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 Introduction 1

1.1 Defining plant growth-promoting bacteria  

Besides algae, terrestrial plants represent the main primary producers life depends on. As 

every living organism, plants have to cope and compete with diverse entities affecting plant and 

ecosystem productivity, some being so small that they have been overlooked for ages: 

microorganisms. Although Romans and Greeks were already aware of pathogens causing 

destructive plant diseases, their microbiological nature was elusive until the 19
th

 century
1
. That a 

subset of microbes can affect plant growth positively came to light in the early 20
th

 century: root-

nodule forming bacteria, supplying nitrogen to the legume host, were described (Golding, 1905). 

The fact that the interior of plants can be colonized by fungi without causing symptoms was 

reported in 1902 by Freeman. This discovery led to the creation of the term “endophyte”: 

microbes living asymptomatically for at least part of their life cycle inside plant tissues.  

 The rhizosphere is defined as the soil adjacent to roots, which is directly affected by root 

activities (e.g. root exudation of organic compounds) (Hiltner, 1904). It is known as a zone in 

which microbial life prospers and from which a subset of microbes selectively enters the roots to 

undergo an endophytic lifestyle. Many of these rhizosphere-dwelling microbes can affect plant 

growth positively, an observation that subsequently led to the definition of the term plant growth-

promoting rhizobacteria (PGPR) (Kloepper & Schroth, 1979). These days the term “endophytes” 

is extended to bacteria; and PGPR include not only rhizosphere-inhabiting, but also endophytic 

organisms, creating the new term PGP bacteria (PGPB). The rhizo- and endospheres of all plant 

species investigated so far are colonized by PGPB (Rosenblueth & Martinez-Romero, 2006). 

Plants are lucrative hosts: their photoassimilates present versatile nutrient sources for 

heterotrophic microorganisms. Furthermore, plants offer diverse protective niches. In turn, there 

is a common consensus that plants depend on the presence of bacteria for healthy growth 

(DeCoste et al., 2010; Partida-Martinez and Heil, 2011; but see also Aguilera et al., 2011). 

 In my studies, I focused on plant growth-promotion (PGP) by root-associated PGPB, 

including endophytic and rhizosphere-dwelling bacteria. 

 

1.2 How PGPB promote plant growth  

 Diverse mechanisms have been postulated for bacterial-driven PGP. The modes of action 

are commonly divided into either “direct” or “indirect”. Direct mechanisms include the 

interference of microbes with plant hormone homeostasis, assistance with nutrient acquisition, or 

emission of volatile signaling molecules (Gamalero & Glick, 2011).  

 The production and excretion of plant-growth-stimulating hormones by microbes, e.g. 

indole-3-acetic acid analogs (IAA, auxins), cytokinins, or gibberellic acid leads to dose- and host 

genotype-dependent growth enhancement (Long et al., 2008; Gamalero & Glick, 2011). Also, the 

                                                 
1
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bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACCd) was found to cleave 

the ethylene (ET) precursor ACC, thereby lowering stress-associated plant ET production and in 

turn promoting plant growth (Glick et al., 2007).  

 Second, supplying nutrients like nitrogen (N) to the host plant is a famous example of 

direct PGP. Not only symbiotic, nodule-forming rhizobia, but also free-living bacteria like 

Azoarcus sp. provide the often growth-limiting macronutrient N to the host (Hurek et al., 2002; 

Franche et al., 2009). Improving accessibility to other limiting nutrients via e.g. the excretion of 

iron-chelating siderophores by root-associated bacteria (Lemanceau et al., 2009), or the 

solubilization of phosphates and organically bound phosphorous, has been reported to contribute 

to PGP as well (Rodriguez & Fraga, 1999).  

 Sulfur (S) is rated the 5
th

 limiting macronutrient and is pivotal for plant health. It is a 

constituent of the amino acids methionine and cysteine, thioredoxins, enzymes and plant 

defensive compounds (e.g. glucosinolates) (Droux, 2004). In the last decades, reduced emissions 

of anthropogenic sulfur dioxide (SO2) resulted in widespread S-deficiency in soils (McGrath & 

Zhao, 1995). Because plants cannot exploit S incorporated in soil organic matter, they depend on 

diverse bacterial strains, capable of oxidizing S, which provide easily accessible sulfate (SO4
-2

) to 

the plants (Kertesz & Mirleau, 2004; Anandham et al., 2011).  

 A third direct method of microbe-caused plant growth modulation became apparent 

during the last decade: microbial volatiles. The exposure of plants to the microbial volatile 

bouquet resulted in growth effects ranging from dramatic growth enhancement to plant death. 

The production of dozens of compounds by diverse microbes has been demonstrated, as reviewed 

by Wenke et al. (2012). So far, only a few bioactive volatile organic compounds (VOCs), 

including 2,3-butanediol, acetoin, dimethyl disulfide (DMDS), 2-pentylfuran and 

dimethylhexadecylamine, have been identified (Ryu et al., 2003; Kai et al., 2010; Zou et al., 

2010; Velazquez-Becerra et al., 2011). Additionally, “inorganic” bacterial volatiles, namely 

carbon dioxide (CO2), hydrogen cyanide (HCN), ET and ammonia (NH3) emission have been 

reported to shape the plant’s growth (Weingart & Volksch, 1997; Weingart et al., 2001; Kai & 

Piechulla, 2009; Kai et al., 2010). Information on the action mode and signaling involved in plant 

growth regulation is limited (Bailly & Weisskopf, 2012; Wenke et al., 2012).  

 

 Indirect mechanisms of PGP involve the induction of Induced Systemic Resistance (ISR) 

or Systemic Acquired Resistance (SAR). Both mechanisms implement complex plant signaling 

and arise either after an inoculation of non-pathogenic rhizobacteria (ISR) or after a local 

infection with fungal plant pathogens (SAR) (Goellner & Conrath, 2008; Vlot et al., 2008). 

Additionally, microbes introduced or native to the rhizosphere can shape the plant-associated 

microbial community, thereby controlling plant diseases. So-called biocontrol agents are thought 

to inhibit plant pathogens by excretion of antimicrobial compounds (e.g. antibiotics, cell wall 

degrading enzymes, HCN or other toxins), competition for nutrients and space, degradation of 

pathogenic toxins, or hyper-colonization of fungal hyphae (Lugtenberg & Kamilova, 2009). On 

the other hand, introduced (inoculated) microbial species might pave the way for other beneficial 

interaction partners, a phenomenon called “microbial co-operation”, which has been described for 
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symbiotic interaction partners like arbuscular mycorrhizal fungi (AMF) and rhizobia (Barea et 

al., 2005).  

1.3 Factors determining plant-PGPB interactions 

 A plethora of plant-PGPB interactions has been described and intensively studied. But not 

all bacteria, inhabiting the soil can associate with a plant. Complex communication between 

microbes and their future host is required for successful colonization (Hardoim et al., 2008). 

Bacterial characteristics, summarized by the term “colonization traits”, determine plant 

colonization and include attributes like motility, chemotactic responses, host recognition, root 

adherence, fast growth rates and several other genetic determinants as recently reviewed by 

Barret et al. (2011) and Compant et al. (2010). Endophytic colonization reflects an even more 

specific, long-lasting and intimate relationship between plants and bacteria, in which both 

partners have to maintain a healthy plant-microbe association. Usually, only a subgroup of 

rhizobacteria possessing specific traits is allowed to colonize the interior of the host. For 

example, the microbe has to overcome plant defense machinery, and usually PGPB, which 

provide services to the host, are thought to represent “competent endophytes” (Hardoim et al., 

2008; Taghavi et al., 2009; Pineda et al., 2012).  

 Next to stochastic processes, the soil the plant is cultivated in and from which bacteria are 

recruited is thought to determine the composition of plant microbial communities (Berg & 

Smalla, 2009; Lundberg et al., 2012). Soil chemistry and physics in the rhizosphere, in turn, are 

shaped by root exudates, mucilage deposition and pH changes, and this zone is characterized by 

high microbial activity. It is estimated that plants exude huge amounts of their photoassimilates 

(5-40 % of the fixed carbon) into the rhizosphere, thereby secreting a plethora of carbon-rich 

compounds including amino acids, organic acids, fatty acids, and sugars, but also phenolics, 

putrescine, vitamins, and signaling substances (Jones et al., 2009). Specific compounds have 

been shown to acidify the soil, thereby mobilizing nutrients (e.g. citrate, malic acid), or act 

allopathically against competing species (e.g. sorgoleone) (Shu et al., 2005; Dayan et al., 2009). 

Several substances attract or repel microbes (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one  

[DIMBOA], strigolactones, amino acids, sugars) or function as sporulation cues (Foo & Davies, 

2011; Neal et al., 2012) and hence are considered to shape rhizosphere microbial composition. 

Root exudate composition strongly depends on plant species and, as recent studies have shown, 

also on ecotype or cultivar within a species (Micallef et al., 2009). Further, plant species or 

genetic make-up can provoke changes in the microbial community composition as shown by 

Grayston et al. (1998); Marschner et al. (2004); Manter et al. (2010) and Smalla et al. (2001). 

Very often, however, changes due to genetic modifications (e.g. the deletion or insertion of a 

gene and the resulting gene product) are limited and comparable to cultivar-specific differences 

(Kowalchuk et al., 2003; Weinert et al., 2009). Many publications contrasted the importance of 

soil and genotype effects – without clear consensus (Berg & Smalla, 2009).  

 Besides the aforementioned factors, plant developmental stage, biotic stresses and defense 

signaling, presence of microbial inoculants, climate, season, geography, land use, and agricultural 
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practices have all been shown to affect microbial colonization in the rhizo- and endosphere (Berg 

& Smalla, 2009; Bernard et al., 2012). 

1.4 Effects of plant hormone and defense signaling on mutualistic host-microbe 

interactions 

 How plant defenses against biotic stresses and plant hormone signaling affect the 

composition of root-associated microbes is not well understood. Commonly, plant defenses are 

directed against the establishment of pathogenic microbes or herbivores, but defense responses 

and excreted metabolites can also control the indigenous microflora as reviewed by Doornbos et 

al. (2012).  

 In 2001, for example, Hamilton and Frank reported on the grazing-mediated stimulation 

of microbial activity in the rhizosphere of Poa pratensis. Furthermore, the infection of 

Arabidopsis thaliana with Pseudomonas syringae pv tomato (Pst DC3000) resulted in the 

recruitment of beneficial Bacillus subtilis strain FB17 into the plant’s rhizosphere, an effect that 

could be correlated to the enhanced secretion of L-malic acid (Rudrappa et al., 2008).  

 The activation of plant defenses involves complex signaling pathways comprising the 

phytohormones jasmonic acid (JA), salicylic acid (SA) and ET. To study the impact of single 

players, genetic tools, e.g. transgenic lines impaired in specific signaling components, are 

employed. The first study investigating the effects of JA and SA on epiphytic and endophytic 

culturable leaf bacterial communities was conducted by Kniskern et al. (2007). The use of A. 

thaliana mutants impaired in SA (npr1 and sid2) and JA (fad3/7/8) signaling, as well as wild-

type (WT, Col-0) plants with artificially elevated SA and JA levels revealed that the leaf 

endosphere of SA- induced plants yielded a lower bacterial diversity, whereas the composition 

and number of bacteria in SA-deficient mutants was similar to WT. On the other hand, JA-

deficient plants supported a greater epiphytic bacterial diversity and community size than WT, 

and JA-treated plants tended to have reduced diversity and total number of bacteria. Variation in 

JA did not affect endophytic bacterial communities just as SA did not influence epiphytic 

bacterial composition. Generally, however, observed effects were only marginally significant. 

 In 2008, the effect of systemic acquired resistance (SAR) on rhizosphere microbial 

communities of A. thaliana was studied by Hein et al. SAR usually arises after a local infection 

with fungal plant pathogens and requires SA signaling. Incorporating mutants constitutive (cpr1) 

and non-inducible (npr1-1) for SAR, Hein et al. found visible changes in the indigenous 

rhizosphere community composition of SAR mutants; but effects on rhizosphere diversity due to 

constitutive SAR expression were not observed.  

 The prominent role of the gaseous plant hormone ET in plant-pathogen interactions has 

been intensively studied (van Loon et al., 2006). Additionally, researchers have investigated the 

effect of ET signaling on specific mutualistic plant-microbe interactions, using selected microbial 

isolates as interaction partners. They could show that ET-insensitive tobacco plants (tetr) 

exhibited disease-like infection symptoms when challenged with otherwise non-pathogenic fungi 

(Knoester et al., 1998). Also, an ET-insensitive Medicago truncatula line was found to be 

hypercolonized by rhizobia or Klebsiella pneumoniae 342, respectively (Penmetsa, 1997; Iniguez 
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et al., 2005). Recently, Camehl et al. (2010) reported on the dependence of Piriformaspora 

indica -mediated plant growth promotion on ethylene signaling to balance positive and negative 

outcomes of this symbiosis in A. thaliana. These findings point towards ET as a regulator for 

microbial colonization patterns.  

1.5 The multifaceted roles of ethylene  

 The ambivalent hormone ET first attracted notice in 1901, when Dimitry Neljubov 

observed a swollen, stunted and negatively gravitropic phenotype in his pea seedlings – the so-

called “triple response”: a finding he could correlate to the ET emissions from coal gas
2
. The 

gaseous phytohormone ET functions in diverse developmental and physiological plant processes. 

Despite ET’s simple nature (C2H4), its signaling pathways are complex and still not fully 

understood (Vandenbussche et al., 2012). ET is produced by every plant and has been reported to 

participate in seed germination, root hair and lateral root development, root nodulation, 

senescence and abscission of plant organs (e.g. leaves, flowers and fruits), differential cell growth 

and pollination. It also modulates abiotic stress responses (e.g. to wounding, cold, drought), and, 

as mentioned above, resistance to pathogens and herbivores as well as colonization by non-

pathogenic or mutualistic microbes (Nehring & Ecker, 2010; Schaller, 2012). Ethylene 

biosynthesis is stimulated after (a)biotic stresses through mitogen-activated protein kinase 

signaling and is synthesized through the Yang Cycle, also called the methionine cycle (Wang et 

al., 2002). Nearly 80 % of cellular methionine is converted to S-adenosylmethionine (S-

AdoMet), which serves as methyl donor for many molecules and also as substrate for ET 

synthesis. After the conversion of S-AdoMet to ACC, the direct precursor of ET, by the ACC 

synthase, S-AdoMet is recycled (Wang et al., 2002). Ethylene is perceived by the plant via 

endoplasmic riticulum-integrated receptor proteins (e.g. ETHYLENE RESPONSE, ETR1 and 2) 

and at low ET concentrations, these receptors inhibit ET signaling by the activation of the 

downstream negative regulator CTR1 (CONSTITUTIVE TRIPLE RESPONSE 1). High ET 

concentrations in turn lead to the release of the signal transduction suppression (Clark et al., 

1998). Ethylene signaling has been shown to interact with all other hormone pathways (i.e. IAA, 

gibberellic acid [GA], JA, SA, abscisic acid [ABA] and brassinosteroids [BR])(Yoo et al., 2009; 

Kim et al., 2012), leading to complex signaling networks. 

 Once the plant is confronted with a stress stimulus, ET production can be observed, 

resulting in an arrest of plant growth until the elicitor is removed. The benefit of ET for the plant 

is uncertain: on the one hand, ET serves as signaling molecule in the attenuation of stresses, on 

the other hand large amounts of ET favor growth stagnation and plant death (Stearns, 2003). To 

overcome these negative aspects for agricultural practices (e.g. horticulture), plants can be treated 

with different chemicals inhibiting either ET biosynthesis or signaling components (Serek et al., 

1995; Sisler & Serek, 1997). Advances in green biotechnology led to the creation of ET-

insensitive plants, which, however, are hardly employed in agriculture due to many pleiotropic 

growth effects, like poor rooting and high pathogen susceptibility (Knoester et al., 1998; Clark et 

al., 1999; Geraats et al., 2007). 

                                                 
2
 http://xa.yimg.com/kq/groups/21666630/1470371657/name/22-Ethylene.pdf  

http://xa.yimg.com/kq/groups/21666630/1470371657/name/22-Ethylene.pdf
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1.6 The model system Nicotiana attenuata 

 Beneficial plant-microbe interactions have been most intensively studied in managed 

ecosystems in an agricultural context. To which extent associations with mutualistic microbes are 

formed by native plants and how plant fitness is influenced by these interactions remains elusive. 

It is thought that fitness benefits are most clearly seen when the host plants are under various 

realistic biotic and abiotic stresses. Nicotiana attenuata, a wild tobacco species native to the 

Great Basin Dessert, USA, germinates as a pioneer plant in post-fire, nitrogen-rich environments 

(Baldwin et al., 1994). Often, monocultures establish, which are characterized by high 

intraspecific competition and genetic diversity, as well as strong herbivore pressure (Bahulikar et 

al., 2004; Berg & Hallmann, 2006), rendering N. attenuata suitable as model plant for studying 

native plant-herbivore and mutualistic plant-microbe interactions.  

1.7 Objectives 

 While the ecological, physiological and molecular mechanisms of the interaction between 

N. attenuata and its specialist herbivore Manduca sexta are well studied, knowledge of N. 

attenuata’s microbial interaction partners is sparse. Nicotiana attenuata was found to be 

colonized by Sebacinales fungi (Piriformospora indica and Sebacina vermifera) and these fungi 

were shown to benefit plant growth and fitness at the cost of herbivore resistance (Barazani et al., 

2005; Barazani et al., 2007). Furthermore, N. attenuata is colonized by AMF in nature. The 

interplay with one AMF species, Rhizophagus irregularis (formerly known as Glomus 

intraradices), however, represents a “negative symbiosis” resulting in diminished plant growth 

(Riedel et al., 2008).  

 Manuscript I 1.7.1

 Native bacterial communities associated with N. attenuata had not been investigated. To 

study the importance of mutualistic bacteria for the survival and fitness of the plant in a complex 

environment, information about the identity and occurrence of bacterial species colonizing the 

plant across different native soils was required. Furthermore, we were interested in plant 

genotype-specific cues controlling bacterial community assembly. Since the roles of the 

phytohormones JA and SA in shaping plant bacterial communities had been recently elucidated, 

we were interested in the function of ET signaling in this process. Therefore, WT and isogenic 

transformed plants deficient in ET biosynthesis (ir-aco1) or perception (35S-etr1) were grown in 

four different native soils, and culturable bacteria colonizing the root endosphere were 

determined.  

We asked the following questions: 

- Does ET biosynthesis and perception affect the composition of endophytic bacterial 

communities?  

- Which role does the soil type play in this process? 

- Do plant genotype-specific colonization patterns exist?  

- How do the bacterial isolates affect plant growth? 

- Do plant genotypes with impairments in ET signaling recruit more PGP isolates (e.g. 

isolates producing ACC deaminase and IAA) into their rhizosphere than WT does? 
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 Manuscript II 1.7.2

 Plant growth promotion effects induced by bacteria are common phenomena. While PGP 

traits and effects of hundreds microbial strains have been reported under in vitro conditions 

(Smyth et al., 2011), the success rate of PGP isolates in the glasshouse and field is low. To test 

whether our observed in vitro PGP effects (Manuscript I) were consistent in a highly complex 

environment, we selected a promising bacterial candidate, Bacillus sp. B55, originally isolated 

from an ET-insensitive plant, and analyzed in the following aspects: 

- Does the isolate B55 show a consistent PGP effect in vitro and in field conditions? 

- Which PGP traits confer the observed growth modulation effects in nature? 

- Does B55 inoculation affect the indigenous bacterial community? 

- Is B55 PGP a general phenomenon, or does plant genotype affect the PGP outcome? 

 Manuscript III 1.7.3

 B55 PGP effects on growth and survival of the ET-insensitive N. attenuata transformant 

(35S-etr1) in nature were substantial (Manuscript II). The mechanism behind the fitness 

increase, however, remained elusive. We therefore analyzed the role of bacterial VOCs in the 

interaction of B55 and N. attenuata, investigating the following features: 

- How do B55 VOCs affect plant growth of WT and 35S-etr1 seedlings? 

- Which VOCs are emitted by B55 and how do they singly influence plant growth? 

Based on the finding that an S-containing VOC, DMDS, might be involved in VOC-mediated 

PGP, we were interested in the following questions: 

- How does plant sulfate availability affect WT and 35S-etr1 plant growth? 

- Can the bacterial DMDS compensate for sulfate deficiency in the plant’s growth medium? 
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2.1 Manuscript I 

The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is 
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Summary 

In this publication we report on the dominating effect of soil type on the assembly of the 

culturable microbial community of the coyote tobacco, Nicotiana attenuata, grown in native 

soils. We further show that impairments in the plant’s ethylene signaling affects the diversity, but 

not the population size of microbes in the root‘s endosphere. Additionally we demonstrate that 

ethylene-insensitivity determines the root colonization of a specific bacterial isolate 

(Pseudomonas thivirvalensis), which is unable to colonize wild-type plants. 

 

Author contributions 

LHH and DGS contributed equally to the study. 

LHH isolated bacteria, LHH and DGS identified them, carried out biochemical characterization, 

seedling growth promotion assays, re-inoculation and re-isolation assays. LHH, DGS and DDS 

designed experiments, grafted figures and wrote the manuscript. ITB designed the study, 

collected soil samples and revised the manuscript.  
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2.2 Manuscript II 

A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of 

an ethylene insensitive plant genotype in nature 

Dorothea Gertrud Meldau, Long Hoa Hoang
1
, Ian T. Baldwin 
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1
Current address: Institute of Agricultural Genetics, Pham Van Dong, Tu liem, Hanoi, Vietnam 

 

Author of correspondence: Ian T. Baldwin 
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doi: 10.3389/fpls.2012.00112 

 

Summary 

In this study we report on the consistency of plant growth-promotion effects conferred by a native 

bacterial isolate, Bacillus sp. B55 on Nicotiana attenuata wild-type and the ethylene-insensitive 

line (35S-etr1) in vitro, in the glasshouse and in the field. We found that the impaired 35S-etr1 

plants (the plant genotype from which B55 was isolated from), benefit more from this mutualistic 

interaction than WT; defining B55 as a part of the 35S-etr1 plant’s “extended phenotype”. The 

underlying mechanisms of plant growth promotion remained elusive. 

 

Author contributions  

DGM and LHH contributed equally to the study. 

DGM and LHH designed experiments and carried out in vitro and glasshouse plant growth 

promotion assays. LHH did IAA and ET measurements, analyzed field data (2009) and re-

isolated bacteria and revised the manuscript. DGM conducted late stage infection, transgenic line 

testing and analyzed field data (2010). DGM crafted the figures and wrote the manuscript. ITB 

designed the study, performed field experiments and revised the manuscript.  
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2.3 Manuscript III 

Dimethyl disulfide, a bacterial volatile emitted by Bacillus sp. B55, promotes growth of 

Nicotiana attenuata and rescues the performance of an ethylene insensitive genotype 
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2
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Summary 

In this manuscript we explored the plant growth–promotion effects of Bacillus sp. B55’s 

volatiles, specifically the S-containing volatile dimethyl disulfide (DMDS), on Nicotiana 

attenuata wild-type and the ethylene-insensitive line (35S-etr1). Interestingly, 35S-etr1 seedlings 

realize a greater benefit of the exposure to the volatiles and DMDS than do WT plants. We 

demonstrate that 35S-etr1 plants suffer from an unbalanced S-metabolism and we propose that 

these plants benefit from their interaction with B55 by obtaining reduced S (in the form of 

bacterial DMDS) which helps to fulfill their S requirements. 

 

Author contributions  

DGM designed and conducted all sulfate and 35S-etr1 related experiments, grafted figures and 

wrote the manuscript. SM designed experiments and performed 
35

S-radioactive labeling 

experiments and revised the manuscript. LHH carried out initial volatile-related plant growth 

promotion assays and revised the manuscript. SU helped with experiment performance. HW 

developed the method for glutathione measurements. ITB conceived the study and revised the 

manuscript. 
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 Manuscript I 3

The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is 

organized by soil composition and host plant ethylene production and perception 

Hoang Hoa Long, Dorothea G. Sonntag, Dominik D. Schmidt
1
, Ian T. Baldwin 

Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 

1
Current address: QIAGEN GmbH, QIAGEN Straße 1, 40724 Hilden, Germany 

 

Author of correspondence: Ian T. Baldwin 

This manuscript was published in New Phytologist (2010), 185 (2), 554-567. 

doi: 10.1111/j.1469-8137.2009.03079.x 

 

3.1 Summary 

• A plant’s bacterial endophyte community is thought to be recruited from the rhizosphere, but 

how this recruitment is influenced by the plant’s phytohormone signaling is unknown. Ethylene 

regulates plant–microbe interactions; here, we assess the role of ethylene in the recruitment of 

culturable endophytic bacteria from native soils. 

• We grew wild-type Nicotiana attenuata plants and isogenic transformed plants deficient in 

ethylene biosynthesis (ir-aco1) or perception (35S-etr1) in four native soils and quantified the 

extent of culturable bacterial endophyte colonization (by plate counting) and diversity (by 

amplified rDNA restriction analysis and 16S rDNA sequencing). 

• The endophyte community composition was influenced by soil type and ethylene signaling. 

Plants grown in organic (vs mineral) soils harbored a more diverse community and plants 

impaired in ethylene homeostasis harbored a less diverse community than wild-type plants. Wild-

type and ethylene signaling-impaired plants fostered distinct bacteria in addition to common 

ones. In vitro re-colonization by common and genotype-specific isolates demonstrated the 

specificity of some associations and the susceptibility of 35S-etr1 seedlings to all tested bacterial 

isolates, suggesting an active process of colonization driven by plant- and microbe specific genes. 

• We propose that soil composition and ethylene homeostasis play central roles in structuring the 

bacterial endophyte community in N. attenuata roots. 

3.2 Keywords 

Bacterial diversity, bacterial endophytes, ethylene, native soils, Nicotiana attenuata 
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3.3 Introduction 

 Endophytic bacteria reside inside plants and have been extracted from surface-sterilized 

tissues of cultivated and native herbs and trees (Hallmann et al., 1997; Ryan et al., 2008). They 

are thought to be recruited from the surrounding soil (Ryan et al., 2008) and have a continuum of 

effects on their host plant, from advantageous to detrimental (Kobayashi & Palumbo, 2000). The 

beneficial effects, such as growth promotion and disease control (Sturz et al., 1997; Sessitsch et 

al., 2004; Long et al., 2008), can result from indirect interactions during which endophytes may 

provide nutrients (nitrogen, phosphorus) to the plant or antagonize pathogens, as well as from 

direct interactions, such as when endophytes modify host phytohormone homeostasis (Sessitsch 

et al., 2004; Berg et al., 2005; Long et al., 2008). 

 Although plant–pathogen interactions and their underlying genetic mechanisms have been 

studied extensively, less is known about plant–rhizosphere or even endophyte–plant 

relationships. Numerous studies have characterized bacterial diversity in scores of plants, and 

have reported that the bacterial endophyte community can be specific to particular species of host 

plants and even cultivars (Sturz et al., 1997; Adams & Kloepper, 2002; Araujo et al., 2002; 

Zinniel et al., 2002; Rasche et al., 2006; Sun et al., 2008). The composition of root exudates is 

thought to play a central role in recruiting bacteria from the bulk soil into the rhizosphere (Bais et 

al., 2006; Hartmann A et al., 2008; Micallef et al., 2009) and, finally, into the endosphere 

(Balachandar et al., 2006), but little is known about specific plant genes that facilitate the 

recognition and selection of endophytic bacteria.  

 Research into plant–pathogen interactions has demonstrated that three phytohormones 

play a central role in the mediation of resistance to plant pathogens: salicylic acid (SA), jasmonic 

acid (JA) and ethylene (ET) (Reymond & Farmer, 1998; De Vos et al., 2006). Recently, the 

importance of JA and SA signaling in influencing bacterial endophyte communities was 

examined in Arabidopsis thaliana. Arabidopsis plants with elevated SA-regulated defense 

responses were less well colonized by bacterial endophytes and harbored lower species’ diversity 

than plants of the Col ecotype, whereas JA signaling had no effect on the endophyte community 

(Kniskern et al., 2007). To date, the influence of ET signaling on the composition of the 

endophyte community has not been examined thoroughly. 

