundamentals

5.1 Specification Fundamentals

The goal of this section is to present the fundamentals of specification engineering. On this ac-
count, it first discusses its connection to model-based security engineering before introducing
the required terminology.

Figure 5.1 illustrates how the process of specification engineering is embedded in model-
based security engineering: based on a policy in core notation and the derived TCB func-
tions in ADT notation, a formal TCB specification is developed, which serves as basis for
tool-supported validation techniques and as compiler input to generate the source code of
the functional component security model functions. Output is a set of classes, for in-
stance written in C++ or Java, that implement the functions of a policy-dependent RTE
and that can be used to implement the authorization scheme of an executable security

policy. Afterwards, these classes must embedded in a security architecture that implement
the functions of the policy-independent RTE. Thereby, specification engineering significantly
increases the efficiency of implementing causal TCBs, which is relevant for unlocking causal
TCB engineering for real-world application scenarios.

Specification Engineering

Code Generation

Implementation

Security
Model

Policy Design

Model Engineering

Model Analysis

Requirements Engineering

TCB Engineering

Figure 5.1: Specification Engineering

The basis of specification engineering is a universal specification method that can be ap-
plied to all security models in core notation. Input is a set of ADTs that is derived from a
specific core-based model. Even though the semantics of the ADT operators is given by the
mapping β : P♣Oq Ñ P♣UOq, which maps a set of ADT operators to a universe operation
(Section 4.4.2.2), the core-based model is also input of the specification method, since the
model notation is closer to a formal specification. Output is a formal specification for a
sequential, state-based system, from which a platform-specific implementation of a policy-
dependent RTE and of an executable security policy can be generated.

In general, a state-based specification contains a state machine with a state that is described

144

5 Specification Engineering

by a set of typed variables xi
1. Each xi is assigned a value vi♣cq; the set of values forms the

machine’s initial state. Valid assignments of these variables are expressed by invariants Ii♣x, cq
(statements in predicate logic). If a specification only produces states that do not violate
the invariants, it is considered correct; to proof a specification’s correctness, theorems Ji♣x, cq
are defined to be validated against the invariants. State transitions are specified by a set of
operations oi : rpi , prei , postis. Each operation consists of typed parameters pi , a precondition
prei♣p, x, cq that guards its execution, and a postcondition posti♣x

✶, p, x, cq that defines the
operation’s semantics by making the state transition from state x to the subsequent state x✶.

We have chosen Event-B [6, 72] as specification platform. The reasons are its expressive
power that allows for modular specifications and the sophisticated tool support by means of
the Rodin development platform [7,72].

In order that TCB specifications in Event-B can serve as basis for a TCB’s implementation,
they have to meet a range of requirements, which we subsequently discuss.

5.2 Requirements for TCB Specifications

Based on the responsibility of TCBs to correctly enforce policies and on the goal of formal
specifications to be amenable to validation, we have identified the following requirements for
TCB specifications [178]:

1. Completeness: A TCB specification must be complete with respect to the security
model instance and hence the derived ADT operators. Consequently, there must be a
homomorphism between the instance and the specification such that any input and any
state of the instance can be mapped to an input and a state of the specification.

2. External consistency: A TCB specification must be consistent regarding the model
instance. That means, we have to map each input and each state of the specification
to an input and a state of the instance. Under consideration of the first requirement,
we thus have to build an isomorphism between the instance and the specification.

3. Inner consistency: A TCB specification must be self-consistent. To reason about a
specification’s self-consistency, a set of proof obligations can be defined. Each proof
obligation is a statement in predicate logic, which has to be fulfilled for self-consistency.
Recent work such as [5,6,8,55,128] has specified different proof obligation types and has
developed approaches how to define proof obligations in dependence on a specifications’
structure. Based on this work, [178] has identified the following proof obligation types
as relevant for ensuring the inner consistency of TCB specifications: well-definedness,
type correctness, consistency of axioms, validity of theorems, consistency of invariants,
operations, and the initial state, as well as the activation of operations.

4. Reusability: To improve the efficiency of specification engineering, TCB specifications
should be reused. Here, an approach similar to core-based model engineering should be
considered: by building an inheritance hierarchy of specifications (model core, security
model, model instance), creating the specification of a security model equals tailoring
the specification of the model core. The specification of a model instance then is a
refinement of the model’s specification that considers the specific instance properties
such as its authorization scheme.

1For better readability, all components of a TCB specification will be written in sans-serif style.

145

5.3 TCB Specification Approach

5. Small size and low complexity: To reduce the error-proneness of specification engineer-
ing and hence a TCB’s implementation, a TCB specification must be of small size and
low complexity. On the other hand, Boswell [40] discusses that dedicated specifica-
tion redundancy contributes to error detection and correction. At first sight, this is
in conflict with the requirement, since redundancy quantitatively increases a specifi-
cation. However, under consideration of its structure, documentation, and provable
equivalence, dedicated redundancy does not increase the complexity at all, but in fact
contributes to avoiding specification errors.

5.3 TCB Specification Approach

This section presents specification approaches that tackle the requirements of Section 5.2 and
thus build the foundation of the specification method.

The requirements completeness and external consistency are met be a methodical approach.
By listing all elements of a core-based model instance as done in Appendix B, we can stepwise
rewrite a model instance as formal specification. This leads to a complete specification with
a detailed case-by-case specification and a detailed documentation of all rewriting sub-steps.

External consistency of a formal specification is ensured both during and after the process
of specification engineering. This is done by random sampling with the help of an automated
animator tool: based on the initial state of a model instance, we execute the operations of the
state-based system and compare the execution results to the results of symbolically executing
the model instance. To this end, we derive test cases from the model instance, its application
scenario, and the components of the formal specification.

To ensure a specification’s inner consistency, formal validation techniques are applied.
Here, we employ the tools of the Rodin development platform [7], providing a syntax and
a type checker, a proof obligation generator, an interactive theorem prover, as well as an
animator. The generation and the validation of proof obligations are concerned with the
static properties of a specification. On the other hand, the animation of a specification
explores its state set with the help of model checking techniques. The animator searches for
valid assignments to the model instance variables, and checks whether the explored model
states meet the defined invariants.

Reusability is enabled by modularized TCB specifications. One approach is to establish an
inheritance hierarchy of specifications, which allows to derive the specifications of security
models and their instances from the specification of the common model core. However,
inheritance is yet not supported by existing specification languages and their tools. For
this reason, we follow a different approach based on an inclusion hierarchy of contexts. A
context defines the elements of a specification by a set of base types Ti , a set of typed
constants ci , a set of axioms Ai♣cq defined on the constants, and a set of theorems Bi♣cq.
The latter are derived from the axioms for their validation. A specification of a security
model is contained by such a context and each model instance specification then includes
the model context to specify its state machine. The advantage of this approach is that it is
supported by Event-B via extensions: a context can be extended by other contexts, which
results in the unification of all extended contexts. Figure 5.2 shows a context hierarchy
in Event-B. A model’s specification may consist of several contexts model_i, depending on
its complexity. Each context may extend a context model_common that contains shared
specification components. The complete specification of a model in model_context then unifies
all involved context, and can be used in the instance_context by any model instance. The

146

5 Specification Engineering

instance

instance context

model context

model 1 model 2 · · · model n

model common

extends

uses

Context State Machine

Figure 5.2: Context Hierarchy in Event-B [178]

instance_context specifies the individual properties of a model instance, on which the state
machine of the model instance (instance) is defined.

Following this approach, TCB specifications are based on a coarse-grained modularization,
applying the concepts of existing specification languages and tools. Future work may deal
with developing a domain-specific specification language that provides inheritance concepts;
see Section 6.5 for a detailed discussion of the specification results.

The basis of a TCB specification with a small size and low complexity is a precise mathemat-
ical notation, which allows for controlling specification redundancy while stepwise rewriting
a model instance and its TCB functions. In case redundancy is required for error avoidance,
we document it and proof its equivalence via theorems. Moreover, in a modularized specifi-
cation such as shown in Figure 5.2, the specification complexity should be contained in the
model contexts. Specifying a model instance, which is a constantly repeating process, then
has lower complexity and thus is less error-prone.

5.4 TCB Specification Method

The goal of this section is to present a specification method based on the approaches of
Section 5.3, whose output are formal specifications that can serve as basis for automated code
generation of a causal TCB’s policy-dependent RTE. The approach is to develop a general
specification method for sequential, state-based systems that can be configured for a variety
of state-based specifications languages. This section discusses each step of the specification
method in an abstract way and demonstrates, how each step can be configured for Event-B
specifications. A comprehensive discussion of the abstract specification method, the special
configuration cases for Event-B, and necessary proof obligations is provided in [178].

The specification method has to rewrite all model and model instance components within a
set of contexts. Having rewritten these components and proofed that all necessary theorems
are met, it remains to refine the specification by the derived ADTs and their operators.
Here, the goal is to dissolve the mathematical specification of the state set and the extension
vector to a more implementation-oriented one by using the ADTs that are derived by causal

147

5.4 TCB Specification Method

dependencies. In doing so, we apply specific refinement techniques (see [178]) to proof the
correctness and consistency of the resulting formal specification regarding the underlying
model instance. As a result, the generated code is similar to the derived TCB functions in
terms of the inheritance hierarchy, types, and functional perimeter (Section 4.4.4). However,
due to the validated formal specification and automated code generation, we provide the basis
for validating the correctness and consistency of the resulting program code with respect to
the model instance.

In the following, we briefly present the formal specification a security model and a corre-
sponding model instance. While Section 5.4.1 is concerned with rewriting the model compo-
nents, Section 5.4.2 rewrites the components of the model instance.

5.4.1 Specification of a Core-based Security Model

To formally specify a core-based security model, the following model components have to be
contained in a TCB specification:

• Codomains of the primitive elements, e.g., roles, objects, or users,

• Extension vector,

• State set,

• Primitive operations, and

• Conditions.

This section stepwise rewrites each of these model components first in an abstract way and
afterwards in Event-B notation.

Codomains of Primitive Elements The codomains of the primitive elements of core-based
security models are pairwise disjoint sets, which can be represented by base sets in a formal
specification. Codomains and base sets are semantically similar; thus, we merely have to
change the notation.

In Event-B we can define base sets in the SETS clause of a context. The base sets
SET1, SET2, . . . , SETn are introduced in the context model_common as follows (Figure 5.2).

CONTEXT model common

SETS

SET1

SET2

. . .

SETn

END

148

5 Specification Engineering

Extension Vector The extension vector E ✏ ♣e1, e2, ..., ehq, h ➙ 0, contains a set of static
model elements, whose values are application-specific and do not change during policy run-
time. Each element can have specific properties, e.g., transitivity or symmetry of relations,
and elements can be combined by statements in predicate logic.

Since the context of a specification contains only constants (instead of variables) and we
have argued for specifying a model in a hierarchy of contexts (Figure 5.2), all extension
vector elements must be expressed by constants. We refrain from encapsulating the constants
within a tuple, since the latter unnecessarily increases the complexity without having any
advantages. That means, for each ei we add a constant c to the specification. The properties
of each element are expressed as axioms A♣cq. Moreover, for complex properties we also add
alternative expressions as theorems B♣cq, since this reduces not only possible errors but also
the effort for proofing the axioms.

In Event-B constants are specified by the clause CONSTANTS and axioms are introduced by
AXIOMS. For each ei the specification thus defines a constant stati P STATi in the context
model_common. Axioms that express the elements’ properties have to be defined in connection
with the constants’ typing axioms.

CONTEXT model common

SETS

. . .

CONSTANTS

stat1 > names

stat2

. . .

statn

AXIOMS

st1 t: stat1 P STAT1 > typing

st2 t: stat2 P STAT2

. . .

stn t: statn P STATn

END

State Set The model’s state set Q ✏
➅n

i Di , n ➙ 1, must also be represented in a formal
specification as a constant STATE of the same type. The specification of a model instance
then uses a single state variable state P STATE. Primitive operations and conditions are
also specified based on this constant. For example, consider primi as a specification of the
primitive operation primi , its type is defined as

primi : STATE✂
more parameters❤❦❦❦❦❦❦❦✐❦❦❦❦❦❦❦❥

☎ ☎ ☎ Ñ STATE.

To ensure a specification’s inner consistency, we have to define consistency conditions based
on STATE. To this end, we define a set of conditions and a subset CONSISTENT_STATE ❸
STATE that only contains consistent states. The specification of a model instance then has

149

5.4 TCB Specification Method

to ensure that state P CONSISTENT_STATE. However, primitive operations must still be
defined on STATE. That means, for each command of the authorization scheme we have
to validate that the result of all sequentially executed primitive operations is in the set of
consistent states.

In Event-B STATE is defined in the context model_common by the state components
dyni_q P DYNi. For each state component we additionally define a projection function
dyn1_q, dyn2_q, . . . , dynn_q that, based on the Event-B operations prj1 and prj2, selects
the first or second element of a tuple. Thereby, tuples of type x1 ÞÑ x2 ÞÑ ☎ ☎ ☎ ÞÑ xn

are dissolved beginning at the last element, i.e., the result of prj1 for this tuple is
x1 ÞÑ x2 ÞÑ ☎ ☎ ☎ ÞÑ xn✁1. The definition of all projection functions is comprised by the
axiom prj_d.

Consistency conditions are defined on top of the state set. For example, the
conditions χ1, χ2, . . . , χm , each of which depending on at least one state component
dyn1_q, dyn2_q, . . . , dynn_q, are defined as part of STATE. Additionally, we exclude interim
states by requiring that state P CONSISTENT_STATE and conditions χ✶

1, χ✶
2, . . . , χ✶

k . We mark
the property cst_1 as theorem such that it must be validated.

CONTEXT model common

CONSTANTS

STATE

dyn1 q

dyn2 q

. . .

dynn q

AXIOMS

st: STATE ✏ tdyn1 ÞÑ dyn2 ÞÑ ☎ ☎ ☎ ÞÑ dynn ⑤
dyn1 P DYN1 ❫ ☎ ☎ ☎ ❫ dynn P DYNn ❫
χ
✶
1 ❫ χ

✶
2 ❫ ☎ ☎ ☎ ❫ χ

✶
k ✉

cst: CONSISTENT STATE ✏ tdyn1 ÞÑ dyn2 ÞÑ ☎ ☎ ☎ ÞÑ dynn ⑤
dyn1 ÞÑ dyn2 ÞÑ ☎ ☎ ☎ ÞÑ dynn P STATE ❫
χ
✶
1 ❫ χ

✶
2 ❫ ☎ ☎ ☎ ❫ χ

✶
k ✉

cst 1: CONSISTENT STATE ❸ STATE theorem

dyn1 t: dyn1 q P STATE Ñ DYN1

. . .

dynn t: dynn q P STATE Ñ DYNn

prj d: ∀ q ☎ q P STATE ñ
dyn1 q ✏ prj1♣prj1♣prj1♣. . . ♣prj1♣qqqqqq ❫
dyn2 q ✏ prj2♣prj1♣prj1♣. . . ♣prj1♣qqqqqq ❫
. . .

dynn q ✏ prj2♣qq
END

150

5 Specification Engineering

Primitive Operations Each command of the authorization scheme of a model instance uses
primitive operations to model state transitions. Thus, the specification of the model instance
must be able to access the model’s primitive operations. As a consequence, for each primi P
PRIM we specify a constant primi of type primi : STATE ✂ T

primi

1 ✂ T
primi

2 ✂ ☎ ☎ ☎ ✂ Tprimi
n Ñ

STATE, where T
primi

j represent the input parameter types of the primitive operation that
have replaced the input vector X during algebra engineering (Section 4.4.2.1). For example,
the operation addUsers : State ✂ SetrUsers Ñ State is rewritten as constant of type

addUsers : STATE✂ P♣USERq Ñ STATE.

Almost any primitive operation has specific properties (idempotence, reversibility, or commu-
tativity), which we define as additional theorems B♣cq. This contributes to a specification’s
correctness, since violations of these properties lead to unprovable theorems.

In Event-B each primi is specified as constant within an individual context model_i (Fig-
ure 5.2). Besides the definition of an operation’s name and type, a specification contains its
semantics by a pre- and a postcondition. The postcondition is specified by defining the mod-
ifications of q in tuple notation. That means, in the following Event-B scheme the expression
q✶ has to be replaced by a specific state tuple. The precondition is defined ahead within round
brackets. To ensure inner consistency of the specification, we define an additional theorem
primi_v for each primitive operation, which validates that the subsequent state q✶ P STATE.

CONTEXT model i

EXTENDS

model common

CONSTANTS

primi

AXIOMS

primi t: primi P STATE✂ T
primi

1 ✂ T
primi

2 ✂ ☎ ☎ ☎ ✂ T
primi
n Ñ STATE

primi d: ∀ q, a1, a2, . . . , an ☎ ♣
q P STATE❫
a1 P T

primi

1 ❫ a2 P T
primi

2 ❫ ☎ ☎ ☎ ❫ an P T
primi
n q

ñ primi♣q ÞÑ a1 ÞÑ a2 ÞÑ ☎ ☎ ☎ ÞÑ anq ✏ q✶

primi v: ∀ q, a1, a2, . . . , an ☎ ♣
q P STATE❫
a1 P T

primi

1 ❫ a2 P T
primi

2 ❫ ☎ ☎ ☎ ❫ an P T
primi
n q

ñ q✶ P STATE

END

For example, the post- and the precondition of the commando addUsers() are defined as
follows. While the postcondition (1. statement) defines the state transition by adding a set
of new users to the user set contained in the state, the precondition (2. statement) restricts
the execution of addUsers() to those input sets that do not contain already existing users.

addUsers♣q ÞÑ uq ✏ ♣U_q♣qq ❨ uq ÞÑ S_q♣qq ÞÑ UA_q♣qq ÞÑ user_q♣qq ÞÑ roles_q♣qqq

∀ q, u ☎ ♣q P STATE❫ u P P♣USERq ❫ u❳ U_q♣qq ✏ ∅q ñ addUsers♣q ÞÑ uq ✏ . . .

151

5.4 TCB Specification Method

Conditions Conditions guard the execution of primitive operations within the commands
of an authorization scheme. That means, they also have to be accessible by the specification
of a model instance. We hence apply the same specification method: for each cond P COND
we add a constant condi of type condi : STATE✂Tcondi

1 ✂Tcondi
2 ✂☎ ☎ ☎✂Tcondi

m Ñ BOOL, where
Tcondi

j are the individual input types of the replaced input vector X and BOOL is the base
set of Boolean values.

In Event-B specifying conditions is less complex than specifying primitive operations, since
they map to Boolean values instead of the state set such that we do not have to define axioms
for inner consistency. In analogy to primitive operations, we add a constant condi_t for each
condi . We use the function bool♣fq to represent the Boolean value of a logic statement f.
That means for a specific condition, f♣q, a1, . . . , anq is to be replaced by the statement that
expresses the Boolean value of the condition. All conditions are subsumed in the context
model_cond.

CONTEXT model cond

EXTENDS

model common

CONSTANTS

condi

AXIOMS

condi t: condi P STATE✂ Tcondi

1 ✂ Tcondi

2 ✂ ☎ ☎ ☎ ✂ Tcondi
m Ñ STATE

condi d: ∀ q, a1, a2, . . . , am ☎ ♣
q P STATE❫
a1 P Tcondi

1 ❫ a2 P Tcondi

2 ❫ ☎ ☎ ☎ ❫ am P Tcondi
m

q ñ condi♣q ÞÑ a1 ÞÑ a2 ÞÑ ☎ ☎ ☎ ÞÑ amq ✏ bool♣f♣q, a1, . . . , amqq
END

At this stage of specification engineering all components of a core-based model are rewritten.
It now remains to transform the individual properties of a specific model instance of this
model in a formal specification.

5.4.2 Specification of a Model Instance

Specifying a model instance is concerned with rewriting all components of the model in-
stance in the notation of a formal specification, thereby reusing the model specification of
Section 5.4.1:

• Elements of the codomains,

• Initialization of the extension vector,

• Initial state, and

• Authorization scheme.

This section rewrites each model instance component in an abstract way and in Event-B
notation.

152

5 Specification Engineering

Elements of the Codomains A model instance names the specific elements of a model’s
codomains. Thus, we have to specify each element of the previously defined base sets. This
is done by specifying a constant ej P Ti for each primitive element ej P Ti , where Ti is the
specification of codomain Ti . On top of that, we have do specify axioms, which ensure that all
ej are pairwise disjoint. In case all elements of a codomain are specified by a model instance,
an additional axiom Ti ✏ tej♣1q, ej♣2q, . . . , ej♣nq✉ is required that defines the completeness of
the base set Ti .

In Event-B elements e1, . . . , en of the base sets SETi are specified as constants, and they are
mapped to their base sets via axioms SETi_p. The function partition♣M, P1, P2, . . .q defines
P ✏ tP1, P2, . . .✉ as a partition of M. By mapping each ej to another subset of the partition,
we can express that they are pairwise disjoint. On top of that, partition♣q also types ej by
mapping it to its base set SETi.

CONTEXT instance context

EXTENDS

model

CONSTANTS

e1

e2

. . .

en

AXIOMS

SETi p: partition♣SETi, te1✉, . . . , ten✉q
END

Initialization of the Extension Vector A model instance also defines the values of the ex-
tension vector elements. In a specification we have to map these values to the vector elements
by defining axioms in the model instance context. These axioms have to be consistent with
respect to the axioms that define the elements’ types and properties. That means, for each
extension vector element ei with value vi and specification stati , we have to define an axiom
stati ✏ vi .

In Event-B this is done in within instance_context with axioms stati : stati ✏ vi.

Initial State Before specializing the initial state of the model instance, we have to define
the state set of the model instance specification. This is done by specifying a variable state

as element of STATE or CONSISTENT_STATE and invariants I♣x, cq. The initial state v♣cq
then defines specific values q0 ✏ ♣d10

, ..., dn0
q, where di P Di ; the definition must be correct

with respect to state and the invariants I♣x, cq.
In Event-B the state set is defined as part of the state machine specification by using the

clauses VARIABLES and INVARIANTS. The state machine of a model instance is specified as
a MACHINE called instance. By means of axiom inv1, it defines the instance’s state as
element of CONSISTENT_STATE , which has already been specified in model_common. To ease
the validation of theorems, an additional theorem inv2 specifies state P STATE, which is
true since CONSISTENT_STATE ❸ STATE. The state variable is initialized by the Event-B

153

5.4 TCB Specification Method

operation INITIALISATION, which maps values to a given variable. Here, we have to use the
tuple notation, because the state is defined as Cartesian product.

MACHINE instance

SEES instance context

VARIABLES

state

INVARIANTS

inv1: state P CONSISTENT STATE

inv2: state P STATE theorem

END

EVENTS

INITIALISATION ♣✏
begin

act1: state :✏ d1 ÞÑ d2 ÞÑ ☎ ☎ ☎ ÞÑ dn

end

END

Authorization Scheme The authorization scheme contains a set of state-modifying and non-
state-modifying commands, which define the dynamic behavior of a model instance via the
state transition function and the output function. It now remains to add the authorization
scheme to the specification of the model instance, in order to specify the behavior of the
state-based system. In doing so, we define each command of the authorization scheme as
operation oi : rpi , prei , postis of the state machine: the parameters pi of a command are
contained in the codomains Ti of a model, which have already been specified by the base
sets of the model specification. A command’s conditions are subsumed by the operation’s
precondition prei ; each condition of the model is already specified by condi . In analogy, a
command’s primitive operations are subsumed by the operation’s postcondition postj , where
each primitive operation is already specified by primi . The postcondition is defined as xk :✏
a♣pi , x, cq, where xk is a state variable and a is a value that is calculated in dependence
on the parameters, the predecessor state, and some constant, by sequentially executing a
command’s primitive operations. For example, the command login♣q of the RBAC HIS policy
(Appendix B.2) is specified as

state :✏ mapUserSessions♣ createSessions♣state, ts✉q, t♣s, uq✉q,

where mapUserSessions, createSessions, s, and u are the specified model components with
the same names. The only difference of non-state-modifying operations is that they return a
value of type BOOL instead of STATE.

In Event-B the operations are specified by EVENTS. Preconditions are called guards, and
an event can only occur if all guards (statements in predicate logic) are met. Postconditions
are specified as assignments x :✏ a. From this it follows, that for each command of the
authorization scheme we have to define an event and rewrite its conditions as guards, using
the previously defined pcondi. A command’s consequent is rewritten as an assignment, which
assigns a new value (computed by the command’s primitive operations) to the state variable.

154

5 Specification Engineering

MACHINE instance

. . .

EVENTS

eventi ♣✏
any

p1 > parameters

. . .

pn

where

grd1: G1 > guards

. . .

grdm: Gm

then

act: state :✏ a > primitive operations

end

END

To ensure the inner consistency of the specification, axioms have to be defined that prove
that the resulting states are contained in the specification’s state set. The successful validation
of these axioms then guarantees that based on a consistent initial state and by applying the
machine’s events under consideration of their guards, only consistent successor states can
be reached. This is a significant contribution to the specification’s correctness and inner
consistency.

5.5 Summary

This section has presented a general specification method for arbitrary security models in
core notation along with their derived TCB function sets. Even though we have configured
this method for Event-B due to is language features and sophisticated tool support, it can
easily be configured for other specification languages for sequential, state-based systems.

We have applied the specification method for Event-B to the RBAC HIS policy. Ap-
pendix D contains the complete TCB specification; further refinements are illustrated in [178].
First, we have specified a set of contexts for the core-based RBAC model of Section 3.4.5.
By extending the unified model context, we then have specified the state machine for the
RBAC HIS model instance presented in Appendix B. Thereby, we have demonstrated that
the specification method can be applied to a core-based model instance that is inspired by a
real-world RBAC policy. The results of doing so are discussed in Section 6.

155

6 Evaluation

If we knew what it was we were doing, it would not be
called research, would it?

Albert Einstein

This dissertation has developed a method for systematically engineering TCBs based on
causal dependencies between security policies and TCB functions. The foundation of causal
TCB engineering are security models in core notation to formally express the policies that
are present in causal TCBs. A TCB’s functional perimeter is then derived from core-based
models by a rule system that formalizes said causal dependencies.

To the best of our knowledge, this is the first approach that identifies a TCB’s components
already at the functional level. Many approaches such as [123,143,169–171,227] also aim at
reducing the size of a system’s TCB; however, they tackle the problem at the implementation
level.

The precise identification of a TCB’s functional perimeter leads to a set of merits that
are hard to achieve at the level of implementation. The main merits are: (i) it allows for
implementing a TCB in a safe environment that indeed can be isolated from untrusted system
components. (ii) It defines the scope of system verification. That means, by identifying a
TCB’s functions and by strictly isolating them from untrusted system functions, these and
only these functions have to be verified at implementation level.

The goal of this chapter is to evaluate whether causal TCB engineering indeed is able to
precisely identify a TCB’s functional perimeter. To this end, we evaluate if the functional
perimeter is as small as possible with respect to a TCB’s policies. Additionally, this section
aims at evaluating the feasibility of the model-based engineering approach for real-world
application scenarios. Here, it is significant to show for instance that the functions of a causal
TCB can be straightforwardly implemented with low effort and that the implementation
process is supported by adequate methods and tools.

The application scenarios for causal TCB engineering are manifold. The ones that mostly
benefits are: policy-controlled OS, embedded systems, and policy engineering. Policy-
controlled operating systems benefit in that a TCB’s functional perimeter exactly defines
the OS components that have to be trusted and hence isolated. This contributes to setting
the course for formal verifications of operating systems and hence for guaranteeing their se-
curity properties. In the context of embedded systems, causal TCBs help to identify the
number of required trusted functions. This is important since an increasing amount of code
that even might not be needed for the limited functionality of embedded systems increases the
memory footprint, which is considered an important constraint for embedded systems [66].
On the other hand, causal TCB engineering indirectly supports policy engineers via the com-
mon model core. By using models in core notation, engineers can exploit model-independent
methods and tools for model engineering and model analysis, which improves not only the
efficiency but also the effectiveness of policy engineering.

On this account, Section 6.1 introduces four evaluation goals and motivates the chosen
evaluation methods. The following sections then accomplish the evaluation by applying

157

6.1 Evaluation Goals and Methods

the chosen methods. Since this dissertation focuses on methods to identify and implement
the functions of a TCB’s policy-dependent RTE, the evaluation goals are directed to the
engineering methods of the policy-dependent RTE. Evaluating the policy-independent RTE,
particularly implementing it on a specific implementation platform, remains future work
(Section 8).

6.1 Evaluation Goals and Methods

The main evaluation goal is to show that causal TCB engineering is able to precisely identify
the functional perimeter of TCBs. This requires that the functional perimeter derived from
a TCB’s policies is as small as possible with respect to the present security policies and
thus may not contain functional redundancy. In contrast to specification engineering, where
dedicated specification redundancy results in a set of advantages as discussed in Section 5.2,
redundancy of TCB functions only increases the functional perimeter and hence has to be
avoided.

The functional design of causal TCBs already deals with functional redundancy when more
than one policy is present. In this case, all model functions that are shared by the policies
are subsumed in an additional sub-layer to avoid functional redundancy across different sets
of model functions (Section 4.1.2). However, redundancy can still occur within the derived
model function sets if engineering a TCB’s policy-dependent RTE does not consider that.
For this reason, we evaluate how the derivation of the TCB functions deals with functional
redundancies in Section 6.2. Here, the evaluation method is to qualitatively argue how ADT
engineering avoids functional redundancy.

