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Abstract ii

ABSTRACT

For different applications in the field of digital signal processing, subspaces estimation

and tracking have been required, e.g., signal parameter estimation, data compress-

ing, radar and imaging processing. One of the most fruitful techniques in estimating

the signal subspaces is based on the singular value decomposition (SVD) concept. Re-

cently, for multidimensional data, Higher-Order SVD (HOSVD) can be used to provide

improved estimates of the subspace compared to the SVD concept. Moreover, the sub-

space estimates obtained by employing HOSVD can be used for parameter estimation

in a harmonic retrieval problem where a multidimensional structure is inherent in the

data. However, when the multidimensional data are time-variant, adaptive subspace

tracking schemes based on tensor algebra are in demand. By employing the tensor-

based subspace tracking algorithms, the signal parameters like DOA can be tracked as

well. Moreover, if the number of observations is small or the sources are highly cor-

related, incorporating Forward Backward Averaging (FBA) can further improve the

performance of tracking.

In this work, based on the tensor-based subspace tracking via Kronecker structured

projections (TeTraKron) framework, we include FBA and propose the Extended FBA-

PAST algorithm. We show that incorporating FBA leads to an improved accuracy of

the subspace tracking and a lower computational complexity due to the fact that only

real-valued processing is involved. Moreover, we evaluate the performances of the pa-

rameter estimation schemes in a variety of non-stationary scenarios where the subspace

estimates are obtained by employing the subspace tracking algorithms. Furthermore,

we extend the adaptive ESPRIT algorithm to a general case where the subarrays are

not necessarily maximum overlapping. In addition, we develop an adaptive version of

Unitary ESPRIT as well as 2-D Unitary ESPRIT. Compared to the direct combination

of the PAST algorithm and Unitary ESPRIT or 2-D Unitary ESPRIT, the proposed

adaptive schemes achieve the same performance with a lower mathematical complexity.
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Zusammenfassung iii

ZUSAMMENFASSUNG

Fr verschiedene Anwendungen auf dem Gebiet der digitalen Signalverarbeitung sind die

Bestimmung der Unterrume sowie deren Tracking, zum Besispiel fr die Signalparam-

eterschtzung, die Datenkomprimierung, Radar und die Bildverarbeitung, erforderlich.

Eine der vielversprechendsten Techniken zur Schtzung der Signalunterrume basiert

auf dem Konzept der Singulrwertzerlegung (Singular Value Decomposition, SVD).

In letzter Zeit wurde fr mehrdimensionale Daten die SVD hherer Ordnung (Higher-

Order SVD, HOSVD) verwendet, um verbesserte Schtzungen des Unterraums im Ver-

gleich zum SVD-Konzept zu schaffen. Darber hinaus kann durch Verwendung der

HOSVD die Schtzung des Unterraums fr die Parameterschtzung in einem harmonischen

Wiedergewinnungsproblem mit mehrdimensionaler Struktur in den Daten, durchgefhrt

werden. Sind jedoch die multidimensionalen Daten zeitvariant, werden adaptive Al-

gorithmen, die auf der Tensoralgebra zum Tracking des Unterraums beruhen, bentigt.

Durch den Einsatz dieser Algorithmen knnen auch die Signalparameter wie die Rich-

tung (direction of arrival, DOA) bestimmt werden. Auerdem, wenn die Anzahl der

Messungen gering ist oder die Quellen stark korreliert sind, kann dann durch die An-

wendung der Vorwrts-Rckwrts-Durchschnittsbestimmung (Forward Backward Averag-

ing, FBA) die Leistungsfhigkeit weiter verbessert werden. In dieser Arbeit berck-

sichtigen wir FBA und schlagen den erweiterten FBA-PAST-Algorithmus, der auf dem

Tensor-Based Subspace Tracking via Kronecker structured projections (TeTraKron)

basiert, vor. Wir zeigen, dass FBA zu einer verbesserten Genauigkeit des Unterraum-

Tracking und einem niedrigeren Rechenaufwand durch reellwertige Rechenoperationen

fhrt. Auerdem bewerten wir die Leistungsfhigkeit der Parameterschtzungsalgorith-

men in vielen nicht-stationren Szenarien, in denen die Unterrume durch Verwendung

des Unterraum-Tracking geschtzt werden. Darber hinaus erweitern wir den adap-

tiven ESPRIT-Algorithmus zu einem allgemeineren Fall, in dem die Unterarrays nicht

notwendigerweise eine maximale berlappung haben. Weiterhin entwickeln wir eine

adaptive Version fr Unitary ESPRIT sowie 2-D Unitary ESPRIT. Im Vergleich zu der

direkten Kombination des PAST- Algorithmus mit Unitary ESPRIT oder 2-D Unitary

ESPRIT, erreichen die vorgeschlagenen adaptiven Algortihmen die gleiche Leistung

mit einer geringeren mathematischen Komplexitt.
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1. INTRODUCTION

Nowadays, tensors based subspace estimation and tracking are attracting more and

more attention in numerous digital signal processing applications. In various signal

processing tasks such as signal parameter estimation, data compressing, radar, imaging

processing, the observation data are required to be stacked in multidimensional arrays.

By increasing the storage media capacity, data are able to be stored more efficiently

keeping the structure of data. In this regards, tensor algebra found its way as a

promising tool for multidimensional arrays. For example, for a harmonic retrieval

problem where the data are endowed with a multidimensional structure, suitable tools

in tensor algebra can be used. One fruitful concept in linear algebra is the singular value

decomposition (SVD). This concept has been extended to High-Order SVD (HOSVD)

in [dLdMV00] depending on the Tucker model [Tuc66] for multidimensional data model.

Tucker discussed the multilinear generalization of three-way data and derived a tensor

decomposition in the SVD terminology. Afterward, De Lathauwer in [dLdMV00] used

the term of HOSVD explaining the strong relation between the SVD and HOSVD

concepts and giving the basics of tensor algebra. In order to calculate the HOSVD of

N -order tensor, De Lathauwer identified terms of n-mode unfolding and a core tensor

based on the SVD concept.

In tensor-based parameter estimation techniques, HOSVD is used to estimate the

subspace as shown in [HRDG08]. More manipulation based on HOSVD has been

performed according to [RBHW09a]. Roemer clarified that the signal subspaces can be

calculated without computing the core tensor, which in turn reduces the mathematical

complexity compare to the HOSVD.

Recently, [CH13] reduced the mathematical complexity further by using some prop-

erties in Kronecker products. [CH13] proposed a generic framework of tensor-based

subspace tracking via Kronecker structured projections (TeTraKron). Here adaptive

matrix-based subspace tracking algorithms, such as Projection Approximation Sub-

space Tracking (PAST) algorithm [Yan95] can be applied to calculate the subspaces

of n-mode unfoldings. The PAST algorithm has been performed to track the signal

subspaces if and only if the subspaces of signals are slowly changing. As aforemen-

tioned, [CH13] used this algorithm after modifying and extending it for a tensor-based

M.Sc. Thesis Olaa Khatib
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subspace tracking algorithm.

Tensor-based subspace tracking algorithm paved the way to track the signal parame-

ters of multidimensional harmonic retrieval problems that needs an accurate knowledge

of the signal subspaces.

Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)

[RPK86] is a high-resolution estimation technique that estimates the DOA with lower

mathematical complexity compared to other algorithms such as Multiple Signal Clas-

sification (MUSIC) algorithm [Sch86]. ESPRIT has been applied to estimate the DOA

based on the translation invariance structure of a sensor array.

By taking into account that the phase delay between two subarrays is unitary,

[HN95] developed Unitary ESPRIT algorithm by incorporating Forward Backward Av-

eraging (FBA). Besides, Unitary ESPRIT increased the accuracy of estimation. More-

over, it involved only real-valued computations reducing the mathematical complexity

as well.

[HRDG08] extended both ESPRIT and Unitary ESPRIT algorithms for multidi-

mensional data model to the Standard Tensor ESPRIT (STE) and Unitary Tensor

ESPRIT (UTE) algorithms, respectively.

Returning back to the ESPRIT algorithm, [BRD03] modified it again for tracking

the signal parameters based on the PAST algorithm. Here, Badeua reduced the math-

ematical complexity and kept the performance of the Adaptive ESPRIT as good as

using the ESPRIT algorithm.

Our contribution in this thesis is to develop the aforementioned ideas in order to in-

crease the tracking accuracy and to reduce the computational burden by incorporating

the FBA processing.

The outline of thesis is organized as follows:

• the second chapter introduces an existing framework of tensor algebra and HOSVD.

In addition, one application in using tensor-based subspace estimation in the dig-

ital signal processing field is given.

• The third chapter presents the performance of an adaptive version of tensor-based

subspace tracking via Kronecker structured projections (TeTraKron) framework

by incorporating FBA. And we show the performances of the parameter estima-

tion schemes in a variety of non-stationary scenarios where the subspace estimates

are obtained by employing the subspace tracking algorithms.
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• The last chapter contains a proposal to extend the Adaptive ESPRIT algorithm

to a general case where the subarrays are not necessarily maximum overlapping.

In addition, we develop an adaptive version of Unitary ESPRIT as well as 2-D

Unitary ESPRIT, and

• at the end of this thesis, we finish with conclusion and future work.

The notations throughout the work are as follows. To distinguish between scalars,

vectors, matrices and tensors; italic letters (a, b, ..., A,B), lower-case bold-faced let-

ters (a, b, ...), bold-faced capital letters (A,B, ...), and bold-faced calligraphic letters

(A,B, ...), are used, respectively. The elements of matrix A and a tensor B of third

order are denoted as ai,j and bi,j,k, respectively as well as (A)i,j and (B)i,j,k, respec-

tively. The elements of a vector a are denoted similarly (a)i. If necessary, we use

MATLAB notation for denoting the matrix columns or rows, e.g., i-th row of a matrix

A are written as A(i, :).

The superscripts T , H , ∗, †, and −1 denote transposition, Hermitian transposition,

complex conjugation, Moore-Penrose pseudoinverse, and matrix inversion respectively.

Kronecker product of two matrices A, B is shown as A ⊗B and the Khatri-Rao

product (column-wise Kronecker product) as A ⋄B.

The matrix and the tensor norms are denoted as ||·||X, e.g., ||·||E, ||·||F and ||·||H are

used for Euclidean norm for vectors, Frobenius norm for matrices, and higher-order

norm for tensors, respectively. E{·} and tr{·} are used to denote the expectation and

the trace operators, respectively. Tri{·} calculates the upper/lower triangular part of

its argument and copies its Hermitian transpose to the other lower/upper triangular

part. diag(·) diagonalizes its argument column vector into a diagonal matrix and vec(·)

vectorizes the columns of its matrix argument. Re{·}, Im{·}, and arg{·} are used to

calculate the real part , imaginary part and the phase of a complex number, respectively.

∇ is the gradient operator and ∂ is used for partial derivative. im {·}, null {·}, span {·}

are used as image (column space), nullspace and span of their arguments, respectively.

M.Sc. Thesis Olaa Khatib



2. Tensor Algebra and Higher-Order SVD 4

2. TENSOR ALGEBRA AND

HIGHER-ORDER SVD

The concept of singular value decomposition (SVD) of matrices is one of the most

fruitful developments in the world of linear algebra. The SVD concept has been widely

used in the field of digital signal processing. More and more digital signal processing

problems involve an appropriate manipulation for data that are structured in multidi-

mensional arrays. Tensor algebra found its way as a promising tool for multidimensional

arrays.

In this chapter, the existing framework of tensor algebra, High-order SVD (HOSVD)

are presented. In addition, one application in using tensor-based subspace estimation

in the digital signal processing field is given as well as the tensor-based subspace esti-

mation via Kroncker structured projections.

2.1 Tensor Algebra

Tensor is a multi-dimensional array denoted as N -way array or N -order tensor. The N -

order tensor is symbolized asA ∈ C
I1×I2×...×IN in the communities of numerical algebra

and signal processing [dLdMV00]. A short summary of the used notation in this thesis

is given similarly to standard notations in [dLdMV00] as following. The n-mode vectors

is a generalization of row vectors and column vector of the tensorA by varying the n-th

index and fixing all other indices. And the n-mode subspace represents the vector space

that spanned by the n-mode vectors. For instance, let us visualize a 3-order tensor

A ∈ C
I1×I2×I3 and its n-mode vectors in a cube geometry as depicted in Fig. 2.1.

Moreover, the n-mode unfolding of the tensor A denoted a matrix [A](n) ∈ C
In×

I

In

that contains all the n-mode vectors, where I =
∏N

n=1 In, n = 1, 2, ..., N . One example

about ordering the n-mode unfolding columns is called Lathauwer’s unfolding by using

a reverse cyclical. In reverse cyclical, the ordering of n-mode unfolding columns started

with the (n + 1)-th index and proceeded backwards, up to (n − 1)-th. Thus, the n-

mode unfolding of the tensorA can be given as [A](n) ∈ C
In×(In+1·...·IN ·I1·...·In−1). Fig. 2.2

depicts the n-mode unfoldings of a 3-order tensor A with 5× 4× 3 dimensions, where
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2. Tensor Algebra and Higher-Order SVD 5

the indices i1, i2, i3 vary in reverse cyclical way giving the unfolding matrices via lateral,

vertical, and horizontal slices, respectively.