 ET mediates not only a diverse suite of metabolic and senescence processes (Bleecker & 

Kende, 2000), but also responses to abiotic and biotic stresses, including plant– pathogen 

interactions. During the early stages of these interactions, ET is thought to mediate the elicitation 

of defense reactions to pathogen attack (Piatti et al., 1991) and, in susceptible plant–pathogen 

interactions, an ET burst is commonly observed early in the interaction, accelerating the 

senescence processes (Stearns & Glick, 2003). Other studies however, have highlighted the role 

of ET in pathogen resistance. The Arabidopsis mutant ein2, which is unable to perceive ET, is 

more susceptible to the necrotrophic fungus Botrytis cinerea than are WT plants (Thomma et al., 

1999); however, susceptibility to the biotrophic Pseudomonas syringae pv. tomato is unaltered 

(Pieterse et al., 1998). Reviewing the complicated and often contradictory reports on the role of 

ET, van Loon et al. (2006) recently concluded that the signaling function of ET depends on the 

nature of the pathogen. 
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 The role of ET in the mediation of plant–endophyte interactions remains largely 

unexplored. Iniguez et al. (2005) have reported the hypercolonization of an ET-insensitive 

Medicago truncatula line by the endophyte Klebsiella pneumoniae 342, and Cavalcante et al. 

(2007) have found that the expression of an ET receptor and two ET transcription factors is 

differentially regulated in sugarcane in response to inoculation with diazotrophic endophytic 

bacteria.  

 The ET-related bacterial communities, 1-aminocyclopropane- 1-carboxylate deaminase 

(ACCd)- and indole-3-acetic acid (IAA)-producing bacteria, are known to increase plant growth 

by interfering with ET signaling (Glick et al., 2007). Although the mechanisms of plant growth-

promoting (PGP) rhizobacteria have been explored, the selective recruitment of these beneficial 

bacterial communities by the plant remains unknown (Hardoim et al., 2008). Is the recruitment of 

ACCd- and IAA-producing bacteria into the plant endosphere more than a chance event? Is the 

colonization process mediated by a plant’s ET production or perception? The use of plants with 

contrasting ET levels might help to elucidate these questions.  

 Endophytic bacterial populations can be regarded as a subset of the soil microbial 

community and are thus influenced by the soil’s chemical and physical properties; however, in 

many cases, the rhizosphere communities of different plant species growing in the same soil are 

distinct (Marschner et al., 2004; Garbeva et al., 2008). That the same plant species can recruit a 

similar microbial community from different soils (Miethling et al., 2000) points to a plant-driven 

selection process, but the extent to which soil and host plant determine the composition of the 

endophyte community remains unresolved (Garbeva et al., 2004).  

 In order to manipulate endophytic bacterial populations to benefit plants, a better 

understanding of how plant signalling systems (e.g. ET signaling) influence the recruitment of 

endophytic bacterial communities from different soil types is needed. The wild tobacco species 

Nicotiana attenuata, which is native to the Great Basin Desert, USA, has evolved the ability to 

germinate in post-fire, nitrogen-rich soils (Lynds & Baldwin, 1998). So far, nothing is known 

about the diversity of endophytic bacterial communities associated with this plant in nature. Here, 

we characterize the culturable bacterial endophyte communities of N. attenuata’s roots and ask 

the following questions: Do soil types influence the bacterial communities? Do plant ET 

signaling and the ability of plants to sense or produce ET play a role in the recruitment of 

endophytic bacteria? Do bacterial isolates specifically colonize distinct host genotypes? How do 

the bacterial endophytes influence plant growth? Do plant genotype and differential ET 

production affect the recruitment of ACCd- and IAA-producing bacteria into the plant 

endosphere? 

 We used wild-type (WT) and two isogenic transgenic lines of N. attenuata plants, ir-aco1 

and 35S-etr1, to assess the effects of ET signaling on the diversity of culturable endophytic 

bacteria in roots. Nicotiana attenuata ir-aco1 can sense ET, but is deficient in ET biosynthesis, 

and hence has enhanced sensitivity to ET; N. attenuata 35S-etr1 plants are impaired in their 

ability to perceive ET and, as a consequence, tend to overproduce ET (von Dahl et al., 2007). All 

genotypes were grown in four different soils, two organic and two mineral, collected from N. 

attenuata’s native habitat in south-west Utah, USA, just before the germination of the native seed 

bank. We focused on the culturable bacterial endophyte community in order to test hypotheses 
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about the specificity of the association between plant and bacteria with re-colonization assays. To 

the best of our knowledge, this is the first examination of ET signaling in the selection of 

bacterial endophytes. 

3.4 Materials and methods 

Plant materials 

 The following inbred WT and transgenic lines of Nicotiana attenuata Torr. ex Wats. were 

used in all experiments: N. attenuata ecotype Utah inbred line 22, ET biosynthesis-deficient 

transgenic line ir-aco1 (A-03-321-10) and ET-insensitive line 35S-etr1 (A-03-328-8), which are 

derived from the same Utah inbred line and are therefore isogenic. The lines have been fully 

characterized in von (von Dahl et al., 2007). Seed germination procedures have been described 

elsewhere (Krugel et al., 2002; Long et al., 2008). 

 

Bacterial strains 

 Two generalist bacterial species were selected from the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ), the German culture collection, Pseudomonas 

brassicacearum DSM13227 and Pseudomonas fluorescens DSM8568, for the experimental 

colonization assay. All other strains were isolated from plants grown in native Utah soils. The 

characteristics and origin of these isolates are presented in Table 1. 

 

Soil collection 

 Four types of soil were collected from N. attenuata’s native habitat in Utah, USA (Table 

2) on 26 January 2008. All soils contained variable nitrogen levels consisting of NH4
+
 and NO3

-
, 

as described in Lynds and Baldwin (1998), and contained N. attenuata seeds from previous years 

of N. attenuata growth. The soils therefore contained the bacterial community from which the 

seeds would recruit their endophyte community when they germinated 2 months later. All soils 

were stored at 4°C for 3 d during shipment before being used in the experiments. Two organic 

soils, located at the base of burned (soil O1) or unburned (soil O2) juniper trees, were collected 

from the following location (37°04’02.6’’N, 113°53’04.04’’W). The juniper tree was burned by 

wildfires in 2004 and again in 2006. Two mineral soils were collected, one that had burned in 

2006 and 2007 (M1) near Castle Cliffs along Rt. 91 (37°05’23.5’’N, 113°50’42.4’’W) and 

another (M2) from 8 km north on Rt. 91 near the TV tower that had burned in 2007 

(37°06’01.9’’N, 113°49’22.7’’W). 

 

Soil analysis 

 Analysis of total carbon and nitrogen contents in the soil samples was performed by the 

ChemLab of the Max Planck Institute for Biogeochemistry (Jena, Germany)
3
. For the pH 

measurement, 1 g of soil was suspended in 10 ml of distilled water and shaken for 3 min. The 

slurry was allowed to settle for 30 min at room temperature before a pH electrode (Schott) was 

dipped into the supernatant to determine the soil pH.  

                                                 
3
http://www.bgc-jena.mpg.de/service/chem_lab/roma/elemental_analysis/elemental_analysis.shtml 
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Isolation of culturable endophytic bacteria  

 Ten days after germination, one seedling from each genotype (WT and transformed lines) 

was transferred individually to 7-cm pots containing the Utah soils. In total, three replicates per 

line and soil were cultivated. Plants and soils were cultured in the glasshouse (16 h : 8 h 

photoperiod at 200–300 µmol m
-2

 s
-1

, 25 : 21°C and 45–55% relative humidity) and watered with 

sterile distilled water. Plants were harvested at the end of the rosette stage of growth (23 d after 

transplanting) and the soil was carefully removed from the roots under running tap water. 

Endophytic bacteria were isolated as described by Long et al. (2008). Briefly, endophytic 

bacteria were isolated after removing epiphytes by surface disinfection using serial washing in 

70% ethanol for 1 min, sodium hypochlorite solution (1–1.5% available Cl
-
) (Sigma, Steinheim, 

Germany) for 2 min and three rinses in sterilized distilled water. The success of disinfection was 

verified by plating aliquots of the sterile distilled water used in the final rinse onto half-strength 

Yeast Peptone Dextrose Agar (YPDA) (Sigma) and incubating the plates at 30°C for 10 d. After 

surface disinfection, root tissue was cut and titrated in distilled water; appropriate dilutions were 

plated onto half-strength YPDA and incubated at 30°C for 2–10 d. After incubation, distinct 

colonies were picked from the plates. 

 Pure cultures were inoculated on half-strength YPDA slant tubes, incubated at 30°C for 2 

d and stored at 4°C. In addition, each culture was suspended in a 20% glycerol solution and 

stored at 80°C for long-term preservation. 

 

Bacterial ACCd and IAA production assay 

 ACCd activity was determined as described by Glick (1995), by measuring the amount of 

α-ketobutyrate produced when the enzyme ACCd cleaves ACC. The number of nanomoles of α- 

ketobutyrate produced by this reaction was determined by comparing the absorbance at 540 nm 

of a sample with a standard curve of α-ketobutyrate ranging between 0.1 and 1.0 nmol. IAA 

production was determined as described by Bric et al. (1991) using the colorimetric method. 

Briefly, DF salt agar medium supplemented with 5 mM L-tryptophan was inoculated with 

bacterial isolates, overlaid with a nitrocellulose membrane, and then incubated until bacterial 

colonies reached 1–2 mm in diameter. The membrane was moved to a filter paper saturated with 

Salkowski reagent and incubated until distinct red haloes formed around the colonies. Standard 

IAA was used as a positive control. 

 

Amplified ribosomal DNA restriction analysis 

 Immediately after the establishment of pure bacterial cultures, genomic DNA was isolated 

from 1-d-old cultures grown on half-strength YPDA plates. Single colonies were suspended in 

water to obtain suspensions of c. 10
5
 colony-forming units (CFU) ml

-1
; 0.5 µl was mixed with 4.5 

µl of extraction buffer (10 mM Tris-HCl, pH 7.6; 50 mM KCl; 0.1% Tween 20). Then the 

mixture was heated at 100°C for 10 min and immediately placed on ice. After centrifugation at 

6000 g for 5 min, the supernatant was used for PCR. Amplification of 16S rDNA was performed 

in a final volume of 10 µl containing 1 µl of genomic DNA, 10 µM of primers F27 (5’-

AGAGTTTATCMTGGCTCAG- 3’) (Edwards et al., 1989) and R1492 (5’-

GRTACCTTGTTACGACTT-3’) (Lane, 1991), 10 mM of each dNTP, 5 mM of MgCl2 and 0.05 
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U of Taq DNA polymerase (Eppendorf, Hamburg, Germany). A negative control (PCR mixture 

without DNA template) was included in all PCR experiments. The reaction conditions were as 

follows: 95°C for 2 min, followed by 30 cycles of denaturation at 95°C for 15 s, annealing at 

55°C for 20 s and primer extension at 72°C for 1 min, followed by a final extension at 72°C for 5 

min. The quality of the PCR reaction was examined by running an aliquot of the PCR mixture in 

1.2% (w ⁄ v) agarose containing ethidium bromide. Approximately 120 ng of DNA for each 

sample were digested in 20-µl reactions containing 2 µl of 10 x Buffer Tango (Fermentas)
4
, 10–

15 µl of sterile deionized water (depending on the DNA concentration) and 5 U of the restriction 

enzyme HinfI or MspI (Fermentas)
5
. The reaction was incubated at 37°C overnight. Band sizes 

were visualized in 2% agarose containing ethidium bromide under UV light. 

 Cluster analysis was performed to create dendrograms that grouped similar bacterial 

isolates from different plant genotypes and soil types together according to their banding profile. 

Unweighted pair-group moving average clustering and a Bray–Curtis similarity matrix were 

calculated for both restriction enzymes using the PAST
6
 multivariate statistics program. Bray–

Curtis clustering compares the presence or absence of restriction banding patterns in bacterial 

isolates from different plant genotypes and soil types. We refer to each banding pattern as an 

operational taxonomic unit (OTU). Given the fact that HinfI restriction (Fig. S1a) yielded a more 

diverse banding profile than did MspI digestion (Fig. S1b, see Supporting Information), further 

analysis was based on the HinfI restriction. 

 

16S rDNA gene sequencing  

 The same proportional number of bacterial isolates was selected for sequencing according 

to plant genotype, HinfI OTU clustering and soil type. PCR products were purified using a 

QIAquick
TM

 Gel Extraction Kit (QIAGEN, Hilden, Germany) following the manufacturer’s 

manual. Direct sequencing using the primer R1492 with expected size c. 600 bp was conducted in 

Big Dye Mix (Applied Biosystems, Foster City, CA, USA), and purification of the sequencing 

reactions was performed using a NucleoSEQ Kit (Macherey-Nagel, Düren, Germany) and 

sequenced on an ABI310 sequencer
7
 (Applied Biosystems). The editing of sequences was 

performed with EditSeq and SeqMan (DNAStar Lasergene 7, DNASTAR Inc., Madison, WI, 

USA). The analysis of sequences was carried out with the basic sequence alignment BLAST 

program (Altschul et al., 1997) run against the database from the National Center for 

Biotechnology Information
8
. The sequences were deposited in GenBank

9
 with the accession 

numbers FJ639178–FJ639250. Alignment with related sequences from type strains in GenBank, 

bootstrap calculations and phylogenetic tree construction were carried out with MEGA4 (Tamura 

et al., 2007). Distances, including pair-wise deletions and insertions, were calculated according to 

Jukes and Cantor (Jukes & Cantor, 1969), whereupon the overall neighbour-joining phylogenetic 

                                                 
4
 http://www.fermentas.com 

5
 http://www.fermentas.com 

6
 http://folk.uio.no/ohammer/past/ 

7
 http://www.appliedbiosystems.com 

8
 http://www.ncbi.nlm.nih.gov/BLAST 

9
 http://www.ncbi.nlm.nih.gov/Genbank/ 

http://folk.uio.no/
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dendrogram (Saitou & Nei, 1987) was inferred, rooted and bootstrapped 1000 times (Felsenstein, 

1985). 

 

Bacterial colonization assays in vitro and in the glasshouse 

 In order to test the specificity of the observed pattern of bacterial endophyte colonization 

among the plant genotypes, seedlings of each genotype were individually inoculated with one of 

10 bacterial endophytes (Table 1), called ‘single inoculation’: two bacterial strains exclusively 

isolated from one plant genotype, called ‘specialists’, two bacterial strains isolated from all three 

plant genotypes, called ‘generalists’, and two type strains from the DSMZ culture collection 

called ‘DSMZ generalists’, known to be able to colonize an array of plant species, were included 

in the experiments as ‘positive controls’. An additional set of seedlings from each genotype was 

inoculated with a mixture of all 10 bacterial endophytes, called ‘mixed inoculation’. The 

experimental set-up and the scheme for the cross-inoculation of bacterial isolates into host or 

non-host plants are described in Fig. 3a. Bacterial suspensions in sterile distilled water [optical 

density at 600 nm (OD600) = 1.2] were used for seed inoculation; control seeds were treated with 

sterile distilled water only. For the in vitro colonization assays, the inoculated seeds (20 seeds per 

Petri dish, three dishes for each combination) were incubated at room temperature overnight and 

transferred to sterile filter papers (Whatman No.1) in Petri dishes maintained in Percival growth 

chambers (13 h : 11 h day : night cycle, 155 µmol m
-2

 s
-1

, 26 : 24°C). One week after inoculation, 

bacterial isolation was carried out as described above. Two independent experiments were carried 

out for all seedling assays. Bacterial identity was determined by 16S rDNA sequencing.  

 In the glasshouse, 12-d-old seedlings were planted in Teku pots (five replicates per 

genotype and bacterial inoculum) in a random design (16 h:8 h photoperiod at 200–300 µmol m
-2

 

s
-1

, 25 : 21°C and 45–55% relative humidity). The Teku pots were placed in separate trays to 

avoid cross-contamination and watered whenever needed with sterile water. One milliliter of 

single inoculum of the following bacterial isolates (Table 1) was applied to the rhizosphere: P. 

brassicacearum DSM13227, Bacillus megaterium, Methylobacterium extorquens, 

Curtobacterium sp. and P. thivervalensis. Twelve days after inoculation, roots were collected and 

bacterial isolation was performed as described above. Bacterial identity was determined by 16S 

rDNA sequencing. One experiment was carried out. 

 

Seedling ET measurement 

 ET emissions from WT, ir-aco1 and 35S-etr1 seedlings were measured continuously and 

non-invasively in real time with a photoacoustic spectrometer (INVIVO, Saint Augustin, 

Germany), as described by von Dahl et al. (2007). Thirty seeds were germinated in 100-ml three-

neck flasks on filter paper and cultivated in a Percival growth chamber (13 h : 11 h day : night 

cycle, 155 µmol m
-2

 s
-1

, 26 : 24°C). After 12 d, the flasks containing the seedlings were subjected 

to ET measurements (five replicates per genotype). Five empty flasks with filter paper and sterile 

distilled water served as controls. 
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Table 1 Bacterial strains used in this study 

Bacterial strains/isolates Origin 

Characteristics 

Reference 

ACCd 
IAA-

Trp 

IAA+

Trp 

Sphingomonas sp. WT plant root, soil O2 + - + This study 

Curtobacterium sp. WT plant root, soil O2 + - + This study 

Bacillus endophyticus ir-aco1 plant root, soil O1 + - - This study 

Methylobacterium extorquens ir-aco1 plant root, soil O1 + - - This study 

Bacillus cereus 35S-etr1 plant root, soil O2 + + + This study 

Pseudomonas thivervalensis 35S-etr1 plant root, soil M1 + + + This study 

Bacillus megaterium ir-aco1 plant root, soil O1 + + + This study 

Bacillus simplex ir-aco1 plant root, soil O1 - + + This study 

Pseudomonas fluorescens 

DSM8568 
DSMZ + + + 

Long et al. 

(2008) 

Pseudomonas brassicacearum 

DSM13227 
DSMZ + + + 

Long et al. 

(2008) 

ACCd, 1-aminocyclopropane-1-carboxylate deaminase; DSMZ, Deutsche Sammlung von Mikroorganismen und 

Zellkulturen; IAA, indole-3-acetic acid; Trp, tryptophan. 

 

Table 2 Soil properties 

 

Soil Soil types 
C content 

(%) 

N content 

(%) 
pH 

O1 Organic, burned 18.72 0.73 8.5 

O2 Organic, unburned 17.77 0.73 8.6 

M1 Mineral, burned 3.16 0.07 9 

M2 Mineral, burned 2.6 0.08 8.8 
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Microscopic analysis and root morphological investigations 

 Seeds of WT, ir-aco1 and 35S-etr1 were germinated for 12 d on filter paper as described 

above. For root hair count, the first 1-mm section of the root was photographed under a Zeiss 

Image Z1 microscope (Zeiss, Jena, Germany; x 100 magnification). The pictures were printed 

and the numbers of root hairs were counted. Observation of the whole seedling was carried out 

using an Olympus SZX10 microscope (Zeiss; x 10 magnification). The root length of the 

seedlings was measured using a ruler. 

 

Seedling response assay 

 Shortly after isolation, 139 bacterial isolates were singly inoculated into WT seeds on 

filter paper as described above. Seedling growth responses to bacterial inoculum were classified 

as beneficial, pathogenic and neutral based on their effects on root length, hypocotyl length, 

number of true leaves and lateral root formation. ‘Beneficial’ means that the bacterium enhanced 

at least one of the above parameters and had no negative effect on the other parameters. 

‘Pathogenic’ means that the bacterium caused detrimental effects on at least one of the above 

parameters. ‘Neutral’ means that the bacterium did not cause any effect on the above parameters 

in the inoculated seedlings. 

 

Data analysis 

 Analysis of the data was carried out using the StatView software package (SAS Institute 

Inc., Cary, NC, USA) with a5completely randomized analysis of variance (P < 0.05). Fisher’s 

protected least-significant difference test was used to compare means of log CFU g
-1

 fresh weight 

(FW) of fresh root or seedling, root length, number of root hairs per seedling and number of 

ACCd- and IAA-producing bacteria.58 Res 

3.5 Results 

Both soil type and plant genotype influence the culturable endophytic bacterial community 

 The soils were characterized as organic (O1 and O2) and mineral (M1 and M2) based on 

the contents of carbon and nitrogen, and pH (Table 2). The total carbon contents of the two 

organic soils (O1 and O2) were 18.7% and 17.7%, respectively, and their nitrogen contents were 

similar (0.73%). The carbon contents of the two mineral soils (M1 and M2) were 3.2% and 2.6% 

and their nitrogen contents were 0.07% and 0.08%, respectively. The pH of these soils was in the 

range pH 8.5–9.0. In order to estimate the degree of colonization of the three genotypes grown in 

the different soils, the CFUs of endophytic bacteria representing the total culturable endophytic 

bacterial community for each plant genotype by soil type combination were determined (Fig. 1). 

On average, the colonization of WT plants was high, but variable, among the four soils, yet the 

colonization of ir-aco1 and 35S-etr1 plants varied even more. Plants grown in the two organic 

soils accommodated the most endophytic bacteria; those cultivated in the mineral soils M1 and 

M2 harbored significantly fewer (P < 0.05). No bacterial endophytes were isolated from ir-aco1 

and 35S-etr1 plants grown in the mineral soils, M1 and M2, respectively. A two-way ANOVA  
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Table 3 Number of culturable bacterial endophytes from different plant genotypes 

    

Bacterial genera/species WT ir-aco1 35S-etr1 

Bacillus sp. 11 7 3 

Bacillus simplex 2 2 1 

B. pumilus 1 1 3 

B. pichinotyi 1 - 1 

B. nealsonii 1 - - 

B. muralis 1 1 1 

B. megaterium 2 2 3 

B. endophyticus - 1 - 

B. cereus - - 1 

Curtobacterium sp. 2 - - 

Methylobacterium extorquens - 1 - 

Pseudomonas sp. 6 4 2 

Pseudomonas thivervalensis - - 2 

P. putida 1 - 1 

P. fluorescens 1 2 - 

P. brassicacearum 1 - - 

Sphingomonas sp. 1 - - 

Sphingobium sp. 1 - - 

Uncultured bacterium 1 - 1 

Total 33 21 19 
-, absence; the highlighted marks represent bacterial species specific for a particular genotype. 
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revealed that the total endophytic bacterial community depended significantly on both plant 

genotype and soil type (P < 0.05, Table S1).  

The diversity of culturable endophytic bacteria 

 In total, 139 bacterial isolates were picked from half-strength YPDA medium. However, 

36 bacterial isolates were not viable after long-term preservation. Looking at bacterial colony 

morphology, we found that WT plants harbored the highest bacterial diversity (68 isolates), 

followed by ir-aco1 (36 isolates) and 35S-etr1 (35 isolates). All isolates were grouped into 28 

OTUs according to similarities within HinfI-digested 16S rDNA banding patterns. For 16S rDNA 

sequencing, 73 representative isolates were chosen on the basis of the plant genotype, soil type 

and OTU cluster from which they were originally isolated (Fig. 2). 

 Figure S1 shows the Bray–Curtis similarity of the OTU clusters, in which the 

representative isolates with their origins (soil type and plant genotype) and the number of isolates 

for each OTU cluster are presented. Most of the bacterial isolates from organic and mineral soils 

were found to separate into distinct OTU clusters. Bacterial isolates belonging to Bacillus sp. 

were isolated only from plants grown in organic soils.  

 We analyzed the culturable bacterial diversity of three plant genotypes that differed in 

their production and perception of ET (Table 3, Fig. 2). WT plants were found to harbor the 

highest diversity of endophytic bacteria sequenced, followed by 35S-etr1 and ir-aco1 plants. 

Sequence analysis revealed that Bacillus sp. and Pseudomonas sp. were the most abundant genera 

isolated from WT and transgenic plants. Six bacterial genera were found in WT plants, three 

bacterial genera were found in 35S-etr1 plants and three bacterial genera were found in ir-aco1 

plants. Interestingly, a small fraction of these isolates were found exclusively in either WT or 

transgenic plants. Sphingobium sp., Sphingomonas sp., Curtobacterium sp., B. nealsonii and P. 

brassicacearum were found exclusively in WT plant roots. Pseudomonas thivervalensis and B. 

cereus were found only in 35S-etr1 plant roots, and M. extorquens and B. endophyticus, were 

found exclusively in ir-aco1 plant roots.  

 Bacterial diversity is also dependent on the soil type in which the different plant 

genotypes are grown. Plants grown in the two organic soils (O1 and O2) harbored a high 

endophytic bacterial diversity compared with the bacterial community of plants grown in the two 

mineral soils (M1 and M2); the latter community was represented by only Pseudomonas spp. The 

endophytic bacterial community of plants grown in the recently fire-affected soil, O1, was 

represented by two bacterial genera; by contrast, the endophytic bacterial community of N. 

attenuata plants grown in the unaffected soil, O2, was represented by six different genera (Table 

4). 

Specificity of bacterial endophyte colonization 

 All the seeds inoculated with bacteria germinated. Of the six specialist isolates, five were 

able to re-colonize their hosts and five were also found to colonize non-host seedlings on single 

inoculations (Fig. 3b and Fig. S2). The specialist for 35S-etr1, P. thivervalensis, colonized only 

35S-etr1 seedlings. The two generalists for all genotypes, B. megaterium and B. simplex, 

colonized 35S-etr1 and WT seedlings, but not ir-aco1 seedlings. The two DMSZ generalists, P.  
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Table 4 Number of culturable bacterial endophytes from different soil types 

 

Bacterial genera/species O1 O2 M1 M2 

Bacillus sp. 11 10 - - 

Bacillus simplex 3 2 - - 

B. pumilus - 5 - - 

B. pichinotyi 2 - - - 

B. nealsonii 1 - - - 

B. muralis 2 1 - - 

B. megaterium 2 5 - - 

B. endophyticus 1 - - - 

B. cereus - 1 - - 

Curtobacterium sp. - 2 - - 

Methylobacterium 

extorquens 
- 1 - - 

Pseudomonas sp. 1 4 3 4 

Pseudomonas 

thivervalensis 
- - 2 - 

P. putida - - 2 - 

P. fluorescens - 1 1 1 

P. brassicacearum - - - 1 

Sphingomonas sp. - 1 - - 

Sphingobium sp. - 1 - - 

Uncultured bacterium 2 - - - 

Total 25 34 8 6 
-, absence 

 

 

Table 5 Number of bacterial endophytes influencing growth
1
 of wild-type seedlings 

 

Soil 

type 

No. of total 

isolates 
Beneficial

2
 Pathogenic

3
 Neutral

4
 

O1 49 24 10 15 

O2 55 28 10 17 

M1 18 9 7 2 

M2 17 3 10 4 

Total 139 64 37 38 
1
,
 
Parameters measured: root length, hypocotyl length, number of true leaves and lateral root formation. 

2
,
 
Bacterium enhanced at least one of the above parameters and without negative effect on the other parameters. 

3
,
 
Bacterium caused detrimental effects on at least one of the parameters.  

4
, Bacterium did not influence any of the parameters. 
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Fig. 1 Colony-forming units (CFU) isolated from roots of wild-type (WT) and transgenic 

Nicotiana attenuata plants grown in four different soils. FW, fresh weight; nd, not detected.  
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Fig. 2 Phylogenetic tree showing the relative positions of bacterial isolates as inferred from their 

16S rDNA gene sequences using the neighbor-joining method. Bacterial species preceded by 

their GenBank accession numbers were used as standard strains. Flavobacterium degerlachei 

(AJ557886) was used as an outgroup organism. Bootstrap values above 50 are shown, 

representing the percentage of support for clusters out of 1000 replications. M, mineral; O, 

organic. The scale gives genetic distances. Seventy-three representative isolates were chosen 

based on the plant genotype, soil type and operational taxonomic unit (OUT) cluster from which 

they were isolated.  
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Fig. 3 In vitro colonization of different plant genotypes by individual bacterial isolates from 

treatment with single (b) and mixed (c) inoculum. The identity of bacterial isolates was 

confirmed by 16S rDNA sequencing. CFU, colony forming units; FW, fresh weight; nd, not 

detected; WT, wild-type. The arrows depict specific isolates for each plant genotype. Different 

shading patterns depict bacterial isolates. Schematic diagram (a) describes bacterial inoculation, 

re-isolation and identification. 
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fluorescens DSM8568 and P. brassicacearum DSM13227, colonized WT and the two transgenic 

seedlings. Interestingly, 35S-etr1 seedlings were colonized by all isolates on single inoculations. 

In the mixed inoculation treatments, the generalists, P. fluorescens DSM8568 and P. 

brassicacearum DSM13227, were able to infect all plant genotypes (Fig. 3c). Notably, the 

specialists Curtobacterium sp. and M. extorquens were able to re-colonize their particular hosts, 

WT and ir-aco1, respectively. The generalist P. brassicacearum DSM13227 fully colonized 35S-

etr1 seedlings. 