To evaluate the feasibility of the model-based approach of causal TCB engineering for real-
world application scenarios, we discuss three additional evaluation goals that are inspired by
the applied methods of this dissertation:

• Expressive power and modeling effort of core-based model engineering,

• Implementation effort for policy substitution, and

• Formal TCB specifications as basis for implementing the policy-dependent RTE.

In order that causal TCBs can be applied in real-world systems, they must be able to
support a wide variety of significant security policies. This in turn means, that the model
core must be able to express a wide range of security models, since policies are formalized by
core-based models to derive a TCB’s functional perimeter. Consequently, we have to evaluate
the expressive power of the model core and core-based model engineering with respect to the
models they can adequately express. On the other hand, the effort for engineering a model in
core notation must not be higher than compared to engineering arbitrary models without the
model core. Only then is core-based model engineering attractive to be applied to formalize
real-world policies.

The applied evaluation method is based on demonstrating the model types the model core
can adequately express. This we have already done in detail in Sections 3.4 and 3.5.1. Due
to completeness reasons, Section 6.3 briefly revisits the results of these discussions. On top
of that, it summarizes the involved modeling effort.

Supporting the substitutionality of policies is a significant property of causal TCBs. The
substitution of policies generally is supported by the functional TCB design in that the policy-
dependent RTE of other policies is not affected when modifying the functional perimeter of

158

6 Evaluation

one policy. It now remains to evaluate if the same statement can be applied in the context
of a TCB’s implementation. Here, we must analyze the implementation effort for the policy-
dependent RTE, whenever a policy requires to modify a TCB’s functional perimeter. Only
in case this is in fact as low as conceptually designed, the implementation of causal TCBs in
real-world applications is feasible.

To evaluate the implementation effort (Section 6.4), we first build a prototype implementa-
tion of a policy-dependent RTE that is tailored to enforce the RBAC HIS policy introduced
in Section 3.4.4. The prototype is implemented as a C++ user mode program that imple-
ments the derived TCB functions of Section 4.5. By this means, we first show that functions
derived by ADT engineering can be straightforwardly implemented. Additionally, we analyze
the implementation effort for loading and unloading TCB functions based on this prototype.
Here, we distinguish between different cases: (i) adding a novel policy, (ii) removing a policy,
and (iii) modification of a policy.

Causal TCBs are developed individually for each application scenario. In the context of
TCB implementation, this leads to that the gap between TCB functions described by ADTs
and a platform-specific TCB implementation is bridged every time anew. To provide method
and tool support for this step, we have developed a specification method for formal TCB spec-
ifications in Section 5.4. It remains to evaluate if these TCB specifications produced by the
specification method can serve as basis for implementing a TCB’s policy-dependent RTE for
real-world scenarios. That means, we evaluate in Section 6.5 if the resulting TCB specifica-
tions meet the requirements that we have identified to be fundamental for a TCB specification
to serve as basis for an implementation. The evaluation method is to qualitatively argue how
TCB specifications meet said requirements. This argumentation is supported by the example
TCB specification for the RBAC HIS policy.

6.2 Functional Redundancy of the Policy-dependent RTE

While Section 4.1.2 has discussed how the functional TCB design deals with functional re-
dundancy, the goal of this section is to show that engineering a TCB’s policy-dependent RTE
results in a nonredundant functional perimeter. As introduced in Section 4.4.1, engineering
a policy-dependent RTE consists of two steps: algebra and ADT engineering. While algebra
engineering rewrites a core-based model in a set of algebras, ADT engineering derives the
functions of the policy-dependent RTE from these algebras. Here, two kinds of functional
redundancy may occur: functional redundancy that crosses the borders of multiple security

model functions components (Section 6.2.1) and functional redundancy within a single
security model functions component (Section 6.2.2). The following sections qualitatively
discuss the engineering principles applied by ADT engineering that aim at a nonredundant
functional perimeter of the policy-dependent RTE.

6.2.1 Redundancy across Multiple Security Model Functions Components

ADT engineering derives the functional perimeter of the policy-dependent RTE from core-
based models instead of model instances. That means, for each even slightly different secu-
rity model, a separate security model functions component is integrated in the policy-
dependent RTE. Depending on the degree of model similarities, functional redundancy across
the multiple security model functions components may thus occur.

159

6.2 Functional Redundancy of the Policy-dependent RTE

To avoid this kind of functional redundancy, ADT engineering applies the notion of sub-
suming security models (Section 4.4.2). By unifying primitive actions and clauses of models
with shared state spaces and extension vectors, the subsuming model constitutes an upper
bound for the functional perimeter of the required policy-dependent RTE. ADT engineering
then derives exactly one security model function component for each subsuming model,
containing all functions that are required by the subsumed models. By this means, functional
redundancy across multiple security model functions components can no longer occur.

6.2.2 Redundancy within a Security Model Functions Component

Based on a set of component algebras for each security model, ADT engineering generates a
set of ADT operators, which represent the TCB functions that are needed to implement the
algebras. In doing so, ADT engineering produces a separate operator set for each component
algebra and afterwards unifies all derived sets. The resulting set contains all functions that
are required to implement the underlying model. In case a TCB enforces multiple models,
this procedure must be applied to each model. The last step is then to unify all model
function sets such that the resulting set contains all functions of a TCB’s policy-dependent
RTE.

In general, unifying TCB function sets follows the semantics of the set union operator,
whose basic property is to avoid redundant set elements. That means, we have mapped the
problem of a redundancy-free TCB function set to identifying whether a function is a member
of more than one function set. This we have solved as follows.

Each TCB function is described by a name, a domain and a codomain, an access status,
and an optional return value (Definition 4.3). The semantics of a function is specified either
by the mapping β : P♣Oq Ñ UO, which maps a set of ADT operators to a universe operation,
or by axioms of the ADT that the function belongs to. However, in both cases it is true that
functions with the same semantics have the same name. Thus, a name can be considered
a unique identifier for a TCB function, independent of any other function attributes. As a
consequence, the set union of TCB function sets avoids redundancy by simply comparing the
functions’ names.

6.2.3 Summary

ADT engineering has to deal with two kinds of functional redundancy: across multiple
security model functions components and within a single security model functions

component. The first kind of redundancy is avoided by applying the notion of subsuming se-
curity models to constitute an upper bound for the functional perimeter of a policy-dependent
RTE. On the other hand, functional redundancy within a security model functions com-
ponent is avoided by a set union of the derived TCB function sets.

From this it follows that ADT engineering produces TCB function sets that are as small as
possible with respect to a TCB’s policies, since they do not contain functional redundancy.
As a consequence, the functional perimeter of causal TCBs is exactly defined.

On top of that, the algebraic approach, the formal rule system, as well as the set-theoretic
approach to avoid functional redundancy are the key enablers for an automated tool that
composes the functional perimeter of a causal TCB. Output of such a composition tool then
is a set of TCB functions that serves as basis for a TCB’s implementation. This contributes
to unlocking causal TCB engineering to manifold application scenarios.

160

6 Evaluation

6.3 Expressive Power and Modeling Effort of Core-based Model
Engineering

To evaluate the feasibility of the model-based approach of causal TCB engineering for real-
world application scenarios, this section briefly revisits the results of core-based model engi-
neering with respect to its expressive power and the involved modeling effort. Section 3.5.1
has argued that the computational power of the model core is precisely equivalent to a Tur-
ing Machine [107, 108, 233, 234]. To reason for the core’s express power to be applicable for
real-world policies, however, analyzing the computational power alone is not sufficient. We
also have to consider its ability to adequately formalize security models.

First, we have identified the common model core in Section 3.1 by a security model family
tree that has revealed that deterministic automata already are immanent parts of existing
models like [26, 35, 69, 92, 101, 106, 204, 209, 254]. In the following, we have generalized the
model-specific automata in such a way that these models have become specific instances of
the common model core.

We have demonstrated in detail in Sections 3.3 and 3.4 that the model core adequately
expresses the HRU model [107, 108], Sandhu’s RBAC3 model [212] and hence all models of
Sandhu’s RBAC model family, an MLS model for web services [119,120] that is based on the
well-known BLP model [26, 27], and a general ABAC model that can be specialized to the
needs of specific application scenarios that use attributes for access control decisions [251].
From this it follows that core-based model engineering can be applied to (i) IBAC, RBAC,
and ABAC models, each of which in their DAC and MAC variant, and (ii) information
flow models that use lattices for modeling information flow rules. On top of that, we have
shown in Section 3.5.1 that core-based model engineering can also adequately express trust
management models by means of the RT model family of [159,160].

The basis of the expressive power of core-based model engineering is the model core that
is minimal with respect to domain-specific model abstractions. All it remains to do is to
specialize the core’s components, which significantly eases the burdensome process of model
engineering. In the case of re-engineering an existing model, the modeling effort depends
on the model to be re-engineered. If it already supports policy dynamics by means of a
deterministic automaton, the effort is limited to rewriting the model components in core
notation. If it is static, the modeling effort depends on the modeling goal: the modeling
effort to rewrite a static model in a static core-based model is limited to specializing the
core’s extension vector E . In case the static model is to be enhanced by policy dynamics in
core notation, the state set Q, the input set Σ, and the state transition function δ also need
to be specialized.

In summary, we have provided proof that the common model core along with core-based
model engineering can adequately express a wide variety of security models that is significant
for modeling real-world security policies. The basis of the model core’s expressive power is its
minimality with respect to domain-specific model abstractions. A policy engineer only has
to specialize the deterministic automaton along with the static extension vector. Therefore,
core-based model engineering considerably contributes to unlocking causal TCB engineering
for real-world applications scenarios.

161

6.4 Implementation Effort for Policy Substitution

6.4 Implementation Effort for Policy Substitution

The goal of this section is to compare the effort for modifying the functional perimeter
of a policy-dependent RTE, which we have discussed based on the functional design of a
causal TCB in Section 4.2, to the actual effort involved in a TCB’s implementation. To
this end, we have developed a prototype implementation of a policy-dependent RTE to serve
as basis for analyzing the implementation effort. Section 6.4.1 gives a short overview of
this prototype implementation. The implementation effort that is involved when policies
are loaded, respectively unloaded, or when the functional perimeter of a present policy is
modified, is then discussed in Section 6.4.2. Note that even though this discussion is based
on a platform-independent user mode program, all statements are also true for an analogous
platform-dependent implementation within a policy-controlled OS.

6.4.1 Prototype Implementation of a Policy-dependent RTE

The prototype implements a policy-dependent RTE, which is tailored to the RBAC HIS
policy introduced in Section 3.4.4. The basis for the prototype implementation are the TCB
functions that we have derived from the core-based RBAC HIS model in the process of ADT
engineering in Section 4.5.1.

The naïve approach for implementing the derived TCB functions is to generate the program
code based on the class diagram illustrated in Figure 4.28. However, this approach thwarts the
functional design of causal TCBs (Figure 4.3), which distinguishes not only between security
model functions and model instance functions, but also between shared model functions
and individual model functions to avoid functional redundancy. To follow this approach
in a TCB’s implementation, we thus have to determine first, which of the derived TCB
functions are specific for the RBAC HIS model and which may be shared by other models.
We subsequently discuss a model-independent rule for doing so.

As discussed in Section 6.2.1, it can never happen that two security model functions

components within a policy-dependent RTE contain the same functions to implement the
models’ state set and extension vector. Hence, these functions are specific for each security

model functions component. In contrast, it may happen that multiple model implemen-
tations use (some of) the same primitive types (e.g., roles or users). However, these models
usually belong to the same model domain and since we aim at collecting model functions
that are shared beyond model domains, primitive types are not considered shared model
functions. From this it follows that the functions to implement a model’s primitive types,
state set, and extension vector are model-specific. On the contrary, the remaining functions
are shared model functions. The reason is that these functions are derived from the algebras
of the unified algebra foundation (Section 4.4.2.1), which can express a wide variety of core-
based models in algebra notation. Thus, deriving TCB functions from these shared algebras
naturally results in shared model functions.

Based on this rule we have structured the classes that implement the policy-dependent RTE
for the RBAC HIS policy as illustrated in Figure 6.1. For each ADT we have generated a
class with the same name, and we have added this class either to the package rbac-his-model,
representing a specific security model functions component, or to the package shared-
model-functions. Note that we thereby have retained the individual types of the model’s
basic elements rather than collapsing them into a single one that may be implemented either
by a platform-specific primitive type such as int or string, or by a single object type. As a
result, all derived TCB functions are contained in either one of these two packages. The next

162

6 Evaluation

step has been to implement the functions and compose the program code of the executable

RBAC HIS policy.

rbac-his-policy

interceptors

rbac-his-model

shared-model-functions

Policy-dependent RTE

Set_T

Map_T

Rel_T

Matrix_T

Bool_T

State_T

ExtVec_T

<< uses >>

<< uses >>

RBACHISPolicy

Object_T

Role_T

Session_T

Operation_T

User_T

Management

<<realize>>

Interceptor
<<interface>>

...

Figure 6.1: Prototype Implementation of the Policy-dependent RTE

All classes that implement the executable RBAC HIS policy are contained in the package
rbac-his-policy. The class RBACHISPolicy basically contains two member variables repre-
senting the policy’s current state and extension vector, on which the authorization scheme is
implemented as shown in Figure 4.28. A policy’s management strategies, e.g., for thread or
memory management, are subsumed in the class Management. Depending on the complexity
of the chosen strategies, a policy implementation may need more classes, which can then be
added to the package.

As motivated in Section 4.4.3, the functional component interceptor does not contain
additional TCB functions, but defines function signatures, which have to be implemented
by a TCB’s policies. For this reason, the corresponding Interceptor class is implemented as
interface that is realized by the RBACHISPolicy class. The Interceptor is contained in an
additional package, called interceptors, which provides the basis for building a hierarchy of
interceptor classes within this package, in case a TCB contains many policies and possibly one
or more meta policies. For executing a policy request, the implementation of the functional
component generic object manager calls the interface methods of the Interceptor via a
uses-dependency.

When combining this implementation of the policy-dependent RTE with an platform-
specific implementation of the policy-independent RTE, additional uses-relations must
emerge. In order that the RBACHISPolicy is correctly enforced in a TCB, it is reliant
on the interface functions provided by the components of the policy-independent RTE. More
precisely, a policy needs to call the methods of the implementation of the functional compo-

163

6.4 Implementation Effort for Policy Substitution

nents entity identification server, TPS manager, memory manager, thread manager,
and transaction manager.

6.4.2 Implementation Effort

Using the prototype implementation of Section 6.4.1, this section discusses the implementa-
tion effort that is involved whenever a policy requires to modify a TCB’s functional perimeter.
In doing so, we distinguish between three cases, each of which requiring a different imple-
mentation effort:

• Adding a Novel Policy,

• Removing a Policy, and

• Modifying a Policy.

Adding a Novel Policy The effort for modifying the implementation of a policy-dependent
RTE to the requirements of a novel policy depends on the core-based model, by which the
policy is expressed. Here, we must consider two possible cases as illustrated in Figure 6.2.
(i) The model is a subsumed model and thus shares the definition of the state set Q and
the extension vector E with at least one of the present policies. In this case, we do not
need to add a new package, since the policy can be implemented by the functions of the
existing packages. It only remains to check, whether the subsuming model already contains all
primitive operations and clauses that are required by the novel policy, i.e., whether PRIMN ❸
PRIMS and CLN ❸ CLS , where PRIMN and CLN are the sets of primitive operations and
clauses of the novel policy’s model and PRIMS and CLS are the corresponding sets of the
subsuming model. If they are contained, the package that implements the subsuming model
does not need to be modified at all. Otherwise, at least one primitive operation or clause is
missing in the implementation such that corresponding functions must be added to the class
State_T and/or ExtVect_T . (ii) The model is not subsumed by any model of the present
policies and defines model-specific Q and E . Here, the implementation effort increases, since
a new package, containing the classes to implement the model state, the extension vector,
and the primitive types, must be added.

On top of that, we have to check in either of the two cases, whether the classes of the
package shared-model-functions need to be modified. This is done by subtracting the set of
derived TCB functions of all present policies O from the set of derived TCB functions of the
novel policy ON . If the resulting set if empty, the methods that are contained in the classes
of the shared-model-functions package are sufficient. Otherwise, we have to add new methods
to the existing classes or we even have to implement new classes.

Removing a Policy In case a policy must be removed from a TCB, the implementation
effort for adapting the policy-dependent RTE also depends on the model, by which the policy
has been formalized. Here, the proceeding is similar to the one illustrated in Figure 6.2. The
only differences are that implementation elements are removed rather than added and that
the 2. and 3. distinction of cases, concerning the models’ primitive actions (respectively
clauses) and the set of derived TCB functions, are diametrically opposed.

More precisely, we first have to check whether the policy has been modeled by a subsumed
model and hence shares a model package with other policies. If not, we can simply remove
the package that belongs to the policy, including its classes and methods. Otherwise, we

164

6 Evaluation

Adding a Policy

Shared
definitions of
Q and E?

PRIMN ⊆ PRIMS

∧ CLN ⊆ CLS

Implementation
Effort: None

Implementation
Effort: Modi-
fying the class

State T and/or
ExtVec T in

model package

Implementation
Effort: Adding
a new model
package with
the required

classes/methods

ON − O = ∅

Implementation
Effort: Adding

methods to
existing classes
and/or adding

new classes
within shared-

model-functions

package

yes

yes no

yes

no

no

Figure 6.2: Implementation Effort for Adding a Novel Policy

have to check if the shared model package contains implementations of primitive operations
or clauses that are not required by the subsumed models of the remaining policies. That
means, we must verify if ❊prim P PRIMR : prim ❘ PRIMS and ❊cl P CLR : cl ❘ CLS , where
PRIMR and CLR are the sets of primitive operations, respectively clauses, of the removed
model and PRIMS and CLS are the unified sets of the remaining subsumed models. If either
one of the conditions is false, we have to remove the implementing method of prim or cl from
the class State_T or ExtVec_T , since it now is superfluous. Here, we must be thorough not
to delete other methods, since this would interfere with the RTE of the remaining policies.

Afterwards, we must make sure that superfluous functions do not remain in the shared-
model-functions package. This is done by checking whether the implementation contains
methods (due to the derived function set OR of the removed policy) that are not contained
in the unification of all derived TCB function sets O of the remaining policies, i.e., ∀o P OR :
o P O. If so, there are no superfluous TCB functions that have to be removed from the classes
of the shared-model-functions package. Otherwise, we have to map any ADT operator o ❘ O

165

6.4 Implementation Effort for Policy Substitution

to its implementing method such that the method can be removed. In case all methods of a
class are removed, the class can also me removed.

Modifying a Policy Basically, modifying a policy is identical to removing the functions of
the old policy and adding the functions of the new one. However, there is one special case of
policy modification, i.e., the modification of a policy’s authorization scheme, which suggests
another course of action in a real-world implementation. In contrast to the other ones, this
policy modification is triggered by the Interceptor, who has changed its interface due to the
supported OS and its applications. As a result the policy’s authorization scheme must be
modified to still implement the interface functions; however, all data of the policy, e.g., of the
state and the extension vector, has to be maintained. Thus, the migration effort in a real-
world implementation is reduced, if the existing policy-dependent RTE is modified instead
of replaced.

Modifying a Policy

Modifications of
PRIM or COND?

Implementation
Effort: Modi-
fying the class

State T and/or
ExtVec T in

model package

Implementation
Effort: None

Superfluous/
additional shared
model functions?

Implementation
Effort: Adding

methods to
existing classes
and/or adding

new classes
to shared-

model-functions

package

yes no

no

yes

Figure 6.3: Implementation Effort for Modifying a Policy

The actual implementation effort depends on the changes made by the Interceptor though.
In the simplest case, there is no need for modifications, since the modified commands of the
authorization scheme still use the primitive operations and clauses that are already imple-
mented. Otherwise, the methods of State_T and ExtVec_T must be modified, which may

166

6 Evaluation

result in modifying the classes of the shared-model-functions package. The latter is necessary
if either the modified primitive operations or clauses use additional set-theoretic operations
that require additional TCB functions, or shared model functions become superfluous and
thus have to be removed.

Summary This section has discussed the implementation effort that is involved whenever
a policy requires to modify the implementation of a policy-dependent RTE. In all cases –
adding, removing, and modifying a policy – the implementation effort actually is as low as
discussed in the context of the functional TCB design in Section 4.2. The reason is that the
other policies that are present in a TCB are not affected by any modifications if the necessary
thoroughness is applied.

However, the implementation effort could be lower, if functional nonredundancy were not
to be enforced in a TCB’s implementation, too. The latter causes the distribution of the
RTE functions so that a policy is implemented not only in model-specific packages, e.g., the
rbac-his-policy package, but also in a shared-model-functions package. Thus, when policies
are substituted, each location of the RTE functions must be analyzed with respect to missing
or redundant TCB functions, thereby increasing the implementation effort.

Under consideration of this trade-off between functional nonredundancy and implementa-
tion effort, the latter is as low as possible, since other policies are not affected if the necessary
thoroughness is applied. This sets the course for substituting policies in real-world applica-
tion scenarios, where policies have to be enforced while obsolete policies are removed or novel
policies are added.

6.5 Formal TCB Specifications

This section evaluates whether the specification method introduced in Section 5.4 produces
formal TCB specifications that can serve as basis for generating an implementation of a TCB’s
policy-dependent RTE. That means, we have to analyze whether the resulting specifications
meet the requirements discussed in Section 5.2. To this end, we have exemplarily applied the
specification method to the RBAC HIS policy; the resulting TCB specification can be found
in Appendix D. This section summarizes the results with respect of said requirements and
the suitability of the employed specification language Event-B. An elaborate discussion of
the results can be found in [178].

The RBAC HIS specification is complete and externally consistent with respect to the
RBAC model instance because of the methodic approach that covers all model and model
instance components. More precisely, the method has produced an isomorphism between
the states and the state transitions of the model instance and the Event-B specification.
However, we have encountered difficulties when proving the external consistency with an
animator: the animation of the specification is only possible with increased effort since the
employed ProB animator [239] cannot animate potentially infinite sets such as the state set in
the model specification [178]. Besides enhancing the animator to circumvent this problem, an
alternative approach is to further refine the specification towards individual state variables.

To assure inner consistency, we have employed mostly tool-supported validation techniques
of the Rodin platform [7]. That way, the quality of the specification method significantly
depends on the maturity of the employed tools as well as on the applied specification language.
Here, the result is that the RBAC HIS specification contains more than 100 proof obligations,
ca. 54% of which could be proven automatically, while the remaining ones had to been

167

6.5 Formal TCB Specifications

proven manually within the Rodin platform. This leads to a high degree of inner consistency;
however, the specification effort can be reduced by an order of magnitude if the employed
development platform is enhanced to prove more proof obligation types.

Reusability of the specifications is attained by separating the specification of the security
model from a model instance’s specification. That way, a model specification can be reused
by any instance of the model. The degree of reusability could be higher though, if model
specifications were able to reuse components of other model specifications. This requires a
specification language that allows for building a hierarchy of model specifications based on
extensive inheritance relations as briefly discussed in Section 8.

Since there are no metrics to evaluate the size and complexity of the RBAC HIS specifi-
cation, we support our claim that this requirement is also met, by the following reasoning.
The complexity of the RBAC HIS specification is located, as required, in the model spec-
ification, where the state set along with primitive operations is specified. A good part of
the complexity arises from the necessity to specify the state set as a set instead of defining
a general state machine for the model specification. This could be avoided by an improved
specification language though. The main part of the complexity arises from specifying strict
preconditions for the primitive operations, resulting in complex guards. The reason is that
one state component (called roles) is defined as a power set, which increases the complexity
of handling this component. This could also be avoided by remodeling the model component
and its specification. With respect to the size of the specification, the initialization of the
extension vector elements and the specification of the primitive operations are conspicuous.
The reason for the latter are the validation theorems (primi_v), which are redundant re-
garding the primitives’ definition theorems. To solve this redundancy without jeopardizing
the consistency of definition and validation theorems, an improved specification language or
additional tool support is required.

By this mean, we can reason for the necessity of an increased specification size and higher
complexity based on the underlying model instance or the limits of Event-B. Meeting the
requirement of small specifications with low complexity hence does not only depend on a
thorough specification but also on the employed specification language and its development
tools; and even though Event-B already provides sophisticated language features and tool
support, both leaves room for improvements (Section 8).

In summary, the resulting TCB specification can serve as basis for generating the source
code of the policy-dependent RTE due to the following reasons: (i) under consideration of the
necessary thoroughness, the method generally produces formal specifications that meet all
the requirements of Section 5.2. Thereby, TCB specifications are amenable to tool-supported
validation techniques, which provides the foundation to stepwise generate TCB implementa-
tions that are amenable to verification. We have supported our claim by means of the TCB
specification for the RBAC HIS policy. (ii) In [178] we have exemplarily shown how the formal
specification of a model instance can be refined by using the derived ADTs of Section 4.5. The
result is that the specification’s level of abstraction becomes more implementation-oriented,
while the correctness of each refinement step can be proved. (iii) There are a variety of
industrial projects, which have demonstrated that generating source code based on Event-B
specifications is feasible [71]. (iv) The Event-B community provides a set of plug-ins that
support automated source code generation based on Event-B specifications [198]. The devel-
opment of a compiler-like tool to generate the source code remains future work.

168

6 Evaluation

6.6 Summary

This section has evaluated causal TCB engineering with respect to the dissertation’s main
goal – the precise identification of a TCB’s functional perimeter. Thereby, it has focused on
ADT engineering, which produces the functions of a TCB’s policy-dependent RTE.

A precisely defined functional perimeter of a policy-dependent RTE must be as small as
possible with respect to a TCB’s security policies, which in turn requires that it is nonredun-
dant. This is met by ADT engineering by two engineering principles: functional subsumption
and set union of TCB function sets. As a consequence, causal TCB engineering indeed is able
to exactly define a causal TCB’s functional perimeter. Furthermore, causal TCB engineering
can be supported by an automated tool that composes the functional perimeter of a causal
TCB, due to its sound theoretical foundation.

On top of that, this section has evaluated the model-based approach of causal TCB en-
gineering with respect to its feasibility for real-world application scenarios. In this context,
we have identified three additional requirements for TCB engineering, which are the corner
pillars for unlocking causal TCBs for real-world application scenarios.

The first corner pillar requires that the common model core along with core-based model
engineering can adequately express a wide variety of security models. While we have given
proof that this requirement is met, we have also argued that the model engineering process
is simplified, since the modeling effort is limited to specializing the components of the model
core. Consequently, both – considerable expressive power as well as limited modeling effort
– significantly contributes to unlocking causal TCBs to real-world applications.

The second corner pillar is a low implementation effort whenever the substitution of policies
require to modify the implementation of a policy-dependent RTE. We have argued that by
considering the required trade-off between functional nonredundancy and implementation
effort, the latter is as low as possible, since other TCB policies are not affected if the necessary
thoroughness is applied. This sets the course for substituting policies in real-world application
scenarios, where policies must be enforced while obsolete policies are removed or novel policies
are added.

The last corner pillar for unlocking causal TCBs for real-world application scenarios is
method and tool support that bridges the gap between TCB functions and TCB implemen-
tations. This section has shown that the TCB specification method presented in Section 5.4
produces TCB specifications, which are amenable to tool-supported validation and can hence
serve as basis for the automated generation of the source code of the policy-dependent RTE.
By this means, the specification method promotes the efficiency of implementing a TCB’s
policy-dependent RTE while contributing the code’s correctness and consistency with respect
to the underlying model instance.

169

7 Conclusion

Competing is exciting and winning is exhilarating, but
the true prize will always be the self-knowledge and
understanding that you have gained along the way.

Sebastian Coe

Trusted Computing Bases (TCBs) of today’s policy-controlled operating systems are char-
acterized by a large functional perimeter. On the one hand, policy-controlled operating
systems are based on commodity operating systems, thereby maintaining their monolithic
architectures and scattering their policy enforcement mechanisms all over the kernel. On
the other hand, the ambition of policy-controlled operating systems to provide support for
a wide variety of security policies leads to universal policy decision and enforcement en-
vironments. Both results in large, complex, and expensive operating system TCBs whose
functional perimeter can hardly be precisely identified. As a consequence, a TCB’s essential
properties – correctness, robustness, and tamper-proofness – are hard to ensure in a TCB’s
implementation.

This dissertation has followed a different approach based on the idea of systematically
engineering TCBs by tailoring their policy decision and enforcement environment to sup-
port only those security policies that are actually present in a TCB. A TCB’s functional
perimeter is identified by exploiting causal dependencies between security policies and TCB
functions, which results in causal TCBs that contain only those functions that are necessary
to establish, enforce, and protect their policies. Causal TCB engineering sets the course for
implementations whose size and complexity provide the basis for analyzing and verifying a
TCB’s correctness and tamper-proofness.

Security policies are usually described by informal sets of rules. Since these are inade-
quate for policy analyses and implementation, numerous formal security models have been
developed that allow for formal analyses of security properties and increasingly serve as spec-
ifications for policy implementations. However, the wide variety of models makes it difficult
to exploit common abstractions for causal TCB engineering. Thus, we have developed a
formal uniform model foundation – which we refer to as security model core – that general-
izes common model abstractions of access control and information flow models. Core-based
model engineering then allows for creating a wide variety of dynamic security models with
shared model abstractions, including identity-based, role-based, and attribute-based access
control models (each in their discretionary and mandatory variant), as well as information
flow and role-based trust management models; and model engineering is reduced to special-
izing the components of the model core. As a result, the model core provides the basis not
only for causal TCB engineering but also for model-independent methods and tools for model
engineering, analysis, and implementation.