(a) 3-order tensor

(b) 1-mode vectors (c) 2-mode vectors (d) 3-mode vectors

Fig. 2.1: 3-order tensor A with 5× 4× 3 dimensions and the n-mode vectors

2.1.1 Rank Properties of a N-Order Tensor

The rank of aN -order tensor differs compare to the matrix that has one rank. [dLdMV00]

distinguished between two concepts of ranks, the n-rank of the n-mode unfolding, and

the rank of the N -order tensor A. The n-rank of the n-mode unfolding has been

denoted as n-rank {A} = rank {[A](n)}. And the rank of N -order tensor has been

defined as the minimal number of rank-1 tensors that yield A in a linear combination;

and has been represented as R = rank{A}. The rank-1 tensors can be represented by

using the outer products of vectors a1,a2, ...,aN as

A = a1 ◦ a2 ◦ ... ◦ aN , (2.1)

with an ∈ C
In .
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(a) 1-mode unfolding [A](1) with 5× (4 · 3) dimensions

(b) 2-mode unfolding [A](2) with 4× (3 · 5) dimensions

(c) 3-mode unfolding [A](3) with 3× (5 · 4) dimensions

Fig. 2.2: n-mode unfolding of a 3-order tensor A with 5× 4× 3 dimensions

2.1.2 Scalar Product, Orthogonality and Norm of Higher-Order

Tensors

The scalar product 〈A,B〉 of two tensors A and B ∈ C
I1×I2×...×IN is the sum of the

element-wise product of A and B∗,

〈A,B〉 =

I1∑

i1=1

I2∑

i2=1

...

IN∑

iN=1

b∗i1,i2,...,iN · ai1,i2,...,iN . (2.2)

The orthogonality is defined as 〈A,B〉 = 0 of two tensors A and B ∈ C
I1×I2×...×IN . In

other words, the arrays of which the scalar product equals 0 are orthogonal as given in

[dLdMV00]. The Frobenius-norm [dLdMV00],[KB09], or higher-order norm [HRDG08]

of a tensor A is calculated using the square-root of the scalar product and defined as

||A||
H
=

√

〈A,A〉.

2.1.3 Multiplication of a Tensor by a Matrix

The multiplication of a N -order tensor by a matrix is named as n-mode product

[dLdMV00]. The n-mode product of a tensor A ∈ C
I1×I2×...×IN and a matrix U ∈
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2. Tensor Algebra and Higher-Order SVD 7

C
Pn×In yields a tensor B ∈ C

I1×I2×...×In−1×Pn×In+1×...×IN as

B = A×n U . (2.3)

The n-mode product can be calculated by using the matrix multiplication between the

matrix U and the n-mode unfolding [A](n) giving the n-mode unfolding [B](n) as

[B](n) = U · [A](n). (2.4)

For instance, Fig. 2.3 depicts the 1-mode product of a 3-order tensor A ∈ C
4×3×2 with

a matrix U ∈ C
5×4, B = A×1U ∈ C

5×3×2. The n-mode product satisfies two following

Fig. 2.3: 1-mode product of a 3-order tensor A ∈ C
4×3×2 with a matrix U ∈ C

5×4,
B = A×1 U ∈ C

5×3×2

properties [dLdMV00]. The first one represents the commutativity property over the

n-mode product as

A×m U ×n V = A×n V ×m U , (2.5)

where U ∈ C
Jm×Im , V ∈ C

Jn×In , and A ∈ C
I1×I2×...×IN . The second is a special case

from the previous property at (n = m). In other words, if U , and V ∈ C
Jn×In have

more than one n-mode product with the N -order tensor A, n-mode product between

the N -order tensor and the total inverse inner product of matrices can be written as

A×n U ×n V = A×n (V ·U ). (2.6)

2.1.4 Higher-Order SVD (HOSVD)

The SVD concept describes the relation between the column (row) vectors and the

left (right) singular vectors of a matrix. The extension of SVD to HOSVD has been

M.Sc. Thesis Olaa Khatib
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Fig. 2.4: SVD of a matrix A ∈ C
4×3, where U ∈ C

4×4, V ∈ C
3×3 are unitary matrices,

and Σ ∈ R
4×3 is a diagonal matrix

presented in [dLdMV00] depending on the Tucker model [Tuc66]. Tucker discussed the

multilinear generalization of a three-way data A ∈ R
I1×I2×I3 and derived the tensor

decomposition in a SVD terminology according to

ai1i2i3 =

I1∑

j1

I2∑

j2

I3∑

j3

sj1j2j3u
(1)
i1j1

u
(2)
i2j2

u
(3)
i3j3

, (2.7)

where, sj1j2j3 are elements of a tensor S ∈ R
I1×I2×I3 with the property of all-orthogonality

columns and ui1j1 , ui2j2 , ui3j3 are elements of unitary matrices. [dLdMV00] extended

the decomposition for N -order tensor and used the term High-Order SVD (HOSVD).

The HOSVD of a N -order tensor A ∈ C
I1×I2×...×IN in respect to the singular vectors

of n-mode unfoldings Un, n = 1, 2, ..., N can be written as

A = S ×1 U1 ×2 U2 ×3 ...×N UN . (2.8)

To generalize the HOSVD for the matrix case, De Lathauwer [dLdMV00] rewrote the

matrix A in the 2-order tensor decomposition as

A = U ·Σ · V H = Σ×1 U ×2 V
∗ = Σ×1 U1 ×2 U2, (2.9)

whereU ∈ C
I1×I1 , V ∈ C

I2×I2 are unitary matrices, andΣ = diag
(
σ1, σ2, ..., σmin(I1,I2)

)

is a diagonal matrix consisting of singular values in descending order, σ1 ≥ σ2 ≥ ... ≥

σmin(I1,I2) ≥ 0. Fig. 2.4 visualizes the decomposition of matrix A according to the SVD

concept.

Returning back to the N -order tensor in (2.8), the core tenor S can be calculated

according to

S = A×1 U
H
1 ×2 U

H
2 ...×N UH

N , (2.10)

Similarly to SVD, the core tensor S has two properties [dLdMV00]:
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Fig. 2.5: HOSVD of a 3-order tensor A of size (5× 4× 3)

1. all-orthogonality, the sub-tensors Sin=α and Sin=β, getting by fixing the in th

index to α and β, are orthogonal for all possible values of n subject to α 6= β

〈Sin=α,Sin=β〉 = 0 (2.11)

2. descending ordering of the Forbenius-norms,

||Sin=1||H ≥ ||Sin=2||H ≥ ... ≥ ||Sin=In ||H ≥ 0. (2.12)

The n-mode unfolding of the equation (2.8) has been expressed in [dLdMV00] as

[A](n) = Un · [S](n) · (Un+1 ⊗Un+2 ⊗ ...⊗UN ⊗U1 ⊗U2 ⊗Un−1)
T , (2.13)

where, Un is calculated from the SVD of the n-mode unfolding of the tensor A as

[A](n) = Un ·Σn · V
H
n . (2.14)

As we see before, Σn ∈ C
In×In is a diagonal matrix, Vn ∈ C

In+1In+2...IN IN−1IN−2...In−1×In

is the column-wise unitary matrix. Now, by substituting (2.14) into (2.13), we obtain

V H
n = S̃n · (Un+1 ⊗Un+2 ⊗ ...⊗UN ⊗U1 ⊗U2 ⊗Un−1)

T , (2.15)

where S̃n is a unitary matrix that normalized [S](n) to unit-norm as

[S](n) = Σn · S̃n. (2.16)

The n-mode unfolding of the core tensor [S](n) can be expressed from each of the (2.14)
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and (2.13), respectively as

[S](n) = UH
n · [A](n) · (Un+1 ⊗Un+2 ⊗ ...⊗UN ⊗U1 ⊗U2 ⊗Un−1) , (2.17)

[S](n) = Σn · V
H
(n) · (Un+1 ⊗Un+2 ⊗ ...⊗UN ⊗U1 ⊗U2 ⊗Un−1) . (2.18)

2.1.5 Low-Rank Approximation Property

The approximation of one matrix by another of lower rank have been illustrated in

[EY36].The structure of the low-rank approximation is given in a term of signal sub-

sapces and nullsubaces according to [Str93]. In fact, Strang defined the relation between

the SVD of a matrix A ∈ C
I1×I2 and four fundamental subspaces such as:

1. the left singular vectors are the unitary basis for the column space and the left

nullspace of A, and

2. the right singular vectors are the unitary basis for the row space and the nullspace

of A.

Then, the SVD of A can be explicated in a form of signal subspaces and null spaces

such as

A = [Us Un] ·

[

Σs 0

0 Σn

]

· [Vs Vn]
H , (2.19)

where Us ∈ C
I1×d and Un ∈ C

I1×(I1−d) span the left singular vectors and the null

spaces of the matrix A, respectively. Σs ∈ C
d×d is a diagonal matrix contained the

singular values of A and Σn ∈ C
(I1−d)×(I2−d) contains the noise values. According to

the relation between SVD and the four fundamental subspaces, [HRDG08] wrote the

SVD of a matrix A in low-rank approximation as

A ≈ Us ·Σs · V
H
s (2.20)

The truncated version of a matrix A with respect to the signal subspaces is depicted

in Fig. 2.6. Since, the signal subspaces and nullspaces of a r-mode unfolding can be

related via

im
{

[A](r)

}

≈ im
{
U [s]

r

}
,

null
{

[A](r)

}

≈ im
{
U [n]

r

}
, (2.21)
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Fig. 2.6: Low-rank (Truncated) SVD of a matrix A of size (4× 3)

Fig. 2.7: Low-rank (Truncated) HOSVD of a tensor A of size (5× 4× 3)

HOSVD of a R-order tensor A ∈ C
I1×I2×...×IR can be written as

A = S ×1

[

U
[s]
1 U

[n]
1

]

×2

[

U
[s]
2 U

[n]
2

]

...×R+1

[

U
[s]
R+1 U

[n]
R+1

]

, (2.22)

where U
[s]
r and U

[n]
r span the signal subspaces and nullspaces r-mode unfolding, respec-

tively. Then, the low-rank approximation of A is computed in similar way to truncated

SVD as in [HRDG08] according to

A ≈ S [s] ×1 U
[s]
1 ×2 U

[s]
2 ...×R U

[s]
R . (2.23)

Fig. 2.7 visualizes the truncated HOSVD concept for a 3-order tensor A ∈ C
5×4×3,

where S [s] ∈ C
5×4×3, U

[s]
1 ∈ C

5×3, U
[s]
2 ∈ C

4×3, U
[s]
3 ∈ C

3×2. It’s worth to say

that the low-rank approximation reduces the mathematical complexity with a good

approximation [HRDG08]. In the following, we are going to use this property in the

tensor-based subspace estimation.
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2.2 Tensor-Based Subspace Estimation

Tensor based-subspace estimation has been applied to estimate the signal parameters

of multidimensional harmonic retrieval data model as shown in [HRDG08]. More ma-

nipulation has been developed to reduce the computational complexity in [RBHW09b]

and [CH13] for the tensor-based subspace tracking via Kronecker structured projections

without the need to calculate the core tensor of the data.

2.2.1 Data Model for a Multidimensional Harmonic Retrieval

Problem

For multidimensional harmonic retrieval data model, we have d sources of narrowband

noncoherent plane wavefronts and array of M senors on a far field criteria. Thus, the

data model has been assumed to has a uniform sampling in the spatial domain and

the goal is to estimate the signal parameters, i.e., Direction of Arrival (AOD). The

data model is given in a matrix approach as well as a tensor approach as introduced

in [HRDG08]. In the following, we are going to summarize both of the approaches and

estimate the tensor-based signal subspace.

• Matrix Based Data Model

Let us assume that a data vector x ∈ C
M has been observed at M sensors which

have a uniform antenna array; and thus composed of d narrow-band signal waves

s ∈ C
d superimposed by an additive noise vector n ∈ C

M . Then, the data are

rearranged in a matrix form at each time slot without taking to account the

multidimensional structure of the antenna array as

X = A · S +N ∈ C
M×N , (2.24)

where A = [a(ω1), ...,a(ωd)] ∈ C
M×d is the array steering matrix corresponding

to the direction of arrival a(ωi) =
[
1, ejωi , ..., ej(M−1)ωi

]
, where ωi, i = 1, 2, ..., d

are the unknown spatial frequencies.

And so that for R-dimensional signals, the array steering matrix A can be given

in a term of mixing matrices Ar as

A = A1 ⋄A2 ⋄ ... ⋄AR ∈ C
M×d, r = 1, 2, ..., R, (2.25)

where Ar = [ar(ωr1), ...,ar(ωrd)] ∈ C
Mr×d is the mixing matrix in the r-th mode,

M =
∏R

r=1 Mr as introduced in [HRDG08]. The array steering vectors can be
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Fig. 2.8: A three dimensional Cartesian coordinate system contains the projections of
a i-th point source si on the euclidean plane, µi and νi. The azimuth and elevation
angles are −180 ≤ φi ≤ 180 and 0 ≤ θi ≤ 90, respectively.

written such as

ar(ωri) =
[
1, ejωri , ..., ej(Mr−1)ωri

]
, (2.26)

where ωri is the i-th spatial frequency on r-th dimension. For instance, if the

antenna array is a Uniform rectangular array (URA), we can define

ω1i = µi = 2π
l

λ
ui, ui =

1

2
cosφi sin θi

ω2i = νi = 2π
l

λ
vi, vi =

1

2
sinφi sin θi, (2.27)

where l is the distance between the neighboring sensors, λ is the wavelength, and

φi and θi are the azimuth and the elevation angles on the Cartesian coordinate

system, respectively. Fig. 2.8 visualizes a URA centro-symmetric sensors array

of M = 7× 7 elements lying in the x− y plane.