Re-colonization and persistence in the glasshouse 

 The selected endophytic bacteria were able to re-colonize their hosts in a highly diverse 

and competitive environment in a non-sterile inoculation experiment under glasshouse conditions 

(Fig. 4). Of the five bacterial isolates (Table 1), P. brassicacearum DSM13227 and B. 

megaterium were reisolated from the roots of all N. attenuata genotypes, whereas M. extorquens 

was found to re-colonize only the roots of ir-aco1 and 35S-etr1 plants. Curtobacterium sp. and P. 

thivervalensis did not colonize any N. attenuata genotype. 

 

Effects of bacterial endophytes on seedling growth 

 Single inoculation of 139 isolates into WT seeds affected seedling growth; the 

germination rate, however, was not influenced. Of these 139 isolates, 64 were beneficial with 

respect to seedling growth, 37 were pathogenic and 38 were neutral (Table 5). Among these 64 

PGP isolates, 35 showed ACCd activity and 37 produced IAA. However, 25 isolates lacking 

ACCd activity and 21 isolates unable to produce IAA also promoted seedling growth. On the 

other hand, 13 isolates showing ACCd activity and 17 isolates producing IAA did not enhance 

seedling growth. Using plants impaired in either ET production (ir-aco1) or perception (35S-

etr1), we investigated the influence of plant ET signaling on the recruitment of ACCd- and IAA-

producing bacteria. The number of isolates producing ACCd and IAA was not significantly 

different among the plant genotypes (P > 0.05, Tables S2, S3). However, the abundance of 

bacteria producing ACCd and IAA was greater in organic soils O1 and O2 (Fig. 5), whereas, in 

the mineral soil M1, plants harbored significantly fewer ACCd- and IAA-producing isolates (P < 

0.05, Tables S2, S3), and no ACCd- and IAA-producing bacteria were detected in the plants 

grown in soil M2. 

 

ET production and root morphology of WT and transgenic plants 

 Constitutive ET emissions of 35S-etr1 seedlings were significantly higher than those of 

WT and ir-aco1 seedlings (P < 0.0001) (Fig. 6a). WT seedlings produced a significantly larger 

number of root hairs in the investigated section than did seedlings of ir-aco1 and 35S-etr1 lines 

(P < 0.0001) (Fig. 6b).Moreover, the roots of 35S-etr1 and ir-aco1 seedlings were significantly 

longer than those of WT seedlings (P = 0.001) (Fig. 6c). The number of lateral roots was similar 

for the three genotypes (data not shown). 

  



 Manuscript I  

  33 

 
Fig. 4 Colonization of different plant genotypes by individual bacterial isolates under glasshouse 

conditions. CFU, colony forming units; FW, fresh weight; nd, not detected. 

  



Manuscript I 

34 

 
Fig. 5 Abundance of endophytic bacteria producing 1-aminocyclopropane-1-carboxylate 

deaminase (ACCd) (a) and indole-3-acetic acid (IAA) (b). Nicotiana attenuata wild-type (WT) 

(black bars), ir-aco1 (grey bars) and 35S-etr1 (white bars). nd, not detected. 
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Fig. 6 Ethylene (ET) production (a), root length (b), root hair number (c) and seedling 

morphology (d) (x 10 magnifications) of  wild-type (WT), ir-aco1 and 35S-etr1 Nicotiana 

attenuata seedlings; bars, 2mm; the brackets depict the zone of root hair counting. DW, dry 

weight.  



Manuscript I 

36 

3.6 Discussion 

 The composition of a plant’s bacterial endophyte community is likely to be determined by 

many selective factors, including soil type and plant genotype as well as stochastic sampling 

factors (Hardoim et al., 2008), all of which influence the structure of bacterial endophyte 

populations. Soil type is known to be a major determinant of the composition of the soil 

microbial community and, in turn, of the endophytic microbial communities (Singh et al., 2009). 

In this study, we have demonstrated that the soil type strongly influences the plant culturable 

bacterial endophyte community, as shown by Rasche et al. (2006). In addition, we report for the 

first time that plant ET signaling indirectly influences the recruitment of root bacterial 

endophytes in N. attenuata. 

 Soil is considered as an endophyte bank, a ‘marketplace’ in which negotiations between 

plants and endophytes take place. Total culturable bacterial colonization, as well as bacterial 

OTU clusters, were significantly higher in plants grown in the two organic soils with higher 

carbon and nitrogen contents (Table 2) than in plants grown in the two mineral soils (Fig. 1, and 

Fig. S1). It is widely accepted that organic matter promotes both plant and soil microbial growth 

as a result of higher carbon, phosphorus and nitrogen supply rates (Vaidya et al., 2008), and 

enhanced nutrient availability may allow plants to support larger populations of endophytic 

bacteria. We found that the plants grown in the recently burned soil O1 and the unburned soil O2 

harbored similar numbers of total culturable endophytic bacteria; however, they differed with 

respect to diversity. These findings concurred with the study of Hamman et al. (2007), who found 

no significant difference in total microbial biomass between unburned and burned soils, but a 

difference in community diversity. The recent invasion of cheat grass into the Great Basin Desert 

has dramatically shortened the average fire cycle of this habitat, and conclusions about the 

importance of fire in structuring soil communities will require more detailed investigations. 

 ET signaling plays an important role in mediating different types of induced plant 

resistance to pathogens: induced systemic resistance by rhizobacteria (van Loon et al., 2006) and 

systemic acquired resistance (SAR) by pathogens (Sticher et al., 1997). One may ask whether 

these plant defense responses that require ET signaling also affect a plant’s endophytic bacterial 

community. Hallmann (2003) experimentally induced resistance in potato plants by applying 

Rhizobium etli G12 to one-half of a split potato root system, and showed that the total bacterial 

diversity and number of bacterial species were significantly higher in elicited than in non-elicited 

roots. Using the Arabidopsis SAR mutants cpr1 and npr1-1, Hein et al. (2008) found differences 

in the rhizosphere community fingerprints of the mutant plants compared with WT; however, 

there was no clear decrease in rhizosphere species’ diversity associated with constitutive SAR 

expression. Our study provided evidence that plant ET signaling influences the initial recruitment 

of bacterial communities from the soil. In native soils, N. attenuata WT plants harbored a more 

diverse bacterial community than did ir-aco1 and 35S-etr1 plants, a result opposite to the 

expectation that impairments of ET signaling would be associated with increases in bacterial 

endophyte population and diversity. The smaller and less diverse community found in ET 

signaling-deficient plants suggests that many bacterial species may require the plant’s ability to 

produce and ⁄ or perceive ET for them to become endophytic.  
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 However, the lack of ET signaling might facilitate plant–endophyte communication. For 

example, P. thivervalensis was originally isolated only from 35S-etr1 plants and, even under 

stringent conditions (single in vitro inoculation), it was only able to colonize 35S-etr1 plants, 

suggesting that high levels of ET, coupled with an insensitivity to ET, are required for 

colonization (Fig. 3b). This is consistent with the findings of Persello-Cartieaux et al. (2001), 

who showed a similarly intimate relationship between the rhizosphere bacterium P. thivervalensis 

and A. thaliana mutant plants insensitive to IAA. Dong et al. (2003) demonstrated the existence 

of a specific colonization pattern for the Salmonella–Md. truncatula interaction. By testing four 

Salmonella strains and two Md. truncatula lines (WT and the symbiosis mutant dmi1), they 

showed that the colonization of the host plant was an active process. Hence, the recruitment of 

soil-dwelling bacteria into the endosphere is probably defined by host genotype and specific 

genes.  

 As the ir-aco1 and 35S-etr1 plants have not yet been metabolically characterized beyond 

their differential ET production and perception, uncharacterized changes in root metabolomics 

(e.g. ACC accumulation) and exudates could explain the observed patterns of bacterial 

association (Bais et al., 2006; Buer et al., 2006; Hartmann A et al., 2008). In addition, we 

hypothesize that root morphology might influence the endophytic bacterial community, as soil-

dwelling bacteria probably enter roots via cracks in lateral root junctions and through root hairs 

(Glick et al., 1999). Further, Depret and Laguerre (2008) reported that modifications in host root 

and nodule development appear to influence the ability of particular rhizobial genotypes to 

colonize the host legume. We found that ET signaling affected the root morphology of N. 

attenuata seedlings (Fig. 6d). WT plants, which have significantly more root hairs, might provide 

microbes with a greater number of points of entry; however, the stochastic sampling process may 

also account for the more diverse endophytic bacterial community (Hardoim et al., 2008). 

 Not only do plants select particular bacterial communities, but interactions among 

bacteria themselves and with other microbes influence colonization success. Complex dynamics 

in the bacterial communities, such as facilitation and competition, might play a role in the 

colonization process (Li & Alexander, 1986; Ramos et al., 2003; Rosenblueth & Martinez-

Romero, 2004; Verma et al., 2004). Li and Alexander (1986) showed that Enterobacter 

aerogenes, Pseudomonas marginalis, Acinetobacter sp. and Klebsiella pneumoniae suppressed 

the colonization by Rhizobium meliloti of roots grown on agar, and reduced nodulation by R. 

meliloti. In the mixed inoculation studies, we found that 35S-etr1 seedlings were fully colonized 

by the DSMZ generalist P. brassicacearum DSM13227 (Fig. 3c), which apparently could 

exclude even the specialist P. thivervalensis. However, in WT and ir-aco1 plants, the specialists 

successfully re-colonized their hosts in mixed inoculation experiments (Fig. 3c), suggesting that 

synergistic interactions occurred among the bacterial endophytes (Sturz et al., 1997). In general, 

at least one of the two DSMZ generalists was able to colonize the three N. attenuata lines on 

single or mixed inoculation. These two strains belong to the genus Pseudomonas, which is known 

to be a rapid and successful plant colonizer, even under highly competitive situations 

(Lugtenberg et al., 2001). 

 One of the advantages of studying culturable endophytic bacterial communities is the 

ability to investigate their effects on plant growth (Barriuso et al., 2008). We found that about 
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one-half of the isolates were beneficial for WT plant growth (Table 5) under in vitro conditions. 

However, several ‘endophytic’ isolates had pathogenic or neutral effects. How a particular 

bacterial endophyte community is selected by the host plant may reveal how plants tolerate harsh 

conditions. One example can be seen in the recruitment of beneficial ET-related bacterial 

communities by the host plant: the ACCd- and IAA-producing bacteria. These bacteria were 

abundant in plants grown in the organic soils O1 and O2 (Fig. 5). One might expect that plants 

whose ET signaling ability is impaired (35S-etr1 and ir-aco1), which causes them to misread 

environmental signals and experience stress, might recruit such beneficial bacteria to a greater 

extent than do WT plants. Interestingly, our results did not support this expectation: the different 

plant genotypes did not recruit ACCd⁄ IAA-producing bacteria differently. It might be possible 

that cultivated plants which rely on ACCd⁄ IAA-producing bacteria to ameliorate abiotic stresses 

actively select for these bacterial communities under stress conditions (Glick et al., 2007). 

However, native plants, such as N. attenuata, which have evolved to tolerate stressful 

environments, might not recruit ACCd-producing bacteria as PGP rhizobacteria, but merely let 

them in, where they thrive as parasites. Thus, we propose that a plant’s ability to produce or sense 

ET does not directly control the recruitment of these communities for native plants (Fig. 5, Tables 

S2, S3). Furthermore, an association between plant growth and ACCd⁄ IAA production was found 

in only one-half of the PGP isolates; hence, there are clearly many other ways by which bacterial 

endophytes can promote growth. 

 In conclusion, the results confirm the central role of soil type, and highlight, to a lesser 

extent, the role of ET signalling in shaping endophytic bacterial community structure. Specific 

interactions between endophytic bacteria and their host plants are regulated not only by plant ET 

signaling, but also by the bacteria themselves. The host plant’s ability to recruit ACCd⁄ IAA-

producing bacteria seems to be independent of ET signaling. 
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3.9 Supplemental Figures and Tables 

 

Fig. S1 Dendrograms showing the operational taxonomic units (OTUs) of the culturable 

endophytic bacterial isolates (HinfI (a) and MspI (b)) 
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Fig. S2 The second independent experiment of in vitro colonization of different genotypes by 

bacterial endophytes from single inoculum (a) and mixed inoculum (b) treatment. 
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Table S1 ANOVA table comparing effects of plant genotype and soil type on the total bacterial community 

 DF Sum of 

Squares 

Mean 

Square 

F-

Value 

P-

Value 

Lambda Power 

Soil type 3 17.469 5.823 5.446 0.0035 16.337 0.918 

Plant genotype 2 9.117 4.559 4.263 0.0220 8.526 0.708 

Soil type*  

Plant genotype 

6 16.382 2.730 2.553 0.0371 15.320 0.774 

Residual 35 37.425 1.069     
 

Table S2 ANOVA table comparing effects of plant genotype and soil type on the number of ACCd-producing 

bacteria 

 DF Sum of 

Squares 

Mean 

Square 

F-

Value 

P-

Value 

Lamda Power 

Soil type 3 140.503 46.834 8.511 0.0003 25.534 0.991 

Plant 

genotype 

2 4.681 2.341 0.425 0.6572 0.851 0.111 

Soil type* 

Plant 

genotype 

6 52.428 8.738 1.588 0.1828 9.528 0.519 

Residual 32 176.083 5.503     
 

Table S3 ANOVA table comparing effects of plant genotype and soil type on the number of IAA-producing bacteria 

 DF Sum of 

Squares 

Mean 

Square 

F-

Value 

P-

Value 

Lamda Power 

Soil type 3 178.995 59.665 8.011 0.0004 24.033 0.987 

Plant genotype 2 2.369 1.184 0.159 0.8537 0.318 0.072 

Soil type* 

Plant genotype 

6 18.347 3.058 0.411 0.8665 2.463 0.148 

Residual 32 238.333 7.448     
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4.1 Abstract  

 Many plants have intimate relationships with soil microbes, which improve the plant’s 

growth and fitness through a variety of mechanisms. Bacillus sp. isolates are natural root 

associated bacteria, isolated from Nicotiana attenuata plant roots growing in native soils. A 

particular isolate B55, was found to have dramatic plant growth promoting (PGP) effects on wild 

type (WT) and transgenic plants impaired in ethylene (ET) perception (35S-etr1), the genotype 

from which this bacterium was first isolated. B55 not only improves N. attenuata growth under in 

vitro, glasshouse and field conditions, but it also “rescues” many of the deleterious phenotypes 

associated with ET insensitivity.  Most notably, B55 dramatically increases the growth and 

survival of 35S-etr1 plants under field conditions. To our knowledge, this is the first 

demonstration of a PGP effect in a native plant-microbe association under natural conditions. Our 

study demonstrates that this facultative mutualistic plant-microbe interaction should be viewed as 

part of the plant’s extended phenotype. Possible modalities of recruitment and mechanisms of 

PGP are discussed. 

4.2 Keywords  

Nicotiana attenuata, Bacillus sp., ethylene insensitive, plant growth promotion, microbial 

community, nature 
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4.3 Introduction 

 In addition to the well-studied mutualistic associations that plants have evolved with 

nitrogen-fixing microbes and mycorrizhae (Franche et al., 2009; Kiers et al., 2011), plants also 

associate with plant growth promoting bacteria (PGPB), which refer to rhizobacteria and 

endophytes enhancing their host’s growth and productivity. PGPB have been intensively studied 

in the context of agricultural practices as means of increasing the productivity of cultivated plants 

(Maheshwari, 2011). Much less is known about the role of PGPB in an ecological context and 

whether they increase the growth or fitness of native plants remains unknown. Only a few studies 

have reported on the root-associated bacterial communities of native plants (Zinniel et al., 2002; 

Long et al., 2008; Long et al., 2010), and it is not known if the plant-growth-promoting (PGP) 

effects of PGPB occur in nature. 

 Several mechanisms have been postulated to explain how PGPB stimulate plant growth; 

broadly categorized as being either direct or indirect (Glick, 1995). Direct mechanisms include 

the interference with plant hormone homeostasis and increasing nutrient availability to the host 

by solubilizing inorganic phosphate, or fixing of atmospheric nitrogen (Gamalero & Glick, 2011). 

Furthermore, in vitro studies have suggested that PGP effects can be mediated by the release of 

volatile organic compounds (Ryu et al., 2003) which by still unknown mechanisms have PGP 

effects. PGPB that promote plant growth indirectly by suppressing pathogens and eliciting 

induced systemic resistance (ISR) are well-known in biological control or defense against insect 

herbivores (Pineda et al., 2010; Gamalero & Glick, 2011). Bacteria qualify as PGPBs when they 

are able to colonize and elicit positive effects for the plant (Compant et al., 2010). Some bacterial 

formulations are commercially available for agriculture, even though PGPB often lose their PGP 

effects when applied under field conditions (reviewed in Kloepper et al., 1989). The inoculation 

of soil with these microbes may affect the composition and structure of microbial communities, 

which can result in positive effects on plant growth (Ramos et al., 2003; Jha et al., 2010), but 

opposite effects have also been reported (Castro-Sowinski et al., 2007; Berg & Zachow, 2011). 

 The plant hormone ethylene (ET) is known to regulate many different physiological and 

developmental processes in plants, such as seedling emergence, leaf and flower senescence and 

organ abscission, and it is also known to mediate plant responses to abiotic and biotic stresses 

(Bleecker & Kende, 2000; van Loon et al., 2006). Blocking ET perception with inhibitors such as 

1-methylcyclopropene (1-MCP) helps to increase the longevity of flowers, fruits and ornamental 

plants (Serek et al., 1995). Ectopically expressing a mutant ET receptor from Arabidopsis (etr1-

1) renders plants constitutively insensitive to ET and has revealed the many roles of ET in 

negotiating (a)biotic stresses (Chang et al., 1993). Transgenic Tetr tobacco plants are unable to 

withstand attack from common, generally non-pathogenic, opportunistic soil-borne fungal 

organisms (Knoester et al., 1998; Geraats et al., 2002). Transgenic petunia had poor root 

development of cuttings, less efficient seed germination and rooting, and delayed seedling growth 

(Wilkinson et al., 1997; Clark et al., 1999). Several studies found that ET signaling also plays 

important roles in the communication between plants and mutualistic microbes (Penmetsa, 1997; 

Iniguez et al., 2005; Camehl et al., 2010; Long et al., 2010). For example, Pseudomonas 

thivervalensis was originally isolated from 35S-etr1 transformed Nicotiana attenuata plants, and 
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even under stringent conditions (single in vitro inoculation) was only able to colonize these 35S-

etr1 plants, suggesting that high levels of ET production (a trait associated with ET insensitivity 

(von Dahl et al., 2007)) coupled with ET insensitivity and its associated changes in metabolism 

are required for this specific colonization process (Long et al., 2010).  

 We have developed N. attenuata (coyote tobacco) as a model plant to identify the traits 

required for the survival of plants in the rough and tumble of their natural environments. To this 

end we have developed a molecular tool box and a field station so that we transform plants 

(silenced in the expression of specific genes), fully characterize them under glasshouse conditions 

and release them into their natural habitat at the field station for detailed characterizations of their 

ecological performance (Baldwin, 2001). In a previous study (Long et al., 2010), we planted wild 

type (WT) and isogenic lines transformed to be defective in ET production and perception (ir-

aco1 and 35S-etr1) in native Utah soils collected from areas with natural seed banks, to identify 

the culturable endophytic bacterial community that colonizes N. attenuata seedlings when they 

germinate from their long-lived seed banks. Isolates of Bacillus sp. strains were found in the roots 

of the three lines and one particular isolate, dubbed B55, isolated from the roots of 35S-etr1 

plants appeared to be beneficial for in vitro seedling growth. Here we explore the PGP potential 

of this native bacterial isolate, B55, in WT and 35S-etr1 hosts grown in vitro, in the glasshouse 

and finally at the field station in Utah. 

 We had planted 35S-etr1 plants into native habitats of the Great Basin Desert in Utah for 

4 field seasons, and learned that these ET insensitive plants have many of the same difficulties 

described above for transformed cultivated tobacco and petunia. The plants have problems 

establishing strong root growth at the seedling stage, in resisting pathogen attack during rosette 

stage growth, and herbivore attack during the flowering stage (Paschold et al. 2007; IT Baldwin 

unpublished results), difficulties which strongly reduce their survivorship compared to WT plants 

in the field. Hence these plants were ideal for conducting the first study of the potential PGP 

effects of a native bacterium (B55) on its host plant in nature. We had fully expected, given what 

is known about the mechanisms by which PGP comes about (e.g. alterations in ET homeostasis) 

and the speed with which microbial communities evolve, not to see any PGP effects in nature. 

However, B55 inoculation not only improved N. attenuata WT’s growth under in vitro, 

glasshouse and field conditions, but it also “rescued” many of the deleterious phenotypes of 35S-

etr1 plants and dramatically increased their survival under field conditions. 

4.4 Material & Methods  

Plant materials and bacterial strain 

 The 30
th

 selfed WT line of Nicotiana attenuata, originally collected from a native 

population 35km upstream from the field plantation, and an isogenic ET insensitive transgenic 

line (35S-etr1; A-03-328-8), fully characterized in von Dahl et al. (2007) were used in all 

experiments. The other transgenic N. attenuata lines used for plant growth promotion assays 

(Figure 8) were also fully characterized and these lines and their associated references are 

summarized in Table 2. Seed germination procedures have been described elsewhere (Long et al., 

2010). Bacillus sp. B55 (Genebank accession number: JX101913) was isolated from an 35S-etr1 
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plant grown in native Utah soil (Long et al., 2010). Unless noted otherwise, B55 was routinely 

cultured on half-strength yeast peptone dextrose agar (YPDA; Sigma, Steinheim, Germany) at 

30°C.  

 

Bacterial ACCd, IAA production and P solubilization assays  

 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd) activity was determined 

as described by Glick (1995) by measuring the amount of α-ketobutyrate produced when the 

enzyme ACCd cleaves ACC. The nmoles of α-ketobutyrate produced by this reaction were 

determined by comparing the absorbance at 540 nm of a sample to a standard curve of α-

ketobutyrate ranging between 0.1 and 1.0 nmol. 

 Indole-3-acetic acid (IAA) production was determined as described by Bric et al. (1991) 

using the colormetric method. Briefly, DF salt medium supplemented with 5 mM l-tryptophan 

was inoculated with bacterial isolates and incubated at 30°C. After an incubation period of 48 h 

on a rotary shaker (200 rpm, 30
o
C), bacterial cells were removed by centrifugation (4000 x g, 10 

min). One mL of bacterial supernatant was mixed vigorously with 2 mL of Salkowski’s reagent. 

The mixture was incubated at room temperature for 20 min and the absorbance was measured at 

540 nm. Synthetic IAA was used as a positive control.   

 An inorganic phosphate (P) solubilization assay was carried out after Verma et al. (2001) 

by inoculating bacterial isolates on Pikovskaya medium. Plates were stabbed using sterile 

toothpicks. The halo and colony diameters were measured 14 days after the plates were incubated 

at 30
o
C. 

 

Inoculation procedures  

 Surface sterilized seeds were incubated over night at room temperature in 3 mL of 

bacterial suspension in sterile water (OD600=1.0); controls were treated with sterile water only. If 

not otherwise stated, seeds were transferred to Petri dishes containing GB5 medium (Gamborg’s 

B5 media, Duchefa, Haarlem, The Netherlands) and maintained in a Percival growth chamber 

(13/11 h day/night cycle, 155 μmol m
-2

 s
-1

, 30/28°C). For “late stage” inoculations, 10-day-old 

seedlings were transferred to Teku pots (Poeppelmann, Lohne, Germany) filled with sand (0.7-

1.2 mm grain size, Raiffeisen, Germany). At day 20, plants were carefully removed from the sand 

and roots dipped for 2 min into a B55 suspension (OD600=1.0). Afterwards, plants were placed in 

10 cm round pots containing lecaton (Easy Green, Eschborn, Germany & Fibo ExClay, Lamstedt, 

Germany) and sand (Figure 4A). Three and six days after transfer, plants were once again 

inoculated by pouring 50 mL of a B55 suspension (OD600=1.0) over the roots. 

 

Plant ET, IAA  and P content quantification 

 ET emissions from B55-inoculated and non-inoculated WT and 35S-etr1 seedlings were 

measured non-invasively with a photoacoustic spectrometer (INVIVO, Sankt Augustin, 

Germany) as described by von Dahl et al. (2007) . Thirty seeds were germinated in 100 mL three-

neck flasks on filter paper and cultivated in a Percival growth chamber (13/11 h day/night cycle, 

155 μmol m
-2

 s
-1

, 30/28°C).  After 12 days, flasks containing the seedlings were subjected to ET 
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measurements (5 replicates per treatment). Five empty flasks with filter paper and sterile water 

served as controls. Two independent experiments were carried out. 

 For IAA quantification, 12-day-old B55-inoculated and non-inoculated WT and 35S-etr1 

seedlings were harvested and immediately frozen in liquid nitrogen and stored at -80°C until 

analysis. Approximately 500 mg ground seedling powder was extracted according to the method 

by Onkokesung et al. (2010) and analyzed on a 1200L quadrupole tandem mass spectrometry 

system (Varian
10

). 

 Dried rosette material of B55-inoculated or control WT (38-day-old) plants was used for 

total P analysis. Analysis was conducted using a microwave-assisted digestion. Briefly, about 100 

mg of sample were dissolved in 3 mL suprapur 65% HNO3 (Merck, Darmstadt, Germany) and 

digested in a Multiwave® (Anton Paar, Graz, Austria). Subsequently, samples were transferred to 

50 mL glass vessels and diluted with ultrapure water (Millipore) and submitted to analyses by 

ICP-OES (OptimaTM 3300 DV, PerkinElmer, Shelton, CT, USA). P was detected at λ = 177.4 

nm. SRM 1573a tomato leaves and SRM 1575a pine needles (NIST, Gaithersburg, USA) were 

used as reference material. Total P analysis was carried out at the Max Planck Institute for 

Biogeochemistry, Jena, Germany. 

 

In vitro seedling growth measurements  

 Length of the primary root and number of lateral roots of vertically (Figure 1A, upper 

panels) grown B55-inoculated or non-inoculated WT and 35S-etr1 seedlings were determined 

after 10 days of growth. After 12 days of horizontal growth (Figure 1A, lower panels), secondary 

leaves were counted and leaf surface area was analyzed (according to the video tutorial by Zach 

Jarou
11

) using Adobe Photoshop C5. Chlorophyll a and b contents of 12-day-old seedlings were 

analyzed spectrophotometrically from an 80 % acetone extract using a TECAN plate reader 

(Tecan, Crailsheim, Germany). Two independent experiments with four replicate Petri dishes 

containing at least seven (vertical placement) or 20 seeds (horizontal placement) were carried out. 

In vitro B55 colonization was determined for seedlings grown for 8 days on Whatman No. 1 filter 

paper amended with 1.5 mL of sterile fertilizer (0.6 g Ca(NO3)2.4H2O  and 0.3 g Flory 

Basisdünger 1 [Euflor,
 
Munich, Germany] per L). Two independent experiments were carried 

out.  

 

Bacterial re-isolation 

 Rhizoplane bacteria were isolated by vigorously vortexing roots in sterile water for 2 min; 

appropriate dilutions were mounted on half-strength YPDA and incubated at 30
o
C. Endophytic 

bacteria were isolated following the procedure of Long et al. (2010) by removing root epiphytes 

by surface disinfection. After appropriate surface disinfection, root tissue was cut and titrated in 

distilled water; dilutions were plated onto half-strength YPDA and incubated at 30
o
C. After 2-3 

days, colony forming units (CFUs) of B55 were counted based on colony morphology. Identity 

                                                 
10

 http://www.varianinc.com 
11

 http://www.chlorofilms.org/index.php/crpVideo/display/videoid/46 

http://www.varianinc.com/
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was confirmed by 16S rDNA sequencing (Long et al., 2010). The isolates were identified using 

the EzTaxon-e server
12

 (Kim et al., 2012) based on the 16S rRNA sequence data. 

Plant growth promotion experiments in the glasshouse and field  

 For glasshouse experiments (Figure 3A), 10-day-old B55-inoculated or non-inoculated 

seedlings were planted into separate TEKU pots containing sand and lecaton. At 20 dpi, plants 

were transferred to 10 cm diameter round pots containing lecaton and sand. Pots were placed in a 

randomized design in the glasshouse (22° C, 65% humidity, 16 h light) in separate bottom 

containers to avoid cross-contamination. Plants were fertilized every other day with 50 mL 

distilled water amended with 0.6 g Ca(NO3)2.4H2O  L
-1

 and 0.3 g Flory Basisdünger 1 L
-1

. 