In the context of causal TCB engineering, core-based models are used to derive a TCB’s
functions. The result is that all causal TCBs share common functions – contained in the
policy-independent runtime environment (RTE) – to protect and enforce policies in core no-
tation, and policy-dependent functions – composed in the policy-dependent RTE – that are

171

derived due to causal dependencies between policies and TCB functions. We have identified
the functional perimeter of the policy-independent RTE by motivating each function and the
interface it provides. The identified functions are inspired by microkernel-based approaches
and are redundancy-free. We also have developed a model-independent method for deriving
the functions of the policy-dependent RTE based on an algebraic approach and a rule sys-
tem that formalizes said causal dependencies. Functional redundancies are avoided by two
approaches: subsuming TCB functions and set union of derived TCB function sets. The
resulting TCB function sets are as small as possible with respect to a TCB’s policies so that
the functional perimeter of causal TCBs is precisely defined. On top of that, causal TCB
engineering is based on a sound formal foundation, which allows for an automated TCB
composition tool that composes a causal TCB’s functional perimeter.

The challenge of implementing a causal TCB is to ensure implementation completeness
and consistency with respect to the TCB functions. While the implementation of the policy-
independent RTE has to be done only once, the policy-dependent RTE has to be implemented
individually for each application scenario. For this reason, we have developed a specification
method, independent of any specification language, that formally specifies a TCB’s func-
tions to serve as basis for automated source code generation of a TCB’s policy-dependent
RTE. The resulting TCB specifications are amenable to tool-supported validation techniques
such that their completeness and consistency with respect to the TCB functions and the
underlying security model can be ensured. This provides the foundation for generating TCB
implementations that are amenable to verification. We have demonstrated this approach
by configuring the specification method to Event-B, and we have applied the outcome to a
role-based access control policy that is based on a real-world application scenario. The result
is a TCB specification, whose consistency and correctness are validated by tool-supported
validation techniques and methodic reasoning, and which can therefore serve as basis for
source code generation. Thus, specification engineering improves not only the efficiency but
also the effectiveness of generating a TCB’s implementation.

In summary, this dissertation has developed a model-based TCB engineering method that
contributes to a comprehensive security policy engineering process model without semantic
gaps, whose efficiency and effectiveness are increased by model-independent methods and
tools for model engineering, analysis, TCB engineering, and policy implementation. To the
best of our knowledge, this dissertation is the first approach that identifies a TCB’s com-
ponents already at the functional level. The precise identification of a TCB’s functional
perimeter allows for implementing a TCB in a safe environment that indeed can be iso-
lated from untrusted system components. On top of that, it defines the scope of system
verification. Thereby, causal TCB engineering sets the course for implementations whose
size and complexity provide the basis for analyzing and verifying a TCB’s correctness and
tamper-proofness. The application scenarios for causal TCB engineering range from embed-
ded systems and policy-controlled operating systems to database management systems in
large information systems.

172

8 Future Work

To be conscious that you are ignorant is a great step to
knowledge.

Benjamin Disraeli,
Sybil, 1845

This dissertation has developed an engineering method for causal TCBs. The unique
feature of causal TCBs is a precisely identified functional perimeter, which supports only
those security policies that are actually present in a TCB. The foundation of causal TCB
engineering is a unified formalization of the policies using security models in core notation.

Once a policy is formalized as a core-based model instance, it is unlocked not only to
causal TCB engineering but also to a family of model-independent analyzing methods and
tools. In [16] we have introduced one member of this family: a general heuristic-based
analysis method for access control models, which we have prototypically configured to the
HRU model [107]. We also have presented a security policy engineering workbench, whose
main component is a heuristic-based symbolic model execution engine. Future work aims
at configuring this analysis method to models that can be applied to real-world policies,
thereby enhancing the workbench. As a first step, we have started the WorSE project, which
configures this method to dynamic RBAC models in core notation that are based on Sandhu’s
RBAC model family [205]. Depending on the results, this approach may also be relevant for
more current and sophisticated models such ABAC [251], parametrized RBAC [99, 228], or
GEO-RBAC [31].

In Section 4.1.2 we have argued that multi-policy support is an important feature of causal
TCBs, which requires policy isolation, communication, and coordination. While causal TCBs
already provide mechanisms for policy isolation and basic mechanisms for policy communi-
cation, policy coordination has not been considered. Future work may tackle this problem
beginning at the level of model engineering to the point of TCB engineering. To model pol-
icy coordination either by policy composition or meta policies, the core notation could be
enhanced, which has the significant advantage that necessary TCB functions can afterwards
be derived by ADT engineering. For example, meta policies could be modeled as a hierar-
chy of core-based security models. On the other hand, policy composition needs to express
composition rules for policy decisions.

The next step towards multi-policy support is at the level of causal TCB engineering. Here,
the policy-independent RTE must be enhanced by a new functional component for policy
coordination (e.g., called policy scheduler) and mechanism for inter policy process com-
munication. The policy scheduler then provides the abstraction meta policies, which
manages the policies that are involved in common policy decisions based on application-
specific strategies. On the other hand, inter policy process communication enables policy
composition by explicitly allowing security policy processes to communicate with each
other.

Another open problem at the level of TCB engineering is tool support for composing a

173

causal TCB’s functional perimeter. We have already provided the theoretical foundation by
following an algebraic approach and defining a formal rule system (Section 4). It remains to
develop an automated composition tool that implements the formal rule system. Input of
this tool is a core-based security model in algebraic notation; output is a set of related ADTs.
To tackle this problem, compiler-construction tools like Flex and Bison [151], Memphis [2], or
GENTLE [214,215] can be applied that support a developer by generating a lexical analyzer
and a syntactic parser, or by providing means to manipulate symbolic data [1].

As discussed during the evaluation of the TCB specification method for Event-B (Sec-
tion 6.5), the specification method can be further improved by a domain-specific specification
language. For example, one drawback of Event-B is that it does not support specification
hierarchies. In this case, specification engineering would be similar to core-based model en-
gineering: first, the common model core is specified from which specifications of security
models can be derived. Second, TCB specifications are created by deriving the specifica-
tions of model instances from a model specification. Hence, the degree of reusability of TCB
specifications could be further increased. Though, it is not necessary to develop a novel spec-
ification language. Due to the extensibility of Event-B and its tools, new language features
can be designed by integrating them in Event-B and its development platform. As a result,
Event-B tools such as the theorem proofer and the proof obligation generator can still be
used.

It then remains to develop a compiler-like tool that based on a validated formal TCB
specification generates a correct implementation, which is amenable to verification. In doing
so, future work can benefit from existing case studies, tool support, and refinement and
transformation techniques.

Another open problem for future work is the implementation of causal TCBs. More pre-
cisely, while Section 6.4 has focused on implementing a specific policy-dependent RTE, it
remains future work to implement the policy-independent RTE on a specific platform. Since
the functional design of the policy-independent RTE is mainly inspired by microkernels, we
suggest to implement it using a microkernel such as L4 [162, 163], which has been imple-
mented by several systems, e.g., Fiasco.OC [236] or the formally verified seL4 [137, 138].
Section 2.2.1 has introduced Nizza [123] as a security architecture built on top of Fiasco that
aims at isolating trusted from untrusted source code while providing the functionality of a
standard OS (Linux). Implementing causal TCBs within the Nizza architecture thus has
the advantage of reusing existing Nizza technologies, e.g., Fiasco, L4Linux, or authenticated
booting, along with a sophisticated development platform called L4RE [237]. Nizza’s ref-
erence implementation aims at a minimal amount of trusted code so that we have a sound
basis for implementing causal TCBs. Based on these observations, we have started a new
project that has already made the first step towards implementing causal TCBs within the
Nizza architecture by analyzing Nizza’s isolation mechanisms for policy process isolation.
The goal is to implement some components of the policy-independent RTE and the complete
policy-dependent RTE as trusted service within the secure-platform layer. The remaining
components of the policy-independent runtime environment are already implemented in Fi-
asco.

174

A Security Models

A.1 Notation

Relations In this dissertation, we consider Relations as sets of tuples. Given two sets A and
B, R ❸ A ✂ B is a relation where A✶ ❸ A and B✶ ❸ B. A is called domain and B is called
range of R.

The following definitions are based on the notation of formal specifications [72].

Domain Restriction A✶
⊳ R :✏ t♣a, bq P R ⑤ a P A✶✉

Domain restriction A✶
⊳ R of a relation R means that the domain A of R is restricted to the

subset A✶.

Range Restriction R ⊲ B :✏ t♣a, bq P R ⑤ b P B✶✉
Range restriction R ⊲ B of a relation R means that the range B of R is restricted to the
subset B✶.

Domain Subtraction A✶
⊳✁ R :✏ ♣A③A✶q⊳ R ✏ t♣a, bq P R ⑤ a ❘ A✶✉

Domain subtraction A✶
⊳✁ R of a relation R means that the subset A✶ is subtracted from the

domain A of R.

Range Subtraction R ⊲✁ B✶ :✏ R ⊲ ♣B③B✶q ✏ t♣a, bq P R ⑤ b ❘ B✶✉
Range subtraction R ⊲✁ B✶ of a relation R means that the subset B✶ is subtracted from the
range B of R.

Functions and Functional Overriding Functions are considered as left-total and right-
unique relations such that for two functions f and g holds, f ❨ g is also a function when
∀x P dom♣f q ❳ dom♣gq : f ♣xq ✏ g♣xq. Given two functions f : X Ñ Z and g : Y Ñ Z . The
overriding of f by g is defined as f❵g : ♣X❨Y q Ñ Z and f❵g :✏ ♣♣X③Y q⊳f q❨g ✏ ♣Y ⊳✁f q❨g.

A.2 MLS Model

Based on the security model of Hutter et al. [118–120], the security model for the web service
composition policy is defined as ♣Q, Σ, δ, q0, ♣LO, FI ,↕, Oq, λq where

• Q ✏ 2WS✂CL✂DEL is the set of states and any state q is defined as q ✏ ♣WSq , clq , delqq
with WSq ❸ WS , clq P CL, and delq P DEL, where

– WS is the infinite set of web services,

– CL ✏ tcl ⑤ cl : WS ❨ O Ñ LO ✂ FI ✉ is the classification function that assigns a
security class to a web service/object, and

175

A.2 MLS Model

– DEL ✏ tdel ⑤ del : WS Ñ LO ✂ FI ✉ is the delegation function that assigns a
security class to a web service.

• Σ ✏ C ✂ X is the set of inputs where C is the policy-specific set of commands and
X ✏ t♣x0, ..., xlq ⑤ ∀xi , 1 ↕ i ↕ l : xi P tj , tj P T , 0 ↕ j ➔ |T |✉ is the set of l-dimensional
input vectors and T ✏ t2WS , CL, DEL, WS , cl, del, LO, FI ,↕, O, 2LO, 2FI , 2↕, 2O✉.

• δ is the state transition function δ : Q ✂ Σ Ñ Q with conditions and primitive actions
as defined below, and

• q0 P Q where q0 ✏ ♣WS0, cl0, del0q is the initial state.

• ♣LO ✂ FI ,↕, Oq is the extension vector of static model components where

– LO and FI are the security classes with ♣lo1, fi2q ↕ ♣lo✶1, fi✶
2q iff lo1 ↕ lo✶2 and

fi1 ↕ fi✶
2 holds, and

– O is the finite set of objects,

• λ : Q✂♣A❨C q✂X Ñ ttrue, false✉ is the output function and A is the set of application
specific operations.

The set of conditions COND consists of three elements, where condMLS1
represents one of two

BLP conditions checking whether information flow is allowed from objects to web services.
The second condition of BLP (cl♣wsq ↕ cl♣oq) is implemented by condMLS2

. The condition
condDEL checks whether copying the delegation classification of one web service to a new one
is allowed. It holds true as long as the delegating web service is not classified the lowest
possible security class D1 for LO and D2 for FI.

condMLS1
: Q ✂X Ñ BOOL where

condMLS1
♣q, xws, xoq ÞÑ

✧
true, clauseMLS1

♣clq♣xoq, clq♣xwsqq
false, otherwise

condMLS2
: QX Ñ BOOL where

condMLS2
♣q, xws, xoq ÞÑ

✧
true, clauseMLS2

♣clq♣xoq, clq♣xwsqq
false, otherwise

condDEL : Q ✂X Ñ BOOL where

condDEL♣q, xwsq ÞÑ

✧
true, clauseDEL♣q, clq♣xwsqq
false, otherwise

Thus, a total of three clauses is needed to model these conditions:

clauseMLS1
: Q ✂X Ñ BOOL

clauseMLS1
♣q, xl , xf q ÞÑ

✧
true, xl ↕ xf

false, otherwise

clauseMLS2
: Q ✂X Ñ BOOL

clauseMLS2
♣q, xl , xf q ÞÑ

✧
true, xf ↕ xl

false, otherwise

176

A Security Models

clauseDEL : Q ✂X Ñ BOOL

clauseDEL♣q, xl , xf q ÞÑ

✧
true, xl ✘ ‘D1‘❫ xf ✘ ‘D2‘
false, otherwise

The set of primitives PRIM consists of for elements. According to the policy where web
services can only be added and delegations and classifications can only be granted once, prim-
itives for deleting web services and for reclassify web services and objects are not required.
Thus, the security model contains three primitives (addWebService, classify, setDelegation)
for adding web services and classifying web service and objects. Additionally, a fourth prim-
itive action copyClassification enables a web service to copy its delegation classification to a
new web services that is added to the composition plan.

addWebService : Q ✂X Ñ Q

addWebservice♣q, xws1
, ..., xwsnq ÞÑ ♣WSq ❨ txws1

, ..., xwsn✉, clq , delqq

classify : Q ✂X Ñ Q

classify♣q, xe, xl , xf q ÞÑ ♣WSq , clq ❵ t♣xe, ♣xl , xf qq✉, delqq

setDelegation : Q ✂X Ñ Q

setDelegation♣q, xe, xl , xf q ÞÑ ♣WSq , clq , delq ❵ t♣xe, ♣xl , xf qq✉q

copyClassification : Q ✂X Ñ Q

copyClassification♣q, wsold , wsnewq ÞÑ ♣WSq , clq ❵ t♣wsnew , delq♣wsoldqq✉, delqq

A.3 RBAC Model

Based on the RBAC3 security model of Sandhu’s RBAC model family [86, 87, 205, 210, 212],
the core-based RBAC security model for the health care policy of Section 3.4.4 is defined as
a tuple ♣Q, Σ, δ, q0, ♣O, OP, R, m, RH , REq, λq where:

• Q ✏ 2U ✂ 2S ✂ 2UA ✂USER✂ROLES is the set of states and any state q is defined as
q ✏ ♣Uq , Sq , UAq , userq , rolesqq with Uq ❸ U , Sq ❸ S , UAq ❸ UA, userq P USER, and
rolesq P ROLES , where

– U is the set of users,

– S is the set of sessions,

– UA ❸ U ✂ R is the user-to-role assignment relation,

– USER ✏ tuser ⑤ user : S Ñ U ✉ is the user-to-session association function that
maps a session onto the session’s associated user, and

– ROLES ✏ troles ⑤ roles : S Ñ 2R✉ is the session-roles-activation function mapping
a session onto a subset of its associated user’s roles, called activation of roles.

• Σ ✏ C ✂ X is the set of inputs where C is the policy specific set of com-
mands and X ✏ t♣x0, ..., xlq ⑤ ∀xi , 1 ↕ i ↕ l : xi P tj , tj P T , 0 ↕
j ➔ |T |✉ is the set of l-dimensional input vectors and T ✏ t2U , 2S , 2UA,

USER, ROLES , U , S , UA, user , roles, O, OP, R, m, RH , RE , 2O, 2OP , 2R, 2m , 2RE✉.

• δ is the state transition function δ : Q ✂ Σ Ñ Q with conditions and primitive actions
as defined below, and

177

A.3 RBAC Model

• q0 P Q where q0 ✏ ♣U0, S0, UA0, user0, roles0q is the initial state.

• ♣O, OP, R, m, RH , REq is the extension vector of static model components where

– O is the finite set of objects,

– OP is the finite set of operations,

– R is the finite set of roles,

– m : R ✂O Ñ 2OP is the role-to-permission assignment matrix,

– RH ❸ R ✂ R is a partial order on R called the role hierarchy relation, written as
➞, where ∀r , r ✶ P R : r ➞ r ✶ ô all permissions of r ✶ are also permissions of r and
all users of r are also users of r ✶ [86],

– RE ❸ R✂R is a nonreflexive, symmetric, and nontransitive relation on R, written
as ✓ex , and called as role exclusion relation where ∀r , r ✶ P R : r ✓ex r ✶ ô r and r ✶

are mutually exclusive.

• λ : Q ✂ ♣A ❨ C q ✂ X Ñ ttrue, false✉ is the output function where A is the set of
application specific operations.

The set of conditions COND consists of five elements, which are defined as follows:

condcore : Q ✂X Ñ BOOL

condcore♣q, xs, xo, xopq ÞÑ

✩✫
✪

true, ∃r , r ✶ P R : clauseRH ♣r ✶, rq
❫ clauseroles♣q, xs, r ✶q ❫ clausem♣xop, r , xoq

false, otherwise

condUM : Q ✂X Ñ BOOL

condUM ♣q, xu , xo, xopq ÞÑ

✩✫
✪

true, ∃r , r ✶ P R : clauseRH ♣r ✶, rq
❫ clauseUA♣q, r ✶, xuq ❫ clausem♣xop, r , xoq

false, otherwise

condSR : Q ✂X Ñ BOOL

condSR♣q, xs, xrq ÞÑ

✧
true, ∃r ✶ P R : clauseRH ♣r ✶, xrq ❫ clauseroles♣q, xs, r ✶q
false, otherwise

condUR : Q ✂X Ñ BOOL

condUR♣q, xu , xrq ÞÑ

✧
true, ∃r ✶ P R : clauseRH ♣r ✶, xrq ❫ clauseUA♣q, r ✶, xuq
false, otherwise

sod : Q ✂X Ñ BOOL

sod♣q, xu , xrq ÞÑ

✧
true, ∀r ✶ P R : clauseRE♣xr , r ✶q ❫ clauseUA♣q, r ✶, xuq
false, otherwise

178

A Security Models

It can be seen that all conditions are based on a total of five clauses. These are defined in
the following:

clauseroles : Q ✂X Ñ BOOL

clauseroles♣q, xs, xrq ÞÑ

✧
true, xr P rolesq♣xsq
false, otherwise

clauseUA : Q ✂X Ñ BOOL

clauseUA♣q, xr , xuq ÞÑ

✧
true, ♣xu , xrq P UAq

false, otherwise

clausem : X Ñ BOOL

clausem♣xop, xr , xoq ÞÑ

✧
true, xop P m♣xr , xoq
false, otherwise

clauseRH : X Ñ BOOL

clauseRH ♣xr1
, xr2

q ÞÑ

✧
true, xr1

➞ xr2

false, otherwise

clauseRE : X Ñ BOOL

clauseRE♣xr1
, xr2

q ÞÑ

✧
true, ✥♣xr1

✓ex xr2
q

false, otherwise

The access-function of standard RBAC security models [86] exactly defines the constraints
of role-based access control decisions. Thus, it is required by our role-based RBAC model
and therefore rewritten as condition condcore. One precondition of condcore is that a user is
already associated with a session having activated a subset of the user’s roles. However, this
precondition cannot be met, as long as a user is not associated with a session, i.e., as long as
the user is not logged in. Logging in, however, modifies a policy’s state. Hence, the security
model must provide a condition such that a policy is able to avoid its modification when
necessary: condUM .

Real-world RBAC policies like the health information system policy given in Section 3.4.4
frequently require that users are assigned specific roles, without considering the roles’ per-
mission, e.g., for administration purposes. This approach is usually applied when policies
are based on static role sets and role-to-permission assignments. In order to model these
real-world requirements, our core-based RBAC model provides the conditions condUR and
condSR which allow for checking whether a user or a session is assigned a specific role. For
these conditions the role’s permissions are irrelevant.

Finally, condition sod implements mutual exclusion of roles. This condition has to be part
of every policy-specific command modifying UA by inserting new pairs ♣u, rq (implemented
by primitive assignUserToRoles).

The set of primitive actions PRIM contains ten elements that perform pairwise modifica-
tions of the state elements:

addUsers : Q ✂X Ñ Q

addUsers♣q, txu1
, ..., xun✉q ÞÑ ♣Uq ❨ txu1

, ..., xun✉, Sq , UAq , userq , rolesqq

179

A.4 ABAC Model

deleteUsers : Q ✂X Ñ Q

deleteUsers♣q, txu1
, ..., xun✉q ÞÑ ♣Uq③txu1

, ..., xun✉, Sq , txu1
, ..., xun✉⊳✁UAq ,

userq ⊲✁ txu1
, ..., xun✉, rolesqq

createSessions : Q ✂X Ñ Q

createSessions♣q, txs1
, ..., xsn✉q ÞÑ ♣Uq , Sq ❨ txs1

, ..., xsn✉, UAq , userq ,

rolesq ❵ t♣xs1
,∅q, ..., ♣xsn ,∅q✉q

destroySessions : Q ✂X Ñ Q

destroySessions♣q, txs1
, ..., xsn✉q ÞÑ ♣Uq , Sq③txs1

, ..., xsn✉, UAq , txs1
, ..., xsn✉⊳✁ userq ,

txs1
, ..., xsn✉⊳✁ rolesqq

mapUserSessions : Q ✂X Ñ Q

mapUserSessions♣q, xu , txs1
, ..., xsn✉q ÞÑ ♣Uq , Sq , UAq , userq ❵ t♣s1, xuq, ..., ♣sn , xuq✉,

rolesqq

unmapUserSessions : Q ✂X Ñ Q

unmapUserSessions♣q, xu , txs1
, . . . , xsn✉q ÞÑ ♣Uq , Sq , UAq ,

userq③t♣xs1
, xuq, ..., ♣xsn , xuq✉, rolesqq

assignUserToRoles : Q ✂X Ñ Q

assignUserToRoles♣q, xu , txr1
, ..., xrn✉q ÞÑ ♣Uq , Sq , UAq ❨ t♣xu , xrwq, ..., ♣xu , xrnq✉,

userq , rolesqq

revokeUserFromRoles : Q ✂X Ñ Q

revokeUserFromRoles♣q, xu , txr1
, ..., xrn✉q ÞÑ ♣Uq , Sq , UAq③t♣xu , xrwq, ..., ♣xu , xrnq✉,

userq , rolesqq

activateRoles : Q ✂X Ñ Q

activateRoles♣q, xs, txr1
, ..., xrn✉q ÞÑ ♣Uq , Sq , UAq , userq ,

rolesq ❵ t♣xs, rolesq♣xsq ❨ txr1
, ..., xrn✉q✉q,

deactivateRoles : Q ✂X Ñ Q

deactivateRoles♣q, xs, txr1
, ..., xrn✉q ÞÑ ♣Uq , Sq , UAq , userq ,

rolesq ❵ t♣xs, rolesq♣xsq③txr1
, ..., xrn✉q✉q

A.4 ABAC Model

Rewriting the ABAC model for web services of Yuan and Tong [251] for their Online Enter-
tainment Store example inspired by [10] results in a core-based ABAC model that is defined
by a tuple ♣Q, Σ, δ, q0, ♣SA, RAq, λq as follows:

• Q ✏ 2S ✂ 2R ✂ AS ✂ AR is the set of states and any state q is defined as
q ✏ ♣Sq , Rq , aSq , aRqq with Sq ❸ S , Rq ❸ R, aSq P AS , and aRq P AR, where

– S is the set of subjects,

– R is the set of resources,

– AS ✏ taS ⑤ aS : S Ñ AGE ✂ ROLE✉ is the attribute assignment mapping for
subjects that maps a subject onto its attributes, and

180

A Security Models

– AR ✏ taR ⑤ aR : R Ñ RATING ✂TYPE✉ is the attribute assignment mapping for
resources that assigns each object to its attributes.

• Σ ✏ C ✂ X is the set of inputs where C is the policy specific set of commands and
X ✏ t♣x0, ..., xlq ⑤ ∀xi , 1 ↕ i ↕ l : xi P tj , tj P T , 0 ↕ j ➔ |T |✉ is the set of l-dimensional
input vectors and T ✏ t2S , 2R, AS , AR, S , R, aS , aR, AGE , ROLE , RATING, TYPE ,

2AGE , 2ROLE , 2RATING , 2TYPE✉.

• δ is the state transition function δ : Q ✂ Σ Ñ Q with conditions and primitive actions
as defined below, and

• q0 P Q where q0 ✏ ♣S0, R0, aS0
, aR0

q is the initial state.

• ♣SA, RAq is the extension vector of static model components where

– SA is the finite set of subject attribute sets where SA ✏ tAGE , ROLE✉,

– RA is the finite set of resource attribute sets where RA ✏ tRATING, TYPE✉.

• λ : Q ✂ ♣A ❨ C q ✂ X Ñ ttrue, false✉ is the output function where A is the set of
application specific operations.

In contrast to the other core-based security models presented in this dissertation, the
ABAC model is tailored for a specific policy rather than for a set of policies. This becomes
obvious when defining the model’s clauses. Here, it is necessary to predefine the subject and
resource attributes since they are required in the clauses. This is specific for this model;
for the MLS and the RBAC model it has been sufficient to define the extension vector
as part of policy engineering. AGE represents the age of subjects, thus AGE ❸ N where
AGE ✏ t1, . . . , 150✉ should be sufficient. ROLE contains the roles that a subject may act
upon. While the example already defines the roles Premium and Regular for premium and
regular customers, an additional role Admin is required for policy management. RATING
represents the movie ratings R, PG ✁ 13, and G. Moreover, movies are categorized either
as NewRelease or OldRelease based on release dates, which are the values of the resource
attribute TYPE .

The set of conditions COND consists of two elements, where condaccess is required to
check whether a subject may access a given movie and condman is required to check whether
management operations are allowed:

condaccess : Q ✂X Ñ BOOL

condaccess♣q, xs, xrq ÞÑ

✧
true, clauseAR♣q, xs, xrq ❫ clauseRT ♣q, xs, xrq
false, otherwise

condman : Q ✂X Ñ BOOL

condman♣q, xs, xrq ÞÑ clauseman♣q, xsq

To implement these conditions, three clauses are required. While clauseAR implements
the policy rule R3 defined by the original ABAC model [251], clauseRT implements the
policy rule R4. clauseman is not contained in the original model, since it does not deal with
policy administration. However, the core-based ABAC model for the Online Entertainment
Store example requires a clause to distinguish ordinary users from privileged users for policy
administration. Note that we use the functional notation ageq♣sq, roleq♣sq, ratq♣rq, and

181

A.4 ABAC Model

typeq♣rq to select value assignments of individual attributes of the attribute tuples of s and
r for a specific state q.

clauseAR : Q ✂X Ñ BOOL

clauseAR♣q, xs, xrq ÞÑ

✩✬✬✫
✬✬✪

true, ♣ageq♣xsq ➙ 21❫ ratq♣xrq P tR, PG, G✉q ❴
♣ageq♣xsq ➙ 13❫ ageq♣xsq ➔ 21❫ ratq♣xrq P tPG, G✉q
❴ ♣ageq♣xsq ➔ 13❫ ratq♣xrq P tG✉q

false, otherwise

clauseRT : Q ✂X Ñ BOOL

clauseRT ♣q, xs, xrq ÞÑ

✩✫
✪

true, ♣roleq♣xsq ✏ ‘Premium’q ❴
♣roleq♣xsq ✏ ‘Regular ’❫ typeq♣xrq ✏ ‘OldRelease’q

false, otherwise

clauseman : Q ✂X Ñ BOOL

clauseman♣q, xsq ÞÑ

✧
true, roleq♣xsq ✏ ‘Admin’
false, otherwise

The sets of primitive actions consists of eight elements, which pairwise modify the model’s
state components.

addSubject : Q ✂X Ñ Q

addSubject♣q, txs✉q ÞÑ ♣Sq ❨ txs✉, Rq , aSq , aRqq

deleteSubject : Q ✂X Ñ Q

deleteSubject♣q, txs✉q ÞÑ ♣Sq③txs✉, Rq , ts✉⊳✁ aSq , aRqq

addResource : Q ✂X Ñ Q

addResource♣q, txr✉q ÞÑ ♣Sq , Rq ❨ txr✉, aSq , aRqq

deleteResource : Q ✂X Ñ Q

deleteResource♣q, txr✉q ÞÑ ♣Sq , Rq③txr✉, aSq , tr✉⊳✁ aRqq

assignSubjAttributes : Q ✂X Ñ Q

assignSubjAttributes♣q, xs, xage, xroleq ÞÑ ♣Sq , Rq , aSq ❵ t♣xs, xage, xroleq✉, aRqq

resignSubjAttributes : Q ✂X Ñ Q

resignSubjAttributes♣q, xs, xage, xroleq ÞÑ ♣Sq , Rq , aSq③t♣xs, xage, xroleq✉, aRqq

assignObjAttributes : Q ✂X Ñ Q

assignSubjAttributes♣q, xr , xrating, xtypeq ÞÑ ♣Sq , Rq , aSq , aRq ❵ t♣xr , xrating, xtypeq✉q

resignObjAttributes : Q ✂X Ñ Q

resignObjAttributes♣q, xr , xrating, xtypeq ÞÑ ♣Sq , Rq , aSq , aRq③t♣xs, xr , xrating, xtypeq✉q

182

B Health Information System Model Instance

The security policy used in this dissertation is roughly based on a small real-world Health
Information System (HIS) for an aged-care facility and was first introduced by [77]. In order
to develop a formal model for this policy, [99, 228, 229] have precisely specified the policy,
enhanced it by additional policy rules, and extended the policy with parameters, or some
aspects of the electronic health records policy [25]. We have illustrated a core-based RBAC
model ♣Q, Σ, δ, q0, ♣O, OP, R, m, RH , REq, Ω, λq in Appendix A.3 that provides suitable model
abstractions for the RBAC HIS policy.