• Tensor Based Data Model

In multidimensional harmonic retrieval, the tensor data modelX ∈ C
M1×M2×...×MR×N

is reformulated according to [HRDG08] as

X = A×R+1 S +N , (2.28)
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where S ∈ C
d×N contains d narrowband signals same as in (2.24), N composes

the noise samples with the same size of the observations data tensor X , and A

is a array steering tensor with M1 ×M2 × ...×MR × d dimensions.

As we see above, the tensor data model kept on the multidimensional structure of the

antenna array compared to the matrix data model. And to get the link between both

of them, let us define the array steering tensor in the form of r-mode mixing matrices

according to [HRDG08] as

A = IR+1,d ×1 A1...×R AR ∈ C
M1×M2×...×MR×d (2.29)

where IR+1,d is the (R+1)-dimensional identity tensor of size d× d× ...× d such that

(IR+1,d)i1,i2,...,iR+1
=







1 if i1 = i2 = ... = iR+1,

0 otherwise.

Then, the connection between the matrix and the tensor data models is given by the

transpose of the unfoldings as

X = [X ]T(R+1)

A = [A]T(R+1)

N = [N ]T(R+1) (2.30)

2.2.2 HOSVD-Based Signal Subspace Estimation

The derivation of HOSVD-based signal subspace estimation is clarified in [HRDG08].

At first, the HOSVD of the observation tensor X ∈ C
I1×I2×....×IR+1 is given in the form

of signal subspace and null subspace as the following

X = Ŝ ×1

[

Û
[s]
1 Û

[n]
1

]

×2

[

Û
[s]
2 Û

[n]
2

]

...×R+1

[

Û
[s]
R+1 Û

[n]
R+1

]

, (2.31)

where Û
[s]
r ∈ C

Mr×pr and Û
[n]
r ∈ C

Mr×(Mr−pr) for r = 1, 2, ..., R + 1. Then, the tensor

X has been approximated to the truncated HOSVD as

X ≈ Ŝ
[s]
×1 Û

[s]
1 ×2 Û

[s]
2 ...×R+1 Û

[s]
R+1, (2.32)
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where the Ŝ
[s]
∈ C

p1×p2×...pR×d is the truncated core tensor. Similar to (2.10), we could

write the truncated core tensor Ŝ
[s]

in the HOSVD form as shown in

Ŝ
[s]

= X ×1 Û
[s]H

1 ×2 Û
[s]H

2 ...×R+1 Û
[s]H

R+1. (2.33)

The HOSVD tensor-based signal subspace can be described in the term of core ten-

sor and multidimensional extension of the basis Û[s] ∈ C
M1×M2×...×MR×d according to

[HRDG08] as

Û
[s]

= Ŝ
[s]
×1 Û

[s]
1 ×2 Û

[s]
2 ...×R Û

[s]
R . (2.34)

Compare to low-rank approximation of SVD, the observation data matrix in (2.24) can

be approximated as

X = U ·Σ · V H ≈ Us ·Σs · V
H
s . (2.35)

Since the approximation for the matrix and tensor cases yield im{Us} = im{A}, we

can define the link between the matrix-based and tensor-based signal subspaces based

on the relation in (2.30). [HRDG08] clarified that the column spaces of the r-mode

unfolding of the array steering tensor [A](r) span the r-mode vector spaces form such

as

im
{
[A]T(R+1)

}
≈ im

{[

Û
[s]
]T

(R+1)

}

. (2.36)

We assume in our study that the number of wavefronts d is known and equals to

the rank of the measurement matrix and the rank of the measurement tensor, respec-

tively. Moreover, the equations (2.32) and (2.35) hold as good as in the noiseless case

[HRDG08]. By using the property (2.5) and substituting each of (2.35) and (2.32)

in (2.32) we obtain

Us ·Σs · V
H
s ≈

[

Û
[s]
×R+1 Û

[s]
R+1

]T

(R+1)

Us · Ts ≈
[

Û
[s]
]T

(R+1)
· (Û

[s]
R+1)

T , (2.37)

where Ts = Σs · V
H
s . In other words, the tensor-based signal subspace span the same

signal subspace as shown in

im
{

Ûs

}

≈ im

{[

Û
[s]
]T

(R+1)

}

. (2.38)
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Right now, the tensor-based signal subspace can be calculated by computing the core

tensor of the observation data tensor X . More manipulation has been applied in

[RBHW09a] in order to simplify the computation by avoiding the tensor calculation as

following: The n-mode unfolding of the observation data tensor X has been calculated

as

[X ]T(R+1) ≈
(

Û
[s]
1 ⊗ Û

[s]
2 ⊗ ...⊗ Û

[s]
R

)

·
[

Ŝ
[s]
]T

(R+1)
·
(

Û
[s]
R+1

)T

. (2.39)

To abstract (2.39) more, a unitary matrix S̃
[s]
R+1 ∈ C

d×
∏

R

r=1 pr has been defined according

to (2.16) as

[S](n) = Σn · S̃n. (2.40)

Now, the substituting (2.40) into (2.39) and also considering the link in the equa-

tions (2.13), (2.14) and (2.15) yield

[X ]T(R+1) ≈
(

Û
[s]
1 ⊗ Û

[s]
2 ⊗ ...⊗ Û

[s]
R

)

·
(

S̃
[s]
R+1

)T

· Σ̂
[s]
R+1 ·

(

Û
[s]
R+1

)T

≈ Ûs · Σ̂
[s]
R+1 ·

(

Û
[s]
R+1

)T

. (2.41)

Linking to the SVD concept, the signal subspace of X can be written using the trun-

cated SVD as

Ûs = X · V̂s · Σ̂
−1
s . (2.42)

By inserting (2.42) into (2.41), the signal subspace Ûs can be calculated with respect

to the unfolding date tenor as

[X ]T(R+1) · Û
[s]∗

R+1 · Σ̂
−1
s = X · V̂s · Σ̂

−1
s = Ûs. (2.43)

Consequently, by calculating the (R + 1)-mode unfolding of (2.34) and applying

the transpose operator, the R + 1-mode unfolding of the tensor subspace Û can be

expressed as

[

Û
[s]
]T

(R+1)
=

(

Û
[s]
1 ⊗ Û

[s]
2 ⊗ ...⊗ Û

[s]
R

)

·
[

Ŝ
[s]
]T

(R+1)
. (2.44)

Similarly, by substituting the transpose equation (2.40) into (2.44), we can obtain the

following relation

[

Û
[s]
]T

(R+1)
=

(

Û
[s]
1 ⊗ Û

[s]
2 ⊗ ...⊗ Û

[s]
R

)

·
(

S̃
[s]
R+1

)T

· Σ̂
[s]
R+1

≈ Ûs · Σ̂
[s]
R+1. (2.45)
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In [HRDG08], the tensor-based subspace estimate
[

Û
[s]
]T

(R+1)
outperforms the matrix-

based subspace estimate Ûs due to the structured denoising in each mode r = 1, 2, ..., R

with d < Mr. In addition, the [HRDG08] mentioned that we can calculate the tensor-

based signal subspace without calculating the core tensor reducing the mathematical

complexity one step more.

2.2.3 Structured Projections for HOSVD-Based Signal Subspace

Estimation

The tensor-based signal subspace estimation Û
[s]

has been written for a notational

convenience by normalizing (2.34) via Σ̂−1
s according to [RBHW09a] such as

Û
[s]

= Ŝ
[s]
×1 Û

[s]
1 ×2 Û

[s]
2 ...×R Û

[s]
R ×R+1 Σ̂

−1
s , (2.46)

where Σ̂s = Σ̂
[s]
R+1. More manipulation has been performed in [CH13] in order to reduce

the mathematical complexity as shown in the following. As aforementioned, the tensor

subspace can be calculated without computing the core tensor by inserting the core

tensor Ŝ
[s]

into (2.46) and using the properties in (2.5). Wherefore, the tensor-based

signal subspace estimation can be clarified according to

Û
[s]

= X ×1 T̂1 ×2 T̂2...×R T̂R ×R+1

(

Σ̂−1
s · Û

[s]H

R+1

)

(2.47)

where T̂r = Û
[s]
r · Û

[s]H

r is the projection matrix onto the space spanned by the r-mode

vectors.

Using the property (2.13), the transpose of the (R+1)-mode unfolding of the tensor

subspace
[

Û
[s]
]T

(R+1)
is calculated via [RBHW09b] as

[

Û
[s]
]T

(R+1)
=

(

T̂1 ⊗ T̂2...⊗ T̂R

)

· [X ]T(R+1) · Û
[s]∗

R+1 · Σ̂
−1
s . (2.48)

Consequently, by substituting (2.43) in (2.48), the HOSVD-based subspace estimate

becomes the projection of the matrix-based subspace estimate onto Kronecker structure

of the r-mode projectors as

[

Û
[s]
]T

(R+1)
=

(

T̂1 ⊗ T̂2...⊗ T̂R

)

· Ûs. (2.49)

The complexity in (2.49) is O(M2d) multiplications as shown in [RBHW09b] and

[CH13]. Moreover, the [CH13] explicated that the complexity can be reduced by using
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two of the Kronecker product properties stated as follows.

1. Given two pairs of matrices A,C and B,D of proper dimensions, the Kronecker

product (A ·C)⊗ (B ·D) can be written as,

(A ·C)⊗ (B ·D) = (A⊗B) · (C ⊗D) , (2.50)

which is called the mixed-product property of the Kronecker product.

2. Transposition and complex conjugation operations are distributive over the Kro-

necker product as

(A⊗B)H =
(
AH ⊗BH

)
(2.51)

Then the projectors in equation (2.49) have been calculated using (2.50) and (2.51)

as

[

Û
[s]
]T

(R+1)
=

(

Û
[s]
1 · Û

[s]H

1

)

⊗
(

Û
[s]
2 · Û

[s]H

2

)

...⊗
(

Û
[s]
R · Û

[s]H

R

)

· Ûs

=
(

Û
[s]
1 ⊗ Û

[s]
2 ...⊗ Û

[s]
R

)

·
(

Û
[s]
1 ⊗ Û

[s]
2 ...⊗ Û

[s]
R

)H

· Ûs. (2.52)

Note that the projectors T̂r is written again in the form Û
[s]
r · Û

[s]H

r . Defining a lower-

dimensional space ˆ̄U s ∈ C
dR×d which represents the subspace in result of the projection,

the equation above becomes

[

Û
[s]
]T

(R+1)
=

(

Û
[s]
1 ⊗ Û

[s]
2 ...⊗ Û

[s]
R

)

· ˆ̄U s. (2.53)

This gives a complexity in the order of O(Md(R+1)), thus linear in M .

Next we will incorporate the Forward Backward Averaging (FBA) concept to write

the “normal”-and “mixed-product Kronecker” structured HOSVD-based subspace esti-

mation, according to (2.52) and (2.53), respectively, in a form of real-valued processing.
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3. TENSOR-BASED SUBSPACE TRACKING

VIA STRUCTURED PROJECTIONS

Tracking the signal subspace plays an important role in the field of digital signal pro-

cessing for various applications, e.g., signal parameters tracking. In this area, a lot

of tracking algorithms have been developed such as Projection Approximation Sub-

space Tracking (PAST) [Yan95].The PAST algorithm has been applied for tracking

and updating signal subspaces that slowly change.

Recently, this algorithm has been modified for tensor-based subspace tracking as

introduced in [CH13]. Here, a generic framework via “normal”-and “mixed-product

Kronecker” structured HOSVD projections is used based on an extension version of

the PAST algorithm. Our contribution in this regard is to incorporate the Forward

Backward Averaging (FBA) concept which we expect to improve the tracking algorithm

as well as to decrease the mathematical complexity.

In this chapter, we give a brief summary about the PAST and the Extended PAST

algorithms. Then, we propose the FBA-PAST algorithm based on incorporate the

FBA processing and extend it again to Extended FBA-PAST based on tensor-based

subspace tracking via structured projections.

3.1 Projection Approximation Subspace Tracking (PAST)

The PAST algorithm is an adaptive algorithm that updates the signal subspace recur-

sively, as shown in [Yan95]. Yang utilized the projection approximation approach to

simplify its unconstrained minimization problem by using the Recursive Least Squares

(RLS) technique.

To clarify this algorithm, we consider a data model of a multidimensional harmonic

retrieval problem to be given according to (2.24). So that, an observed vector x(n) ∈

C
M at n-th snapshot can be expressed as

x(n) = As(n) +w(n), (3.1)
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whereA ∈ C
M×d denotes a deterministic array steering matrix, s(n) = [s1(n), ..., sd(n)]

T ∈

C
d symbolizes a random sources vector with a non-singular correlation matrix Css =

E[s(n)s(n)H ], and w(n) is an additive noise vector with the same size of the observa-

tion data vector.

The covariance matrix of the observed data Cxx ∈ C
M×M is given as

Cxx = E[x(n)x(n)H ] = ACssA
H + σ2

wwIM , (3.2)

where σ2
ww is the noise variance. Related to the additive noise, it can be seen that if

σ2
ww = 0, the columns of the array steering matrix A span exactly the d-dimensional

signal subspace Us of the observed data. However, in the case when the observation

data is interrupt with an additive noise, the equality becomes accepted for a wide

observation window, i.e., N →∞ yielding

im {A} = im {Us} . (3.3)

In order to explain the recursive method, we visualizes the RLS filter in Fig. 3.1,

where x̂(n) denotes the estimate of x(n), e(n) symbolizes the error between the esti-

mated signal and the current observation, and ∆Un
is the correction factor.