Survival of plants was monitored (24 dpi) and length of the longest leaf or stalk height was 

measured every other day. Total seed capsule number was determined at the end of the 

experiment (63 dpi). Colonization by B55 was measured 30 dpi; roots were collected and 

bacterial isolation was performed as described above. Bacterial identity was determined by 16S 

rDNA sequencing. Two independent experiments were carried out for the analysis of B55 effects 

on glasshouse-grown plants.  

 Field experiments were conducted at the at Brigham Young University’s Lytle Ranch 

Preserve located in the Great Basin Desert, in SW Utah, USA. The release of transgenic plants 

was carried under APHIS notification 06-242-3r-3a and the seeds were imported under permit 

number 10-004-105m. Petri dishes containing 3-day-old B55-inoculated or non-inoculated WT 

and 35S-etr1 seedlings were shipped to the field station. Fourteen days after germination, the 

seedlings were transferred to pre-hydrated 50 mm peat pellets (Jiffy 703
13

) and seedlings were 

gradually adapted to the high light and low relative humidity of the habitat over a 2-week-period. 

Pre-adapted rosette-stage plants were transplanted into an irrigated field plot in size-matched 

quadruplets (consisting of one B55-inoculated and one non-inoculated WT and 35S-etr1 plant in 

a randomized design: Figures 5A-D), 31 dpi. Survival of the plants was assessed at 46 dpi, rosette 

diameters were measured 46, 62 and 73 dpi; stalk height measured at 62 and 73 dpi and the 

number of flowers was counted at 73 dpi. B55 colonization was quantified at 47 and 73 dpi for 5 

randomly selected quadruplets of plants. Plants were carefully excavated and the loosely attached 

soil was removed before plants were wrapped in moistened paper towels and sent to the 

laboratory facility in Jena, Germany. Re-isolation of culturable bacteria was carried out as 

described, immediately after arrival (2 days after removal from the field). Other culturable, 

dominant resident bacterial isolates were counted based on colony morphology and the identity of 

representatives was determined by 16S rDNA sequencing. The experiment was conducted once 

for 35S-etr1 plants (2009 field season) and twice for WT (2009 and 2010 field seasons). 

 

Data analysis 

 Data analysis was carried out with the StatView software package (SAS Institute) with a 

completely randomized analysis of variance. One-way and two-way ANOVAs followed by 

                                                 
12

 http://eztaxon-e.ezbiocloud.net/ 
13

 http://www.jiffypot.com 
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Fisher’s PLSD test or t-test were used to compare differences among treatments. Correlation 

analysis was performed with simple regression tests. 

4.5 Results  

Bacillus sp. B55 characteristics and in vitro PGP 

 Bacillus sp. B55 was isolated from the endosphere of an ET insensitive 35S-etr1 N. 

attenuata plant grown in native Utah soil (Long et al., 2010). Re-isolation experiments have 

shown that this Gram-positive bacterium is able to colonize the endosphere and rhizoplane of N. 

attenuata roots; with the rhizoplane typically harboring 10
3
 more bacteria than the endosphere 

(data not shown). 

 Inoculation of WT and 35S-etr1 seeds with B55 revealed dramatic PGP effects on the in 

vitro growth of WT and especially 35S-etr1 seedlings. The ET insensitive transgenic line 

produces few root hairs and lateral roots (Long et al., 2010) and tends to grow poorly on Petri 

dishes (Figure 1B). B55-inoculation enhanced WT and 35S-etr1 seedling growth significantly as 

clearly seen in seedling leaf surface area (62 and 105 % increase, respectively) and in the 

production of true leaves (three and six times more true leaves per seedling, respectively). 

Seedling chlorophyll a content increased by 45 and 20 % and chlorophyll b content by 80 and 24 

% for WT and 35S-etr1, respectively (Figure 1C). Although primary root length of WT and 35S-

etr1 seedlings tended to decrease by 36 and 11 % after B55-inoculation, lateral root number 

increased significantly. On average, B55-inoculated WT and 35S-etr1 roots had 8 and 7 times 

more lateral roots, respectively (Figure 1D, left panels). Interestingly, B55 colonization of the 

endosphere of 35S-etr1 seedlings was more than 10 times higher than in WT, while rhizosphere 

colonization was similar (Figure 1D, right panels). 

 In order to understand the underlying mechanisms of the PGP effect, B55 was tested for 

known PGP traits. In vitro cultures of B55 produced 0.303 ± 0.026 µM α-ketobutyrate * (mg 

protein
 
* h)

-1
 ACCd (an enzyme that decreases ET production by the cleavage of the ET 

precursor, ACC) and 9.478 ± 2.522 µg * mL
-1

 IAA, an auxin analog. Furthermore, qualitative 

enzyme tests revealed that B55 is able to solubilize phosphate. However, seedling ET emissions 

and IAA contents were not significantly changed by B55 inoculation and WT rosette plant P 

contents were not altered by B55 inoculation (Figure 2).  

PGP effects in the glasshouse 

 In the glasshouse, B55 inoculation increased the growth of both WT and 35S-etr1 plants 

(Figure 3). At 35 dpi, length of the longest rosette leaf of B55-inoculated WT and 35S-etr1 plants 

was almost 20% and more than 30% increased compared to non-inoculated plants, respectively 

(Figure 3B). Stalk heights of B55-inoculated WT and 35S-etr1 plants were 13 and 40% taller, 

respectively, compared to controls at 47 dpi (Figure 3b). Furthermore, rosette diameters of B55-

inoculated WT plants correlated positively with B55 colonization (Figure 3C). The survival of 

B55-inoculated 35S-etr1 plants was increased by 20% compared to control 35S-etr1 plants; 

survival rate of WT plants, which was already close to 100%, was not affected (Figure 3D). B55-  
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         Figure 1 Effects of B55 inoculation on seedlings growth in vitro.  

Experimental design (A). Effect of a B55 inoculation on WT and 35S-etr1 seedlings, grown 

vertically and horizontally (B). Mean (±SE) seedling surface area, number of true leaves, 

chlorophyll a and b content (C), primary root length, number of lateral roots and B55 

colonization in the rhizo- and endospheres (D) of mock- or B55-inoculated WT and 35S-etr1 

seedlings. White bars represent control treatments, black bars, B55 inoculated seeds. (PLSD test 

of an ANOVA between mock- and B55-inoculated plants: *P < 0.05; **P < 0.01; ***P < 0.001). 

CFU: colony forming unit; FM: fresh mass; n.d: not detected. n = 4 replicate Petri dishes 

containing at least 20 seeds or 7 seeds (vertical placement), n = 5 replicate Petri dishes containing 

at least 20 seeds (for colonization).  
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inoculation also influenced the production of reproductive structures: B55-inoculated WT and 

35S-etr1 plants yielded on average 2 and 1.5 more seed capsules, respectively, than control plants 

(Figure 3E). The seed production (number of seeds per capsule) was not affected by B55 (Figure 

3F). B55-inoculated WT and 35S-etr1 glasshouse plants were similarly well colonized at 30 dpi 

(Figure 3G). 

 For these in vitro and glasshouse experiments, B55 treatment prior to germination resulted 

in strong PGP effects. To determine if B55 could similarly influence plant growth when plants 

were inoculated at a later stage of development, 20-day-old N. attenuata WT plants were 

inoculated by root-dipping. At 13 dpi, the length of the longest rosette leaf of B55-inoculated WT 

plants was significantly larger compared to control; even though the 14 % relative growth 

increase (Figure 4B) was less pronounced than the effects measured when seeds were inoculated 

prior to germination. Plants were colonized by ca. 1.8x10
2
 and 10

6
 log10 CFU*g FM

-1
 in the 

endosphere and rhizosphere, respectively. 

PGP effects in the field 

 The consistency of PGP effects observed in vitro and in the glasshouse has rarely been 

tested under field conditions and the PGP effects of a native root associated bacterium had not 

been tested in its native host in the field. To conduct such a test, we examined the effect of B55 

inoculation (of seeds) on the growth of WT plants, during two field seasons, and 35S-etr1 plants 

during one field season in their native habitat in SW Utah, USA. B55 inoculation strongly 

enhanced the survival and growth of the ET insensitive 35S-etr1 plants, whereas during the first 

field season (2009), effects on WT plants were barely detectable (Figure 5). At the end of the first 

field season experiment (73 dpi), 35S-etr1 rosette diameters and stalk heights were significantly 

increased by about 52 and 170%, respectively, compared to control 35S-etr1 plants (Figure 5E). 

During the first field season (2009), WT rosette growth did not benefit from B55 inoculation, 

however, stalks of B55-inoculated plants tended to grow faster than control plants (P = 0.06) 

(Figure 5E, right panel). During the second field season (2010), B55-inoculated WT plants 

exhibited significant increases in both rosette diameter and stalk height compared to controls 

(Figure 6). The effect of B55 inoculation on the survival of 35S-etr1 plants was dramatic, 

increasing plant survival by almost 20% (Figure 5F). The number of flowers was evaluated 62 

dpi; and no significant difference was found between B55-inoculated and non-inoculated WT 

plants. Interestingly, the non-inoculated 35S-etr1 plants did not produce any flowers until the end 

of the experiment, while the B55-inoculated 35S-etr1 plants produced almost as many as the WT 

non-inoculated plants (Figure 5G). Re-isolation experiments revealed that with 4.7 and 4.9 log10 

CFU*g FM
-1

, B55-inoculated WT and 35S-etr1 plants were well colonized by B55 even after 47 

days of growth in the field. Surprisingly, B55-like colonies were also identified from some roots 

of non-inoculated WT and 35S-etr1 plants (Figure 5H), suggesting that Bacillus sp. isolates were 

either resident in the field plot, or easily moved between inoculated and non-inoculated plants, 

perhaps via the watering channels of the field plot (see Figure 5C,D).  
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       Figure 2 Effects of B55 inoculation on N. attenuata IAA content, ET emission and P content. 

Mean (±SE) IAA content (A) and ethylene emission (B) of N. attenuata WT and 35S-etr1 

seedlings. White bars represent mock-inoculated seedlings; black bars represent seedlings 

inoculated with B55. Total P content of 38-day-old WT rosette plants (C). FM: fresh mass; DM: 

dry mass. n = 3 for IAA; 5 for ET; n = 6 for P. 
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Figure 3 Effects of a B55 inoculation on glasshouse-grown plants.  

Timeline of experiment (A). Mean (±SE) length of the longest rosette leaf and stalk height (B).  

Correlation between B55 colonization and WT rosette growth (C).  Survivorship (D), seed 

capsule number (E), seed number per capsule (F) and B55 colonization (G) of B55-inoculated 

WT and 35S-etr1 plants. Except for (G), white bars represent control treatments, black bars, B55 

inoculated plants. (PLSD test of an ANOVA between mock- and B55-inoculated plants: *P < 

0.05; **P < 0.01; ***P < 0.001). dpi: days post infection; CFU: colony forming unit; FM: fresh 

mass; n.d.: not detected. n = 20 for b and f; n = 10 for c; n > 80 for d; n = 5 for e. 
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Effects of B55 on the resident culturable bacterial community  

 We examined the influence of a B55 inoculation on the culturable, endophytic, naturally 

associated plant microbial taxa of plants after 73 days of growth in the field. B55 inoculation 

strongly affected the most abundant culturable bacterial communities associated with WT and 

35S-etr1 roots. The analysis focused on bacterial strains found to colonize roots to the same 

degree as the introduced B55. B55 inoculated plants harbored twice as many bacteria of a greater 

diversity of bacterial taxa, compared to controls (Figure 7).  In addition to B55, inoculated WT 

roots harbored Pantoea sp. Utah 2009-2 and Pantoea sp. Utah 2009-3 and 35S-etr1 roots 

harbored Pantoea sp. Utah 2009-2 and Pseudomonas sp. Utah 2009-4  (for accession numbers 

see Table 1). These bacterial genera were not detected in roots of control plants. No difference in 

colonization by B55 of the inoculated plants was observed, and B55 was not found amongst the 

dominant bacterial taxa of non-inoculated plants.  The culturable bacterial communities of WT 

and 35S-etr1 control plants were dominated by one isolate: Enterobacter sp. Utah 2009-1. There 

was no difference in the extent of colonization by Enterobacter sp. Utah 2009-1 of the non-

inoculated WT and the 35S-etr1 plants (Figure 7).  

 

PGP effects of B55 on other transgenic N. attenuata lines 

 B55’s dramatic PGP effects on the ET-insensitive genotype 35S-etr1 motivated us to 

compare PGP effects on other transgenic N. attenuata lines silenced in phytohormone signaling 

or defenses against herbivores or pathogens (Table 2). All lines inoculated with B55 (late stage 

inoculation) showed positive growth responses. Figure 8 shows the increase in growth of each 

line compared to non-inoculated plants.  While the JA-deficient N. attenuata line, ir-lox3, was 

barely affected by B55 inoculation, ir-mpk4 (impaired in herbivore-elicited phytohormone 

signaling) and ir-gla1 (impaired in oxylipin synthesis) benefited the most from the interaction 

with B55. Interestingly, and in contrast to the results from the seed inoculation procedure, 35S- 

etr1 plants benefited less from the interaction compared to WTev, when inoculated at a later 

stage of development (20 days). 
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       Figure 4 Effects of a “late-stage” B55 inoculation on WT plants. 

Timeline and experimental design (A). Mean (±SE) length of the longest leaf of mock- or B55-

inoculated WT N. attenuata plants cultured in the glasshouse (B). WT plants were grown in a 

sand-filled Teku pots until day 20, before they were inoculated with B55 and transferred to 10cm 

round pots containing lecaton and sand. (PLSD test of an ANOVA between mock- and B55-

inoculated plants: * P < 0.05). dpi: days post infection. n = 15. 
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          Figure 5  Effects of a B55 inoculation on field-grown plants (field season 2009).  

Timeline of experiment (A). Field plot (B). Plants were planted in rows separated by water 

channels (C), mock- and B55-inoculated WT and 35S-etr1 plants were planted in a quadruplets in 

a randomized design (D). Mean (±SE) rosette diameter and stalk height (E), survivorship (F), 

flower number (G) and B55 colonization (H). White bars represent control treatments, black bars, 

B55 inoculated plants. (PLSD test of an ANOVA between mock- and B55-inoculated plants: *P 

< 0.05) dpi: days post-inoculation; CFU: colony forming unit; FM: fresh mass; n.d.: not detected. 

n = 40 for WT-, WT+ and 35S-etr1+; n = 23 for 35S-etr1- at start of measurements (46 dpi); n = 

5 for h. 
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        Figure 6 Effects of a B55-inoculation on field-grown WT plants (field season 2010). 

Mean (±SE) rosette diameter and stalk height of B55-inoculated and mock-inoculated plants. 

Plants were grown in a paired design. Only pairs in which both plants survived until the end of 

the experiment were included in the analysis. * indicates a statistically significant difference 

between treatments as determined by a paired t-test (*P < 0.05; **P < 0.01) . dpi, days post 

infection. n = 11 pairs. 

 

 

       
        
        
        
        
        
        

        
        
        
        
        
                

Figure 7 Effects of a B55 inoculation on the resident culturable bacterial community of 

field-grown plants. 

Colony forming units of B55 and resident isolates at 73 dpi; see Table 1 for accession numbers of 

isolates. dpi: days post infection; CFU: colony forming units; FM: fresh mass. n = 3. 

  



Manuscript II 

62 

 

 
 

       
        
        
        
        
        
        
        

        
        
        
        Figure 8 Growth responses of different transgenic N. attenuata lines to a B55 inoculation. 

Relative B55-associated growth increase of different transgenic N. attenuata lines compared to 

non-inoculated plants. Twenty-day-old plants were inoculated with B55 or mock-inoculated (late 

stage-inoculation). Size of the longest leaf was measured on the day of inoculation and at the end 

of the experiment (12 or 14 dpi). Growth increase (%) of B55-inoculated plants was calculated 

relative to non-inoculated plants. See Table 2 for abbreviations of genes silenced by RNAi by 

expression of inverted repeat (ir) constructs in the transformed lines. dpi: days post infection. n = 

10. 

 

Table 1 Accession numbers of bacterial isolates used in this study. 

Bacterial isolate  Genbank Closest type strain neighbor        Reference                                                  

   accession no. 

B55   JX101913 Bacillus aryabhattai B8W22 This study 

Utah 2009-1  JQ172772 Enterobacter cloacae subsp. This study                

     dissolvens LMG2683 

Utah 2009-2   JQ172773  Pantoea gaviniae A18/07  This study 

Utah 2009-3  JQ172774  Pantoea agglomerans DSM 3493 This study 

Utah 2009-4   JQ172775 Pseudomonas lurida DSM15835 This study 
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4.6 Discussion  

 Bacillus sp. isolates are natural root-associated bacteria of N. attenuata (Long et al., 2010) 

and the particular isolate that we have named “B55”, has dramatic PGP effects on WT and 35S-

etr1 plants (a transgenic line impaired in ET perception), the line from which this bacteria was 

first isolated. Here, we show that this native PGPB not only improved N. attenuata WT’s growth 

under in vitro, glasshouse and field conditions, but it also “rescued” many of the deleterious 

phenotypes of 35S-etr1 plants and dramatically increased the survival of this plant under field 

conditions, demonstrating PGP effect of a PGPB on its native host in nature.  

 Numerous studies have reported on bacterial mediated PGP effects in vitro and in the 

glasshouse, however, PGPB frequently fail under field conditions, probably due to their inability 

to colonize roots properly in a competitive environment (Compant et al., 2010; Smyth et al., 

2011). Furthermore, bacterial formulations, previously reported to promote plant growth, often 

exhibited negative effects when applied in a natural environment. Particular physical and 

chemical properties of the soil are thought to interfere with the “targeted” plant species or the 

indigenous microbial community (reviewed in Aeron et al. 2011). If PGPB were selected from 

and hence adapted to the host plant’s native habitat, the PGP effects might be made more 

consistent. 

 Our in vitro experiments demonstrated that many parameters associated with PGP (e.g. 

plant size, chlorophyll content, root branching), were increased in B55-inoculated seedlings. 35S-

etr1 seedlings, which grow poorly compared to WT, benefited dramatically from the inoculation: 

seedling surface area doubled and the characteristic “unbranched” roots gave rise to seven times 

more lateral roots compared to control seedlings. These observations are consistent with those of 

López-Bucio et al. (2007), who found that a PGP Bacillus megaterium strain increased root hair 

and lateral root formation of Arabidopsis thaliana auxin (aux1-7) and ethylene (eir1) mutants, 

which tend to produce fewer root hairs and lateral roots compared to WT. Furthermore, 

chlorophyll a and b contents, previously reported to be lower in ET-insensitive plants (Grbic & 

Bleecker, 1995) were restored to WT control levels by B55 inoculation. B55’s effects on 35S-

etr1 seedling performance were associated with higher endosphere colonization: 35S-etr1 

seedlings were found to be 10 times higher colonized than WT. Two types of explanations could 

account for the greater endosphere colonization despite similar rhizosphere colonization (Figure 

1D): B55 was originally isolated from a 35S-etr1 plant and hence this genotype may have 

phenotypes that reflect its natural host. Native N. attenuata populations are known to be highly 

genetically diverse (Bahulikar et al., 2004) and recent work has found that populations of N. 

attenuata harbor natural jasmonate-deficient ecotypes (Wu et al. 2008; I.T. Baldwin, unpublished 

results) and it would not be surprising if natural ET-deficient ecotypes, similar to those of the 

35S-etr1 also occurred in these populations. Similar host specific associations have recently been 

reported by Weyens et al. (2011), demonstrating that the endophyte Pseudomonas putida W619 

exerted positive effects only on the poplar accession it was originally extracted from.  Second, N. 

attenuata 35S-etr1 seedlings do not appear to restrict microbial entry and growth in their roots, 

pursuing an “open immigration policy” with regard to their endophytic microbial community 

(Long et al., 2010). Similar results were found in an ET-insensitive Medicago truncatula line, 
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which was hypercolonized by rhizobia or Klebsiella pneumoniae 342, respectively (Penmetsa, 

1997; Iniguez et al., 2005). Interestingly, the rhizospheres of WT and 35S-etr1 plants were 

similarly colonized by B55. Hence the greater apparent benefit obtained by 35S-etr1 plants 

compared to WT may simply have resulted from the greater endosphere B55 colonization. 

 Glasshouse experiments with B55-inoculated and non-inoculated WT and 35S-etr1 plants 

were consistent with our in vitro findings. Inoculated 35S-etr1 plants grew similarly to non-

inoculated WT plants and B55-inoculated plants yielded more seed capsules than their respective 

controls. Again, 35S-etr1 plants gained a greater growth benefit from B55 inoculation than WT 

plants did. Surprisingly in these glasshouse experiments, colonization of 35S-etr1 roots was 

similar to that of WT plants. We propose that higher colonization levels during seedling 

emergence and establishment (which are likely the most critical growth stages in nature) might be 

responsible for the observed durable PGP effects that lasted through all stages of development.  

 The 2009 field study was the most “successful” field planting of N. attenuata 35S-etr1 

plants to date. In the previous four field attempts usually more than 50% of the 35S-etr1 plants 

died before stem elongation and flowering, most probably due to high pathogen susceptibility and 

poor root development. Studies on the field performance of ET-sensing defective plants are rare, 

likely due to above-mentioned reasons. Bent et al. (2006) reported that field-grown ET-

insensitive soybean were also highly susceptible to fungal pathogens. Geraats et al. (2007) 

analyzed the effect of bacterial antagonists on disease susceptibility of transgenic, ET-insensitive 

N. tabacum Tetr plants (which are also highly susceptible to fungal pathogens); here, bacterial 

antagonists were unable to alleviate infection, suggesting that one of the indirect PGP 

mechanisms, namely the suppression of soil-borne diseases and/or induction of systemic 

resistance (ISR) (Lugtenberg & Kamilova, 2009; Gamalero & Glick, 2011) are not likely 

involved. 

 Our results suggest that impaired ET perception augments the beneficial effects of B55 

inoculation. Similar effects were observed by Lopez-Bucio et al. (2007) who concluded from 

their experiments that the PGP associated with a B. megaterium strain was independent of ET and 

auxin signaling. Recently, however, Camehl et al. (2010) reported that the beneficial interaction 

outcome between a PGP fungus (Piriformospora indica) and A. thaliana required functional ET 

perception and signaling; while WT plants benefited from the interaction, growth of etr1, ein2 

and ein3/eil1 mutants was not promoted or even inhibited by the fungus. Similar results were 

found with Glomus intraradices’s parasitic interaction with N. attenuata plants (Riedel et al., 

2008) and is also likely the case with P. indica’s PGP interaction with N. attenuata (Barazani et 

al., 2005). The multiple functions of ET signaling and the specific interactions that occur among 

different partners (bacteria vs. fungi) are likely to account for these different results (Broekaert et 

al., 2006; Hardoim et al., 2008). B55’s dramatic effects on 35S-etr1 plant growth prompted us to 

test its effect on other transgenic N. attenuata lines. A late-stage B55-inoculation enhanced 

growth of all lines tested (Figure 8) leading to the conclusion that the interaction of B55 with N. 

attenuata is independent of the (phytohormone) signaling pathways tested so far, including ET 

perception, and is likely a response of the particular accession that was used to produce all 

transformed lines. Interestingly, however, benefits gained by 35S-etr1 plants by a late-stage   
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Table 2 Nicotiana attenuata lines used in Figure 8. 

All lines used were T3 generation transformed plants harboring a single T-DNA insertion and 

silenced in the expression of the target gene, and fully characterized in the associated reference 

publication.  

Genotype Line code  Gene silenced and phenotype  Reference 

 ir-aco1 A-03-321-10 
 

ACC oxidase 1, impaired in ET production 
 (von Dahl et al., 

2007) 

 ir-coi1 A-04-249-1 
 

coronatine insensitive 1, impaired in JA perception 
 (Paschold et al., 

2007) 

 ir-ger A-911-10 
 

germin-like gene, impaired in responses to (a)biotic stresses 
 (Lou & Baldwin, 

2006)  

 ir-gla1 A-09-849-2 
 

glycerolipase 1, impaired in oxylipin biosynthesis 
 (Bonaventure et al., 

2011) 

 ir-lox2 A-04-52-2 
 lipoxygenase 2, impaired in traumatin and green leaf volatile 

production 

 (Allmann et al., 

2010) 

 ir-lox3 A-03-562-2 
 

lipoxygenase 3, impaired in JA biosynthesis 
 (Allmann et al., 

2010) 

 ir-mpk4 A-07-119-4 
 Mitogen activated protein kinase 4, impaired in stomatal closure in 

response to (a)biotic stress; elevated chlorophyll contents 

 (Hettenhausen et al., 

2012)  

 ir-pmt A-03-108-3-1 
 

putrescine N-methyl transferase, impaired in nicotine production 
 (Steppuhn et al., 

2004) 

 ir-sipk A-06-109-2 
 Salicylic acid-induced protein kinase, impaired in MAPK 

signaling and JA biosynthesis 

 
(Meldau et al., 2009) 

 ir-thionin A-05-96-2 
 

pathogenicity-related gene 13, impaired resistance to pathogens 
 (Rayapuram et al., 

2008) 

 ir-wipk A-06-56-1 
 wound-induced protein kinase, impaired in MAPK signaling and 

JA biosynthesis 

 
(Meldau et al., 2009) 

Ev A-03-9-1-1 
 

Empty vector (control) 
 

(Zavala et al., 2004) 

  



Manuscript II 

66 

inoculation (12 % growth increase) were lower than for WT (ca. 20%) and much reduced 

compared to that obtained by seed-inoculation (30%). The influence of B55 on 35S-etr1 

seedlings’ root structure seems to strengthen the young plant, an effect that lasts for the plant’s 

life. This finding highlights the likely importance of a seedling’s selection of PGPB into its 

rhizosphere at the onset of germination.  

 To analyze the mechanism behind B55’s remarkable PGP effects, we tested B55 for 

known PGP traits. The ability of bacteria to produce IAA and ACCd is often considered a pre-

requisite for PGP.  For example, Long et al. (2008) found that ACCd production by endophytic 

bacteria was negatively correlated with plant ET production and positively with seedling root 

growth. Also IAA excretion into the rhizosphere is thought to promote root growth (Gamalero & 

Glick, 2011; Helman et al., 2011). Even though B55 was found to produce substantially high 

concentrations of ACCd and IAA, WT and 35S-etr1 seedling IAA content and ET production 

were not affected by a B55-inoculation (Figure 2A,B). Furthermore, the high levels of ET 

production by 35S-etr1 seedlings were not changed, hence restoring ET sensing as possible PGP 

mechanism can be excluded (Figure 2B). Neither was the P content of WT plants changed by a 

B55 inoculation (Figure 2C). These findings point to other, unexplored PGP mechanisms.  

 B55 inoculation significantly changed the quantity and quality of the resident bacterial 

community of WT and 35S-etr1 plants. Even though we analyzed only the culturable bacterial 

community (which represents just a minute proportion of microbes interacting with plants), our 

results point towards the often underestimated importance of microbe-microbe interactions in 

facilitating PGP (reviewed by Berg & Zachow 2011). While B55-inoculated plants harbored 

several bacterial isolates, non-inoculated plants only housed Enterobacter sp. Utah 2009-1. 

Interestingly, an E. cloaceae sp. isolate has been described as having PGP effects on several plant 

species (reviewed in Jha et al. 2011); however, as for many plant-microbe interactions, host 

specificity and PGP occurs in a species-specific manner and hence determine the outcome of the 

interaction (Long et al., 2008; Berg & Smalla, 2009). Further experiments will be carried out to 

unravel B55’s antagonistic and synergistic actions on microbial communities and plant growth.  

 That B55 could alleviate some of the negative effects associated with the 35S-etr1 plant’s 

inability to perceive ET, leads to the hypothesis that plants that harbor various mutations (such as 

phytohormone mutants) might be able to recruit particular microbes to help them compensate for 

their fitness deficiencies. As such, these facultative mutualistic associations with microbes could 

be viewed as part of the plant’s extended phenotype, as proposed by Partida-Martinez and Heil 

(2011), a phenotype that deserves much more additional work.  
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5.1 Abstract 

 The volatile blend emitted by Bacillus sp. B55, a natural root-associated bacterium of 

Nicotiana attenuata, promotes the growth of wild-type (WT) and particularly, ethylene (ET)-

insensitive 35S-etr1 plants. Dimethyl disulfide (DMDS), a sulfur (S)-containing compound 

volatile organic compound (VOC), is emitted by B55 and depleted from the headspace after a co-

cultivation with seedlings in bi-partite Petri dishes. 
35

S-labeling experiments demonstrated that 
35

S is assimilated from the bacterial VOC bouquet and incorporated into the plants’ proteins. 