On this account, this appendix introduces an instance of the core-based RBAC model
formalizing the RBAC HIS policy. Due to demonstration purposes, we present only a small
excerpt of the policy rules, containing ten roles, 15 objects, seven operations, a role hierarchy,
and separation-of-duty based on role exclusion. Additionally, we have added a collection of
user management commands (e.g., createUser(), destroyUser()) including a role UserAdmin,
which is dedicated to manage the users and their roles.

We first present the initial state and extension values of the model instance (Appendix B.1)
before modeling the policy’s authorization scheme (Appendix B.2)

B.1 Initial State and Extension Values

The initial state q0 ✏ ♣U0, S0, UA0, user0, roles0q contains a user u1, representing a privileged
instance, which is assigned the role UserAdmin. Otherwise, the initial state is defined as
follows:

U0 ✏ tu1✉

S0 ✏ ∅

UA0 ✏ t ♣u1, UserAdminq ✉

user0 ✏ ∅

roles0 ✏ ∅

The security model contains the extension vector ♣O, OP, R, m, RH , REq that consists of
six static model components. We initialize each of the static components in the following.
The set of objects O contains the objects of the Health Information System; for this use case
scenario, we have selected the most important objects.

O ✏ tOldMedicalRecords, RecentMedicalRecords, PrivateNotes, Prescriptions,

PatientMedicalInfo, PatientPersonalInfo, PatientFinancialInfo, CarePlan,

Appointment, ProgressNotes, LegalAgreement, Bills, UAo, Uo✉

Medical records are records that a doctor adds an entry to after each examination [77].
OldMedicalRecords are records of former examinations; RecentMedicalRecords contain current
examination results respectively. PrivateNotes contain personal notes of a doctor. They are

183

B.1 Initial State and Extension Values

accessible by the patient and the doctor but not by any other doctors. Bills are sent to the
patient’s family or to her health insurance company, depending on her PatientPersonalInfo
and PatientFinancialInfo. PatientMedicalInfo contains general medical information of the
patient like allergies. Besides that, the receptionist is able to make Appointments, e.g., for a
patient’s family and the patient’s doctor, where the family may sign an LegalAgreement, e.g.,
for special Prescriptions or special instructions for the CarePlan of the patient. In contrast
to [230], permissions for modifying the user set U and the user-to-role assignment relation
UA are contained in this model via the virtual objects U0 and UA0. The selected RBAC HIS
policy does not require a distinct administrative model.

The set of operations OP contains seven operations for accessing the model’s objects. While
view enables a user to read an object; access defines further constraints, e.g., the doctor calling
this operation must be the patient’s doctor [77]. The authors suggest to monitor the usage
of access and inform the management in case it is used too often.

OP ✏ tview, add, modify, access, enter , create, update, sign✉

The model instance contains ten roles. While most of the roles have descriptive names, the
roles MedicalManager and ReferredDoctor need a short explanation. The MedicalManager
is able to form medical teams (role MedicalTeam), consisting of the roles Doctor and Nurse.
The role ReferredDoctor indicates a special doctor, to which a patient was referred to by its
own doctor, e.g., for obtaining a second opinion.

R ✏ tEmployee, Manager , Doctor , Nurse, Receptionist, Patient, MedicalManager ,

MedicalTeam, ReferredDoctor , UserAdmin✉

The matrix m : R ✂ O Ñ 2OP contains the role-to-permission assignment shown in Ta-
ble B.1. Noteworthy are some policy subtleties that allow for separation of concern. For
example, though a user with role Manager is allowed to create RecentMedicalRecords, only
a Doctor may add new entries to RecentMedicalRecords and view them. Moreover, the roles
MedicalManager and ReferredDoctor are not assigned any permissions; they serve as a kind
of attribute in the authorization scheme (see Appendix B.2).

The role hierarchy as introduced in Figure 3.5 is modeled by the relation RH ❸ R ✂ R,
written as ➞, where ∀r , r ✶ P R : r ➞ r ✶ holds: r inherits the permissions of r ✶. For example,
the role Doctor inherits all permissions of the role Nurse and has additional permissions
reflecting its responsibility and competences. Additionally, [230] discusses some policy char-
acteristics that do not need to be considered in the role hierarchy. For example, the role
ReferredDoctor will only be assigned to users with the role Doctor.

Manager ➞ MedicalManager

MedicalManager ➞ Receptionist

Receptionist ➞ Employee

Doctor ➞ Nurse

Nurse ➞ Employee

It remains to define the role exclusion relation RE ❸ R✂R, written as ✓ex , where ∀r , r ✶ P
R : r ✓ex r ✶ holds: r and r ✶ are mutually exclusive and may thus not be assigned to the same
user via UA.

Patient ✓ex Employee

184

B Health Information System Model Instance

Object Operation R
o
le

M
an

ag
er

D
o
ct

or

N
u
rs

e

R
ec

ep
ti

o
n
is

t

P
at

ie
n
t

U
se

rA
d
m

in

OldMedicalRecords view ✂ ✂
OldMedicalRecords enter ✂
OldMedicalRecords access ✂

RecentMedicalRecords view ✂ ✂ ✂
RecentMedicalRecords enter ✂
RecentMedicalRecords add ✂

PrivateNotes view ✂ ✂
PrivateNotes add ✂
Prescriptions view ✂
Prescriptions modify ✂

PatientMedicalInfo access ✂
PatientPersonalInfo access ✂
PatientFinancialInfo access ✂

CarePlan view ✂ ✂
CarePlan update ✂

Appointment create ✂
ProgressNotes add ✂

LegalAgreement sign ✂
Bills view ✂

Uo update ✂
uao update ✂

Table B.1: Role-to-permission Assignment Matrix

Patient ✓ex ReferredDoctor

Patient ✓ex UserAdmin

Doctor ✓ex Manager

Doctor ✓ex Receptionist

B.2 Authorization Scheme

The policy’s authorization scheme consists of state-modifying and non-state-modifying com-
mands. State-modifying commands are:

Cmod ✏ tcreateUser , destroyUser , assignRole, revokeRole, login, logout, activateRole,

deactivateRole, assignReferredDoctorRole, assignPatientRole,

assignMedicalTeamRole, revokeEmployeeRole, revokeDoctorRole,

revokeReferrefDoctorRole, revokePatientRole, revokeMedicalTeamRole✉

The set of non-state-modifying commands Cnon✁mod ✏ OP is defined by the set of operations
OP. Every state-modifying command consists of an antecedent and a consequent. The
commands of the RBAC HIS policy are modeled by means of the state transition function δ

as follows. Note that user✁1 : U Ñ 2S is the inverted function of user : S Ñ U .

185

B.2 Authorization Scheme

δ(q, (createUser ♣xs, xuqq ::✏
if ♣condcore♣q, xs, ‘Uo‘, ‘update‘qq
then

addUsers ♣q, txu✉q
end if.

δ(q, (destroyUser ♣xs, xuqq ::✏
if ♣condcore♣q, xs, ‘Uo‘, ‘update‘qq
then

deleteUsers(destroySessions ♣q, user✁1
q ♣xuqq, txu✉q

end if.

δ(q, (assignRole ♣xs, xu , xrqq ::✏
if condcore♣q, xs, ‘uao‘, ‘update‘q ❫

sod♣q, xu , xrq
then

assignUserToRoles ♣q, xu , txr✉q
end if.

δ(q, (revokeRole ♣xs, xu , xrqq ::✏
if ♣condcore♣q, xs, ‘uao‘, ‘update‘qq
then

revokeUserFromRoles ♣q, xu , txr✉q
end if.

δ(q, (login ♣xs, xuqq ::✏
mapUserSessions(createSessions ♣q, txs✉q, xu , txs✉q

δ(q, (logout ♣xsqq ::✏
destroySessions(unmapUserSessions ♣q, userq♣xsq, txs✉q, txs✉q

δ(q, (activateRole ♣xs, xrqq ::✏
activateRoles ♣q, xs, txr✉q

δ(q, (deactivateRole ♣xs, xrqq ::✏
deactivateRoles ♣q, xs, txr✉q

δ(q, (assignReferredDoctorRole ♣xs, xuqq ::✏
if condSR♣q, xs, ‘Doctor ‘q ❫

condUR♣q, xu , ‘Doctor ‘q ❫
sod♣q, xu , ‘ReferredDoctor ‘q

then
assignUserToRoles ♣q, xu , t‘ReferredDoctor ‘✉q

end if.

δ(q, (revokeReferredDoctorRole ♣xs, xuqq ::✏
if condSR♣q, xs, ‘Doctor ‘q

186

B Health Information System Model Instance

then
revokeUserFromRoles ♣q, xu , t‘ReferredDoctor ‘✉q

end if.

δ(q, (assignPatientRole ♣xs, xuqq ::✏
if condSR♣q, xs, ‘Receptionist‘q ❫

sod♣q, xu , ‘Patient‘q
then

assignUserToRoles ♣q, xu , t‘Patient‘✉q
end if.

δ(q, (revokePatientRole ♣xs, xuqq ::✏
if condSR♣q, xs, ‘Receptionist‘q
then

revokeUserFromRoles ♣q, xu , t‘Patient‘✉q
end if.

δ(q, (assignMedicalTeamRole ♣xs, xuqq ::✏
if condSR♣q, xs, ‘MedicalManager ‘q ❫
♣condUR♣q, xu , ‘Doctor ‘q ❴ condUR♣q, xu , ‘Nurse‘qq ❫
sod♣q, xu , ‘MedicalTeam‘q

then
assignUserToRoles ♣q, xu , t‘MedicalTeam‘✉q

end if.

δ(q, (revokeMedicalTeamRole ♣xs, xuqq ::✏
if condSR♣q, xs, ‘MedicalManager ‘q
then

revokeUserFromRoles ♣q, xu , t‘MedicalTeam‘✉q
end if.

Non-state-modifying commands are defined similarly. However, they only consist of an
antecedent and are defined by means of the output function λ. For example, the non-state-
modifying command view♣q is defined as follows:.

λ♣q, ♣view, ♣xs, xoqqq ::✏ condcore♣q, xs, xo, viewq

187

C Formal Rule System

This appendix extends the formal rule system defined in Section 4.4.4 by formal rules defined
on the algebras MappingrDomain, Targets (Appendix C.1) and MatrixrRow, Column, Targets
(Appendix C.2).

C.1 Mapping

In the following, we discuss formal rules defined on the algebra MappingrDomain, Targets.
Since this algebra also models a set of ordered pairs, there are a lot of similarities in the condi-
tions and the derived TCB functions compared to Relation. Differences regarding the derived
TCB functions only result from the mappings left-total and right-unique properties. Thus,
to define formal rules for the algebra Mapping, we need to define an additional predicate:

4. mapping_sort♣xq: x is of sort Mapping

In analogy to Relation, the algebra Mapping is implemented by a corresponding ADT
MappingrDomain, Targets (short Map_T), which again is based on the container ADT Cont_T,
storing tuple elements consisting of type Dom_T and Tar_T. Consequently, the first rule
concerning the constructor of Mapping is identical to the rules defined on the constructing
operations of set and relation. For this reason, we do not need to add a new rule to the
rule system. Only a new interface operator createMapping() defined on Map_T is required,
which encapsulates the constructor operator createContainer() of Cont_T.

The 2. rule is based on an algebra operation that may be called copy constructor since
it unifies an empty Map_T object with a given nonempty one. Thus, it is semantically equal
to ❨ P UO. To implement this operation, the interface operation createMapping() encapsu-
lating createContainer() is required that constructs a new and empty Map_T object. The
operator next() is necessary to iterate the given mapping object and select the next tuple
element, which can then be inserted in the newly created object.

The next rule is defined on an algebra operation that inserts a single pair of elements into a
given mapping (called mp_insert♣q in Table 4.4). Due to the similarities of the algebra oper-
ations mp_insert♣q and r_insert♣q, this rule strongly resembles the second rule of Relation.
However, the derived function set differs in that it does not contain the ADT operators
equals() defined on Tar_T, getSecond(), and and(). These functions are not necessary to
implement the interface function mp_insert♣q of Map_T, since it is sufficient to compare the

2. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ❨ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃!si,A : mapping_sort♣si,Aq Map_T createMapping(),

❫mapping_sort♣sAq Cont_T insert(Cont_T c, Elem_T e)✉

β♣tcreateContainer , next, insert✉q :✏ t❨✉
β♣tmp_init✉q :✏ t❨✉ (Interface Function)

189

C.1 Mapping

domain elements of a tuple due to Map_T being a left-total and right-unique relation. The
operator create() is required to construct the input parameters of mp_insert() and are
therefore not contained in the mapping β.

3. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ❨ ϕ♣oAq :✏ t Elem_T nexElement(Cont_T c),

❫∃si,A : Elem_T create(Dom_T d, Tar_T t),

param_sort♣si,A, AMapq Cont_T insert(Cont_T c, Elem_T e),

❫∃!sj,A : mapping_sort♣sj,Aq Bool_T equals(Dom_T d1, Dom_T d2),

❫ i ✘ j Dom_T getFirst(Elem_T e),

❫mapping_sort♣sAq Bool_T false(),

Bool_T true()✉
β♣tnext, insert, equals, getFirst, false, true✉q :✏ t❨✉
β♣tmp_insert✉q :✏ t❨✉ (Interface Function)

The following rule is in accordance with the 3. rule defined on Relation; it is defined on an
algebra operation that checks whether a pair of domain and target elements is contained by an
mapping object. Since the special characteristics of Mapping are irrelevant for this function,
the derived set of ADT operators equals the one derived from 3. rule of Relation. The
only difference lies in the resulting interface functions. Here, an additional interface operator
called mp_isElement() is added to Map_T. Again, create() is required to construct the
input parameters of this operator.

4. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ P ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃!si,A : mapping_sort♣si,Aq Dom_T create(),

❫∃sj,A : Bool_T equals(Dom_T d1, Dom_T d2),

param_sort♣sj,A, AMapq Dom_T getFirst(Elem_T e),

❫ i ✘ j Tar_T getSecond(Elem_T e),

Bool_T false(), Bool_T true(),

Bool_T and(Bool_T b1,Bool_T b2)✉

β♣tnext, equals, getFirst, getSecond, false, true,

and✉q :✏ tP✉
β♣tmp_isElement✉q :✏ tP✉ (Interface Function)

Since the resulting sets of TCB functions are identical, we can merge both rules into a
single one. More precisely, the conditions of both rules are combined as follows; ϕ re-
mains the same. The disjunctive combination of the individual conditions is necessary, e.g.,
♣mapping_sort♣si,Aq ❴ relation_sort♣si,Aqq, since the algebra Matrix defines a similar oper-
ation (m_ P ♣q), but requires other ADT operators. Thus, we must be able to distinguish
these algebra operations.

∃oA P OA : α♣oAq ✏ P ❫∃!si,A : ♣mapping_sort♣si,Aq ❴ relation_sort♣si,Aqq

❫ ∃sj,A : ♣param_sort♣sj,A, AMapq ❴ param_sort♣sj,A, ARqq

❫ i ✘ j

The next two rules resemble the 4. and 5. of Relation. The resulting sets of ADT operators
slightly differ however, since the underlying operations mp_❨♣q and mp_③♣q (Table 4.4) have
to consider the algebra property right-uniqueness. Like mp_insert♣q, mp_ ❨ ♣q only inserts

190

C Formal Rule System

a new tuple element if the mapping does not already contain a single pair with the same
domain element. To implement this operation, a TCB requires six basic ADT operators
to iterate the containers Cont_T of the mapping objects, to select the domain elements of
the pairs by getFirst(), to compare the domain elements by equals(), and depending on
the comparison result (true() or false()), to insert the element into the corresponding
container. As can be seen, this is a subset of the derived function of the 3. rule. Adding
the function create() for constructing the input parameter of mp_ ❨ ♣q results in the same
function set. On top of that, createMapping() is required to create an mapping object, in
which the newly created elements can be inserted.

Technically speaking, the operation mp_③♣q does not have to consider right-uniqueness
of the algebra and must compare both tuple elements before deleting a tuple. However,
since mp_ ❨ ♣q guarantees that an mapping object does not contain two pairs with exactly
the same domain element, it is sufficient that mp_③♣q only compares the domain elements.
Consequently, the necessary TCB function set for mp_③♣q is smaller compared to the one
derived from r_③♣q; here, the functions getSecond♣q, equals♣q, and and♣q are not necessary.
Besides that createMapping() and mp_insert() are again required to construct the second
input parameter.

5./6. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ❨ ϕ♣oAq :✏ t Map_T createMapping(),

❫∀si,A : mapping_sort♣si,Aq Map_T mp_insert(Map_T mp, Elem_T e)✉

β♣tmp_union✉q :✏ t❨✉ (Interface Function)

∃oA P OA : α♣oAq ✏ ③ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∀si,A : mapping_sort♣si,Aq Map_T createMapping(),

Map_T mp_insert(Map_T mp, Elem_T e),

Bool_T equals(Dom_T d1, Dom_T d2),

Cont_T delete(Cont_T c, Elem_T e),

Domain_T getFirst(Elem_T e),

Bool_T false(),

Bool_T true(),

β♣tnext, equals, delete, getFirst, false, true✉q :✏ t③✉
β♣tmp_diff ✉q :✏ t③✉ (Interface Function)

Besides their conditions, the following rules are similar to the 6. and 7. rule of Relation.
The reason is that the algebra operations, on which the rules are defined, are semantically
equal such that they require exactly the same TCB functions for their implementation. Hence,
we can subsume these rules to two rules; only the interface operators are defined for differ-
ent ADTs: While r_domainSub() and mp_rangeSub() belong to Rel_T, Map_T contains
mp_domainSub() and mp_rangeSub(). The derived function set of the 6. rule equals the
function set derived from rule 5 and the first two rules of Set so that these rules can be
reused. While r_delete() is required to implement the algebra operations, createSet()

and s_insert() are required to construct the second input parameter.
The function set of rule 7. then differs in that it requires the operator getSecond() instead

of getFirst(). This results in that no rules defined on Mapping can be reused; only the first
two rules of Set can be reused to derive functions to construct the second input parameter.

191

C.1 Mapping

7./8. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : ♣α♣oAq ✏ ⊳✁ ϕ♣oAq :✏ t Map_T mp_delete(Map_T mp, Eleme_T e),

❴α♣oAq ✏ ⊳q Set_T createSet(),

❫∃! si,A : mapping_sort♣si,Aq Set_T s_insert(Set_T c,Elem_T e)✉
❫mapping_sort♣sAq

β♣tnext, equals, delete, getFirst, false, true✉q :✏ t⊳✁,⊳✉
β♣tmp_domainSub✉q :✏ t⊳✁✉ (Interface Function)
β♣tmp_domainRes✉q :✏ t⊳✉ (Interface Function)

∃oA P OA : ♣α♣oAq ✏ ⊲✁ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❴α♣oAq ✏ ⊲q Set_T createSet(),

❫∃! si,A : mapping_sort♣si,Aq Set_T s_insert(Set_T c,Elem_T e)

❫mapping_sort♣sAq Bool_T equals(Dom_T d1,Dom_T d2),

Cont_T delete(Con_T c, Elem_T e),

Tar_T getSecond(Elem_T e),

Bool_T false(),

Bool_T true()✉

β♣tnext, equals, delete, getSecond, false, true✉q :✏ t⊲✁,⊲✉
β♣tr_rangeSub✉q :✏ t⊲✁✉ (Interface Function)
β♣tr_rangeRes✉q :✏ t⊲✉ (Interface Function)

Result are two rules, whose subsumed conditions are defined as follows:

7. ∃oA P OA : ♣α♣oAq ✏ ⊳✁❴ α♣oAq ✏ ⊳q

❫ ∃! si,A : ♣mapping_sort♣si,Aq ❴ relation_sort♣si,Aqq

❫ ♣mapping_sort♣sAq ❴ relation_sort♣sAqq

8. ∃oA P OA : α♣oAq ✏ ⊲✁❴ α♣oAq ✏ ⊲

❫ ∃! si,A : ♣mapping_sort♣si,Aq ❴ relation_sort♣si,Aqq

❫ ♣mapping_sort♣sAq ❴ relation_sort♣sAqq

In contrast to the 4. rule, which we have also combined with the corresponding rule of
Relation, the subsumed conditions must not necessarily distinguish the sorts of the input and
output parameters. The reason is that the algebra foundation does not define an additional
algebra with similar operations. In case, the algebra foundation were modified to do so and
the implementation of the additional algebra operations required different ADT operators
than shown here, it is important to distinguish the input and output parameter sorts. To
then avoid incomplete conditions, the redundancy in these conditions is maintained.

The remaining rules are defined on Mapping-specific operations and thus bear no resem-
blance to any rules defined on Relation. Rule 8 is based on an algebra operation that selects a
target element belonging to a given domain element. In other words, it returns the functional
value of a given element of the mapping’s domain set. In order to implement this operation, a
TCB requires eight functions, encapsulated by the interface operator mp_getMapping(). On
top of that, the operator create() is necessary to create the second input parameter of the
interface operator. Since mp_getMapping() returns an object of type Set_T, the function
createSet() is required to create an object, in which the selected target element has to be
inserted. If no target element is found, an empty set will be returned. Note that for inserting
an element in the set, the TCB does not require all functions that implement s_insert().

192

C Formal Rule System

The reason is as follows: Due to the mapping being a right-unique relation, a domain element
cannot have more than one target elements. Thus, in any case the return set will have either
one or null elements; element redundancy cannot happen. Consequently, all functions that
contribute to avoiding redundancy (2./4. rule of Set) are not required; only the operator
insert() defined on Cont_T must be implemented.

9. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : ♣α♣oAq ✏ ÞÑ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃! si,A : mapping_sort♣si,Aq Set_T createSet(),

❫∃! si,A : Dom_T create(),

param_sort♣si,A, AMapq Cont_T insert(Cont_T c, Elem_T e),

❫ set_sort♣sAq Bool_T equals(Dom_T d1,Dom_T d2),

Tar_T getFirst(Elem_T e),

Tar_T getSecond(Elem_T e),

Bool_T false(), Bool_T true()✉

β♣tnext, createContainer , insert, equals, getFirst, getSecond,

false, true✉q :✏ tÞÑ✉
β♣tmp_getMapping✉q :✏ tÞÑ✉ (Interface Function)

The last rule for Mapping derives TCB functions for an algebra operation that is generally
known as functional overriding. Even though it is not exactly necessary, the rule’s condition
also considers the sorts of the operation’s input and output parameters. The reason is the
same as mentioned earlier (subsumed conditions for the 6./7. rule): currently, the algebra
foundation does not specify an algebra that contains an operation with the same semantics.
However, if this happened and the operation required different TCB functions, the sorts of
the operations’ input and output parameters are the only way to differ them. The derived
functions equal the ones derived from rule 4 and 5. While mp_insert() and mp_delete()

implement the algebra operation createMapping() and is necessary to construct the input
parameter. Note that mp_insert() is also required for the input parameter.

10. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : ♣α♣oAq ✏ ❵ ϕ♣oAq :✏ t Map_T createMapping(),

❫∃ si,A : mapping_sort♣si,Aq Map_T mp_insert(Map_T mp, Elem_T e),

❫mapping_sort♣sAq Map_T delete(Map_T mp, Elem_T e)✉

β♣tnext, insert, delete, equals, getFirst, false,

true✉q :✏ t❵✉
β♣tmp_override✉q :✏ t❵✉ (Interface Function)

Having derived the TCB functions for Mapping based on these rules, the result are eight
ADTs as already known from Relation. Due to the ADTs’ great resemblance, we refrain from
presenting them again. The only difference is the ADT Map_T, which now replaces Rel_T

and is presented in Table C.1. As with Rel_T, the semantics of the ADT’s operators is
defined by the mapping β such that we do not need to provide an additional set of axioms.

193

C.2 Matrix

sorts Map_T

import Bool_T, Dom_T, Tar_T, Set_T

operators createMapping: Ñ Map_T

mp_insert: Map_T ✂ Dom_T ✂ Tar_T Ñ Map_T

mp_isElement: Map_T ✂ Dom_T ✂ Tar_T Ñ Bool_T

mp_union: Map_T ✂ Map_T Ñ Map_T

mp_diff: Map_T ✂ Map_T Ñ Map_T

mp_domainSub: Map_T ✂ Set_T Ñ Map_T

mp_rangeSub: Map_T ✂ Set_T Ñ Map_T

mp_domainRes: Map_T ✂ Set_T Ñ Map_T

mp_rangeRes: Map_T ✂ Set_T Ñ Map_T

mp_getMapping: Map_T ✂ Dom_T Ñ Set_T

mp_override: Map_T ✂ Map_T Ñ Map_T

Table C.1: ADT Mapping[Domain,Target] (Map_T)

C.2 Matrix

The remaining rules of the formal rule system are concerned with the algebra
MatrixrRow, Column, Targets, modeling a set of triples, each of which representing a ma-
trix cell. Due to its great resemblance to the algebra Mapping (both model left-total and
right-unique relations), there are many similarities in the conditions and the derived TCB
functions. Differences in the latter only result from dealing with triple elements.

To distinguish the operations of Matrix from operations of Mapping, we need an extra
predicate. Additionally, to distinguish Matrix-specific operations that require different TCB
functions, we need two additional predicates (6. and 7.) that differ between the parameter
sorts of the domain elements of Matrix,

5. matrix_sort♣xq: x is of sort Matrix

6. row_sort♣xq: x is of sort Row

7. column_sort♣xq: x is of sort Column

Just like the other algebras, Matrix produces a corresponding ADT Matrix_T that provides
all interface operators as defined by its algebra. Matrix_T is based on an container ADT
Cont_T, which stores triple elements Elem_T of type Row_T, Col_T, and Set_T. The third
element is specified by a set of target elements Tar_T, where Set_T is implemented by the
container data type Cont_T as already discussed. Here, we have the same conflict: Cont_T

being a container data type for different element types. We analogously solve this problem
by deriving the triple element type TrElem_T from the abstract element Elem_T. Compared
to Rel_T and Map_T, we now have three basic types Row_T, Col_T, and Tar_T due to type
safety. Again, they may collapse into two types or even one, depending on the definition
of a model-specific matrix, e.g., m : Subjects ✂ Subjects Ñ 2Rights, and the specific platform
implementation where all types may be represented by a primitive string or integer type.

The first rule concerning the constructor of Matrix is identical to the rules defined on the
constructing operations of the previous algebras. The only difference is that the derived TCB
function createContainer() specified on Cont_T is now encapsulated by a new interface
function called createMatrix() contained in the operator set of ADT Matrix_T.

194

C Formal Rule System

The 2. rule is based on an algebra operation that may be called copy constructor since
it unifies an empty Matrix_T object with a given nonempty one. Thus, it is semantically
equal to ❨ P UO. To implement this operation, the interface operation createMatrix()

encapsulating createContainer() is required that constructs a new and empty Matrix_T

object. The operator next() is necessary to iterate the given matrix and select the next
triple element, which can then be inserted in the newly created object.

2. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ❨ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃!si,A : matrix_sort♣si,A, Aq Matrix_T createMatrix),

❫matrix_sort♣sAq Cont_T insert(Cont_T c, Elem_T e)✉

β♣tcreateContainer , next, insert✉q :✏ t❨✉
β♣tm_init✉q :✏ t❨✉ (Interface Function)

The 3. rule bears great resemblance to the 2. rule of Mapping; both are defined on algebra
operations that insert a single tuple element while guaranteeing the left-total and right-unique
properties of their algebra. However, here we do not add an entire cell, but insert only a
new target element into the set of target elements that defines the cell content. Thus, it is
now necessary to check the uniqueness of a pair of domain elements (Row_T and Col_T).
For this purpose, the operator equals() as well as a logical operator and() of Bool_T are
additionally required. In order to actually insert an a target element in a set, we can refer
to the interface function s_insert() and the basic ADT operators that implement it (2.
rule of Set_T). A triple element contained in the matrix object then is replaced by a new
one by deleting the it and inserting the new triple. Besides the function create(), which
is necessary to construct the input parameters of type Row_T, Col_T, and Tar_T, all other
functions are used by the interface function m_insert() of Matrix_T.

3. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ❨ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃si,A : param_sort♣si,A, Aq Elem_T create(Row_T r, Col_T c,

❫∃!sj,A : matrix_sort♣sj,Aq Set_T s),

❫i ✘ j Set_T createSet(),

❫matrix_sort♣sAq Cont_T delete(Cont_T c, Elem_T e),

Cont_T insert(Cont_T c, Elem_T e),

Set_T s_insert(Set_T c, Elem_T e),

Bool_T equals(Row_T r1, Row_T r2),

Row_T getFirst(Elem_T e),

Col_T getSecond(Elem_T e),

Set_T getThird(Elem_T e),

Bool_T false(),

Bool_T true(),

Bool_T and(Bool_T b1,Bool_T b2)✉

β♣tnext, create, insert, delete, equals, getFirst, getSecond,

getThird, false, true, and, createContainer , ✉q :✏ t❨✉
β♣tm_insert✉q :✏ t❨✉ (Interface Function)

The 4. rule of Matrix is similar to the 3. rule of Relation and Mapping. The main difference
is that in contrast to the latter where the existence of a tuple element in a container is checked,

195

C.2 Matrix

this operation checks the existence of a specific target element in the set of target elements
of a matrix cell. Consequently, the derived TCB function sets cannot be equal such that we
cannot subsume these rules into one. Additional TCB functions are getThird() to select
the target set of the given cell, next() to iterate the container Cont_T of the target set,
and equals(). All operators that are needed to test the existence of a set element are
encapsulated by the interface function s_isElement() of Set_T (3. rule of Set). Besides the
constructor operator for the basic elements (create()), the remaining functions as well as
the constructors of Bool_T objects implement the interface function m_isElement().

4. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ P ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃!si,A : matrix_sort♣si,Aq Bool_T s_isElement(Set_T s, Tar_T t),

❫∃sj,A : param_sort♣sj,A, AM q Row_T create(),

❫ i ✘ j Bool_T equals(Row_T r1, Row_T r2),

Row_T getFirst(Elem_T e),

Col_T getSecond(Elem_T e),

Tar_T getThird(Elem_T e),

Bool_T false(),

Bool_T true(),

Bool_T and(Bool_T b1,Bool_T b2)✉

β♣tnext, equals, getFirst, getSecond, getThird, false, true,

and✉q :✏ tP✉
β♣tm_isElement✉q :✏ tP✉ (Interface Function)

The following rule is similar to the 8. rule of Mapping, which is based on an operation that
selects the functional value of a given domain element. Again, the derived TCB function set
is larger due the triple elements. In case a given cell does not exist, an empty set is returned,
which first has to be created by createSet(). All other basic functions are directly called
by the interface function m_cellContent() defined on Matrix_T.

5. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ÞÑ ϕ♣oAq :✏ t Elem_T next(MCont_T c),

❫∃!si,A : matrix_sort♣si,Aq Set_T createSet(),

❫∃sj,A : param_sort♣sj,A, AM q Row_T create(),

❫i ✘ j Bool_T equals(Row_T r1, Row_T r2),

❫ set_sort♣sAq Row_T getFirst(Elem_T e),

Col_T getSecond(Elem_T e),

Tar_T getThird(Elem_T e),

Bool_T false(),

Bool_T true(),

Bool_T and(Bool_T b1,Bool_T b2)✉

β♣tnext, equals, getFirst, getSecond, getThird, false, true,

and, createContainer✉q :✏ tÞÑ✉
β♣tm_cellContent✉q :✏ tÞÑ✉ (Interface Function)

The following rules are defined on Matrix-specific operations that modify the cells of a
matrix. The 6. rule is based on an operation that deletes single elements from the target set
contained in a given cell. To support this algebra operation, the container Cont_T imple-
menting Matrix_T has to be iterated by next() returning a triple, whose row and column

196

C Formal Rule System

elements have to be compared to the appropriate input parameters. Once the correct cell
has been found, the inputed target element can be deleted from the target set of the triple
by using the interface function s_diff() of Set_T. Thus, the old triple must be removed
from the matrix to be replaced by the modified one. Except for the function create(), all
functions are called by the interface function m_delete() of Matrix_T.

6. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ③ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃!si,A : matrix_sort♣si,Aq Set_T s_diff(Set_T c, Elem_T t),

❫∃sj,A : param_sort♣sj,A, AM q Elem_T create(Row_T r, Col_T c,

❫ i ✘ j Set_T s),

❫matrix_sort♣sAq Cont_T delete(Cont_T c, Elem_T e),

Cont_T insert(Cont_T c, Elem_T e),

Bool_T equals(Row_T r1, Row_T r2),

Bool_T equals(Col_T c1, Col_T c2),

Row_T getFirst(Elem_T e),

Col_T getSecond(Elem_T e),

Set_T getThird(Tlem_T e),

Bool_T false(),

Bool_T true(),

Bool_T and(Bool_T b1,Bool_T b2)✉

β♣tnext, equals, insert, delete, getFirst, getSecond, getThird,

false, true, and✉q :✏ t③✉
β♣tm_delete✉q :✏ t③✉ (Interface Function)

Rules 7 is defined on operations that add either a new row or a new column to a matrix.
In order to support these functions, an additional data structure is required that stores all
existing columns (respectively rows) so that new cells can be created by combining the inputed
row with the existing columns. Here, we also apply the ADT Set_T since is must already
be present in a TCB to support the algebra Matrix itself so that we do not have to add new
TCB functions. Before a new cell is inserted into the matrix, all existing cells are iterated
by next() to check whether the new cell already exists. Only if it does not, a new triple
element is created and inserted into the matrix. As can be seen, already for creating the triple
element, the functions createSet() and s_insert() are required and can thus be reused
for implementing the required set of columns/rows. create() is also required to create the
second input parameter of the interface functions m_addRow() and m_addColumn().

7. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ❨ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃!si,A : ♣row_sort♣si,Aq Elem_T create(Row_T r, Col_T c,

❴column_sort♣si,Aqq Set_T s),

❫∃!sj,A : matrix_sort♣sj,Aq Set_T createSet(),

❫ i ✘ j Cont_T insert(Cont_T c, Elem_T e),

❫matrix_sort♣sAq Set_T s_insert(Set_T c, Col_T c),

Bool_T equals(Col_T c1, Col_T c2),

Row_T getFirst(Elem_T e),

Col_T getSecond(Elem_T e),

Bool_T false(),

Bool_T true(),

Bool_T and(Bool_T b1,Bool_T b2)✉

197

C.2 Matrix

β♣tnext, create, createContainer , insert, equals, getFirst,
getSecond, false, true, and✉q :✏ t❨✉

β♣tm_addRow✉q :✏ t❨✉ (Interface Function)
β♣tm_addColumn✉q :✏ t❨✉ (Interface Function)

The remaining rule is defined on algebra operations that delete a single row or column from
a matrix. Even though these algebra functions are contrary to the functions dealt with by
rule 7, the derived TCB function set differs only slightly. First, rows and columns naturally
are deleted (delete() instead of insert()). Second, createSet() and s_insert() are not
required, since the collections of existing rows or columns are not necessary here. Moreover,
and() and equals() defined on Col_T are not required since we only have to compare the
row elements of the matrix cells and not the entire domain elements. In contrast, getThird()

is necessary to construct the matrix element to be deleted.

8. Condition TCB Functions and Mapping to Universe Operations

∃oA P OA : α♣oAq ✏ ③ ϕ♣oAq :✏ t Elem_T next(Cont_T c),

❫∃!si,A : ♣row_sort♣si,Aq Row_T create(),

❴column_sort♣si,Aqq Cont_T delete(Cont_T c, Elem_T e),

❫∃!sj,A : matrix_sort♣sj,Aq Bool_T equals(Row_T r1, Row_T r2),

❫ i ✘ j Row_T getFirst(Elem_T e),

❫matrix_sort♣sAq Row_T getSecond(Elem_T e),

Col_T getThird(Elem_T e),

Bool_T false(),

Bool_T true()✉

β♣tnext, create, delete, equals, getFirst, getSecond, getThird,

false, true✉q :✏ t③✉
β♣tm_deleteRow✉q :✏ t③✉ (Interface Function)
β♣tm_deleteColumn✉q :✏ t③✉ (Interface Function)

Applying these rules on an algebra that contains all of the mentioned operations, the
resulting ADT Matrix_T is specified as shown by Table C.2. As can be seen, it imports all
other ADTs besides Cont_T to define its operators. The remaining ADTs are similar to the
ones already explained in the previous paragraphs; for this reason we do not discuss them
again.

sorts Matrix_T

import Bool_T, Row_T, Col_T, Tar_T, Set_T

operators createMatrix: Ñ Matrix_T

m_init: Matrix_T Ñ Matrix_T

m_insert: Matrix_T ✂ Row_T ✂ Col_T ✂ Tar_T Ñ Matrix_T

m_isElement: Matrix_T ✂ Row_T ✂ Col_T ✂ Tar_T Ñ Bool_T

m_cellContent: Matrix_T ✂ Row_T ✂ Col_T Ñ Set_T

m_delete: Matrix_T ✂ Row_T ✂ Col_T ✂ Tar_T Ñ Matrix_T

m_addRow: Matrix_T ✂ Row_T Ñ Matrix_T

m_addColumn: Matrix_T ✂ Col_T Ñ Matrix_T

m_deleteRow: Matrix_T ✂ Row _T Ñ Matrix_T

m_deleteColumn: Matrix_T ✂ Col_T Ñ Matrix_T

Table C.2: ADT Matrix[Row,Column,Target] (Matrix_T)

198

C Formal Rule System

Instead we focus on the ADTs’ interrelations illustrated in Figure C.1. As can be seen,
a new element type TrElem_T is derived from the abstract class Elem_T, implementing the
shared functions create() and equals(). Additionally, it provides the triple-specific func-
tions getFirst(), getSecond(), and getThird(). The triple contains three elements of
type Row_T, Col_T, and Set_T where the latter is a set of Tar_T. Besides an object of type
Cont_T, Matrix_T contains two additional attributes of type Set_T that are necessary to
support the Matrix-specific operations m_addRow() and m_addColumn(). The latter respec-
tively require a separate collection of the already existing matrix rows and columns. Here, we
have reused the type Set_T leading to an additional composition of Matrix_T and Set_T

and associations between Cont_T, Row_T, and Col_T.

Matrix_T

c : Cont_T
cs : Set_T
rs : Set_T

createMatrix() : Matrix_T
m_init(m : Matrix_T) : Matrix_T
m_insert(m : Matrix_T,r : Row_T,c : Col_T,t : Tar_T) : Matrix_T
m_isElement(m : Matrix_T,r : Row_T,c : Col_T,t : Tar_T) : Bool_T
m_cellContent(m : Matrix_T,r : Row_T,c : Col_T) : Set_T
m_deleteRow(m : Matrix_T,r : Row_T) : Matrix_T
m_delete(m : Matrix_T,r : Row_T,c : Col_T,t : Tar_T) : Matrix_T
m_addRow(m : Matrix_T,r : Row_T) : Matrix_T
m_addColumn(m : Matrix_T,c : Col_T) : Matrix_T
m_deleteColumn(m : Matrix_T,c : Col_T) : Matrix_T

Bool_T

true() : Bool_T
false() : Bool_T
and(b1 : Bool_T,b2 : Bool_T) : Bool_T

TrElem

r : Row_T
c : Col_T
st : Set_T

create(r : Row_T,c : Col_T,ts : Set_T) : TrElem
getFirst() : Row_T
getSecond() : Col_T
getThird() : Set_T

Row_T

create() : Row_T
equals(r1 : Row_T,r2 : Row_T) : Bool_T

Col_T

create() : Col_T
equals(c1 : Col_T,c2 : Col_T) : Bool_T

Set_T

c : Cont_T

createSet() : Set_T
s_insert(s : Set_T,t : Tar_T) : Set_T
s_isElement(s : Set_T,t : Tar_T) : Bool_T
s_diff(s : Set_T,t : Tar_T) : Set_T

12

1 1

1

1

1

1

SET::Cont_T

createContainer() : Cont_T
next(c : Cont_T) : Elem_T
insert(c : Cont_T,e : Elem_T) : Cont_T
delete(c : Cont_T,e : Elem_T) : Cont_T

1

1

1 1

SET::Elem_T

create() : Elem_T
equals(e1 : Elem_T,e2 : Elem_T) : Bool_T

1

0..*

RELATION::Tar_T

create() : Tar_T
equals(t1 : Tar_T,t2 : Tar_T) : Bool_T

Figure C.1: ADTs Derived from MatrixrRow, Column, Targets

199

D TCB Specification for the RBAC HIS
Policy

This appendix contains the complete TCB specification in Event-B for the core-based RBAC
model discussed in Section 3.4.5 and the RBAC HIS policy formalized by this model in Ap-
pendix B. We have created this specification by applying the specification method introduced
in Section 5.4. A detailed discussion of this TCB specification along with the applied proof
techniques is given in [178].

D.1 Context rbac_static

CONTEXT rbac static

SETS

USER

ROLE

SESSION

OBJECT

OPERATION

CONSTANTS

M > role-to-permission assignment matrix

RH > role hierarchy

RE > role exclusion relation

AXIOMS

M t: M P ROLE✂ OBJECT ÞÑ P♣OPERATIONq

M1: ∀r, o☎r P ROLE❫ o P OBJECT❫ ♣r ÞÑ o P dom♣Mqq
ñ finite♣M♣r ÞÑ oqq > finiteness

RH t: RH P ROLEØ ROLE

RH1: RH ✏ RH; RH > transitivity and reflexivity

RH2: ∀r1, r2☎
r1 P ROLE❫ r2 P ROLE❫
♣r1 ÞÑ r2q P RH❫ ♣r2 ÞÑ r1q P RH

ñ r1 ✏ r2 > antisymmetry

RE t: RE P ROLEØ ROLE

RE1: RE ✏ RE✁1 > symmetry

201

D.2 Context rbac state

RE2: ∀r1, r2☎
r1 P ROLE ❫ r2 P ROLE ❫
♣r1 ÞÑ r2q P RE

ñ r1 ✘ r2 > irreflexivity

END

D.2 Context rbac_state

CONTEXT rbac state

EXTENDS

rbac static

CONSTANTS

STATE > state space

CONSISTENT STATE

U q > projection function

S q

UA q

user q

roles q

AXIOMS

st: STATE ✏ t
U ÞÑ S ÞÑ UA ÞÑ user ÞÑ roles ⑤
U P P♣USERq ❫ S P P♣SESSIONq ❫
UA P USER Ø ROLE ❫ dom♣UAq ❸ U ❫
user P SESSION ÞÑ USER ❫ dom♣userq ❸ S ❫ ran♣userq ❸ U ❫
roles P SESSION ÞÑ P♣ROLEq ❫ dom♣rolesq ✏ S ❫
♣ ∀ s ☎ s P S ñ finite♣roles♣sqq q ❫
♣ ∀ s ☎ s P dom♣userq ñ roles♣sq ❸ UAr tuser♣sq✉ s q

✉

cst: CONSISTENT STATE ✏ t
U ÞÑ S ÞÑ UA ÞÑ user ÞÑ roles ⑤
U ÞÑ S ÞÑ UA ÞÑ user ÞÑ roles P STATE ❫
dom♣userq ✏ S

✉

cst1: CONSISTENT STATE ❸ STATE theorem

st-i: ∀ U, S, UA, user, roles ☎ ♣
∃ q ☎ q P STATE ❫ q ✏ U ÞÑ S ÞÑ UA ÞÑ user ÞÑ roles

q ñ
dom♣UAq ❸ U ❫
dom♣userq ❸ S ❫ ran♣userq ❸ U ❫
dom♣rolesq ✏ S ❫ ♣ ∀ s ☎ s P S ñ finite♣roles♣sqq q ❫
♣ ∀ s ☎ s P dom♣userqñ roles♣sq ❸ UAr tuser♣sq✉ s q theorem > mapping

invariants on variables

202

D TCB Specification for the RBAC HIS Policy

cst-i: ∀ U, S, UA, user, roles ☎ ♣
∃ q ☎ q P CONSISTENT STATE❫
q ✏ U ÞÑ S ÞÑ UA ÞÑ user ÞÑ roles

q ñ
dom♣UAq ❸ U❫
dom♣userq ✏ S❫ ran♣userq ❸ U❫
dom♣rolesq ✏ S❫ ♣ ∀ s ☎ s P Sñ finite♣roles♣sqq q ❫
♣ ∀ s ☎ s P dom♣userq ñ roles♣sq ❸ UAr tuser♣sq✉ s q theorem

st1: ∀ q ☎ q P STATEñ
prj2♣prj1♣qqq P SESSION ÞÑ USER❫
prj1♣prj1♣qqq P P♣USERq✂P♣SESSIONq✂♣USERØROLEq theorem > only

for ease of proof

st2: ∀ q ☎ q P STATEñ
prj2♣qq P SESSION ÞÑ P♣ROLEq ❫
prj1♣qq P P♣USERq ✂ P♣SESSIONq ✂ ♣USERØ ROLEq ✂

♣SESSIONØ USERq theorem

stU-t: U q P STATEÑ P♣USERq

stS-t: S q P STATEÑ P♣SESSIONq

stA-t: UA q P STATEÑ ♣USERØ ROLEq

stu-t: user q P STATEÑ ♣SESSION ÞÑ USERq

str-t: roles q P STATEÑ ♣SESSION ÞÑ P♣ROLEqq

st-d: ∀ q ☎ q P STATEñ U q♣qq ✏ prj1♣prj1♣prj1♣prj1♣qqqqq ❫
∀ q ☎ q P STATEñ S q♣qq ✏ prj2♣prj1♣prj1♣prj1♣qqqqq ❫
∀ q ☎ q P STATEñ UA q♣qq ✏ prj2♣prj1♣prj1♣qqqq ❫
∀ q ☎ q P STATEñ user q♣qq ✏ prj2♣prj1♣qqq ❫
∀ q ☎ q P STATEñ roles q♣qq ✏ prj2♣qq

st3: ∀ q ☎ q P STATEñ ♣
∃ U, S, UA, user, roles ☎
U ÞÑ S ÞÑ UA ÞÑ user ÞÑ roles ✏ q❫
U q♣qq ✏ U❫
S q♣qq ✏ S❫
UA q♣qq ✏ UA❫
user q♣qq ✏ user❫
roles q♣qq ✏ roles

q theorem > mapping state components to variables

END

203

D.3 Context rbac userhandling

D.3 Context rbac_userhandling

CONTEXT rbac userhandling

EXTENDS

rbac state

CONSTANTS

addUsers

deleteUsers

AXIOMS

add t: addUsers P STATE✂ P♣USERq Ñ STATE

add d: ∀ u, q ☎
q P STATE❫
u P P♣USERq ❫ u ❳ U q♣qq ✏ ∅

ñ addUsers♣q ÞÑ uq ✏ ♣U q♣qq ❨ uq ÞÑ S q♣qq ÞÑ UA q♣qq ÞÑ
user q♣qq ÞÑ roles q♣qq

add v: ∀ u, q ☎
q P STATE❫
u P P♣USERq ❫ u ❳ U q♣qq ✏ ∅

ñ ♣U q♣qq ❨ uq ÞÑ S q♣qq ÞÑ UA q♣qq ÞÑ user q♣qq ÞÑ
roles q♣qq P STATE theorem

del t: deleteUsers P STATE✂ P♣USERq Ñ STATE

del d: ∀ u, q ☎
q P STATE❫
u P P♣USERq ❫ u ❸ U q♣qq

ñ deleteUsers♣q ÞÑ uq ✏ ♣U q♣qq③uq ÞÑ S q♣qq ÞÑ ♣u ⊳✁ UA q♣qqq ÞÑ
♣user q♣qq⊲✁ uq ÞÑ roles q♣qq

del v: ∀ u, q ☎
q P STATE❫ u P P♣USERq ❫ u ❸ U q♣qq

ñ ♣U q♣qq③uq ÞÑ S q♣qq ÞÑ ♣u ⊳✁ UA q♣qqq ÞÑ ♣user q♣qq⊲✁ uq ÞÑ
roles q♣qq P STATE theorem

rev: ∀ u, q ☎
q P STATE❫
u P P♣USERq ❫ u ❳ U q♣qq ✏ ∅

ñ deleteUsers♣addUsers♣q ÞÑ uq ÞÑ uq ✏ q theorem > reversibility

com1: ∀ q, u1, u2 ☎
q P STATE❫
u1 P P♣USERq ❫ u1 ❳ U q♣qq ✏ ∅❫
u2 P P♣USERq ❫ u2 ❳ U q♣qq ✏ ∅❫
u1 ❳ u2 ✏ ∅

ñ addUsers♣addUsers♣q ÞÑ u1q ÞÑ u2q ✏
addUsers♣addUsers♣q ÞÑ u2q ÞÑ u1q theorem > commutativity

com2: ∀ q, u1, u2 ☎
q P STATE❫

204

D TCB Specification for the RBAC HIS Policy

u1 P P♣USERq ❫ u1 ❸ U q♣qq ❫
u2 P P♣USERq ❫ u2 ❸ U q♣qq ❫
u1 ❳ u2 ✏ ∅

ñ deleteUsers♣deleteUsers♣q ÞÑ u1q ÞÑ u2q ✏
deleteUsers♣deleteUsers♣q ÞÑ u2q ÞÑ u1q theorem

END

D.4 Context rbac_sessionhandling

CONTEXT rbac sessionhandling

EXTENDS

rbac state

CONSTANTS

createSessions

destroySessions

mapUserSessions

unmapUserSessions

AXIOMS

crt t: createSessions P STATE✂ P♣SESSIONq Ñ STATE

crt d: ∀ q, s ☎
q P STATE❫
s P P♣SESSIONq ❫ finite♣sq ❫ s ❳ S q♣qq ✏ ∅

ñ createSessions♣q ÞÑ sq ✏ U q♣qq ÞÑ ♣S q♣qq ❨ sq ÞÑ UA q♣qq ÞÑ
user q♣qq ÞÑ ♣roles q♣qq ❨ ♣s✂ t∅✉qq

crt v: ∀ q, s ☎
q P STATE❫
s P P♣SESSIONq ❫ finite♣sq ❫ s ❳ S q♣qq ✏ ∅

ñ U q♣qq ÞÑ ♣S q♣qq ❨ sq ÞÑ UA q♣qq ÞÑ user q♣qq ÞÑ
♣roles q♣qq ❨ ♣s✂ t∅✉qq P STATE theorem

dty t: destroySessions P STATE✂ P♣SESSIONq Ñ STATE

dty d: ∀ q, s ☎
q P STATE❫
s ❸ S q♣qq

ñ destroySessions♣q ÞÑ sq ✏ U q♣qq ÞÑ ♣S q♣qq③sq ÞÑ UA q♣qq ÞÑ
♣s ⊳✁ user q♣qqq ÞÑ ♣s ⊳✁ roles q♣qqq

dty v: ∀ q, s ☎
q P STATE❫
s ❸ S q♣qq

ñ U q♣qq ÞÑ ♣S q♣qq③sq ÞÑ UA q♣qq ÞÑ ♣s ⊳✁ user q♣qqq ÞÑ
♣s ⊳✁ roles q♣qqq P STATE theorem

rev1: ∀ q, s ☎
q P STATE❫

205

D.5 Context rbac rolehandling

s P P♣SESSIONq ❫ finite♣sq ❫ s ❳ S q♣qq ✏ ∅

ñ destroySessions♣createSessions♣q ÞÑ sq ÞÑ sq ✏ q theorem

mp t: mapUserSessions P STATE ✂ ♣SESSION ÞÑ USERq Ñ STATE

mp d: ∀ q, su ☎
q P STATE ❫
su P S q♣qq③dom♣user q♣qqq ÞÑ U q♣qq
♣∀s ☎ s P dom♣suq ñ roles q♣qq♣sq ❸ UA q♣qqr tsu♣sq✉ sq

ñ mapUserSessions♣q ÞÑ suq ✏ U q♣qq ÞÑ S q♣qq ÞÑ UA q♣qq ÞÑ
♣user q♣qq ❨ suq ÞÑ roles q♣qq

mp v: ∀ q, su ☎
q P STATE ❫
su P S q♣qq③dom♣user q♣qqq ÞÑ U q♣qq
♣∀s ☎ s P dom♣suq ñ roles q♣qq♣sq ❸ UA q♣qqr tsu♣sq✉ sq

ñ U q♣qq ÞÑ S q♣qq ÞÑ UA q♣qq ÞÑ ♣user q♣qq ❨ suq ÞÑ
roles q♣qq P STATE theorem

ump t: unmapUserSessions P STATE ✂ ♣SESSION ÞÑ USERq Ñ STATE

ump d: ∀ q, su ☎
q P STATE ❫
su ❸ user q♣qq

ñ unmapUserSessions♣q ÞÑ suq ✏ U q♣qq ÞÑ S q♣qq ÞÑ UA q♣qq ÞÑ
♣user q♣qq③suq ÞÑ roles q♣qq

ump v: ∀ q, su ☎
q P STATE ❫
su ❸ user q♣qq

ñ U q♣qq ÞÑ S q♣qq ÞÑ UA q♣qq ÞÑ ♣user q♣qq③suq ÞÑ roles q♣qq
P STATE theorem

rev2: ∀ q, su ☎
q P STATE ❫
su P S q♣qq③dom♣user q♣qqq ÞÑ U q♣qq
♣∀s ☎ s P dom♣suq ñ roles q♣qq♣sq ❸ UA q♣qqr tsu♣sq✉ sq

ñ unmapUserSessions♣mapUserSessions♣q ÞÑ suq ÞÑ suq ✏ q

theorem

END

D.5 Context rbac_rolehandling

CONTEXT rbac rolehandling

EXTENDS

rbac state

CONSTANTS

assignRolesToUsers

revokeRolesFromUsers

206

D TCB Specification for the RBAC HIS Policy

activateRoles

deactivateRoles

AXIOMS

aur t: assignRolesToUsers P STATE ✂ P♣USER ✂ ROLEq Ñ STATE

aur d: ∀ q, ua ☎
q P STATE ❫
ua ❸ ♣U q♣qq ✂ ROLEq③UA q♣qq

ñ assignRolesToUsers♣q ÞÑ uaq ✏ U q♣qq ÞÑ S q♣qq ÞÑ
♣UA q♣qq ❨ uaq ÞÑ user q♣qq ÞÑ roles q♣qq

aur v: ∀ q, ua ☎
q P STATE ❫
ua ❸ ♣U q♣qq ✂ ROLEq③UA q♣qq

ñ U q♣qq ÞÑ S q♣qq ÞÑ ♣UA q♣qq ❨ uaq ÞÑ user q♣qq ÞÑ roles q♣qq
P STATE theorem

rur t: revokeRolesFromUsers P STATE ✂ P♣USER ✂ ROLEq Ñ STATE

rur d: ∀ q, ua ☎
q P STATE ❫
ua ❸ UA q♣qq ❫
♣∀ u ☎ u P dom♣uaq ñ uar tu✉ s ❳

♣
➈

r0 ☎ r0 P roles q♣qqruser q♣qq✁1r tu✉ ss ⑤ r0 q ✏ ∅

q
ñ revokeRolesFromUsers♣q ÞÑ uaq ✏ U q♣qq ÞÑ S q♣qq ÞÑ

♣UA q♣qq③uaq ÞÑ user q♣qq ÞÑ roles q♣qq

rur v: ∀ q, ua ☎
q P STATE ❫
ua ❸ UA q♣qq ❫
♣∀ u ☎ u P dom♣uaq ñ uar tu✉ s ❳

♣
➈

r0 ☎ r0 P roles q♣qqruser q♣qq✁1r tu✉ ss ⑤ r0 q ✏ ∅

q
ñ U q♣qq ÞÑ S q♣qq ÞÑ ♣UA q♣qq③uaq ÞÑ user q♣qq ÞÑ roles q♣qq

P STATE theorem

rev1: ∀ q, ua ☎
q P STATE ❫
ua ❸ ♣U q♣qq ✂ ROLEq③UA q♣qq

ñ revokeRolesFromUsers♣assignRolesToUsers♣q ÞÑ uaq ÞÑ uaq ✏ q theorem

acr t: activateRoles P STATE ✂ P♣SESSION ✂ ROLEq Ñ STATE

acr d: ∀ q, sr ☎
q P STATE ❫
sr ❸ user q♣qq; UA q♣qq ❫ finite♣srq ❫
♣∀ s ☎ s P dom♣user q♣qqq ñ roles q♣qq♣sq ❳ srrts✉s ✏ ∅q

ñ activateRoles♣q ÞÑ srq ✏ U q♣qq ÞÑ S q♣qq ÞÑ UA q♣qq ÞÑ
user q♣qq ÞÑ
ts ÞÑ r ⑤

207

D.6 Context rbac conditions

s P dom♣roles q♣qqq ❫
r ✏ ♣roles q♣qq♣sq ❨ srr ts✉ ❳ dom♣user q♣qqq sq

✉

acr v: ∀ q, sr ☎
q P STATE ❫
sr ❸ user q♣qq; UA q♣qq ❫ finite♣srq ❫
♣∀ s ☎ s P dom♣user q♣qqq ñ roles q♣qq♣sq ❳ srrts✉s ✏ ∅q

ñ U q♣qq ÞÑ S q♣qq ÞÑ UA q♣qq ÞÑ user q♣qq ÞÑ
ts ÞÑ r ⑤

s P dom♣roles q♣qqq ❫
r ✏ ♣roles q♣qq♣sq ❨ srr ts✉ ❳ dom♣user q♣qqq sq

✉ P STATE theorem

dar t: deactivateRoles P STATE ✂ P♣SESSION ✂ ROLEq Ñ STATE

dar d: ∀ q, sr ☎
q P STATE ❫
sr ❸ ts ÞÑ r ⑤ s P dom♣roles q♣qqq ❫ r P roles q♣qq♣sq✉

ñ deactivateRoles♣q ÞÑ srq ✏ U q♣qq ÞÑ S q♣qq ÞÑ UA q♣qq ÞÑ
user q♣qq ÞÑ
ts ÞÑ r ⑤

s P dom♣roles q♣qqq ❫
r ✏ ♣roles q♣qq♣sq③srr ts✉ sq

✉

dar v: ∀ q, sr ☎
q P STATE ❫
sr ❸ ts ÞÑ r ⑤ s P dom♣roles q♣qqq ❫ r P roles q♣qq♣sq✉

ñ U q♣qq ÞÑ S q♣qq ÞÑ UA q♣qq ÞÑ user q♣qq ÞÑ
ts ÞÑ r ⑤

s P dom♣roles q♣qqq ❫
r ✏ ♣roles q♣qq♣sq③srr ts✉ sq

✉ P STATE theorem

rev2: ∀ q, sr ☎
q P STATE ❫
sr ❸ user q♣qq; UA q♣qq ❫ finite♣srq ❫
♣∀ s ☎ s P dom♣user q♣qqq ñ roles q♣qq♣sq ❳ srrts✉s ✏ ∅q