Fig. 3.1: RLS filter. x(n) represents the observation data vector at n-th snapshot, x̂(n)
denotes the estimated one of x(n), e(n) symbolizes the error between the estimated
signal and the current observation, and ∆Un

is the correction factor.

Now, we can write the cost function of the signal subspace, according to [Yan95],

as follows

J(Us(n)) =
N∑

i=1

βn−i ‖ x(i)−Us(n) · y(i) ‖
2, (3.4)

where y(i) = UH
s (n−1) ·x(i) ∈ C

d represents a projection matrix and β is a forgetting

factor in the range 0 ≤ β ≤ 1.
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According to [Yan95], we discuss the impact of the forgetting factor β on the cost

function. Since the data in the distance past are down-weighted by using the β, the

tracking capability is still available when the system operates in a non-stationary en-

vironment i.e., the array steering A is time-variant. Therefore, the effective window

length for β < 1 has been considered as 1/(1− β) when n≫ 1.

The cost function has been written again in [Yan95] by using the trace operator of

correlation matrices such as

J(Us(n)) = tr[Cxx(n)] + tr[Us(n) ·Cyx(n)]

+ tr[Cxy(n) ·U
H
s (n)] + tr[Us(n) ·Cyy(n) ·U

H
s (n)], (3.5)

where the correlation matrices can be given by

Cxx(n) =
N∑

i=1

βn−ix(i) · x(i)H = βCxx(n− 1) + x(i) · x(i)H , (3.6)

Cyx(n) =
N∑

i=1

βn−iy(i) · x(i)H = βCyx(n− 1) + y(i) · x(i)H , (3.7)

Cxy(n) =
N∑

i=1

βn−ix(i) · y(i)H = βCxy(n− 1) + x(i) · y(i)H , (3.8)

Cyy(n) =
N∑

i=1

βn−iy(i) · y(i)H = βCyy(n− 1) + y(i) · y(i)H . (3.9)

As shown in (3.5), the cost function J(Us(n)) signifies as a second order function of

the elements Us(n). Now, applying the derivation process on it yields a linear equation

with a first order function of Us(n) as

∇U∗

s
(J(Us(n))) = Us(n) ·Cyy(n)−Cxy(n) = 0. (3.10)

So, the cost function in (3.5) can be minimized via solving (3.10) and computing the

inverse of the correlated matrix Cyy(n) according to

Us(n) = Cxy(n) ·C
−1
yy (n). (3.11)

Considering to the mathematical complexity, we can see that the recursive com-

putation of the correlation Us(n) from Cxy(n) ∈ C
M×d and Cyy(n) ∈ C

d×d demands

O(Md2) + O(d3) operations in the complex domain. However, the complexity of cal-

culating the inverse of Cyy(n) becomes in the O(Md) operations by using the matrix
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inverse lemma (Sherman-Morrison formula, see [PP12])

(A+ uvH)
−1

= A−1 −
A−1uvHA−1

1 + vHA−1u
. (3.12)

By considering P (n−1) = 1
β
C−1

yy (n− 1) and replacing it withA in (3.9), in addition

to replace each of u, and vH with y, and yH in (3.9), respectively, we obtain

P (n) =
1

β
(P (n− 1)−

P (n− 1)y(n)y(n)HP (n− 1)

β + y(n)HP (n− 1)y(n)
). (3.13)

The PAST algorithm is summarized in Tab. 3.1, where Tri{P } denotes that the

only upper (or lower) triangular part of P is computed and the Hermitian transposed

version is copied to the other lower (or upper) triangular part, since P is a Hermitian

matrix.

Note that the initial elements of the matrices P (0) and Us(0) should be chosen

suitably such that P (0) is a Hermitian matrix and Us(0) is a unitary matrix.

As we can see from Tab. 3.1, the projection of the observation data vector is per-

formed via the multiplication of the previous guessing of the signal subspace with the

current data vector. This approximation in addition to use the RLS method decrease

the mathematical complexity to 3Md+O(d2) operations every update cycle.

Choose P (0) and W (0) suitably

FOR n = 1, 2, . . . Do

y(n) = Us(n− 1)H · x(n)

h(n) = P (n− 1) · y(n)

g(n) = h(n)/
(
β + y(n)H · h(n)

)

P (n) =
1

β
· Tri{P (n− 1)− g(n) · h(n)H}

e(n) = x(n)−Us(n− 1) · y(n)

Us(n) = Us(n− 1) + e(n) · g(n)H

Tab. 3.1: PAST algorithm for tracking the signal subspace
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3.2 Extended PAST

The PAST algorithm has been extended by [CH13]. Moreover, a generic framework for

tensor subspace tracking via Kronecker-structured projections (TeTraKron) has been

performed depending on the extended version of the PAST algorithm.

For a data model of a multidimensional harmonic retrieval problem given according

to (2.28), an observed tensor X (n) ∈ C
M1×M2×...MR at n-th snapshot can be expressed

as

X (n) = A(n)×R+1 s
T (n) +W(n), (3.14)

where A(n) ∈ C
M1×M2×...×MR×d is the array steering tensor at n-th snapshot, s(n) =

[s1(n), ..., sd(n)]
T ∈ C

d symbolizes a random sources vector with a non-singular cor-

relation, W(n) is an additive noise tensor with a same size like the observation data

tensor at n-th snapshot as well.

By considering that the current r-mode unfoldings is given as X̃r(n) = [X (n)](r) ∈

C
Mr×

M

Mr , r = 1, 2, ...R and M =
∏R

r=1 Mr, the relation to the vector data concept at

each snapshot can be obtain as

vec{X̃r(n)} = x(n) = vec{[X (n)]T(R+1)}. (3.15)

Tab. 3.2 summarizes the Extended PAST algorithm for tracking the r-mode un-

folding subspaces, where the correlation matrices can be written in this way

Cxyr(n) =
n∑

i=1

βn−iX̃r(i)Y
H
r (i) = βCxyr(n− 1) + X̃r(n)Y

H
r (n),

Cyyr(n) =
n∑

i=1

βn−iYr(i)Y
H
r (i) = βCyyr(n− 1) + Yr(n)Y

H
r (n). (3.16)

In order to calculate the inverse of matrix Cyyr(n) each update, [CH13] used the matrix

inversion lemma (Woodbury matrix identity, see [GL96]) lowering in this step the

complexity. The Woodbury identity comes in many variants. The latter of the two can

be found in [GL96] as

(A+UBUH)
−1

= A−1 −A−1U (B−1 +UHA−1U )−1UHA−1,

(A+UBV H)
−1

= A−1 −A−1U (B−1 + V A−1U )−1V A−1. (3.17)

Now, by replacing A, U , and B in (3.17) with Pr(n−1), Yr, and IM/Mr
, respectively,
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we obtain the recursive computation of Pr(n) as

Pr(n) =
1

β
Pr(n− 1)−

1

β
Pr(n− 1)Yr(n)

· (βIM/Mr
+ Yr(n)

HPr(n− 1)Yr(n))
−1Yr(n)

HPr(n− 1), (3.18)

with r = 1, 2, ..., R.

Pr(0) = Id×d, U
[s]
r (0) = IM×d

FOR n = 1, 2, . . . DO

Yr(n) = U [s]
r (n− 1)H · X̃r(n)

Hr(n) = Pr(n− 1) · Yr(n)

Gr(n) = Hr(n)/
(
β · IM/Mr

+ Yr(n)
H ·Hr(n)

)

Pr(n) =
1

β
· Tri{Pr(n− 1)−Gr(n) ·Hr(n)

H}

Er(n) = X̃r(n)−U [s]
r (n− 1) · Yr(n)

U [s]
r (n) = U [s]

r (n− 1) +Er(n) ·Gr(n)
H

Tab. 3.2: Extended PAST algorithm

After tracking the r-mode unfolding subspaces U
[s]
r (n) as well as the subspace Us of

the data vector x(n) according to the Extended PAST and PAST algorithms, [CH13]

used the Kronecker structured projection to extract the tensor-based subspaces as

[

Û
[s]
]T

(R+1)
=

(

U
[s]
1 ⊗U

[s]
2 ...⊗U

[s]
R

)

· Ū s, (3.19)

where, Ū s =
(

U
[s]
1 ⊗U

[s]
2 ...⊗U

[s]
R

)H

· Ûs ∈ C
dR×d.

Tensor-based signal subspace tracking via Kronecker structured projections (TeTraKron)

increased the mathematical complexity to 3Md+max
(

O( M
Mr

)3
)

at each update. How-

ever, TeTraKron based tracking schemes outperformed the PAST algorithm in time-

varying scenarios as shown in [CH13].

In the next step, we are going to incorporate the FBA processing onto the PAST

algorithm and extend it again for the tensor case, respectively.
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3.3 FBA-PAST Algorithm

Let X ∈ C
M×N be an observation data over an N window length according to (2.24).

The extended matrix Z ∈ C
M×2N can be performed according to [HN95] as

Z =
[

X ΠMX∗ΠN .
]

(3.20)

Since Z is now a centro-Hermitian matrix, the real-valued processing can be applied

over an N window length as follows

ϕ(Z) = QH
M ·Z ·Q2N ∈ R

M×2N , (3.21)

where Qp ∈ C
p×p is a left Π-real unitary matrix. In our study, we selected Qp ∈ C

p×p

to be a left Π-real unitary matrix according to [HN95]. Fig. 3.2 visualizes the FBA

version in a block diagram.

According to [HN95], the relation between the columns subspace Us ∈ C
M×d of the

data matrix X and the d dominant left singular vectors Es ∈ R
M×d of the extended

data matrix Z is calculated as

Us = QMEs. (3.22)

Now, to obtain the FBA-PAST algorithm , let us assume that the extended data

Fig. 3.2: FBA block diagram. X ∈ C
M×N represents the observation data, Z =

[X ΠMX∗ΠN ] ∈ C
M×2N is the centro-symmetric matrix, and ϕ(Z) = QH

M ·Z ·Q2N ∈
R

M×2N symbolizes the mapping matrix.

Z̃(n) ∈ C
M×2 at n-th snapshots can be projected into a matrix Ỹ (n) ∈ R

M×2 as

Ỹ (n) = Es(n− 1)H · ϕ(Z̃(n)). (3.23)

Then, the FPA-PAST algorithm can be summarized in a few steps as shown in
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Tab. 3.3, where the correlation matrices in FAB-PAST algorithm are computed as

Czz(n) =
N∑

i=1

βn−iϕ(Z̃(i)) · ϕ(Z̃(i))H = βCzz(n− 1) + ϕ(Z̃(n)) · ϕ(Z̃(n))H ,

Cyz(n) =
N∑

i=1

βn−iỸ (i) · ϕ(Z̃(i))H = βCyz(n− 1) + Ỹ (n) · ϕ(Z̃(n))H ,

Czy(n) =
N∑

i=1

βn−iϕ(Z̃(i)) · Ỹ (i)H = βCzy(n− 1) + ϕ(Z̃(n)) · Ỹ H(n),

Cyy(n) =
N∑

i=1

βn−iỸ (i) · Ỹ (i)H = βCyy(n− 1) + Ỹ (n) · Ỹ H(n). (3.24)

Similar to the previous section, we use the matrix inversion lemma (Woodbury

matrix identity) to calculate the inverse of matrix Cyy(n) at each update to lower the

complexity. Hence, replacing A, U , and B in (3.17) with P FBA(n−1), Ỹ (n), and I2,

respectively, yields the recursive computation of P FBA(n) as

P FBA(n) =
1

β
P FBA(n− 1)−

1

β
P FBA(n− 1)Ỹ (n)

· (βI2 + Ỹ (n)HP FBA(n− 1)Ỹ (n))−1Ỹ (n)HP FBA(n− 1), (3.25)

Choose P FBA(0) and Es(0) suitably

FOR n = 1, 2, . . . Do

Ỹ (n) = Es(n− 1)H · ϕ(Z̃(n)) ∈ R
d×2

H(n) = P (n− 1) · Ỹ (n) ∈ R
d×2

G(n) = H(n) ·
(

βI2 + Ỹ (n)H ·H(n)
)−1

∈ R
d×2

P FBA(n) =
1

β
· Tri{P FBA(n− 1)−G(n) ·H(n)H} ∈ R

d×d

B(n) = ϕ(Z̃(i))−Es(n− 1) · Ỹ (n) ∈ R
M×2

Es(n) = Es(n− 1) +B(n) ·G(n)H ∈ R
M×d

Tab. 3.3: FBA-PAST algorithm

The functions as shown in Tab. 3.3 have been changed from the vectors of one

dimension to matrices of double sizes in the real domain.
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The initial values have been chosen such as P (0) is a Hermitian positive definite

matrix, and Es(0) contains d orthonormal vectors, i.e., P (0) = Id and Es(0) = IM×d.

We can see that duplicating the observation data by incorporating the FBA processing,

the FBA-PAST algorithm requires 3Md+O(d2) operators each update involving only

real-valued computations.

In the next, we are going to extend the FPA-PAST algorithm for the data model

based tensor approach to track the real-valued n-mode unfolding subspaces.

3.4 Extended FBA-PAST Algorithm

Similar to the Extended PAST algorithm, we consider a data model of a multidi-

mensional harmonic retrieval problem according to (2.28). Then, the extended tensor

Z ∈ C
M1×M2×...×MR×2N can be given according to [HRDG08] as

Z =
[
X ⊔R+1

(
X∗ ×1 ΠM1 ×2 ΠM2 ...×R+1 ΠN

)]
. (3.26)

Consequently, the centro-Hermitian tensor Z is mapped onto the set of real-valued

tensor using the following transformation

ϕ(Z) = Z ×1 Q
H
M1
×2 Q

H
M2

...×R+1 Q
H
2N ∈ R

M1×M2×...MR×2N , (3.27)

where the Qp ∈ C
p×p is a left Π-real unitary matrix.