Exposure of WT and 35S-etr1 seedlings to synthetic DMDS grown under different sulfate (SO4
-2

) 

supplies revealed genotype-dependent plant growth promotion (PGP) effects. For WT, only S-

starved seedlings benefited from DMDS exposure; 35S-etr1 seedlings, which have an 

unregulated S metabolism (due to unregulated ET emissions and Yang cycle), benefited at all 

SO4
-2 

supply rates. Exposure to B55 VOCs, and DMDS recovered many of the growth 

phenotypes of ET-insensitive plants, including the lack of root hairs, poor lateral root growth and 

low chlorophyll contents. We conclude that DMDS is a novel PGP agent, likely functioning by 

enhancing reduced S availability, particularly beneficial for 35S-etr1 plants due to their apparent 

impairments in S-metabolism. Because N. attenuata’s native soils are low in SO4
-2

, DMDS 

production by root-associated bacteria may be nutritionally essential for plants in nature. 

5.2 Keywords  

Volatile organic compounds (VOCs), bacteria, dimethyl disulfide (DMDS), sulfur, plant growth 

promotion (PGP), Nicotiana attenuata, ethylene (ET), Yang-Cycle  
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5.3 Introduction 

 Bacteria can affect plant performance through many different mechanisms of which 

improving access to nutrients, particularly to the limiting macronutrient nitrogen (N), is one 

direct means of plant growth promotion (PGP). The symbiosis between legumes and diazotrophic 

rhizobia is the best-studied example. Improved access to other nutrients such as phosphorus, iron 

or sulfate (SO4
-2

) have also been reported in mutualistic plant-microbe associations (Kloepper et 

al., 1980; Rodriguez & Fraga, 1999; Banerjee & Yesmin, 2009). In addition, bacteria are known 

to alter a plant’s hormone homeostasis through the production of phytohormones (e.g. auxins, 

cytokinins or gibberellins) but also by lowering ethylene (ET) levels, through the metabolism of 

the plant’s ET precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), as a N source.  

 More recently, bacterial volatile organic compounds (VOCs) were shown to have PGP 

effects.  The VOCs of Bacillus subtilis GB03 and B. amyloliquefaciens IN937 were reported to 

increase the growth of Arabidopsis thaliana (Ryu et al., 2003).  The PGP effects were largely 

attributed to two volatiles, namely, 3-hydroxybutan-2-one (acetoin) and 2,3-butanediol, and 

experiments with the use of knockout mutants in 2,3-butanediol biosynthesis (BSIP1173 and 

BSIP1174) and the application of synthetic 2,3-butanediol strongly supported a role for 2,3-

butanediol in PGP. Since this report, several other studies have examined bioactive volatile 

compounds responsible for PGP, as well as growth suppression (Farag et al., 2006; Splivallo et 

al., 2007; Vespermann et al., 2007; Kai et al., 2009; Kai & Piechulla, 2009; Gutiérrez-Luna et 

al., 2010; Kai et al., 2010; Blom, D. et al., 2011; Blom, Dirk et al., 2011; Velazquez-Becerra et 

al., 2011; Weise et al., 2012). For most of these, the underlying mechanisms and hormone 

signaling pathways involved remain to be discovered (Zhang et al., 2007; Wenke et al., 2012a). 

 The phytohormone ET plays multiple roles in plant development and defense (Pierik et 

al., 2006; van Loon et al., 2006): it regulates processes such as seedlings emergence, flower 

development and fruit abscission, as well as biotic and abiotic stress responses. (Davidson, 1949; 

Wilson, 1966; Rasmusse & Cooper, 1968; Pegg, 1976; Egley, 1980; Kahl et al., 2000). Recently, 

several studies underscored ET’s prominent role in mediating mutualistic plant-microbe 

interactions (Penmetsa, 1997; Iniguez et al., 2005; Long et al., 2010) and due to its gaseous 

nature, ET became the “candidate of choice” for the first studies on microbial VOC-mediated 

signaling processes in plants (Bailly & Weisskopf, 2012). Studying VOC-mediated effects in ET-

signaling impaired A. thaliana plants, revealed that ET-insensitive ein2 (ethylene insensitive2) 

mutants were non-responsive to VOC-mediated PGP by B. amyloliquefaciens IN937 and 

Piriformospora indica (Ryu et al., 2003; Camehl et al., 2010). Other ET-insensitive mutants, 

however, responded to the VOCs similarly as wild-type (WT) plants. Furthermore, ET emission 

by VOC-treated plants was found to be unaltered (Ryu et al., 2003). On the other hand, recent 

transcriptome and proteome analyses of VOC-exposed A. thaliana plants revealed the regulation 

of genes and proteins involved in ET-signaling and biosynthesis (Kwon et al., 2010). Although 

these studies suggest a role for ET in microbial VOCs-mediated interactions, unambiguous proof 

is still lacking.  

 Colloquially, ET is called the “senescence hormone” due to its role in flower and fruit 

development and leaf and fruit abscission. In the nineties, attempts to overcome or delay plant 
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senescence processes led to the creation of ET-insensitive plants, i.e. plants overexpressing a 

mutant A. thaliana ET receptor (etr1-1) (Chang et al., 1993). Although these transgenic and 

mutant lines showed delayed senescence, impairing ET perception resulted in many negative 

growth effects which limited their agricultural utility (Bent et al., 1992; Knoester et al., 1998; 

Geraats et al., 2002). Due to weak roots, which produce only few lateral branches and root hairs, 

lowered leaf chlorophyll contents and high disease susceptibility, ET-insensitive plants typically 

have difficulties in establishing growth, rendering them unable to survive in natural environments 

(Luschnig et al., 1998; Clark et al., 1999; Tholen et al., 2007; Long et al., 2010; Meldau et al., 

2012). To assess the effect of ET-insensitivity and the altered root morphology on plant-microbe 

associations, we employed a native plant system (coyote tobacco, Nicotiana attenuata) and 

identified natural root-associated bacteria which improve this plant’s growth and survivorship. 

We isolated culturable microbes associated with N. attenuata WT and two transgenic lines 

impaired in ET signaling: an ET-insensitive (35S-etr1) and an ET-biosynthesis impaired line (ir-

aco1) (Long et al., 2010). We then investigated the intimate relationship between one isolate, 

Bacillus sp. B55, with its host in terms of PGP and observed dramatically increased survival and 

growth of 35S-etr1 plants grown in nature. Since B55 was isolated from 35S-etr1 plants grown in 

native soil and inoculating germinating seeds with a B55 greatly improved the growth and 

survivorship of this transgenic line in nature, we defined B55 as a part of the plant’s “extended 

phenotype” (Meldau et al., 2012). However, the mechanisms of B55’s PGP remained elusive. 

 Here we report one mechanism responsible for B55’s remarkable PGP effects. We show 

that VOCs emitted by B55 promote seedling growth and identify an S-containing volatile organic 

compound, dimethyl disulfide (DMDS), which is released by B55 and confers the observed PGP 

effects. Interestingly, 35S-etr1 seedlings realize a greater benefit of exposure to the bacterium, its 

VOCs and DMDS than do WT plants. In addition, we demonstrate that 35S-etr1 plants suffer 

from an unbalanced S-metabolism and we propose that these plants benefit from their interaction 

with B55 by obtaining reduced S (in the form of bacterial DMDS) which helps to fulfill their 

enhanced S requirements which, in turn, likely results from an unregulated Yang cycle.  

5.4 Results 

B55 VOCs promote WT and 35S-etr1 seedlings growth 

 To evaluate if volatiles could account for the previously described plant growth 

promotion effect of B55 on WT and 35S-etr1 seedlings (Meldau et al., 2012) we co-cultivated 

WT and 35S-etr1 seedlings with B55 for 12 d on bi-partite Petri dishes, where seedlings and 

bacteria only had contact through a shared headspace. After 12 d the surface area of seedlings 

exposed to the B55 VOCs was 5 and 8 times higher than that of WT and 35S-etr1 control plants, 

respectively (Figures 1A and B). B55 VOC-exposed WT and 35S-etr1 seedlings produced twice 

and almost 4 times as many true leaves (Figure 1C) and 5 and 26 times more lateral roots per cm 

primary root length (Figure 1D). Root length was 17 and 38 % greater when compared to WT 

and 35S-etr1 control seedlings, respectively (Figure 1E). In general, chlorophyll a and b contents 

were 14 and 18 % lower in 35S-etr1 seedlings compared to the respective WT treatment group. 

Exposure to B55 VOCs led to slight, non-significant, increases in chlorophyll a and b contents of 
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WT and 35S-etr1 seedlings (Supplemental Figure 1 online). These data demonstrate that VOCs 

emitted from B55 are sufficient to induce plant growth promotion in N. attenuata WT and 35S-

etr1 plants. 

Dimethyl disulfide is emitted by B55 and taken up by seedlings 

 We assumed that VOCs, which are absorbed by the plant, might be involved in PGP. We 

therefore analyzed the composition of the headspace volatile bouquet of 12 d old B55 co-

cultivated with and without WT seedlings on a bi-partite Petri dish by SPME GC-MS. An 

abundant VOC produced by B55 (and not by media or seedlings) and which was depleted from 

the headspace when co-cultivated with seedlings, was the S- containing metabolite dimethyl 

disulfide (DMDS, CAS 624-92-0) (Figure 2). In order to evaluate whether bacterial DMDS was 

taken up by the seedlings or whether its production was suppressed by the seedlings’ presence, 

we measured DMDS headspace concentrations after the co-cultivation of different numbers of 

WT seedlings with a standardized inoculation of B55. Increasing seedling number was correlated 

with decreases in DMDS headspace concentrations (Supplemental Figure 3A online). When 25 

seedlings were grown together with B55 as little as 1 pg DMDS per Petri dish was found in the 

headspace; but up to 10 pg when only three seedlings were grown opposite of B55.Transcript 

abundance of the B55 CYSTATHIONINE-ß-LYASE gene (CBL), coding for an enzyme involved 

in bacterial DMDS production, was not altered by the presence of seedlings (Supplemental 

Figure 3B online). These results suggested that DMDS is adsorbed and potentially assimilated by 

the seedlings rather than its production suppressed by the presence of seedlings.  

 To test if DMDS was adsorbed and assimilated, the incorporation of volatile S into the 

seedlings’ protein was evaluated. We performed an 
35

S-labeling experiments using bi-partite Petri 

dishes, in which B55 and seedlings had only headspace contact and in which B55 was grown on 

minimal medium (M9) containing 
35

S-labeled Na2SO4 as the sole S source (Figure 3A). 
35

S of a 
35

S-containing VOC (most probably DMDS) was found to be incorporated into WT seedlings’ 

proteins when the seedlings growth medium was S-deprived (Figure 3B, supplemental Figure 4).  

 We found that a singly cultivated, 14 d old B55 colony accumulated in one day ca. one ng 

DMDS cm
-2

 colony. In general, DMDS production was found to be favored when B55 colonies 

were grown on a full medium such as YPD, high incubation temperatures, under light, and 

production increased with colony age (Supplemental Figure 5A-C online).  

35S-etr1 plants adsorb more 
35

S than do WT plants 

 Since 35S-etr1 seedlings benefited more from inoculation with B55 (Meldau et al., 2012) 

and exposure to B55 VOCs (Figure 1) than do WT seedlings, we evaluated whether 35S-etr1 

seedlings adsorbed more DMDS than do WT seedlings. Using a tri-partite Petri dish set up 

(Figure 4A), we found that S-starved seedlings (grown on MM2, that lack S) absorbed larger 

amounts of 
35

S than did seedlings grown on SO4
-2

 rich media (MM2, 2 mM SO4
-2

) (Figure 4B). 

But most interestingly, 35S-etr1 seedlings assimilated more 
35

S than did WT seedlings, 

particularly for seedlings grown under high SO4
-2

 supply; 35S-etr1 seedlings accumulated twice 

as much 
35

S than did S-replete WT seedlings. These findings led to the hypotheses that i) 
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bacterial volatile S contributes to N. attenuta’s S nutrition when grown in a SO4
-2

-depleted 

environments and that ii) 35S-etr1 seedlings have higher S needs (Figure 4B). 

35S-etr1 seedlings are impaired in their S metabolism 

 To evaluate the importance of S nutrition for N. attenuata WT and 35S-etr1 seedlings, we 

grew seedlings on MM2 containing different SO4
-2

 concentrations (0, 50 or 1000 µM 

MgSO4x7H2O) and assessed growth parameters, as well as shoot S-containing metabolites (free 

Met and reduced GSHs). As expected, for 20 d old WT seedlings, all recorded growth parameters 

correlated positively with increasing medium SO4
-2

 concentration (Figures 5A 1
st
 column, 5B-C, 

white bars), except lateral root number, which decreased slightly with increasing SO4
-2

 

concentration (Figure 6A, white bars). 35S-etr1 seedlings however, did not show these 

correlations. Even under high SO4
-2

 supply (1000 µM) they appeared abnormal in growth: 

compared to WT seedlings, leaves were enlarged, swollen and yellowish (Figure 5A 3
rd

 column). 

This was also reflected in the large seedling surface area compared to WT (Figure 5B, white 

bars). Chlorophyll a content was only half that of WT seedlings, while lateral root number was 

consistently low (Figures 5C and 6A, white bars).  

 Sulfate
 
concentration in the culture medium also affected S-containing metabolites. In WT 

seedlings, free Met and reduced GSH concentrations, were found to increase with media SO4
-2

 

concentrations (Figures 5C-D, white bars). The free Met level of 35S-etr1 seedlings grown at 50 

or 1000 µM SO4
-2

, were 34 and 22 % lower compared to WT (Figure 5C). Also 35S-etr1 

seedlings’ reduced GSH levels were 67 and 58 % lower, compared to WT, grown under 50 and 

1000µM SO4
-2

 supply, respectively (Fig. 5D, white bars). Taken together our findings suggest 

that 35S-etr1 seedlings are impaired in their S metabolism.  

 

DMDS promotes WT and 35S-etr1 seedling growth 

 To evaluate the contribution of DMDS to WT and 35S-etr1 seedlings’ S nutrition, we 

applied the pure compound to the headspace of the seedlings. To find the effective dose, we 

spotted different amounts of DMDS (0, 0.5, 5, 50, 500 or 2000 µg) onto a cotton bud located in 

one compartment of a bi-partite Petri dish to WT seedlings sown on MM2, supplemented with 

different MgSO4x7H2O concentrations [0, 50 or 1000 µM]) in the other compartment. After 17 d, 

we evaluated DMDS dose- and SO4
-2

- concentration dependent PGP effects (Supplemental 

Figure 6A online). The application of 2000 µg DMDS completely inhibited seed germination and 

seedling growth. For SO4
-2

 starved seedlings (0 µM SO4
-2

), PGP was highest when 500 µg 

DMDS were applied. Seedlings grown on 50 or 1000 µM SO4
-2

, experienced no PGP in terms of 

seedling surface area, irrespective of how much DMDS was added. At a DMDS concentration of 

500 µg, the growth of these seedlings was slightly inhibited (Supplemental Figure 6B online). All 

further DMDS application experiments were carried out with 500 µg (0.5 µL) DMDS Petri dish
-1

. 

When seedlings were grown on MM2, supplemented with different concentrations of SO4
-2

 and 

exposed to DMDS, PGP effects were strongest for SO4
-2

-starved seedlings (0 µM SO4
-2

, Figures 

5 and 6, black bars), irrespective of the plant genotype.  

 For 20 d old WT seedlings grown on 0 µM SO4
-2

 media, an addition of DMDS increased 

seedling surface area 3.5 times; chlorophyll a content by 400 % (Figures 5A 2
nd

 column, 5B and 
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C, black bars) and the number of lateral roots by 65% (Figure 6A, black bars). DMDS application 

to WT seedlings grown under medium (50 µM) and high (1000 µM) SO4
-2

 supply resulted in less 

pronounced PGP effects (Figures 5A 2
nd

 column, 5B and C, black bars). However, when exposed 

to DMDS, the number of lateral roots was consistently increased, by 55 and 33 % for WT 

seedlings grown on 50 µM and 1000 µM SO4
-2

, respectively (Figure 6A, black bars).  

 In contrast to WT, 35S-etr1 seedlings realized dramatic PGP effects from the exposure to 

DMDS, irrespectively on which SO4
-2

 concentration they were cultured (Figure 5A 4
th

 column). 

Seedling surface area was increased for seedlings grown on 0 µM SO4
-2 

by
 
3.3 times, but 

decreased by 22 and 30 % respectively, for seedlings grown on 50 and 1000 µM SO4
-2

 supply 

(Figure 5B, black bars). Chlorophyll a content of seedlings increased by 328, 319 and 68 %, 

respectively for the 0, 50 and 1000 µM SO4
-2

 concentration (Figure 5C and supplemental Figure 

7A online, black bars). The number of lateral roots was 2, 2.7 and 2.8 times higher for 35S-etr1 

seedlings grown on 0, 50 and 1000 µM SO4
-2

 supply, respectively (Figure 6A, black bars). 

Strikingly, 35S-etr1 seedlings, which are normally root hair deficient, were found to produce root 

hairs when exposed to DMDS (Figure 6B).  

 The addition of DMDS increased free Met concentrations: SO4
-2

 deprived (0 µM SO4
-2

) 

WT seedlings had 140 % higher Met levels (Figure 5C, black bars). WT seedlings grown under 

medium (50 µM) and high (1000 µM) SO4
-2

 supply were hardly affected. In 35S-etr1 seedlings, 

free Met levels increased by circa 122, 48 and 22 % for 0, 50 and 1000 µM SO4
-2

 concentration, 

respectively (Figure 5C, black bars).  

 WT’s reduced GSH levels were increased by 900 and 85 % for 0 and 50 µM SO4
-2

, 

respectively. Seedlings grown under high SO4
-2

 supply were not affected (Figure 5D, black bars). 

When 35S-etr1 plants were exposed to DMDS, reduced GSH concentration increased by circa 

1000, 500 and 150 % for 0, 50 and 1000 µM SO4
-2

-grown seedlings, respectively (Figure 5D, 

black bars).  

 In summary, these data demonstrate that volatile DMDS positively effects plant growth 

and concentrations of S-containing metabolites when inorganic S supply is limited. 

 

DMDS application affects transcript abundance of genes involved in SO4
-2

 metabolism  

 Sulfate reduction is an energy-demanding process for plants (Oger et al., 2004). 

Theoretically, the uptake of reduced S (e.g. in the form of DMDS) could save seedlings energy 

that could otherwise be invested in other plant physiological processes, such as growth or 

reproduction. Hence we were interested in whether the DMDS fumigation resulted in the down-

regulation of genes involved in the S reduction pathway and analyzed the transcript abundance of 

the high affinity SULFATE TRANSPORTER1 (NaSULTR1), SULFITE REDUCTASE (NaSIR) 

and METHIONINE SYNTHASE 1 (NaMETSYN1). Quantitative PCR revealed that genes involved 

in WT’s SO4
-2

 reduction were strongly regulated by the media SO4
-2

 concentration (Figure 7, 

white bars). In WT seedlings, the SO4
-2

 transporter, NaSULTR1, was highly induced under low 

SO4
-2

 supply (Figure 7A, white bars). Also NaSIR and NaMETSYN1 transcript levels were 

induced when seedlings were S-deprived (0 µM SO4
-2

) (Figures 7B and C, white bars). While 

WT and 35S-etr1 seedlings, did not differ in NaSULTR1 and NaSIR transcript levels (Figures 7A 

and B, white bars), the expression of NaMETSYN1 was significantly higher for 35S-etr1 
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seedlings grown under medium (50 µM) and high (1000 µM) SO4
-2

 supply than in similarly 

grown WT (P<0.0001) (Figure 7C, white bars).  

 Overall, the application of DMDS to WT and 35S-etr1 seedlings resulted in decreased 

transcript abundances of NaSULTR1 and NaSIR.  Transcript abundance of NaSULTR1 was 

lowered by 36, 69 and 19 % for WT seedlings grown on 0, 50 and 1000 µM SO4
-2

, respectively.   

The abundance of NaSIR transcripts were reduced by 50 % for WT seedlings grown under 

medium (50 µM) and high (1000 µM) SO4
-2

 supply. Also for 35S-etr1 seedlings, NaSULTR1 

transcripts decreased by 83, 91 and 32 % for 0, 50 and 1000 µM SO4
-2

, respectively. Compared to 

control treatments, NaSIR transcripts were decreased by 45 %, irrespective of the medium’s SO4
-2

 

concentration (Figure 7B, black bars). WT and 35S-etr1 NaMETSYN1 transcript abundance was 

not affected by DMDS, with the exception of WT seedlings grown on 50 µM SO4
-2

 in which 

NaMETSYN1 transcripts were increased by 36 %. 

 

B55 VOC bouquet exposure mimics DMDS-induced effects  

 We tested whether the exposure of WT and 35S-etr1 seedlings to the complete B55 VOC 

bouquet, could mimic the growth responses observed for pure DMDS exposures when seedlings 

were grown under different SO4
-2

 supply. Therefore, we grew WT and 35S-etr1 seedlings in one 

compartment of a bi-partite Petri dish on MM2, supplemented with different MgSO4x7H2O 

concentrations [0, 50 or 1000 µM]) and spotted 5 µL of a B55 suspension onto the other 

compartment containing 0.5xYPDA (Figure 8A). Growth parameters were evaluated after 15 d of 

growth.  

 In terms of surface area, only S-deprived WT and 35S-etr1 seedlings showed a positive 

reaction to B55 VOCs: WT and 35S-etr1 seedling surface area was increased by 36 and 66 %, 

respectively (Figure 8B, black bars). For all other treatment combinations, no effects were 

observed. Seedling chlorophyll a content was not affected by B55 VOCs. For WT seedlings 

cultured on 1000 µM SO4
-2

, even negative effects were observed (Figure 8C, black bars). 

Interestingly, free Met levels of S-deprived WT and 35S-etr1 seedlings were not altered by 

exposure to B55 VOCs (Figure 8D, black bars). Free Met content, however, increased for WT 

and 35S-etr1 seedlings grown under medium (50 µM) and high (1000 µM) SO4
-2

 supply, by 130 

and 125 %, as well as, 100 and 180 %, respectively (Figure 8D, black bars). In the case of 

reduced GSH, opposite patterns were found. While WT and 35S-etr1 seedlings grown under 

medium (50 µM) and high (1000 µM) SO4
-2

 supply did not show any changes, S-deprived 

seedlings did; WT and 35S-etr1 reduced GSH contents increased by 160 and 130 %, respectively 

(Figure 8E, black bars). 

 Root architecture was influenced by B55 VOCs as well. WT seedlings grown under 0, 50 

or 1000 µM SO4
-2

 produced 3, 2.3 and 1.5 times more lateral roots compared to the respective 

control group (Figure 8F, black bars). The same was found for 35S-etr1 seedlings. Exposure to 

B55 VOCs resulted in 1.6, 3 and 3.5 times more lateral roots in seedlings cultured on 0, 50 or 

1000 µM SO4
-2

, respectively (Figure 8F, black bars). These data demonstrate that the VOC 

bouquet emitted by B55 and pure DMDS applications induce similar S-dependent changes in 

plant growth and the concentrations of S-containing metabolites.  
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DMDS application affects ET production  

 Due to their ET-insensitivity, 35S-etr1 plants overproduce ET constitutively and in 

response to biotic elicitations and similar ET production responses are seen with WT plants 

rendered transiently ET-insensitive by treatments with the gas 1-methylcyclopropene  (1-MCP)  

(von Dahl et al., 2007). Ethylene production is tightly coupled to the Yang-cycle in which the S-

containing amino acid Met is recycled (Miyazaki & Yang, 1987). The results of this study 

suggest that 35S-etr1 plants have an “unregulated” S metabolism. Hence we analyzed how the 

medium’s availability of SO4
-2 

and DMDS affect ET production.  

 As shown by von Dahl et al. (2007), the ET-insensitive 35S-etr1 plants show higher ET 

emissions compared to WT. While in WT seedlings ET emissions tended to increase with 

increasing SO4
-2 

availability (simple regression analysis, P>0.05), the ET emission of 35S-etr1 

seedlings was constitutively high, irrespective of the medium’s SO4
-2 

concentration 

(Supplemental Figure 8A online).   

 To evaluate whether an increased availability of reduced S, in the form of DMDS, 

facilitated ET production, we measured ET emission of WT and 35S-etr1 plants exposed to 

DMDS. Additionally we applied 1-MCP to plants to elicit transient ET-insensitivity. The 1-MCP 

treatment resulted in higher ET emissions of WT (260 % increase), as well as 35S-etr1, plants 

(117 % increase); and interestingly, application of DMDS caused increased ET production only 

in ET insensitive plants: DMDS-treated 35S-etr1, 1-MCP-treated WT and 1-MCP-treated 35S-

etr1 plants had 57, 62 and 116 % increased ET emission compared to controls (Supplemental 

Figure 8B, online). The more DMDS was applied, the more ET was produced by ET insensitive 

35S-etr1 plants (Supplemental Figure 8C online). Non-1-MCP-treated WT plants did not respond 

with an altered ET emission to the exposure to DMDS. ET-sensitivity of 35S-etr1 plants was not 

recovered by DMDS. These findings indicate that DMDS might increase S-availability which is 

in part used for ET production in ET-insensitive plants. 

5.5 Discussion  

 Inexpensive high-throughput sequencing technologies are allowing for the complete 

characterization of the microbial communities in all types of eukaryotes and the differences that 

are being uncovered are fueling a plethora of hypotheses about the importance of microbes for 

the health and fitness of their hosts (Nature Vol. 488, Issue 7409, August 1
st
, 2012). Root 

associated microbes have long been thought to be important for the performance of plants, but 

few of these associations have been tested under real world conditions and little is known about 

their mechanism. Using a native plant system (coyote tobacco, Nicotiana attenuata) we are 

investigating the interaction of the naturally root-associated bacterium Bacillus sp. B55 which 

benefits this plant’s growth and survivorship (Long et al., 2010; Meldau et al., 2012).  

 Here we demonstrate a volatile organic compound (VOC)-mediated plant growth 

promotion (PGP) effect which is based on a nutritional mechanism. We argue that the abundant 

sulfur (S)-containing VOC produced by Bacillus sp. B55, dimethyl disulfide (DMDS), 

contributes to N. attenuata’s S nutrition, by providing an inexpensive form of reduced S. 

Seedling vigor (in terms of size, chlorophyll content and root architecture) as well as S-
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containing compounds (e.g. free Met and GSHs) were increased when seedlings were exposed to 

DMDS or the B55 VOC bouquet (Figures 1, 5 and 6). Additionally, we demonstrate that the ET-

insensitive 35S-etr1 N. attenuata plants suffer from an unbalanced S-metabolism and hence 

benefit from the interaction with B55 by obtaining reduced S in the form of bacterial DMDS 

(Figure 10). Furthermore, genes involved in the plant’s S assimilation are down-regulated, 

perhaps reflecting an energy saving strategy, allowing energy that would be used for S reduction 

and assimilation to be otherwise invested in growth (Figure 7). 

 Bacterial VOCs are thought to play important roles in mutualistic or pathogenic plant-

microbe communication and PGP (Bailly & Weisskopf, 2012; Wenke et al., 2012b). However, 

only few bioactive VOCs, namely 2,3-butanediol, acetoin, DMDS, 2-pentylfuran and 

dimethylhexadecylamine, have been identified (Ryu et al., 2003; Kai et al., 2010; Zou et al., 

2010; Velazquez-Becerra et al., 2011) and the signaling pathways as well as mechanisms 

involved in VOC-mediated PGP or growth depression remain largely unknown (Ryu et al., 2003; 

Bailly & Weisskopf, 2012; Wenke et al., 2012a).  