ñ deactivateRoles♣activateRoles♣q ÞÑ srq ÞÑ srq ✏ q theorem

END

D.6 Context rbac_conditions

CONTEXT rbac conditions

EXTENDS

rbac state

CONSTANTS

cond UR

208

D TCB Specification for the RBAC HIS Policy

cond UM

cond SR

cond SM

sod

AXIOMS

aUR t: cond UR P STATE✂ USER✂ ROLEÑ BOOL

aUR d: ∀ q, u, r ☎
q P STATE❫
u P USER❫
r P ROLE

ñ cond UR♣q ÞÑ u ÞÑ rq ✏ bool♣
♣∃ r1 ☎ r1 P ROLE❫

♣r1 ÞÑ rq P RH❫
♣u ÞÑ r1q P UA q♣qq

q
q

aUM t: cond UM P STATE✂ USER✂ OBJECT✂ OPERATIONÑ BOOL

aUM d: ∀ q, u, o, op ☎
q P STATE❫
u P USER❫
o P OBJECT❫ op P OPERATION

ñ cond UM♣q ÞÑ u ÞÑ o ÞÑ opq ✏ bool♣
♣∃ r ☎ r P ROLE❫ ♣r ÞÑ oq P dom♣Mq ❫

op P M♣r ÞÑ oq ❫
cond UR♣q ÞÑ u ÞÑ rq ✏ TRUE

q
q

aSR t: cond SR P STATE✂ SESSION✂ ROLEÑ BOOL

aSR d: ∀ q, s, r ☎
q P STATE❫
s P SESSION❫
r P ROLE

ñ cond SR♣q ÞÑ s ÞÑ rq ✏ bool♣
s P dom♣roles q♣qqq ❫
♣∃ r1 ☎ r1 P ROLE❫

♣r1 ÞÑ rq P RH❫
r1 P roles q♣qq♣sq

q
q

aSM t: cond SM P STATE✂ SESSION✂ OBJECT✂ OPERATIONÑ BOOL

aSM d: ∀ q, s, o, op ☎
q P STATE❫

209

D.7 Context rbac

s P SESSION❫
o P OBJECT❫ op P OPERATION

ñ cond SM♣q ÞÑ s ÞÑ o ÞÑ opq ✏ bool♣
♣∃ r ☎ r P ROLE❫ ♣r ÞÑ oq P dom♣Mq ❫

op P M♣r ÞÑ oq ❫
cond SR♣q ÞÑ s ÞÑ rq ✏ TRUE

q
q

sod t: sod P STATE✂ USER✂ ROLEÑ BOOL

sod d: ∀ q, u, r ☎
q P STATE❫
u P USER❫
r P ROLE

ñ sod♣q ÞÑ u ÞÑ rq ✏ bool♣
♣∀ r1 ☎ r1 P ROLE❫

♣u ÞÑ r1q P UA q♣qq ñ ✥♣♣r ÞÑ r1q P REq
q

q
END

D.7 Context rbac

CONTEXT rbac

EXTENDS

rbac userhandling

rbac sessionhandling

rbac rolehandling

rbac conditions

END

D.8 Context healthcare_context

CONTEXT healthcare context

EXTENDS

rbac

CONSTANTS

Employee > roles

Manager

Doctor

Nurse

Receptionist

Patient

210

D TCB Specification for the RBAC HIS Policy

MedicalManager

MedicalTeam

ReferredDoctor

UserAdmin

view > operations

add

modify

access

enter

create

update

sign

OldMedicalRecords > objects

RecentMedicalRecords

PrivateNotes

Prescriptions

PatientPersonalInfo

PatientFinancialInfo

PatientMedicalInfo

CarePlan

Appointment

ProgressNotes

LegalAgreement

Bills

Uo

UAo

u1 > user of initial state

RH base > required only for construction

RE base

AXIOMS

axm1: partition♣ROLE,

tEmployee✉, tManager✉, tDoctor✉, tNurse✉, tReceptionist✉,
tPatient✉, tMedicalManager✉, tMedicalTeam✉,
tReferredDoctor✉, tUserAdmin✉

q

211

D.8 Context healthcare context

axm2: partition♣OBJECT,

tOldMedicalRecords✉, tRecentMedicalRecords✉,
tPrivateNotes✉, tPrescriptions✉, tPatientPersonalInfo✉,
tPatientFinancialInfo✉, tPatientMedicalInfo✉, tCarePlan✉,
tAppointment✉, tProgressNotes✉, tLegalAgreement✉, tBills✉,
tUo✉, tUAo✉

q

axm3: partition♣OPERATION,

tview✉, tadd✉, tmodify✉, taccess✉, tenter✉, tcreate✉,
tupdate✉, tsign✉

q

axm4: partition♣USER, tu1✉q

axm5: RH base ✏ t
Doctor ÞÑ Nurse,

Nurse ÞÑ Employee,

Manager ÞÑ MedicalManager,

MedicalManager ÞÑ Receptionist,

Receptionist ÞÑ Employee

✉ ❨ id

axm6: RH ✏ RH base; RH base; RH base

axm7: Manager ÞÑ Employee P RH❫
Manager ÞÑ Manager P RH theorem

axm8: RE base ✏ t
Patient ÞÑ Employee,

Patient ÞÑ ReferredDoctor,

Patient ÞÑ UserAdmin,

Doctor ÞÑ Manager,

Doctor ÞÑ Receptionist

✉

axm9: RE ✏ RE base ❨ RE base✁1

axm10: M ✏ t
Doctor ÞÑ OldMedicalRecords ÞÑ tview✉,
Patient ÞÑ OldMedicalRecords ÞÑ tview✉,
Manager ÞÑ OldMedicalRecords ÞÑ tenter✉,
Nurse ÞÑ OldMedicalRecords ÞÑ taccess✉,
Doctor ÞÑ RecentMedicalRecords ÞÑ tview, add✉,
Nurse ÞÑ RecentMedicalRecords ÞÑ tview✉,
Patient ÞÑ RecentMedicalRecords ÞÑ tview✉,
Manager ÞÑ RecentMedicalRecords ÞÑ tenter✉,
Doctor ÞÑ PrivateNotes ÞÑ tview, add✉,
Doctor ÞÑ Prescriptions ÞÑ tview, modify✉,
Patient ÞÑ Prescriptions ÞÑ tview✉,

212

D TCB Specification for the RBAC HIS Policy

Manager ÞÑ PatientPersonalInfo ÞÑ taccess✉,
Manager ÞÑ PatientFinancialInfo ÞÑ taccess✉,
Manager ÞÑ PatientMedicalInfo ÞÑ taccess✉,
Manager ÞÑ CarePlan ÞÑ tupdate✉,
Nurse ÞÑ CarePlan ÞÑ tview✉,
Receptionist ÞÑ Appointment ÞÑ tcreate✉,
Nurse ÞÑ ProgressNotes ÞÑ tadd✉,
Patient ÞÑ LegalAgreement ÞÑ tsign✉,
Patient ÞÑ Bills ÞÑ tview✉,
UserAdmin ÞÑ Uo ÞÑ tupdate✉,
UserAdmin ÞÑ UAo ÞÑ tupdate✉

✉
END

D.9 Context healthcare_generic

MACHINE healthcare generic

SEES healthcare context

VARIABLES

state

INVARIANTS

inv1: state P CONSISTENT STATE

inv2: state P STATE theorem

EVENTS

INITIALISATION ♣✏
begin

act1: state :✏ tu1✉ ÞÑ ∅ ÞÑ tu1 ÞÑ UserAdmin✉ ÞÑ ∅ ÞÑ ∅

end

createUser ♣✏
any

s > acting session

u > user to be created

where

typ1: s P SESSION

typ2: u P USER③U q♣stateq

cnd1: access SM♣state ÞÑ s ÞÑ Uo ÞÑ updateq ✏ TRUE

then

act1: state :✏ addUsers♣state ÞÑ tu✉q
end

destroyUser ♣✏
any

s > acting session

u > user to be deleted

213

D.9 Context healthcare generic

where

typ1: s P SESSION

typ2: u P U q♣stateq

cnd1: access SM♣state ÞÑ s ÞÑ Uo ÞÑ updateq ✏ TRUE

then

act1: state :✏ deleteUsers♣
destroySessions♣

state ÞÑ
dom♣user q♣stateq⊲ tu✉q

q ÞÑ
tu✉

q
end

login ♣✏
any

s > session to be created

u > assigned user

where

typ1: s P SESSION③S q♣stateq

typ2: u P U q♣stateq

then

act1: state :✏ mapUserSessions♣
createSessions♣state ÞÑ ts✉q ÞÑ
ts ÞÑ u✉

q
end

logout ♣✏
any

s > session that logs out

where

typ1: s P S q♣stateq

then

act1: state :✏ destroySessions♣
unmapUserSessions♣

state ÞÑ
ts ÞÑ user q♣stateq♣sq✉

q ÞÑ
ts✉

q
end

activateRole ♣✏
any

s > acting session

214

D TCB Specification for the RBAC HIS Policy

r > role to be activated

where

typ1: s P S q♣stateq

typ2: r P ROLE③roles q♣stateq♣sq

cnd1: r P ♣user q♣stateq; UA q♣stateqqrts✉s > user may activate r

then

act1: state :✏ activateRoles♣ state ÞÑ ts ÞÑ r✉ q

end

deactivateRole ♣✏
any

s > acting session

r > role to be deactivated

where

typ1: s P S q♣stateq

typ2: r P roles q♣stateq♣sq

then

act1: state :✏ deactivateRoles♣ state ÞÑ ts ÞÑ r✉ q

end

assignGenericRole ♣✏
any

u > user

r > role to be assigned

where

typ1: u P U q♣stateq

typ2: r P ROLE③UA q♣stateqrtu✉s

cnd1: sod♣state ÞÑ u ÞÑ rq ✏ TRUE

then

act1: state :✏ assignRolesToUsers♣ state ÞÑ tu ÞÑ r✉ q

end

revokeGenericRole ♣✏
any

u > user

r > role to be revoked

where

typ1: u P U q♣stateq

typ2: r P UA q♣stateqrtu✉s

then

215

D.10 Context healthcare

act1: state :✏ revokeRolesFromUsers♣
deactivateRoles♣

state ÞÑ
t s0 ☎ s0 P user q♣stateq✁1rtu✉s ❫

r P roles q♣stateq♣s0q ⑤ s0 ÞÑ r✉
q ÞÑ
tu ÞÑ r✉

q
end

END

D.10 Context healthcare

MACHINE healthcare

REFINES healthcare generic

SEES healthcare context

VARIABLES

state > all invariants of healthcare generic hold

EVENTS

INITIALISATION ♣✏
extends

INITIALISATION

begin

act1: state :✏ tu1✉ ÞÑ ∅ ÞÑ tu1 ÞÑ UserAdmin✉ ÞÑ ∅ ÞÑ ∅

end

createUser ♣✏
extends

createUser

any

s

u

where

typ1: s P SESSION

typ2: u P USER③U q♣stateq

cnd1: access SM♣state ÞÑ s ÞÑ Uo ÞÑ updateq ✏ TRUE

then

act1: state :✏ addUsers♣state ÞÑ tu✉q
end

destroyUser ♣✏
extends

destroyUser

any

s

216

D TCB Specification for the RBAC HIS Policy

u

where

typ1: s P SESSION

typ2: u P U q♣stateq

cnd1: access SM♣state ÞÑ s ÞÑ Uo ÞÑ updateq ✏ TRUE

then

act1: state :✏ deleteUsers♣
destroySessions♣

state ÞÑ dom♣user q♣stateq⊲ tu✉q
q ÞÑ tu✉

q
end

assignRole ♣✏
extends

assignGenericRole

any

s > action session

u > target user

r > role to be assigned

where

typ1: s P S q♣stateq

typ2: u P U q♣stateq

typ3: r P ROLE③UA q♣stateqrtu✉s

cnd1: sod♣state ÞÑ u ÞÑ rq ✏ TRUE

cnd2: access SM♣state ÞÑ s ÞÑ UAo ÞÑ updateq ✏ TRUE

then

act1: state :✏ assignRolesToUsers♣ state ÞÑ tu ÞÑ r✉ q
end

revokeRole ♣✏
extends

revokeGenericRole

any

s > acting session

u > target user

r > role to be revoked

where

typ1: s P S q♣stateq

typ2: u P U q♣stateq

typ3: r P UA q♣stateqrtu✉s

cnd1: access SM♣state ÞÑ s ÞÑ UAo ÞÑ updateq ✏ TRUE

217

D.10 Context healthcare

then

act1: state :✏ revokeRolesFromUsers♣
deactivateRoles♣

state ÞÑ
t s0 ☎ s0 P user q♣stateq✁1rtu✉s ❫

r P roles q♣stateq♣s0q ⑤ s0 ÞÑ r✉
q ÞÑ
tu ÞÑ r✉

q
end

login ♣✏
extends

login

any

s

u

where

typ1: s P SESSION③S q♣stateq

typ2: u P U q♣stateq

then

act1: state :✏ mapUserSessions♣
createSessions♣state ÞÑ ts✉q ÞÑ
ts ÞÑ u✉

q
end

logout ♣✏
extends

logout

any

s

where

typ1: s P S q♣stateq

then

act1: state :✏ destroySessions♣
unmapUserSessions♣

state ÞÑ
ts ÞÑ user q♣stateq♣sq✉

q ÞÑ ts✉
q

end

activateRole ♣✏
extends

activateRole

218

D TCB Specification for the RBAC HIS Policy

any

s

r

where

typ1: s P S q♣stateq

typ2: r P ROLE③roles q♣stateq♣sq

cnd1: r P ♣user q♣stateq; UA q♣stateqqrts✉s

then

act1: state :✏ activateRoles♣state ÞÑ ts ÞÑ r✉q
end

deactivateRole ♣✏
extends

deactivateRole

any

s

r

where

typ1: s P S q♣stateq

typ2: r P roles q♣stateq♣sq

then

act1: state :✏ deactivateRoles♣state ÞÑ ts ÞÑ r✉q
end

assignReferredDoctorRole ♣✏
refines

assignGenericRole

any

s > acting session

u > target user

where

typ1: s P S q♣stateq

typ2: u P U q♣stateq

cnd1: sod♣state ÞÑ u ÞÑ ReferredDoctorq ✏ TRUE

cnd2: access SR♣state ÞÑ s ÞÑ Doctorq ✏ TRUE

cnd3: access UR♣state ÞÑ u ÞÑ Doctorq ✏ TRUE

cnd4: ReferredDoctor ❘ UA q♣stateqrtu✉s

with

r: r ✏ ReferredDoctor

then

219

D.10 Context healthcare

act1: state :✏ assignRolesToUsers♣
state ÞÑ tu ÞÑ ReferredDoctor✉

q
end

revokeReferredDoctorRole ♣✏
refines

revokeGenericRole

any

s > acting session

u > target user

where

typ1: s P S q♣stateq

typ2: u P U q♣stateq

cnd1: access SR♣state ÞÑ s ÞÑ Doctorq ✏ TRUE

cnd2: ReferredDoctor P UA q♣stateqrtu✉s

with

r: r ✏ ReferredDoctor

then

act1: state :✏ revokeRolesFromUsers♣
deactivateRoles♣

state ÞÑ
ts0 ☎ s0 P user q♣stateq✁1rtu✉s ❫

ReferredDoctor P roles q♣stateq♣s0q
⑤ s0 ÞÑ ReferredDoctor✉

q ÞÑ
tu ÞÑ ReferredDoctor✉

q
end

assignPatientRole ♣✏
refines

assignGenericRole

any

s > acting session

u > target user

where

typ1: s P S q♣stateq

typ2: u P U q♣stateq

cnd1: sod♣state ÞÑ u ÞÑ Patientq ✏ TRUE

cnd2: access SR♣state ÞÑ s ÞÑ Receptionistq ✏ TRUE

cnd4: Patient ❘ UA q♣stateqrtu✉s

with

220

D TCB Specification for the RBAC HIS Policy

r: r ✏ Patient

then

act1: state :✏ assignRolesToUsers♣
state ÞÑ tu ÞÑ Patient✉

q
end

revokePatientRole ♣✏
refines

revokeGenericRole

any

s > acting session

u > target user

where

typ1: s P S q♣stateq

typ2: u P U q♣stateq

cnd1: access SR♣state ÞÑ s ÞÑ Receptionistq ✏ TRUE

cnd2: Patient P UA q♣stateqrtu✉s

with

r: r ✏ Patient

then

act1: state :✏ revokeRolesFromUsers♣
deactivateRoles♣

state ÞÑ
ts0 ☎ s0 P user q♣stateq✁1rtu✉s ❫

Patient P roles q♣stateq♣s0q
⑤ s0 ÞÑ Patient✉

q ÞÑ
tu ÞÑ Patient✉

q
end

assignMedicalTeamRole ♣✏
refines

assignGenericRole

any

s > acting session

u > target user

where

typ1: s P S q♣stateq

typ2: u P U q♣stateq

cnd1: sod♣state ÞÑ u ÞÑ MedicalTeamq ✏ TRUE

cnd2: access SR♣state ÞÑ s ÞÑ MedicalManagerq ✏ TRUE

221

D.10 Context healthcare

cnd3: access UR♣state ÞÑ u ÞÑ Doctorq ✏ TRUE ❴
access UR♣state ÞÑ u ÞÑ Nurseq ✏ TRUE

cnd4: MedicalTeam ❘ UA q♣stateqrtu✉s

with

r: r ✏ MedicalTeam

then

act1: state :✏ assignRolesToUsers♣
state ÞÑ tu ÞÑ MedicalTeam✉

q
end

revokeMedicalTeamRole ♣✏
refines

revokeGenericRole

any

s > acting session

u > target user

where

typ1: s P S q♣stateq

typ2: u P U q♣stateq

cnd1: access SR♣state ÞÑ s ÞÑ MedicalManagerq ✏ TRUE

cnd2: MedicalTeam P UA q♣stateqrtu✉s

with

r: r ✏ MedicalTeam

then

act1: state :✏ revokeRolesFromUsers♣
deactivateRoles♣

state ÞÑ
ts0 ☎ s0 P user q♣stateq✁1rtu✉s ❫

MedicalTeam P roles q♣stateq♣s0q
⑤ s0 ÞÑ MedicalTeam✉

q ÞÑ
tu ÞÑ MedicalTeam✉

q
end

END

222

List of Abbreviations

ABAC Attribute-based Access Control
ABAM Attribute-based Access Matrix
ACI Access Control Information
ACM Access Control Matrix
ADF Access Decision Control Facility
ADT Abstract Data Type
AEF Access Enforcement Facility
API Application Programming Interface
ARBAC Administrative Role-based Access Control
ASID Address Space Identifier
AVC Access Vector Cache
BLP Bell/La-Padula
CFM Confinement Flow Model
CPU Central Processing Unit
DAC Discretionary Access Control
DFA Deterministic Finite Automaton
DLM Decentralized Label Model
EID Entity Identifier
FAF Flexible Authorization Framework
GFAC Generalized Framework for Access Control
GTRBAC Generalized Temporal Role-Based Access Control
GUI Graphical User Interface
HIS Health Information System
HRU Harrison Ruzzo Ullman
IBAC Identity-Based Access Control
IFG Information Flow Graph
IPC Inter Process Communication
IPPC Inter Policy Process Communication
ITC Inter Thread Communication
LAN Local Area Network
LOC Lines of Code
MAC Mandatory Access Control
MLS Multi Level Security
MMU Memory Management Unit
NIST National Institute of Standards and Technology
OASIS Advancing Open Standards for the Information Society
OS Operating System
PAP Policy Administration Point
PARBAC Parameterized Role-based Access Control
PCB Process Control Block
PDP Policy Decision Point

223

D.10 Context healthcare

PEP Policy Enforcement Point
PM Policy Machine
PPCB Policy Process Control Block
PPID Policy Process Identifier
RBAC Role-based Access Control
RSBAC Rule Set Based Access Control
RT Role-based Trust-management
RTE Runtime Environment
SACMAT Symposium on Access Control Models and Technologies
SBAC Status-based Access Control
SE Security Enhanced
SPID Security Policy Identifier
SPM Schematic Protection Model
SRK Storage Root Key
TAID Transaction Identifier
TAM Types Access Matrix
TCB Trusted Computing Base
TE Type Enforcement
TID Thread Identifier
TM Trust-management
TPM Trusted Platform Module
TPS Trusted Persistent Storage
TRBAC Temporal Role-based Access Control
VPFS Virtual Private File System
VPN Virtual Private Network
WAN Wide Area Network
XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language

224

List of Figures

2.1 The Flask Security Architecture . 8
2.2 The RSBAC Security Architecture . 10
2.3 The Security Architecture of the Policy Machine 10
2.4 The Nizza Security Architecture . 12
2.5 Model-based Security Policy Engineering . 14

3.1 A Family Tree of Access Control Models . 20
3.2 A Family Tree of Information Flow Models . 21
3.3 A Family Tree of Security Models . 22
3.4 RBAC Security Model [212] . 32
3.5 Role Hierarchy of RBAC HIS Policy . 34

4.1 Functional Design of Causal TCBs . 60
4.2 Design of Microkernel-based IT Systems . 61
4.3 Causal TCB Enforcing an RBAC3, RBAC2, and ABAC Policy 62
4.4 Functional Components of Causal TCBs . 65
4.5 Security Policy Manager . 65
4.6 Three-State Security Policy Process Model . 66
4.7 Memory Manager . 68
4.8 Three-State Thread Model . 70
4.9 Thread Manager . 71
4.10 States and State Transitions of a Transaction 74
4.11 Inter Thread Communication . 76
4.12 Trusted Persistent Storage Manager . 78
4.13 Cryptographer . 81
4.14 Entity Identification Server . 83
4.15 Generic Object Manager . 84
4.16 Authenticator . 86
4.17 Functional Components of the Policy-dependent RTE 88
4.18 Engineering the Policy-dependent RTE . 89
4.19 Mappings of Engineering a Policy-dependent RTE 102
4.20 Interceptor . 105
4.21 ADTs Derived from SetrElements . 112
4.22 ADTs Derived from RelationrDomain, Targets 119
4.23 Policy-dependent RTE Tailored to Enforce the RBAC HIS Policy 120
4.24 ADTs for Algebra Set for RBAC HIS Model . 129
4.25 ADTs for Algebras Set and Relation for RBAC HIS Model 131
4.26 ADTs for Algebras Set, Relation, and Mapping for RBAC HIS Model 134
4.27 ADTs for Algebras Set, Relation, Mapping, and Matrix for RBAC HIS Model . 136
4.28 Integration of Executable RBAC HIS Policy in Policy-dependent RTE 139

225

List of Figures

5.1 Specification Engineering . 144
5.2 Context Hierarchy in Event-B . 147

6.1 Prototype Implementation of the Policy-dependent RTE 163
6.2 Implementation Effort for Adding a Novel Policy 165
6.3 Implementation Effort for Modifying a Policy 166

C.1 ADTs Derived from MatrixrRow, Column, Targets 199

226

List of Tables

3.1 Authorization Rules . 38

4.1 Abstract Component Algebra Set . 93
4.2 Abstract Parameter Sort Element . 94
4.3 Abstract Component Algebra RelationrDomain, Targets ✏ ♣SAR

, OAR
q 95

4.4 Abstract Component Algebra MappingrDomain, Targets ✏ ♣SAMap
, OAMap

q . . . 96
4.5 Abstract Component Algebra MatrixrRow, Column, Targets ✏ ♣SAM

, OAM
q . . . 97

4.6 Abstract Core Algebra State . 99
4.7 Example of Rewriting a Primitive Action . 100
4.8 Abstract Core Algebra ExtensionVector . 101
4.9 ADT Set[Element] (Set_T) . 110
4.10 ADT Bool_T . 111
4.11 ADT Element (Elem_T) . 111
4.12 ADT Container (Cont_T) . 111
4.13 ADT Nat_T . 112
4.14 ADT Relation[Domain,Target] (Rel_T) . 117
4.15 Modified ADT Element (Elem_T) . 117
4.16 Modified ADT Bool_T . 118
4.17 Modified ADT Set[Element] (Set_T) . 118
4.18 Component Algebra SetrElements for the RBAC Model 121
4.19 Component Algebra for Parameter Sort Element for the RBAC Model 122
4.20 Component Algebra RelationrDomain, Targets for the RBAC Model 122
4.21 Component Algebra MappingrDomain, Targets for the RBAC Model 123
4.22 Component Algebra MatrixrRow, Column, Targets for the RBAC Model 124
4.23 Core Algebra State for the RBAC Model . 126
4.24 Core Algebra for ExtensionVector for the RBAC Model 127
4.25 Axioms of ADT State_T for RBAC HIS Model 133
4.26 ADT ExtVec_T for RBAC HIS Policy . 135

B.1 Role-to-permission Assignment Matrix . 185

C.1 ADT Mapping[Domain,Target] (Map_T) . 194
C.2 ADT Matrix[Row,Column,Target] (Matrix_T) 198

227

Bibliography

[1] The Lex & Yacc Page. http://www.compilertools.net/. Accessed June 2013.

[2] The MEMPHIS Tree Builder & Tree Walker Tool. http://memphis.compilertools.

net/. Accessed June 2013.

[3] A. Ott and S. Ievlev and H. W. Klöpping. The RSBAC Introduction. http://books.

rsbac.org. Accessed April 2012.

[4] M. D. Abrams, K. W. Eggers, L. J. L. Padula, and I. M. Olson. A Generalized Frame-
work for Access Control: An Informal Description. In Proceedings of the 13th National
Computer Security Conference. NIST/NCSC, Washington, DC, USA, 1990.

[5] J.-R. Abrial. A Formal Approach to Large Software Construction. In J. Snepscheut,
editor, Mathematics of Program Construction, volume 375 of Lecture Notes in Computer
Science, pages 1–20. Springer Berlin Heidelberg, 1989. ISBN 978-3-540-51305-6.

[6] J.-R. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010. ISBN 978-0-521-89556-9. 1–586 pp.

[7] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin. Rodin:
An Open Toolset for Modelling and Reasoning in Event-B. International Journal on
Software Tools for Technology Transfer (STTT) - Special Section on VSTTE 2008, 12
(6):447–466, Nov. 2010. ISSN 1433-2779.

[8] J.-R. Abrial, E. Börger, and H. Langmaack, editors. Formal Methods for Industrial
Applications, Specifying and Programming the Steam Boiler Control, volume 1165 of
Lecture Notes in Computer Science. Springer Verlag, 1996. ISBN 3-540-61929-1.

[9] M. Aiken, M. Fähndrich, C. Hawblitzel, G. Hunt, and J. Larus. Deconstructing Process
Isolation. In Proceedings of the 2006 Workshop on Memory System Performance and
Correctness, MSPC ’06, pages 1–10. ACM, New York, NY, USA, 2006. ISBN 1-59593-
578-9.

[10] M. A. Al-Kahtani and R. Sandhu. Induced Role Hierarchies with Attribute-based
RBAC. In Proceedings of the Eighth ACM symposium on Access Control Models and
Technologies, SACMAT ’03, pages 142–148. ACM, New York, NY, USA, 2003. ISBN
1-58113-681-1.

[11] Altova. Altova R© UModel R© 2012 Enterprise Edition. http://www.altova.com/

download/umodel/uml_tool_enterprise.html, 2012. Accessed June 2012.

[12] P. E. Ammann and R. S. Sandhu. Extending the Creation Operation in the Schematic
Protection Model. In Proceedings of the 6th Annual Computer Security Applications
Conference, pages 340–348. IEEE Computer Society Press, Los Alamitos, CA, USA,
Dec. 1990. ISBN 978-0-8186-2105-5.

229

Bibliography

[13] P. E. Ammann and R. S. Sandhu. Safety Analysis for the Extended Schematic Pro-
tection Model. In Proceedings of the IEEE Symposium on Security and Privacy, pages
87–97. IEEE Computer Society Press, Washington, DC, USA, May 1991. ISBN 0-8186-
2168-0.

[14] P. Amthor, A. Fischer, and W. E. Kühnhauser. Analyse von Zugriffssteuerungssystemen
(in German). In P. Horster and P. Schartner, editors, D·A·CH Security 2009, pages
49–61. syssec Verlag, 2009. ISBN 978-3-00-027488-6.

[15] P. Amthor, W. E. Kühnhauser, and A. Pölck. Model-based Safety Analysis of SELinux
Security Policies. In P. Samarati, S. Foresti, J. Hu, and G. Livraga, editors, In Pro-
ceedings of 5th International Conference on Network and System Security, NSS ’11,
pages 208–215. IEEE Computer Society Press, Los Alamitos, CA, USA, 2011. ISBN
978-1-4577-0458-1.

[16] P. Amthor, W. E. Kühnhauser, and A. Pölck. Heuristic Safety Analysis of Access
Control Models. In In Proceedings of the 18th ACM Symposium on Access control
Models and Technologies, SACMAT ’13, pages 137–148. ACM, New York, NY, USA,
2013. ISBN 978-1-4503-1950-8.

[17] J. P. Anderson. Computer Security Technology Planning Study. Technical Report ESD-
TR-73-51, Air Force Electronic Systems Division, Hanscom AFB, Bedford, MA, USA,
1972. URL http://seclab.cs.ucdavis.edu/projects/history/papers/ande72a.

pdf. Also available as Vol. I, DITCAD-758206. Vol. II DITCAD-772806.

[18] B. Parducci, H. Lockhart, and R. Levison. OASIS eXtensible Access Control Markup
Language (XACML) TC Version 2.0. https://www.oasis-open.org/, Feb. 2005. Ac-
cessed July 2012.