According to [HRDG08], applying the HOSVD procedure on ϕ(Z) yields

ϕ(Z) = SZ ×1 E1 ×2 E2...×R ER ×R+1 ER+1,

≈ S
[s]
Z ×1 E

[s]
1 ×2 E

[s]
2 ...×R E

[s]
R ×R+1 E

[s]
R+1

≈ E [s] ×R+1 E
[s]
R+1, (3.28)

where E [s] = S
[s]
Z ×1E

[s]
1 ×2E

[s]
2 ...×R E

[s]
R represents the multidimensional extension of

the real-valued basis Es known from the matrix approach.

Again, by considering that the current r-mode unfoldings of the extended tensor can

be given as Ξ(n)r = [ϕ(Z(n)](r) ∈ C
Mr×2 M

Mr , r = 1, 2, .., R and M =
∏R

r=1 Mr, we can

modify the Extended PAST algorithm to the Extended FBA-PAST algorithm where the

projection approximation matrices are denoted asL(n)r = Er(n−1)
H ·Ξ(n)r ∈ R

d×2 M

Mr .

Tab. 3.4 illustrates the Extended FBA-PAST algorithm for tracking the real-valued
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r-mode unfoldings, where the correlation matrices can be computed in this way

Cξlr(n) =
n∑

i=1

βn−iΞr(i)Lr(i)
H = βCξlr(n− 1) +Ξr(n)Lr(n)

H ,

Cllr(n) =
n∑

i=1

βn−iLr(i)Lr(i)
H = βCllr(n− 1) +Lr(n)Lr(n)

H . (3.29)

In order to calculate the inverse of Cllr(n) each update, we use also the matrix inversion

lemma ( Woodbury matrix identity) in (3.17). Thereby, replacing A, U , and B

in (3.17) with P FPA
r (n−1), Yr, and IM/Mr

, respectively, give the recursive computation

of P FPA
r (n) as

P FPA
r (n) =

1

β
P FPA

r (n− 1)−
1

β
P FPA

r (n− 1)Lr(n)

· (βI2M/Mr
+Lr(n)

HP FPA
r (n− 1)Lr(n))

−1

· Lr(n)
HP FPA

r (n− 1), (3.30)

with r = 1, 2, ..., R.

Choose P FBA

r (0) and Er(0) suitably

FOR n = 1, 2, . . . Do

Lr(n) = Er(n− 1)H ·Ξr(n) ∈ R
d×2 M

Mr

Hr(n) = Pr(n− 1) ·Lr(n) ∈ R
d×2 M

Mr

Gr(n) = Hr(n)/
(
β · I2M/Mr

+Lr(n)
H ·Hr(n)

)
∈ R

d×2 M

Mr

P FBA
r (n) =

1

β
· Tri{P FBA

r (n− 1)−Gr(n) ·H
H
r (n)} ∈ R

d×d

Br(n) = Ξr(n)−Er(n− 1) ·Lr(n) ∈ R
Mr×2 M

Mr

Er(n) = Er(n− 1) +Br(n) ·Gr(n)
H ∈ R

Mr×d

Tab. 3.4: Extended FBA-PAST algorithm

After tracking the real-valued r-mode unfolding subspaces Er(n) as well as the real-

valued subspace Es of the mapping matrix ϕ(Z), we use the TeTraKron algorithm to

obtain the tensor-based subspace tracking each update as follows
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[

Ê
[s]
]T

(R+1)
= QKron ·

(

Ê
[s]
1 ⊗ Ê

[s]
2 ...⊗ Ê

[s]
R

)

︸ ︷︷ ︸

Ẽ
[s]
2

·
(

Ê
[s]
1 ⊗ Ê

[s]
2 ...⊗ Ê

[s]
R

)H

·QH
Kron

︸ ︷︷ ︸

Ẽ
[s]H

2

·Ês(3.31)

= Ẽ
[s]
Kron · Ẽ

[s]H

Kron · Ês
︸ ︷︷ ︸

ˆ̄
Es

(3.32)

= Ẽ
[s]
Kron · ˆ̄Es. (3.33)

According to (3.33), the Extended FBA-PAST algorithm with TeTraKron algorithm

has the same mathematical operations like the Extended PAST algorithm with TeTraKron.

However, all the computations are performed in the real domain, so the complexity is

less than the similar algorithm based on the Extended PAST algorithm.

3.5 Simulation Results

In the following, we show some simulation results about the performance of the FBA-

PAST and the Extended FBA-PAST algorithms compared to the PAST and Extended

PAST algorithms. Depending on the movement of the sources, we selected different

cases related to the correlation between the sources and the SNR.

In order to evaluate the performance of our algorithms, we used the Large Principal

Angle (LPA) and the Root Mean Square Error (RMSE) concepts. LPA measures the

distance between two subspaces according to [GL96] as

LPA = cos−1(σmin

{

orth {U1}
H · orth {U2}

}

), (3.34)

where orth {Ui} is an orthonormal basis, and σmin{T } gives the smallest singular value

of the matrix T . According to [HRDG08], the second criterion is the total RMSE that

measures the error between the original value and the estimated one as

RMSEtot =

√
√
√
√E

{
R∑

r=1

d∑

i=1

(µ
(r)
i − µ̂

(r)
i )2

}

, (3.35)

where µ̂
(r)
i denotes an estimate of µ

(r)
i .

Hence, calculating the RMSE requires tracking the DOA at each snapshot, we used

the Standard Tensor ESPRIT (STE) with LS as well as Unitary Tensor ESPRIT (UTE)

with LS according to [HRDG08] based on Extended PAST and Extended FBA-PAST

M.Sc. Thesis Olaa Khatib



3. Tensor-Based Subspace Tracking via Structured Projections 30

with TeTraKron, respectively. And we compared the performance of the aforemen-

tioned algorithms to 2-D ESPRIT and 2-D Unitary ESPRIT based on the PAST and

BA-PAST algorithms in [SK93] and [HZMN95], respectively.

The scenarios are considered for d = 3 sources in the far field criteria with narrow-

band signals impinging on a URA of 6×6 sensors as visualized in Fig.3.3. The distance

between the adjacent sensors has a half of the wavelength λ/2 in the vertical and

horizontal dimensions, respectively.

Fig. 3.3: URA of M = 6 × 6 identical sensors with maximum overlapping selection
matrices Ju1 , Jv1 in the vertical and horizontal planes, respectively

In addition, the forgetting factor β has been chosen to be 0.97 at length window

N = 1000, according to [Yan95]. The sources and the noise samples are considered to

be a zero mean circularly symmetric complex Gaussian distribution. The sequence of

snapshots X (i), i = 1, 2, ... is generated according to the data model (2.28).

The initial values P (0), Us(0), Pr(0), U
[s]
r (0), P (0)FBA, Es(0), P

FBA
r (0) and E

[s]
r (0)

have to be chosen such as, the projection matrices must be a Hermitian positive defi-

nite, e.g., d×d identity matrix; and the signal subspaces in addition to the real-valued

signal subspaces contain d orthonormal vectors.

We should note that, the initial values impact the transient behavior of the algo-

rithm. However, the performance of the algorithm remains stable.

The DOA can be computed as µi = π cosφi sin θi and νi = π sinφi sin θi. Then

µi = 2πui and νi = 2πvi with |ui|≤ 1/2 and |vi|≤ 1/2. In our study, we are going
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to track the spatial frequencies µi and νi instead of tracking φi and θi, respectively.

Scenario 1

In this scenario, we consider two of sources to be slowly moving overall snapshots

and the third one has a constant DOA, as shown in Fig. 3.4. The spatial frequencies

µi and νi are given in the radian unit as

µ1[n] = 2π(0.3− 0.1 · t[n]), µ2[n] = 2π(0.2− 0.1 · t[n]), µ3[n] = 2π(0.1),

ν1[n] = 2π(0.3− 0.1 · t[n]), ν2[n] = 2π(0.3− 0.1 · t[n]), ν2[n] = 2π(0.1),(3.36)

where n = 1, 2, ..., N .

Now, we study the performance of our algorithms for three cases related to the SNR

and the correlation between the sources.

The first case show the LPA and the RMSE verses the number of snapshots for

ρ = 0 and SNR = 0 dB as depicted in Fig. 3.5 and Fig. 3.6, respectively. In Fig. 3.5,

the curves are labeled as PAST (blue solid line), Extended PAST (cyan dashed line),

FBA-PAST (red solid line), and Extended FBA-PAST (magenta dotted line) related

to name of the aforementioned subspaces tracking algorithms, respectively.

Moreover, the estimated spatial frequencies have been depicted in Fig. 3.6. Here, the

curves are labeled as 2-D ESPRI+PAST (blue solid line), STE+Extended PAST (cyan

dashed line), 2-D Unitary ESPRI+FBA-PAST (red solid line), and UTE+Extended

FBA-PAST (magenta dotted line) related to name of the aforementioned DOA’s track-

ing algorithms, respectively. It can be observed that the FBA-PAST algorithm im-

proves the tracking of the signal subspace as well as the DOA’s tracking. Hence, apply-

ing the real-valued processing duplicates the number of observations at each snapshot,

the estimated signal subspaces for a few number of observation signals outperforms its

counterpart without using FBA processing.

It can be seen also that the all algorithms are slightly different after a few number

of observation signals tracking precisely the DOA for all the 3 sources. In the second

case, we increased the correlation between the all sources such as ρ = 0.99 at the same

SNR, as shown in Fig. 3.7 and Fig. 3.8, respectively. In fact, this kind of scenario can

be considered as one of critical scenarios related to the high correlations between the all

sources. It can be observed that the PAST algorithm completely failed in tracking the

signal subspace. More precisely, it failed in tracking two of the sources as illustrated

in Fig. 3.8.

It can be found also that using the tenor-based subspaces improved the DOA track-

ing a bit. However the FBA-PAST algorithm gives better tracking than the Extended
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Fig. 3.4: Spatial frequencies of 3 sources vs. the number of snapshots for scenario 1

PAST as well as the PAST algorithm. Moreover, the FBA-PAST algorithm required

long period until it was able to track correctly the DOA.

Now coming to our contribution by incorporating the FBA to the Extended PAST

algorithm. It can be seen obviously that the UTE based on Extended FBA-PAST with
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LS outperforms the all algorithm above in the case of high correlation between the

sources. Deep insight can be shown in Fig. 3.8 which depicts that the Extended FBA-

PAST algorithm is able to track the all three sources after a few number of snapshots

in spite of existing a high correlation between the sources.

Last, we evaluated the case of low SNR and no correlation between the sources

signals. It can be observed from Fig. 3.10 that the Extended FBA-PAST outperforms

the all algorithms above due to the denoising structure and using the FBA processor as

well. The interesting results can be obtain from Fig. 3.9 and Fig. 3.10 such as, the all

algorithms are more robustness than decreasing the signal energy, i.e., all algorithms

are succeed in tracking the DOA for all sources at SNR = -3 dB after a few number of

observations.

Scenario 2 Similarly to [CH13] scenario, we are going to track the DOA of 3

sources, two of them are crossing at the half of distance and the third has a constant

DOA, as following

µ1[n] = 2π(0.3− 0.1 · t[n]), µ2[n] = 2π(0.2 + 0.1 · t[n]), µ3[n] = 2π(0.1),

ν1[n] = 2π(0.3− 0.1 · t[n]), ν2[n] = 2π(0.3− 0.1 · t[n]), ν2[n] = 2π(0.1).(3.37)

Fig. 3.11 visualizes the spatial frequencies of the sources in the horizontal and vertical

planes, respectively.

In this part, we study again more critical three cases related to the correlation

between the sources and various SNR in addition to the correlation between the spatial

frequencies. For the first case that has no correlation between the sources at SNR

= 0 dB, Fig. 3.12 and Fig. 3.13 depict the simulation results, respectively. Similar

to Scenario 1. Fig. 3.12 shows the LPA and RMSE verses the number of snapshots,

respectively. And the estimated spatial frequencies in the horizontal and vertical planes

are visualized as well in Fig. 3.13 (a) and (b), respectively. It can be seen that all

algorithms can precisely track the signal subspaces as well as the DOA’s of the three

sources after a few number of observations. However, at the critical position, i.e., the

crossing point between DOA of two sources or high correlation between the spatial

frequencies of two sources, the PAST algorithm failed completely in tracking the signal

subspaces as well as the DOA. And the FBA-PAST algorithm gave better results

compare to PAST algorithm but also not enough to track any source at the critical

position. Moreover, the UTE based on Extended FBA-PAST was able to tracke the

DOA of all sources while STE based on the Extended PAST algorithm was able to

track two of sources perfectly and was close from tracking the third one. This related

to the denoising structure by using tenor-based subspaces tracking, and using the FBA
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processing that involving real-valued computations and increasing the accuracy.

Consequently, we increase the correlation between the all sources to be ρ = 0.5 at

the same SNR. As shown in Fig. 3.14 and Fig. 3.15, respectively, the PAST algorithm

failed completely in tracking the signal subspaces. More precisely, It failed in track-

ing all the sources at the critical position and it took long time until it was able to

resume the tracking when the sources were spatially separated again, as illustrated in

Fig. 3.15(a) and (b), respectively. It can be observed also that using the tenor-based

subspace tracking improves the DOA tracking a bit. In addition, the FBA-PAST al-

gorithm gives again better performance than the Extended PAST as well as the PAST

algorithm. Thus related to duplicate the observations each update by incorporating

the FBA processing involving also only real-valued computations.