 Various groups of microorganisms and algae emit volatile S containing compounds (such 

as methanethiol, DMDS, dimethyl sulfide [DMS] or dimethyl trisulfide [DMTS]), but so do 

higher plants, like Brassicaceae sp., garlic or onion (Rumberger & Marschner, 2003; Doornbos et 

al., 2010). The sulfurous, bioactive volatiles play diverse roles, affecting organisms across all 

kingdoms. S containing VOCs emitted from rotting Brassicaceae plant material or bacterial 

species like Serratia plymuthica IC1270 function as antimicrobials, suppressing fungi like 

Verticilium dahliae, Fusarium spp., the tumor-producing bacterium Agrobacterium tumefaciens 

and phytopathogous nematodes (Kai et al., 2009; Wang et al., 2009; Huang et al., 2010; 

Dandurishvili et al., 2011). DMDS was first described to be produced by bacteria isolated from 

decomposing chicken (Freeman et al., 1976). Surprisingly, DMDS along with other VOCs 

emitted by rhizobacteria Pseudomonas fluorescens B-4117 and S. plymuthica IC1270 was found 

to inhibit the cell-cell communication quorum-sensing (QS) network of various bacteria (Chernin 

et al., 2011). Furthermore, DMDS functions as a plant defense compound against non-specialist 

herbivores feeding on Allium porrum (Dugravot et al., 2003; Dugravot et al., 2004) and as both 

oviposition repellent and attractant to different natural enemies of the cabbage root fly Delia 

radicum (Ferry et al., 2007; Ferry et al., 2009). Recently, Huang et al. (2012) described DMDS 

as an elicitor of Induced Systemic Resistance (ISR) in Nicotiana benthamiana against Botrytis 

cinerea. Additionally, S containing VOCs seem to enhance grape vine bud break (Kubota et al., 

2003; Vargas-Arispuro et al., 2008). Whether DMDS mediates signaling processes involved in 

plant defense in N. attenuata is currently under investigation.  

 Here we provide evidence that DMDS plays a role in PGP by providing a form of reduced 

S for the plant. Our observations differ in part from those of Kai et al. (2010), which found that 

fumigations of A. thaliana seedlings with DMDS suppressed growth irrespective of the 

concentration applied. In our experimental set-up (MM2 medium supplemented with different 

amounts of SO4
-2

), we also found positive effects of 500 µg DMDS per Petri dish on the growth 

of A. thaliana, as we did with N. attenuata seedlings (Supplemental Figure 9 online). Very high 

DMDS concentrations (2000 µg / Petri dish), however, completely inhibited seedling growth 

(Supplemental Figure 6 online). These results are consistent with DMDS concentration- and 



Manuscript III 

82 

cultivation medium-dependent VOC-mediated PGP effects, indicating that the effect of DMDS 

depends on the environmental conditions.  

 In vitro pre-experiments have revealed that N. attenuata seedlings grow best under SO4
-2

 

supply higher than 50 µM (Supplemental Figure 10 online). Given that the SO4
-2

 soil 

concentration is suboptimal for plant growth (ca. 22.5 µM SO4
-2

), DMDS production by root 

associated bacteria might play an important role in the plant’s S nutrition in nature. Indeed, 

anthropogenic emissions of sulfur dioxide (SO2) have practically ceased since the implementation 

of stringent controls over the use of high S fossil fuels (Smith et al., 2011). Consequently, S input 

into soil has steadily decreased and SO4
-2

 deficiency has become a limiting factor for plant 

growth (McGrath & Zhao, 1995). S is rated the 4
th

 most important macronutrient (after nitrogen, 

phosphorus and potassium) and essential for plant and animal life. Being incorporated into 

compounds such as the essential amino acids cysteine (Cys) and methionine (Met), several co-

enzymes, vitamins, thioredoxins and glutathiones, S availability determines crop quality and 

quantity (Zhao et al., 1993; Zhao et al., 1999). Sulfur deficiency directly affects a plant’s primary 

metabolism, in large part through the suppression of the photosynthesis machinery via decreased 

chlorophyll contents and lowered synthesis of RUBISCO restricting carbon dioxide (CO2) 

assimilation (Burke et al., 1986; Gilbert et al., 1997). This scenario is consistent with the growth 

effects we observed in N. attenuata S-deprived plants (Figures 5 and 6, white bars). Generally S 

is taken up by the roots from surrounding soil in the form of SO4
-2

. However, as several studies 

have shown, plants are also capable of using atmospheric S, SO2 and hydrogen sulfide (H2S), to 

meet their S needs. Recently, Chen et al. (2011) reported that H2S application to Spinacia 

oleracea seedlings increased growth, chlorophyll content and other photosynthetic parameters. 

These, otherwise toxic volatiles, may become valuable S sources, particularly when S supply to 

the root is limited (DeKok et al., 1997; Stuiver & De Kok, 2001; Durenkamp & De Kok, 2005). 

The PGP effects attributed to DMDS or B55 VOCs were greatest when N. attenuata seedlings 

were grown under SO4
-2

- limiting conditions (0 µM) (Figures 5 and 6). The application of DMDS 

compensated for SO4
-2

 deficiency in the growth medium, consistent with the perspective of the 

aforementioned studies. 

 Although major PGP effects could be attributed to bacterial VOCs in vitro, their role in 

nature remains elusive. To evaluate the contribution of B55’s DMDS emission to a plants’ S 

nutrition in nature, a bacterial mutant, unable to produce DMDS, would be required. Taking into 

account the challenge of transforming Gram-positive bacteria, as well as the fact that based on in 

silico analysis, the expression of three genes (B. megaterium QM B1551 METHIONINE-γ-

LYASE, CYSTATHIONINE-γ-LYASE, CYSTATHIONINE-β-LYASE) involved in DMDS would be 

needed to be silenced, the utilization of transgenic plant lines, impaired in SO4
-2

 reduction, might 

shed light on the relevance DMDS in nature. A molecular tool box for transforming N. attenuata 

has been developed over the last decade; but unfortunately, a transgenic line impaired in S 

reduction was not available to address our hypothesis, namely, that B55 VOCs / DMDS function 

as PGP agent by providing reduced S to the plant. However, the use of our ET-insensitive 35S-

etr1 plant in the analysis of VOC-mediated PGP turned out to be serendipitous. While we were 

first only interested in unraveling the dramatic PGP effect conferred by B55 onto its host plant, 

35S-etr1 (Meldau et al., 2012), we discovered that this line has impairments in S metabolism. We 
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found, that irrespective of the medium’s SO4
-2

 concentration, non-treated (control) 35S-etr1 

plants exhibited an abnormal growth phenotype, which could be partially recovered by DMDS / 

B55 VOCs (Figure 5-9). A literature survey revealed that the A. thaliana gene ETHYLENE 

INSENSITIVE LIKE3 (AtEIL3) shares the functional identity with a gene called SULFUR 

LIMITATION1 (AtSLIM1) (Maruyama-Nakashita et al., 2006). AtSLIM1 mutants were impaired 

in SO4
-2 

uptake in low S media and had reduced growth. Our NaETR1 gene, however, did not 

show homology to any gene involved in S metabolism nor to the transcriptional regulator 

AtSLIM1.  

 Due to the high ET emissions of 35S-etr1, a phenotype coupled to ET-insensitivity (von 

Dahl et al., 2007) (Supplemental figure 8A online), we assumed that 35S-etr1 plants might have 

an increased demand for S, in the form of Met, cycling in the Yang-Cycle. Compared to other S-

containing compounds (i.e. reduced GSHs), free Met levels were comparatively high in non-

treated (control) 35S-etr1 seedlings (Figure 5) and the transcripts of NaMETSYN1 accumulated to 

consistently higher levels, irrespective of the SO4
-2

 concentrations the seedlings were cultivated 

on (Figure 8C). Also our labeling experiment (Figure 4) indicates that 35S-etr1 seedlings have a 

higher requirement for (reduced) S and assimilate more labeled S than do WT seedlings, 

consistent with our inference regarding the “unregulated” S metabolism and Yang-Cycle. We 

propose that ET-insensitive plants invest their S into the recycling of Met (in the Yang-Cycle) to 

supply the demands of their constitutively high ET emissions, which are maintained at the 

expense of plant growth. This is consistent with the results of Burstenbinder et al. (2007) and 

Katz et al. (2006), who found that Met availability restricts ET production. Hence we propose 

that the exposure of 35S-etr1 seedlings to DMDS (pure or as B55 VOC bouquet) compensates for 

the high S demand, rescuing seedling growth. ET insensitivity was, however, not affected by 

exposure to VOCs or DMDS (Supplemental Figure 8 online). Exposing ET-insensitive plants to 

DMDS amplified ET emissions, perhaps due to their increased reduced-S availability which 

consequently fueled the Yang cycle (Supplemental Figure 8B and C online).  

 Our experiments provide evidence consistent with the hypothesis that DMDS is 

assimilated by seedlings through the headspace (Figure 2 and Supplemental Figure 2 online). The 

labeled 
35

S is incorporated into the seedling’s protein after exposure to the bacterial VOC 

bouquet (Figures 3 and 4). However, other explanations exist; the radioactive signal might not 

necessarily have only originated from the assimilation of DMDS alone. Other S containing 

VOCs, not detected by methods we used (SPME coupled to GC-MS), might be produced by B55. 

For example, emission of methanethiol, a volatile precursor of DMDS, as well as other sulfurous 

VOCs, such as DMTS and DMS, are commonly produced VOCs of diverse microbes (Farag et 

al., 2006; Kai et al., 2010; Minerdi et al., 2011). Furthermore, S-methyl pentanethioate 

(Supplemental Table 1 online), which is emitted in trace amounts, or the production of H2S (not 

found in B55 VOCs, Supplemental Figure 11 online) might have contributed to the radioactive 

signal.  

 Although DMDS is an abundant VOC produced by B55, other non-sulfurous VOCs 

emitted by B55 (listed in Supplemental Table 1 online) have been reported to be produced by 

diverse bacterial taxa (Joffraud et al., 2001; Chung et al., 2002; Thiel et al., 2010; Weise et al., 

2012) and might affect N. attenuata growth as well. The large amounts of CO2 produced by co-
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cultivated bacteria are known to positively affect seedling growth (Kai & Piechulla, 2009). With 

a CO2 trapping experiment as described by Kai and Piechulla (2009) (see Supplemental Figure 

12A), we found that the seedlings’ affinity to CO2 is much higher than that of the scavenging 

agent Ba(OH)2 (Supplemental Figure 12B online). Thus it is not possible at this time to entirely 

exclude PGP effects resulting from DMDS from those resulting from CO2 in the split plate 

assays. Additional experiments revealed, however, that even under reduced bacterial CO2 

exposure concentration, B55 VOCs still exerted positive effects on seedling growth; seedling 

surface area of seeds exposed to B55 VOCs and Ba(OH)2 was as large as of those exposed only 

to the VOCs (Supplemental Figure 12C online).  

 In general, the PGP effects of seedlings grown on MM2 medium, co-cultivated with B55 

were smaller than those observed after DMDS exposure (Figures 5, 6 and 8). This was 

particularly true for 35S-etr1 seedlings and might have two reasons. First, bacterial DMDS 

production might not be high enough to supply the S-requirements of growth on low SO4
-2

 MM2 

medium. Second, the many different VOCs emitted by B55 might act antagonistically and alter 

the growth response - a hypothesis which needs further investigation. Furthermore, we found that 

VOC effects in a Petri dish system are strongly influenced, not only by the bacterial culture 

medium, as reported by Blom, D. et al. (2011), but also by the seedlings’ medium or a 

combination of both (compare Figure 1 with Figure 8). 

 Although the research on VOC-mediated PGP in plants is substantial and several VOCs 

have been identified, most work has been performed on a few model plants, as reviewed by 

Bailly and Weisskopf (2012) and Wenke et al. (2012b). How VOCs confer PGP effects on plants 

remains largely unknown. Our work has uncovered a new mechanism of PGP: a nutrient driven 

PGP effect of the S-containing VOC DMDS, likely functioning by enhancing S availability and 

reducing the energy requirements of S assimilation. Furthermore, we suggest that 35S-etr1 plants 

benefit most from the mutualistic association with B55 and DMDS emission due to their apparent 

impairments in S metabolism (Figure 9). Our work also demonstrates that by conducting research 

on naturally occurring and ecologically relevant interactions greatly facilities the study of these 

ubiquitous beneficial plant-microbe interactions. Our results show that the effects of bacterial 

compounds is highly context specific, depending on model system, plant genotype and bacterial 

strain, as one might expect of any co-evolved interaction. In addition, the work reveals the value 

of using transgenic lines of a native plant to uncover the interactions and their function. 

 The larger environmental context of this work is that anthropogenic emissions of sulfur 

dioxide (SO2) have recently decreased with the implementation of pollution abatement measures. 

The cleaning of our air has decreased S inputs into soils, with the consequence that S deficiency 

has become a limiting factor for plant growth. While plants cannot exploit organically bound S, 

bacteria can. Uncovering the mechanisms of this native PGP plant-microbe interaction suggests 

the intriguing possibility of agronomic utility; by contributing to the host’s S nutrition, B55 pre-

inoculation of seeds could help reduce synthetic fertilizer inputs. 
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5.6 Materials and methods 

Plant materials and bacterial strain 

 The 31 x selfed WT line of Nicotiana attenuata and the ET insensitive transgenic line 

N. attenuata 35S-etr1 (A-03-328-8, fully described in von Dahl et al., 2007) and Arabidopsis 

thaliana Col-0 seeds were used in all experiments. Germination procedures have been described 

elsewhere (Ryu et al., 2003; Long et al., 2010). The plant growth promoting Bacillus sp. B55 

strain was isolated from a 35S-etr1 plant grown in native Utah soil in 2008 (Long et al., 2010). 

Unless noted otherwise, B55 was routinely grown on half-strength yeast peptone dextrose agar 

(YPDA; Sigma, Steinheim, Germany) at 30 °C. N. attenuata seedlings were grown, depending on 

the experimental set-up, on GB5 (with or without 1.2 % sucrose, Gamborg’s B5 media, Duchefa, 

Haarlem, The Netherlands) or on modified minimal medium (MM2) supplemented with different 

amounts of SO4
-2

 (0, 50 or 1000 µM MgSO4x7H2O). One liter MM2 contains 80 mg KNO3, 65 

mg KCl, 4.8 mg KH2PO4, 288 mg Ca(NO3)2x4H2O, 8 mg NaFeEDTA, 0.75 mg KI, 6 mg 

MnCl2x4H2O, 2.65 mg ZnSO4x7H2O, 1.5 mg H3BO3 ; 0.13 mg CuSO4x5H2O, 0.0024 mg 

Na2MoO4x2H2O and 1.2 % sucrose, pH was adjusted to 6.8 (modifed after Becard & Fortin, 

1988). To avoid magnesium deficiency in low SO4
-2

 media and to exclude possible Cl
2-

 effects in 

high SO4
-2

 media, magnesium concentration was balanced by the addition of 50 µM 

MgCl2x6H2O to all MM2 media. Petri dishes were kept in a Percival growth chamber at 16/8 h 

day/night cycle, 155 μmol m
-2

 s
-1

 and 30/28 °C. Depending on the experimental design, A. 

thaliana seedlings were cultivated on half-strength Murashige and Skoog salt (MS, Duchefa, 

Haarlem, The Netherlands) agar medium or MM2 medium supplemented with different amounts 

of SO4
-2

 (0, 50 or 1000 µM MgSO4x7H2O) in a York growth chamber (16/8 h day/night cycle, 

190-220 µmol m
-2

 s
-1

, 21 °C).  

 

Seedling growth promotion by B55 volatile organic compounds 

 The effect of B55 volatile organic compounds (VOCs) was evaluated by spotting 5 µL of 

bacterial suspension (in sterile water, OD600=1.0) onto one side of a bi-partite Petri dish 

containing 0.5xYPDA, while WT and 35S-etr1 seeds were transferred onto the other side 

containing GB5 medium, so that seedlings and bacteria shared only the common headspace. 

Seedling surface area was quantified after 12 d according to the video tutorial by Zach Jarou 

[http://www.chlorofilms.org/index.php/crpVideo/display/videoid/46]) using Adobe Photoshop 

CS5. Chlorophyll a and b contents were analyzed spectrophotometrically from an 80 % acetone 

extract using a TECAN plate reader (Tecan, Crailsheim, Germany). Number of true leaves and 

lateral root branches were determined by counting and primary root length was measured. Four 

replicates with at least 20 seedlings (horizontal placement) or 7 seedlings (vertical placement) per 

Petri Dish were carried out for each treatment. The experiment was repeated two times.  

 To test the effect of B55 VOCs on seedlings grown under different SO4
-2

 supply, WT and 

35S-etr1 seedlings were germinated in one side of a bi-partite Petri dish containing MM2 

medium supplemented with different MgSO4x7H2O concentrations [0, 50 or 1000 µM]). After 4 

d, plates were opened under a safety hood and 5 µL of bacterial suspension (in sterile water, 

OD600=1.0) or water were applied on the other side of the bi-partite dish, containing 0.5xYPDA. 
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Growth effects in terms of lateral root branches were assessed 11 d after sowing (vertical 

placement, n ≥ 4 Petri dishes with 4 seeds per dish). Seedling surface area, chlorophyll a and b 

content, free methionine (Met) and glutathion (GSH) levels were determined from 15 d old 

seedlings (horizontal placement, n≥ 4 Petri dishes with ca. 20 seeds per dish). The experiment 

was repeated twice for WT and once for 35S-etr1. 

Analysis of glutathiones (γ-glutamyl-cysteinyl-glycine)  

 The concentrations of reduced (GSH) and oxidized (GSSG) glutathion levels were 

determined according to the modified protocol by Rellan-Alvarez et al. (2006).  Briefly, 50-70 

mg fresh nitrogen (N2)-ground shoot tissue were extracted with 200 µL ice-cooled extraction 

buffer (5 % [w/v] metaphosphoric acid, 0.1 % [v/v] formic acid, 1 % [w/v] Polyvinyl-

polypyrrolidone (PVPP)  and 10 ng/µL GSH internal standard [glycine-
13

C2,
15

N, Sigma-Aldrich, 

Germany]) for 5 min using a Vortex. After centrifugation at 4°C for 20 min at 15 000 g, the pellet 

was re-extracted with 150 µL extraction buffer. Two hundred µL pooled extract was used for LC-

MS analysis on a Varian 1200 triple quad spectrometer. Separation was performed on a Varian 

ProStar HPLC system (Econosil CN 5µm 250 x 4.6 mm, Alltech, Illinois, USA) with a mobile 

phase A: water, 0.05 % formic acid, 0.1 % acetonitrile and B: methanol. The elution profile was: 

0-5 min, 5 % B; 5-12 min, 5-60 % B; 12-20 min, 60 % B. The flow rate of 1 mL min
-1

 was 

reduced to 250 µL min
-1

 by a LC Packings 1:4 fixed splitter. The triple quadrupole mass 

spectrometer was operated in multiple reaction monitoring (MRM) mode, using the following ion 

transitions: (m/z Q1  Q3/collision energy): reduced GSH (m/z 306  143/19 V); (glycine-
13

C2,
15

N)-GSH (m/z 309  146/19V); GSSG (m/z 611 305/25V). 

Analysis of free methionines 

 Free Met content was assessed by extracting ca. 50 mg finely ground shoot sample in 80 

% methanol for 5 min. The diluted extracts were directly analyzed by LC-MS/MS after a 

modified protocol by Jander et al. (2004). Chromatography was performed on an Agilent 1200 

HPLC system (Agilent Technologies, Boeblingen, Germany) and separation was achieved on a 

Zorbax Eclipse XDB-C18 column (50 x 4.6 mm, 1.8 µm, Agilent Technologies, Germany). 

Formic acid (0.05 %) in water and acetonitrile were employed as mobile phases “A” and “B”, 

respectively. The elution profile was: 0-1 min, 3 % B; 1-2.7 min, 3-100 % B in A; 2.7-3 min 100 

% B and 3.1-6 min 3 % B. The mobile phase flow rate was 1.1 mL min
-1

. The column 

temperature was maintained at 25 °C. The liquid chromatography was coupled to an API 3200 

tandem mass spectrometer (Applied Biosystems, Darmstadt, Germany) equipped with a 

Turbospray ion source operated in positive ionization mode. The instrument parameters were 

optimized by infusion experiments with pure standards (amino acid standard mix, Fluka, St. 

Louis, USA). The ionspray voltage was maintained at 5500 eV. The turbo gas temperature was 

set at 700 °C. Nebulizing gas was set at 70 psi, curtain gas at 35 psi, heating gas at 70 psi and 

collision gas at 2 psi. MRM was used to monitor analyte parent ion  product ion: MRMs were 

chosen as following:  Met (m/z 150104), 
13

C, 
15

N-Met (m/z 156109). Both Q1 and Q3 

quadrupoles were maintained at unit resolution. Analyst 1.5 software (Applied Biosystems, 

Darmstadt, Germany) was used for data acquisition and processing.  All samples were spiked 
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with 
13

C, 
15

N labeled amino acids (algal amino acids 
13

C, 
15

N, Isotec, Miamisburg, US) at a 

concentration of 10 ug of the mix per mL. The concentration of the individual labeled amino 

acids in the mix had been determined by classical HPLC-fluorescence detection analysis after 

pre-column derivatization with ortho-phthaldialdehyde-mercaptoethanol. Met was quantified by 

using 
13

C, 
15

N labeled Met as an internal standard. 

Volatile collection and analysis 

 Volatile organic compounds of bi-partite Petri dishes containing medium 

(0.5xYPDA|GB5), B55, B55+WT seedlings (co-cultivation) or WT seedlings only were collected 

14 d after inoculation by headspace sampling for 20 min with a SPME Divinyl-Carboxen-PDMS 

fiber (Sigma-Aldrich, Steinheim, Germany) and analyzed on a Varian CP-3800 GC coupled with 

a Varian Saturn 4000 ion trap MS in electron ionisation (EI; 70 eV) mode (Varian, Palo Alto, 

CA). The sample (SPME fiber) was injected into the GC and volatiles separated on a DB-5 

column (30 m×0.25 mm I.D., 0.25 µm film thickness, Agilent, Boeblingen, Germany) with 

helium at a constant flow of 1 mL min
-1

 as the carrier gas. The injector temperature was at 230 

°C; the oven temperature program was: 40 °C for 5 min, 185 °C at 5.0 °C min
-1

, and a 30 °C min
-

1
 ramp to 300 °C. EI spectra were recorded on Scan mode from m/z 40 to 300. DMDS was 

identified by library search and by comparison to synthetic DMDS (98 %, Sigma-Aldrich, 

Steinheim, Germany). Quantification of DMDS was performed in the linear range of detection 

based on calibration curves generated with increasing concentrations of commercial DMDS 

mixes in methanol. Other volatiles detected and identified by library search are summarized in 

Supplemental Table 2 online. 

Characterization of dimethyl disulfide production by B55 

 The effect of age, colony size, culture medium, light, temperature and the presence of WT 

seedlings on the Petri dish headspace concentration of DMDS was evaluated. Therefore DMDS 

headspace concentration of B55 cultures of different age (ranging from 5 to 15 d), B55 cultures 

grown on different media (0.125x, 0.25x, 0.5xYPDA), under different temperature (26 and 30 

°C) and light conditions (dark vs. 16 h light d
-1

) were analyzed by GC-MS. The effect of 

seedlings on DMDS concentration in the headspace was analyzed by co-cultivating B55 with 

different amounts of seedlings (n= 3, 5, 10, 15 or 25 seeds) for 12 d on two-partite Petri dishes 

(GB5|0.5x YPDA).  

Carbon dioxide experiments 

 In order to test whether elevated carbon dioxide (CO2) levels arising from bacterial 

growth affect WT seedling growth, CO2 was trapped with Ba(OH)2 by the formation of BaCO3 as 

described by Kai and Piechulla (2009). Trapping experiments were performed in tri-partite Petri 

dishes. Seedlings were grown as described above, except that the GB5 medium was amended 

with 1.2 % sucrose. The bacterial CO2 production was indirectly assessed by the formation of 

BaCO3. Five µL of B55 were applied onto 0.5xYPDA while WT seeds were co-cultivated or not. 

Seven mL of a fresh 0.1 M Ba(OH)2 solution were filled in the third compartment and the plate 

was sealed two times with Parafilm. BaCO3 formation was determined every day (d1-d6).  
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 CO2 production and effects were found to be immense (Supplemental Figure 12B online). 

To confine these effects in consecutive CO2-trapping experiments, 5 µL of B55 suspension were 

applied on less nutritious medium (0.25xYPDA) and 6 d after sowing only. Leaf area was 

measured after 12 d and BaCO3 dry mass was determined to assess the Ba(OH)2 saturation level. 

Five replicates with at least 9 seedlings were performed.  

Qualitative hydrogen sulfide test 

 H2S production by B55 was tested qualitatively using lead acetate test strips (Sigma-

Aldrich, Buchs, Switzerland). B55 cultures were set up according to the manual and color change 

from white to black, indicating the formation of lead sulfite, was checked after 36 h.  

35
S-labeling experiments 

 Ten µL of B55 suspension (in sterile water; OD600=1.0) were inoculated on 25 mL solid 

M9 medium supplemented containing 0.27 MBq Na2
35

SO4 (Perkin-Elmer, Waltham, USA) 

(+
35

S) as sole SO4
-2

 source in one compartment of a bi-partite Petri dish. In the other 

compartment WT seedlings were germinated on modified MM2 medium supplemented with 2 

mM MgSO4 x 7H2O (+SO4) or without MgSO4x7H2O (-SO4) (Figure 3A). The plates were kept 

in a hood of the radioactive lab at RT at a 16/8 h day/night cycle and were illuminated with a 

self-build transportable lamp (stand: Trop Aquarienleuchte Typ E4/0-S 1x15 Watt; lamp: Osram 

L15W light color 954, Lumilux de Luxe [Osram, Munich, Germany]). Seventeen days after 

inoculation, seedlings were harvested in liquid N2 for scintillation measurements and total protein 

extraction. Proteins were extracted with a buffer containing 100 mM Hepes, pH 7.5, 5 mM 

EGTA, 5 mM EDTA, 10 mM DTT, 10 mM Na3VO4, 10 mM NaF, 50 mM glycerol-2-phosphate, 

1 mM PMSF, 10 % glycerol; separated with 10 % SDS-PAGE (Sodiumdodecylsulfate-

Polyacrylamide Gelelectrophoresis), dried for 30 min on a gel dryer (583, BioRad, Bio-Rad 

Laboratories, München, Germany), exposed to positron imaging plate (FLA 3000 system, 

Fujifilm, Tokyo, Japan) and scanned after 7 d exposure. For scintillation counting 50-100 mg 

fresh mass of fine-ground frozen seedling tissue were incubated in 1 mL sodium hypochlorite 

solution for 1 h at 60 °C. After cooling to room temperature, 15 mL Hionic-Fluor (Perkin-Elmer, 

Waltham, USA) was added and scintillation counts were measured (Win Spectral 1414, Perkin-

Elmer, Waltham, USA).  

 To determine whether 35S-etr1 seedlings adsorb higher concentrations of labeled S, the 

same experiment was carried out once more with tri-partite Petri dishes: one third containing WT 

seeds, the other 35S-etr1 seeds and the last third containing B55. After 20 d of co-cultivation, 

scintillation counts were measured. At least 6 Petri dishes were done for each treatment. This 

experiment was performed twice for WT and once for 35S-etr1. 

Application of synthetic dimethyl disulfide 

 Serial concentrations of DMDS in methanol (0.5, 5, 50, 500 and 2000 µg) were applied 

onto a cotton bud placed in an empty side of a bi-partite Petri dish while WT seeds were sown in 

the other side containing MM2 medium (supplemented with different MgSO4x7H2O 

concentrations [0, 50 or 1000 µM]). The volume of 0.5 µL (500 µg) DMDS / Petri Dish was 
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found to promote growth best for SO4
-2

-starved seedlings (Supplemental Figure 6 online) and 

further DMDS PGP experiments were carried out using this concentration.  

 Petri dishes containing WT or 35S-etr1 seeds sown on MM2 media on the one side and a 

cotton bud containing DMDS (or not) on the other side, were sealed three times with Parafilm 

and kept in a Percival growth chamber (16/8 h day/night cycle, 30/28 °C) for at least 17 d in 

vertical or horizontal position before PGP effects were evaluated in terms of seedling surface 

area, chlorophyll a and b content, lateral root number, free Met and GSH concentration. Five 

plates with at least 15 or 7 seeds were done for each treatment for horizontal and vertical 

placement, respectively. The experiment was repeated two times. 

RNA extraction and quantitative real time polymerase chain reaction conditions 

 To analyze whether different SO4
-2

 concentrations in the MM2 medium and DMDS 

application modulate the expression of genes involved in plant S metabolism, quantitative 

polymerase chain reaction (qPCR) was carried out. WT and 35S-etr1 seeds were sown on one 

side of a two-partite Petri dish containing MM2 medium (supplemented with different 

MgSO4x7H2O concentrations [0, 50 or 1000 µM]) and 0.5 µL pure DMDS were applied or not 

onto a cotton bud positioned in the other side of a two-partite Petri dish. After 18 d of growth, 

seedlings were harvested, root and shoot separated and immediately frozen in liquid N2. RNA 

was extracted from 200 mg fine-ground frozen material after the protocol of Kistner and 

Matamoros (2005). 