[19] N. Baracaldo, A. Masoumzadeh, and J. Joshi. A Secure, Constraint-Aware Role-Based
Access Control Interoperation Framework. In Proceedings of the 5th International Con-
ference on Network and System Security, NSS ’11, pages 200–207. IEEE Computer
Society Press, Los Alamitos, CA, USA, 2011. ISBN 978-1-4503-1950-8.

[20] S. Barker. The Next 700 Access Control Models or a Unifying Meta-Model? In
Proceedings of the 14th ACM Symposium on Access Control Models and Technologies,
SACMAT ’09, pages 187–196. ACM, New York, NY, USA, 2009. ISBN 978-1-60558-
537-6.

[21] S. Barker. Personalizing Access Control by Generalizing Access Control. In Proceedings
of the 15th ACM Symposium on Access Control Models and Technologies, SACMAT ’10,
pages 149–158. ACM, New York, NY, USA, 2010. ISBN 978-1-4503-0049-0.

[22] S. Barker, G. Boella, D. M. Gabbay, and V. Genovese. A Meta-model of Access Control
in a Fibred Security Language. Studia Logica, Special Issue: New Ideas in Applied Logic,
92(3):437–477, 2009. ISSN 0039-3215.

[23] S. Barker and P. J. Stuckey. Flexible Access Control Policy Specification with Con-
straint Logic Programming. ACM Transactions on Information and System Security,
6(4):501–546, Nov. 2003. ISSN 1094-9224.

230

Bibliography

[24] M. Becker, C. Fournet, and A. Gordon. Design and Semantics of a Decentralized Autho-
rization Language. In Proceedings of the 20th IEEE Computer Security Foundations
Symposium, CSF ’07, pages 3–15. IEEE Computer Society, Washington, DC, USA,
2007. ISBN 0-7695-2819-8.

[25] M. Y. Becker and P. Sewell. Cassandra: Flexible Trust Management, Applied to Elec-
tronic Health Records. IEEE Computer Security Foundations Workshop, 0:139, 2004.
ISBN 0-7695-2169-X. ISSN 1063-6900.

[26] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical Foundations
(Vol.I). Technical Report AD-770 768, MITRE, Bedford, Massachusetts, USA, Nov.
1973. URL http://www.dtic.mil/dtic/tr/fulltext/u2/770768.pdf.

[27] D. E. Bell and L. J. LaPadula. Secure Computer Systems: A Refinement of the Mathe-
matical Model. Technical Report AD-780 528, MITRE, Bedford, Massachusetts, USA,
Apr. 1974. URL http://www.dtic.mil/dtic/tr/fulltext/u2/780528.pdf.

[28] D. E. Bell and L. J. LaPadula. Secure Computer System: Unified Exposition and Mul-
tics Interpretation. Technical Report AD-A023 588, MITRE, Bedford, Massachusetts,
USA, Mar. 1976. URL http://www.dtic.mil/dtic/tr/fulltext/u2/a023588.pdf.

[29] A. Belokosztolszki and K. Moody. Meta-Policies for Distributed Role-Based Access
Control Systems. In Proceedings of the 3rd International Workshop on Policies for Dis-
tributed Systems and Networks), POLICY ’02, pages 106–115. IEEE Computer Society,
Washington, DC, USA, 2002. ISBN 0-7695-1611-4.

[30] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An Access Control Model Support-
ing Periodicity Constraints and Temporal Reasoning. ACM Transactions on Database
Systems, 23(3):231–285, Sept. 1998. ISSN 0362-5915.

[31] E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca. GEO-RBAC: A spatially
aware RBAC. In Proceedings of the 10th ACM Symposium on Access Control Models
and Technologies, SACMAT ’05, pages 29–37. ACM, New York, NY, USA, 2005. ISBN
1-59593-045-0.

[32] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A Logical Framework for Reasoning
About Access Control Models. In Proceedings of the 6th ACM Symposium on Access
Control Models and Technologies, SACMAT ’01, pages 41–52. ACM, New York, NY,
USA, 2001. ISBN 1-58113-350-2.

[33] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A System to Specify and Manage
Multipolicy Access Control Models. In Proceedings of the 3rd International Workshop
on Policies for Distributed Systems and Networks, POLICY ’02, pages 116–27. IEEE
Computer Society, Washington, DC, USA, 2002. ISBN 0-7695-1611-4.

[34] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A Logical Framework for Reasoning
about Access Control Models. ACM Transactions on Information and System Security,
6(1):71–127, Feb. 2003. ISSN 1094-9224.

[35] K. Biba. Integrity Considerations for Secure Computer Systems. Technical Report
ESD-TR-76-372, MITRE, Bedford, Massachusetts, USA, Apr. 1977. URL www.dtic.

mil/dtic/tr/fulltext/u2/a039324.pdf.

231

Bibliography

[36] C. Bidan and V. Issarny. Dealing with Multi-policy Security in Large Open Distributed
Systems. In Proceedings of the 5th European Symposium on Research in Computer
Security, pages 51–66. Springer-Verlag, London, UK, 1998. ISBN 3-540-65004-0.

[37] P. Bonatti, S. de Capitani di Vimercati, and P. Samarati. A Modular Approach to
Composing Access Control Policies. In Proceedings of the 7th ACM Conference on
Computer and Communications Security, CCS ’00, pages 164–173. ACM, New York,
NY, USA, 2000. ISBN 1-58113-203-4.

[38] P. Bonatti and P. Samarati. Regulating Service Access and Information Release on
the Web. In Proceedings of the 7th ACM conference on Computer and communications
security, CCS ’00, pages 134–143. ACM, New York, NY, USA, 2000. ISBN 1-58113-
203-4. URL http://doi.acm.org/10.1145/352600.352620.

[39] P. A. Bonatti and P. Samarati. A Uniform Framework for Regulating Service Access
and Information Release on the Web. Journal of Computer Security, 10(3):241–271,
Sept. 2002. ISSN 0926-227X.

[40] T. Boswell. Specification and Validation of a Security Policy Model. In J. C. Woodcock
and P. G. Larsen, editors, FME ’93: Industrial-Strength Formal Methods, volume 670
of Lecture Notes in Computer Science, pages 42–51. Springer Berlin Heidelberg, 1993.
ISBN 978-3-540-56662-5.

[41] D. F. Brewer and M. J. Nash. The Chinese Wall Security Policy. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 206–214. IEEE Computer Society,
Los Alamitos, CA, USA, May 1989.

[42] N. Broberg and D. Sands. Flow Locks: Towards a Core Calculus for Dynamic Flow
Policies. In P. Sestoft, editor, Programming Languages and Systems, volume 3924 of
Lecture Notes in Computer Science, pages 180–196. Springer Berlin Heidelberg, 2006.
ISBN 978-3-540-33095-0.

[43] N. Broberg and D. Sands. Flow-sensitive Semantics for Dynamic Information Flow
Policies. In Proceedings of the ACM SIGPLAN Fourth Workshop on Programming
Languages and Analysis for Security, PLAS ’09, pages 101–112. ACM, New York, NY,
USA, 2009. ISBN 978-1-60558-645-8.

[44] N. Broberg and D. Sands. Paralocks: Role-based Information Flow Control and Beyond.
In Proceedings of the 37th annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’10, pages 431–444. ACM, New York, NY, USA,
2010. ISBN 978-1-60558-479-9.

[45] A. D. Brucker and B. Wolff. A Verification Approach to Applied System Security.
International Journal on Software Tools for Technology Transfer (STTT) - Special
Section on Formal Methods for Industrial Critical Systems, 7(3):233–247, June 2005.
ISSN 1433-2779.

[46] C. Bryce, W. E. Kühnhauser, R. Amouroux, and M. Lopéz. CWASAR: A European
Infrastructure for Secure Electronic Commerce. Journal of Computer Security - Special
issue on security in the World Wide Web, 5(3):225–235, 1997.

232

Bibliography

[47] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry. Towards
Taming Privilege-Escalation Attacks on Android. In 19th Annual Network & Distributed
System Security Symposium (NDSS), Feb. 2012.

[48] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and B. Shastry. Practical
and Lightweight Domain Isolation on Android. In Proceedings of the 1st ACM CCS
Workshop on Security and Privacy in Mobile Devices (SPSM), SPSM ’11. ACM, New
York, NY, USA, Oct. 2011. ISBN 978-1-4503-1000-0.

[49] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Towards a Framework for Android
Security Modules: Extending SE Android Type Enforcement to Android Mid-
dleware. Technical Report TUD-CS-2012-0231, System Security Lab / CASED,
2012. URL http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/

Group_TRUST/PubsPDF/flaskdroid_tr.pdf.

[50] C. Stüble. The PERSEUS Security Framework. http://www.perseus-os.org. Ac-
cessed June 2012.

[51] P. Cao, E. W. Felten, and K. Li. Implementation and Performance of Application-
controlled File Caching. In Proceedings of the 1st USENIX Conference on Operating
Systems Design and Implementation, OSDI ’94. USENIX Association, Berkeley, CA,
USA, 1994.

[52] J. Carter. Using GConf as an Example of How to Create an Userspace Object Manager.
2007 Security Enhanced Linux Symposium-SELinux, 2007.

[53] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De Bosschere. System-wide
Compaction and Specialization of the Linux Kernel. SIGPLAN Notices, 40:95–104,
June 2005. ISSN 0362-1340.

[54] Citrix. XenClient XT. http://www.citrix.com/English/ps2/products/

subfeature.asp?contentID=2315434. Accessed May 2012.

[55] CLEARSY, Aix-en-Provence, France. Atelier B - Proof Obligations Reference Manual,
2011. URL http://www.tools.clearsy.com/index.php5?title=Documents.

[56] R. Cocker. Porting NSA Security Enhanced Linux to Hand-held Devices. In In Pro-
ceedings of the Linux Symposium. Ottawa, Ontario, Canada, July 2003.

[57] I. D. Craig. Formal Models of Operating System Kernels. Springer London, 2007. ISBN
978-1-8462-8375-8. 1-333 pp.

[58] I. D. Craig. Formal Refinement for Operating System Kernels. Springer London, 2007.
ISBN 978-1-84628-966-8. 1-332 pp.

[59] I. F. Cruz, R. Gjomemo, B. Lin, and M. Orsini. A Constraint and Attribute Based
Security Framework for Dynamic Role Assignment in Collaborative Environments. In
E. Bertino and J. B. D. Joshi, editors, CollaborateCom, volume 10 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pages 322–339. Springer, 2008. ISBN 978-3-642-03353-7.

233

Bibliography

[60] F. Cuppens and C. Saurel. Specifying a Security Policy: A Case Study. In Proceedings
of the Computer Security Foundations Workshop. IEEE Computer Society, Kenmare,
Ireland, 1996. ISBN 0-8186-7522-5. ISSN 1063-6900.

[61] D. F. Ferraiolo, S. Gavrila, and W. Jansen. Interagency Report - Policy Ma-
chine: Features, Architecture, and Specification. http://csrc.nist.gov/pm/

references-library.html. Accessed June 2013.

[62] D. S. D. Krafzig, K. Banke. Enterprise SOA: Service Oriented Architecture Best Prac-
tices. Upper Saddle River, NJ, Prentice Hall, 2005. ISBN 0-13-146575-9.

[63] E. Damiani, S. di Vimercati, and P. Samarati. New Paradigms for Access Control in
Open Environments. International Symposium on Signal Processing and Information
Technology, 0:540–545, 2005. ISBN 0-7803-9313-9.

[64] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca. GEO-RBAC: A Spatially
Aware RBAC. ACM Transactions on Information and System Security (TISSEC), 10
(1), Feb. 2007. ISSN 1094-9224.

[65] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification
Language. In M. Sloman, E. Lupu, and J. Lobo, editors, Policies for Distributed
Systems and Networks, volume 1995 of Lecture Notes in Computer Science, pages 18–
38. Springer Berlin / Heidelberg, 2001. ISBN 3-540-41610-2.

[66] K. De Bosschere. Memory Footprint Reduction for Embedded Systems. In Proceedings
of the 11th International Workshop on Software & Compilers for Embedded Systems,
SCOPES ’08, page 31. ACM, New York, NY, USA, 2008.

[67] D. E. Denning. A Lattice Model of Secure Information Flow. Communications of the
ACM, 19(5):236–242, May 1976. ISSN 0001-0782.

[68] D. E. Denning and T. F. Lunt. A Multilevel Relational Data Model. IEEE Symposium
on Security and Privacy, 0:220–234, 1987. ISSN 1540-7993.

[69] P. J. Denning. Third Generation Computer Systems. ACM Computing Surveys, 3(4):
175–216, Dec. 1971. ISSN 0360-0300.

[70] J. Dobson and J. McDermid. A Framework for Expressing Models of Security Policy.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 229–239, may
1989. ISBN 0-8186-1939-2.

[71] DP. Event-B – Industrial Projects. http://wiki.event-b.org/index.php/

Industrial_Projects. Accessed August 2012.

[72] DP. Rodin User’s Handbook, Version 2.4. http://handbook.event-b.org/

release-2012-04-04/html/. Accessed May 2012.

[73] DSD/GCSB (Australia), CSE (Canada), DCSSI (France), BSI (Germany), ITPA
(Japan), NNCSA (The Netherlands), MAPCCN (Spain), CESG (UK), NSA/NIST
(USA). Common Criteria for Information Technology Security Evaluation, Version
3.1, Revision 3, July 2009.

234

Bibliography

[74] P. Efstathopoulos and E. Kohler. Manageable Fine-Grained Information Flow. In
Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2008, Eurosys ’08, pages 301–313. ACM, New York, NY, USA, Apr. 2008. ISBN
978-1-60558-013-5.

[75] H.-D. Ehrich, M. Gogolla, and U. W. Lipeck. Algebraische Spezifikation abstrakter
Datentypen - Eine Einführung in die Theorie. Leitfäden und Monographien der Infor-
matik. B. G. Teubner Stuttgart, 1989. ISBN 978-3-519-02266-4. I-IX, 1-263 pp.

[76] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial
Semantics. Springer-Verlag, 1985. ISBN 0387137181. 1-306 pp.

[77] M. Evered and S. Bögeholz. A Case Study in Access Control Requirements for a Health
Information System. In Proceedings of the 2nd Workshop on Australasian Information
Security, Conferences in Research and Practice in Information Technology, Vol. 32,
ACSW Frontiers ’04, pages 53–61. Australian Computer Society, Inc., Darlinghurst,
Australia, 2004.

[78] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt. A Comparison of Security
Requirements Engineering Methods. Requirements Engineering, 15(1):7–40, Mar. 2010.
ISSN 0947-3602.

[79] G. Faden. Solaris Trusted Extensions – Architectural Overview. http:

//www.3c2controller.net/project/truetrue/solaris10/security/tx/

TrustedExtensionsArch.pdf, Apr. 2006. Sun/Oracle White Paper, Accessed
June 2013.

[80] M. Felderer, B. Agreiter, and R. Breu. Evolution of Security Requirements Tests
for Service-centric Systems. In Proceedings of the Third International Conference on
Engineering Secure Software and Systems, ESSoS’11, pages 181–194. Springer-Verlag,
Berlin, Heidelberg, 2011. ISBN 978-3-642-19124-4.

[81] D. F. Ferraiolo and V. Atluri. A Meta Model for Access Control: Why is it needed and
Is it even possible to achieve? In Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies, SACMAT ’08, pages 153–154. ACM, New York, NY,
USA, 2008. ISBN 978-1-60558-129-3.

[82] D. F. Ferraiolo, V. Atluri, and S. Gavrila. The Policy Machine: A Novel Architecture
and Framework for Access Control Policy Specification and Enforcement. Journal of
Systems Architecture, 57(4):412–424, Apr. 2011. ISSN 1383-7621.

[83] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A Role-Based Access Control Model
and Reference Implementation within a Corporate Intranet. ACM Transactions on In-
formation and System Security (TISSEC) - Special Issue on Role-Based Access Control,
2(1):34–64, Feb. 1999. ISSN 1094-9224.

[84] D. F. Ferraiolo, S. Gavrila, V. Hu, and D. R. Kuhn. Composing and Combining
Policies under the Policy Machine. In Proceedings of the tenth ACM Symposium on
Access Control Models and Technologies, SACMAT ’05, pages 11–20. ACM, New York,
NY, USA, 2005. ISBN 1-59593-045-0.

235

Bibliography

[85] D. F. Ferraiolo, S. Gavrila, and W. Jansen. Enabling an Enterprise-Wide, Data-Centric
Operating Environment. Computer, 46(4):94–96, 2013. ISSN 0018-9162.

[86] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based Access Control. In-
formation Security and Privacy Series. Artech House, 2007. 381 pp. Second Edition,
ISBN 978-1-59693-113-8.

[87] D. F. Ferraiolo and R. Kuhn. Role-Based Access Controls. In 15th NIST-NCSC Na-
tional Computer Security Conference, pages 554–563, 1992.

[88] D. F. Ferraiolo, R. Kuhn, and R. Sandhu. RBAC Standard Rationale: Comments on
"A Critique of the ANSI Standard on Role-Based Access Control". IEEE Security and
Privacy, 5(6):51–53, Nov. 2007. ISSN 1540-7993.

[89] D. F. Ferraiolo, J. M. Voas, and G. F. Hurlburt. A Matter of Policy. IT Professional,
14(2):4–7, 2012.

[90] N. Feske and C. Helmuth. A Nitpicker’s guide to a minimal-complexity secure GUI. In
ACSAC ’05: Proceedings of the 21st Annual Computer Security Applications Confer-
ence, pages 85–94. IEEE Press, Washington, DC, USA, 2005. ISBN 0-7695-2461-3.

[91] A. Fischer and W. E. Kühnhauser. Efficient Algorithmic Safety Analysis of HRU Se-
curity Models. In S. Katsikas and P. Samarati, editors, Proc. International Conference
on Security and Cryptography (SECRYPT 2010), pages 49–58. SciTePress, 2010.

[92] S. N. Foley. A Model for Secure Information Flow. In Proceedings of the IEEE Sym-
posium on Security and Privacy, pages 248–258. IEEE Computer Society, May 1989.
ISBN 0-8186-1939-2.

[93] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson. Microkernels
Meet Recursive Virtual Machines. In Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’96, pages 137–151. ACM, New
York, NY, USA, 1996. ISBN 1-880446-82-0.

[94] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. Larus, and S. Levi.
Language Support for fast and Reliable Message Based Communication in Singularity
OS. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2006, EuroSys ’06, pages 177–190. ACM, New York, NY, USA, 2006.
ISBN 1-59593-322-0.

[95] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1995. ISBN 978-0-
201-63361-0.

[96] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A Virtual
Machine-based Platform for Trusted Computing. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, SOSP ’03, pages 193–206. ACM, New
York, NY, USA, 2003. ISBN 1-58113-757-5.

[97] M. Gasser. Building a Secure Computer System. van Nostrand Reinhold, 1988. ISBN
0-442-23022-2.

236

Bibliography

[98] L. Giuri and P. Iglio. Role templates for content-based access control. In RBAC ’97:
Proceedings of the Second ACM Workshop on Role-based Access Control, pages 153–159.
ACM Press, New York, NY, USA, 1997. ISBN 0-89791-985-8.

[99] M. I. Gofman, C. Ramakrishnan, S. D. Stoller, and P. Yang. Parameterized RBAC and
ARBAC Policies for a Small Health Care Facility. http://www.cs.stonybrook.edu/

~stoller/parbac/healthcare.txt, 2009. Accessed August 2011.

[100] J. Goguen and J. Meseguer. Security Policies and Security Models. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 11–20. IEEE Computer Society,
Apr. 1982.

[101] G. S. Graham and P. J. Denning. Protection: Principles and Practice. In AFIPS
’72 (Spring): Proceedings of the May 16-18, 1972, Spring Joint Computer Conference,
pages 417–429. ACM, New York, NY, USA, 1972.

[102] J. Gray. The Transaction Concept: Virtues and Limitations (Invited Paper). In Pro-
ceedings of the Seventh International Conference on Very Large Data Bases - Volume
7, VLDB ’81, pages 144–154. VLDB Endowment, 1981.

[103] R. Guerraoui and M. Kapalka. The Theory of Transactional Memory. Bulletin of the
European Association for Theoretical Computer Science (EATCS), (97):83–105, Feb.
2009.

[104] J. D. Guttman, A. L. Herzog, and J. D. Ramsdell. Information Flow in Operating
Systems: Eager Formal Methods. In Workshop on Issues in the Theory of Security
(WITS), 2003.

[105] U. Halfmann and W. E. Kühnhauser. Embedding Security Policies Into a Distributed
Computing Environment. Operating Systems Review, 33(2):51–64, Apr. 1999. ISSN
0163-5980.

[106] M. A. Harrison and W. L. Ruzzo. Monotonic Protection Systems. In R. DeMillo,
D. Dobkin, A. Jones, and R. Lipton, editors, Foundations of Secure Computation,
pages 337–365. Academic Press, 1978.

[107] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. On Protection in Operating Systems.
Operating Systems Review, Special Issue for the 5th Symposium on Operating Systems
Principles, 9(5):14–24, Nov. 1975.

[108] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in Operating Systems.
Communications of the ACM, 19(8):461–471, Aug. 1976. ISSN 0001-0782.

[109] H. He, J. Trimble, S. Perianayagam, S. Debray, and G. Andrews. Code Compaction
of an Operating System Kernel. In Proceedings of the International Symposium on
Code Generation and Optimization, CGO ’07, pages 283–298. IEEE Computer Society,
Washington, DC, USA, 2007. ISBN 0-7695-2764-7.

[110] C. Helmuth, A. Warg, and N. Feske. Mikro-SINA - Hands-on Experiences with the
Nizza Security Architecture. In P. Horster, editor, D·A·CH Security 2005. syssec Verlag,
2005. ISBN 3-00-015548-1.

237

Bibliography

[111] M. Herlihy. Transactional Memory: A Primer for Theorists. Bulletin of the European
Association for Theoretical Computer Science (EATCS), (98):123–138, June 2009.

[112] M. Hohmuth and H. Härtig. Pragmatic Nonblocking Synchronization for Real-Time
Systems. In Proceedings of the General Track: 2002 USENIX Annual Technical Confer-
ence, pages 217–230. USENIX Association, Berkeley, CA, USA, 2001. ISBN 1-880446-
09-X.

[113] H. H. Hosmer. Metapolicies I. SIGSAC Review, 10:18–43, June 1992. ISSN 0277-920X.

[114] H. H. Hosmer. Metapolicies II. In Proceedings of the 15th National Computer Security
Conference, pages 369–378. NIST/NCSC, United States Government Printing Office,
1992.

[115] V. C. Hu, D. A. Frincke, and D. F. Ferraiolo. The Policy Machine for Security Pol-
icy Management. In Proceedings of the International Conference on Computational
Science-Part II, ICCS ’01, pages 494–506. Springer Verlag, London, UK, 2001. ISBN
3-540-42233-1.

[116] G. Hunt, M. Aiken, M. Fähndrich, C. Hawblitzel, S. Levi, B. Steendgaard, D. Tarditi,
and T. Wobber. Sealing OS Processes to Improve Dependability and Safety. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems
2007, EuroSys ’07, pages 341–354. ACM, New York, NY, USA, Mar. 2007. ISBN 978-
1-59593-636-3.

[117] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham, M. Fähndrich, C. Hawblitzel,
O. Hodson, S. Levi, N. Murphy, B. Steendgaard, D. Tarditi, T. Wobber, and B. Zill.
An Overview of the Singularity Project. Technical Report MSR-TR-2005-135, Microsoft
Research, 2005. URL http://research.microsoft.com/pubs/52716/tr-2005-135.

pdf.

[118] D. Hutter, M. Klusch, and M. Volkamer. Information Flow Analysis Based Security
Checking of Health Service Composition Plans. In Proceedings of the 1st European
Conference on eHealth (ECEH), 2006.

[119] D. Hutter and M. Volkamer. Information Flow Control to Secure Dynamic Web Service
Composition. In J. Clark, R. Paige, F. Polack, and P. Brooke, editors, Security in
Pervasive Computing, volume 3934 of Lecture Notes in Computer Science, pages 196–
210. Springer Berlin / Heidelberg, 2006. ISBN 978-3-540-33376-0.

[120] D. Hutter, M. Volkamer, M. Klusch, and A. Gerber. Provably Secure Execution of
Composed Semantic Web Services. In Proceedings of the 1st International Workshop
on Privacy and Security in Agent-based Collaborative Environments. AAMAS, 2006.

[121] T. Härder and A. Reuter. Principles of Transaction-oriented Database Recovery. ACM
Computing Survey, 15(4):287–317, Dec. 1983. ISSN 0360-0300.

[122] H. Härtig. Security Architectures Revisited. In Proceedings of the 10th Workshop on
ACM SIGOPS European Workshop, EW 10, pages 16–23. ACM, New York, NY, USA,
2002.

238

Bibliography

[123] H. Härtig, M. Hohmuth, N. Feske, A. Lackorzynski, F. Mehnert, and M. Peter. The
Nizza Secure-System Architecture. In Proceedings 1st International Conference an Col-
laborative Computing. IEEE Computer Society, Los Alamitos, CA, USA, Dec. 2005.
ISBN 1-4244-0030-9.

[124] F. Innerhofer-Oberperfler and R. Breu. Using an Enterprise Architecture for IT Risk
Management. In J. H. P. Eloff, L. Labuschagne, M. M. Eloff, and H. S. Venter, editors,
Proceedings of the Information Security South Africa Conference, ISSA’06, pages 1–12.
ISSA, Pretoria, South Africa, 2006. ISBN 1-86854-636-5.

[125] C. E. Irvine. The Reference Monitor Concept as a Unifying Principle in Computer
Security Education. In Proceedings of the IFIP TC11 WG 11.8 First World Conference
on Information Security Education, pages 27–37, 1999.

[126] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible Support
for Multiple Access Control Policies. ACM Transactions on Database Systems, 26(2):
214–260, June 2001. ISSN 0362-5915.

[127] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A Unified Framework for
Enforcing Multiple Access Control Policies. SIGMOD Record, 26:474–485, June 1997.
ISSN 0163-5808.

[128] M. Jastram. Rodin User’s Handbook. http://handbook.event-b.org/. Version 2.4
2012, Accessed July 2012.

[129] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough. Towards Formal Verifi-
cation of Role-Based Access Control Policies. IEEE Transactions on Dependable Secure
Computing, 5:242–255, October 2008. ISSN 1545-5971.

[130] X. Jin, R. Krishnan, and R. Sandhu. A Unified Attribute-based Access Control Model
Covering DAC, MAC and RBAC. In Proceedings of the 26th Annual IFIP WG 11.3
Conference on Data and Applications Security and Privacy, DBSec’12, pages 41–55.
Springer-Verlag, Berlin, Heidelberg, 2012. ISBN 978-3-642-31539-8.

[131] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A Generalized Temporal Role-
Based Access Control Model. IEEE Transactions on Knowledge and Data Engineering,
17(1):4–23, Jan. 2005. ISSN 1041-4347.

[132] D. Kafura and D. Gracanin. An Information Flow Control Meta-Model. In Proceedings
of the 18th ACM Symposium on Access control Models and Technologies, SACMAT ’13,
pages 101–112. ACM, New York, NY, USA, 2013. ISBN 978-1-4503-1950-8.

[133] KaiGai Kohei. Security Enhanced PostgreSQL. http://code.google.com/p/sepgsql.
Accessed June 2013.

[134] S. Kamin. Routine run-time code generation. In Companion of the 18th annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA ’03, pages 208–220. ACM, New York, NY, USA, 2003. ISBN
1-58113-751-6.

239

Bibliography

[135] B. Katt, T. Trojer, R. Breu, T. Schabetsberger, and F. Wozak. Meeting EHR Secu-
rity Requirements: Authentication as a Security Service. In A. Brömme, T. Eymann,
D. Hühnlein, H. Roßnagel, and P. Schmücker, editors, perspeGKtive 2010 – Workshop
Innovative und sichere Informationstechnologie für das Gesundheitswesen von morgen,
volume 174 of LNI, pages 103–110. GI, 2010.

[136] B. Kauer and M. Völp. L4.Sec – Preliminary Microkernel Reference Manual. Technische
Universitat Dresden, 01062 Dresden, Germany, Oct. 2005. Version: 0.2, October 19,
2005.

[137] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal Verification of an Operating-System Kernel. Communications of the ACM, 53
(6):107–115, June 2010. ISSN 0001-0782.

[138] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal Verification of an OS Kernel. In Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles, SOSP ’09, pages 207–220. ACM, New York,
NY, USA, 2009.

[139] D. R. Kuhn. Mutual Exclusion of Roles as a Means of Implementing Separation of Duty
in Role-Based Access Control Systems. In Proceedings of the Second ACM Workshop
on Role-Based Access Control, RBAC ’97, pages 23–30. ACM, New York, NY, USA,
1997. ISBN 0-89791-985-8.

[140] W. E. Kühnhauser. On Paradigms for Security Policies in Multipolicy Environments.
In Proceedings of the 11th International Information Security Conference (IFIP/SEC
’95), pages 421–435. Chapman & Hall, May 1995.

[141] W. E. Kühnhauser. Policy Groups. Computers & Security, 18(4):351–363, 1999.

[142] W. E. Kühnhauser and M. von Kopp Ostrowski. A Framework to Support Multiple
Security Policies. In Proceedings of the 7th Canadian Computer Security Symposium,
pages 301–322. Communications Security Establishment Press, Ottawa, Canada, May
1995.