Now coming to our contribution by using the Extended FBA-PAST algorithm, it

can be seen that our algorithm outperforms the all algorithms above in the case of

high correlation between the sources. Deep insight can be shown in Fig. 3.15(a) and

(b), respectively. Here, the Extended FBA-PAST algorithm was able to track the two

sources correctly after a few number of snapshots and it was close from tracking the

third source at the critical position. Thus related to use the denosing structure as well

as to duplicate the observations by incorporating the FBA processing involving also

only real-valued computations.

Last, we evaluate the performance of our algorithms at SNR = −3 dB with no

correlation between the source signals. It can be found that the Extended FBA-PAST

outperforms the all algorithms above at low SNR as shown in Fig. 3.16 as well as in

Fig. 3.17.

In the next chapter, we are going to adaptive a new version of ESPRIT based on

incorporating the FBA processing to it, then extend an adaptive Unitary ESPRIT from

1-D to 2-D, respectively.

M.Sc. Thesis Olaa Khatib



3. Tensor-Based Subspace Tracking via Structured Projections 35

0 200 400 600 800 1000
0

0.5

1

1.5

2

Number of snapshots

L
P

A

 

 

PAST
Extended PAST

FBA−PAST
Extended FBA−PAST

(a) LPA vs. the number of snapshots

0 200 400 600 800 1000
0

0.5

1

1.5

2

Number of snapshots

R
M

S
E

 

 

2−D ESPRIT+PAST
STE+Extended PAST

2−D Unitary ESPRIT+FBA−PAST
UTE+Extended FBA−PAST

(b) RMSE vs. the number of snapshots

Fig. 3.5: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = 0 dB and ρ = 0 for scenario 1
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Fig. 3.6: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = 0 dB and ρ = 0 for scenario 1
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Fig. 3.7: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = 0 dB and ρ = 0.99 for scenario 1
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Fig. 3.8: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = 0 dB and ρ = 0.99 for scenario 1
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Fig. 3.9: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = −3 dB and ρ = 0 for scenario 1
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Fig. 3.10: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = −3 dB and ρ = 0 for scenario 1

M.Sc. Thesis Olaa Khatib



3. Tensor-Based Subspace Tracking via Structured Projections 41

0 100 200 300 400 500 600 700 800 900 1000

0.8

1

1.2

1.4

1.6

1.8

2

Number of snapshot

µ
 i
n

 r
a

d
ia

n

 

 

Orginal µµ
1

µ
2

µ
3

(a) Spatial frequencies on the horizontal plane

0 100 200 300 400 500 600 700 800 900 1000

0.8

1

1.2

1.4

1.6

1.8

2

Number of snapshot

ν
 i
n

 r
a

d
ia

n

 

 

Orginal ν

ν
1

ν
3

ν
2

(b) Spatial frequencies on the vertical plane

0.8 1 1.2 1.4 1.6 1.8 2

0.8

1

1.2

1.4

1.6

1.8

2

µ in radian

ν
 i
n

 r
a

d
ia

n

(c) ν vs. µ

Fig. 3.11: Spatial frequencies of 3 sources vs. the number of snapshots for scenario 2
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Fig. 3.12: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = 0 dB and ρ = 0 for scenario 2
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Fig. 3.13: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = 0 dB and ρ = 0 for scenario 2
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Fig. 3.14: LPA and RMSE vs. the number of snapshots impinging on a URA of 6× 6
sensors at SNR = 0 dB and ρ = 0.5 for scenario 2
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Fig. 3.15: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = 0 dB and ρ = 0.5 for scenario 2
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Fig. 3.16: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = −3 dB and ρ = 0 for scenario 2
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Fig. 3.17: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = −3 dB and ρ = 0 for scenario 2
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4. ADAPTIVE UNITARY ESPRIT AND

ADAPTIVE 2-D UNITARY ESPRIT

High-resolution parameter estimation has found its way in a lot of applications, e.g.,

DOA estimation. Estimation of Signal Parameters via Rotational Invariance Tech-

niques (ESPRIT) [RPK86] is one of such algorithms that has lower mathematical

complexity comparing to other algorithms such as the Multiple Signal Classification

(MUSIC) algorithm [Sch86].

Moreover, an adaptive version of the ESPRIT algorithm has been developed based

on the PAST algorithm as shown in [BRD03]. Here, Badeua reduced the mathematical

complexity and kept the same performance as good as using ESPRIT algorithm.

In this chapter, we first have a brief review of ESPRIT, Unitary ESPRIT in [HN95],

and the Adaptive ESPRIT algorithms based on the PAST subspace tracker [BRD03].

After that, we propose adaptive versions of Unitary ESPRIT and R-D Unitary ESPRIT

based on the FBA-PAST algorithm.

At the end, we evaluate the performance of Adaptive 2-D Unitary ESPRIT based

on FBA-PAST compared to Adaptive 2-D ESPRIT based on the PAST algorithm.

4.1 Estimation of Signal Parameters via Rotational Invariance

Techniques (ESPRIT)

The ESPRIT algorithm is a high-resolution estimation technique applied to estimate

DOA problems [RPK86]. Roy benefited from the feature of the array geometry and

took into account a constraint on the structure of it to reduce the computational

complexity. This constraint on the structure can be described by a planar array of

an arbitrary geometry contains of M sensor doublets and separated by a constant

displacement vectors l as depicted in Fig. 4.1 [RPK86]. In other words, we consider

that the planar array can be comprised of two subarrays shifting each one with respect

to the other by a constant displacement vectors l.
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Moreover, the mathematical complexity has been reduced by using the rotational

invariance technique as coming soon.

To explain the rotational or translation invariance technique, let us consider a data

model of d narrowband sources located in the far field from the sensor array to be given

equivalent to (2.24) as

X = AS +W . (4.1)

According to [RPK86], the observed data X can be divided into two doublet sensors

as follows

X1 = ÃS +W1,

X2 = ÃΦS +W2. (4.2)

Here, Xk ∈ C
Mk×Nk , k = 1, 2 denotes the observation signal at the k-th doublet,

Ã ∈ C
Mi×d symbolizes the array steering matrix , S ∈ C

d×N representes the impinging

wavefronts, Φ = diag{ejµ1 , ejµ2 , ..., ejµd} ∈ C
d×d is the phase delays matrix between the

doublet sensors for d wavefronts, where µi, i = 1, ..., d symbolize the spatial frequency,

and Wk is the additive noise at the k-th doublet with the same size of Xk. In order

Fig. 4.1: Sensor array geometry for multiple source DOA estimation using ESPRIT

to obtain the relation between the observation sets X1 and X2, we compute the SVD

of the latter. This yields two sets of signal subspaces Us1 and Us2 that both span the

same signal subspace of the array steering matrix A. Since im {A} ≈ im {Us}, there
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must exist a unique nonsingular matrix T such that

Us =

[

Us1

Us2

]

=

[

Ã

ÃΦ

]

T = AT . (4.3)

According to [RPK86], the relation above can yield

im {A} ≈ im {Us1} ≈ im {Us2} . (4.4)

Since the rows of A related to the elements of sensor array, a particular subarray

configuration can be explicated by two selection matrices J1 and J2, respectively. In

our study, we consider a Uniform Linear Array (ULA) or URA, and the two selection

matrices are chosen to be centro-symmetric with respect to one another according to

J2 = ΠmJ1ΠM , (4.5)

with Πp is the exchange matrix.

To visualize the concept of the selection matrices, let us consider that our sensor

array is a ULA. So that we can identify a J1 to pick the first m = M − 1 rows of

A, whereas J2 to select the last m = M − 1 rows, i.e., a maximum overlapping case,

as visualized in Fig. 4.2(a). Other example is depicted as well in Fig. 4.2(b) for non-

overlapping case, so that J1 can pick the first odd rows m = M
2
− 1 of A, whereas J2

selected the even rows, M is an even number in this example.

The shift invariance property of the array steering matrix A can be written such

as

J1AΦ = J2A, where Φ = diag{ejµi}di=1. (4.6)

As we can see from (4.4), the columns of the array steering matrix A approximately

(a) Uniform linear array of M = 10 identical
sensors with maximum overlapping

(b) Uniform linear array of M = 10 identical
sensors without overlapping

Fig. 4.2: ULA of M = 10 identical sensors. J1 and J2 represent the selection matrices
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span the same signal subspaces. So that, the shift-invariance property in (4.6) can be

given in the term of signal eigenvectors Us according to (4.3) as

J1UsTΦ = J2UsT ,←→ J1UsΨ = J2Us, where Ψ = TΦT−1. (4.7)

Since Φ and Ψ ∈ C
d×d are related via eigenvalues preserving transformation, We only

need to compute the eigenvalues of the matrix Ψ.

For the ULA sensors, the connection between the spatial frequencies µi and DOA’s

θi can be obtained via the relationships

µi = arg(θi) and θi = arcsin(−
λ

2πl
· µi), 1 ≤ i ≤ d. (4.8)

The DOA estimation via ESPRIT algorithm is summarized in Tab. 4.1 where the invari-

ance techniques such as Least Squares (LS), Total least Squares (TLS), and Structured

Least Squares (SLS), see [HN96], can be used to solve the invariance equation of (4.7).

1. Signal Subspace Estimation: compute Us ∈ C
M×d

• as the d dominant left singular vectors of X ∈ C
M×N (square root

approach),

• or the d dominant eigenvectors ofXXH ∈ C
M×M (covariance approach).

2. Solution of the Invariance Equation: Then solve

J1UsΨ ≈ J2Us ∈ C
m×d

by means of LS,TLS, or SLS.

3. Spatial Frequency Estimation: calculate the eigenvalues of the resulting
complex-valued solution

Ψ = TΦT−1 ∈ C
d×d with Φ = diag{φi}

d
i=1

• µi = arg(φi), 1 ≤ i ≤ d.

Tab. 4.1: Summary of the standard ESPRIT algorithm
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(a) The selection matrices J1,J2 ∈ C
M−1×M of

a ULA with M = 8 identical sensors
(b) the abstracted signal subspaces U↓(n) and
U↑(n) ∈ C

M−1×d from the signal subspaces
U ∈ C

M×d, where M is 8 rows

Fig. 4.3: The abstracted signal subspaces according to the selection matrices of maxi-
mum overlapping

4.2 Adaptive ESPRIT Algorithm Based on the PAST Subspace

Tracker

Adaptive ESPRIT tracks signal parameters based on tracking the signal subspaceUs(n)

of the observation data via combining the PAST algorithm and the ESPRIT algorithm

in one algorithm as clarified in [BRD03]. As we have shown in the ESPRIT algorithm,

the matrix Φ can be calculated via LS invariance technique at each time step. Thus,

at each update, the matrix Φ(n) requires O(Md2) operations in addition to O(d2)

operations to extract the spatial frequencies µi(n). Badeau in his paper [BRD03]

consummated a fast update in calculating Φ(n). The complexity of the calculating the

DOA has been reduced to O(Md) operations by considering the recursion concept in

his algorithm.

The following mathematical derivation steps summarize the Adaptive ESPRIT al-

gorithm based on the PAST subspace tracker. First, let U↓(n) and U↑(n) be the

matrices extracted from deleting some rows of U (n) according to the selection matri-

ces, J1, J2 respectively. Here, J1, J2 have been chosen to be maximum overlapping

matrices.

For instance, Fig. 4.3(a) depicts a ULA of M = 8 identical sensors which the

selection matrices have been chosen to be centor-symmetric matrices with maximum

overlapping. Thus, at each time step, the solution of the invariance equation (4.6) by

using LS is written according to [BRD03] as

Φ(n) = U↓(n)
† ·U↑(n) ∈ C

d×d, (4.9)
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where the extracted matrices can be computed in the following way,

U↓(n) = J1 ·U (n) = U↓(n− 1) + e↓(n) · g(n)
H ∈ C

(M−1)×d, (4.10)

U↑(n) = J2 ·U (n) = U↑(n− 1) + e↑(n) · g(n)
H ∈ C

(M−1)×d. (4.11)

Here, e↓(n) = J1 · e(n) and e↑(n) = J2 · e(n) are in size(M − 1) and a gain matrix

g(n) is in size d.

To visualize the extracted form of the abstracted signal subspaces according to the

selection matrices with maximum overlapping, Fig. 4.3(b) has been given.