 To test whether the presence of WT seedlings affects B55’s DMDS production, we 

analyzed the gene expression of the B55 CYSTATHIONINE-Β-LYASE (Bm QM1551 CBL). CBL 

converts L-Met to methanethiol, the precursor of DMDS. Bacterial RNA was extracted from 10 d 

old colonies co-cultured on bi-partite Petri dishes with or without WT seedlings after the protocol 

of Majumdar et al. (1991). One loop of cells was harvested, suspended in 200 µL sterile water 

and mixed with ½ vol cold killing-buffer (20 mM Tris-HCl, pH 7,5; 5 mM MgCl2; 20 mM 

sodiumazid) and centrifuged at 8500 rpm at 4 °C for 10 min. The supernatant was discarded and 

the pellet washed again with 1 mL killing buffer and centrifuged before the pellet was re-

suspended in 500 µL lysis buffer (200 mM NaCl, 3 mM EDTA). The resulting suspension was 

transferred to a 2 mL Eppendorf tube containing 500 µL glass beads (0.25-0.5 mm, Karl Roth, 

Karlsruhe, Germany) and 500 µL phenol-chloroform-isoamylalcohol. The mixture was vortexed 

for 2 min at highest speed, cooled down on ice for 2 min and centrifuged at 4 °C for 5 min at 

15000 rpm. The water phase was transferred to a new tube, re-extracted with 600 µL phenol-

chloroform-isoamylalcohol. The supernatant was added to a new Eppendorf tube containing 600 

µL chloroform-isoamylalcohol, vortexed for 5 min and centrifuged for 5 min at 13000 rpm, 

before the supernatant was re-extracted with 600 µL chloroform-isoamylalcohol. The resulting 

supernatant was mixed with 1/10 vol 3 M Sodium-acetate solution (pH 5.2) and 2.5 x vol ice-cold 

ethanol and inverted 10 times. The samples were kept for 2 h at -80 °C and then centrifuged at 4 

°C and 15000 rpm for 25 min. The pellet was washed with 500 µL 70 % ice-cold ethanol (RNA 

grade) and centrifuged at 4 °C, at 15000 rpm for 20 min. The supernatant was removed and the 

pellet dried before it was suspended in DEPC water. The RNA was subjected to a DNase 

treatment using the RQ1 RNase-Free DNase kit (Promega, Mannheim, Germany). Copy DNA 
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(cDNA) synthesis using either Oligo-dT (plant) or random hexamers (bacteria) was carried out 

according to Mavrodi et al. (2012). qPCR was run on a Mx3005P qPCR system (Stratagene, 

Santa Clara, CA, USA). The gene-specific PCR products were detected with qPCR Core Kit for 

SYBR® Green I (Eurogentec, Seraing, Belgium). The N. attenuata ELONGATION FACTOR1A 

(NaEF1a) and B. megaterium QM B1551 GLYCERALDEHYDE-3-PHOSPHATE 

DEHYDROGENASE (Bm QM1551 GADPH) genes served as internal standards for normalizing 

cDNA. Sequence accession numbers of N. attenuata genes tested (NaSULTR1, NaSIR, 

NaMETSYN1) and primers used for qPCR are summarized in Supplemental Tables 2 and 3. 

qPCR conditions were set according to manufacturer’s manual. The experiment was carried out 

once with n≥ 4. 

 

Ethylene measurements and glasshouse dimethyl disulfide treatments  

 Sterilized WT and 35S-etr1 seeds were sown in sterile three-necked flasks containing 25 

mL MM2 medium, supplemented with different MgSO4x7H2O concentrations [0, 50 or 1000 

µM]), tightly sealed, and cultivated in a Percival growth chamber (16/8 h day/night cycle, 155 

μmol m
-2

 s
-1

, 30/28 °C). After 17 d, flasks containing seedlings were subjected to ET 

measurements using a photoacoustic spectrometer (INVIVO, Sankt Augustin, Germany), as 

described by von Dahl et al. (2007); flasks containing only medium served as blanks. The 

experiment was carried out twice, with n=4 flasks containing ca. 20 seeds. 

 To test the effect of ET insensitivity on DMDS-related ET emission, 41 d old WT and 

35S-etr1 plants (routinely grown in 10 cm-round pots containing sand and lecaton, for growth 

conditions see Meldau et al, 2012) were wrapped in a transparent plastic bag and exposed 

overnight to 100 µL 0.1 % 1- MCP (1-Methylcyclopropene, an ET-receptor inhibitor) or the 

solvent 0.75 % KOH+NaOH only (von Dahl et al., 2007). The next day plants were treated with 

10 µL DMDS or not. One day later, three leaves were wounded and the whole rosette was cut, 

transferred to a three-necked-flask, in which the ET accumulated for 5 h before it was measured. 

The experiment was carried out once with 5 replicates per treatment combination.  

 To observe DMDS-dose dependent effects, 32 d old non-inoculated WT and 35S-etr1 

plants were wrapped in transparent plastic bags and fumigated for 24 h with 0.5, 2.5, 5.0 or 10.0 

µL DMDS. The next day, three leaves were wounded and the whole rosette was harvested and 

ET accumulated for 5 h before emissions from DMDS treated or control WT and 35S-etr1 plants 

were measured. The experiment was carried out once with 5 replicates per treatment 

combination. 

Statistical analysis 

 Data analysis was performed with the StatView software package (SAS Institute) with a 

completely randomized analysis of variance. One-way and multiple way ANOVAs followed by 

Fisher’s PLSD test or t-test were used to compare differences among treatments. Correlation 

analysis was performed with simple regression tests. 
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Figure 1. Effect of B55 Volatile Organic Compounds on Seedling Growth 

Experimental design and effect of B55 VOCs. WT and 35S-etr1 seedlings were co-cultivated 

with or without B55 for 12 d in bi-partite Petri dishes containing GB5 medium (seedlings) and 

0.5xYPDA (B55) (A). 

(B) Mean (±SE) seedling surface area.  

(C) Mean (±SE) number of true leaves. 

(D) Mean (±SE) number of lateral roots.  

(E) Mean (±SE) primary root length. 

For (B) to (E) a Student’s t-test between mock- and B55 VOCs treated seeds was performed with 

** P< 0.01; *** P< 0.001. VOCs= volatile organic compounds; ns= not significant. n= 4 Petri 

dishes with 20 (B and C) or 7 seeds (D and E).  
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     Figure 2. Depletion of Headspace DMDS after Co-cultivation of B55 with Seedlings  

GC-MS spectra of the selected molecule ion 94 of cultivation medium, B55 alone, co-cultivation 

(B55+WT seedlings), WT seedlings alone and a DMDS standard. DMDS = dimethyl disulfide. 

 

 

 
 

      

       
       
       
       
       
       
       
       
       
       Figure 3. Incorporation of 

35

S-labeled Volatile Sulfur into N. attenuata Seedling’s Protein 

(A) Set up of the experiment.  

(B) Radioactivity screen and table summarizing treatment combinations. The arrow depicts 

the incorporation of 
35

S into WT seedling protein.  

L= low SO
4

-2
 concentration; H= high SO

4

-2 
concentration; M= marker.  



Manuscript III 

94 

 

 
 

      
       
       
       
       
       
       
       

       
       Figure 4. Uptake of 

35

S-labeled Volatile Sulfur by N. attenuata Seedlings 

(A) Set up of the experiment. 

(B) Scintillation counts (±SE) of WT and 35S-etr1 total seedling tissue after 20 d of co-

cultivation with B55. A PLSD test of an ANOVA between B55 VOCs treated WT and 

35S-etr1 seedlings grown on low or high sulfate
 
concentration was carried out. Different 

letters depict statistically differences at P< 0.05. S= sulfate; FM= fresh mass. n≥ 6 Petri 

dishes with 15 seeds.  



 Manuscript III  

  95 

 

 
 

       
        
        
        
        
        
        
        

        
        
        
        
        
        
        
        
        
        

        
        
        
        
        
        
        
        
        

        

        
        
        
        
        
        Figure 5. Effect of DMDS on Seedling Shoot Growth and S-containing Compounds  

Experimental design and effect of DMDS on 20 d old WT and 35S-etr1 seedlings. Seedlings were 

grown in bi-partite Petri dishes containing MM2 medium supplemented with different sulfate 

concentrations (0, 50, 1000 µM MgSO
4
*7H

2
O) (A).  

(B) Mean (±SE) shoot surface area of mock- or DMDS treated WT and 35S-etr1 seedlings. 

(C) Mean (±SE) chlorophyll a content of mock- or DMDS treated WT and 35S-etr1 seedlings. 

(D) Mean (±SE) free methionine content of mock- or DMDS treated WT and 35S-etr1 

seedlings. 
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(E) Mean (±SE) reduced glutathion content of mock- or DMDS treated WT and 35S-etr1 

seedlings. 

For (B) to (E) a PLSD test of an ANOVA between mock- and DMDS treated seedlings was 

performed with * P< 0.05; **P< 0.01;*** P< 0.001. DMDS= dimethyl disulfide; FM= fresh 

mass; ns= not significant. n= 4 Petri dishes with 20 seeds. 
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     Figure 6. Effect of DMDS on Seedling Root Architecture 

WT and 35S-etr1 seedlings were grown for 17 d in bi-partite Petri dishes containing MM2 

medium (vertical placement) supplemented with different sulfate concentrations (0, 50, 1000 µM 

MgSO
4
* 7H

2
O) and treated with or without DMDS. 

(A) Mean (±SE) lateral root number. A PLSD test of an ANOVA between mock- and DMDS-

treated seedlings was performed with ** P< 0.01; *** P< 0.001. DMDS= dimethyl 

disulfide; ns= not significant. n= 4 Petri dishes ≥ 4 seeds. 

(B) Effect of DMDS on 35S-etr1 root hair formation.  
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    Figure 7. Effect of DMDS on the Expression of N. attenuata Genes Involved in S 

Metabolism 

WT and 35S-etr1 seedlings were grown for 18 d in bi-partite Petri dishes containing MM2 

medium supplemented with different sulfate concentrations (0, 50, 1000 µM MgSO
4
*7H

2
O) and 

treated with or without DMDS. 

(A) Mean (±SE) relative transcript abundance of SULFATE TRANSPORTER1 NaSULTR1. 

(B) Mean (±SE) relative transcript abundance of SULFITE REDUCTASE NaSIR 

(C) Mean (±SE) relative transcript abundance of METHIONINE SYNTHASE1 NaMETSYN1.  

For (A) to (C) a PLSD test of an ANOVA between mock- and DMDS- treated seedlings was 

performed with * P< 0.05; ** P< 0.01; *** P< 0.001. DMDS= dimethyl disulfide; ns= not 

significant. n≥ 4, except for A, n≥ 3.  
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Figure 8. Effect of B55 VOCs on Seedlings Grown under Different Sulfate Supply 

WT and 35S-etr1 seedlings were co-cultivated for 15 d (B-E) or 11 d (F) with or without B55 in 

bi-partite Petri dishes. Seedlings were grown on MM2 medium supplemented with different 

sulfate concentrations (0, 50, 1000 µM MgSO
4
*7H

2
O); B55 was grown on 0.5x YPDA. 

(A) Experimental design.  

(B) Mean (±SE) shoot surface area of mock- or VOC-treated WT and 35S-etr1 seedlings. 

(C) Mean (±SE) chlorophyll a content of mock- or VOC-treated WT and 35S-etr1 seedlings. 

(D) Mean (±SE) free methionine content of mock- or VOC-treated WT and 35S-etr1 

seedlings. 

(E) Mean (±SE) reduced glutathione content of mock- or VOC-treated WT and 35S-etr1 

seedlings. 

(F) Mean (±SE) lateral root number of vertically grown, mock- or VOC-treated WT and 35S-

etr1 seedlings.  
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For (B) to (F) a PLSD test of an ANOVA between mock- and VOC-treated seedlings was 

performed with * P< 0.05; **P<0.01; *** P< 0.001. VOC= volatile organic compound; FM= 

fresh mass; ns= not significant. n≥ 3 Petri dishes with 20 (B-E) or 4 seeds (F). 

 
 
 

 
 

   
    
    

    
    
    
    
    
    
    
    
    
    

    
    
    
    
    Figure 9. Proposed Model Summarizing the Volatile Organic Compound-mediated 

Mutualistic Interaction between Bacillus sp. B55 and its Native Host Nicotiana attenuata 

Sulfur (S) availability can limit plant growth in many habitats. The N. attenuata root-colonizing 

bacterium B55 reduces (organic [org]) S and emits dimethyl disulfide (DMDS), which can be 

taken up by the plant. The already reduced S can be channeled into S-containing compounds (e.g. 

glutathiones [GSHs] or the amino acid methionine [Met]) and S-related metabolic pathways, 

leading to biosynthesis of chlorophyll (Chl a) or ethylene. By saving the plant‘s energy for 

reducing inorganic (inorg) S, plant growth is promoted by B55. In turn, the plant might affect 

B55‘s growth and DMDS production positively.  
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5.10 Supplemental figures and tables 

 

 

 
 

      
       
       
       
       

       
       
       Supplemental Figure 1. Effect of B55 Volatile Organic Compounds on Seedling Chlorophyll 

Content 

Mean (±SE) chlorophyll a and b content of mock- or B55 VOC-treated WT and 35S-etr1 

seedlings grown on GB5 medium. VOC= volatile organic compound; FM = fresh mass. n= 4 

Petri dishes with 20 seeds. 

 

 

 
 

         
          
          
          
          
          
          
          
          
          

          
          
          
          
          
          Supplemental Figure 2. Chromatographic Profile of B55 Volatile Organic Compounds  

(A) Total ion current (TIC) GC-MS spectra of cultivation medium, B55 alone, co-cultivation 

(B55+WT seedlings), WT seedlings alone. The arrow depicts dimethyl disulfide (DMDS). 

The compound was identified as DMDS by comparison to an authentic standard.  

(B) DMDS mass spectra obtained from B55 VOC bouquet (left panel) and DMDS standard 

(right panel). 
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        Supplemental Figure 3. Dimethyl Disulfide Emission by B55 as Affected by Seedlings 

(A) Regression line showing the correlation between seedling number Petri dish
-1

 and the 

headspace concentration of DMDS detected after 12 d of co-cultivation of B55. DMDS= 

dimethyl disulfide. A simple regression analysis was performed. n= 3 Petri dishes with 20 

seeds.  

(B) Transcriptional abundance (±SE) of the B55 CYSTATHIONINE-ß-LYASE (CBL) gene as 

affected by seedlings‘ presence. CBL performs the enzymatic conversion of L-methionine 

to methanethiol, before the latter is spontaneously converted to DMDS. n≥ 4.  

 

 

 
 

      
       
       
       
       
       

       Supplemental Figure 4. Radioactive Screen and Protein Loading Gel  

The arrow depicts the incorporation of 35S into WT seedling protein (Lane 7). 
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Supplemental Figure 5. Characteristics of DMDS Production 

(A) Effect of medium (16 d) on B55 DMDS production. 

(B) Effect of colony age (5-16 d) on B55 DMDS production. Bacteria were cultivated on 

0.5xYPDA. A simple regression analysis was performed. 

(C) Effect of light and inoculation temperature (10 d) on B55 DMDS production (±SE). 

Bacteria were cultivated on 0.5xYPDA. A PLSD test of an ANOVA between light and 

cultivation temperature was performed. Different letters depict statistically significant 

differences at P< 0.05. n= 3. 

For (A) to (C) DMDS= dimethyl disulfide.  
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Supplemental Figure 6. Serial Application of DMDS 

WT seedlings were grown for 17 d on MM2 medium supplemented with different sulfate 

concentrations and exposed to 0, 0.5, 5, 50, 500 µg DMDS diluted in MeOH.  

(A) Effect of different DMDS concentrations on WT seedling growth.  

(B) Mean (±SE) seedling surface area. A PLSD test of an ANOVA between different DMDS 

concentrations and medium sulfate supply was carried out. Different letters depict 

statistically significant differences at P< 0.05. n= 4 Petri dishes with 20 seeds. 

 

 

 

 
 

        
         
         
         
         
         
         

         
         Supplemental Figure 7.  Effect of DMDS on Chlorophyll b and Oxidized Glutathion 

Content 

WT and 35S-etr1 seedlings were grown for 20 d in bi-partite Petri dishes containing MM2 

medium supplemented with different sulfate concentrations (0, 50, 1000 µM MgSO
4
* 7H

2
O) and 

treated with or without DMDS. 

(A) Mean (±SE) chlorophyll b content of mock- or DMDS-treated WT and 35S-etr1 

seedlings. n= 4 Petri dishes with 20 seeds. 

(B) Mean (±SE) oxidized glutathion content of mock- or DMDS treated WT and 35S-etr1 

seedlings. n= 4 Petri dishes with 20 seeds. 

For (A) and (B) a PLSD test of an ANOVA between mock- and DMDS treated seedlings was 

carried out with * P< 0.05; ** P<0.01; *** P< 0.001. DMDS= dimethyl disulfide; FM= fresh 

mass; ns= not significant.  
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          Supplemental Figure 8. Effect of Genotype and DMDS on Ethylene Production 

(A) Mean (±SE) ET emission of 17 d old WT and 35S-etr1 seedlings grown on MM2 media 

containing different sulfate concentrations. DM= dry mass. n= 4 flasks with 20 seeds. 

(B) Mean (±SE) ET emission of 41 d old glasshouse grown WT and 35S-etr1 plants 

fumigated with / without DMDS, 1-MCP or a combination of DMDS and 1-MCP. 

DMDS= dimethyl disulfide; MCP = 1-Methylcyclopropene; FM= fresh mass. n= 5.  

(C) Regression line showing correlation between DMDS application and ET emission of 32 d 

old glasshouse grown WT and 35S-etr1 plants treated with different amounts of DMDS. 

DMDS= dimethyl disulfide; FM= fresh mass. n= 5. 

For (A) and (B) a PLSD test of an ANOVA between plant line and treatment combinations was 

performed. Different letters depict statistically significant differences at P< 0.05. 
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        Supplemental Figure 9. Effect of B55 VOCs and DMDS on Arabidopsis thaliana Col-0 

Seedlings 

(A) Mean (±SE) seedling surface area of 14 d old A. thaliana Col-0 seedlings grown on 0.5x 

MS and exposed to B55 VOCs (bi-partite Petri dish). Student’s t-test between mock- and 

B55 VOCs treated seeds was performed with **P< 0.01. 

(B) Mean (±SE) seedling surface area of 17 d old A. thaliana Col-0 seedlings grown on MM2 

supplemented with different sulfate concentrations and exposed to 0.5 µL pure DMDS 

Petri dish
-1

(bi-partite Petri dish). A PLSD test of an ANOVA between mock- or DMDS-

treated seeds with *P< 0.05 was performed.  

For (A) and (B) VOCs = volatile organic compounds; ns = not significant. n= 3 Petri dishes with 

15 seeds. 

  



 Manuscript III  

  113 

 

 
 

        
         
         
         
         
         
         
         

         
         
         
         
         
         
         
         
         
         

         
         Supplemental Figure 10. Sulfate Effects on In Vitro Plant Growth 

WT seedlings were grown for 20 d on MM2 medium supplemented with different sulfate 

concentrations. The arrow depicts native soil sulfate concentration (= ca. 22.5 µM). Regression 

lines showing the correlation between sulfate concentration in growth medium and 

(A) shoot surface area. n≥ 4 Petri dishes with 20 seeds. 

(B) chlorophyll a content. n≥ 4 Petri dishes with 20 seeds. 

(C) free methionine levels. n≥ 4 Petri dishes with 20 seeds. 

(D) lateral root number. n≥18 roots. 

(E) root length. n≥ 18 roots. 

For (A) to (E) a simple regression analysis was performed. FM= fresh mass. 
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   Supplemental Figure 11.  Hydrogen Sulfide (H
2
S) Production by B55 

H
2
S production was tested qualitatively by lead acetate strips. The arrow depicts a slight color 

change from white to gray, indicating low H
2
S production. 

 

 

           

 
 

         

          
          
          
          
          
          
          
          
          
          

          Supplemental Figure 12. Effect of Carbon Dioxide on Seedling Growth 

(A) Experimental set up. 

(B) Mean (±SE) BaCO
3
 formation of B55 grown on 0.5xYPDA (alone, 1-6 d) or with WT 

seedlings (6 d). BaCO
3
 formation of 6 d old B55 co-cultivated with seedlings was much 

lower compared to 6 d old B55 colonies cultivated alone, infering that seedlings have a 

higher affinity to CO
2
 than Ba(OH)

2
. n= 3 Petri dishes (with or without 15 seeds).  

(C) Mean (±SE) surface area of 12 d old WT seedlings co-cultivated with or without B55 in 

the presence of Ba(OH)
2 

or water. Bacteria were cultivated on 0.25xYPDA. n≥ 5 Petri 

dishes with 15 seeds.  
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Supplemental Table 1 Volatile compounds exclusively emitted by B55 (but not by the 

medium itself) as identified by library search. 

RT (min) Identity 

3.53 2-pentanol 

3.79 2-butanone 

10.37 S-methyl pentanethioate  

10.61 unknown 

11.23 2-heptanone, 5- or 6- methyl 

13.76 benzyl alcohol 

 

Supplemental Table 2 Gene accession numbers  

Organism Gene 
Genbank 

accession nr. 

Bacillus sp. B55 16S rRNA, partial JX101913 

N. attenuata SULFATE TRANSPORTER1, SULTR1 Pending 

N. attenuata SULFITE REDUCTASE, SIR Pending 

N. attenuata METHIONINE SYNTHASE1, METSYN1 Pending 

 

Supplemental Table 3 Primers used in this study 

Gene Primer 1 (5'-3') Primer 2 (5'-3') 

NaEF1A CCACACTTCCCACATTGCTG CGCATGTCCCTCACAGCAAA 

NaSULTR1 GTCTCACTCTTGTTAGGTACTC  GCAGCGTGAGATAGGAAGTC 

NaSIR TGCCTGAGTGGGAATTCAAGA CCTGAGTGCCTTCTTCATCG 

NaMETSYN1 TGTAGGTTAGTCTGCCCTCTG  GCTGGTATTGTAATAAGGAAATCC 

Bm QM B1551 GADPH GATCGCCTTCAGCAGCTTC GCTATGCGTGTTCCACTCC 

Bm QM B1551 CBL TCTACAGCAGCCGATTGACC CCACAACTAGACCGCCAATG 
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 General discussion 6

 Plant productivity is threatened by multiple factors, including biotic and abiotic stresses 

(e.g. pests and diseases, as well as nutrient depletion or drought). For example, the loss of 

agricultural productivity of crops due to pathogen infection is estimated at 13% (Lal, 1998; 

Pimentel et al., 2000; Pimentel et al., 2005). Also native plant populations suffer from pathogen 

attack and malnutrition (Gilbert, 2002) and hence they must have developed measures to confine 

fitness losses. One environmentally friendly possibility to restrict losses in agriculture is the 

utilization of free-living microbes, so-called plant growth-promoting bacteria (PGPB), as bio-

inoculants (i.e. bio-protectants, bio-stimulants or bio-fertilizers) (Kloepper et al., 1989; Kaymak, 

2010). While mutualistic microbes have been studied intensely in an agricultural context, their 

role in the pest control and nutritional status of native plants has - with the exception of few 

model plant species (i.e. Arabidopsis thaliana or Medicago truncatula) - been insufficiently 

investigated (van Wees et al., 2000; Zinniel et al., 2002; Dong et al., 2003; Van der Ent et al., 

2009; Schwachtje et al., 2011; Jorquera et al., 2012; Pineda et al., 2012). 

 This dissertation aimed at unraveling the role of mutualistic bacterial associations of a 

native plant, coyote tobacco (Nicotiana attenuata), inhabiting the Great Basin Dessert in the 

USA. Because it germinates after fires to form monocultures where there is little competing 

vegetation, this annual pioneer plant is subjected to various kinds of biotic stresses, e.g. high 

intraspecific competition, herbivory and pathogen pressure (Baldwin et al., 1994; Bahulikar et 

al., 2004), making it a good model to study the relevance of associated mutualistic microbes for 

the survival of wild plants in the rough-and-tumble of their natural environments. 

 In my dissertation I assessed the relevance of plant ethylene (ET) signaling in the 

recruitment of mutualistic bacteria to the plant’s root endosphere, and found that the culturable 

bacterial community of N. attenuata is determined by soil type rather than ET signaling 

(Manuscript I). Furthermore, I assessed the importance of a beneficial native bacterium, Bacillus 

sp. B55, in the growth and fitness of wild-type (WT) plants and an ET-insensitive line (35S-etr1) 

in nature (Manuscript II). Finally, I report on mechanisms responsible for B55’s remarkable 

plant growth-promoting (PGP) effects. I can show that volatile organic compounds (VOCs) 

emitted by B55 promote seedling growth, and identify a sulfur (S)-containing VOC, dimethyl 

disulfide (DMDS), which is released by B55 and confers the observed PGP effects (Manuscript 

III). 

6.1 Factors shaping N. attenuata’s culturable microbial community 

 Numerous studies have addressed the effects of soil type and plant genetic make-up 

(species, genotype or cultivar) on the assembly of indigenous root-associated bacterial 

communities (Badri & Vivanco, 2009; Aira et al., 2010; Weinert et al., 2010; Bulgarelli et al., 

2012; Lundberg et al., 2012); still, it remains unclear which factor (genotype or soil) dominates 

the assembly process (Berg & Smalla, 2009). While plant species effects are substantial, effects 

of transgenic modifications in crops, which, for example, facilitate the release of certain 

substances into the rhizosphere (e.g. phytases, which allow for better phosphate uptake) or the 
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accumulation of molecules in the root (e.g. zeaxanthin, a plant pigment, which is target for 

enhanced production in crops to improve human visual capacity) are marginal and comparable to 

cultivar-specific differences (George et al., 2009; Weinert et al., 2009; Chun et al., 2011). On the 

other hand, the salicylic acid and JA signaling pathways have been reported to shape the 

indigenous leaf and rhizosphere microbial community of A. thaliana plants (Kniskern et al., 

2007; Hein et al., 2008). Another study, using the model plant A. thaliana and a transgenic line 

overexpressing defensive glucosinolates in roots, reported effects on the microbial rhizosphere 

composition (Bressan et al., 2009). From these reports, it appears that manipulating evolutionary 

and ecologically relevant traits in plant defense affects the structure of plant microbial 

communities, while the expression of “novel”, evolutionarily irrelevant compounds does not 

affect this assembly.  

 In our study (Manuscript I), we assessed the root microbial communities of three 

different N. attenuata genotypes grown in four different native soil types. Specifically, we were 

interested in the role of ET signaling in the recruitment of endophytic bacteria, since endophytes 

are thought to establish a more stable interplay with their host (Hardoim et al., 2008). The 

gaseous plant hormone ET has been shown to play an important role in plant-pathogen 

interactions (van Loon et al., 2006), but effects of ET signaling on a plant’s indigenous microbial 

community remained so far unknown.  

 Signaling effects are best studied using transgenic lines, which vary only in the expression 

of the gene of interest (although pleiotropic effects can occur) (Bergelson et al., 1996). Hence, an 

untransformed wild type (WT) control, one transgenic line impaired in ET biosynthesis (ir-aco1) 

and one impaired in ET perception (35S-etr1) were used. Our study revealed that the soil type the 

plants were cultured in, generally determined the microbial assembly in the root endosphere. 

Although we also observed genotype-dependent changes in diversity, namely that ET signaling-

impaired plants harbored a less diverse microbial community than WT, these were marginal. 

Hence, we concluded that soil factors are more important in shaping N. attenuata’s root 

endosphere bacterial community than ET signaling. Furthermore, great variability in total 

colonization and species composition across the samples supports the hypothesis that stochastic 

processes prevail in community assembly, as discussed by Hardoim et al. (2008).  

 Recent advances in high-throughput sequencing technologies revolutionized research in 

plant-microbe interactions, and new technologies like pyrosequencing might be applied to obtain 

a more complete view of the ET-associated microbial community assembly, including non-

culturable bacteria and fungi. The approach we followed (extracting culturable bacteria and 

assaying them on one culture medium) selects for fast-growing, easy-to-culture and very 

abundant bacterial isolates (i.e. Bacillus and Pseudomonas sp.), and draws an incomplete picture. 

Hence, conclusions about the magnitude of ET effects, we reasoned, should be treated with 

caution. Nevertheless, a recent study by Doornbos et al. (2010), using ET-insensitive tobacco 

plants (Tetr18) and a culture-independent approach, came to a similar finding: the plant’s ET-

insensitivity had only marginal effects on the rhizosphere microbial community composition. 

They attributed the minor changes in community structure to an increased susceptibility of Tetr18 

plants to opportunistic microbes than to impairments in ET-signaling (Doornbos et al., 2010). 