[143] A. Kurmus, A. Sorniotti, and R. Kapitza. Attack Surface Reduction for Commodity
OS Kernels: Trimmed Garden Plants May Attract Less Bugs. In Proceedings of the
4th European Workshop on System Security, EUROSEC ’11, pages 6:1–6:6. ACM, New
York, NY, USA, 2011. ISBN 978-1-4503-0613-3.

[144] W. Kühnhauser and A. Pölck. Towards Access Control Model Engineering. In S. Jajodia
and C. Mazumdar, editors, Information Systems Security, volume 7093 of Lecture Notes
in Computer Science, pages 379–382. Springer Berlin / Heidelberg, 2011. ISBN 978-3-
642-25559-5.

[145] B. W. Lampson. Protection. In 5th Annual Princeton Conference on Information
Sciences and Systems, pages 437–443, Mar. 1971. Reprinted January, 1974: Protection.
In Operating Systems Review, 8(1), pages 18–24.

240

Bibliography

[146] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman. A Multipolicy
Authorization Framework for Grid Security. In Proceedings of the Fifth IEEE Inter-
national Symposium on Network Computing and Applications, pages 269–272. IEEE
Computer Society, Washington, DC, USA, 2006. ISBN 0-7695-2640-3.

[147] B. Lang, I. T. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman. A Flex-
ible Attribute Based Access Control Method for Grid Computing. Journal of Grid
Computing, 7(2):169–180, 2009. ISSN 1570-7873.

[148] L. J. LaPadula. A Rule-Set Approach to Formal Modeling of a Trusted Computer
System. Computer Systems, 7(1):113–167, Jan. 1994. ISSN 0895-6340.

[149] J. Larus and C. Kozyrakis. Transactional Memory. Communications of the ACM, 51
(7):80–88, July 2008. ISSN 0001-0782.

[150] C.-H. Lee, M. C. Chen, and R.-C. Chang. HiPEC: High Performance External Virtual
Memory Caching. In Proceedings of the 1st USENIX conference on Operating Systems
Design and Implementation, OSDI ’94. USENIX Association, Berkeley, CA, USA, 1994.

[151] J. R. Levine. flex & bison - Text Processing Tools. O’Reilly, 2009. ISBN 978-0-596-
15597-1. 1-271 pp.

[152] N. Li, J.-W. Byun, and E. Bertino. A Critique of the ANSI Standard on Role-Based
Access Control. IEEE Security and Privacy, 5(6):41–49, Nov. 2007. ISSN 1540-7993.

[153] N. Li and J. C. Mitchell. Datalog with Constraints: A Foundation for Trust Man-
agement Languages. In Proceedings of the 5th International Symposium on Practical
Aspects of Declarative Languages, PADL ’03, pages 58–73. Springer Verlag, London,
UK, 2003. ISBN 3-540-00389-4.

[154] N. Li and J. C. Mitchell. RT: a Role-based Trust-management Framework. In Proceed-
ings of the 3rd DARPA Information Survivability Conference and Exposition (DISCEX-
III 2003), pages 201–212. IEEE Computer Society, 2003. ISBN 0-7695-1897-4.

[155] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a Role-Based Trust-
Management Framework. In Proceedings of the 2002 IEEE Symposium on Security
and Privacy, SP ’02, pages 114–130. IEEE Computer Society, Washington, DC, USA,
2002. ISBN 0-7695-1543-6.

[156] N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond Proof-of-compliance: Security
Analysis in Trust Management. Journal of the ACM, 52(3):474–514, May 2005. ISSN
0004-5411.

[157] N. Li and M. V. Tripunitara. Security Analysis in Role-Based Access Control. ACM
Transactions on Information and System Security (TISSEC), 9(4):391–420, Nov. 2006.
ISSN 1094-9224.

[158] N. Li, M. V. Tripunitara, and Z. Bizri. On Mutually Exclusive Roles and Separation-
of-Duty. ACM Transactions on Information and System Security (TISSEC, 10, May
2007. ISSN 1094-9224.

241

Bibliography

[159] N. Li and W. Winsborough. Beyond proof-of-compliance: Safety and Availability Anal-
ysis in Trust Management. In Proceedings of the 2003 IEEE Symposium on Security
and Privacy (S&P 2003), pages 123–139. IEEE Computer Society, 2003. ISBN 0-7695-
1940-7. ISSN 1081-6011.

[160] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed Credential Chain Discovery
in Trust Management: Extended Abstract. In Proceedings of the 8th ACM conference
on Computer and Communications Security, CCS ’01, pages 156–165. ACM, New York,
NY, USA, 2001. ISBN 1-58113-385-5.

[161] J. Liedtke. On µ-Kernel Construction. SIGOPS Operating Systems Review, 29(5):
237–250, Dec. 1995. ISSN 0163-5980.

[162] J. Liedtke. On µ-Kernel Construction. Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pages 237–250, 1995. ISBN 0-89791-715-4.

[163] J. Liedtke. Toward Real Microkernels. Communications of the ACM, 39(9):70–77, 1996.
ISSN 0001-0782.

[164] LMP. Linux Man Pages. http://linux.die.net/man/. Accessed July 2012.

[165] P. A. Loscocco and S. D. Smalley. Integrating Flexible Support for Security Policies
into the Linux Operating System. In C. Cole, editor, 2001 USENIX Annual Technical
Conference, pages 29–42, 2001. ISBN 1-880446-10-3.

[166] P. A. Loscocco and S. D. Smalley. Meeting Critical Security Objectives with Security-
Enhanced Linux. In Proceedings of the 2001 Linux Symposium, 2001.

[167] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckmann, and W. R. Shockley. The
SeaView Security Model. IEEE Transactions on Software Engineering, 16(6):593–607,
June 1990. ISSN 0098-5589.

[168] L. Martino, Q. Ni, D. Lin, and E. Bertino. Multi-domain and Privacy-aware Role Based
Access Control in eHealth. In Second International Conference on Pervasive Computing
Technologies for Healthcare, pages 131–134, 2008. ISBN 978-963-9799-15-8.

[169] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor:
Efficient TCB Reduction and Attestation. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy, SP ’10, pages 143–158. IEEE Computer Society, Washington,
DC, USA, 2010. ISBN 978-0-7695-4035-1.

[170] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An
Execution Infrastructure for TCB Minimization. In Eurosys ’08: Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, pages
315–328. ACM, New York, NY, USA, 2008. ISBN 978-1-60558-013-5.

[171] J. M. McCune, N. Qu, Y. Li, A. Datta, V. D. Gligor, and A. Perrig. Efficient TCB Re-
duction and Attestation. Technical Report CMU-CyLab-09-003, CyLab Carnegie Mel-
lon University, March 2009. URL http://people.csail.mit.edu/costan/readings/

oakland_papers/CMUCylab09003.pdf.

[172] A. C. Myers and B. Liskov. A Decentralized Model for Information Flow Control.
SIGOPS Operating Systems Review, 31(5):129–142, Oct. 1997. ISSN 0163-5980.

242

Bibliography

[173] A. C. Myers and B. Liskov. Complete, Safe Information Flow with Decentralized Labels.
In Proceedings of the 1998 IEEE Computer Society Symposium on Research in Security
and Privacy (RSP), pages 186–197. IEEE Computer Society Press, Los Alamitos, CA,
USA, May 1998.

[174] A. C. Myers and B. Liskov. Protecting Privacy Using the Decentralized Label Model.
ACM Transactions on Software Engineering and Methodology (TOSEM), 9(4):410–442,
Oct. 2000. ISSN 1049-331X.

[175] Y. Nakamura and Y. Sameshima. SELinux for Consumer Electronics Devices. In In
Proceedings of the Linux Symposium, pages 125–134, 2008.

[176] P. Naldurg and R. K. R. SEAL: A Logic Programming Framework for Specifying
and Verifying Access Control Models. In Proceedings of the 16th ACM Symposium on
Access Control Models and Technologies, SACMAT 2011, pages 83–92. ACM, 2011.
ISBN 978-1-4503-0688-1.

[177] National Security Agency – Central Security Service. Security-Enhanced Linux. http:

//www.nsa.gov/research/selinux/index.shtml, 2010. Accessed June 2010.

[178] F. Neumann. Formale Spezifikation politikbezogener Funktionen einer Trusted Com-
puting Base (in German). Master’s thesis, Ilmenau University of Technology, Aug.
2012.

[179] G. Neumann and M. Strembeck. A Scenario-Driven Role Engineering Process for Func-
tional RBAC Roles. In Proceedings of the 7th ACM Symposium on Access Control Mod-
els and Technologies, SACMAT ’02, pages 33–42. ACM, New York, NY, USA, 2002.
ISBN 1-58113-496-7.

[180] Q. Ni and E. Bertino. xfACL: An Extensible Functional Language for Access Control.
In Proceedings of the 16th ACM Symposium on Access Control Models and Technologies,
SACMAT ’11, pages 61–72. ACM, New York, NY, USA, 2011. ISBN 978-1-4503-0688-1.

[181] Q. Ni, E. Bertino, and J. Lobo. Risk-based Access Control Systems Built on Fuzzy
Inferences. In Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’10, pages 250–260. ACM, New York, NY, USA,
2010. ISBN 978-1-60558-936-7.

[182] M. Nyanchama and S. Osborn. Modeling Mandatory Access Control in Role-based
Security Systems. In Proceedings of the 9th Annual IFIP TC11 WG11.3 Working Con-
ference on Database Security IX : Status and Prospects, pages 129–144. Chapman &
Hall, Ltd., London, UK, 1996. ISBN 0-412-72920-2.

[183] Object Management Group (OMG). Unified Modeling Language (UML), v2.4.1, Infras-
tructure and Superstructure. http://www.omg.org/spec/UML/2.4.1/, 2011. Accessed
June 2012.

[184] S. Oh, R. Sandhu, and X. Zhang. An Effective Role Administration Model Using Orga-
nization Structure. ACM Transactions on Information and System Security (TISSEC),
9(2):113–137, May 2006. ISSN 1094-9224.

243

Bibliography

[185] Oracle. Oracle Label Security. http://www.oracle.com/technetwork/database/

options/label-security. Accessed May 2012.

[186] Oracle. Oracle Solaris 10. http://www.oracle.com/us/products/servers-storage/

solaris/solaris10/. Accessed May 2012.

[187] Oracle. Oracle Database Security Guide. http://docs.oracle.com/, 2011. 11g Re-
lease 1 (11.1), B28531-15, Accessed May 2012.

[188] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based Access Control to
Enforce Mandatory and Discretionary Access Control Policies. ACM Transactions on
Information and System Security, 3(2):85–106, May 2000. ISSN 1094-9224.

[189] A. Ott. The Role Compatibility Security Model. In Nordic Workshop on Secure IT
Systems 2002, NordSec ’02, Nov. 2002.

[190] A. Ott. Die Architektur des Linux-Sicherheitssystems Rule Set Based Access Control
(RSBAC) – Sicherheits-Architektur (in German). Linux Magazin, (1):48–53, 2003.
ISSN 1094-9224.

[191] A. Ott and S. Fischer-Hübner. The Rule Set Based Access Control (RSBAC) Framework
for Linux. http://thehackademy.net/madchat/sysadm/linux/rsbac-framework.

pdf, 2001.

[192] M. P. Papazoglou and W. J. Heuvel. Service Oriented Architectures: Approaches,
Technologies and Research Issues. The VLDB Journal, 16(3):389–415, 2007. ISSN
1066-8888.

[193] J. Park and R. Sandhu. The UCONABC Usage Control Model. ACM Transactionson
Information and System Security (TISSEC), 7(1):128–174, Feb. 2004. ISSN 1094-9224.

[194] H. Pennington. GConf: Manageable User Preferences. In In Proceedings of the 2002
Ottawa Linux Symposium. Ottawa, Canada, June 2002.

[195] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, and A. Weber. The PERSEUS Sys-
tem Architecture. Technical Report RZ 3335 (93381) 04/09/01, Universität des Saar-
landes, 2001. URL http://www.zurich.ibm.com/security/publications/2001/

PRSWW01_PERSEUS_IBMRZ.pdf.

[196] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. ’c and tcc: A language
and compiler for dynamic code generation. ACM Transactionson on Programming
Languages and Systems (TOPLAS), 21(2):324–369, Mar. 1999. ISSN 0164-0925.

[197] Robert N. M. Watson. The TrustedBSD Project. http://www.trustedbsd.org/

sebsd.html. Accessed April 2012.

[198] RPD. Event-B – Rodin Plug-ins. http://wiki.event-b.org/index.php/Rodin_

Plug-ins. Accessed August 2012.

[199] M. J. Rutherford and A. L. Wolf. A Case for Test-code Generation in Model-driven Sys-
tems. In Proceedings of the 2nd International Conference on Generative Programming
and Component Engineering, GPCE ’03, pages 377–396. Springer-Verlag New York,
Inc., New York, NY, USA, 2003. ISBN 3-540-20102-5.

244

Bibliography

[200] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, Sept. 2006. ISSN 0733-8716.

[201] A.-R. Sadeghi and C. Stüble. Taming “Trusted Platforms” by Operating System Design.
In K.-J. Chae and M. Yung, editors, Information Security Applications, volume 2908 of
Lecture Notes in Computer Science, pages 286–302. Springer Berlin Heidelberg, 2004.
ISBN 978-3-540-20827-3.

[202] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez, S. Berger, J. Linwood, and
G. L. Doorn. Building a MAC-based Security Architecture for the Xen Opensource
Hypervisor. ACSAC ’05, pages 276–285. IEEE Computer Society, Washington, DC,
USA, 2005. ISBN 0-7695-2461-3.

[203] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. L. Griffin, and S. Berger.
sHype: Secure Hypervisor Approach to Trusted Virtualized Systems. Technical Report
RC23511 (W0502-006), Feb. 2005. URL http://domino.watson.ibm.com/library/

CyberDig.nsf/papers/265C8E3A6F95CA8D85256FA1005CBF0F/$File/rc23511.pdf.

[204] R. Sandhu. The Schematic Protection Model: Its Definition and Analysis for Acyclic
Attenuating Schemes. Journal of the ACM, 35(2):404–432, 1988. ISSN 0004-5411.

[205] R. Sandhu, D. F. Ferraiolo, and R. Kuhn. The NIST Model for Role-Based Access
Control: Towards a Unified Standard. In RBAC ’00: Proceedings of the fifth ACM
Workshop on Role-Based Access Control, pages 47–63. ACM, New York, NY, USA,
2000. ISBN 1-58113-259-X.

[206] R. Sandhu and Q. Munawer. How to do Discretionary Access Control Using Roles. In
Proceedings of the 3rd ACM Workshop on Role-Based Access Control, RBAC ’98, pages
47–54. ACM, New York, NY, USA, 1998. ISBN 1-58113-113-5.

[207] R. S. Sandhu. A Lattice Interpretation of the Chinese Wall Policy. In Proceedings of
the 15th National Computer Security Conference, pages 329–339. NIST/NCSC, United
States Government Printing Office, 1992.

[208] R. S. Sandhu. Lattice-Based Enforcement of Chinese Walls. Computers & Security, 11
(9):753–763, Dec. 1992. ISSN 0167-4048.

[209] R. S. Sandhu. The Typed Access Matrix Model. In Proceedings of the 1992 IEEE
Symposium on Security and Privacy, SP ’92, pages 122–136. IEEE Computer Society,
Washington, DC, USA, May 1992. ISBN 0-8186-2825-1.

[210] R. S. Sandhu. Role-Based Access Control. In Advances in Computers. Academic Press,
1994.

[211] R. S. Sandhu. Role Hierarchies and Constraints for Lattice-Based Access Controls.
In Proceedings of the 4th European Symposium on Research in Computer Security,
ESORICS ’96, pages 65–79. Springer-Verlag, London, UK, 1996. ISBN 3-540-61770-1.

[212] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-Based Access
Control Models. IEEE Computer, 29(2):38–47, Feb. 1996. ISSN 0018-9162.

245

Bibliography

[213] A. Schaad, J. Moffett, and J. Jacob. The Role-Based Access Control System of a
European Bank: A Case Study and Discussion. In Proceedings of the sixth ACM
Symposium on Access Control Models and Technologies (SACMAT), pages 3–9. ACM,
New York, NY, USA, 2001. ISBN 1-58113-350-2.

[214] F. W. Schröer. The GENTLE Compiler Construction System – Handbook. http:

//gentle.compilertools.net/book/. Accessed June 2013.

[215] F. W. Schröer. The GENTLE Compiler Construction System. R. Oldenbourg, Munich
and Vienna, 1997. ISBN 3-486-247034-4. 142 pp.

[216] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes. In Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 335–350. ACM,
New York, NY, USA, 2007. ISBN 978-1-59593-591-5.

[217] A. Shabtai, Y. Fledel, and Y. Elovici. Securing Android-Powered Mobile Devices Using
SELinux. Security & Privacy, 8(3):36–44, 2010. ISSN 1540-7993.

[218] A. B. Shaffer, M. Auguston, C. E. Irvine, and T. E. Levin. A Security Domain Model
to Assess Software for Exploitable Covert Channels. In Proceedings of the 3rd ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security, PLAS ’08,
pages 45–56. ACM, New York, NY, USA, 2008. ISBN 978-1-59593-936-4.

[219] H.-b. Shen and F. Hong. An Attribute-Based Access Control Model for Web Services.
In Proceedings of the 7th International Conference on Parallel and Distributed Comput-
ing, Applications and Technologies (PDCAT), pages 74–79. IEEE Computer Society,
Washington, DC, USA, 2006. ISBN 0-7695-2736-1.

[220] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing TCB Complexity for
Security-Sensitive Applications: Three Case Studies. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006, EuroSys ’06, pages
161–174. ACM, New York, NY, USA, 2006. ISBN 1-59593-322-0.

[221] L. A. Slevin and A. Macfie. Role Based Access Control for a Medical Database. In
Proceedings of the 11th IASTED International Conference on Software Engineering and
Applications, SEA ’07, pages 226–233. ACTA Press, Anaheim, CA, USA, 2007. ISBN
978-0-88986-706-2.

[222] S. Smalley and R. Craig. Security Enhanced (SE) Android: Bringing Flexible MAC to
Android. In 19th Network and Distributed System Security Symposium (NDSS), Feb.
2013.

[223] S. D. Smalley. Configuring the SELinux Policy. Technical Report 02-007,
NAI Labs, Jan. 2003. URL http://classes.soe.ucsc.edu/cmps122/Spring07/

selinux-paper.pdf.

[224] S. D. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a Linux Security
Module. Technical Report 01-043, NAI Labs, May 2002. URL http://www.nsa.gov/

research/_files/publications/implementing_selinux.pdf.

246

Bibliography

[225] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. The Flask
Security Architecture: System Support for Diverse Security Policies. In Proceedings of
the 8th USENIX Security Symposium, SSYM’99, pages 123–139. USENIX Association,
Berkeley, CA, USA, 1999.

[226] W. Stallings. Operating Systems: Internals and Design Principles. Prentice Hall Press,
Upper Saddle River, NJ, USA, 6th edition, 2009. ISBN 978-0-13-603337-0.

[227] U. Steinberg and B. Kauer. NOVA: A Microhypervisor-Based Secure Virtualization
Architecture. In Proceedings of the 5th European Conference on Computer Systems,
EuroSys ’10, pages 209–222. ACM, New York, NY, USA, 2010. ISBN 978-1-60558-577-
2.

[228] S. D. Stoller, P. Yang, M. Gofman, and C. R. Ramakrishnan. Symbolic Reachability
Analysis for Parameterized Administrative Role Based Access Control. In Proceedings
of the 14th ACM Symposium on Access Control Models and Technologies, SACMAT
’09, pages 165–174. ACM, New York, NY, USA, 2009. ISBN 978-1-60558-537-6.

[229] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman. Efficient Policy Analysis
for Administrative Role Based Access Control. In Proceedings of the 14th ACM Con-
ference on Computer and Communications Security, CCS ’07, pages 445–455. ACM,
New York, NY, USA, 2007. ISBN 978-1-59593-703-2.

[230] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman. RBAC and AR-
BAC Policies for a Small Health Care Facility. http://www.cs.sunysb.edu/~stoller/

ccs2007/healthcare.txt, 2007. Accessed August 2011.

[231] M. Strembeck. Scenario-Driven Role Engineering. IEEE Security and Privacy, 8(1):
28–35, Jan. 2010. ISSN 1540-7993.

[232] Sybase. System Administration Guide: Volume2. http://infocenter.sybase.

com/help/topic/com.sybase.infocenter.dc31652.1570/pdf/java.pdf. Adaptive
Server Enterprise 15.7, DC31644-01-1570-01, Accessed May 2011.

[233] M. Tripunitara and N. Li. The Foundational Work of Harrison-Ruzzo-Ullman Revisited.
IEEE Transactions on Dependable and Secure Computing, 10:28–39, 2013. ISSN 1545-
5971.

[234] M. V. Tripunitara and N. Li. A Theory for Comparing the Expressive Power of Access
Control Models. Journal of Computer Security, 15(2):231–272, Apr. 2007. ISSN 0926-
227X.

[235] Trusted Computing Group (TCG). TPM Main Specification Level 2 Version 1.2,
Revision 116, Design Principles, Structures of the TPM, Commands. http://www.

trustedcomputinggroup.org, 2011. Accessed June 2012.

[236] TUD:OS-Gruppe (TU Dresden Operating Systems). Fiasco. http://os.inf.

tu-dresden.de. Accessed June 2013.

[237] TUD:OS-Gruppe (TU Dresden Operating Systems). L4 Runtime Environment. http:

//os.inf.tu-dresden.de/L4Re/. Accessed June 2012.

247

Bibliography

[238] U. Steinberg. NOVA Microhypervisor. http://hypervisor.org/. Accessed June 2013.

[239] Uni-Düsseldorf. The ProB Animator and Model Checker. http://www.stups.

uni-duesseldorf.de/ProB/. Accessed August 2012.

[240] C. Vance and R. Watson. Security Enhanced BSD. Technical Report RR-06-04, Net-
work Associates Laboratories Rockville, July 2003. URL http://www.trustedbsd.

org/sebsd-july2003.pdf.

[241] S. D. C. d. Vimercati, P. Samarati, and S. Jajodia. Policies, Models, and Languages for
Access Control. In 4th International Workshop on Databases in Networkes Information
Systems (DNIS 2005), volume 3433/2005 of LNCS, pages 225–237. Springer, 2005.
ISBN 978-3-540-25361-7.

[242] D. Volpano, C. Irvine, and G. Smith. A Sound Type System for Secure Flow Analysis.
Journal of Computer Security, 4(2-3):167–187, Jan. 1996. ISSN 0926-227X.

[243] L. A. Wahsheh and J. Alves-Foss. Specifying and Enforcing a Multi-Policy Paradigm
for High Assurance Multi-Enclave Systems. Journal of High Speed Networks, 15(3):
315–327, 2006. ISSN 0926-6801.

[244] E. F. Walsh. Application of the Flask Architecture to the X Window System Server.
In Proceedings of the 2007 SELinux Symposium, 2007.

[245] L. Wang, D. Wijesekera, and S. Jajodia. A Logic-based Framework for Attribute based
Access Control. In Proceedings of the 2004 ACM Workshop on Formal Methods in
Security Engineering, FMSE ’04, pages 45–55. ACM, New York, NY, USA, 2004. ISBN
1-58113-971-3.

[246] R. Watson, B. Feldman, A. Migus, and C. Vance. Design and Implementation of
the TrustedBSD MAC Framework. DARPA Information Survivability Conference and
Exposition, 1:38–49, 2003. ISBN 0-7695-1897-4.

[247] R. Watson and C. Vance. The TrustedBSD MAC Framework: Extensible Kernel Access
Control for FreeBSD 5.0. In In USENIX Annual Technical Conference, pages 285–296,
2003.

[248] G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2001. ISBN 1-55860-508-8.

[249] C. Weinhold and H. Härtig. VPFS: Building a Virtual Private File System with a Small
Trusted Computing Base. In Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, Eurosys ’08, pages 81–93. ACM, New York,
NY, USA, 2008. ISBN 978-1-60558-013-5.

[250] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal Methods: Practice
and Experience. ACM Computing Surveys, 41(4):1–36, Oct. 2009. ISSN 0360-0300.

[251] E. Yuan and J. Tong. Attributed Based Access Control (ABAC) for Web Services. In
Proceedings of the IEEE International Conference on Web Services, ICWS ’05, pages
561–569. IEEE Computer Society, Washington, DC, USA, 2005. ISBN 0-7695-2409-5.

248

Bibliography

[252] G. Zanin and L. V. Mancini. Towards a Formal Model for Security Policies Specification
and Validation in the SELinux System. In Proceedings of the 9th ACM Symposium on
Access Control Models and Technologies, SACMAT ’04, pages 136–145. ACM, New
York, NY, USA, 2004. ISBN 1-58113-872-5.

[253] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making Information Flow
Explicit in HiStar. In OSDI ’06: Proceedings of the 7th symposium on Operating systems
design and implementation, pages 263–278. USENIX Association, Berkeley, CA, USA,
2006. ISBN 1-931971-47-1.

[254] X. Zhang, Y. Li, and D. Nalla. An Attribute-based Access Matrix Model. In Proceedings
of the 2005 ACM Symposium on Applied Computing, SAC ’05, pages 359–363. ACM,
New York, NY, USA, 2005. ISBN 1-58113-964-0.

249

	1 Introduction
	1.1 Motivation
	1.2 Causal Trusted Computing Bases
	1.3 Challenges and Contributions
	1.4 Organization

	2 Related Work
	2.1 Policy-controlled Operating Systems
	2.1.1 Flask Security Architecture
	2.1.2 Rule Set Based Access Control
	2.1.3 Policy Machine
	2.1.4 Summary

	2.2 Reducing the Size and Complexity of TCBs
	2.2.1 Nizza Security Architecture
	2.2.2 Other Approaches

	2.3 Security Models
	2.3.1 Model-based Security Policy Engineering
	2.3.2 Access Control Models
	2.3.3 Information Flow Control Models

	2.4 Summary

	3 Security Model Core
	3.1 Security Model Family Tree
	3.2 Core Definition
	3.3 Core Specialization
	3.4 Model Re-engineering
	3.4.1 Multilevel Security Models
	3.4.2 MLS Model for a Web Service Composition System Policy
	3.4.3 Role-based Access Control Models
	3.4.4 Use Case RBAC Security Policy
	3.4.5 RBAC Model for the HIS Policy
	3.4.6 Attribute-based Access Control Models
	3.4.7 ABAC Model for an Online Entertainment Store Policy
	3.4.8 Summary

	3.5 Model Core Evaluation
	3.5.1 Expressive Power
	3.5.2 Model Engineering Costs
	3.5.3 Summary

	3.6 Model Core Related Work
	3.7 Conclusion

	4 Causal Trusted Computing Bases
	4.1 Requirements and Prerequisites
	4.1.1 Security Model Core for TCB Engineering
	4.1.2 Design Requirements
	4.1.3 Hardware and Architecture Dependencies

	4.2 TCB Design
	4.3 Policy-independent Runtime Environment
	4.3.1 Security Policy Manager
	4.3.2 Memory Manager
	4.3.3 Thread Manager
	4.3.4 Transaction Manager
	4.3.5 Inter Thread Communication
	4.3.6 Trusted Persistent Storage Manager
	4.3.7 Cryptographer
	4.3.8 Entity Identification Server
	4.3.9 Generic Object Manager
	4.3.10 Authenticator
	4.3.11 Summary

	4.4 Policy-dependent Runtime Environment
	4.4.1 Engineering Approach
	4.4.2 Abstract Security Model Functionality
	4.4.3 Abstract Model Instance Functionality
	4.4.4 Causal Dependencies
	4.4.5 Summary

	4.5 Policy-dependent RTE for the RBAC HIS Policy
	4.5.1 RBAC Security Model Functions
	4.5.2 Interceptor
	4.5.3 Executable RBAC HIS Policy

	4.6 Conclusion

	5 Specification Engineering
	5.1 Specification Fundamentals
	5.2 Requirements for TCB Specifications
	5.3 TCB Specification Approach
	5.4 TCB Specification Method
	5.4.1 Specification of a Core-based Security Model
	5.4.2 Specification of a Model Instance

	5.5 Summary

	6 Evaluation
	6.1 Evaluation Goals and Methods
	6.2 Functional Redundancy of the Policy-dependent RTE
	6.2.1 Redundancy across Multiple Security Model Functions Components
	6.2.2 Redundancy within a Security Model Functions Component
	6.2.3 Summary

	6.3 Expressive Power and Modeling Effort of Core-based Model Engineering
	6.4 Implementation Effort for Policy Substitution
	6.4.1 Prototype Implementation of a Policy-dependent RTE
	6.4.2 Implementation Effort

	6.5 Formal TCB Specifications
	6.6 Summary

	7 Conclusion
	8 Future Work
	Appendix
	A Security Models
	A.1 Notation
	A.2 MLS Model
	A.3 RBAC Model
	A.4 ABAC Model

	B Health Information System Model Instance
	B.1 Initial State and Extension Values
	B.2 Authorization Scheme

	C Formal Rule System
	C.1 Mapping
	C.2 Matrix

	D TCB Specification for the RBAC HIS Policy
	D.1 Context rbac_static
	D.2 Context rbac_state
	D.3 Context rbac_userhandling
	D.4 Context rbac_sessionhandling
	D.5 Context rbac_rolehandling
	D.6 Context rbac_conditions
	D.7 Context rbac
	D.8 Context healthcare_context
	D.9 Context healthcare_generic
	D.10 Context healthcare

	List of Abbreviations
	List of Figures
	List of Tables
	Bibliography