Now, We can define a matrix C(n) according to

C(n) = U↓(n)
H ·U↓(n) ∈ C

d×d. (4.12)

As we can see, the matrix C(n) is a Hermitian matrix. So if the invariance of matrix

C(n) is non-singular, we can compute the invariance as

W (n) = C(n)−1. (4.13)

Therefore, the pseudo-inverse of the abstracted signal subspace can be calculated such

as

U↓(n)
† = W (n) ·U↓(n)

H. (4.14)

Now, in order to obtain the invariance of C(n), we substitute (4.10) into (4.12) as

follows

C(n) = C(n− 1) + F (n) ·L(n) · F (n)H, (4.15)

where F (n) ∈ R
d×2 has been computed as

F (n) = [U↓(n− 1)H · e↓(n) | g(n)], (4.16)

and the non-singular matrix L(n) ∈ R
2×2 can be calculated as

L(n) =




0 1

1 ‖e↓(n)‖
2



 . (4.17)

In order to compute the inversion of the formula (4.14), [BRD03] used the Woodbury
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identity (3.17). Then, the inversion of equation (4.14) can be calculated as

W (n) = W (n− 1)− S(n) ·Λ(n) · S(n)H, (4.18)

where S(n) is a d× 2 matrix

S(n) = W (n− 1) · F (n), (4.19)

and Λ(n) is a 2× 2 matrix

Λ(n) = (L(n)−1 + S(n)H · F (n))−1. (4.20)

After a few mathematical derivations, pseudo-inverse of the abstracted signal subspace

U↓(n) can be calculated with respect to the previous moment as

U↓(n)
† = U↓(n− 1)† +R(n) · T (n)H, (4.21)

where R(n) is a d× 2 matrix

R(n) = S(n) ·Λ(n), (4.22)

and T (n) is a (M − 1)× 2 matrix,

T (n) = e↓(n)[1 | 0]−U↓(n− 1) · S(n). (4.23)

Now, the update of matrix Φ(n) can be obtained by substituting each of the equa-

tions (4.21) and (4.11) into (4.9) as

Φ(n) = Φ(n− 1) +Z(n) ·Q(n)H, (4.24)

where Z(n) is a d× 3 matrix

Z(n) = [U↓(n− 1)† · e↑(n) | R(n)], (4.25)

and Q(n) is a d× 3 matrix

Q(n) = [g(n) | U↑(n)
H · T (n)]. (4.26)

The pseudo-code of the adaptive ESPRIT algorithm based on PAST algorithm has

been summarized in Tab. 4.2.
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In the next, we generalize the Adaptive algorithm to a general case of selection

matrices by replace the indices of the extracted signal subspaces U↓(n) and U↑(n) ∈

C
m×d with U1(n) and U2(n) ∈ C

m×d, m ≤ (M − 1), respectively .

1. PAST initialization: (cf. Tab. 3.1) Us(0) = IM×d, P (0) = Id

2. Adaptive ESPRIT initialization: W (0) = Id, Φ(0) = U↓(0)
†U↑(0)

for n = 1, 2, ...

• PAST main section: (cf. Tab. 3.1)

• ESPRIT main section:

F (n)−1 = [U↓(n− 1)H · e↓(n) | g(n)]

S(n) = W (n− 1) · F (n)

L(n) =

[
−‖e↓(n)‖

2 1

1 0

]

Λ(n) = (L(n)−1 + S(n)H · F (n))−1

R(n) = S(n) ·Λ(n)

W (n) = W (n− 1)− S(n) ·Λ(n) · S(n)H

T (n) = e↓(n)[1 | 0]−U↓(n− 1) · S(n)

Z(n) = [U↓(n− 1)† · e↑(n) | R(n)]

Q(n) = [g(n) | U↑(n)
H · T (n)]

U↓(n)
† = U↓(n− 1)† +R(n) · T (n)H

Φ(n) = Φ(n− 1) +Z(n) ·Q(n)H

• {µi}1≤i≤d = arg( eig(Φ(n)))

Tab. 4.2: Summary of Adaptive ESPRIT based on PAST algorithm

4.3 Unitary ESPRIT

The Unitary ESPRIT algorithm is one step development of ESPRIT based on the fact

that the phase delay between the two subarrays is unitary and if centro-symmetric

array configurations are used [HN95]. Unitary ESPRIT has been formulated in the

term of real-valued processing leading to a lower mathematical complexity and a higher

estimation accuracy compared to the ESPRIT algorithm.

To clarify this concept, we first consider that the data model are given according
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1. Signal Subspace Estimation: compute Es ∈ R
M×d

• as the d dominant left singular vectors of ϕ(Z) ∈ R
M×N (square root

approach),

• or the d dominant eigenvectors of ϕ(Z)ϕ(Z)H ∈ R
M×M (covariance

approach).

2. Solution of the Invariance Equation: Then solve

K1EsΥ ≈K2Es ∈ R
m×d

by means of LS,TLS, or SLS.

3. Spatial Frequency Estimation: calculate the eigenvalues of the resulting
complex-valued solution

Υ = TΩT−1 ∈ R
d×d with Ω = diag{ωi}

d
i=1

• Reliability test: If all eigenvalues ωi are real, the estimates will be re-
liable. Otherwise, start again with more or more reliable measurements.

• µi = 2arctan(ωi), 1 ≤ i ≤ d.

Tab. 4.3: Summary of the Unitary ESPRIT algorithm

to (2.24). Then, we use the extension method according to (3.20). After that, the

mapping matrix ϕ(Z) ∈ R
M×N can be obtained by using (3.21).

By calculating the SVD of the mapping data, the relation between the real-valued

and the complex-valued signal subspaces can be represented according to [HN95] as

Us = QMEs, (4.27)

where QM ∈ C
M×M denotes an arbitrary unitary left Π-real matrix. Now, by substi-

tuting the relation (4.27) into (4.6) and performing a suitable manipulation we obtain

K1EsΥ ≈K2Es, where Υ = TΩT−1, (4.28)

with Ω = diag{ωi}
d
i=1 is a diagonal matrix, and K1,K2 can be equal the real and
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imaginary part of 2.QH
mJ2QM reapectivlay as

K1 = Qm(J1 + J2)QM = 2 · Re{QmJ2QM}

K2 = Qmj(J1 − J2)QM = 2 · Im{QmJ2QM}. (4.29)

Since Υ and Ω ∈ R
d×d are related via eigenvalues preserving transformation, We only

need to compute the eigenvalues of the matrix Ω.

We summarize the steps of Unitary ESPRIT algorithm in Tab. 4.3, where the

invariance techniques such as LS, TLS, or SLS can be used to solve the invariance

equation of (4.28). Note that, the spatial frequency µi can be calculated for a ULA

scenario as

µi = 2arctan(ωi), 1 ≤ i ≤ d (4.30)

4.4 Adaptive Unitary ESPRIT Algorithm Based on the

FBA-PAST Subspace Tracker

We propose an adaptive version of Unitary ESPRIT to track the real-valued signal

subspaces depending on FBA-PAST algorithm. Our contribution is to reduce the the

complexity to O(Md) operations in the real domain, as well as to increase the signal

parameters tracking accuracy.

The new adaptive version can be obtained after a few mathematical modification

on the Adaptive ESPRIT algorithm as we will describe soon. First, we generalize a

general case of selection matrices J1 and J2 and calculateK1 andK2 according to (4.2)

and (4.29). Then, we solve the invariance of (4.28) based on FBA-PAST similar to

[BRD03] as

Υ(n) = E1(n)
† ·E2(n) ∈ R

d×d, (4.31)

where the extracted matrices can be computed in the following way

E1(n) = K1 ·E(n) = E1(n− 1) +B1(n) ·G(n)H ∈ R
m×d, (4.32)

E2(n) = K2 ·E(n) = E2(n− 1) +B2(n) ·G(n)H ∈ R
m×d, (4.33)

where B1(n) = K1 · B(n), and B2(n) = K2 · B(n) are in size m× 2. Now, by
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considering C(n) to be d× d Hermitian matrix according to

C(n) = E1(n)
H ·E1(n). (4.34)

The invariance of non-singular matrix C(n) can be given as

W (n) = C(n)−1 = (E1(n)
H ·E1(n))

−1. (4.35)

Therefore the pseudo-inverse of the abstracted signal subspace can be calculated such

as

E1(n)
† = W (n) ·E1(n)

H. (4.36)

By substituting (4.32) into (4.34), we obtain

C(n) = C(n− 1) + F (n) ·L(n) · F (n)H, (4.37)

where F (n) ∈ R
d×4 has been computed as

F (n) = [E1(n− 1)H ·B1(n) | G(n)], (4.38)

and the non-singular matrix L(n) ∈ R
4×4 has been calculated as

L(n) =




0 I2

I2 B1(n)
HB1(n)



 . (4.39)

In order to compute the inversion of the formula (4.37), we use again the Woodbury

identity according to (3.17) . So the inversion of (4.37)can be calculated as

W (n) = W (n− 1)− S(n) ·Λ(n) · S(n)H, (4.40)

where S(n) is a d× 4 matrix

S(n) = W (n− 1) · F (n), (4.41)

and Λ(n) is a 4× 4 matrix,

Λ(n) = (L(n)−1 + S(n)H · F (n))−1. (4.42)

After a few mathematical derivations, pseudo-inverse of the abstracted signal subspace
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E1(n) can be calculated with respect to the previous moment as

E1(n)
† = E1(n− 1)† +R(n) · T (n)H, (4.43)

where R(n) is a d× 4 matrix

R(n) = S(n) ·Λ(n), (4.44)

and T (n) is a m× 4 matrix,

T (n) = B1(n)[I | 0]−E1(n− 1) · S(n). (4.45)

Now, the update of matrix Φ(n) can be obtained by substituting each of the equa-

tions (4.43) and (4.33) into (4.31) such as

Υ(n) = Υ(n− 1) +Z(n) ·Q(n)H, (4.46)

where Z(n) is a d× 6 matrix

Z(n) = [E1(n− 1)† ·B2(n) | R(n)], (4.47)

and Q(n) is a d× 6 matrix,

Q(n) = [G(n) | E2(n)
H · T (n)], (4.48)

The Adaptive Unitary ESPRIT based on FBA-PAST algorithm is summarized in

Tab. 4.4.

for the reason that the initial values impact the transient behavior of the algorithm,

we chose an initial value only for Es(0). Then we run the FBA-PAST algrithm to

calculate the signal subspace Es(1) for the first observation as one step to compute the

W (1) and Υ(1) insted of giving initial values to them.
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1. FBA-PAST initialization: (cf. Tab. 3.3) Es(0)

2. FBA-PAST main section: (cf. Tab. 3.3) Es(1)

3. Unitary-ESPRIT main section: (cf. Tab. 4.3) Es(1)
† and Υ(1)

4. Adaptive Unitary ESPRIT initialization:

E1(1), E2(1), W (1) = [E1(1)
HE1(1)]

−1, E1(1)
† and Υ(1)

for n = 2, 3, ... do

• FBA-PAST main section: (cf. Tab. 3.3)

• Unitary ESPRIT main section:

F (n)−1 = [E1(n− 1)H ·B1(n) | G(n)]

S(n) = W (n− 1) · F (n)

L(n)−1 =

[
−B1(n)

HB1(n) I

I 0

]

Λ(n) = (L(n)−1 + S(n)H · F (n))−1

R(n) = S(n) ·Λ(n)

W (n) = W (n− 1)− S(n) ·Λ(n) · S(n)H

T (n) = B1(n)[I | 0]−E1(n− 1) · S(n)

Z(n) = [E1(n− 1)† ·B2(n) | R(n)]

Q(n) = [G(n) | E1(n)
H · T (n)]

E1(n)
† = E1(n− 1)† +R(n) · T (n)H

Υ(n) = Υ(n− 1) +Z(n) ·Q(n)H

• {µi}1≤i≤d = 2arctan(eig{Υ(n)})

Tab. 4.4: Summary of Adaptive Unitary ESPRIT based on FBA-PAST algorithm

4.5 Adaptive 2-D Unitary ESPRIT algorithm based on the

FBA-PAST subspace tracker

We extend the Adaptive Unitary ESPRIT algorithm based on the FBA-PAST subspace

tracker to 2-D as shown in Tab. 4.5.
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1. FBA-PAST initialization: (cf. Tab. 3.3) Es(0)

2. FBA-PAST main section: (cf. Tab. 3.3) Es(1)

3. 2-D Unitary ESPRIT: (see [HZMN95]) E(r)(1)† and Υ(r)(1), r = 1, 2

4. Adaptive Unitary ESPRIT initialization:

E
(r)
1 (1), E

(r)
2 (1), W (r)(1) = [E

(r)
1 (1)HE

(r)
1 (1)]−1, E

(r)
1 (1)† and Υ(r)(1)

for n = 2,3,...
for r = 1,2

• FBA-PAST main section: (cf. Tab. 3.3)

• Adaptive Unitary ESPRIT main section:(cf. Tab. 4.4)

• {µ
(r)
i }1≤i≤d = 2arctan(eig{Υ(r)(n)})

Tab. 4.5: Summary of Adaptive 2-D Unitary ESPRIT based on FBA-PAST algorithm

4.6 Simulation Results

Similarly to the previous chapter’s scenarios, we are going to track the DOA of three

sources for two scenarios. In the first scenario, we consider two of sources are slowly

moving overall snapshots and the third one has a constant DOA, as shown in Fig. 3.4.

In the second scenario, we consider two of sources are crossing at the half of distance and

the third has a constant DOA, as shown in Fig. 3.11. And the URA has 6× 6 sensors,

and the forgetting factor has been chosen to be 0.97 at length window N = 1000,

according to [Yan95]. In each scenario, we evaluate the Adaptive 2-D Unitary ESPRIT

algorithm compare to the Adaptive ESPRIT based on PAST algorithm and the 2-D

Unitary ESPRIT based on FBA-PAST algorithm for three cases:

• SNR = 0 dB and ρ = 0,

• SNR = 0 dB, ρ = 0.99, and ρ = 0.5 for the first and second scenarios respectively,

and

• SNR = −3 dB and ρ = 0, for both scenarios, respectively.

Here, the initial values P (0), W (0), φ(0), and P FBA(0) have been chosen to be

d × d identity matrix, and the signal subspaces Us, and Es have been included d

orthonormal vectors. We should note that, the initial values only impact the transient

behavior but the performance of the algorithm remains stable.
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The simulation results are depicted for the first scenario as follows: Fig. 4.4 and

Fig. 4.5,(a) and (b) visualize the first case, Fig. 4.6 and Fig. 4.7,(a) and (b) depict the

second case, and Fig. 4.8 and Fig. 4.9,(a) and (b) present the third case, respectively.