Furthermore, we found, as other studies before, that the overexpression of a mutated version of 
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the A. thaliana ET receptor (AtETR1) resulted in pleiotropic effects, giving rise to a severe root 

phenotype (lack of root hairs, few lateral braches, lack of gravitropism) (Luschnig et al., 1998; 

Clark et al., 1999), which might in turn affect the microbial communities to a greater extent than 

ET signaling itself. Innovative techniques, like inducible and transient manipulation of gene 

expression, might help to separate ET signaling from the pleiotropic effects of the mutant 

receptor (Koo et al., 2009). 

 Although ET-signaling-mediated changes in bacterial species diversity were marginal 

(Manuscript I), they might nevertheless impact plant health, as it is often the case for the 

occurrence of a single pathogenic microbe or the inoculation of a PGP strain. Several studies 

working with single microbial isolates reported on the importance of ET in modulating 

mutualistic plant-microbe interactions; and the hormone was shown to determine the balance 

between mutualism and pathogenicity (Dong et al., 2003; Camehl et al., 2010). Performing in 

vitro inoculation assays using selected bacterial isolates, we confirmed plant genotype-specific 

colonization by Pseudomonas thivervalensis, which exclusively entered the ET-insensitive line 

35S-etr1 (Manuscript I). We infer that changes the root biochemistry, e.g. in the metabolome or 

root exudates of 35S-etr1 plants might promote this specific interaction. Similar effects have been 

shown before by Oger et al. (2004). They found that the production of opines in transgenic Lotus 

corniculatus roots led to 10
4
-fold enrichment of opine-utilizing bacterial isolates (e.g. 

Agrobacterium sp.) in the rhizosphere. Ongoing research on N. attenuata root exudates suggests 

that ET signaling indeed affects root exudate composition and hence might facilitate these 

specific plant genotype-microbe interactions (M. Bonilla, unpublished results). 

 From our findings and the related literature, it becomes clear that the role of ET in 

mutualistic plant-microbe is not well understood. In-depth analyses using state-of-the-art 

technologies, like culture-independent analyses of plant microbial communities as well as 

innovative plant genetic manipulation strategies, should be employed to disentangle ET-mediated 

effects at the microbial community level as well as specific (single strain) plant-microbe 

interactions. 

6.2 Plant growth promotion under natural conditions 

 Endophytic bacteria are defined as bacteria living inside plants without causing visible 

damage. Their interactions with their host plants can, however, range from beneficial to 

detrimental (Ryan et al., 2008). With the implementation of environmentally friendly agricultural 

measures (e.g. the introduction of integrated pest management), beneficial (or mutualistic) 

bacteria attracted notice as potential alternatives to pesticides and fertilizers. Here, endophytic 

bacteria represent promising candidates as “bio”-protectants and “bio”-fertilizers, since they 

compete with pathogens for the same niche (Berg & Hallmann, 2006).  

 After the isolation of N. attenuata endophytic bacteria (Manuscript I), we were 

interested in their PGP potential and hence screened the bacteria for two factors commonly 

associated with PGP: the production of an auxin homolog (IAA) and 1-aminocyclopropane-1-

carboxylate deaminase (ACCd) activity (Khalid et al., 2004; Long et al., 2008). We found, 

however, that only one-half of all IAA- and / or ACCd-producing bacteria had PGP effects in 

vitro. This finding is in accordance with Smyth et al. (2011), who tested 15 bacterial strains for 
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the expression of PGP traits and their effects on wheat growth. The authors found no correlation 

between the presence of PGP traits, and the PGP performance of these strains under in vitro and 

glasshouse conditions. Interestingly, one isolate (P. fluorescens MKB37) that exhibited only 

neutral effects in the in vitro studies finally displayed the strongest PGP effects in the glasshouse 

(Smyth et al., 2011). While the presence of a bacterial trait increases the chances of PGP, it does 

not necessarily confer the expected effects, as was shown for the bacterial production of IAA 

(Barazani & Friedman, 1999; Long et al., 2008) and ACCd activity (Schwachtje et al., 2012). 

Hence, results of in vitro PGP screens should be challenged critically, and, clearly, other 

mechanisms and intensive plant-microbe communication are involved in plant growth 

enhancement. 

 From the isolated bacteria (Manuscript I), the influence of one isolate, namely Bacillus 

sp. B55, on WT and 35S-etr1growth was analyzed in detail (Manuscript II). Specifically, we 

were interested in the real-world stability of the dramatic PGP effects we observed for WT and 

especially 35S-etr1 seedlings when inoculated with B55 under in vitro conditions. While 35S-etr1 

plants grow happily in the glasshouse and produce a roughly similar biomass and seed number as 

WT, this impaired plant line is unable to survive in nature (Manuscript II). Inoculation with B55 

significantly enhanced in vitro seedling growth of both WT and 35S-etr1 plants. But, while B55 

displayed only neutral effects on WT growth in nature, it rescued the performance of the 

hampered ET-insensitive 35S-etr1 plants (field season 2009). We repeated the field study in the 

next year (field season 2010), and surprisingly B55 was found to enhance WT plant growth as 

well. Our findings indicate that B55’s PGP effects in nature can vary substantially and might 

depend on multiple (a)biotic factors (e.g. soil type, climate) as proposed by Smyth et al. (2011). 

Similar observations have been made for several, commercially available bio-inoculants, which 

are agriculturally exploited; their efficiency was found to be subjected to strong variation (Lucy 

et al., 2004; Kaymak, 2010; Aeron et al., 2011). Plant growth promotion might become obvious 

only when a plant is subjected to stress (e.g. nutrient deficiencies); on the other hand, the 

outcome can switch completely under prosperous environmental conditions. For example, B55 

exhibited PGP only when the plants were grown under low nutrient supply (D. Meldau, 

unpublished results). This is in concurrence with Partida-Martinez and Heil (2011), who argue 

that every biotic interaction is conditional and can harbor a continuum of outcomes. Not only 

abiotic factors (e.g. climate, nutrient supply), but also complex interactions like microbial 

facilitation, suppression or co-operation influence this conditional outcome and should not be 

neglected (Li & Alexander, 1986). We found, for example, that inoculation of seeds with B55 

affected quantity and diversity of the resident bacteria interacting with field-grown WT and 35S-

etr1 plants (Manuscript II). Experiments aimed at the re-construction of natural microbial 

communities might yield information on the complex interplay in the plant’s rhizo- and 

endosphere. 

6.3 Microbial VOCs for enhanced plant growth 

 The effects of bacterial VOCs on plant growth are enticing and have been previously 

demonstrated in several studies; the underlying mechanisms and signaling pathways are poorly 

understood (Bailly & Weisskopf, 2012; Wenke et al., 2012). One VOC emitted in substantial 
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amounts by B55 (and multiple other microbes) is the S-containing VOC DMDS (Farag et al., 

2006; Kai et al., 2009; Minerdi et al., 2011). While DMDS and other sulfurous VOCs have been 

demonstrated to act as diverse signaling molecules in many biotic interactions, DMDS has also 

been shown to affect A. thaliana seedling growth negatively (Kai et al., 2010). Our study 

(Manuscript III), however, reveals DMDS as PGP agent that supports seedling growth, 

especially when seedlings’ access to sulfate is limited. The exposure of WT and 35S-etr1 

seedlings to DMDS or the B55 VOC bouquet resulted not only in enhanced seedling growth, but 

also in an increased accumulation of S-containing metabolites (i.e. free methionine or the 

antioxidant glutathione [GSH]). Furthermore, transcript studies indicate a down-regulation of the 

plant’s sulfate reduction pathway. Our results demonstrate that the effects of VOCs are highly 

context-specific, depending on plant genotype and microbial identity, as one might expect of any 

co-evolved interaction. Indeed, multiple factors have been demonstrated to shape the interaction 

outcome: plant developmental stage, growth medium and exposure time, microbial strain 

identity, inoculum size, and culturing conditions (Blom et al., 2011).   

 Although bacterial VOCs exert substantial effects in closed systems, their role in nature 

remains elusive. Research on VOC-mediated plant growth modulation in complex soil systems is 

a tricky endeavor, due to experimental limitations imposed by tractable spatial arrangements and 

the gaseous nature of VOCs. So far, studies have been mainly restricted to in vitro systems (using 

split-plate set ups in which plants and microbes communicate only through the shared headspace) 

and hence the relevance of bacterial VOCs for PGP effects in nature is questionable. 

Nevertheless, there is common consensus that microbial VOCs shape plant growth in nature, as 

reviewed by Bailly and Weisskopf (2012). Bailly and Weisskopf (2012) propose two 

explanations for this phenomenon: first, plants are predisposed for the use of VOC signals (e.g. in 

plant-plant and plant-herbivore communication); second, the spatially close interaction between 

microbes and roots in the soil environment supports the accumulation of, and hence favors 

communication via, VOCs. 

 The use of bacterial mutants unable to produce specific VOCs of interest presents the 

method of choice to shed light on the importance of VOCs in plant growth modulation (Ryu et 

al., 2003). But not all microbes can be easily silenced in genes of interest, as it is the case for 

many Gram-positive bacteria, including B55, mainly due to cell wall constraints 

(Rattanachaikunsopon & Phumkhachorn, 2009). Additionally, in the case of bacterial DMDS 

production, three genes involved in the biosynthesis of methanethiol (the precursor of DMDS) 

would be needed to be silenced in Bacillus sp. B55, (Manuscript III). Furthermore, bacterial 

gene silencing might sometimes be lethal or associated with pleiotropic effects. Hence, the 

utilization of transgenic plant lines, silenced in the trait of interest, might shed light on the 

relevance of bacterial VOCs in nature. Indeed, a molecular tool box for transforming N. attenuata 

has been developed, representing an alternative to bacterial gene silencing. Unfortunately, a 

transgenic line impaired in S reduction was not available to address our hypothesis, namely, that 

B55 VOCs / DMDS function as PGP agent by providing reduced S to the plant. However, the use 

of our ET-insensitive 35S-etr1 plant in the analysis of VOC-mediated PGP turned out to be 

serendipitous (Manuscript III). Although we found no direct connection between ET 

insensitivity and DMDS in terms of signaling, we hypothesize from our experiments that 35S-
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etr1 plants benefit most from the mutualistic association with B55 (Manuscript II) and DMDS 

emission (Manuscript III) due to their apparent impairment in S metabolism: 35S-etr1 seedlings 

having lower levels of chlorophyll a and b and GSH, while ET emissions are high. Since the S-

containing amino acid Methionine (Met) is required for ET biosynthesis, we propose that ET-

insensitive plants invest their S into the cycling of Met (in the Yang-Cycle) to supply the 

demands of their constitutively high ET emissions, which are maintained at the expense of plant 

growth. Ongoing research (sulfate uptake experiments and gene expression studies) aims at 

elucidating 35S-etr1’s impairments in the S reduction pathway in more depth. To further dissect 

the role of B55’s DMDS emission in N. attenuata’s S nutrition, supplementation assays using 

plants transiently interrupted in sulfate reduction pathway, e.g. by using Virus Induced Gene 

Silencing (VIGS), need to be carried out. Based on our hypothesis that the plant can use B55’s 

DMDS as a reduced S source, B55-inoculated VIGS-silenced plants should perform better than 

non-inoculated individuals. 

 Elemental S is not only vital for a plant’s “primary” metabolism, but is a constituent of 

the defense metabolites of many plants. For example, a study by Hoeller et al. (2010) reports on 

“sulfur-induced resistance” (SIR) of tobacco plants against the tobacco mosaic virus (TMV). The 

authors attribute SIR to increases in GSH levels (a ubiquitous S-containing antioxidant) of plants 

grown under high sulfate supply. Furthermore, S-containing defense metabolites of the order 

Brassicales contribute up to 30 % of the plant’s total S content; glucosinolates representing the 

most famous example (Rausch & Wachter, 2005). It was shown that sulfate availability 

determines the plant’s glucosinolate concentration (Falk et al., 2007); and just recently, Kruse et 

al. (2012) reported on the positive correlation between sulfate availability, glucosinolate 

concentration, and increased resistance of A. thaliana plants to the fungal pathogen Alternaria 

brassicicola. Hence it would be intriguing to test whether B55 inoculation (or the application of 

its VOCs) can confer similar effects on the defense of N. attenuata and/or A. thaliana. 

 Plants cannot exploit organically bound S, which is estimated to account for 95% of a 

soil’s total S (Scherer, 2001), while microbes can. Furthermore, because atmospheric S inputs 

into soils have decreased due to the implementation of pollution abatement measures, S 

deficiency has become a problem in many soils (McGrath & Zhao, 1995; Smith et al., 2011). 

Given that plants can use volatile S, the inoculation of S-containing VOC emitting microbes into 

the field might help the plant to meet their S requirements and to reduce fertilizer inputs. To 

assess the role of B55’s volatile S-compounds in N. attenuata’s S-nutrition under more complex 

conditions, PGP experiments using B55-inoculated and non-inoculated N. attenuata cultivated in 

native soils which are either depleted or replete in sulfate and supplemented with an organic S 

source will be carried out.  

 Cleary, it is time to move research on VOC-mediated plant growth modulation to the 

field. However, this will require the development of innovative technologies, which allow for the 

analyses of rhizosphere VOCs in a complex soil system and differentiation of their origin (plant, 

introduced microbe or indigenous microbes).  
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6.4 Can plants selectively recruit “helper bacteria”? 

 As for every living organism, a plant’s growth phenotype is not only determined by 

genetic factors, but also by the environment. Orchids, for example, strongly depend on specific 

fungal partners that provide energy (in the form of carbon) for germination (Kruse et al., 2012). 

In another study, the fungus Paraphaeosphaeria quadriseptata was reported to confer 

thermotolerance to cacti, probably by interfering with the heat-shock protein signaling of the host 

(Turbyville et al., 2006). These two examples represent extreme cases of dependence, in which 

the free-living microbe ensures growth and survival of its plant host. 

 It is further hypothesized that impaired plants selectively recruit “helper bacteria” to 

balance their deficiencies. Indeed, recently, several studies have shown that biotic stresses can 

result in the enrichment of beneficial microbes in the plant’s rhizosphere (Berendsen et al., 2012). 

For example, Mavrodi et al. (2012) found that different wheat irrigation practices, which are 

accompanied by the outbreak of certain plant diseases, can promote the build-up of indigenous 

populations of antibiotic-producing pseudomonads, which in turn have the capacity to suppress 

these diseases. Another study on strawberry reported on an increased population size of the HCN-

producing biocontrol agent, Pseudomonas sp. LBUM300, and a stimulation in its hydrogen 

cyanide (HCN) production after a Verticillium dahliae infection (DeCoste et al., 2010). 

 In our studies, B55, a bacterial isolate originally extracted from a 35S-etr1 plant, 

benefitted growth and survival of seed-inoculated 35S-etr1 plants more than WT. These ET-

insensitive plants also seem to strongly depend on B55 as bacterial associates to facilitate growth 

and propagation in nature (Manuscript II). We hence propose that 35S-etr1 plants selectively 

recruit B55, and that B55-mediated PGP occurs in a genotype-specific manner. Indeed, in a 

related study, Long et al. (2008) could show that PGP bacteria favored only the growth of the 

host plant they were originally isolated from (Solanum nigrum) and not a closely related species 

(N. attenuata). Perhaps there are similar intraspecific differences in the PGP effects of individual 

bacterial isolates. 

 We further hypothesized that plants deficient in ET signaling would select for a subgroup 

of PGPB which produce IAA and ACCd to ameliorate ET signaling-related stresses (Hardoim et 

al., 2008). Our results however, did not support this hypothesis (Manuscript I). But, in the 

course of our studies, we discovered that we were actually looking for the wrong bacterial trait. 

While we first only asked to which extent ET insensitivity has effects on the bacterial community 

assembly, we later discovered that 35S-etr1 plants are impaired in S metabolism, and that they 

hence preferentially associate with B55, which produces reduced S in the form of the volatile 

organic compound DMDS (Manuscript III). Indeed, the endosphere of 35S-etr1 seedlings 

produced ten times more colonies of B55 than WT (Manuscript II), supporting the hypotheses 

of the selective recruitment of, and dependence on, “helper microbes”; two phenomenona which 

will require more attention in future.  

 To support these hypotheses, and to gain deeper insights into the role of bacterial DMDS 

in the host’s S nutrition, the frequency of DMDS-producing bacterial strains associating with WT 

under different inorganic sulfate supplies could be explored in the field. Furthermore, it has been 

shown that genetic variability within N. attenuata populations is high (Bahulikar et al. 2004), and 
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this may lead to the emergence of genotypes which are unable to respond properly to 

environmental signals (e.g. herbivory). Kallenbach et al. (2012), for example, reported that two 

out of one hundred plants in a natural N. attenuata population have reduced JA signaling 

capacities. Because jasmonate-mediated defense is costly, these genotypes might experience a 

fitness advantage when herbivore pressure is low. It hence can be supposed that genetic diversity 

has evolved also in other phytohormone pathways, e.g. in ET-signaling. Thus, to test our 

hypothesis that ET-overproducing plants preferentially associate with sulfurous VOC-producing 

bacteria to meet their S needs, native N. attenuata populations should be screened for naturally 

occurring individuals with increased ET emissions and, their microbial associates should be 

tested for DMDS production. 

6.5 The take home message: Plant-microbe interactions should be studied in an 

ecologically relevant context 

 Analyzing both, the root endosphere microbial community and the specific interaction 

between N. attenuata and Bacillus sp. B55, my dissertation aimed at moving from a holistic to a 

reductionist approach. Although a plant’s fitness is finally defined by multiple factors, analyzing 

specific interactions can be rewarding, as I could show for the intimate interaction between N. 

attenuata and B55. My findings allow for the conclusion that stressed plants can recruit “little 

helpers” to balance for their fitness deficiencies. Furthermore, it becomes clear that benefits of 

mutualistic plant-microbe interactions may only become apparent under adverse conditions, like 

nutrient limitation or impairments in plant physiology. 

 My work demonstrates that conducting research on naturally occurring and ecologically 

relevant interactions strongly facilitates the study of mutualistic plant-microbe interactions. To 

understand how plant-microbe interactions work in nature, we should investigate them in their 

evolutionary and ecological context, rather than subjecting plants to “alien” environments (as it is 

the case for 99 % of all crops (Pimentel et al., 2005)) and PGPB they would never have 

associated with over the course of evolution. Intensive research on mechanisms in microbe-

mediated PGP is needed to turn PGPB into a promising tool for use in sustainable agriculture. 
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 Summary 7

 Plant-bacteria interactions are vital for plant growth and fitness. Endosphere-inhabiting 

mutualistic bacteria are thought to establish stable and intimate relationships with their host plant, 

often providing services including plant growth-promotion (PGP) by improving nutrient 

availability or disease protection. How plants select for their mutualistic, endophytic companions, 

however, remains mostly elusive. Furthermore, the multiple mechanisms by which mutualistic 

bacteria might enhance plant productivity have rarely been explored. In this thesis, I present work 

which aims at shedding light on these intriguing questions.  

 In my dissertation I assessed the relevance of plant ethylene (ET) signaling in the 

recruitment of culturable mutualistic bacteria to the root endosphere of the wild tobacco species 

Nicotiana attenuata. Wild-type (WT) and transgenic lines either deficient in ET biosynthesis (ir-

aco1) or ET perception (35S-etr1) grown in native soils were employed for the analysis 

(Manuscript I). This survey revealed that the culturable bacterial community of N. attenuata’s 

roots is mainly composed of Pseudomonas and Bacillus sp. Furthermore, bacterial diversity was 

strongly determined by the soil type and, to a lesser extent, by plant ET signaling: the ET 

signaling-impaired genotypes fostered a less diverse bacterial endophyte community. In terms of 

PGP, about 50% of the isolated strains conferred positive effects on seedling growth. Usually, the 

ability of the bacteria to interfere with the plant’s hormone homeostasis (i.e. by the production of 

auxins [indole-3-acetic acid, IAA] and 1-aminocyclopropane-1-carboxylate deaminase [ACCd]), 

is thought to be responsible for PGP effects, but, interestingly, the mere presence of these traits 

did not necessarily result in seedling growth promotion, implying that multiple mechanisms as 

well as fine-tuned plant-microbe communication are involved in PGP.   

 In a consecutive study, the PGP effects conferred by one bacterial isolate, Bacillus sp. 

B55 (extracted from an ET-insensitive 35S-etr1 plant) were analyzed in detail (Manuscript II). 

Inoculation with B55 increased growth and fitness of WT and the impaired 35S-etr1 plants in 

vitro, in the glasshouse and in the field. Most interestingly, 35S-etr1 plants, which develop a poor 

rooting system and are highly susceptible to diseases and hence barely survive in nature, realized 

greater benefits from B55 inoculation than WT. Notably, 35S-etr1 roots were much more 

strongly colonized by B55 than WT roots, leading to the hypothesis that ET-impaired plants 

recruit, and promote the growth of, beneficial companions. Despite analyzing a broad range of 

PGP characteristics for which B55 tested positive, the mechanisms behind B55’s dramatic PGP 

remained elusive. 

 Searching for novel bacterial traits mediating the observed PGP effects, I could show that 

volatile organic compounds (VOCs) emitted by B55 promote seedling growth (Manuscript III). 

A sulfur (S)-containing VOC, dimethyl disulfide (DMDS), which was released by B55 and 

conferred the observed PGP effects, was identified. Again, 35S-etr1 seedlings realized a greater 

benefit of the exposure to B55’s VOCs and DMDS than WT plants. In addition, I found that 35S-

etr1 seedlings suffer from “impaired” S-metabolism and hence propose that these plants benefit 
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greatly from their interaction with B55 by obtaining reduced S (in the form of bacterial DMDS) 

which might help to fulfill their S requirements. 

 Analyzing both, the root endosphere microbial community and the specific interaction 

between N. attenuata and Bacillus sp. B55, my dissertation aimed at drawing a bow from a 

holistic to a reductionist approach. Although a plant’s fitness is finally defined by multiple 

factors, analyzing specific interactions can be rewarding, as I could show for the intimate 

interaction between N. attenuata and B55. My findings allow for the conclusion that stressed 

plants can recruit “little helpers” to balance for their fitness deficiencies – an observation which 

we should pay more attention in future. Furthermore, it becomes clear that benefits of mutualistic 

plant-microbe interactions may only become apparent under adverse conditions, like nutrient 

limitation or impairments in plant physiology.   

 In conclusion, my thesis demonstrates that conducting research on naturally occurring and 

ecologically relevant interactions greatly facilities the study of beneficial plant-microbe 

interactions. In addition, my studies reveal the value of using transgenic lines to uncover these 

interactions and their functions. 
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 Zusammenfassung 8

 Pflanzen-Bakterien Interaktionen sind bedeutend für das Wachstum und die Fitness der 

Pflanzen. Mutualistische Bakterien, welche die Endosphäre der Pflanzen besiedeln können, 

bilden stabile und enge Beziehungen zu ihrem Wirt aus und fördern zudem oft das Gedeihen, 

indem sie zum Beispiel. die Nährstoffverfügbarkeit erhöhen, oder die Pflanze vor Krankheiten 

schützen. Welche Faktoren bei der Anwerbung nützlicher Endosphären-Besiedler durch die 

Pflanze zum Tragen kommen, ist kaum erforscht. Auch ist wenig über die zahlreichen 

Wirkungsmechanismen der Pflanzenwachstumsförderung durch Bakterien bekannt. Diese 

Doktorarbeit widmet sich der Untersuchung dieser unzureichend erforschten Themen. 

 In meiner Dissertation untersuchte ich die Bedeutung des Pflanzenhormon’s Ethen (ET) 

auf die Selektion kultivierbarer, mutualistischer Bakterien in die Wurzelendosphäre des wilden 

Tabaks, Nicotiana attenuata. Genetisch unveränderte Wildtyp (WT)- Pflanzen, sowie transgene 

Linien, entweder defekt in der ET-Biosynthese (ir-aco1) oder der ET-Wahrnehmung (35S-etr1) 

wurden in natürlichen Böden aus Utah gezogen und für die Analyse genutzt (Manuskript I). 

Spezies der Gattungen Pseudomonas and Bacillus dominierten die kultivierbare, endophytische 

Bakteriengemeinschaft. Zudem wurde die Zusammensetzung hauptsächlich durch den Bodentyp, 

zu einem geringen Maß auch durch Signaltransduktionsprozesse des Pflanzenhormons ET 

bestimmt: ir-aco1 und 35S-etr1 Pflanzen verfügten über eine weniger artenreiche 

Bakteriengemeinschaft. In Reinkultur inokuliert, beeinflusste ungefähr die Hälfte aller 

Bakterienisolate das Keimlingswachstum positiv. Jedoch führte das bloße Vorhandensein von 

wachstumsfördernden Merkmalen bei Bakterien (z.B. die Produktion von Hormonen [hier Auxin, 

Indol-3-essigsäure, IAA] oder der 1-Aminocyclopropan-1-carbonsäure Deaminase [ACCd]) nicht 

in jedem Fall zu einer Wachstumsförderung. Umgekehrt wurde die Hälfte aller 

wachstumsfördernden Bakterienisolate negativ auf die Produktion von IAA und ACCd getestet. 

Dies führt zu dem Schluss, dass diverse, unbekannte Mechanismen, sowie intensive 

Kommunikation zwischen Wirt und Bakterium bei der bakteriell-bedingten 

Pflanzenwachstumsförderung eine Rolle spielen.  

 In darauffolgenden Studien, untersuchte ich die Effekte eines ausgewählten Isolates 

(Bacillus sp. B55) auf das Wachstum von WT und 35S-etr1 Pflanzen im Detail (Manuskript II). 

Die Inokulation von B55 führte zu einer beträchtlichen Wachstums- und Fitnesssteigerung im 

Labor und im Feld. Dabei profitierte der ET-unempfindliche Genotyp 35S-etr1, aus welchem 

B55 ursprünglich isoliert wurde, stärker von der Interaktion als WT. Zudem wurden 35S-etr1 

Pflanzen deutlich stärker kolonisiert als WT, was auf eine Selektion und Anreicherung von 

wachstumsfördernden Bakterien durch diesen beeinträchtigten Genotypen schließen lässt. 

Obwohl B55 auf etliche, bekannte wachstumsfördernde Charakteristika positiv getestet wurde, 

blieb der eigentliche Mechanismus unbekannt.  

 Auf der Suche nach „neuen“ Mechanismen der Wachstumsförderung, wurde deutlich, 

dass die von B55 abgesonderten, volatilen organischen Substanzen (VOCs) einen positiven 

Einfluss auf das Keimlingswachstum haben (Manuskript III). Dabei wurde eine stark flüchtige, 
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schwefelhaltiger Substanz, Dimethyl Disulfide (DMDS), welche von B55 emittiert und in 

Reinstoffapplikationen die zuvor beobachteten Wachstumseffekte erzielte, identifiziert. Während 

für WT nur mangelhaft mit Sulfat versorgte Keimlinge von DMDS profitierten, führte die 

DMDS-Gabe bei 35S-etr1 Keimlingen, unabhängig von der Verfügbarkeit an Sulfat, zu 

Wachstumssteigerungen. Zudem stellte ich im Zuge der Untersuchungen fest, dass ET-

unempfindliche Pflanzen „Störungen“ im Schwefelhaushalt aufweisen. Sie profitieren vermutlich 

deshalb im besonderen Maße von der Interaktion mit B55, indem sie den volatilen, schon 

reduzierten Schwefel in Form von DMDS nutzen, um ihren Schwefelbedarf zu decken. 

 Mit der Erforschung der N. attenuata-assoziierten, mutualistischen 

Bakteriengesellschaften bis hin zur detaillierten Analyse eines wachstumsfördernden 

Wirkmechanismus‘, spannt meine Dissertation einen Bogen vom holistischen zum 

reduktionistischen Forschungsansatz. Auch wenn letztlich die Fitness der Pflanze von multiplen 

Faktoren bestimmt wird, lohnt es sich einen Blick ins Detail (hier auf das Bakterienisolat B55) zu 

wagen. Meine Ergebnisse lassen den Schluss zu, dass im Wachstum gestörte Pflanzen vermehrt 

helfende Mikroben anwerben können, um ihr Überleben zu sichern – eine Beobachtung, welcher 

in Zukunft mehr Beachtung geschenkt werden sollte. Zudem wird deutlich, dass die Vorteile 

mutualistischer Pflanzen-Mikroben-Interaktionen oft nur unter bestimmten Bedingungen, wie z. 

Bsp. bei Nährstofflimitierung oder Störungen in der Pflanzenphysiologie, zum Tragen kommen.  
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