Similarly to second scenario in the previous chapter, Fig. 4.10 and Fig. 4.11,(a) and

(b), Fig. 4.12 and Fig. 4.13,(a) and (b), and Fig. 4.14 and Fig. 4.15,(a) and (b) visualize

the first case, second and third case, respectively.

For the first case, when the SNR equals 0 dB and no correlation between the

sources for scenarios 1 and 2, it can been found that performance of Adaptive Unitary

ESPRIT based on FBA-PAST algorithm outperforms the performance of Adaptive

ESPRIT based on PAST algorithm due to use the FBA processing. Moreover, the

performance of Adaptive ESPEIT and Adaptive Unitary ESPRIT was similar to them

counterpart by using ESPRIT and Unitary ESPRIT based on the PAST and FBA-

PAST algorithms, respectively. Moreover, all algorithms based on the FBA processing

require lower calculations than similar algorithms based on standard ESPRIT. We

should mentioned also that Adaptive Unitary ESPRIT needs lower computations than

Unitary ESPRIT due to updating the invariance of the signal subspaces in addition to

the tracking the phase delays matrix.

For the second case, when consider the case of SNR = 0 dB and the correlation

between the sources has been increased to be 0.99 for scenario 1; and ρ = 0.5 for scenario

2. It can be seen that the performance of each ESPRIT and Adaptive ESPRIT gradate

compared to Adaptive Unitary ESPRIT and 2-D unitary ESPRIT. More precisely

insight in the first scenario can be shown in Fig. 4.7,(a) and (b). Here, it can be found

that the Adaptive ESPRIT was able to track only one sources and failed in tracking the

others for the first scenario. For the second scenario as visualized in Fig. 4.13,(a) and

(b), the tracking performance failed for all algorithms at the high correlations between

the sources and the spatial frequencies as well, i.e., when the correlations between the

spatial frequencies and the sources increase the performance degrades.

For the third case at SNR = -3 dB and there is no correlation between the sources,

it can be observed that performance of Adaptive ESPRIT based on PAST algorithm

is lower robustness than Adaptive Unitary ESPRIT based on FBA-PAST. In other

words, Adaptive ESPRIT required duple number of observation to perform the same

performance like Adaptive Unitary ESPRIT, specially at the beginning of observation

as shown in Fig. 4.9,(a) and (b) and Fig. 4.15,(a) and (b), respectively.

Here, it can be seen that the real-valued signal subspaces tracking are higher accu-

rate than its similar by using PAST algorithm. However, each ESPRIT and Unitary

ESPRIT as well as Adaptive ESPRIT and Adaptive Unitary ESPRIT were able to

track the DOA correctly after a few number of observations. In addition, at the high

M.Sc. Thesis Olaa Khatib



4. Adaptive Unitary ESPRIT and Adaptive 2-D Unitary ESPRIT 63

correlation between the spatial frequencies, better performance can be observed for the

algorithms that based on incorporating the FBA processing.
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Fig. 4.4: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = 0 dB and ρ = 0 for scenario 1
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Fig. 4.5: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = 0 dB and ρ = 0 for scenario 1
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Fig. 4.6: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = 0 dB and ρ = 0.99 for scenario 1
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Fig. 4.7: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = 0 dB and ρ = 0.99 for scenario 1
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Fig. 4.8: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = −3 dB and ρ = 0 for scenario 1
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Fig. 4.9: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = −3 dB and ρ = 0 for scenario 1
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Fig. 4.10: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = 0 dB and ρ = 0 for scenario 2
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Fig. 4.11: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = 0 dB and ρ = 0 for scenario 2
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Fig. 4.12: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = 0 dB and ρ = 0.5 for scenario 2
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Fig. 4.13: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = 0 dB and ρ = 0.5 for scenario 2
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Fig. 4.14: LPA and RMSE vs. the number of snapshots for 3 sources impinging on a
URA of 6× 6 sensors at SNR = −3 dB and ρ = 0 for scenario 2
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Fig. 4.15: Estimated spatial frequencies for 3 sources impinging on a URA of 6 × 6
sensors at SNR = −3 dB and ρ = 0 for scenario 2
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5. CONCLUSIONS AND FUTURE WORK

Our aim in this thesis was to improve the tensor-based subspace tracking scheme by

incorporating the FBA processing and applying it consequently to track the signal

parameters, i.e., tracking the real-valued subspaces based on incorporating the FBA

processing, then estimating the DOA in non-stationary scenarios.

We showed that by including FBA the accuracy of the tensor-based subspace track-

ing algorithm was improved and it outperformed its matrix-based counterpart. In ad-

dition the proposed subspace tracking algorithm is robust for critical scenarios and has

a lower mathematical complexity compared to some existing algorithms.

We summarized in the second chapter of the thesis the tensor algebra tools that

needed to be used throughout the thesis according to [dLdMV00]. Then we studied

one application of using the HOSVD in estimating the subspace for multidimensional

harmonic retrieval problems recording to [HRDG08].

In the third chapter of the thesis, we improved Extended PAST [CH13] that was

required for a generic framework for tensor subspace tracking via Kronecker structured

projections. Here, we modified the PAST algorithm to track the real-valued subspaces

by incorporating the FBA processing. Therefore, the mathematical complexity has

been reduced and at the same time the tracking accuracy became better. Similar to

[CH13], we developed an extended version of the PAST algorithm again for tracking

the real-valued n-mode unfolding subspaces. As we show, both of the proposed sub-

space tracking algorithms, FBA-PAST and Extended FBA-PAST, provide a better

performance in terms of Large Principal Angle (LPA), e.g, the accuracy in tracking

the signal subspaces becomes better. Moreover, the mathematical computations have

been performed in the real domain instead of the complex domain. In addition, fur-

ther robustness in signal parameters tracking has been obtained at critical scenarios.

This has been observed as well in the Root Mean Square Error (RMSE) criteria after

using some DOA estimation algorithms like 2-D ESPRIT, 2-D Unitary ESPRIT, STE

and UTE. Furthermore, 2-D Unitary ESPRIT and UTE based on FBA-PAST and

Extended FBA-PAST outperformed their standard versions 2-D ESPRIT and STE.

On the other hand, the tensor-based techniques, STE and UTE, achieved a better

performance compared to their matrix-based counterparts.
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In the fourth chapter of the thesis, we reviewed ESPRIT and Unitary ESPRIT as

well as Adaptive ESPRIT based on the PAST tracking algorithm. We developed an

adaptive version of Unitary ESRPIT based on the FBA-PAST algorithm. we found

that, the Adaptive Unitary ESPRIT algorithm is be able to track the signal parameters

based on the FBA-PAST algorithm with the same performance but lower mathemat-

ical complexity and better performance compared to Adaptive ESPRIT algorithm.

Moreover, we extended the Adaptive Unitary ESPRIT based on FBA-PAST from 1-

dimension to 2-dimension.

As we can see, the mathematical complexity is still an open research issue in tensor-

based subspaces tracking as well as matrix-based subspace tracking. In other words,

it is of interest to further reduce the complexity of the tensor-based subspace tracking

via Kronekcer structured projections.

More improvement can be found in tracking the signal subspaces in [BDR05] and

[BRD05] for the fast approximated power iteration subspace tracking, and the fast

Adaptive ESPRIT algorithm, respectively. Moreover, the performance of the tracking

algorithm is related as well to the speed of signal subspaces changing. As shown in

the PAST algorithm that its performance will degrade considerably when the subspace

changes fast. A new robust Kalman Filter based subspace tracking algorithm can be

proposed also to improve the performance of tracking time-variant subspaces according

to [LZC10]. Furthermore, incorporating FBA can be performed with the aforemen-

tioned algorithms to upgrade the performance of some algorithms as well as to reduce

the mathematical complexity. Last but not the least, Structured Least Squares (SLS)

[HN96] can be applied to improve the performance of Adaptive ESPRIT as well as

Adaptive Unitary ESPRIT.

M.Sc. Thesis Olaa Khatib



Bibliography 78

BIBLIOGRAPHY

[BDR05] R. Badeau, B. David, and G. Richard. Fast approximated power iteration
subspace tracking. IEEE Transactions on Signal Processing, 53(8):2931–2941,
2005.

[BRD03] R. Badeau, G. Richard, and B. David. Adaptive esprit algorithm based on the
past subspace tracker. In Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing (ICASSP ’03), volume 6, 2003.

[BRD05] R. Badeau, G. Richard, and B. David. Fast adaptive esprit algorithm. In
Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on, pages 289–294,
2005.

[CH13] F. Roemer E.-K. Kasnakli Y. Cheng and M. Haardt. Tensor subspace tracking
via kronecker structured projections (TeTraKron). IEEE, 5th Int., Dec. 2013.

[dLdMV00] L. de Lathauwer, B. de Moor, and J. Vandewalle. A multilinear singular value
decomposition. SIAM J. Matrix Anal. Appl., 21, No. 4:12531278, 2000.

[EY36] Carl Eckart and Gale Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1(3):211–218, 1936.

[GL96] G. H. Golub and C. F. Van Loan. Matrix computations. the Johns Hopkins
University Press, 3 edition, 1996.

[HN95] M. Haardt and J.A. Nossek. Unitary esprit: how to obtain increased estima-
tion accuracy with a reduced computational burden. Signal Processing, IEEE
Transactions on, 43(5):1232–1242, 1995.

[HN96] M. Haardt and J.A. Nossek. Structured least squares to improve the perfor-
mance of esprit-type high-resolution techniques. In Acoustics, Speech, and Sig-
nal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE Inter-
national Conference on, volume 5, pages 2805–2808 vol. 5, 1996.

[HRDG08] M. Haardt, F. Roemer, and G. Del Galdo. Higher-order SVD-based subspace es-
timation to improve the parameter estimation accuracy in multidimensional har-
monic retrieval problems. IEEE Transactions on Signal Processing, 56(7):3198–
3213, July 2008.

[HZMN95] M. Haardt, M.D. Zoltowski, Cherian P. Mathews, and J.A. Nossek. 2d unitary
esprit for efficient 2d parameter estimation. In Acoustics, Speech, and Signal
Processing, 1995. ICASSP-95., 1995 International Conference on, volume 3,
pages 2096–2099 vol.3, 1995.

[KB09] T. G. Kolda and B. W. Bader. Tensor decomposition and applications. SIAM,
Review 51(3):455–500, 2009.

M.Sc. Thesis Olaa Khatib



Bibliography 79

[LZC10] B. Liao, Z. G. Zhang, and S. C. Chan. A new robust kalman filter-based sub-
space tracking algorithm in an impulsive noise environment. IEEE˙J˙CASII˙EB,
57(9):740–744, 2010.

[PP12] K. B. Petersen and M. S. Pedersen. The matrix cookbook, nov 2012. Version
20121115.

[RBHW09a] F. Roemer, H. Becker, M. Haardt, and M. Weis. Analytical performance evalua-
tion for hosvd-based parameter estimation schemes. In Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP), 2009 3rd IEEE International
Workshop on, pages 77–80, 2009.

[RBHW09b] F. Roemer, H. Becker, M. Haardt, and M. Weis. Analytical performance eval-
uation for HOSVD-based parameter estimation schemes. In Proc. 3rd IEEE
Int Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
Workshop, pages 77–80, 2009.

[RPK86] R. Roy, A. Paulraj, and T. Kailath. Estimation of signal parameters via rota-
tional invariance techniques - ESPRIT. In Proc. IEEE Military Communica-
tions Conf. - Communications-Computers: Teamed for the 90’s MILCOM 1986,
volume 3, 1986.

[Sch86] R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE
Trans. on Antennas and Propagation, 34(3):276–280, 1986.

[SK93] A.L. Swindlehurst and T. Kailath. Azimuth/elevation direction finding using
regular array geometries. Aerospace and Electronic Systems, IEEE Transactions
on, 29(1):145–156, 1993.

[Str93] G. Strang. The fundamental theorem of linear algebra. The American Mathe-
matical Monthly, 100:848–855, Nov., 1993.

[Tuc66] LedyardR Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, 1966.

[Yan95] B. Yang. Projection approximation subspace tracking. IEEE Transactions on
Signal Processing, 43(1):95–107, 1995.

M.Sc. Thesis Olaa Khatib



Theses 80

THESES

T1: For multidimensional data, where a multidimensional structure is inherent in the

data, Higher-Order SVD (HOSVD) improved estimates of the subspace compared

to the SVD concept.

T2: If the number of observations is small or the sources are highly correlated, incorpo-

rating Forward Backward Averaging (FBA) can further improve the performance

of tracking.

T3: Calculating the core tensor is not required for structured projections.

T4: For time-varying multidimensional data, Extended PAST based on the tensor-

based subspace tracking via Kronecker structured projections (TeTraKron) fra-

mework outperforms the matrix-based approach PAST.

T5: Including FBA involves only real-valued processing.

T6: Incorporating FBA leads to an improved accuracy of the subspace tracking and

a lower computational complexity.

T7: Extended FBA-PAST algorithms outperforms the original PAST and the Extended-

PAST algorithms in terms of robustness, accuracy, and involves only real-valued

processing.

T8: 2-D Unitary ESPRIT based on FBA-PAST gives better performance compared

to 2-D ESPRIT based on PAST.

T9: UTE based on Extended FBA-PAST outperforms STE based on Extended PAST.

T10: Adaptive Unitary ESPRIT based on FBA-PAST outperforms the Adaptive ES-

PRIT based on PAST in the term of robustness, accuracy and has a lower ma-

thematical complexity.
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